WO2012157577A1 - 能動型消音装置 - Google Patents

能動型消音装置 Download PDF

Info

Publication number
WO2012157577A1
WO2012157577A1 PCT/JP2012/062200 JP2012062200W WO2012157577A1 WO 2012157577 A1 WO2012157577 A1 WO 2012157577A1 JP 2012062200 W JP2012062200 W JP 2012062200W WO 2012157577 A1 WO2012157577 A1 WO 2012157577A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
error signal
signal detector
knuckle
floor panel
Prior art date
Application number
PCT/JP2012/062200
Other languages
English (en)
French (fr)
Inventor
長谷川 浩一
顕 片桐
英揮 大嶋
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to JP2012550252A priority Critical patent/JP5326056B2/ja
Priority to DE112012002158.4T priority patent/DE112012002158B4/de
Publication of WO2012157577A1 publication Critical patent/WO2012157577A1/ja
Priority to US13/951,965 priority patent/US8706351B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1011Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by electromagnetic means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • G10K2210/12821Rolling noise; Wind and body noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3211Active mounts for vibrating structures with means to actively suppress the vibration, e.g. for vehicles

Definitions

  • the present invention relates to an active silencer that actively reduces road noise.
  • the apparatus described in Japanese Patent Application Laid-Open No. 7-210179 detects acceleration as a reference signal by an acceleration sensor attached to a suspension and a vehicle body, detects sound pressure in a vehicle interior as an error signal by a microphone, and is installed in the vehicle interior. Road noise is silenced by outputting a control sound (secondary sound) from the speaker.
  • the resonance primary frequency of the floor panel is lower than the resonance primary frequency of other members constituting the vehicle.
  • the resonance panel primary frequency may be included in the frequency band of the floor panel vibration caused by the road surface input vibration.
  • the vibration near the resonance primary frequency of the floor panel becomes large, and the vibration of the higher order frequency is also generated.
  • the frequency to be controlled includes a high frequency band (for example, several kHz or more)
  • a high frequency band for example, several kHz or more
  • an electronic circuit that generates higher performance of the vibrator, higher performance of various sensors, and generates a control signal to the vibrator High performance is required.
  • the control responsiveness is inevitably lowered as compared with the low frequency band. Therefore, in the high frequency band, the silencing performance is also lowered.
  • the vibrator since the vibration near the resonance primary frequency of the floor panel or the plate-like interior product becomes large, the vibrator needs to generate a vibration having an amplitude capable of suppressing the vibration. Therefore, the size of the vibrator is increased.
  • a quiet zone (cancellation area) depending on the frequency.
  • the quiet zone is a range that is 1 ⁇ 2 of the wavelength of the frequency, so that it is wide in the low frequency region and narrow in the high frequency region. For this reason, the noise canceling effect in the passenger compartment varies depending on the installation position of the speaker. That is, the position dependency of the speaker is high.
  • control frequency is very wide, for example, 30 Hz to 20 kHz in order to control sound with a speaker
  • a control circuit capable of performing high-speed computation is required, resulting in high cost.
  • a speaker must be installed in the vehicle interior, and it cannot be said that installation is easy.
  • the present invention has been made in view of such circumstances, and does not install a vibration exciter on the floor panel itself or the plate-like interior product itself, but achieves cost reduction and miniaturization by other methods.
  • An object of the present invention is to provide an active silencer capable of reliably reducing road noise.
  • the active silencer according to the present means installs a vibration exciter on a member in the middle of a vibration transmission path from a wheel to a plate-like member such as a floor panel, thereby suppressing vibration of the member.
  • a vibration exciter installed on a member in the middle of a vibration transmission path from a wheel to a plate-like member such as a floor panel, thereby suppressing vibration of the member.
  • the active silencer according to the present means is an active silencer that actively reduces noise in the vehicle interior.
  • the vibration input to the wheels from the road surface is transmitted to the plate-like member among the vehicle components, and the plate-like member vibrates to generate road noise in the vehicle interior.
  • the active silencer is provided in a knuckle that supports the wheel in a vibration transmission path from the wheel to the plate-like member, and detects a vibration of the knuckle as a reference signal, and the vibration
  • a tire house connected to the plate-like member in the transmission path to support the suspension device, or a suspension member connected to the plate-like member and constituting the suspension device, and added to the member on the plate-like member side.
  • a vibration exciter for applying a vibration force, a vibration of the tire house or a vibration of the suspension member as an error signal, or an error signal detector for detecting a sound in a vehicle compartment as an error signal, the reference signal and A controller for controlling the vibrator so that the error signal is reduced based on the error signal;
  • the vibration exciter is provided in the tire house or suspension member, not in the floor panel itself or the plate-like interior product itself. That is, by vibrating the tire house or the suspension member, the vibration of the member can be reduced, or the vibration of the member can be brought into a desired vibration state.
  • the tire house or suspension member in which the vibration exciter is installed is extremely high in rigidity compared to a plate-like member such as a floor panel. Therefore, the resonant frequency of the installation member is very high compared to the resonant frequency of a plate-like member such as a floor panel. Therefore, in the tire house or suspension member, the frequency band of vibration caused by road surface input vibration is a frequency band sufficiently lower than the resonance frequency of the member. Therefore, the member does not amplify road surface input vibration due to the resonance. Furthermore, there is almost no influence on the amplitude of the higher-order frequency band of the member.
  • the vibration of the tire house or suspension member can be reduced even if the control frequency is a relatively low frequency band. It can be sufficiently suppressed, or the vibration of the member can be sufficiently brought into a desired vibration state.
  • the frequency to be controlled is a low frequency band, from the viewpoint of the control processing and the response of the vibrator, the vibration of the installation member of the vibrator can be suppressed with higher accuracy, or The vibration of the installation member can be brought into a desired vibration state.
  • the vibrator, the various sensors, and the electronic circuit can be sufficiently handled even if they are not so high in performance. That is, the processing can be performed without shortening the sampling time of various sensors, the calculation processing speed of the electronic circuit may not be high, and the vibration of the vibrator does not resonate, so that vibration can be sufficiently suppressed with low amplitude. Therefore, the cost can be reduced and the size of the vibrator can be reduced.
  • a suspension device is included in a member in the middle of a vibration transmission path from the wheel to a plate-like member such as a floor panel.
  • the suspension device has a viscoelastic member.
  • the reference signal detector is provided on the knuckle, and the vibrator is provided on the tire house or the suspension member. That is, the viscoelastic member is interposed between the member provided with the reference signal detector and the member provided with the vibrator. Therefore, the vibration of the member provided with the vibrator is accompanied by a time delay with respect to the vibration of the member provided with the reference signal. Therefore, the vibrator can be reliably controlled based on the reference signal, and the vibration of the member provided with the vibrator can be reliably controlled to a desired state.
  • road noise is reduced by installing a vibration exciter on the tire house or suspension member and vibrating the part. Therefore, there is no problem in reducing road noise by generating a control sound (secondary sound) with a speaker. That is, since the sound is not muted by the control sound (secondary sound), the problem such as the dependency due to the installation position of the speaker does not occur. Moreover, since vibration is generated by the vibrator, the range of the control frequency of the vibrator is very narrow compared to the range of the control frequency of the speaker. Therefore, since the calculation speed of the control circuit can be reduced, the cost can be reduced. Furthermore, since the vibrator is installed on the member of the vibration transmission path, the degree of freedom of installation is higher than that in the vehicle interior.
  • the error signal detector detects the vibration of the tire house or the vibration of the suspension member as an error signal
  • the vibration of the tire house or the suspension member can be reduced, and the vibration of the member in the vibration transmission path can be reduced. Vibration transmitted to the plate-like member located on the downstream side is reduced. As a result, road noise caused by vibration of a plate-like member such as a floor panel can be reduced.
  • the vibration state of the tire house or suspension member is controlled by vibrating the vibrator so that the sound in the vehicle interior is reduced. .
  • the vibration state of the tire house or suspension member is controlled by vibrating the vibrator so that the sound in the vehicle interior is reduced.
  • the vehicle includes the knuckle that rotatably supports the wheel, a suspension arm coupled to the knuckle, a shock absorber coupled to the suspension arm, an upper support attached to the shock absorber,
  • the tire house that is attached to the upper support and connected to the plate-like member, the reference signal detector is provided in the knuckle, and the vibration exciter and the error signal detector are the tire house. May be provided.
  • the vibration transmission path is in the order of wheels, knuckle, suspension arm, shock absorber, upper support, tire house, and plate member.
  • a reference signal detector is provided in the knuckle on the upstream side of the vibration transmission path, and a vibrator and an error signal detector are provided in the tire house on the downstream side. Therefore, the vibration of the tire house in the vibration transmission path can be reliably reduced, and the vibration transmitted from the tire house to the plate member can be surely reduced.
  • the vibration exciter and the error signal detector may be provided in a position closer to the upper support than the plate member in the tire house.
  • This part corresponds to a part having a particularly high resonance frequency in the tire house. Therefore, the above-described effect can be reliably achieved.
  • the vehicle includes a knuckle that rotatably supports the wheel, a suspension arm coupled to the knuckle, a suspension arm coupled to the suspension arm, and a floor panel as the plate member via a member mount.
  • the reference signal detector may be provided in the knuckle, and the vibration exciter and the error signal detector may be provided in the suspension member.
  • the vibration transmission path is in the order of wheels, knuckle, suspension arm, suspension member, member mount, and floor panel.
  • a reference signal detector is provided in the upstream knuckle of the vibration transmission path, and a vibration exciter and an error signal detector are provided in the downstream suspension member. Therefore, the vibration of the suspension member in the vibration transmission path can be reliably reduced, and the vibration transmitted from the suspension member to the floor panel can be reliably reduced.
  • the plate-like member that is a generation source of road noise includes a floor panel, a windshield, a rear glass, and a door panel.
  • the vehicle has a plurality of road noise sources. Further, when attention is paid to the floor panel, it behaves in a complicated manner, so that the floor panel itself can be regarded as having a plurality of sources of road noise.
  • the error signal detector may be a microphone that detects sound in the passenger compartment as the error signal.
  • vibrations input from the road surface are transmitted to the plate-like member via a plurality of vibration transmission paths, and the plate-like member is vibrated by the installation member being vibrated by the vibrator.
  • a plurality of vibrations transmitted from the road surface and vibrations by the vibrator are combined.
  • the controller controls the vibration exciter so as to reduce an error signal that is a sound in the vehicle interior. In other words, the controller controls the vibration exciter so as to reduce the vibration of the combined plate member.
  • the vibration exciter does not reduce the vibration of the member itself where the vibration exciter is installed, but vibrates the member so that the road noise in the passenger compartment is reduced.
  • the vibrator does not necessarily reduce the vibration of the member itself in which the vibrator is installed, and may increase the vibration of the member itself in some cases. Therefore, even when there are a plurality of vibration transmission paths, road noise in the passenger compartment can be reliably reduced.
  • the reference signal detector may be provided in a common part of the plurality of vibration transmission paths. Thereby, it is possible to reliably detect a reference signal that affects a plurality of vibration transmission paths. Therefore, the error signal component caused by the reference signal can be reliably reduced.
  • 1st embodiment It is a figure which shows the structure in a vehicle about an active silencer. In FIG. 1, it is a figure which shows the structure in the vibration transmission path
  • 1st embodiment It is a figure which shows the time passage behavior of the amplitude of the microphone installed in the vehicle interior in the case of controlling the vibrator.
  • 1st embodiment It is a figure which shows the time passage behavior of the amplitude of an acceleration sensor when not controlling a vibrator.
  • 1st embodiment It is a figure which shows the time passage behavior of the amplitude of the microphone installed in the vehicle interior in the case where the vibrator is not controlled.
  • 1st embodiment It is a figure which shows the amplitude of the acceleration sensor with respect to a frequency.
  • 1st embodiment It is a figure which shows the amplitude of the microphone with respect to a frequency.
  • 2nd embodiment It is a figure which shows the structure in the vibration transmission path from a wheel to a floor panel.
  • 2nd embodiment It is a figure which shows the transmission path
  • 3rd embodiment It is a figure which shows the structure in a vehicle about an active silencer.
  • 3rd embodiment It is a figure which shows the transmission path
  • 3rd embodiment It is a control block diagram for controlling a vibrator with a controller.
  • An active silencer is applied to a vehicle such as an automobile and is a device for reducing road noise.
  • the active silencer does not reduce road noise by generating control sound from a speaker in a vehicle interior.
  • road noise is generated in the vehicle interior 70 when the floor panel 21 vibrates as a result of road surface vibration caused by traveling of the automobile being propagated from the wheel 10 to the floor panel 21 via the suspension device 80. To do.
  • the active silencer of the present embodiment does not directly reduce the vibration of the floor panel 21, but the vibration of a particularly rigid part in the middle of the path through which the vibration is transmitted from the wheel 10 to the floor panel 21.
  • the vibration of the floor panel 21 is reduced.
  • the road noise is generated by vibration of the plate-like interior product 23 such as a windshield, a rear glass, and a door panel in addition to the vibration of the floor panel 21.
  • the case using the floor panel 21 will be described in detail below.
  • the active silencer detects the vertical vibration of the vehicle as a reference signal by a reference signal detector 62 made of an acceleration sensor attached to the knuckle 41, and an error signal detector made of an acceleration sensor attached to the tire house 22. 63, the vertical vibration of the vehicle as an error signal is detected, and the vibration exciter 61 attached to the tire house 22 is adaptively controlled so as to reduce the error signal.
  • a reference signal detector 62 made of an acceleration sensor attached to the knuckle 41
  • an error signal detector made of an acceleration sensor attached to the tire house 22.
  • FIGS. 1 and 2 A connection mechanism from the wheel 10 to the floor panel 21 will be described with reference to FIGS. 1 and 2.
  • the suspension device 80 is connected between the wheel 10 and the floor panel 21.
  • an axle 30 is connected to the wheel 12 holding the tire 11 of the wheel 10.
  • the axle 30 is rotated by transmitting a rotational driving force from a driving source to the axle 30 via a differential (not shown).
  • the knuckle 41 supports the axle 30 in a rotatable manner. That is, the knuckle 41 moves along with the radial movement of the wheel 12 when the wheel 12 moves in the radial direction. That is, the knuckle 41 vibrates due to the vibration transmitted to the wheel 12 via the tire 11.
  • the knuckle 41 is connected to a lower arm 44 and an upper arm 45 as suspension arms via bushes 42 and 43 made of a viscoelastic body.
  • the lower arm 44 and the upper arm 45 are connected to a suspension member 48 via bushes 46 and 47 made of a viscoelastic body.
  • a member mount 49 made of a viscoelastic body is attached between the suspension member 48 and the lower surface of the floor panel 21.
  • the lower end of the shock absorber 51 is fixed to the lower arm 44.
  • An upper support 52 made of a viscoelastic body is attached to the upper end of the shock absorber 51.
  • the upper support 52 is connected to a tire house 22 (a member that accommodates the tire 11) of the vehicle body.
  • the tire house 22 is connected to the floor panel 21.
  • the vehicle body including the floor panel 21 and the tire house 22
  • the suspension device 80 is a device including the knuckle 41, the lower arm 44, the upper arm 45, the suspension member 48, the member mount 49, the shock absorber 51, the upper support 52, and the bushes 42, 43, 46, and 47.
  • the floor panel 21 is formed in a thin plate shape, and each member constituting the suspension device 80 has higher rigidity than the floor panel 21.
  • the vicinity of the portion where the upper support 52 is attached is formed with higher rigidity than the floor panel 21. That is, the resonance frequency of the suspension device 80 as a whole, the resonance frequency of each member constituting the suspension device 80, and the resonance frequency in the vicinity of the attachment portion of the upper support 52 in the tire house 22 are compared with the resonance frequency of the floor panel 21. High frequency.
  • a vibration exciter 61 is provided in the tire house 22.
  • the vibration exciter 61 is provided in the tire house 22 at a position closer to the upper support 52 than the floor panel 21, specifically, in the vicinity of the attachment portion of the upper support 52 (high rigidity portion).
  • the vibrator 61 includes an electromagnetic actuator such as a solenoid or a boil coil, for example, and actively generates a vibration force when supplied with a current. That is, the excitation force generated by the vibration exciter 61 vibrates the tire house 22 in which the vibration exciter 61 is installed. This excitation force is mainly a force in the vehicle vertical direction.
  • a control signal for driving the vibrator 61 is generated by the controller 100 described later.
  • the structure of the electromagnetic actuator used for the vibrator 61 is well-known, detailed description is abbreviate
  • an acceleration sensor as a reference signal detector 62 is provided on the knuckle 41.
  • the reference signal detector 62 detects the vibration of the knuckle 41 in the vehicle vertical direction.
  • the tire house 22 is provided with an acceleration sensor as the error signal detector 63.
  • the error signal detector 63 is provided in a portion of the tire house 22 that supports the suspension device 80, specifically, a portion of the tire house 22 to which the vibration exciter 61 is attached.
  • the error signal detector 63 detects the vibration in the vehicle vertical direction of the mounting portion of the vibration exciter 61 in the tire house 22. That is, the error signal detector 63 detects a vibration obtained by combining the vibration transmitted from the wheel 10 and the vibration force generated by the vibration exciter 61.
  • the road noise source to the vehicle interior 70 is the floor panel 21 (or the interior plate member 23). That is, the floor panel 21 (or the interior plate member 23) undergoes surface vibration, and road noise is generated in the vehicle interior 70.
  • the vibration transmission path from the wheel 10 to the floor panel 21 is as follows: the wheel 10 ⁇ the knuckle 41 ⁇ the bush 42 ⁇ the lower arm 44 ⁇ the shock absorber 51 ⁇ the upper support 52 ⁇ the tire house 22 ⁇ the floor panel 21. In order.
  • the reference signal detector 62 is provided on the knuckle 41. That is, the reference signal detector 62 is provided on the wheel 10 side in the vibration transmission path from the wheel 10 to the floor panel 21. Therefore, the reference signal detector 62 can detect vibration input from the road surface at an early stage.
  • the error signal detector 63 is provided in a portion of the tire house 22 where the vibration exciter 61 is attached. That is, the error signal detector 63 is provided on the floor panel 21 side in the vibration transmission path from the wheel 10 to the floor panel 21.
  • a viscoelastic member is interposed between the knuckle 41 and the tire house 22. Therefore, the error signal detector 63 detects the vibration of the member that vibrates with a time delay with respect to the vibration of the knuckle 41.
  • Control block diagram Next, a control block diagram of the vibrator 61 will be described with reference to FIG.
  • the controller 100 that controls the exciter 61 applies adaptive control and reduces the error signal using the reference signal detected by the reference signal detector 62 and the error signal detected by the error signal detector 63. Control to cancel.
  • the Filtered-X LMS algorithm is applied as an example of the application control algorithm.
  • an LMS algorithm, an RLS algorithm, an FDA algorithm, a direct method LMS algorithm, a direct method RLS algorithm, and a direct method FDA algorithm can also be applied.
  • the controller 100 includes a control signal generation unit 110, a transfer function estimation unit 120, and a filter update unit 130.
  • the control signal generation unit 110 generates the control signal u k using the reference signal detected by the reference signal detector 62 and the adaptive filter C k updated by the filter update unit 130 described later.
  • the control signal u k is expressed by the formula (1).
  • the subscript k represents the sampling number (time step).
  • the control signal u k is output to the vibrator 61 functions as a control signal for the vibrator 61. That is, the vibrator 61, the control signal exciting force corresponding to u k (hereinafter, also referred to as "control vibration") it generates.
  • the control vibration generated by the vibrator 61 is transmitted to the error signal detector 63 via the transfer function G2. That is, the transfer function G2 is a transfer function from the vibrator 61 to the error signal detector 63.
  • the transmission control vibration at this time is y k .
  • the transfer function from the control signal generator 110 to the error signal detector 63 is G. Said relationship is represented by Formula (2).
  • the vibration x k input to the wheel 10 is transmitted to the position of the error signal detector 63 via the transfer function W of the first path.
  • the transmission vibration at this time is d k .
  • the transfer function W of the first path is a transfer function of a path that is transmitted from the wheel 10 to the error signal detector 63 via the suspension device 80. This relationship is expressed by equation (3).
  • Control signal generating unit 110 updates the adaptive filter C in the control signal generating unit 110 so as to reduce the error signal e k (canceled).
  • the transfer function estimation unit 120 identifies the transfer function G in advance, and stores the identified transfer function estimated value Gh.
  • the transfer function estimate Gh for example, the frequency of the reference signal r k detected by the reference signal detector 62, and stores the amplitude, as a value depending on the phase.
  • attached to the symbol is called a hat and means an estimated value.
  • “ ⁇ ” is described as “h” in the text.
  • the filter update unit 130 updates the adaptive filter C k based on the error signal e k detected by the error signal detector 63 and the transfer function estimation value Gh obtained by the transfer function estimation unit 120.
  • the evaluation function J k is set as in Expression (5).
  • An adaptive filter C k that minimizes the evaluation function J k is obtained .
  • the gradient vector ⁇ k is set as in the first row of equation (6).
  • the gradient vector ⁇ k is obtained by partial differentiation of the evaluation function J k with the adaptive filter C k . Then, the gradient vector ⁇ k is expressed as shown on the right side of the second row of Equation (6). Furthermore, from equation (4), the gradient vector ⁇ k is expressed as shown on the right side of the third row of equation (6).
  • the updated adaptive filter C k + 1 is obtained by multiplying the term obtained by multiplying the calculated gradient vector k k by the step size parameter ⁇ as shown in the first row of the equation (7). Derived by subtracting from k . However, the transfer function G in Expression (6) is replaced with the transfer function estimated value Gh obtained by the transfer function estimating unit 120. Furthermore, when Expression (6) is substituted, the update expression of the adaptive filter C is expressed as shown in the second row of Expression (7).
  • FIG. 5 is compared with FIG. 7, it can be seen that the amplitude of the error signal itself is reduced by controlling the controller 100. Further, comparing FIG. 6 with FIG. 8, it can be seen that the amplitude of the detected value of the microphone in the vehicle interior is reduced by controlling the controller 100.
  • FIGS. 9 and 10 show the amplitude with respect to the frequency by performing FFT (Fast Fourier Transform) on the results of FIGS. 9 and 10, the thick solid line is when the controller 100 is controlled, and the broken line is when the controller 100 is not controlled.
  • FFT Fast Fourier Transform
  • the vibrator 61 and the error signal detector 63 are provided not on the floor panel 21 but on a member located on the wheel 10 side of the floor panel 21 in the vibration transmission path, specifically on the tire house 22. ing. That is, the vibration of the tire house 22 is reduced by exciting the tire house 22. And if the vibration of the tire house 22 can be reduced, the vibration transmitted to the floor panel 21 located on the downstream side of the vibration transmission path is reduced.
  • a suspension device 80 is included between the floor panel 21 and the wheel 10.
  • the suspension device 80 is very rigid as compared with the floor panel 21. Therefore, the resonance frequency of the suspension device 80 is very high compared to the resonance frequency of the floor panel 21.
  • the portion of the tire house 22 where the suspension device 80 is supported is also more rigid than the floor panel 21. Accordingly, the resonance frequency of the portion of the tire house 22 is also higher than the resonance frequency of the floor panel 21.
  • the frequency band of vibration caused by road surface input vibration is a frequency band sufficiently lower than the resonance frequency of the member such as the suspension device 80. Therefore, the member such as the suspension device 80 does not amplify road surface input vibration due to the resonance. Further, there is almost no influence on the amplitude of the higher-order frequency band of the member such as the suspension device 80.
  • the vibration device 61 and the error signal detector 63 not in the floor panel 21 but in the suspension device 80 or its supporting part, even if a relatively low frequency band is set as the control target frequency, the suspension device 80 or the like. Can be sufficiently suppressed. If it does so, the vibration of the floor panel 21 located in the downstream of a vibration transmission path
  • the control frequency band is a relatively low frequency band
  • the electronic circuit of the vibrator 61, the reference signal detector 62, the error signal detector 63, and the controller 100 has high performance. Even without it, it can respond sufficiently. That is, the processing can be performed without shortening the sampling time of the reference signal detector 62 and the error signal detector 63, and the speed of the arithmetic processing of the electronic circuit of the controller 100 may not be high. Since it does not resonate, vibration can be sufficiently suppressed with a low amplitude. Therefore, the cost can be reduced and the size of the vibrator 61 can be reduced.
  • the suspension device 80 for connecting the wheel 10 and the floor panel 21 includes a viscoelastic member. That is, a viscoelastic member is interposed between a member (knuckle 41) provided with the reference signal detector 62 and a member (tire house 22) provided with the vibrator 61 and the error signal detector 63. Therefore, the vibration of the member (tire house 22) provided with the vibration exciter 61 is delayed with respect to the vibration of the member (knuckle 41) provided with the reference signal. Therefore, the vibration of the member provided with the vibrator 61 can be reliably reduced by controlling the vibrator 61 based on the reference signal.
  • ⁇ Second embodiment> A second embodiment will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second embodiment differs from the first embodiment in the arrangement of the vibrator 161 and the error signal detector 163 that is an acceleration sensor.
  • the vibrator 161 is attached to the suspension member 48. That is, the vibrator 161 applies a vibration force to the suspension member 48 to reduce the vibration of the suspension member 48. Further, the error acceleration sensor as the error signal detector 163 is provided at a portion of the suspension member 48 where the vibration exciter 161 is provided.
  • the vibration transmission path from the wheel 10 to the floor panel 21 is in the order of the wheel 10 ⁇ the knuckle 41 ⁇ the bush 42 ⁇ the lower arm 44 ⁇ the bush 46 ⁇ the suspension member 48 ⁇ the member mount 49 ⁇ the floor panel 21. .
  • the reference signal detector 62 is provided in the knuckle 41 like the first embodiment. Further, the error signal detector 163 is provided in a portion of the suspension member 48 where the vibration exciter 161 is attached. That is, the error signal detector 163 is provided on the floor panel 21 side in the vibration transmission path from the wheel 10 to the floor panel 21.
  • a viscoelastic member is interposed between the knuckle 41 and the suspension member 48. Therefore, the error signal detector 163 detects the vibration of the member that vibrates with a time delay with respect to the vibration of the knuckle 41. According to this embodiment, vibration transmitted to the floor panel 21 via the suspension member 48 can be reduced. Therefore, the vibration of the floor panel 21 can be reliably reduced.
  • the effects described in the first embodiment can be achieved.
  • both effects can be obtained.
  • vibration can be reduced in the middle of the path. Therefore, the vibration of the floor panel 21 can be reduced more reliably. As a result, road noise in the passenger compartment can be further reduced.
  • a third embodiment will be described with reference to FIGS.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the third embodiment is different from the first embodiment in that the error signal detector 263 is a microphone installed in the vehicle interior 70. Furthermore, it is assumed that there are a plurality of vibration transmission paths from the wheel 10 to the floor panel 21 and the interior plate member 23 that are the sources of road noise. This will be described in detail below.
  • the acceleration sensor as the reference signal detector 62 is provided in the knuckle 41.
  • a microphone as an error signal detector 263 is provided on the ceiling of the passenger compartment 70.
  • the error signal detector 63 detects the sound in the passenger compartment 70 as an error signal. That is, the active silencer of the present embodiment detects the vehicle vertical vibration as the reference signal by the reference signal detector 62 attached to the knuckle 41, and the error signal detector 263 installed on the ceiling of the vehicle interior 70, for example.
  • the sound of the vehicle interior 70 as an error signal is detected, and the vibration exciter 61 attached to the tire house 22 is adaptively controlled so as to reduce the sound of the vehicle interior 70.
  • the road noise generation source to the vehicle interior 70 is a plate-like member among vehicle components such as the floor panel 21 or the door panel 23. That is, road noise occurs in the passenger compartment 70 due to surface vibration of the floor panel 21 or the door panel 23.
  • FIG. 14 there are a plurality of vibration transmission paths from the wheel 10 to the floor panel 21 or the door panel 23 that is a generation source of road noise.
  • the floor panel 21 itself also includes a plurality of vibration generating locations, and there are a plurality of vibration transmission paths in the floor panel 21. Below, a part of vibration transmission path which exists in large numbers is demonstrated.
  • the first vibration transmission path is a path of the wheel 10 ⁇ the knuckle 41 ⁇ the bush 42 ⁇ the lower arm 44 ⁇ the shock absorber 51 ⁇ the upper support 52 ⁇ the tire house 22 ⁇ the floor panel 21.
  • the second vibration transmission path is a path of the wheel 10 ⁇ the knuckle 41 ⁇ the bushes 42 and 43 ⁇ the lower arm 44, the upper arm 45 ⁇ the bushes 46 and 47 ⁇ the suspension member 48 ⁇ the member mount 49 ⁇ the floor panel 21.
  • the third vibration transmission path is a path of the wheel 10 ⁇ the knuckle 41 ⁇ the bush 42 ⁇ the lower arm 44 ⁇ the shock absorber 51 ⁇ the upper support 52 ⁇ the tire house 22 ⁇ the door panel 23.
  • the fourth vibration transmission path is a path of the wheel 10 ⁇ the knuckle 41 ⁇ the bushes 42 and 43 ⁇ the lower arm 44, the upper arm 45 ⁇ the bushes 46 and 47 ⁇ the suspension member 48 ⁇ the member mount 49 ⁇ the door panel 23.
  • the knuckle 41 provided with the reference signal detector 62 is a common component for the first to fourth vibration transmission paths. Accordingly, the vibration detected by the reference signal detector 62 is related to all of the vibrations in the first to fourth vibration transmission paths. Further, the knuckle 41 provided with the reference signal detector 62 is the most upstream member in the vibration transmission path. That is, the vibration detected by the reference signal detector 62 is the vibration closest to the vibration of the wheel 10, and the time from when the wheel 10 vibrates until it is detected by the reference signal detector 62 becomes very short. Therefore, the reference signal detector 62 can detect vibration input from the road surface at an early stage.
  • the tire house 22 provided with the vibrator 61 is a member constituting the first and second vibration transmission paths, and is located downstream of the knuckle 41 provided with the reference signal detector 62. .
  • the vehicle interior 70 in which the error signal detector 263 is provided is an area generated by vibration of the floor panel 21 or the door panel 23 at the end of the vibration transmission path, not in the vibration transmission path.
  • control block diagram Next, in the present embodiment, a control block diagram for controlling the vibrator 61 will be described with reference to FIG.
  • the controller 200 that controls the exciter 61 applies adaptive control and reduces the error signal using the reference signal detected by the reference signal detector 62 and the error signal detected by the error signal detector 263. Control to cancel.
  • the transfer functions of the first to fourth vibration transmission paths described with reference to FIG. 14 are expressed as W1 to W4. The sum of these is expressed as W.
  • the control of this embodiment is substantially the same as that of the first embodiment. However, the following points are different.
  • the transfer function G2 is a transfer function from the tire house 22 to the error signal detector 263 in the vehicle interior 70.
  • Y k is a transmission control sound in the error signal detector 263. That is, G is a transfer function from the control signal generator 110 to the error signal detector 263.
  • vibration x k acting on the wheel 10 is transmitted to the position of the error signal detector 263 via the respective transfer functions W1 ⁇ W4 of the first to fourth vibration transmission path. That is, the transfer function from the wheel 10 to the error signal detector 263 can be grasped as the total sum W of W1 to W4. Therefore, the road noise (transfer noise) transmitted via the transfer function sum W is d k .
  • the road noise in the vehicle interior 70 can be reduced by vibrating the member located in the vibration transmission path by the vibrator 61.
  • the road noise is not reduced by the speaker, there is no problem when the road noise is reduced by generating the control sound (secondary sound) by the speaker as in the prior art.
  • the vibration exciter 61 is installed in the tire house 22, but the vibration exciter 61 may be installed in another member constituting the vehicle body.
  • the vibrator 61 may be installed on the suspension member 48.
  • the vibration exciter 61 is installed in the tire house 22 or the like as a vehicle component of the vibration transmission path, the degree of freedom of installation is higher than that in the vehicle interior 70.
  • the vibration exciter 61 is installed at one place of the tire house 22 even though the plurality of vibration transmission paths W1 to W4 exist, road noise can be reduced. That is, it is not necessary to install the vibrator 61 in many parts of the floor panel 21 and many parts of the interior plate-like member 23 that are road noise generation sources. The reason for this is the sound which is detected by the error signal detector 263 installed in the passenger compartment 70 and the error signal e k, vibrator 61 as the error signal e k becomes smaller and generates a vibration force Because it is.
  • the vibrator 61 wheel housing 22 is vibrated As a result, the floor panel 21 and the interior plate-like member 23 are vibrated.
  • a plurality of types of vibrations transmitted from the road surface and vibrations by the vibrator 61 are combined.
  • the controller 200 controls the vibrator 61 so as to reduce the error signal e k is sound in the vehicle interior 70. That is, the controller 200 controls the vibrator 61 so as to reduce the vibration of the synthesized floor panel 21 and the interior plate member 23.
  • the vibration exciter 61 does not reduce the vibration of the tire house 22 itself in which the vibration exciter 61 is installed, but applies vibration to the tire house 22 so that road noise in the vehicle interior 70 is reduced. It will be.
  • the vibrator 61 does not necessarily reduce the vibration of the tire house 22 itself in which the vibrator 61 is installed, and may increase the vibration of the tire house 22 itself in some cases. Therefore, according to the present embodiment, road noise in the vehicle interior 70 can be reliably reduced even when there are a plurality of vibration transmission paths W1 to W4.
  • the reference signal detector 62 is provided in the knuckle 41 that is a common component of the plurality of vibration transmission paths W1 to W4. This allows reliable detection of influencing the reference signal r k to a plurality of the vibration transmission path W1 ⁇ W4. Thus, components of the error signal e k resulting from the reference signal r k can be reliably reduced.
  • the vibrator 61 was installed in one place, it can also be installed in multiple places. However, when a plurality of vibrators 61 are installed, it is necessary to control each vibrator 61 in consideration of the degree of influence of each vibrator 61.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Body Structure For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 フロアパネル自身および板状内装品自身に加振器を設置するのではなく、他の手法によって低コスト化および小型化を図りつつ、確実にロードノイズを低減することができる能動型消音装置を提供する。 参照信号検出器をナックルに設け、加振器をタイヤハウスまたはサスペンションメンバに設ける。誤差信号検出器は、タイヤハウスの振動またはサスペンションメンバの振動を誤差信号として検出する、もしくは、車室内の音を誤差信号として検出する。コントローラは、参照信号および誤差信号に基づいて誤差信号が小さくなるように加振器を制御する。

Description

能動型消音装置
 本発明は、ロードノイズを能動的に低減する能動型消音装置に関するものである。
 ロードノイズは、路面振動が伝搬されてフロアパネルや板状内装品(例えば、フロントガラス、リヤガラス、ドアパネル等)が振動することによって発生することが知られている。このロードノイズを能動的に低減する装置として、特開平7-281676号公報および特開平7-210179号公報に記載されたものがある。特開平7-281676号公報に記載の装置は、フロアパネルに加振器を設け、サスペンション装置の振動を参照信号とし、フロアパネルの振動をエラー信号として、エラー信号が小さくなるように加振器を制御している。これにより、フロアパネルの振動を抑制することで、ロードノイズを低減できるとされている。
 特開平7-210179号公報に記載の装置は、サスペンションおよび車体に取り付けた加速度センサにより参照信号としての加速度を検出し、マイクロフォンにより誤差信号としての車室内音圧を検出し、車室内に取り付けたスピーカにより制御音(二次音)を出力することで、ロードノイズを消音する。
 ところで、フロアパネルは薄板状に形成されているため、フロアパネルの共振1次周波数は、車両を構成する他の部材の共振1次周波数より低い。そのため、路面入力振動に起因したフロアパネルの振動の周波数帯に、フロアパネルの共振1次周波数が含まれる状態となることがある。そうすると、フロアパネルの共振1次周波数付近の振動が大きくなる上に、その高次周波数の振動も発生する。
 そのため、従来のように、フロアパネル自身に加振器およびエラー信号検出センサを設けた構成により、フロアパネルの振動を低減させるためには、フロアパネルの共振1次周波数の帯域のみならず、その高次周波数帯域についても、加振器の制御を行う必要がある。そのため、非常に広範囲の周波数帯について振動抑制機能を発揮する必要がある。また、ロードノイズは、フロアパネル以外のフロントガラス、リヤガラス、ドアパネル等の板状内装品が振動して発生する場合もある。この場合でも、非常に広範囲の周波数帯について振動抑制機能を発揮する必要がある。
 ここで、制御対象周波数が高周波数帯(例えば、数kHz以上)を含めると、加振器の高性能化、各種センサの高性能化、および、加振器への制御信号を生成する電子回路の高性能化が必要となる。具体的には、各種センサのサンプリング時間の短縮化、および、電子回路の演算処理の高速化をすることが必要となる。また、当該サンプリング時間に対応できるような加振器の応答性を有する必要がある。従って、装置全体の高コスト化を招来する。仮に、高周波数帯を制御することができたとしても、低周波数帯に比べると、制御の応答性が低くならざるを得ない。そのため、高周波数帯においては、やはり消音性能が低下してしまう。
 さらに、フロアパネルや板状内装品の共振1次周波数付近の振動は大きくなるため、加振器は当該振動を抑制することができる振幅の振動を発生する必要がある。そのため、加振器の大型化を招来する。
 さらに、フロアパネルの振動は、複雑な挙動であるため、フロアパネルの特定部位のみの振動を低減できたとしても、フロアパネルの他の部位が振動することによって、ロードノイズが発生する。この点からも、フロアパネルに加振器を設置したとしても、加振器を設置していないフロアパネルの他の部位の振動によるロードノイズを十分に低減できない。多数の加振器をフロアパネルに設置することも考えられるが、これでは非常に高コストになる。
 また、特開平7-210179号公報のように、車室内に取り付けられたスピーカによって制御音(二次音)を出力することでロードノイズを消音する場合には、周波数によってクワイエットゾーン(キャンセルエリア)が異なる。クワイエットゾーンは、周波数の波長の1/2の範囲であるため、低周波数領域では広域となり、高周波数領域では狭域となる。そのため、スピーカの設置位置によって、車室内のノイズキャンセル効果が異なることになってしまう。つまり、スピーカの位置依存性が高い。また、スピーカで音を制御するために、制御周波数が例えば、30Hz~20kHzなどと非常に広範囲であるため、高速演算を行うことができる制御回路が必要となるため、高コストとなる。さらに、車室内にスピーカを設置しなければならず、設置が容易とは言えない。
 本発明は、このような事情に鑑みてなされたものであり、フロアパネル自身や板状内装品自身に加振器を設置するのではなく、他の手法によって低コスト化および小型化を図りつつ、確実にロードノイズを低減することができる能動型消音装置を提供することを目的とする。
 そこで、本手段に係る能動型消音装置は、車輪からフロアパネルなどの板状部材までの振動伝達経路の途中の部材に加振器を設置することで、当該部材の振動を抑制することにより、フロアパネルなどの板状部材の振動を低減することで、ロードノイズを低減することとした。
 具体的には、本手段に係る能動型消音装置は、車両の室内の騒音を能動的に低減する能動型消音装置である。ここで、前記車両は、路面から車輪に入力される振動が車両構成部品のうち板状部材に伝達されて、当該板状部材が振動することによって車室内にロードノイズを発生する。
 そして、前記能動型消音装置は、前記車輪から前記板状部材までの振動伝達経路において前記車輪を支持するナックルに設けられ、当該ナックルの振動を参照信号として検出する参照信号検出器と、前記振動伝達経路において前記板状部材に連結されてサスペンション装置を支持するタイヤハウス、または、前記板状部材に連結されて前記サスペンション装置を構成するサスペンションメンバに設けられ、前記板状部材側の部材に加振力を付与する加振器と、前記タイヤハウスの振動または前記サスペンションメンバの振動を誤差信号として検出する、もしくは、車室内の音を誤差信号として検出する誤差信号検出器と、前記参照信号および前記誤差信号に基づいて前記誤差信号が小さくなるように前記加振器を制御するコントローラとを備える。
 本手段によれば、加振器を、フロアパネル自身や板状内装品自身ではなく、タイヤハウスまたはサスペンションメンバに設けている。つまり、タイヤハウスまたはサスペンションメンバを加振することで、当該部材の振動を低減することができ、もしくは、当該部材の振動を所望の振動状態にすることができる。
 ここで、加振器が設置されるタイヤハウスまたはサスペンションメンバは、フロアパネルなどの板状部材に比べると非常に高剛性である。そのため、当該設置部材の共振周波数は、フロアパネルなどの板状部材の共振周波数に比べると、非常に高い周波数となる。そのため、タイヤハウスまたはサスペンションメンバにおいて、路面入力振動に起因した振動の周波数帯は、当該部材の共振周波数よりも十分に低い周波数帯となる。従って、当該部材は、その共振によって路面入力振動を増幅することはない。さらに、当該部材の高次周波数帯の振幅についてはほとんど影響がない。
 つまり、フロアパネルなどの板状部材自身ではなく、タイヤハウスまたはサスペンションメンバに加振器を設けることで、比較的に低周波数帯を制御対象周波数としたとしても、タイヤハウスまたはサスペンションメンバの振動を十分に抑制することができる、もしくは、当該部材の振動を十分に所望の振動状態にすることができる。ここで、制御対象周波数が低周波数帯であるため、制御の演算処理および加振器の応答性の観点から、より高精度に、加振器の設置部材の振動を抑制することができ、もしくは、当該設置部材の振動を所望の振動状態にすることができる。
 そして、上述したように、制御周波数帯は、比較的に低周波数帯であるため、加振器、各種センサおよび電子回路について、それほど高性能でなくても十分に対応できる。つまり、各種センサのサンプリング時間を短時間にすることなく処理ができ、電子回路の演算処理の速度も高速でなくてもよく、加振器は共振しないため、低い振幅で十分に振動抑制できる。従って、低コスト化を図ることができ、かつ、加振器の小型化を図ることができる。
 さらに、従来のようにフロアパネルなどの板状部材に加振器を設ける場合には、フロアパネルの複雑な挙動に対応する必要があったが、本手段によれば、加振器を板状部材に設けるのではなく、タイヤハウスまたはサスペンションメンバに設けている。従って、極めて多数の加振器を設けなくても、確実に、板状部材の振動を低減することができる、もしくは、板状部材の振動を所望の振動状態にすることができる。
 さらに、車輪からフロアパネルなどの板状部材までの振動伝達経路の途中の部材には、サスペンション装置が含まれている。サスペンション装置は、粘弾性部材を有する。そして、参照信号検出器は、ナックルに設けられ、加振器は、タイヤハウスまたはサスペンションメンバに設けられる。つまり、参照信号検出器が設けられる部材と、加振器が設けられる部材との間には、粘弾性部材が介在する。従って、参照信号が設けられる部材の振動に対して、加振器が設けられる部材の振動は時間遅れを伴う。そのため、参照信号に基づいて加振器を確実に制御することができ、確実に加振器を設けた部材の振動を所望の状態に制御できる。
 また、本手段によれば、加振器をタイヤハウスまたはサスペンションメンバに設置して、当該部品を加振することによって、ロードノイズを低減している。そのため、スピーカにより制御音(二次音)を発生させることによりロードノイズを低減させる場合の問題を有しない。つまり、制御音(二次音)による消音ではないため、スピーカの設置位置による依存性のような問題は発生しない。また、加振器により振動を発生させるため、加振器の制御周波数の範囲は、スピーカの制御周波数の範囲に比べて非常に狭い。従って、制御回路の演算速度を低減できるため、低コストにできる。さらに、加振器は、振動伝達経路の部材に設置するため、車室内の設置に比べて、設置の自由度は高くなる。
 ここで、誤差信号検出器が前記タイヤハウスの振動または前記サスペンションメンバの振動を誤差信号として検出する場合には、タイヤハウスもしくはサスペンションメンバの振動を低減することができ、振動伝達経路において当該部材の下流側に位置する板状部材に伝達される振動が低減される。その結果、フロアパネルなどの板状部材の振動に起因したロードノイズを低減することができる。
 また、誤差信号検出器が車室内の音を誤差信号として検出する場合には、車室内の音が低減するように、加振器を振動させて、タイヤハウスもしくはサスペンションメンバの振動状態を制御する。その結果、車輪から入力される振動に起因する車室内の音、すなわちロードノイズを確実に低減できる。
 また、前記車両は、前記車輪を回転可能に支持する前記ナックルと、前記ナックルに連結されるサスペンションアームと、前記サスペンションアームに連結されるショックアブソーバと、前記ショックアブソーバに取り付けられるアッパーサポートと、前記アッパーサポートに取り付けられ、前記板状部材に連結される前記タイヤハウスと、を含み、前記参照信号検出器は、前記ナックルに設けられ、前記加振器および前記誤差信号検出器は、前記タイヤハウスに設けられるようにしてもよい。
 この場合、振動伝達経路は、車輪→ナックル→サスペンションアーム→ショックアブソーバ→アッパーサポート→タイヤハウス→板状部材の順になる。この振動伝達経路のうち上流側のナックルに参照信号検出器を設け、下流側のタイヤハウスに加振器および誤差信号検出器を設けている。従って、確実に当該振動伝達経路におけるタイヤハウスの振動を低減でき、タイヤハウスから板状部材に伝達される振動を確実に低減できる。
 特に、前記加振器および前記誤差信号検出器は、前記タイヤハウスのうち前記板状部材より前記アッパーサポートに近い位置に設けられるとよい。当該部位は、タイヤハウスの中でも、特に共振周波数が高い部位に相当する。従って、上述した効果を確実に奏することができる。
 また、前記車両は、前記車輪を回転可能に支持する前記ナックルと、前記ナックルに連結されるサスペンションアームと、前記サスペンションアームに連結されて、メンバマウントを介して前記板状部材としてのフロアパネルに連結される前記サスペンションメンバと、を含み、前記参照信号検出器は、前記ナックルに設けられ、前記加振器および前記誤差信号検出器は、前記サスペンションメンバに設けられるようにしてもよい。
 この場合、振動伝達経路は、車輪→ナックル→サスペンションアーム→サスペンションメンバ→メンバマウント→フロアパネルの順になる。この振動伝達経路のうち上流側のナックルに参照信号検出器を設け、下流側のサスペンションメンバに加振器および誤差信号検出器を設けている。従って、確実に当該振動伝達経路におけるサスペンションメンバの振動を低減でき、サスペンションメンバからフロアパネルに伝達される振動を確実に低減できる。
 ここで、上述したように、ロードノイズの発生源である板状部材は、フロアパネルの他、フロントガラス、リヤガラス、ドアパネルなどがある。このように、車両には、複数のロードノイズの発生源が存在する。さらに、フロアパネルに着目した場合にも、複雑な挙動をすることから、フロアパネル自身が、複数のロードノイズの発生源を有すると見ることもできる。
 このように、車輪からロードノイズの発生源である板状部材までの振動伝達経路は、複数存在する。複数の振動伝達経路が存在する場合に、例えば、フロアパネルの特定部位の一箇所のみに加振器を設置したとしても、車室内のロードノイズを十分に低減できない。仮に、ロードノイズ発生源である板状部材の全てに加振器およびコントローラを設置すると、非常に高コストとなる。
 そこで、前記車輪から前記板状部材までの前記振動伝達経路は、複数である場合には、前記加振器は、前記複数の振動伝達経路のうち少なくとも一つの前記振動伝達経路に設けられ、前記誤差信号検出器は、車室内の音を前記誤差信号として検出するマイクロフォンとしてもよい。
 これにより、複数の振動伝達経路が存在するにも関わらず、ロードノイズの発生源である板状部材全てに加振器を設置することなく、ロードノイズを低減できる。この理由について説明する。上述したように、車室内に設置されたマイクロフォンにより検出される音を誤差信号としている。そして、誤差信号が小さくなるように、加振器が加振力を発生している。
 そして、路面から入力される振動が複数の振動伝達経路を介して板状部材に伝達されると共に、加振器により設置部材が加振されることによって板状部材を振動させる。このように、板状部材では、路面から伝達される複数の振動と加振器による振動とが合成される。そして、コントローラは、車室内の音である誤差信号を小さくするように加振器を制御している。換言すると、コントローラは、合成された板状部材の振動を低減するように、加振器を制御する。
 つまり、加振器は、加振器が設置されている部材自体の振動を小さくするのではなく、車室内のロードノイズが小さくなるように当該部材に振動を加えていることになる。加振器は、加振器が設置されている部材自体の振動を小さくするとは限らず、場合によっては当該部材自体の振動を大きくすることもある。従って、複数の振動伝達経路が存在する場合であっても、車室内におけるロードノイズを確実に低減することができる。
 また、前記参照信号検出器は、複数の前記振動伝達経路の共通部品に設けられるようにしてもよい。これにより、複数の振動伝達経路に影響を及ぼす参照信号を確実に検出できる。従って、参照信号に起因する誤差信号の成分を確実に低減できる。
第一実施形態:能動型消音装置について、車両における構造を示す図である。 図1において、車輪からフロアパネルまでの振動伝達経路における構造を示す図であって、車両の後方から見た図である。 第一実施形態:車輪から車室内までのロードノイズの伝達経路を示す。 第一実施形態:コントローラにより加振器を制御するための制御ブロック図である。 第一実施形態:加振器を制御した場合における加速度センサの振幅の時間経過挙動を示す図である。 第一実施形態:加振器を制御した場合における車室内に設置したマイクの振幅の時間経過挙動を示す図である。 第一実施形態:加振器を制御しない場合における加速度センサの振幅の時間経過挙動を示す図である。 第一実施形態:加振器を制御しない場合における車室内に設置したマイクの振幅の時間経過挙動を示す図である。 第一実施形態:周波数に対する加速度センサの振幅を示す図である。 第一実施形態:周波数に対するマイクの振幅を示す図である。 第二実施形態:車輪からフロアパネルまでの振動伝達経路における構造を示す図である。 第二実施形態:車輪から車室内までのロードノイズの伝達経路を示す図である。 第三実施形態:能動型消音装置について、車両における構造を示す図である。 第三実施形態:車輪から車室内までのロードノイズの伝達経路を示す図である。 第三実施形態:コントローラにより加振器を制御するための制御ブロック図である。
 <第一実施形態>
 (能動型消音装置の概要)
 能動型消音装置は、自動車などの車両に適用され、ロードノイズを低減するための装置である。能動型消音装置は、車室内において、スピーカから制御音を発生することにより、ロードノイズを低減するものではない。ロードノイズは、図1に示すように、自動車の走行によって生じる路面振動が車輪10からサスペンション装置80を介してフロアパネル21に伝搬される結果、フロアパネル21が振動することによって車室内70に発生する。
 そこで、本実施形態においては、フロアパネル21が振動することを低減することができれば、フロアパネル21の振動に起因するロードノイズは低減できる。ただし、本実施形態の能動型消音装置は、フロアパネル21の振動を直接低減させるのではなく、車輪10からフロアパネル21に振動が伝達される経路の途中のうち、特に剛性の高い部位の振動を低減することにより、結果としてフロアパネル21の振動を低減する。ここで、ロードノイズは、フロアパネル21の振動の他に、板状内装品、例えば、フロントガラス、リヤガラス、ドアパネル等の板状内装品23の振動によって発生する。本実施形態においては、フロアパネル21による場合について、以下に詳細に説明する。
 そして、能動型消音装置は、ナックル41に取り付けられた加速度センサからなる参照信号検出器62により参照信号としての車両上下振動を検出し、タイヤハウス22に取り付けられた加速度センサからなる誤差信号検出器63により誤差信号としての車両上下振動を検出し、誤差信号を小さくするようにタイヤハウス22に取り付けられた加振器61を適応制御する。能動型消音装置の詳細構成について以下に説明する。
 (能動型消音装置の詳細構成)
 (車輪からフロアパネルまでの連結機構)
 車輪10からフロアパネル21までの連結機構について図1および図2を参照して説明する。図1および図2に示すように、車輪10とフロアパネル21との間には、サスペンション装置80によって連結されている。具体的には、車輪10のタイヤ11を保持しているホイール12には、アクスル30が連結されている。このアクスル30には、図示しないディファレンシャルを介して、駆動源からの回転駆動力が伝達されることで、車輪10を回転させる。
 そして、このアクスル30をナックル41が回転可能に支持する。つまり、ナックル41は、ホイール12が回転径方向に移動した場合に、ホイール12の径方向移動に伴って移動する。つまり、ナックル41は、タイヤ11を介してホイール12に伝達された振動によって振動する。
 ナックル41には、粘弾性体からなるブッシュ42,43を介して、サスペンションアームとしてのロアアーム44およびアッパーアーム45に連結されている。ロアアーム44およびアッパーアーム45は、粘弾性体からなるブッシュ46,47を介してサスペンションメンバ48に連結されている。サスペンションメンバ48とフロアパネル21の下面との間には、粘弾性体からなるメンバマウント49が取り付けられている。
 また、ロアアーム44には、ショックアブソーバ51の下端が固定されている。ショックアブソーバ51の上端には、粘弾性体からなるアッパーサポート52が取り付けられている。アッパーサポート52は、車両ボディのタイヤハウス22(タイヤ11を収容する部材)に連結されている。タイヤハウス22は、フロアパネル21に連結されている。
 上記のような構造により、車両ボディ(フロアパネル21およびタイヤハウス22を含む)を確実に支持しつつ、走行によって路面から入力される振動が車輪10から車両ボディに伝達されにくくしている。ここで、サスペンション装置80は、ナックル41、ロアアーム44、アッパーアーム45、サスペンションメンバ48、メンバマウント49、ショックアブソーバ51、アッパーサポート52、各ブッシュ42,43,46,47を含む装置である。そして、フロアパネル21は、薄板状に形成されており、サスペンション装置80を構成する各部材は、フロアパネル21に比べると高剛性である。
 また、タイヤハウス22のうち、特にアッパーサポート52が取り付けられる部位の近傍は、フロアパネル21に比べて高剛性に形成されている。つまり、サスペンション装置80全体としての共振周波数およびサスペンション装置80を構成する各部材の共振周波数、ならびに、タイヤハウス22のうちアッパーサポート52の取付部位近傍の共振周波数は、フロアパネル21の共振周波数に比べて高い周波数である。
 さらに、加振器61が、タイヤハウス22に設けられている。加振器61は、タイヤハウス22のうちフロアパネル21よりアッパーサポート52に近い位置、具体的にはアッパーサポート52の取付部位の近傍(剛性の高い部位)に設けられている。加振器61は、例えば、ソレノイドやボイルコイルなどの電磁アクチュエータを備えており、電流が供給されることで能動的に加振力を発生する。つまり、加振器61により発生される加振力は、加振器61が設置されているタイヤハウス22を振動する。この加振力は、主として車両上下方向の力としている。そして、加振器61を駆動するための制御信号は、後述するコントローラ100によって生成される。なお、加振器61に用いられる電磁アクチュエータの構造は公知であるため、詳細の説明は省略する。
 さらに、参照信号検出器62としての加速度センサが、ナックル41に設けられている。この参照信号検出器62は、ナックル41の車両上下方向の振動を検出する。また、タイヤハウス22には、誤差信号検出器63としての加速度センサが設けられている。特に、誤差信号検出器63は、タイヤハウス22のうちサスペンション装置80を支持する部位、具体的には、タイヤハウス22のうち加振器61が取り付けられている部位に設けられている。この誤差信号検出器63は、タイヤハウス22における加振器61の取付部位の車両上下方向の振動を検出する。つまり、この誤差信号検出器63は、車輪10から伝達された振動と加振器61によって発生された加振力とを合成した振動を検出する。
 (振動伝達経路および振動抑制対象の関係)
 次に、本実施形態において、路面から入力される振動が、車室内70のロードノイズとして伝達される経路(振動伝達経路)について、図3を参照して説明する。ここで、車室内70へのロードノイズ発生源は、フロアパネル21(または内装板状部材23)である。つまり、フロアパネル21(または内装板状部材23)が面振動することで、車室内70にロードノイズが発生する。
 そして、図3に示すように、車輪10からフロアパネル21までの振動伝達経路は、車輪10→ナックル41→ブッシュ42→ロアアーム44→ショックアブソーバ51→アッパーサポート52→タイヤハウス22→フロアパネル21の順となる。
 そして、参照信号検出器62は、ナックル41に設けている。つまり、参照信号検出器62は、車輪10からフロアパネル21までの振動伝達経路において、車輪10側に設けている。従って、参照信号検出器62は、路面から入力される振動を早期に検出できる。
 また、誤差信号検出器63は、タイヤハウス22のうち加振器61が取り付けられている部位に設けられている。つまり、誤差信号検出器63は、車輪10からフロアパネル21までの振動伝達経路において、フロアパネル21側に設けている。ここで、上述したように、ナックル41とタイヤハウス22との間には粘弾性部材を介在している。従って、誤差信号検出器63は、ナックル41の振動に対して時間遅れを伴って振動する部材の振動を検出する。
 (制御ブロック図)
 次に、加振器61の制御ブロック図について、図4を参照して説明する。加振器61の制御を行うコントローラ100は、適応制御を適用し、参照信号検出器62により検出される参照信号と誤差信号検出器63により検出される誤差信号とを用いて、誤差信号を小さく(キャンセル)するように制御する。
 本実施形態においては、適用制御アルゴリズムの例として、Filtered-X LMSアルゴリズムを適用する。ただし、この他に、LMSアルゴリズム、RLSアルゴリズム、FDAアルゴリズム、直接法LMSアルゴリズム、直接法RLSアルゴリズム、直接法FDAアルゴリズムを適用することもできる。
 図4に示すように、コントローラ100は、制御信号生成部110と、伝達関数推定部120と、フィルタ更新部130とを備える。制御信号生成部110は、参照信号検出器62により検出された参照信号と、後述するフィルタ更新部130により更新される適応フィルタCkを用いて、制御信号ukを生成する。この制御信号ukは、式(1)にて表される。なお、以下において、添え字kは、サンプリング数(時間ステップ)を表す。そして、制御信号ukは、加振器61に出力され、加振器61の制御信号として機能する。つまり、加振器61は、制御信号ukに応じた加振力(以下、「制御振動」とも称する)を発生する。
Figure JPOXMLDOC01-appb-M000001
 加振器61が発生した制御振動は、伝達関数G2を介して誤差信号検出器63に伝達される。つまり、伝達関数G2は、加振器61から誤差信号検出器63までの伝達関数である。このときの伝達制御振動はykである。ここで、制御信号生成部110から誤差信号検出器63までの伝達関数は、Gとする。上記の関係は、式(2)にて表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、車輪10に入力された振動xkは、第一経路の伝達関数Wを介して誤差信号検出器63の位置に伝達される。このときの伝達振動は、dkである。第一経路の伝達関数Wとは、車輪10からサスペンション装置80を介して誤差信号検出器63に伝達される経路の伝達関数である。この関係は、式(3)にて表される。
Figure JPOXMLDOC01-appb-M000003
 そして、誤差信号検出器63により検出される誤差信号は、式(4)に示すように、ekとなる。つまり、誤差信号ekは、車輪10に入力された振動xkが伝達関数Wを介して伝達された振動dkに、加振器61により出力されて伝達された伝達制御振動ykを合成した信号となる。制御信号生成部110は、この誤差信号ekを小さく(キャンセル)するように制御信号生成部110における適応フィルタCを更新する。
Figure JPOXMLDOC01-appb-M000004
 伝達関数推定部120は、伝達関数Gを予め同定しておき、同定した伝達関数推定値Ghを記憶している。例えば、伝達関数推定値Ghは、例えば、参照信号検出器62により検出される参照信号rkの周波数、振幅、位相などに応じた値として記憶する。ここで、図4および以下の数式において、記号の上に付している「^」は、ハットと称し、推定値を意味する。ただし、記載の都合上、文章中においては、「^」を「h」として記載する。
 フィルタ更新部130は、誤差信号検出器63により検出された誤差信号ek、および、伝達関数推定部120により得られた伝達関数推定値Ghに基づいて、適応フィルタCkを更新する。
 この更新処理について詳細に説明する。まず、フィルタ更新部130において、評価関数Jkを式(5)のように設定する。この評価関数Jkが極小となるような適応フィルタCkを求める。
Figure JPOXMLDOC01-appb-M000005
 そこで、勾配ベクトル▽kを式(6)の第一行のように設定する。勾配ベクトル▽kは、評価関数Jkを適応フィルタCkで偏微分して得られる。そうすると、勾配ベクトル▽kは、式(6)の第二行の右辺に示すように表される。さらに、式(4)より、勾配ベクトル▽kは、式(6)の第三行の右辺に示すように表される。
Figure JPOXMLDOC01-appb-M000006
 そして、更新後の適応フィルタCk+1は、式(7)の第一行に示すように、算出した勾配ベクトル▽kにステップサイズパラメータμを乗じた項を、前回更新された適応フィルタCkから減算することにより導き出す。ただし、式(6)における伝達関数Gは、伝達関数推定部120により得られた伝達関数推定値Ghに置換する。さらに、式(6)を代入すると、適応フィルタCの更新式は、式(7)の第二行に示すように表される。
Figure JPOXMLDOC01-appb-M000007
 (実験)
 上述した能動型消音装置について実験を行った。当該実験は、ホイール12に車両上下方向のランダム振動を加えたときに、誤差信号検出器63により誤差信号を検出すると共に、車室内に配置したマイクにより車室内のノイズを検出した。比較のため、コントローラ100を制御しない場合、すなわち加振器61を駆動しない場合についても同様の実験を行った。
 (実験結果)
 コントローラ100を制御した場合の実験結果として、誤差信号検出器63の誤差信号の振幅の時間経過挙動は、図5に示すようになった。また、車室内のマイクによる検出値の振幅の時間経過挙動は、図6に示すようになった。また、コントローラ100を制御しない場合の実験結果として、誤差信号検出器63の誤差信号の振幅の時間経過挙動は、図7に示すようになった。また、車室内のマイクによる検出値の振幅の時間経過挙動は、図8に示すようになった。なお、図5~図8においては、誤差信号またはマイクの検出値のピーク値のみを連続線で示している。
 図5と図7を比較すると、コントローラ100を制御することによって、誤差信号自体の振幅が小さくなっていることが分かる。また、図6と図8を比較すると、コントローラ100を制御することによって、車室内のマイクの検出値の振幅が小さくなっていることが分かる。
 そして、図5~図8の結果に対してFFT(高速フーリエ変換)を行うことにより、周波数に対する振幅について、図9および図10に示す。図9および図10において、太実線はコントローラ100を制御した場合であり、破線はコントローラ100を制御しない場合である。
 図9および図10からも分かるように、特に、数百Hz付近のピーク値が小さくなっていることが分かる。この周波数帯は、フロアパネル21の共振1次周波数付近であり、フロアパネル21の共振による振動を抑制できていることが分かる。
 以上説明したように、加振器61および誤差信号検出器63を、フロアパネル21ではなく、振動伝達経路においてフロアパネル21よりも車輪10側に位置する部材、具体的にはタイヤハウス22に設けている。つまり、タイヤハウス22を加振することで、タイヤハウス22の振動を低減している。そして、タイヤハウス22の振動を低減することができれば、振動伝達経路の下流側に位置するフロアパネル21には、伝達される振動が低減される。
 ここで、フロアパネル21と車輪10との間には、サスペンション装置80が含まれる。サスペンション装置80は、フロアパネル21に比べると非常に高剛性である。そのため、サスペンション装置80の共振周波数は、フロアパネル21の共振周波数に比べると、非常に高い周波数となる。さらに、サスペンション装置80が支持されるタイヤハウス22の部位についても、フロアパネル21に比べると高剛性である。従って、タイヤハウス22の当該部位の共振周波数も、フロアパネル21の共振周波数より高い周波数となる。
 そのため、サスペンション装置80やタイヤハウス22の当該部位において、路面入力振動に起因した振動の周波数帯は、当該サスペンション装置80などの部材の共振周波数よりも十分に低い周波数帯となる。従って、当該サスペンション装置80などの部材は、その共振によって路面入力振動を増幅することはない。さらに、当該サスペンション装置80などの部材の高次周波数帯の振幅についてはほとんど影響がない。
 つまり、フロアパネル21ではなく、サスペンション装置80またはその支持部位に加振器61および誤差信号検出器63を設けることで、比較的に低周波数帯を制御対象周波数としたとしても、サスペンション装置80などの振動を十分に抑制することができる。そうすると、振動伝達経路の下流側に位置するフロアパネル21の振動を低減することができる。その結果、フロアパネル21の振動に起因したロードノイズを低減することができる。さらに、制御対象周波数が低周波数帯であるため、制御の演算処理および加振器61の応答性の観点から、より高精度に振動抑制できる。このことからも、ロードノイズをより高精度に低減できる。
 そして、上述したように、制御周波数帯は、比較的に低周波数帯であるため、加振器61、参照信号検出器62、誤差信号検出器63およびコントローラ100の電子回路について、それほど高性能でなくても十分に対応できる。つまり、参照信号検出器62および誤差信号検出器63のサンプリング時間を短時間にすることなく処理ができ、コントローラ100の電子回路の演算処理の速度も高速でなくてもよく、加振器61は共振しないため、低い振幅で十分に振動抑制できる。従って、低コスト化を図ることができ、かつ、加振器61の小型化を図ることができる。
 さらに、車輪10とフロアパネル21との間を連結するサスペンション装置80には、粘弾性部材が含まれている。つまり、参照信号検出器62が設けられる部材(ナックル41)と、加振器61および誤差信号検出器63が設けられる部材(タイヤハウス22)との間には、粘弾性部材が介在する。従って、参照信号が設けられる部材(ナックル41)の振動に対して、加振器61が設けられる部材(タイヤハウス22)の振動は時間遅れを伴う。そのため、参照信号に基づいて加振器61を制御することで、確実に加振器61を設けた部材の振動を低減できる。
 <第二実施形態>
 第二実施形態について図11を参照して説明する。ここで、第一実施形態と同一構成については同一符号を付して、詳細な説明を省略する。第二実施形態は、第一実施形態に対して、加振器161および加速度センサである誤差信号検出器163の配置が異なる。
 図11に示すように、加振器161は、サスペンションメンバ48に取り付けられている。つまり、加振器161は、サスペンションメンバ48に対して加振力を付与して、サスペンションメンバ48の振動を低減する。また、誤差信号検出器163としての誤差加速度センサは、加振器161が設けられているサスペンションメンバ48の部位に設けられている。
 この場合において、振動伝達経路と共に、参照信号検出器62、加振器161および誤差信号検出器163の配置について、図12を参照して説明する。図12に示すように、車輪10からフロアパネル21までの振動伝達経路は、車輪10→ナックル41→ブッシュ42→ロアアーム44→ブッシュ46→サスペンションメンバ48→メンバマウント49→フロアパネル21の順となる。
 そして、参照信号検出器62は、第一実施形態と同様に、ナックル41に設けている。また、誤差信号検出器163は、サスペンションメンバ48のうち加振器161が取り付けられている部位に設けられている。つまり、誤差信号検出器163は、車輪10からフロアパネル21までの振動伝達経路において、フロアパネル21側に設けている。ここで、上述したように、ナックル41とサスペンションメンバ48との間には粘弾性部材を介在している。従って、誤差信号検出器163は、ナックル41の振動に対して時間遅れを伴って振動する部材の振動を検出する。本実施形態によれば、サスペンションメンバ48を介してフロアパネル21に伝達される振動を低減することができる。従って、フロアパネル21の当該振動を確実に低減できる。また、第一実施形態に記載した効果を奏することができる。
 また、本実施形態において、第一実施形態にて説明した加振器61および誤差信号検出器63をさらに備えるようにすることで、両者の効果を併せ持つこととなる。このようにすることで、車輪10からフロアパネル21への2つの振動伝達経路のそれぞれにおいて、経路の途中で振動を低減することができる。従って、より確実にフロアパネル21の振動を低減することができる。その結果、車室内のロードノイズをより低減することができる。
 <第三実施形態>
 第三実施形態について、図13~図15を参照して説明する。ここで、第一実施形態と同一構成については同一符号を付して、詳細な説明を省略する。第三実施形態は、第一実施形態に対して、誤差信号検出器263が車室内70に設置されたマイクロフォンであることが異なる。さらに、車輪10からロードノイズの発生源であるフロアパネル21および内装板状部材23までの振動伝達経路が、複数存在するものとしている。以下に、詳細に説明する。
 図13に示すように、参照信号検出器62としての加速度センサは、ナックル41に設けられている。また、車室内70の天井には、誤差信号検出器263としてのマイクロフォンが設けられている。この誤差信号検出器63は、誤差信号としての車室内70の音を検出する。つまり、本実施形態の能動型消音装置は、ナックル41に取り付けられた参照信号検出器62により参照信号としての車両上下振動を検出し、車室内70の例えば天井に設置された誤差信号検出器263により誤差信号としての車室内70の音を検出し、車室内70の音を小さくするようにタイヤハウス22に取り付けられた加振器61を適応制御する。
 (振動伝達経路)
 ここで、本実施形態において、路面から入力される振動が、車室内70のロードノイズとして伝達される経路について、図14を参照して説明する。ここで、車室内70へのロードノイズ発生源は、フロアパネル21またはドアパネル23などの車両構成部品のうち板状部材である。つまり、フロアパネル21またはドアパネル23などが面振動することで、車室内70にロードノイズが発生する。
 そして、図14に示すように、車輪10からロードノイズの発生源であるフロアパネル21またはドアパネル23までの振動伝達経路は、複数存在する。特に、ここでは、車輪10からフロアパネル21への振動伝達経路が複数存在し、かつ、車輪10からドアパネル23への振動伝達経路が複数存在する。なお、実際には、フロアパネル21自身も、複数の振動発生箇所を備えており、フロアパネル21内での振動伝達経路も複数存在している。以下には、多数存在する振動伝達経路のうち一部について説明する。
 第一の振動伝達経路は、車輪10→ナックル41→ブッシュ42→ロアアーム44→ショックアブソーバ51→アッパーサポート52→タイヤハウス22→フロアパネル21の経路である。第二の振動伝達経路は、車輪10→ナックル41→ブッシュ42,43→ロアアーム44,アッパーアーム45→ブッシュ46,47→サスペンションメンバ48→メンバマウント49→フロアパネル21の経路である。
 また、第三の振動伝達経路は、車輪10→ナックル41→ブッシュ42→ロアアーム44→ショックアブソーバ51→アッパーサポート52→タイヤハウス22→ドアパネル23の経路である。第四の振動伝達経路は、車輪10→ナックル41→ブッシュ42,43→ロアアーム44,アッパーアーム45→ブッシュ46,47→サスペンションメンバ48→メンバマウント49→ドアパネル23の経路である。
 そして、参照信号検出器62が設けられるナックル41は、第一~第四の振動伝達経路の共通部品である。従って、参照信号検出器62により検出される振動は、第一~第四の振動伝達経路における振動の全てに関連性を有する振動となる。さらに、参照信号検出器62が設けられるナックル41は、振動伝達経路のうち最上流の部材である。つまり、参照信号検出器62により検出される振動は、車輪10の振動に最も近い振動であり、車輪10が振動してから参照信号検出器62により検出されるまでの時間が非常に短くなる。従って、参照信号検出器62は、路面から入力される振動を早期に検出できる。
 また、加振器61が設けられるタイヤハウス22は、第一および第二の振動伝達経路を構成する部材であり、参照信号検出器62が設けられるナックル41より振動伝達経路の下流側に位置する。そして、誤差信号検出器263が設けられる車室内70は、振動伝達経路中ではなく、振動伝達経路の終端のフロアパネル21またはドアパネル23の振動によって発生する領域である。
 (制御ブロック図)
 次に、本実施形態に於いて、加振器61を制御する制御ブロック図について、図15を参照して説明する。加振器61の制御を行うコントローラ200は、適応制御を適用し、参照信号検出器62により検出される参照信号と誤差信号検出器263により検出される誤差信号とを用いて、誤差信号を小さく(キャンセル)するように制御する。そして、図14を用いて説明した第一~第四の振動伝達経路の伝達関数は、W1~W4として表す。そして、これらの総和をWとして表す。
 本実施形態の制御は、第一実施形態と実質的に同様である。ただし、以下の点が相違する。伝達関数G2は、タイヤハウス22から車室内70の誤差信号検出器263までの伝達関数である。そして、ykは、誤差信号検出器263における伝達制御音である。つまり、Gは、制御信号生成部110から誤差信号検出器263までの伝達関数である。
 また、上述したように、車輪10に入力された振動xkは、第一~第四の振動伝達経路の伝達関数W1~W4のそれぞれを介して誤差信号検出器263の位置に伝達される。つまり、車輪10から誤差信号検出器263までの伝達関数は、W1~W4の総和Wとして把握できる。従って、伝達関数の総和Wを介して伝達されたロードノイズ(伝達騒音)が、dkとなる。
 以上説明したように、複数の振動伝達経路が存在する場合であっても、加振器61により振動伝達経路に位置する部材を振動させることによって、車室内70のロードノイズを低減できる。このように、スピーカによってロードノイズを低減していないため、従来のようにスピーカにより制御音(二次音)を発生させることによりロードノイズを低減させる場合の問題を有しない。
 つまり、制御音(二次音)による消音ではないため、スピーカの設置位置による依存性のような問題は発生しない。本実施形態においては、タイヤハウス22に加振器61を設置したが、この他に、車両ボディを構成する他の部材に加振器61を設置してもよい。例えば、サスペンションメンバ48に加振器61を設置してもよい。このように、タイヤハウス22以外の場所に加振器61を設置したとしても、同様に車室内70のロードノイズを低減できる。
 また、加振器61により振動を発生させるため、加振器61の制御周波数の範囲は、スピーカの制御周波数の範囲に比べて非常に狭い。従って、コントローラ200の制御回路の演算速度を低減できるため、低コストにできる。さらに、加振器61は、振動伝達経路の車両構成部品としてのタイヤハウス22などに設置するため、車室内70の設置に比べて、設置の自由度は高くなる。
 また、本実施形態によれば、複数の振動伝達経路W1~W4が存在するにも関わらず、タイヤハウス22の一箇所に加振器61を設置しているが、ロードノイズを低減できる。つまり、ロードノイズの発生源であるフロアパネル21の多数の部位および内装板状部材23の多数の部位に加振器61を設置する必要がない。この理由は、車室内70に設置された誤差信号検出器263により検出される音を誤差信号ekとし、この誤差信号ekが小さくなるように加振器61が加振力を発生しているためである。
 つまり、路面から入力される振動xkが複数の振動伝達経路W1~W4を介してフロアパネル21や内装板状部材23に伝達されると共に、加振器61によりタイヤハウス22が加振されることによってフロアパネル21や内装板状部材23を振動させる。このように、フロアパネル21および内装板状部材23では、路面から伝達される複数種の振動と加振器61による振動とが合成される。そして、コントローラ200は、車室内70の音である誤差信号ekを小さくするように加振器61を制御している。つまり、コントローラ200は、合成されたフロアパネル21および内装板状部材23の振動を低減するように、加振器61を制御する。
 つまり、加振器61は、加振器61が設置されているタイヤハウス22自体の振動を小さくするのではなく、車室内70のロードノイズが小さくなるようにタイヤハウス22に振動を加えていることになる。加振器61は、加振器61が設置されているタイヤハウス22自体の振動を小さくするとは限らず、場合によってはタイヤハウス22自体の振動を大きくすることもある。従って、本実施形態によれば、複数の振動伝達経路W1~W4が存在する場合であっても、車室内70のロードノイズを確実に低減することができる。
 また、参照信号検出器62は、複数の振動伝達経路W1~W4の共通部品であるナックル41に設けられるようにしている。これにより、複数の振動伝達経路W1~W4に影響を及ぼす参照信号rkを確実に検出できる。従って、参照信号rkに起因する誤差信号ekの成分を確実に低減できる。
 なお、本実施形態において、加振器61は一箇所に設置したが、複数箇所に設置することもできる。ただし、複数の加振器61を設置する場合には、それぞれの加振器61の影響度を考慮して、それぞれの加振器61の制御を行うことが必要となる。
10:車輪、 21:フロアパネル(板状部材)、 22:タイヤハウス、 23:内装板状部材、 41:ナックル、 44:ロアアーム(サスペンションアーム)、 45:アッパーアーム(サスペンションアーム)、 48:サスペンションメンバ、 49:メンバマウント、 51:ショックアブソーバ、 52:アッパーサポート、 61,161:加振器、 62:参照信号検出器、 63,163,263:誤差信号検出器、 70:車室内、 80:サスペンション装置、 100,200:コントローラ

Claims (7)

  1.  車両の室内の騒音を能動的に低減する能動型消音装置であって、
     前記車両は、路面から車輪に入力される振動が車両構成部品のうち板状部材に伝達されて、当該板状部材が振動することによって車室内にロードノイズを発生し、
     前記能動型消音装置は、
     前記車輪から前記板状部材までの振動伝達経路において前記車輪を支持するナックルに設けられ、当該ナックルの振動を参照信号として検出する参照信号検出器と、
     前記振動伝達経路において前記板状部材に連結されてサスペンション装置を支持するタイヤハウス、または、前記板状部材に連結されて前記サスペンション装置を構成するサスペンションメンバに設けられ、前記板状部材側の部材に加振力を付与する加振器と、
     前記タイヤハウスの振動または前記サスペンションメンバの振動を誤差信号として検出する、もしくは、車室内の音を誤差信号として検出する誤差信号検出器と、
     前記参照信号および前記誤差信号に基づいて前記誤差信号が小さくなるように前記加振器を制御するコントローラと、
     を備える能動型消音装置。
  2.  前記車両は、
     前記車輪を回転可能に支持する前記ナックルと、
     前記ナックルに連結されるサスペンションアームと、
     前記サスペンションアームに連結されるショックアブソーバと、
     前記ショックアブソーバに取り付けられるアッパーサポートと、
     前記アッパーサポートに取り付けられ、前記板状部材に連結される前記タイヤハウスと、
     を含み、
     前記参照信号検出器は、前記ナックルに設けられ、
     前記加振器および前記誤差信号検出器は、前記タイヤハウスに設けられる、請求項1の能動型消音装置。
  3.  前記加振器および前記誤差信号検出器は、前記タイヤハウスのうち前記板状部材より前記アッパーサポートに近い位置に設けられる、請求項2の能動型消音装置。
  4.  前記車両は、
     前記車輪を回転可能に支持する前記ナックルと、
     前記ナックルに連結されるサスペンションアームと、
     前記サスペンションアームに連結されて、メンバマウントを介して前記板状部材としてのフロアパネルに連結される前記サスペンションメンバと、
     を含み、
     前記参照信号検出器は、前記ナックルに設けられ、
     前記加振器および前記誤差信号検出器は、前記サスペンションメンバに設けられる、請求項1の能動型消音装置。
  5.  前記車輪から前記板状部材までの前記振動伝達経路は、複数であり、
     前記加振器は、前記複数の振動伝達経路のうち少なくとも一つの前記振動伝達経路に設けられ、
     前記誤差信号検出器は、車室内の音を前記誤差信号として検出するマイクロフォンである、請求項1の能動型消音装置。
  6.  前記複数の振動伝達経路は、少なくとも、前記車輪から前記タイヤハウスまでの経路、および、前記車輪から前記サスペンションメンバまでの経路を含み、
     前記加振器は、一つの前記振動伝達経路を構成する前記タイヤハウス、または、他の一つの前記振動伝達経路を構成する前記サスペンションメンバに設けられる、請求項5の能動型消音装置。
  7.  前記参照信号検出器は、複数の前記振動伝達経路の共通部品に設けられる、請求項6の能動型消音装置。
PCT/JP2012/062200 2011-05-19 2012-05-11 能動型消音装置 WO2012157577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012550252A JP5326056B2 (ja) 2011-05-19 2012-05-11 能動型消音装置
DE112012002158.4T DE112012002158B4 (de) 2011-05-19 2012-05-11 Aktivgeräuschbeseitigungsvorrichtung
US13/951,965 US8706351B2 (en) 2011-05-19 2013-07-26 Active noise cancellation apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-112757 2011-05-19
JP2011112757 2011-05-19
JP2011-197743 2011-09-10
JP2011197743 2011-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/951,965 Continuation US8706351B2 (en) 2011-05-19 2013-07-26 Active noise cancellation apparatus

Publications (1)

Publication Number Publication Date
WO2012157577A1 true WO2012157577A1 (ja) 2012-11-22

Family

ID=47176895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062200 WO2012157577A1 (ja) 2011-05-19 2012-05-11 能動型消音装置

Country Status (4)

Country Link
US (1) US8706351B2 (ja)
JP (1) JP5326056B2 (ja)
DE (1) DE112012002158B4 (ja)
WO (1) WO2012157577A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002933A1 (ja) * 2012-06-25 2014-01-03 東海ゴム工業株式会社 能動型振動騒音抑制装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977117B2 (ja) 2012-08-28 2016-08-24 住友理工株式会社 車両用防音カバー
US9424828B2 (en) 2014-08-01 2016-08-23 Bose Corporation System and method of microphone placement for noise attenuation
JP6384784B2 (ja) 2014-08-05 2018-09-05 パナソニックIpマネジメント株式会社 信号処理装置、プログラム、レンジフード装置
DE102014016451B3 (de) * 2014-11-06 2016-03-24 Audi Ag Verfahren zum Betreiben eines Mehrachsantriebsstrangs für ein Kraftfahrzeug sowie entsprechender Mehrachsantriebsstrang
US9640169B2 (en) 2015-06-25 2017-05-02 Bose Corporation Arraying speakers for a uniform driver field
US9508336B1 (en) 2015-06-25 2016-11-29 Bose Corporation Transitioning between arrayed and in-phase speaker configurations for active noise reduction
EP3349210A1 (en) 2017-01-12 2018-07-18 Alpine Electronics, Inc. Active noise reduction apparatus and method for a vehicle
US10163432B2 (en) * 2017-02-23 2018-12-25 2236008 Ontario Inc. Active noise control using variable step-size adaptation
EP3769982B1 (en) * 2019-07-26 2023-11-01 Dn Automotive Italy S.R.L. Method of generating a force for the active vibration reduction for a top shock absorber mount or for an engine suspension mount and vehicles
DE102020116451B4 (de) 2020-06-23 2024-02-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung und Verfahren für aktive Geräuschunterdrückung bei einem Fahrzeug
FR3115148B1 (fr) * 2020-10-12 2022-11-04 Renault Sas Ensemble et procédé de contrôle actif du bruit de roulement pour un véhicule automobile
DE102021202165A1 (de) * 2021-03-05 2022-09-08 Zf Friedrichshafen Ag Vorrichtung und Verfahren zur Geräuschreduktion in einem Innenraum eines Fahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281676A (ja) * 1994-04-13 1995-10-27 Hitachi Ltd 能動型振動騒音制御装置
JP2006293145A (ja) * 2005-04-13 2006-10-26 Nissan Motor Co Ltd 能動振動制御装置及び能動振動制御方法
JP2008120235A (ja) * 2006-11-10 2008-05-29 National Traffic Safety & Environment Laboratory タイヤ騒音低減装置
JP2010228641A (ja) * 2009-03-27 2010-10-14 Denso It Laboratory Inc 車両内騒音低減装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553589A (ja) 1991-08-29 1993-03-05 Nissan Motor Co Ltd 能動型騒音制御装置
JPH07210179A (ja) 1994-01-25 1995-08-11 Hitachi Ltd 能動消音装置
DE10117305B4 (de) 2001-04-02 2005-10-27 Eads Deutschland Gmbh Verfahren zur Verminderung der Schallübertragung in Fahrzeugen, Fahrwerk für Fahrzeuge und Aktuator
DE10329037A1 (de) 2003-06-27 2005-01-13 Audi Ag Verfahren und Vorrichtung zur Schwingungsdämpfung
JP4376833B2 (ja) * 2005-07-04 2009-12-02 トヨタ自動車株式会社 車両制御装置および車両制振方法
CN101296811B (zh) * 2005-10-26 2010-05-19 丰田自动车株式会社 用于车辆的悬架系统
JP4585575B2 (ja) * 2008-03-04 2010-11-24 本田技研工業株式会社 電動ダンパ装置
JP5070167B2 (ja) 2008-09-18 2012-11-07 本田技研工業株式会社 能動型騒音制御装置
JP2011179553A (ja) * 2010-02-26 2011-09-15 Bridgestone Corp 車両の振動低減システム
DE102010035088A1 (de) * 2010-08-21 2012-03-08 Audi Ag Radaufhängung für ein Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281676A (ja) * 1994-04-13 1995-10-27 Hitachi Ltd 能動型振動騒音制御装置
JP2006293145A (ja) * 2005-04-13 2006-10-26 Nissan Motor Co Ltd 能動振動制御装置及び能動振動制御方法
JP2008120235A (ja) * 2006-11-10 2008-05-29 National Traffic Safety & Environment Laboratory タイヤ騒音低減装置
JP2010228641A (ja) * 2009-03-27 2010-10-14 Denso It Laboratory Inc 車両内騒音低減装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002933A1 (ja) * 2012-06-25 2014-01-03 東海ゴム工業株式会社 能動型振動騒音抑制装置
JP2014006709A (ja) * 2012-06-25 2014-01-16 Tokai Rubber Ind Ltd 能動型振動騒音抑制装置

Also Published As

Publication number Publication date
JPWO2012157577A1 (ja) 2014-07-31
US8706351B2 (en) 2014-04-22
DE112012002158T8 (de) 2014-03-13
DE112012002158B4 (de) 2018-11-29
DE112012002158T5 (de) 2014-02-13
US20130311040A1 (en) 2013-11-21
JP5326056B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5326056B2 (ja) 能動型消音装置
JP5934037B2 (ja) 能動型振動騒音抑制装置
CN107016987B (zh) 发动机噪声控制
JPH03203496A (ja) 能動型騒音制御装置
WO2012137418A1 (ja) 車両の振動低減システム
JP5479371B2 (ja) 車載用能動型振動低減装置
JP5926158B2 (ja) 能動型消音装置
EP3996086B1 (en) Virtual location noise signal estimation for engine order cancellation
Kim et al. Active control of road noise considering the vibro-acoustic transfer path of a passenger car
JP5040163B2 (ja) 騒音低減装置及び方法
JP2000322066A (ja) 能動型騒音制御装置
JP3355706B2 (ja) 適応制御装置
JP5641726B2 (ja) 能動型振動騒音制御装置
JP2011179553A (ja) 車両の振動低減システム
US20230368770A1 (en) Assembly and method for active control of the rolling noise for a motor vehicle
JP6655435B2 (ja) 能動型振動騒音制御装置
Dehandschutter et al. Active control of simulated structure borne road noise using force actuators
JP2011178224A (ja) 車両の振動低減システム
JPH07238986A (ja) アクティブマウントの制御装置とそれを用いた防振装置およびアクティブマウントの制御方法
JP5775724B2 (ja) 車両の振動低減システム
JP2007269158A (ja) 能動型振動制御装置
Banfo et al. Active Control of Rolling Noise in a Passenger Car Through Structural and Acoustic Control
JP2005234040A (ja) 車室内騒音低減装置
JP2008285017A (ja) 車両騒音制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012550252

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012002158

Country of ref document: DE

Ref document number: 1120120021584

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786021

Country of ref document: EP

Kind code of ref document: A1