WO2012145201A1 - Flip-chip, face-up and face-down centerbond memory wirebond assemblies - Google Patents

Flip-chip, face-up and face-down centerbond memory wirebond assemblies Download PDF

Info

Publication number
WO2012145201A1
WO2012145201A1 PCT/US2012/032997 US2012032997W WO2012145201A1 WO 2012145201 A1 WO2012145201 A1 WO 2012145201A1 US 2012032997 W US2012032997 W US 2012032997W WO 2012145201 A1 WO2012145201 A1 WO 2012145201A1
Authority
WO
WIPO (PCT)
Prior art keywords
microelectronic
contacts
microelectronic element
terminals
leads
Prior art date
Application number
PCT/US2012/032997
Other languages
French (fr)
Inventor
Belgacem Haba
Richard Dewitt Crisp
Wael Zohni
Original Assignee
Tessera, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tessera, Inc filed Critical Tessera, Inc
Priority to EP12714917.7A priority Critical patent/EP2700100A1/en
Priority to BR112013027142A priority patent/BR112013027142A2/en
Priority to KR1020137030219A priority patent/KR102005830B1/en
Priority to CN201280030801.1A priority patent/CN103620778B/en
Priority to JP2014506450A priority patent/JP2014512688A/en
Publication of WO2012145201A1 publication Critical patent/WO2012145201A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06135Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06136Covering only the central area of the surface to be connected, i.e. central arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • H01L2224/29191The principal constituent being an elastomer, e.g. silicones, isoprene, neoprene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49112Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting a common bonding area on the semiconductor or solid-state body to different bonding areas outside the body, e.g. diverging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06575Auxiliary carrier between devices, the carrier having no electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06589Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1029All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being a lead frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1052Wire or wire-like electrical connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/107Indirect electrical connections, e.g. via an interposer, a flexible substrate, using TAB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1205Capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1206Inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1207Resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1431Logic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • H01L2924/1436Dynamic random-access memory [DRAM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • H01L2924/1437Static random-access memory [SRAM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • H01L2924/1438Flash memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • H01L2924/1443Non-volatile random-access memory [NVRAM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/145Read-only memory [ROM]
    • H01L2924/1451EPROM
    • H01L2924/14511EEPROM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/1579Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to stacked microelectronic assemblies and methods of making such assemblies, and to components useful in such assemblies.
  • a standard chip has a flat, rectangular body with a large front face having contacts connected to the internal circuitry of the chip.
  • Each individual chip typically is mounted in a package which, in turn, is mounted on a circuit panel such as a printed circuit board and which connects the contacts of the chip to conductors of the circuit panel.
  • the chip package occupies an area of the circuit panel considerably larger than the area of the chip itself.
  • the "area of the chip” should be understood as referring to the area of the front face.
  • the front face of the chip confronts the face of a package substrate, i.e., chip carrier and the contacts on the chip are bonded directly to contacts of the chip carrier by solder balls or other connecting elements.
  • the chip carrier can be bonded to a circuit panel through terminals overlying the front face of the chip.
  • the "flip chip” design provides a relatively compact arrangement; each chip occupies an area of the circuit panel equal to or slightly larger than the area of the chip's front face, such as disclosed, for example, in certain embodiments of commonly-assigned U.S. Pat. Nos . 5,148,265; 5,148,266; and 5,679,977, the entire disclosures of which are incorporated herein by reference.
  • Chip- sized packages Certain innovative mounting techniques offer compactness approaching or equal to that of conventional flip-chip bonding. Packages which can accommodate a single chip in an area of the circuit panel equal to or slightly larger than the area of the chip itself are commonly referred to as "chip- sized packages.”
  • a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, and a second microelectronic element having a front surface facing the first microelectronic element.
  • the substrate can have first terminals exposed at the second surface thereof.
  • the first microelectronic element can also have a rear surface remote from the front surface and an edge extending between the front and rear surfaces.
  • the first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element.
  • the second microelectronic element can have first and second opposed edges. The front surface of the second microelectronic element can extend between the first and second edges.
  • the second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges.
  • the front surface of the second microelectronic element can project beyond the edge of the first microelectronic element.
  • the microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the first terminals and second leads connecting the contacts of the second microelectronic element to the first terminals.
  • the first and second leads can have portions aligned with the aperture.
  • the microelectronic assembly can also include second terminals exposed at a surface of the microelectronic assembly opposite from the second surface of the substrate. At least some of the second terminals can overlie at least one of the microelectronic elements.
  • the second terminals can be electrically connected with conductive elements exposed at the first surface of the substrate by wire bonds.
  • the microelectronic assembly can also include an encapsulant at least partially covering the first and second microelectronic elements and at least portions of the wire bonds.
  • the surface of the microelectronic assembly at which the second terminals are exposed can be a surface of the encapsulant.
  • the wire bonds can have bases attached to the conductive elements and unencapsulated end surfaces remote from the conductive elements, and edge surfaces extending between the bases and the unencapsulated end surfaces . The unencapsulated end surfaces can be uncovered by the encapsulant.
  • the second terminals can be electrically connected with the unencapsulated end surfaces.
  • at least a portion of an edge surface of at least one of the wire bonds can be unencapsulated and at least one of the second terminals can be electrically connected with the unencapsulated edge surface and the unencapsulated end surface of the at least one of the wire bonds .
  • the wire bonds can have unencapsulated edge surfaces between bases of the wire bonds attached to the conductive elements and ends of the wire bonds remote from the conductive elements.
  • the second terminals can be electrically connected with the unencapsulated edge surfaces.
  • at least one of the microelectronic elements can include a volatile random access memory (RAM)
  • at least one of the microelectronic elements can include nonvolatile flash memory.
  • the microelectronic assembly can also include third leads electrically interconnecting the contacts of the first microelectronic element with the contacts of the second microelectronic element.
  • the first, second, and third leads can have portions aligned with the aperture.
  • at least one of the first or second leads can include wire bonds extending from the contacts of at least one of the first or second microelectronic elements.
  • the portions of at least one of the first leads and the second leads aligned with the aperture can be portions of monolithic conductive elements having second portions extending along the substrate to the terminals.
  • the microelectronic assembly can also include a spacing element between the front surface of the second microelectronic element and the first surface of the substrate.
  • the first microelectronic element can include a chip configured to predominantly perform a logic function.
  • the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function .
  • the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
  • the microelectronic assembly can also include third leads electrically connecting the contacts of the first microelectronic element to the terminals .
  • the first leads and third leads can be connected to terminals on opposite sides of the aperture.
  • the first, second, and third leads can have portions aligned with the aperture.
  • the microelectronic assembly can also include a third microelectronic element disposed between first surface of the substrate and the front surface of the second microelectronic element, third leads electrically connecting contacts of the third microelectronic element to the terminals, and fourth leads electrically interconnecting the contacts of the first and third microelectronic elements.
  • the third microelectronic element can have first and second opposed edges, a front surface extending between the first and second edges, and a plurality of the contacts disposed on the front surface thereof adjacent the first edge thereof.
  • the front surface of the third microelectronic element can face the first surface of the substrate.
  • the contacts of the first and third microelectronic elements can be located on opposite sides of the aperture.
  • the first, second, third, and fourth leads can have portions aligned with the aperture.
  • the microelectronic assembly can also include fifth leads electrically interconnecting the contacts of the first and second microelectronic elements.
  • the microelectronic assembly can also include sixth leads electrically interconnecting the contacts of the second and third microelectronic elements.
  • a microelectronic component can include first and second microelectronic assemblies as described above.
  • the first microelectronic assembly can at least partially overlie the second microelectronic assembly.
  • the first terminals of the first microelectronic assembly can be joined with the second terminals of the second microelectronic assembly.
  • at least one of the first microelectronic elements can be configured predominantly to perform a logic function.
  • At least one of the second microelectronic elements can have a greater number of active devices configured to provide memory storage array function than any other function.
  • first terminals of the first microelectronic assembly and at least some of the second terminals of the second microelectronic assembly can be arranged in an area array.
  • the first and second microelectronic assemblies can be joined by joining units that are electrically conductive masses of a bond metal.
  • the microelectronic assemblies can be electrically connected with one another through joining units arranged adjacent a periphery of the microelectronic component.
  • the joining units can be located outside of a depopulated central region of the microelectronic component.
  • a system can include a microelectronic assembly as described above and one or more other electronic components electrically connected to the microelectronic assembly.
  • at least some of the terminals can be electrically connected to a circuit panel.
  • the system can also include a housing, the microelectronic assembly and the other electronic components being mounted to the housing.
  • a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, and a second microelectronic element having a front surface facing the first microelectronic element.
  • the substrate can have terminals.
  • the first microelectronic element can also include a rear surface remote from the front surface and an edge extending between the front and rear surfaces.
  • the first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element.
  • the second microelectronic element can have first and second opposed edges. The front surface of the second microelectronic element can extend between the first and second edges.
  • the second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges.
  • the front surface of the second microelectronic element can project beyond the edge of the first microelectronic element.
  • the microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the terminals, second leads connecting the contacts of the second microelectronic element to the terminals, and third leads electrically interconnecting the contacts of the first microelectronic element with the contacts of the second microelectronic element.
  • the first, second, and third leads can have portions aligned with the aperture .
  • At least one of the first or second leads can include wire bonds extending from the contacts of at least one of the first or second microelectronic elements.
  • the portions of at least one of the first leads and the second leads aligned with the aperture can be portions of monolithic conductive elements having second portions extending along the substrate to the terminals.
  • the microelectronic assembly can also include a spacing element between the front surface of the second microelectronic element and the first surface of the substrate.
  • the first microelectronic element can include a chip configured to predominantly perform a logic function.
  • the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
  • the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
  • FIG. 1 Further aspects of the invention can provide systems that incorporate microelectronic assemblies according to the foregoing aspects of the invention in conjunction with other electronic components electrically connected thereto.
  • the terminals can be electrically connected to a circuit panel.
  • the system can be disposed in and/or mounted to a single housing, which can be a portable housing.
  • Systems according to preferred embodiments in this aspect of the invention can be more compact than comparable conventional systems .
  • a microelectronic component can include first and second microelectronic assemblies as described above.
  • the first microelectronic assembly can be electrically connected with and can at least partially overlie the second microelectronic assembly.
  • the microelectronic assemblies can be electrically connected with one another through joining units arranged adjacent a periphery of the microelectronic component.
  • the joining units can be located outside of a depopulated central region of the microelectronic component.
  • some of the microelectronic elements can include a volatile random access memory (RAM) , and some of the microelectronic elements can include nonvolatile flash memory.
  • RAM volatile random access memory
  • at least one of the first microelectronic elements can be configured predominantly to perform a logic function, and at least one of the second microelectronic elements can have a greater number of active devices configured to provide memory storage array function than any other function.
  • a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, and a second microelectronic element having a front surface facing the first microelectronic element.
  • the substrate can have terminals.
  • the first microelectronic element can also include a rear surface remote from the front surface and an edge extending between the front and rear surfaces.
  • the first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element.
  • the second microelectronic element can have first and second opposed edges. The front surface of the second microelectronic element can extend between the first and second edges.
  • the second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges.
  • the front surface of the second microelectronic element can project beyond the edge of the first microelectronic element.
  • the microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the terminals, second leads connecting the contacts of the second microelectronic element to the terminals, and third leads electrically connecting the contacts of the first microelectronic element to the terminals .
  • the first leads and third leads can be connected to terminals on opposite sides of the aperture.
  • the first, second, and third leads can have portions aligned with the aperture.
  • the first microelectronic element can include a chip configured to predominantly perform a logic function.
  • the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
  • the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
  • a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, a second microelectronic element having a front surface facing the first microelectronic element, and a third microelectronic element disposed between first surface of the substrate and the front surface of the second microelectronic element.
  • the substrate can have terminals.
  • the first microelectronic element can also include a rear surface remote from the front surface and an edge extending between the front and rear surfaces.
  • the first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element.
  • the second microelectronic element can have first and second opposed edges.
  • the front surface of the second microelectronic element can extend between the first and second edges.
  • the second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges.
  • the front surface of the second microelectronic element can project beyond the edge of the first microelectronic element.
  • the third microelectronic element can have first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed on the front surface thereof adjacent the first edge thereof.
  • the front surface of the third microelectronic element can face the first surface of the substrate .
  • the microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the terminals, second leads connecting the contacts of the second microelectronic element to the terminals, third leads electrically connecting the contacts of the third microelectronic element to the terminals, and fourth leads electrically interconnecting the contacts of the first and third microelectronic elements.
  • the contacts of the first and third microelectronic elements can be located on opposite sides of the aperture.
  • the first, second, third, and fourth leads can have portions aligned with the aperture .
  • the microelectronic assembly can also include fifth leads electrically interconnecting the contacts of the first and second microelectronic elements. In a particular embodiment, the microelectronic assembly can also include sixth leads electrically interconnecting the contacts of the second and third microelectronic elements.
  • the first microelectronic element can include a chip configured to predominantly perform a logic function.
  • the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
  • the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
  • FIG. 1A is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with an embodiment of the present invention
  • FIG. IB is diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with an embodiment of the present invention.
  • FIG. 1C is partial sectional view of a stack microelectronic assembly in accordance with an embodiment of the present invention
  • FIG. 2 is a plan view of the microelectronic assembly shown in FIG. 1A;
  • FIG. 3A is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with another embodiment of the present invention.
  • FIG. 3B is a partial sectional view further illustrating the embodiment depicted in FIG. 3A.
  • FIG. 4 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with a further embodiment of the present invention.
  • FIG. 5 is a sectional view illustrating a portion of the stacked microelectronic assembly shown in FIG. 4;
  • FIG. 6 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with an embodiment of the present invention.
  • FIG. 7 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with another embodiment of the present invention.
  • FIG. 8 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with a further embodiment of the present invention.
  • FIG. 9A is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with another embodiment of the present invention.
  • FIG. 9B is a top view of the stacked microelectronic assembly shown in FIG. 9A;
  • FIG. 10 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with yet another embodiment of the present invention.
  • FIG. 11 is a schematic depiction of a system according to one embodiment of the invention.
  • a stacked microelectronic assembly 10 includes a first microelectronic element 12 in a face down position facing a substrate 30 and a second microelectronic element 14 in a face down position overlying at least a portion of the first microelectronic element 12.
  • the first and second microelectronic elements 12 and 14 may be a semiconductor chip, or an element including a semiconductor chip, which has contacts at the front surface 16 thereof.
  • the semiconductor chip may be a thin slab of a semiconductor material, such as silicon or gallium arsenide, and may be provided as individual, prepackaged units.
  • the semiconductor chip may be a thin slab of a semiconductor material, such as silicon or gallium arsenide, and it may be provided as individual, prepackaged units.
  • the semiconductor chip may embody active circuit elements, e.g., transistors, diodes, among others, or passive circuit elements such as resistors, capacitors or inductors, among others, or a combination of active and passive circuit elements.
  • active circuit elements e.g., transistors, diodes, among others, or passive circuit elements such as resistors, capacitors or inductors, among others, or a combination of active and passive circuit elements.
  • active circuit elements in each microelectronic element typically are electrically connected together in one or more "integrated circuits".
  • the first and second microelectronic elements are both electrically connected to a substrate 30, as discussed in detail below.
  • the substrate 30 can be electrically connected to a circuit panel, such as a printed circuit board, through terminals 36 at a surface thereof.
  • the microelectronic assembly 10 can be a microelectronic "package" having terminals that are configured for electrical connection with corresponding contacts on a face of a circuit panel, such as a printed circuit board, among others .
  • the substrate can be a dielectric element of various types of construction, such as of polymeric material or inorganic material such as ceramic or glass, the substrate having conductive elements thereon such as terminals and conductive elements such as e.g., traces, substrate contacts, or other conductive elements electrically connected with the terminals.
  • the substrate can consist essentially of a semiconductor material such as silicon, or alternatively include a layer of semiconductor material and one or more dielectric layers thereof. Such substrate may have a coefficient of thermal expansion of less than 7 (seven) parts per million per degree Celsius ("ppm/°C)".
  • the substrate can be a lead frame having lead fingers, wherein the terminals can be portions of the lead fingers, such as end portions of the lead fingers.
  • the substrate can be a lead frame having leads, wherein the terminals can be portions of the leads, such as end portions of the leads.
  • the first microelectronic element 12 may include a semiconductor chip configured predominantly to perform a logic function, such as a microprocessor, application-specific integrated circuit ("ASIC") field programmable gate array (“FPGA”) or other logic chip, among others.
  • the microelectronic element 12 can be a controller, or a system on a chip (“SOC”) predominantly providing logic function, but which may also include a memory storage array.
  • the first microelectronic element 12 can include or be a memory chip such as a flash (NOR or NAND) memory chip, dynamic random access memory (“DRAM”) chip or static random access memory (“SRAM”) chip, or be configured predominantly to perform some other function.
  • Such memory chip includes a memory storage array and typically has a greater number of active circuit elements, e.g., active devices such as transistors that are configured to provide memory storage array function, than any other function of the chip.
  • the first microelectronic element 12 has a front surface 16, a rear surface 18 remote therefrom, and first and second edges 27, 29, extending between the front and rear surfaces. Electrical contacts 20 are exposed at the front surface 16 of the first microelectronic element 12 adjacent the second edge 29.
  • an electrically conductive element is "exposed at" a surface of a structure indicates that the electrically conductive element is available for contact with a theoretical point moving in a direction perpendicular to the surface toward the surface from outside the structure.
  • a contact, terminal or other conductive element which is exposed at a surface of a structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the structure.
  • Electrical contacts 20 may be bond pads or other conductive structure such as bumps, posts, etc.
  • the bond pads may include one or more metals such as copper, nickel, gold or aluminum, and may be about 0.5 ⁇ thick. The size of the bond pads can vary with the device type but will typically measure tens to hundreds of microns on a side.
  • the second microelectronic element 14 has a front surface 22, a rear surface 24 remote therefrom, and first and second edges 35, 37, extending between the front and rear surfaces and contacts 26 exposed at the front surface 22.
  • the first and second microelectronic elements 12 and 14 are stacked relative to each other such that at least a portion of the second microelectronic element 14 overlies at least a portion of the first microelectronic element 12.
  • the front surface 22 of the second microelectronic element 14 includes first and second end regions 21 and 23 and a central region 19 extending between the first and second end regions 21 and 23.
  • the first end region 21 extends between the central region 19 and first edge 35, and the second end region 23 extends between the central region 19 and the second edge 37.
  • the central region may extend a third of the distance between the first and second edges 35, 37 of the second microelectronic element 14 and the first and second end regions may each extend a third of the distance between the edges 35, 37.
  • Electrical contacts 26 are exposed at the front surface 22 of the second microelectronic element 14.
  • contacts 26 may be arranged in one or two parallel rows adjacent the center of first surface 22.
  • the second microelectronic element 14 may include or be a DRAM chip.
  • Such DRAM chip includes a memory storage array and typically has a greater number of active circuit elements, e.g., active devices such as transistors that are configured to provide memory storage array function than any other function. At least a portion of the central region 19 of the second microelectronic element 14 projects beyond the second edge 29 of the first microelectronic element 12 such that the contacts 26 of the second microelectronic element 14 are exposed beyond the second edge 29 of the first microelectronic element 12.
  • the substrate 30 may include a dielectric layer having oppositely-facing first and second surfaces 34 and 32.
  • One or more electrically conductive elements or terminals 36 are exposed at the second surface 32 of the substrate 30. In a particular embodiment, some or all of the terminals 36 may be movable with respect to the first and/or second microelectronic element 12 and 14.
  • the substrate 30 further includes one or more apertures extending between first and second opposed surfaces thereof such as, for example, between the oppositely facing first and second surfaces of a dielectric element 30.
  • the substrate 30 includes an aperture 39 and at least some contacts 26 are aligned with the aperture 39 of the substrate 30.
  • a plurality of leads electrically connects the contacts 26 of the second microelectronic element with the terminals 36 of the microelectronic assembly. The leads have portions aligned with the aperture 39.
  • the leads can include wire bonds 50 bonded to the substrate contacts which in turn connect to terminals 36 through other portions of the leads such as metal traces extending along a semiconductor element or dielectric element 30, or if the substrate includes a lead frame, the leads may include portions of the lead fingers thereof.
  • the first surface 34 of the dielectric element 30 may be juxtaposed with the front surface 16 of the first microelectronic element 12. As seen in FIG. 1A, the substrate 30 may extend beyond the first edge 27 of the first microelectronic element 12 and the second edge 35 of the second microelectronic element 14.
  • a substrate which includes a dielectric material may be referred to as a "dielectric element" 30, whether made partly or entirely of any suitable dielectric material.
  • the substrate 30 may be partly or entirely made of any suitable dielectric material.
  • the substrate 30 may comprise a layer of flexible material, such as a layer of polyimide, BT resin or other dielectric material of the commonly used for making tape automated bonding ("TAB”) tapes.
  • the substrate 30 may comprise a relatively rigid, board like material such as a thick layer of fiber-reinforced epoxy, such as, Fr-4 or Fr-5 board. Regardless of the material employed, the substrate 30 may composed of a single layer or multiple layers .
  • a spacing or support element 31 may be positioned between the first end region 21 of the second microelectronic element 14 and a portion of the dielectric element 30.
  • the spacing element 31 may help support the second microelectronic element above the substrate 30.
  • Such a spacing element 31 can be made, for example, from a dielectric material such as silicon dioxide or other material, a semiconductor material such as silicon, or one or more layers of adhesive or other polymeric material.
  • the spacing element can include or be made of metal. If the spacing element includes adhesives, the adhesives can connect the second microelectronic element 14 to the substrate 30.
  • the spacing element 31 can have substantially the same thickness in a vertical direction that is substantially perpendicular to the first surface 34 of the substrate as the thickness of the first microelectronic element 12 between the front and rear surfaces 16, 18 thereof. If spacing element 31 includes an adhesive, the adhesive can connect the second microelectronic element 14 to the dielectric element 30.
  • the substrate 30 may also include electrically conductive elements or substrate contacts 40 and electrically conductive traces 25 exposed on the second surface 32.
  • the electrically conductive traces 25 electrically couple the substrate contacts 40 to the terminals 36.
  • the traces 25 and substrate contacts 40 may be created using the methods illustrated in commonly assigned U.S. Application Publication No. 2005/0181544, the entire disclosure of which is incorporated herein by reference .
  • a spacing or support element 31, such as an adhesive layer, may be positioned between the first end region 21 of the second microelectronic element 14 and a portion of the substrate 30. If spacing element 31 includes an adhesive, the adhesive can connect the second microelectronic element 14 to the substrate 30. As shown in FIG. 1A, the second end region 23 of the second microelectronic element 14 can be bonded to the second end region 17 of the first microelectronic element 12 with a bond material 60 such as an adhesive, which may be thermally conductive. Likewise, a bond material 61, for example, an adhesive, optionally thermally conductive, may bond the first end region of the second microelectronic element with the spacing element 31.
  • a bond material 71 may be disposed between a significant portion of the front surface 16 of the first microelectronic element and a portion of the first surface 34 of the substrate 30.
  • the bond materials 60, 61, and/or 71 may be partly or entirely made of a die-attach adhesive and, in a particular example, may be comprised of a low elastic modulus material such as silicone elastomer.
  • the bond materials 60, 61 and/or 71 may be entirely or partly made of a high elastic modulus adhesive or solder if the two microelectronic elements 12 and 14 are conventional semiconductor chips formed of the same material, because the microelectronic elements will tend to expand and contract in unison in response to temperature changes.
  • the spacing element 31 may include a single layer or multiple layers. As discussed in detail below with regard to FIGS. 4-8, the spacing element 31 may be substituted for one or more microelectronic elements.
  • the microelectronic assembly may include leads 70 which electrically connect contacts 20 of the first microelectronic element with at least some terminals 36.
  • the leads 70 have portions aligned with the aperture 39 of the substrate 30.
  • the leads can include bond elements 70 such as wire bonds which extend through the aperture 39 and are bonded to contacts 20, 40 of the microelectronic element and the substrate. Traces (not shown) may extend along the substrate between contacts 40 and terminals 36.
  • the bond wires 70 may include wire bonds 72 extending through the aperture 39 and electrically connected to substrate contacts 40. Each of the wire bonds 72 electrically couples a contact 20 to a corresponding substrate contact 40 of the substrate 30.
  • the wire bonds 70 may include a multiple wire bond structure as described in U.S. Patent Application No. 12/907,522 filed October 19, 2010 and entitled "Enhanced Stacked Microelectronic Assemblies with Central Contacts and Improved Thermal Characteristics, " the entire disclosure of which is incorporated herein by reference.
  • traces 25 electrically connect the substrate contacts 40 to the terminals 36.
  • the leads 50 may include the wire bonds 52, at least some substrate contacts 40, and at least some traces 25. All of these elements contribute to establishing an electrical connection between the contacts 20 of the first microelectronic element 12 and the terminals 36.
  • leads such as lead bonds 76 may extend along the first surface 34 of the substrate 30 as shown or along the second surface and into the aperture 39 to connect to contacts 20.
  • the lead bonds 76 may be electrically connected to vias 83 or any other type of electrically conductive element extending from the first surface 34 to one or more terminals 36 at the second surface 32 of the substrate 30. Therefore, the leads 70 may include lead bonds 76 and vias 83.
  • the microelectronic assembly 10 may include lead bonds 85 electrically interconnecting the contacts 26 of the second microelectronic element 14 with substrate contacts 40 of the second surface 32 of the substrate.
  • the microelectronic assembly 10 further includes leads 50 electrically connecting contacts 26 of the second microelectronic element 12 to at least some terminals 36 at the second surface 32 of the substrate 30.
  • the leads 50 have portions aligned with the aperture 39 and may include multiple wire bonds 52 electrically connecting the contacts 26 of the second microelectronic elements to substrate contacts 40, at the second surface 32 of the substrate 30.
  • the wire bonds 52 may extend through the aperture 39. Each of the wire bonds 52 electrically couples a contact 26 to a corresponding substrate contact 40 of the substrate 30.
  • Leads 50 may include a multiple wire bond structure as described in U.S. Patent Application No.
  • leads 50 may include the wire bonds 52, at least some substrate contacts 40, and at least some traces 25. All of these elements contribute to establishing an electrical connection between the contacts 26 of the second microelectronic element 14 and the terminals 36.
  • leads 50 may include lead bonds electrically coupling contacts 26 with some electrically substrate contacts at the first surface 34 of the substrate 30 or at the second surface 32 of the substrate. The lead bonds do not necessarily extend through aperture 39 of the substrate 30 but are at least partially aligned with the aperture .
  • the microelectronic assembly 10 may further include an overmold or encapsulant 11 covering at least the first microelectronic element 12 and the second microelectronic element 14. As seen in FIG. 1A, the overmold 11 may also cover portions of the substrate 30 extending beyond the first edge 27 of the first microelectronic element 12 and the first edge 35 of the second microelectronic element 14. Consequently, the overmold 11 may contact at least the first edge 27 of the first microelectronic element 12, the first edge 35 of the second microelectronic element 14, and the first surface 34 of the substrate 30.
  • the overmold 11 may be made from any suitable material, including epoxy and the like.
  • the microelectronic assembly 10 may additionally include a heat spreader or heat sink attached to the rear surfaces of one or more of the first or second microelectronic elements 12 and 14, as described in U.S. Patent Application No. 12/907,522 filed October 19, 2010 and entitled "Enhanced Stacked Microelectronic Assemblies with Central Contacts and Improved Thermal Characteristics, " the entire disclosure of which is hereby incorporated herein by reference.
  • the microelectronic assembly 10 includes a heat spreader thermally coupled to the first and/or second microelectronic elements 12 and 14 at one or more of the rear faces 18, 24 thereof and possibly at edge surfaces 27, 35, 37. The heat spreader can occupy some portion of the areas occupied by the overmold 11 shown in FIG. 1A.
  • the microelectronic assembly 10 may further include joining units 81 attached to terminals 36 on the second surface 32 of the dielectric element 30.
  • the joining units 81 may be solder balls or other masses of bond and metal, e.g., tin, indium, or a combination thereof, and are adapted to join and electrically couple the microelectronic assembly 10 to a circuit panel, such as a printed circuit board.
  • the leads 50 of the microelectronic assembly 10 may additionally or alternatively include wire bonds 53 electrically connecting at least some contacts 20 of the first microelectronic element 12 with at least some substrate contacts 40 located on the opposite side of the aperture 39.
  • the wire bonds 53 may span across the aperture of the substrate 30.
  • the leads 70 may alternatively or additionally include wire bonds 73 electrically connecting at least some of the contacts 20 of the first microelectronic element 12 with at least some of the contacts 26 of the second microelectronic element 14.
  • FIG. 3A depicts a variation 10' of the microelectronic assembly 10 shown in FIG. 1A.
  • the first microelectronic element 12' may include contacts 20' at the surface 18 facing away from the substrate 30'.
  • Such surface 18' can be the front face of the first microelectronic element 12'.
  • Surface 18' may have a first end portion 82 adjacent the first edge 27' of the first microelectronic element 12', a second end portion 84 adjacent the second edge 29', and a central portion 86 between the first and second end portions 82 and 84.
  • the contacts 20' may be disposed within the first end portion 82 of the surface 18' adjacent the first edge 27', within the central portion 86 of the surface 18', or within both the first end portion and central portion. In one embodiment, the contacts 20' may be arranged in one or two parallel rows at the central portion 86 of the surface 18'.
  • the microelectronic assembly 10' can include leads 88 electrically connected with the contacts 20' at the surface 18' and with the terminals 36.
  • portions of the leads 88 such as wire bonds can extend beyond the first edge 27 of the first microelectronic element 12 'to contacts 40' which in turn can be connected to terminals, such as through traces (not shown) or other conductive elements.
  • the leads 88 may include wire bonds 90 extending from the contacts 20', beyond the first edge 27' of the first microelectronic element, and to contacts 40' at the first surface 34' of the substrate 30', and may include other conductive structure of the substrate such as conductive traces between the contacts and the terminals 36.
  • lead portions 52' e.g., wire bonds can connect contacts 26 of microelectronic element 14' to contacts 40' on either or both sides of the aperture 39'.
  • FIGS. 4 and 5 depict a variation of the microelectronic assembly 10 shown in FIG. 1A.
  • the microelectronic assembly 100 shown in FIG. 1A is similar to the microelectronic assembly 10 shown in FIG. 3A in having a first microelectronic element 101 in a face-up position.
  • a third microelectronic element 112 in a flip-chip position is substituted for the spacing element 31.
  • the first microelectronic element 101 appears at the right and the third microelectronic element 112 to the left of the figure.
  • the third microelectronic element 112 includes a plurality of contacts 120 at a front surface 116 thereof. Contacts 120 of the third microelectronic element 112 are connected with at least some terminals 136 at the second surface 132 of the substrate 130.
  • the flip-chip interconnection 143 electrically connects electrical contacts 120 on the front surface 116 of the first microelectronic element 112 to at least some contacts 141 on the first surface 134 of the substrate 30 through bumps of metal, e.g., a bond metal such as solder.
  • the microelectronic element is then inverted so the metal bumps provide both the electrical pathway between the contacts (e.g., bond pads) of the microelectronic element and the substrate as well as the mechanical attachment of the microelectronic element to the substrate.
  • solder for the bumps of metal and fusion of the solder as the method of fastening it to the bond pads and the substrate. When it melts, the solder may flow to form truncated spheres.
  • the flip-chip interconnection provides the first microelectronic element 112 with a greater number of (input/output) I/Os in comparison with other microelectronic elements connected to the dielectric element via wire bonds.
  • the flip-chip interconnection minimizes the wire bond pathway between the second microelectronic element 114 and the substrate 30, thereby reducing the impedance of the wire bonds.
  • the flip- chip interconnection 143 may include a plurality of solid metal bumps 145, such as solder balls, disposed between the first microelectronic element 112 and the substrate 130.
  • the metal bumps 145 may be electrically conductive spheres or posts. Each solid metal bump 145 may be disposed between (and in contact with) a contact 120 of the first microelectronic element 112 and a substrate contact 141 of the substrate 130, thereby providing electrical connection between the electrical contact 120 and the electrically conductive element 141.
  • the metal bumps 145 may essentially consist of joining metal or any other suitable material .
  • An underfill 147 may surround the solid metal bumps 145 to adhere the first microelectronic element 112 to the substrate 130.
  • the underfill 147 may be specifically disposed between the front surface 116 of the first microelectronic element 112 and the first surface 134 of the substrate 130 to couple the first microelectronic element 112 to the substrate 130.
  • the underfill 147 may be wholly or partly made of a polymeric material, such as epoxy resin. In some embodiments, however, the underfill 147 is entirely omitted.
  • FIG. 6 illustrates a variation of the microelectronic assembly 100 shown in FIG. 4.
  • the microelectronic assembly 200 is similar to the microelectronic assembly 100 but it does not include a flip-chip interconnection electrically connecting the first microelectronic element to substrate contacts. Instead, the first microelectronic element 212 is in face-up position and includes one or more parallel rows of contacts 220 adjacent its first edge 227. Leads 270 electrically connect the contacts 220 to terminals 236 on the second surface 236 of the substrate 230.
  • the leads 270 may include wire bonds 272 extending from the contacts 220, beyond the first edge 227 of the first microelectronic element 212, and to substrate contacts 240 at the second surface 234 of the substrate 230.
  • the leads 270 may include vias 283 or any other suitable electrically conductive element electrically connecting the substrate contacts 240 with at least some terminals 236.
  • the vias 283 can extend through the substrate 230 from the first surface 234 to the second surface 232 of the substrate 230.
  • the microelectronic assembly 200 further includes leads 250 electrically connecting the contacts 226 at the front surface 222 of the second microelectronic element 214 to at least some terminals 236. Portions of the leads 250 are aligned with the aperture 239 of the substrate 230.
  • the leads 270 include multiple wire bonds 252 extending from the contacts 226 and through the aperture 239. The wire bonds 252 can be electrically connected to substrate contacts 240 located at the second surface 232 of the substrate 230 and on opposite sides of the aperture 239.
  • FIG. 7 depicts a variation of the microelectronic assembly 200 shown in FIG. 6.
  • the microelectronic assembly 300 shown in FIG. 7 is substantially similar to the microelectronic assembly 200 shown in FIGS. 1A or IB, with a third microelectronic element 301 substituted in place of spacing element 31, the third microelectronic element having an electrical interconnection with the substrate which is similar to that of the first microelectronic element 12 (FIG. 1A) .
  • FIG. 8 depicts a variation of the microelectronic assembly 300 shown in FIG. 7.
  • the microelectronic assembly 400 is shown mounted on an external component such as a circuit panel 900, such as a printed circuit board, and includes additional electrical connection or leads.
  • a circuit panel 900 such as a printed circuit board
  • FIG. 8 illustrates a microelectronic assembly electrically mounted on a circuit panel, such as a printed circuit board, any of the microelectronic assemblies described herein above may be mounted to a circuit panel or other component external to the microelectronic assembly.
  • the microelectronic assembly 400 may include electrical connection or leads 474 extending across the aperture 439 and electrically connecting a contact 320 of the first microelectronic element 412 with a contact 490 of the third microelectronic element 401.
  • the leads 474 may include wire bonds and/or lead bonds.
  • Another set of electrical connections or leads 476 can be at least partially aligned with the aperture 439 of the substrate 430 and electrically connect at least some contacts 420 of the first microelectronic element 412 with at least some contacts 426 of the second microelectronic element 414.
  • the leads 476 may include wire bonds and/or lead bonds.
  • Yet another set of electrical connections or leads 478 are at least partially aligned with the aperture 430 of the substrate 430 and electrically connect at least some contacts 426 of the second microelectronic element 414 with at least some contacts 490 of the third microelectronic element 401.
  • the leads 478 may include wire bonds and/or lead bonds.
  • FIG. 9A shows a stacked variation of the diagrammatic side sectional view shown in FIG. 1A.
  • a microelectronic component 500 can have stacked first and second microelectronic assemblies 510a and 510b (collectively microelectronic assemblies 510) .
  • the microelectronic assemblies 510 can each be any of the microelectronic assemblies described above with reference to FIGS. 1A through 8, and the microelectronic assemblies can be the same or different from one another.
  • Joining units 581 such as solder balls can join and electrically couple the first and second microelectronic assemblies 510a and 510b to one another.
  • Such joining units 581 can be attached to terminals 536 exposed at the second surface 532 of the substrate 530 of the first microelectronic assembly 510a and terminals 536' exposed at the first surface 534 of the substrate 530 of the second microelectronic assembly 510b.
  • the microelectronic component 500 including the stacked microelectronic assemblies 510 can be attached to a circuit panel, such as a printed circuit board, using the joining units 581 exposed at a top surface 501 or a bottom surface 502 of the microelectronic component 500.
  • the microelectronic component 500 can include joining units 581 arranged adjacent a periphery 503 of the microelectronic component.
  • the joining units 581 can be located outside of a depopulated central region 590 of the microelectronic component 500.
  • the joining units 581 can be arranged so that they do not overlie the first and second microelectronic elements 512 and 514 of the microelectronic assemblies 510.
  • Such an embodiment can allow the plurality of microelectronic assemblies 510 to have a smaller stacked height when joined together than if the microelectronic component 500 included joining units 581 within the central region 590.
  • the microelectronic component 500 can have a single encapsulant 511 at least partially covering the first and second microelectronic elements 512 and 514 of the microelectronic assemblies 510.
  • the microelectronic assemblies 510 can be joined to one another without an encapsulation, and then the single encapsulant 511 can be formed that covers the microelectronic elements within the joined microelectronic component.
  • the encapsulation 511 can cover portions of the microelectronic component 500 that are not configured for electrical connection with one or more components external to the microelectronic component.
  • each of the microelectronic assemblies 510 can be separately formed, each having a respective encapsulant, similar to the embodiment shown in FIG. 10.
  • such encapsulated microelectronic assemblies can then be stacked and joined to one another, for example, in a configuration such as that shown in FIG. 10, to provide electrical communication between them.
  • the microelectronic component 500 can be configured to function as nonhomogenous memory, for example, for a smartphone application.
  • some of the microelectronic elements 512 and 514 within the microelectronic assemblies 510 can include a memory storage element such as volatile RAM, and some of the microelectronic elements 512 and 514 can include memory storage elements such as nonvolatile flash memory.
  • FIG. 10 shows a stacked variation of the diagrammatic side sectional view shown in FIG. 9A.
  • a microelectronic component 600 can have stacked first and second microelectronic assemblies 610a and 610b (collectively microelectronic assemblies 610) .
  • the microelectronic assemblies 610 can each be any of the microelectronic assemblies described above with reference to FIGS. 1A through 8, and the microelectronic assemblies can be the same or different from one another.
  • There can be any number of microelectronic assemblies 610 in the stack including, for example, two microelectronic assemblies 610a and 610b as shown in FIG. 9A.
  • the microelectronic component 600 is the same as the microelectronic component 500 shown in FIGS. 9A and 9B, except that at least some of the joining units 681 overlie the microelectronic elements 612 and 614, and each of the microelectronic assemblies 610a and 610b can be separately formed, each having a respective encapsulant 611a and 610b.
  • the microelectronic component 600 can have a single encapsulant at least partially covering the first and second microelectronic elements 612 and 614 of the microelectronic assemblies 610, similar to the single encapsulant 511 shown in FIG. 9A.
  • the joining units 681 can join and electrically couple the microelectronic assemblies 610 to one another.
  • Such joining units 681 can be attached to terminals 636 exposed at the second surface 632 of the substrate 630 of the first microelectronic assembly 610a and terminals 682 exposed at a top surface 603 of the encapsulant 611b of the second microelectronic assembly 610b.
  • the terminals 682 can be electrically connected with conductive elements 636' exposed at the first surface 634 of the substrate 630 by wire bonds 604. Some of the terminals 682 exposed at the top surface 603 of the encapsulant 611a or 611b can overlie at least one of the microelectronic elements 612 and 614.
  • each microelectronic assembly 610 can be arranged in an area array, which can allow for area array stacking of the microelectronic assemblies 610.
  • the terminals 682 that are exposed at the top surface 603 of the encapsulant 611a or 611b can extend above the top surface, can be flush with the top surface, or can be recessed below the top surface.
  • Such terminals 682 can have any shape, including for example, a pad-like or ball-like shape.
  • Other examples of shapes and configurations of the terminals 682 and the wire bonds 604 are shown and described in the co-pending and co-owned Korean patent application No. 10-2011-0041843, filed on May 3, 2011, which is hereby incorporated by reference herein.
  • the wire bonds 604 are joined at a base 607 thereof to the conductive elements 636' and can extend to a free end 608 remote from the respective bases 607 and from the substrate 630.
  • the free ends 608 of the wire bonds 604 are characterized as being free in that they are not electrically connected or otherwise joined to the microelectronic elements 612, 614, or any other conductive features within the microelectronic assembly 610a that are, in turn, connected to the microelectronic elements 612, 614.
  • the free ends 608 are available for electronic connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature external to the microelectronic assembly 610a.
  • the free ends 608 can be held in a predetermined position by, for example, the encapsulant 611a or otherwise joined or electrically connected to another conductive feature does not mean that they are not "free” as described herein, so long as any such feature is not electrically connected to the microelectronic elements 612, 614.
  • the base 607 is not free as it is either directly or indirectly electrically connected to the microelectronic elements 612, 614, as described herein.
  • the wire bonds 604 can be made from a conductive material such as copper, gold, nickel, solder, aluminum or the like. Additionally, the wire bonds 604 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel or the like. Alternatively, the coating can be of an insulating material, such as an insulating jacket. In an embodiment, the wire used to form the wire bonds 604 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 ⁇ and 150 ⁇ .
  • the free end 608 of the wire bond 604 has an end surface 638.
  • the end surface 638 can form at least a part of a contact in an array formed by respective end surfaces 638 of a plurality of wire bonds 604.
  • a portion of the wire bonds 604 can remain uncovered by the encapsulant 611a, which can also be referred to as unencapsulated, thereby making the wire bond available for electrical connection to a feature or element located outside of the encapsulant.
  • the end surfaces 638 of the wire bonds 604 remain uncovered by the encapsulant 611a and may be exposed at the top surface 603 of the encapsulant.
  • edge surface 605 of the wire bonds 604 is uncovered by the encapsulant 611a in addition to or as an alternative to having end surface 638 remain uncovered by the encapsulant.
  • the encapsulant 611a can cover all of the microelectronic assembly 610a from first surface 634 and above, with the exception of a portion of wire bonds 604, such as end surfaces 638, edge surfaces 605, or combinations of the two.
  • the end surface 638 and a portion of edge surface 605 can be uncovered by the encapsulant 611a.
  • Such a configuration can provide a connection, such as by a solder ball or the like, to another conductive element by allowing the solder to wick along the edge surface 605 and join thereto in addition to joining to the end surface 638.
  • a surface, such as the top surface 603 of the encapsulant 611a can be spaced apart from the first surface 634 of the substrate 630 at a distance great enough to cover the microelectronic elements 612, 614.
  • embodiments of the microelectronic assembly 610a in which the ends 638 of the wire bonds 604 are flush with the top surface 603 can include wire bonds 604 that extend to greater heights above the substrate 630 than the microelectronic elements 612, 614.
  • the microelectronic component 600 including the stacked microelectronic assemblies 610 can be attached to a circuit panel, such as a printed circuit board, using the joining units 681 exposed at a top surface 601 or a bottom surface 602 of the microelectronic component 600.
  • the microelectronic component 600 can be configured to function as nonhomogenous memory, for example, for a smartphone application.
  • some of the microelectronic elements 612 and 614 within the microelectronic assemblies 610 can include a memory storage element such as volatile RAM, and some of the microelectronic elements 612 and 614 can include memory storage elements such as nonvolatile flash memory.
  • FIGS. 9A, 9B, and 10 show microelectronic elements electrically connected to contacts of the substrate through wire bonds
  • such microelectronic elements can be electrically connected to contacts of the substrate through other connection configurations, including for example, lead bonds and flip-chip mounting of one or more microelectronic elements to contacts of the substrate.
  • a system 1100 in accordance with a further embodiment of the invention includes a microelectronic assembly 1106 as described above in conjunction with other electronic components 1108 and 1110.
  • component 1108 is a semiconductor chip whereas component 1110 is a display screen, but any other components can be used.
  • the system may include any number of such components.
  • the microelectronic assembly 1106 may be any of the assemblies described above. In a further variant, any number of such microelectronic assemblies may be used.
  • Microelectronic assembly 1106 and components 1108 and 1110 are mounted in a common housing 1101, schematically depicted in broken lines, and are electrically interconnected with one another as necessary to form the desired circuit.
  • the system includes a circuit panel 1102 such as a flexible printed circuit board, and the circuit panel includes numerous conductors 1104, of which only one is depicted in FIG. 11, interconnecting the components with one another.
  • the housing 1101 is depicted as a portable housing of the type usable, for example, in a cellular telephone or personal digital assistant, and screen 1110 is exposed at the surface of the housing.
  • structure 1106 includes a light sensitive element such as an imaging chip
  • a lens 1111 or other optical device also may be provided for routing light to the structure.
  • FIG. 11 the simplified system shown in FIG. 11 is merely exemplary; other systems, including systems commonly regarded as fixed structures, such as desktop computers, routers and the like can be made using the structures discussed above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

A microelectronic assembly 10 can include a substrate 30 having first and second surfaces 34, 58, an aperture 39 extending therebetween, and terminals 36. The assembly 10 can also include a first microelectronic element 12 having a front surface 16 facing the first surface 34, a second microelectronic element 14 having a front surface 22 projecting beyond an edge 29 of the first microelectronic element, first and second leads 70, 76 electrically connecting contacts 20, 52 of the microelectronic elements to the terminals, and third leads 73 electrically interconnecting the contacts of the first and second microelectronic elements. The contacts 20 of the first microelectronic element 12 can be disposed adjacent the edge 29. The contacts 26 of the second microelectronic element 14 can be disposed in a central region 19 of the front surface 22 thereof. The leads 70, 76, 99 can have portions aligned with the aperture 39.

Description

FLIP-CHIP, FACE-UP AND FACE-DOWN CENTERBOND
MEMORY WIREBOND ASSEMBLIES
CROSS-REFERENCE TO RELATED APPLICATIONS
[ 0001 ] The present application claims the benefit of the filing date of United States Provisional Patent Application Serial No. 61/477,967, filed April 21, 2011, and United States Patent Application Serial No. 13/306,099, filed November 29, 2011, the disclosures of which are hereby incorporated by reference herein. The following commonly-owned applications are hereby incorporated by reference herein: United States Provisional Patent Application Serial Nos . 61/477, 820, 61/477,877, and 61/477,883, all filed April 21, 2011.
BACKGROUND OF THE INVENTION
[ 0002 ] The present invention relates to stacked microelectronic assemblies and methods of making such assemblies, and to components useful in such assemblies.
[ 0003 ] Semiconductor chips are commonly provided as individual, prepackaged units. A standard chip has a flat, rectangular body with a large front face having contacts connected to the internal circuitry of the chip. Each individual chip typically is mounted in a package which, in turn, is mounted on a circuit panel such as a printed circuit board and which connects the contacts of the chip to conductors of the circuit panel. In many conventional designs, the chip package occupies an area of the circuit panel considerably larger than the area of the chip itself. As used in this disclosure with reference to a flat chip having a front face, the "area of the chip" should be understood as referring to the area of the front face. In "flip chip" designs, the front face of the chip confronts the face of a package substrate, i.e., chip carrier and the contacts on the chip are bonded directly to contacts of the chip carrier by solder balls or other connecting elements. In turn, the chip carrier can be bonded to a circuit panel through terminals overlying the front face of the chip. The "flip chip" design provides a relatively compact arrangement; each chip occupies an area of the circuit panel equal to or slightly larger than the area of the chip's front face, such as disclosed, for example, in certain embodiments of commonly-assigned U.S. Pat. Nos . 5,148,265; 5,148,266; and 5,679,977, the entire disclosures of which are incorporated herein by reference.
[ 0004 ] Certain innovative mounting techniques offer compactness approaching or equal to that of conventional flip-chip bonding. Packages which can accommodate a single chip in an area of the circuit panel equal to or slightly larger than the area of the chip itself are commonly referred to as "chip- sized packages."
[ 0005 ] Besides minimizing the planar area of the circuit panel occupied by microelectronic assembly, it is also desirable to produce a chip package that presents a low, overall height or dimension perpendicular to the plane of the circuit panel. Such thin microelectronic packages allow for placement of a circuit panel having the packages mounted therein in close proximity to neighboring structures, thus producing the overall size of the product incorporating the circuit panel. Various proposals have been advanced for providing plural chips in a single package or module. In the conventional "multi-chip module", the chips are mounted side-by-side on a single package substrate, which in turn can be mounted to the circuit panel. This approach offers only limited reduction in the aggregate area of the circuit panel occupied by the chips. The aggregate area is still greater than the total surface area of the individual chips in the module.
[ 0006 ] It has also been proposed to package plural chips in a "stack" arrangement i.e., an arrangement where plural chips are placed one on top of another. In a stacked arrangement, several chips can be mounted in an area of the circuit panel that is less than the total area of the chips . Certain stacked chip arrangements are disclosed, for example, in certain embodiments of the aforementioned U.S. Pat. Nos. 5,679,977; 5,148,265; and U.S. Pat. No. 5,347,159, the entire disclosures of which are incorporated herein by reference. U.S. Pat. No. 4,941,033, also incorporated herein by reference, discloses an arrangement in which chips are stacked on top of another and interconnected with one another by conductors on so-called "wiring films" associated with the chips .
[ 0007 ] Despite these efforts in the art, further improvements would be desirable in the case of multi-chip packages for chips having contacts located substantially in central regions of the chips. Certain semiconductor chips, such as some memory chips, are commonly made with the contacts in one or two rows located substantially along a central axis of the chip.
BRIEF SUMMARY OF THE INVENTION
[ 0008 ] The present disclosure relates to microelectronic assemblies and method of manufacturing the same. In accordance with an aspect of the invention, a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, and a second microelectronic element having a front surface facing the first microelectronic element. The substrate can have first terminals exposed at the second surface thereof. The first microelectronic element can also have a rear surface remote from the front surface and an edge extending between the front and rear surfaces. The first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element. The second microelectronic element can have first and second opposed edges. The front surface of the second microelectronic element can extend between the first and second edges.
[ 0009 ] The second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges. The front surface of the second microelectronic element can project beyond the edge of the first microelectronic element. The microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the first terminals and second leads connecting the contacts of the second microelectronic element to the first terminals. The first and second leads can have portions aligned with the aperture. The microelectronic assembly can also include second terminals exposed at a surface of the microelectronic assembly opposite from the second surface of the substrate. At least some of the second terminals can overlie at least one of the microelectronic elements.
[ 0010 ] In one embodiment, at least some of the second terminals can be electrically connected with conductive elements exposed at the first surface of the substrate by wire bonds. In a particular example, the microelectronic assembly can also include an encapsulant at least partially covering the first and second microelectronic elements and at least portions of the wire bonds. The surface of the microelectronic assembly at which the second terminals are exposed can be a surface of the encapsulant. In one example, the wire bonds can have bases attached to the conductive elements and unencapsulated end surfaces remote from the conductive elements, and edge surfaces extending between the bases and the unencapsulated end surfaces . The unencapsulated end surfaces can be uncovered by the encapsulant. The second terminals can be electrically connected with the unencapsulated end surfaces. In an exemplary embodiment, at least a portion of an edge surface of at least one of the wire bonds can be unencapsulated and at least one of the second terminals can be electrically connected with the unencapsulated edge surface and the unencapsulated end surface of the at least one of the wire bonds .
[ 0011 ] In a particular embodiment, the wire bonds can have unencapsulated edge surfaces between bases of the wire bonds attached to the conductive elements and ends of the wire bonds remote from the conductive elements. The second terminals can be electrically connected with the unencapsulated edge surfaces. In one embodiment, at least one of the microelectronic elements can include a volatile random access memory (RAM) , and at least one of the microelectronic elements can include nonvolatile flash memory. In an exemplary embodiment, the microelectronic assembly can also include third leads electrically interconnecting the contacts of the first microelectronic element with the contacts of the second microelectronic element. The first, second, and third leads can have portions aligned with the aperture. In one example, at least one of the first or second leads can include wire bonds extending from the contacts of at least one of the first or second microelectronic elements.
[ 0012 ] In a particular example, the portions of at least one of the first leads and the second leads aligned with the aperture can be portions of monolithic conductive elements having second portions extending along the substrate to the terminals. In an exemplary embodiment, the microelectronic assembly can also include a spacing element between the front surface of the second microelectronic element and the first surface of the substrate. In one example, the first microelectronic element can include a chip configured to predominantly perform a logic function. In a particular embodiment, the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function . In one embodiment, the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function. In an exemplary embodiment, the microelectronic assembly can also include third leads electrically connecting the contacts of the first microelectronic element to the terminals . The first leads and third leads can be connected to terminals on opposite sides of the aperture. The first, second, and third leads can have portions aligned with the aperture.
[ 0013 ] In one example, the microelectronic assembly can also include a third microelectronic element disposed between first surface of the substrate and the front surface of the second microelectronic element, third leads electrically connecting contacts of the third microelectronic element to the terminals, and fourth leads electrically interconnecting the contacts of the first and third microelectronic elements. The third microelectronic element can have first and second opposed edges, a front surface extending between the first and second edges, and a plurality of the contacts disposed on the front surface thereof adjacent the first edge thereof. The front surface of the third microelectronic element can face the first surface of the substrate. The contacts of the first and third microelectronic elements can be located on opposite sides of the aperture. The first, second, third, and fourth leads can have portions aligned with the aperture. In an exemplary embodiment, the microelectronic assembly can also include fifth leads electrically interconnecting the contacts of the first and second microelectronic elements. In a particular embodiment, the microelectronic assembly can also include sixth leads electrically interconnecting the contacts of the second and third microelectronic elements.
[ 0014 ] In one embodiment, a microelectronic component can include first and second microelectronic assemblies as described above. The first microelectronic assembly can at least partially overlie the second microelectronic assembly. The first terminals of the first microelectronic assembly can be joined with the second terminals of the second microelectronic assembly. In an exemplary embodiment, at least one of the first microelectronic elements can be configured predominantly to perform a logic function. At least one of the second microelectronic elements can have a greater number of active devices configured to provide memory storage array function than any other function. In a particular embodiment, at least some of the first terminals of the first microelectronic assembly and at least some of the second terminals of the second microelectronic assembly can be arranged in an area array. The first and second microelectronic assemblies can be joined by joining units that are electrically conductive masses of a bond metal.
[ 0015 ] In an exemplary embodiment, the microelectronic assemblies can be electrically connected with one another through joining units arranged adjacent a periphery of the microelectronic component. In one example, the joining units can be located outside of a depopulated central region of the microelectronic component. In a particular example, a system can include a microelectronic assembly as described above and one or more other electronic components electrically connected to the microelectronic assembly. In a particular embodiment, at least some of the terminals can be electrically connected to a circuit panel. In one example, the system can also include a housing, the microelectronic assembly and the other electronic components being mounted to the housing.
[ 0016 ] In accordance with another aspect of the invention, a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, and a second microelectronic element having a front surface facing the first microelectronic element. The substrate can have terminals. The first microelectronic element can also include a rear surface remote from the front surface and an edge extending between the front and rear surfaces. The first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element. The second microelectronic element can have first and second opposed edges. The front surface of the second microelectronic element can extend between the first and second edges.
[ 0017 ] The second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges. The front surface of the second microelectronic element can project beyond the edge of the first microelectronic element. The microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the terminals, second leads connecting the contacts of the second microelectronic element to the terminals, and third leads electrically interconnecting the contacts of the first microelectronic element with the contacts of the second microelectronic element. The first, second, and third leads can have portions aligned with the aperture .
[ 0018 ] In an exemplary embodiment, at least one of the first or second leads can include wire bonds extending from the contacts of at least one of the first or second microelectronic elements. In one embodiment, the portions of at least one of the first leads and the second leads aligned with the aperture can be portions of monolithic conductive elements having second portions extending along the substrate to the terminals. In a particular embodiment, the microelectronic assembly can also include a spacing element between the front surface of the second microelectronic element and the first surface of the substrate. In a particular embodiment, the first microelectronic element can include a chip configured to predominantly perform a logic function. In an exemplary embodiment, the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function. In one embodiment, the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
[ 0019 ] Further aspects of the invention can provide systems that incorporate microelectronic assemblies according to the foregoing aspects of the invention in conjunction with other electronic components electrically connected thereto. For example, the terminals can be electrically connected to a circuit panel. In another example, the system can be disposed in and/or mounted to a single housing, which can be a portable housing. Systems according to preferred embodiments in this aspect of the invention can be more compact than comparable conventional systems .
[ 0020 ] In one embodiment, a microelectronic component can include first and second microelectronic assemblies as described above. The first microelectronic assembly can be electrically connected with and can at least partially overlie the second microelectronic assembly. In an exemplary embodiment, the microelectronic assemblies can be electrically connected with one another through joining units arranged adjacent a periphery of the microelectronic component. In a particular embodiment, the joining units can be located outside of a depopulated central region of the microelectronic component. In one embodiment, some of the microelectronic elements can include a volatile random access memory (RAM) , and some of the microelectronic elements can include nonvolatile flash memory. In a particular embodiment, at least one of the first microelectronic elements can be configured predominantly to perform a logic function, and at least one of the second microelectronic elements can have a greater number of active devices configured to provide memory storage array function than any other function.
[ 0021 ] In accordance with yet another aspect of the invention, a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, and a second microelectronic element having a front surface facing the first microelectronic element. The substrate can have terminals. The first microelectronic element can also include a rear surface remote from the front surface and an edge extending between the front and rear surfaces. The first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element. The second microelectronic element can have first and second opposed edges. The front surface of the second microelectronic element can extend between the first and second edges.
[ 0022 ] The second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges. The front surface of the second microelectronic element can project beyond the edge of the first microelectronic element. The microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the terminals, second leads connecting the contacts of the second microelectronic element to the terminals, and third leads electrically connecting the contacts of the first microelectronic element to the terminals . The first leads and third leads can be connected to terminals on opposite sides of the aperture. The first, second, and third leads can have portions aligned with the aperture.
[ 0023 ] In a particular embodiment, the first microelectronic element can include a chip configured to predominantly perform a logic function. In an exemplary embodiment, the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function. In one embodiment, the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
[ 0024 ] In accordance with still another aspect of the invention, a microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, a first microelectronic element having a front surface facing the first surface of the substrate, a second microelectronic element having a front surface facing the first microelectronic element, and a third microelectronic element disposed between first surface of the substrate and the front surface of the second microelectronic element. The substrate can have terminals.
[ 0025 ] The first microelectronic element can also include a rear surface remote from the front surface and an edge extending between the front and rear surfaces. The first microelectronic element can have a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element. The second microelectronic element can have first and second opposed edges. The front surface of the second microelectronic element can extend between the first and second edges. The second microelectronic element can have a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges. The front surface of the second microelectronic element can project beyond the edge of the first microelectronic element. The third microelectronic element can have first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed on the front surface thereof adjacent the first edge thereof. The front surface of the third microelectronic element can face the first surface of the substrate .
[ 0026 ] The microelectronic assembly can also include first leads electrically connecting the contacts of the first microelectronic element to the terminals, second leads connecting the contacts of the second microelectronic element to the terminals, third leads electrically connecting the contacts of the third microelectronic element to the terminals, and fourth leads electrically interconnecting the contacts of the first and third microelectronic elements. The contacts of the first and third microelectronic elements can be located on opposite sides of the aperture. The first, second, third, and fourth leads can have portions aligned with the aperture .
[0027] In one embodiment, the microelectronic assembly can also include fifth leads electrically interconnecting the contacts of the first and second microelectronic elements. In a particular embodiment, the microelectronic assembly can also include sixth leads electrically interconnecting the contacts of the second and third microelectronic elements. In a particular embodiment, the first microelectronic element can include a chip configured to predominantly perform a logic function. In an exemplary embodiment, the second microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function. In one embodiment, the first microelectronic element can have a greater number of active devices configured to provide memory storage array function than any other function.
BRIEF DESCRIPTION OF THE DRAWINGS
[0028] Various embodiments of the present invention will be now described with reference to the appended drawings. It is appreciated that these drawings depict only some embodiments of the invention and are therefore not to be considered limiting of its scope.
[0029] FIG. 1A is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with an embodiment of the present invention;
[0030] FIG. IB is diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with an embodiment of the present invention;
[0031] FIG. 1C is partial sectional view of a stack microelectronic assembly in accordance with an embodiment of the present invention; [0032] FIG. 2 is a plan view of the microelectronic assembly shown in FIG. 1A;
[0033] FIG. 3A is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with another embodiment of the present invention;
[0034] FIG. 3B is a partial sectional view further illustrating the embodiment depicted in FIG. 3A.
[0035] FIG. 4 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with a further embodiment of the present invention;
[0036] FIG. 5 is a sectional view illustrating a portion of the stacked microelectronic assembly shown in FIG. 4;
[0037] FIG. 6 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with an embodiment of the present invention;
[0038] FIG. 7 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with another embodiment of the present invention;
[0039] FIG. 8 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with a further embodiment of the present invention;
[0040] FIG. 9A is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with another embodiment of the present invention;
[0041] FIG. 9B is a top view of the stacked microelectronic assembly shown in FIG. 9A;
[0042] FIG. 10 is a diagrammatic sectional elevation view of a stacked microelectronic assembly in accordance with yet another embodiment of the present invention; and
[0043] FIG. 11 is a schematic depiction of a system according to one embodiment of the invention.
DETAILED DESCRIPTION
[0044] With reference to FIGS. 1A and 2, a stacked microelectronic assembly 10 according to an embodiment of the present invention includes a first microelectronic element 12 in a face down position facing a substrate 30 and a second microelectronic element 14 in a face down position overlying at least a portion of the first microelectronic element 12. In some embodiments, the first and second microelectronic elements 12 and 14 may be a semiconductor chip, or an element including a semiconductor chip, which has contacts at the front surface 16 thereof. The semiconductor chip may be a thin slab of a semiconductor material, such as silicon or gallium arsenide, and may be provided as individual, prepackaged units. The semiconductor chip may be a thin slab of a semiconductor material, such as silicon or gallium arsenide, and it may be provided as individual, prepackaged units. The semiconductor chip may embody active circuit elements, e.g., transistors, diodes, among others, or passive circuit elements such as resistors, capacitors or inductors, among others, or a combination of active and passive circuit elements. In an "active" semiconductor chip, the active circuit elements in each microelectronic element typically are electrically connected together in one or more "integrated circuits". The first and second microelectronic elements are both electrically connected to a substrate 30, as discussed in detail below. In turn, the substrate 30 can be electrically connected to a circuit panel, such as a printed circuit board, through terminals 36 at a surface thereof. In a particular embodiment, the microelectronic assembly 10 can be a microelectronic "package" having terminals that are configured for electrical connection with corresponding contacts on a face of a circuit panel, such as a printed circuit board, among others .
[ 0045 ] In particular embodiments, the substrate can be a dielectric element of various types of construction, such as of polymeric material or inorganic material such as ceramic or glass, the substrate having conductive elements thereon such as terminals and conductive elements such as e.g., traces, substrate contacts, or other conductive elements electrically connected with the terminals. In another example, the substrate can consist essentially of a semiconductor material such as silicon, or alternatively include a layer of semiconductor material and one or more dielectric layers thereof. Such substrate may have a coefficient of thermal expansion of less than 7 (seven) parts per million per degree Celsius ("ppm/°C)". In yet another embodiment, the substrate can be a lead frame having lead fingers, wherein the terminals can be portions of the lead fingers, such as end portions of the lead fingers. In yet another embodiment, the substrate can be a lead frame having leads, wherein the terminals can be portions of the leads, such as end portions of the leads.
[ 0046 ] The first microelectronic element 12 may include a semiconductor chip configured predominantly to perform a logic function, such as a microprocessor, application-specific integrated circuit ("ASIC") field programmable gate array ("FPGA") or other logic chip, among others. In a particular embodiment, the microelectronic element 12 can be a controller, or a system on a chip ("SOC") predominantly providing logic function, but which may also include a memory storage array. In other examples, the first microelectronic element 12 can include or be a memory chip such as a flash (NOR or NAND) memory chip, dynamic random access memory ("DRAM") chip or static random access memory ("SRAM") chip, or be configured predominantly to perform some other function. Such memory chip includes a memory storage array and typically has a greater number of active circuit elements, e.g., active devices such as transistors that are configured to provide memory storage array function, than any other function of the chip. The first microelectronic element 12 has a front surface 16, a rear surface 18 remote therefrom, and first and second edges 27, 29, extending between the front and rear surfaces. Electrical contacts 20 are exposed at the front surface 16 of the first microelectronic element 12 adjacent the second edge 29. As used in this disclosure, a statement that an electrically conductive element is "exposed at" a surface of a structure indicates that the electrically conductive element is available for contact with a theoretical point moving in a direction perpendicular to the surface toward the surface from outside the structure. Thus, a contact, terminal or other conductive element which is exposed at a surface of a structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the structure. Electrical contacts 20 may be bond pads or other conductive structure such as bumps, posts, etc. The bond pads may include one or more metals such as copper, nickel, gold or aluminum, and may be about 0.5 μηι thick. The size of the bond pads can vary with the device type but will typically measure tens to hundreds of microns on a side.
[ 0047 ] The second microelectronic element 14 has a front surface 22, a rear surface 24 remote therefrom, and first and second edges 35, 37, extending between the front and rear surfaces and contacts 26 exposed at the front surface 22. As seen in FIG. 1A, the first and second microelectronic elements 12 and 14 are stacked relative to each other such that at least a portion of the second microelectronic element 14 overlies at least a portion of the first microelectronic element 12. In a particular embodiment, such as shown in FIG. 1A, the front surface 22 of the second microelectronic element 14 includes first and second end regions 21 and 23 and a central region 19 extending between the first and second end regions 21 and 23. The first end region 21 extends between the central region 19 and first edge 35, and the second end region 23 extends between the central region 19 and the second edge 37. The central region may extend a third of the distance between the first and second edges 35, 37 of the second microelectronic element 14 and the first and second end regions may each extend a third of the distance between the edges 35, 37. Electrical contacts 26 are exposed at the front surface 22 of the second microelectronic element 14. For example, contacts 26 may be arranged in one or two parallel rows adjacent the center of first surface 22. The second microelectronic element 14 may include or be a DRAM chip. Such DRAM chip includes a memory storage array and typically has a greater number of active circuit elements, e.g., active devices such as transistors that are configured to provide memory storage array function than any other function. At least a portion of the central region 19 of the second microelectronic element 14 projects beyond the second edge 29 of the first microelectronic element 12 such that the contacts 26 of the second microelectronic element 14 are exposed beyond the second edge 29 of the first microelectronic element 12. As discussed above, in one embodiment, the substrate 30 may include a dielectric layer having oppositely-facing first and second surfaces 34 and 32. One or more electrically conductive elements or terminals 36 are exposed at the second surface 32 of the substrate 30. In a particular embodiment, some or all of the terminals 36 may be movable with respect to the first and/or second microelectronic element 12 and 14.
[0048] The substrate 30 further includes one or more apertures extending between first and second opposed surfaces thereof such as, for example, between the oppositely facing first and second surfaces of a dielectric element 30. In the embodiment depicted in FIG. 1A, the substrate 30 includes an aperture 39 and at least some contacts 26 are aligned with the aperture 39 of the substrate 30. A plurality of leads electrically connects the contacts 26 of the second microelectronic element with the terminals 36 of the microelectronic assembly. The leads have portions aligned with the aperture 39. For example, the leads can include wire bonds 50 bonded to the substrate contacts which in turn connect to terminals 36 through other portions of the leads such as metal traces extending along a semiconductor element or dielectric element 30, or if the substrate includes a lead frame, the leads may include portions of the lead fingers thereof.
[0049] The first surface 34 of the dielectric element 30 may be juxtaposed with the front surface 16 of the first microelectronic element 12. As seen in FIG. 1A, the substrate 30 may extend beyond the first edge 27 of the first microelectronic element 12 and the second edge 35 of the second microelectronic element 14. In an example, a substrate which includes a dielectric material may be referred to as a "dielectric element" 30, whether made partly or entirely of any suitable dielectric material. The substrate 30 may be partly or entirely made of any suitable dielectric material. For example, the substrate 30 may comprise a layer of flexible material, such as a layer of polyimide, BT resin or other dielectric material of the commonly used for making tape automated bonding ("TAB") tapes. Alternatively, the substrate 30 may comprise a relatively rigid, board like material such as a thick layer of fiber-reinforced epoxy, such as, Fr-4 or Fr-5 board. Regardless of the material employed, the substrate 30 may composed of a single layer or multiple layers .
[ 0050 ] Returning to FIG. 1A, a spacing or support element 31 may be positioned between the first end region 21 of the second microelectronic element 14 and a portion of the dielectric element 30. The spacing element 31 may help support the second microelectronic element above the substrate 30. Such a spacing element 31 can be made, for example, from a dielectric material such as silicon dioxide or other material, a semiconductor material such as silicon, or one or more layers of adhesive or other polymeric material. In a particular embodiment, the spacing element can include or be made of metal. If the spacing element includes adhesives, the adhesives can connect the second microelectronic element 14 to the substrate 30. In one embodiment, the spacing element 31 can have substantially the same thickness in a vertical direction that is substantially perpendicular to the first surface 34 of the substrate as the thickness of the first microelectronic element 12 between the front and rear surfaces 16, 18 thereof. If spacing element 31 includes an adhesive, the adhesive can connect the second microelectronic element 14 to the dielectric element 30.
[ 0051 ] As seen in FIGS. 1A and 2, the substrate 30 may also include electrically conductive elements or substrate contacts 40 and electrically conductive traces 25 exposed on the second surface 32. The electrically conductive traces 25 electrically couple the substrate contacts 40 to the terminals 36. The traces 25 and substrate contacts 40 may be created using the methods illustrated in commonly assigned U.S. Application Publication No. 2005/0181544, the entire disclosure of which is incorporated herein by reference .
[ 0052 ] Returning to FIG. 1A, a spacing or support element 31, such as an adhesive layer, may be positioned between the first end region 21 of the second microelectronic element 14 and a portion of the substrate 30. If spacing element 31 includes an adhesive, the adhesive can connect the second microelectronic element 14 to the substrate 30. As shown in FIG. 1A, the second end region 23 of the second microelectronic element 14 can be bonded to the second end region 17 of the first microelectronic element 12 with a bond material 60 such as an adhesive, which may be thermally conductive. Likewise, a bond material 61, for example, an adhesive, optionally thermally conductive, may bond the first end region of the second microelectronic element with the spacing element 31. A bond material 71 may be disposed between a significant portion of the front surface 16 of the first microelectronic element and a portion of the first surface 34 of the substrate 30. In a particular embodiment, the bond materials 60, 61, and/or 71 may be partly or entirely made of a die-attach adhesive and, in a particular example, may be comprised of a low elastic modulus material such as silicone elastomer. However, in a particular embodiment the bond materials 60, 61 and/or 71 may be entirely or partly made of a high elastic modulus adhesive or solder if the two microelectronic elements 12 and 14 are conventional semiconductor chips formed of the same material, because the microelectronic elements will tend to expand and contract in unison in response to temperature changes. Irrespective of the materials employed, the spacing element 31 may include a single layer or multiple layers. As discussed in detail below with regard to FIGS. 4-8, the spacing element 31 may be substituted for one or more microelectronic elements.
[ 0053 ] Referring to FIGS. 1A and 2, the microelectronic assembly may include leads 70 which electrically connect contacts 20 of the first microelectronic element with at least some terminals 36. The leads 70 have portions aligned with the aperture 39 of the substrate 30. In one embodiment, the leads can include bond elements 70 such as wire bonds which extend through the aperture 39 and are bonded to contacts 20, 40 of the microelectronic element and the substrate. Traces (not shown) may extend along the substrate between contacts 40 and terminals 36. In one variation, the bond wires 70 may include wire bonds 72 extending through the aperture 39 and electrically connected to substrate contacts 40. Each of the wire bonds 72 electrically couples a contact 20 to a corresponding substrate contact 40 of the substrate 30. The wire bonds 70 may include a multiple wire bond structure as described in U.S. Patent Application No. 12/907,522 filed October 19, 2010 and entitled "Enhanced Stacked Microelectronic Assemblies with Central Contacts and Improved Thermal Characteristics, " the entire disclosure of which is incorporated herein by reference. As discussed above and as shown in FIG. 2, traces 25 electrically connect the substrate contacts 40 to the terminals 36. Thus, the leads 50 may include the wire bonds 52, at least some substrate contacts 40, and at least some traces 25. All of these elements contribute to establishing an electrical connection between the contacts 20 of the first microelectronic element 12 and the terminals 36.
[ 0054 ] As seen in FIG. IB, alternatively or additionally, leads such as lead bonds 76 may extend along the first surface 34 of the substrate 30 as shown or along the second surface and into the aperture 39 to connect to contacts 20. The lead bonds 76 may be electrically connected to vias 83 or any other type of electrically conductive element extending from the first surface 34 to one or more terminals 36 at the second surface 32 of the substrate 30. Therefore, the leads 70 may include lead bonds 76 and vias 83. As further shown in FIG. IB, the microelectronic assembly 10 may include lead bonds 85 electrically interconnecting the contacts 26 of the second microelectronic element 14 with substrate contacts 40 of the second surface 32 of the substrate.
[ 0055 ] The microelectronic assembly 10 further includes leads 50 electrically connecting contacts 26 of the second microelectronic element 12 to at least some terminals 36 at the second surface 32 of the substrate 30. The leads 50 have portions aligned with the aperture 39 and may include multiple wire bonds 52 electrically connecting the contacts 26 of the second microelectronic elements to substrate contacts 40, at the second surface 32 of the substrate 30. The wire bonds 52 may extend through the aperture 39. Each of the wire bonds 52 electrically couples a contact 26 to a corresponding substrate contact 40 of the substrate 30. Leads 50 may include a multiple wire bond structure as described in U.S. Patent Application No. 12/907,522 filed October 19, 2010 and entitled "Enhanced Stacked Microelectronic Assemblies with Central Contacts and Improved Thermal Characteristics, " the entire disclosure of which is incorporated herein by reference. As shown in FIG. 2, traces 25 electrically connect the substrate contacts 40 to the terminals 36. Thus, the leads 50 may include the wire bonds 52, at least some substrate contacts 40, and at least some traces 25. All of these elements contribute to establishing an electrical connection between the contacts 26 of the second microelectronic element 14 and the terminals 36. Alternatively or additionally, leads 50 may include lead bonds electrically coupling contacts 26 with some electrically substrate contacts at the first surface 34 of the substrate 30 or at the second surface 32 of the substrate. The lead bonds do not necessarily extend through aperture 39 of the substrate 30 but are at least partially aligned with the aperture .
[0056] The microelectronic assembly 10 may further include an overmold or encapsulant 11 covering at least the first microelectronic element 12 and the second microelectronic element 14. As seen in FIG. 1A, the overmold 11 may also cover portions of the substrate 30 extending beyond the first edge 27 of the first microelectronic element 12 and the first edge 35 of the second microelectronic element 14. Consequently, the overmold 11 may contact at least the first edge 27 of the first microelectronic element 12, the first edge 35 of the second microelectronic element 14, and the first surface 34 of the substrate 30. The overmold 11 may be made from any suitable material, including epoxy and the like.
[0057] The microelectronic assembly 10 may additionally include a heat spreader or heat sink attached to the rear surfaces of one or more of the first or second microelectronic elements 12 and 14, as described in U.S. Patent Application No. 12/907,522 filed October 19, 2010 and entitled "Enhanced Stacked Microelectronic Assemblies with Central Contacts and Improved Thermal Characteristics, " the entire disclosure of which is hereby incorporated herein by reference. In some embodiments, the microelectronic assembly 10 includes a heat spreader thermally coupled to the first and/or second microelectronic elements 12 and 14 at one or more of the rear faces 18, 24 thereof and possibly at edge surfaces 27, 35, 37. The heat spreader can occupy some portion of the areas occupied by the overmold 11 shown in FIG. 1A.
[0058] In addition, the microelectronic assembly 10 may further include joining units 81 attached to terminals 36 on the second surface 32 of the dielectric element 30. The joining units 81 may be solder balls or other masses of bond and metal, e.g., tin, indium, or a combination thereof, and are adapted to join and electrically couple the microelectronic assembly 10 to a circuit panel, such as a printed circuit board.
[0059] As seen in FIG. 1C, the leads 50 of the microelectronic assembly 10 may additionally or alternatively include wire bonds 53 electrically connecting at least some contacts 20 of the first microelectronic element 12 with at least some substrate contacts 40 located on the opposite side of the aperture 39. Thus, the wire bonds 53 may span across the aperture of the substrate 30. In addition, the leads 70 may alternatively or additionally include wire bonds 73 electrically connecting at least some of the contacts 20 of the first microelectronic element 12 with at least some of the contacts 26 of the second microelectronic element 14.
[0060] FIG. 3A depicts a variation 10' of the microelectronic assembly 10 shown in FIG. 1A. In this variation, in lieu (or in addition to) contacts 20 at the surface 16', the first microelectronic element 12' may include contacts 20' at the surface 18 facing away from the substrate 30'. Such surface 18' can be the front face of the first microelectronic element 12'. Surface 18' may have a first end portion 82 adjacent the first edge 27' of the first microelectronic element 12', a second end portion 84 adjacent the second edge 29', and a central portion 86 between the first and second end portions 82 and 84. The contacts 20' may be disposed within the first end portion 82 of the surface 18' adjacent the first edge 27', within the central portion 86 of the surface 18', or within both the first end portion and central portion. In one embodiment, the contacts 20' may be arranged in one or two parallel rows at the central portion 86 of the surface 18'.
[ 0061 ] The microelectronic assembly 10' can include leads 88 electrically connected with the contacts 20' at the surface 18' and with the terminals 36. In one example, portions of the leads 88 such as wire bonds can extend beyond the first edge 27 of the first microelectronic element 12 'to contacts 40' which in turn can be connected to terminals, such as through traces (not shown) or other conductive elements. The leads 88 may include wire bonds 90 extending from the contacts 20', beyond the first edge 27' of the first microelectronic element, and to contacts 40' at the first surface 34' of the substrate 30', and may include other conductive structure of the substrate such as conductive traces between the contacts and the terminals 36. As shown in FIG. 3B, lead portions 52', e.g., wire bonds can connect contacts 26 of microelectronic element 14' to contacts 40' on either or both sides of the aperture 39'.
[ 0062 ] FIGS. 4 and 5 depict a variation of the microelectronic assembly 10 shown in FIG. 1A. The microelectronic assembly 100 shown in FIG. 1A is similar to the microelectronic assembly 10 shown in FIG. 3A in having a first microelectronic element 101 in a face-up position. In this variation, a third microelectronic element 112 in a flip-chip position is substituted for the spacing element 31. However, in the particular view shown, the first microelectronic element 101 appears at the right and the third microelectronic element 112 to the left of the figure. The third microelectronic element 112 includes a plurality of contacts 120 at a front surface 116 thereof. Contacts 120 of the third microelectronic element 112 are connected with at least some terminals 136 at the second surface 132 of the substrate 130.
[ 0063 ] The flip-chip interconnection 143 electrically connects electrical contacts 120 on the front surface 116 of the first microelectronic element 112 to at least some contacts 141 on the first surface 134 of the substrate 30 through bumps of metal, e.g., a bond metal such as solder. The microelectronic element is then inverted so the metal bumps provide both the electrical pathway between the contacts (e.g., bond pads) of the microelectronic element and the substrate as well as the mechanical attachment of the microelectronic element to the substrate. There are many variations of the flip-chip process, but one common configuration is to use solder for the bumps of metal and fusion of the solder as the method of fastening it to the bond pads and the substrate. When it melts, the solder may flow to form truncated spheres.
[ 0064 ] The flip-chip interconnection provides the first microelectronic element 112 with a greater number of (input/output) I/Os in comparison with other microelectronic elements connected to the dielectric element via wire bonds. In addition, the flip-chip interconnection minimizes the wire bond pathway between the second microelectronic element 114 and the substrate 30, thereby reducing the impedance of the wire bonds.
[ 0065 ] In the embodiment depicted in FIGS. 4 and 5, the flip- chip interconnection 143 may include a plurality of solid metal bumps 145, such as solder balls, disposed between the first microelectronic element 112 and the substrate 130. The metal bumps 145 may be electrically conductive spheres or posts. Each solid metal bump 145 may be disposed between (and in contact with) a contact 120 of the first microelectronic element 112 and a substrate contact 141 of the substrate 130, thereby providing electrical connection between the electrical contact 120 and the electrically conductive element 141. The metal bumps 145 may essentially consist of joining metal or any other suitable material .
[ 0066 ] An underfill 147 may surround the solid metal bumps 145 to adhere the first microelectronic element 112 to the substrate 130. The underfill 147 may be specifically disposed between the front surface 116 of the first microelectronic element 112 and the first surface 134 of the substrate 130 to couple the first microelectronic element 112 to the substrate 130. For example, the underfill 147 may be wholly or partly made of a polymeric material, such as epoxy resin. In some embodiments, however, the underfill 147 is entirely omitted.
[0067] FIG. 6 illustrates a variation of the microelectronic assembly 100 shown in FIG. 4. The microelectronic assembly 200 is similar to the microelectronic assembly 100 but it does not include a flip-chip interconnection electrically connecting the first microelectronic element to substrate contacts. Instead, the first microelectronic element 212 is in face-up position and includes one or more parallel rows of contacts 220 adjacent its first edge 227. Leads 270 electrically connect the contacts 220 to terminals 236 on the second surface 236 of the substrate 230.
[0068] The leads 270 may include wire bonds 272 extending from the contacts 220, beyond the first edge 227 of the first microelectronic element 212, and to substrate contacts 240 at the second surface 234 of the substrate 230. In addition, the leads 270 may include vias 283 or any other suitable electrically conductive element electrically connecting the substrate contacts 240 with at least some terminals 236. The vias 283 can extend through the substrate 230 from the first surface 234 to the second surface 232 of the substrate 230.
[0069] The microelectronic assembly 200 further includes leads 250 electrically connecting the contacts 226 at the front surface 222 of the second microelectronic element 214 to at least some terminals 236. Portions of the leads 250 are aligned with the aperture 239 of the substrate 230. In this variation, the leads 270 include multiple wire bonds 252 extending from the contacts 226 and through the aperture 239. The wire bonds 252 can be electrically connected to substrate contacts 240 located at the second surface 232 of the substrate 230 and on opposite sides of the aperture 239.
[0070] FIG. 7 depicts a variation of the microelectronic assembly 200 shown in FIG. 6. The microelectronic assembly 300 shown in FIG. 7 is substantially similar to the microelectronic assembly 200 shown in FIGS. 1A or IB, with a third microelectronic element 301 substituted in place of spacing element 31, the third microelectronic element having an electrical interconnection with the substrate which is similar to that of the first microelectronic element 12 (FIG. 1A) .
[ 0071 ] FIG. 8 depicts a variation of the microelectronic assembly 300 shown in FIG. 7. In this variation, the microelectronic assembly 400 is shown mounted on an external component such as a circuit panel 900, such as a printed circuit board, and includes additional electrical connection or leads. Although only FIG. 8 illustrates a microelectronic assembly electrically mounted on a circuit panel, such as a printed circuit board, any of the microelectronic assemblies described herein above may be mounted to a circuit panel or other component external to the microelectronic assembly.
[ 0072 ] The microelectronic assembly 400 may include electrical connection or leads 474 extending across the aperture 439 and electrically connecting a contact 320 of the first microelectronic element 412 with a contact 490 of the third microelectronic element 401. The leads 474 may include wire bonds and/or lead bonds. Another set of electrical connections or leads 476 can be at least partially aligned with the aperture 439 of the substrate 430 and electrically connect at least some contacts 420 of the first microelectronic element 412 with at least some contacts 426 of the second microelectronic element 414. The leads 476 may include wire bonds and/or lead bonds. Yet another set of electrical connections or leads 478 are at least partially aligned with the aperture 430 of the substrate 430 and electrically connect at least some contacts 426 of the second microelectronic element 414 with at least some contacts 490 of the third microelectronic element 401. The leads 478 may include wire bonds and/or lead bonds.
[ 0073 ] FIG. 9A shows a stacked variation of the diagrammatic side sectional view shown in FIG. 1A. A microelectronic component 500 can have stacked first and second microelectronic assemblies 510a and 510b (collectively microelectronic assemblies 510) . The microelectronic assemblies 510 can each be any of the microelectronic assemblies described above with reference to FIGS. 1A through 8, and the microelectronic assemblies can be the same or different from one another. There can be any number of microelectronic assemblies 510 in the stack, including, for example, two microelectronic assemblies 510a and 510b as shown in FIG. 9A.
[0074] Joining units 581 such as solder balls can join and electrically couple the first and second microelectronic assemblies 510a and 510b to one another. Such joining units 581 can be attached to terminals 536 exposed at the second surface 532 of the substrate 530 of the first microelectronic assembly 510a and terminals 536' exposed at the first surface 534 of the substrate 530 of the second microelectronic assembly 510b. The microelectronic component 500 including the stacked microelectronic assemblies 510 can be attached to a circuit panel, such as a printed circuit board, using the joining units 581 exposed at a top surface 501 or a bottom surface 502 of the microelectronic component 500.
[0075] As shown in FIG. 9B, the microelectronic component 500 can include joining units 581 arranged adjacent a periphery 503 of the microelectronic component. The joining units 581 can be located outside of a depopulated central region 590 of the microelectronic component 500. In such an embodiment, the joining units 581 can be arranged so that they do not overlie the first and second microelectronic elements 512 and 514 of the microelectronic assemblies 510. Such an embodiment can allow the plurality of microelectronic assemblies 510 to have a smaller stacked height when joined together than if the microelectronic component 500 included joining units 581 within the central region 590.
[0076] As shown in FIG. 9A, the microelectronic component 500 can have a single encapsulant 511 at least partially covering the first and second microelectronic elements 512 and 514 of the microelectronic assemblies 510. In such an embodiment, the microelectronic assemblies 510 can be joined to one another without an encapsulation, and then the single encapsulant 511 can be formed that covers the microelectronic elements within the joined microelectronic component. The encapsulation 511 can cover portions of the microelectronic component 500 that are not configured for electrical connection with one or more components external to the microelectronic component.
[0077] In an alternative embodiment, each of the microelectronic assemblies 510 can be separately formed, each having a respective encapsulant, similar to the embodiment shown in FIG. 10. In such an embodiment having a separately formed encapsulant for each microelectronic assembly 510, such encapsulated microelectronic assemblies can then be stacked and joined to one another, for example, in a configuration such as that shown in FIG. 10, to provide electrical communication between them.
[0078] In a particular example, the microelectronic component 500 can be configured to function as nonhomogenous memory, for example, for a smartphone application. In such an example, some of the microelectronic elements 512 and 514 within the microelectronic assemblies 510 can include a memory storage element such as volatile RAM, and some of the microelectronic elements 512 and 514 can include memory storage elements such as nonvolatile flash memory.
[0079] FIG. 10 shows a stacked variation of the diagrammatic side sectional view shown in FIG. 9A. A microelectronic component 600 can have stacked first and second microelectronic assemblies 610a and 610b (collectively microelectronic assemblies 610) . The microelectronic assemblies 610 can each be any of the microelectronic assemblies described above with reference to FIGS. 1A through 8, and the microelectronic assemblies can be the same or different from one another. There can be any number of microelectronic assemblies 610 in the stack, including, for example, two microelectronic assemblies 610a and 610b as shown in FIG. 9A.
[0080] The microelectronic component 600 is the same as the microelectronic component 500 shown in FIGS. 9A and 9B, except that at least some of the joining units 681 overlie the microelectronic elements 612 and 614, and each of the microelectronic assemblies 610a and 610b can be separately formed, each having a respective encapsulant 611a and 610b. In an alternative embodiment, the microelectronic component 600 can have a single encapsulant at least partially covering the first and second microelectronic elements 612 and 614 of the microelectronic assemblies 610, similar to the single encapsulant 511 shown in FIG. 9A.
[ 0081 ] As shown in FIG. 10, the joining units 681 can join and electrically couple the microelectronic assemblies 610 to one another. Such joining units 681 can be attached to terminals 636 exposed at the second surface 632 of the substrate 630 of the first microelectronic assembly 610a and terminals 682 exposed at a top surface 603 of the encapsulant 611b of the second microelectronic assembly 610b. The terminals 682 can be electrically connected with conductive elements 636' exposed at the first surface 634 of the substrate 630 by wire bonds 604. Some of the terminals 682 exposed at the top surface 603 of the encapsulant 611a or 611b can overlie at least one of the microelectronic elements 612 and 614. In such microelectronic components 600 having microelectronic assemblies 610 with terminals 682 overlying at least one of the microelectronic elements 612 and 614, the terminals 682 and 636 of each microelectronic assembly 610 can be arranged in an area array, which can allow for area array stacking of the microelectronic assemblies 610.
[ 0082 ] The terminals 682 that are exposed at the top surface 603 of the encapsulant 611a or 611b can extend above the top surface, can be flush with the top surface, or can be recessed below the top surface. Such terminals 682 can have any shape, including for example, a pad-like or ball-like shape. Other examples of shapes and configurations of the terminals 682 and the wire bonds 604 are shown and described in the co-pending and co-owned Korean patent application No. 10-2011-0041843, filed on May 3, 2011, which is hereby incorporated by reference herein.
[ 0083 ] The wire bonds 604 are joined at a base 607 thereof to the conductive elements 636' and can extend to a free end 608 remote from the respective bases 607 and from the substrate 630. The free ends 608 of the wire bonds 604 are characterized as being free in that they are not electrically connected or otherwise joined to the microelectronic elements 612, 614, or any other conductive features within the microelectronic assembly 610a that are, in turn, connected to the microelectronic elements 612, 614. In other words, the free ends 608 are available for electronic connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature external to the microelectronic assembly 610a. The fact that the free ends 608 can be held in a predetermined position by, for example, the encapsulant 611a or otherwise joined or electrically connected to another conductive feature does not mean that they are not "free" as described herein, so long as any such feature is not electrically connected to the microelectronic elements 612, 614. Conversely, the base 607 is not free as it is either directly or indirectly electrically connected to the microelectronic elements 612, 614, as described herein.
[ 0084 ] The wire bonds 604 can be made from a conductive material such as copper, gold, nickel, solder, aluminum or the like. Additionally, the wire bonds 604 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel or the like. Alternatively, the coating can be of an insulating material, such as an insulating jacket. In an embodiment, the wire used to form the wire bonds 604 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 μηι and 150 μπι.
[ 0085 ] The free end 608 of the wire bond 604 has an end surface 638. The end surface 638 can form at least a part of a contact in an array formed by respective end surfaces 638 of a plurality of wire bonds 604. A portion of the wire bonds 604 can remain uncovered by the encapsulant 611a, which can also be referred to as unencapsulated, thereby making the wire bond available for electrical connection to a feature or element located outside of the encapsulant. In an embodiment, the end surfaces 638 of the wire bonds 604 remain uncovered by the encapsulant 611a and may be exposed at the top surface 603 of the encapsulant. Other embodiments are possible in which a portion of edge surface 605 of the wire bonds 604 is uncovered by the encapsulant 611a in addition to or as an alternative to having end surface 638 remain uncovered by the encapsulant. In other words, the encapsulant 611a can cover all of the microelectronic assembly 610a from first surface 634 and above, with the exception of a portion of wire bonds 604, such as end surfaces 638, edge surfaces 605, or combinations of the two.
[0086] In one embodiment, the end surface 638 and a portion of edge surface 605 can be uncovered by the encapsulant 611a. Such a configuration can provide a connection, such as by a solder ball or the like, to another conductive element by allowing the solder to wick along the edge surface 605 and join thereto in addition to joining to the end surface 638. In the embodiments shown in the Figures, a surface, such as the top surface 603 of the encapsulant 611a can be spaced apart from the first surface 634 of the substrate 630 at a distance great enough to cover the microelectronic elements 612, 614. Accordingly, embodiments of the microelectronic assembly 610a in which the ends 638 of the wire bonds 604 are flush with the top surface 603 can include wire bonds 604 that extend to greater heights above the substrate 630 than the microelectronic elements 612, 614.
[0087] The microelectronic component 600 including the stacked microelectronic assemblies 610 can be attached to a circuit panel, such as a printed circuit board, using the joining units 681 exposed at a top surface 601 or a bottom surface 602 of the microelectronic component 600.
[0088] In a particular example, the microelectronic component 600 can be configured to function as nonhomogenous memory, for example, for a smartphone application. In such an example, some of the microelectronic elements 612 and 614 within the microelectronic assemblies 610 can include a memory storage element such as volatile RAM, and some of the microelectronic elements 612 and 614 can include memory storage elements such as nonvolatile flash memory.
[0089] Although the embodiments shown in FIGS. 9A, 9B, and 10 show microelectronic elements electrically connected to contacts of the substrate through wire bonds, in other embodiments, such microelectronic elements can be electrically connected to contacts of the substrate through other connection configurations, including for example, lead bonds and flip-chip mounting of one or more microelectronic elements to contacts of the substrate.
[0090] The microelectronic assemblies described above can be utilized in construction of diverse electronic systems, as shown in FIG. 11. For example, a system 1100 in accordance with a further embodiment of the invention includes a microelectronic assembly 1106 as described above in conjunction with other electronic components 1108 and 1110. In the example depicted, component 1108 is a semiconductor chip whereas component 1110 is a display screen, but any other components can be used. Of course, although only two additional components are depicted in FIG. 11 for clarity of illustration, the system may include any number of such components. The microelectronic assembly 1106 may be any of the assemblies described above. In a further variant, any number of such microelectronic assemblies may be used.
[0091] Microelectronic assembly 1106 and components 1108 and 1110 are mounted in a common housing 1101, schematically depicted in broken lines, and are electrically interconnected with one another as necessary to form the desired circuit. In the exemplary system shown, the system includes a circuit panel 1102 such as a flexible printed circuit board, and the circuit panel includes numerous conductors 1104, of which only one is depicted in FIG. 11, interconnecting the components with one another. However, this is merely exemplary; any suitable structure for making electrical connections can be used. The housing 1101 is depicted as a portable housing of the type usable, for example, in a cellular telephone or personal digital assistant, and screen 1110 is exposed at the surface of the housing. Where structure 1106 includes a light sensitive element such as an imaging chip, a lens 1111 or other optical device also may be provided for routing light to the structure. Again, the simplified system shown in FIG. 11 is merely exemplary; other systems, including systems commonly regarded as fixed structures, such as desktop computers, routers and the like can be made using the structures discussed above.
[ 0092 ] Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
[ 0093 ] It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.

Claims

1. A microelectronic assembly, comprising:
a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, the substrate having first terminals exposed at the second surface thereof;
a first microelectronic element having a front surface facing the first surface of the substrate, a rear surface remote therefrom, and an edge extending between the front and rear surfaces, the first microelectronic element having a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element;
a second microelectronic element having first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges, the front surface of the second microelectronic element facing the first microelectronic element and projecting beyond the edge of the first microelectronic element;
first leads electrically connecting the contacts of the first microelectronic element to the first terminals;
second leads connecting the contacts of the second microelectronic element to the first terminals, the first and second leads having portions aligned with the aperture; and
second terminals exposed at a surface of the microelectronic assembly opposite from the second surface of the substrate, wherein at least some of the second terminals overlie at least one of the microelectronic elements .
2. The microelectronic assembly as claimed in claim 1, wherein at least some of the second terminals are electrically connected with conductive elements exposed at the first surface of the substrate by wire bonds.
3. The microelectronic assembly as claimed in claim 2, further comprising an encapsulant at least partially covering the first and second microelectronic elements and at least portions of the wire bonds, wherein the surface of the microelectronic assembly at which the second terminals are exposed is a surface of the encapsulant.
4. The microelectronic assembly as claimed in claim 3, wherein the wire bonds have bases attached to the conductive elements and unencapsulated end surfaces remote from the conductive elements, and edge surfaces extending between the bases and the unencapsulated end surfaces, the unencapsulated end surfaces being uncovered by the encapsulant, wherein the second terminals are electrically connected with the unencapsulated end surfaces .
5. The microelectronic assembly as claimed in claim 4, wherein at least a portion of an edge surface of at least one of the wire bonds is unencapsulated and at least one of the second terminals is electrically connected with the unencapsulated edge surface and the unencapsulated end surface of the at least one of the wire bonds .
6. The microelectronic assembly as claimed in claim 3, wherein the wire bonds have unencapsulated edge surfaces between bases of the wire bonds attached to the conductive elements and ends of the wire bonds remote from the conductive elements, wherein the second terminals are electrically connected with the unencapsulated edge surfaces.
7. The microelectronic assembly as claimed in claim 1, wherein at least one of the microelectronic elements includes a volatile random access memory (RAM) , and at least one of the microelectronic elements includes nonvolatile flash memory.
8. The microelectronic assembly as claimed in claim 1, further comprising third leads electrically interconnecting the contacts of the first microelectronic element with the contacts of the second microelectronic element, the first, second, and third leads having portions aligned with the aperture.
9. The microelectronic assembly as claimed in claim 1, wherein at least one of the first or second leads include wire bonds extending from the contacts of at least one of the first or second microelectronic elements .
10. The microelectronic assembly as claimed in claim 1, wherein the portions of at least one of the first leads and the second leads aligned with the aperture are portions of monolithic conductive elements having second portions extending along the substrate to the terminals.
11. The microelectronic assembly as claimed in claim 1, further comprising a spacing element between the front surface of the second microelectronic element and the first surface of the substrate .
12. The microelectronic assembly as claimed in claim 1, wherein the first microelectronic element includes a chip configured to predominantly perform a logic function.
13. The microelectronic assembly as claimed in claim 1, wherein the second microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
14. The microelectronic assembly as claimed in claim 1, wherein the first microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
15. The microelectronic assembly as claimed in claim 1, further comprising third leads electrically connecting the contacts of the first microelectronic element to the terminals, the first leads and third leads being connected to terminals on opposite sides of the aperture, the first, second, and third leads having portions aligned with the aperture .
16. The microelectronic assembly as claimed in claim 1, further comprising:
a third microelectronic element disposed between first surface of the substrate and the front surface of the second microelectronic element, the third microelectronic element having first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed on the front surface thereof adjacent the first edge thereof, the front surface of the third microelectronic element facing the first surface of the substrate;
third leads electrically connecting the contacts of the third microelectronic element to the terminals; and
fourth leads electrically interconnecting the contacts of the first and third microelectronic elements, the contacts of the first and third microelectronic elements being located on opposite sides of the aperture, the first, second, third, and fourth leads having portions aligned with the aperture.
17. The microelectronic assembly as claimed in claim 16, further comprising fifth leads electrically interconnecting the contacts of the first and second microelectronic elements.
18. The microelectronic assembly as claimed in claim 17, further comprising sixth leads electrically interconnecting the contacts of the second and third microelectronic elements.
19. A microelectronic component including first and second microelectronic assemblies, each microelectronic assembly as claimed in claim 1, the first microelectronic assembly at least partially overlying the second microelectronic assembly, and the first terminals of the first microelectronic assembly being joined with the second terminals of the second microelectronic assembly .
20. The microelectronic component as claimed in claim 19, wherein at least one of the first microelectronic elements is configured predominantly to perform a logic function, and at least one of the second microelectronic elements has a greater number of active devices configured to provide memory storage array function than any other function.
21. The microelectronic component as claimed in claim 19, wherein at least some of the first terminals of the first microelectronic assembly and at least some of the second terminals of the second microelectronic assembly are arranged in an area array, and wherein the first and second microelectronic assemblies are joined by joining units that are electrically conductive masses of a bond metal.
22. The microelectronic component as claimed in claim 19, wherein the microelectronic assemblies are electrically connected with one another through joining units arranged adjacent a periphery of the microelectronic component.
23. The microelectronic component as claimed in claim 22, wherein the joining units are located outside of a depopulated central region of the microelectronic component .
24. A system comprising a microelectronic assembly according to claim 1 and one or more other electronic components electrically connected to the microelectronic assembly.
25. The system as claimed in claim 24, wherein at least some of the terminals are electrically connected to a circuit panel .
26. The system as claimed in claim 25, further comprising a housing, the microelectronic assembly and the other electronic components being mounted to the housing.
27. A microelectronic assembly, comprising:
a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, the substrate having terminals;
a first microelectronic element having a front surface facing the first surface of the substrate, a rear surface remote therefrom, and an edge extending between the front and rear surfaces, the first microelectronic element having a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element;
a second microelectronic element having first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges, the front surface of the second microelectronic element facing the first microelectronic element and projecting beyond the edge of the first microelectronic element;
first leads electrically connecting the contacts of the first microelectronic element to the terminals; second leads electrically connecting the contacts of the second microelectronic element to the terminals; and
third leads electrically interconnecting the contacts of the first microelectronic element with the contacts of the second microelectronic element, the first, second, and third leads having portions aligned with the aperture.
28. A microelectronic assembly as claimed in claim 27, wherein at least one of the first or second leads include wire bonds extending from the contacts of at least one of the first or second microelectronic elements .
29. A microelectronic assembly as claimed in claim 27, wherein the portions of at least one of the first leads and the second leads aligned with the aperture are portions of monolithic conductive elements having second portions extending along the substrate to the terminals.
30. A microelectronic assembly as claimed in claim 27, further comprising a spacing element between the front surface of the second microelectronic element and the first surface of the substrate .
31. A microelectronic assembly as claimed in claim 27, wherein the first microelectronic element includes a chip configured to predominantly perform a logic function.
32. A microelectronic assembly as claimed in claim 27, wherein the second microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
33. A microelectronic assembly as claimed in claim 27, wherein the first microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
34. A system comprising a microelectronic assembly according to claim 27 and one or more other electronic components electrically connected to the microelectronic assembly.
35. A system as claimed in claim 34, wherein the terminals are electrically connected to a circuit panel.
36. A system as claimed in claim 35, further comprising a housing, the microelectronic assembly and the other electronic components being mounted to the housing.
37. A microelectronic component including first and second microelectronic assemblies, each microelectronic assembly as claimed in claim 27, the first microelectronic assembly electrically connected with and at least partially overlying the second microelectronic assembly.
38. A microelectronic component as claimed in claim 37, wherein the microelectronic assemblies are electrically connected with one another through joining units arranged adjacent a periphery of the microelectronic component.
39. A microelectronic component as claimed in claim 38, wherein the joining units are located outside of a depopulated central region of the microelectronic component .
40. A microelectronic component as claimed in claim 37, wherein some of the microelectronic elements include a volatile random access memory (RAM) , and some of the microelectronic elements include nonvolatile flash memory.
41. A microelectronic component as claimed in claim 37, wherein at least one of the first microelectronic elements is configured predominantly to perform a logic function, and at least one of the second microelectronic elements has a greater number of active devices configured to provide memory storage array function than any other function.
42. A microelectronic assembly, comprising:
a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, the substrate having terminals;
a first microelectronic element having a front surface facing the first surface of the substrate, a rear surface remote therefrom, and an edge extending between the front and rear surfaces, the first microelectronic element having a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element; a second microelectronic element having first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges, the front surface of the second microelectronic element facing the first microelectronic element and projecting beyond the edge of the first microelectronic element;
first leads electrically connecting the contacts of the first microelectronic element to the terminals;
second leads electrically connecting the contacts of the second microelectronic element to the terminals; and
third leads electrically connecting the contacts of the first microelectronic element to the terminals, the first leads and third leads being connected to terminals on opposite sides of the aperture, the first, second, and third leads having portions aligned with the aperture.
43. A microelectronic assembly as claimed in claim 42, wherein the first microelectronic element includes a chip configured to predominantly perform a logic function.
44. A microelectronic assembly as claimed in claim 42, wherein the second microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
45. A microelectronic assembly as claimed in claim 42, wherein the first microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
46. A microelectronic assembly, comprising:
a substrate having oppositely-facing first and second surfaces and an aperture extending between the first and second surfaces, the substrate having terminals;
a first microelectronic element having a front surface facing the first surface of the substrate, a rear surface remote therefrom, and an edge extending between the front and rear surfaces, the first microelectronic element having a plurality of contacts exposed at the front surface thereof adjacent the edge of the first microelectronic element;
a second microelectronic element having first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed in a central region of the front surface thereof remote from the first and second edges, the front surface of the second microelectronic element facing the first microelectronic element and projecting beyond the edge of the first microelectronic element;
a third microelectronic element disposed between first surface of the substrate and the front surface of the second microelectronic element, the third microelectronic element having first and second opposed edges, a front surface extending between the first and second edges, and a plurality of contacts disposed on the front surface thereof adjacent the first edge thereof, the front surface of the third microelectronic element facing the first surface of the substrate;
first leads electrically connecting the contacts of the first microelectronic element to the terminals;
second leads connecting the contacts of the second microelectronic element to the terminals;
third leads electrically connecting the contacts of the third microelectronic element to the terminals; and
fourth leads electrically interconnecting the contacts of the first and third microelectronic elements, the contacts of the first and third microelectronic elements being located on opposite sides of the aperture, the first, second, third, and fourth leads having portions aligned with the aperture.
47. A microelectronic assembly as claimed in claim 46, further comprising fifth leads electrically interconnecting the contacts of the first and second microelectronic elements.
48. A microelectronic assembly as claimed in claim 47, further comprising sixth leads electrically interconnecting the contacts of the second and third microelectronic elements.
49. A microelectronic assembly as claimed in claim 46, wherein the first microelectronic element includes a chip configured to predominantly perform a logic function.
50. A microelectronic assembly as claimed in claim 46, wherein the second microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
51. A microelectronic assembly as claimed in claim 46, wherein the first microelectronic element has a greater number of active devices configured to provide memory storage array function than any other function.
PCT/US2012/032997 2011-04-21 2012-04-11 Flip-chip, face-up and face-down centerbond memory wirebond assemblies WO2012145201A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12714917.7A EP2700100A1 (en) 2011-04-21 2012-04-11 Flip-chip, face-up and face-down centerbond memory wirebond assemblies
BR112013027142A BR112013027142A2 (en) 2011-04-21 2012-04-11 microelectronic assembly
KR1020137030219A KR102005830B1 (en) 2011-04-21 2012-04-11 Flip-chip, face-up and face-down centerbond memory wirebond assemblies
CN201280030801.1A CN103620778B (en) 2011-04-21 2012-04-11 Flip-chip, face-up and face-down centerbond memory wirebond assemblies
JP2014506450A JP2014512688A (en) 2011-04-21 2012-04-11 Flip chip, face up and face down center bond memory wire bond assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161477967P 2011-04-21 2011-04-21
US61/477,967 2011-04-21
US13/306,099 2011-11-29
US13/306,099 US8928153B2 (en) 2011-04-21 2011-11-29 Flip-chip, face-up and face-down centerbond memory wirebond assemblies

Publications (1)

Publication Number Publication Date
WO2012145201A1 true WO2012145201A1 (en) 2012-10-26

Family

ID=47020672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/032997 WO2012145201A1 (en) 2011-04-21 2012-04-11 Flip-chip, face-up and face-down centerbond memory wirebond assemblies

Country Status (8)

Country Link
US (3) US8928153B2 (en)
EP (1) EP2700100A1 (en)
JP (1) JP2014512688A (en)
KR (1) KR102005830B1 (en)
CN (1) CN103620778B (en)
BR (1) BR112013027142A2 (en)
TW (2) TWI505420B (en)
WO (1) WO2012145201A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999383B2 (en) * 2006-07-21 2011-08-16 Bae Systems Information And Electronic Systems Integration Inc. High speed, high density, low power die interconnect system
US8553420B2 (en) 2010-10-19 2013-10-08 Tessera, Inc. Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics
US9013033B2 (en) 2011-04-21 2015-04-21 Tessera, Inc. Multiple die face-down stacking for two or more die
US8928153B2 (en) 2011-04-21 2015-01-06 Tessera, Inc. Flip-chip, face-up and face-down centerbond memory wirebond assemblies
US8952516B2 (en) 2011-04-21 2015-02-10 Tessera, Inc. Multiple die stacking for two or more die
US8633576B2 (en) 2011-04-21 2014-01-21 Tessera, Inc. Stacked chip-on-board module with edge connector
US8304881B1 (en) 2011-04-21 2012-11-06 Tessera, Inc. Flip-chip, face-up and face-down wirebond combination package
US8970028B2 (en) 2011-12-29 2015-03-03 Invensas Corporation Embedded heat spreader for package with multiple microelectronic elements and face-down connection
US8569884B2 (en) 2011-08-15 2013-10-29 Tessera, Inc. Multiple die in a face down package
US10163877B2 (en) * 2011-11-07 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. System in package process flow
US9165906B2 (en) * 2012-12-10 2015-10-20 Invensas Corporation High performance package on package
US9888283B2 (en) 2013-03-13 2018-02-06 Nagrastar Llc Systems and methods for performing transport I/O
USD758372S1 (en) * 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
US9299736B2 (en) * 2014-03-28 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid bonding with uniform pattern density
JP2015216263A (en) * 2014-05-12 2015-12-03 マイクロン テクノロジー, インク. Semiconductor device
KR102216195B1 (en) * 2014-12-15 2021-02-16 에스케이하이닉스 주식회사 Semiconductor package on which a plurality of chips are stacked
TWI589016B (en) * 2015-01-28 2017-06-21 精材科技股份有限公司 Photosensitive module and method for forming the same
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface
US20190043776A1 (en) * 2016-04-02 2019-02-07 Intel Corporation Dual-sided package assembly processing
US20180166417A1 (en) * 2016-12-13 2018-06-14 Nanya Technology Corporation Wafer level chip-on-chip semiconductor structure
US10475766B2 (en) * 2017-03-29 2019-11-12 Intel Corporation Microelectronics package providing increased memory component density
JP7069222B2 (en) * 2018-01-24 2022-05-17 京セラ株式会社 Wiring boards, electronic devices and electronic modules
KR102542617B1 (en) 2018-06-08 2023-06-14 삼성전자주식회사 Semiconductor package, Package on Package device and method of fabricating the same
KR102078936B1 (en) * 2018-11-07 2020-02-19 주식회사 프로텍 Method of Mounting Conductive Ball
US10886149B2 (en) * 2019-01-31 2021-01-05 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same
US11209598B2 (en) 2019-02-28 2021-12-28 International Business Machines Corporation Photonics package with face-to-face bonding
JP7521458B2 (en) * 2021-03-04 2024-07-24 住友電気工業株式会社 Optical Connector Cable
TWI839059B (en) * 2023-01-03 2024-04-11 力晶積成電子製造股份有限公司 Semiconductor package

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941033A (en) 1988-12-27 1990-07-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
US5148266A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5679977A (en) 1990-09-24 1997-10-21 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US6703713B1 (en) * 2002-09-10 2004-03-09 Siliconware Precision Industries Co., Ltd. Window-type multi-chip semiconductor package
US20050181544A1 (en) 2003-12-30 2005-08-18 Tessera, Inc. Microelectronic packages and methods therefor
US20070218689A1 (en) * 2006-03-17 2007-09-20 Stats Chippac Ltd. Stacked integrated circuit package-in-package system
KR20110041843A (en) 2009-10-16 2011-04-22 엘지전자 주식회사 Hybrid storage device and operating method for the same

Family Cites Families (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107391A (en) 1985-11-06 1987-05-18 Nippon Texas Instr Kk Information storage medium
US5138438A (en) 1987-06-24 1992-08-11 Akita Electronics Co. Ltd. Lead connections means for stacked tab packaged IC chips
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5369552A (en) 1992-07-14 1994-11-29 Ncr Corporation Multi-chip module with multiple compartments
JP3487524B2 (en) 1994-12-20 2004-01-19 株式会社ルネサステクノロジ Semiconductor device and manufacturing method thereof
US5998864A (en) 1995-05-26 1999-12-07 Formfactor, Inc. Stacking semiconductor devices, particularly memory chips
US5861666A (en) 1995-08-30 1999-01-19 Tessera, Inc. Stacked chip assembly
KR100204753B1 (en) 1996-03-08 1999-06-15 윤종용 Loc type stacked chip package
JP2806357B2 (en) 1996-04-18 1998-09-30 日本電気株式会社 Stack module
US5892660A (en) 1996-08-29 1999-04-06 Micron Technology, Inc. Single in line memory module adapter
WO1998012568A1 (en) 1996-09-18 1998-03-26 Hitachi, Ltd. Process for producing semiconductor device and semiconductor device
AU1040397A (en) 1996-12-04 1998-06-29 Hitachi Limited Semiconductor device
JP2978861B2 (en) 1997-10-28 1999-11-15 九州日本電気株式会社 Molded BGA type semiconductor device and manufacturing method thereof
JP3393800B2 (en) * 1997-11-05 2003-04-07 新光電気工業株式会社 Manufacturing method of semiconductor device
JP3718039B2 (en) 1997-12-17 2005-11-16 株式会社日立製作所 Semiconductor device and electronic device using the same
US6343019B1 (en) 1997-12-22 2002-01-29 Micron Technology, Inc. Apparatus and method of stacking die on a substrate
US6742098B1 (en) 2000-10-03 2004-05-25 Intel Corporation Dual-port buffer-to-memory interface
US6021048A (en) 1998-02-17 2000-02-01 Smith; Gary W. High speed memory module
US6150724A (en) 1998-03-02 2000-11-21 Motorola, Inc. Multi-chip semiconductor device and method for making the device by using multiple flip chip interfaces
US6072233A (en) 1998-05-04 2000-06-06 Micron Technology, Inc. Stackable ball grid array package
US6180881B1 (en) 1998-05-05 2001-01-30 Harlan Ruben Isaak Chip stack and method of making same
US6369444B1 (en) 1998-05-19 2002-04-09 Agere Systems Guardian Corp. Packaging silicon on silicon multichip modules
US5977640A (en) 1998-06-26 1999-11-02 International Business Machines Corporation Highly integrated chip-on-chip packaging
US7525813B2 (en) 1998-07-06 2009-04-28 Renesas Technology Corp. Semiconductor device
US6353539B1 (en) 1998-07-21 2002-03-05 Intel Corporation Method and apparatus for matched length routing of back-to-back package placement
US6121576A (en) 1998-09-02 2000-09-19 Micron Technology, Inc. Method and process of contact to a heat softened solder ball array
US6093029A (en) 1998-09-08 2000-07-25 S3 Incorporated Vertically stackable integrated circuit
US6201695B1 (en) 1998-10-26 2001-03-13 Micron Technology, Inc. Heat sink for chip stacking applications
US6815251B1 (en) 1999-02-01 2004-11-09 Micron Technology, Inc. High density modularity for IC's
JP2000243875A (en) 1999-02-23 2000-09-08 Shinko Electric Ind Co Ltd Semiconductor device
SE519108C2 (en) 1999-05-06 2003-01-14 Sandvik Ab Coated cutting tool for machining gray cast iron
TW409377B (en) 1999-05-21 2000-10-21 Siliconware Precision Industries Co Ltd Small scale ball grid array package
KR100393095B1 (en) 1999-06-12 2003-07-31 앰코 테크놀로지 코리아 주식회사 A semiconductor packages and manufacturing method for it
JP3360655B2 (en) 1999-07-08 2002-12-24 日本電気株式会社 Semiconductor device
JP2001053243A (en) 1999-08-06 2001-02-23 Hitachi Ltd Semiconductor memory device and memory module
JP4526651B2 (en) * 1999-08-12 2010-08-18 富士通セミコンダクター株式会社 Semiconductor device
US6199743B1 (en) 1999-08-19 2001-03-13 Micron Technology, Inc. Apparatuses for forming wire bonds from circuitry on a substrate to a semiconductor chip, and methods of forming semiconductor chip assemblies
JP2001085609A (en) 1999-09-17 2001-03-30 Hitachi Ltd Semiconductor device and manufacturing method thereof
JP2001196407A (en) 2000-01-14 2001-07-19 Seiko Instruments Inc Semiconductor device and method of forming the same
US6369448B1 (en) 2000-01-21 2002-04-09 Lsi Logic Corporation Vertically integrated flip chip semiconductor package
US6414396B1 (en) 2000-01-24 2002-07-02 Amkor Technology, Inc. Package for stacked integrated circuits
JP3768761B2 (en) 2000-01-31 2006-04-19 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP2001223324A (en) 2000-02-10 2001-08-17 Mitsubishi Electric Corp Semiconductor device
US6731009B1 (en) 2000-03-20 2004-05-04 Cypress Semiconductor Corporation Multi-die assembly
KR100583491B1 (en) 2000-04-07 2006-05-24 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
JP2002076252A (en) 2000-08-31 2002-03-15 Nec Kyushu Ltd Semiconductor device
JP3874062B2 (en) 2000-09-05 2007-01-31 セイコーエプソン株式会社 Semiconductor device
JP3462166B2 (en) 2000-09-08 2003-11-05 富士通カンタムデバイス株式会社 Compound semiconductor device
US6492726B1 (en) 2000-09-22 2002-12-10 Chartered Semiconductor Manufacturing Ltd. Chip scale packaging with multi-layer flip chip arrangement and ball grid array interconnection
TW511405B (en) 2000-12-27 2002-11-21 Matsushita Electric Ind Co Ltd Device built-in module and manufacturing method thereof
SG95637A1 (en) 2001-03-15 2003-04-23 Micron Technology Inc Semiconductor/printed circuit board assembly, and computer system
SG106054A1 (en) 2001-04-17 2004-09-30 Micron Technology Inc Method and apparatus for package reduction in stacked chip and board assemblies
JP2002353398A (en) 2001-05-25 2002-12-06 Nec Kyushu Ltd Semiconductor device
US6472741B1 (en) 2001-07-14 2002-10-29 Siliconware Precision Industries Co., Ltd. Thermally-enhanced stacked-die ball grid array semiconductor package and method of fabricating the same
US6385049B1 (en) 2001-07-05 2002-05-07 Walsin Advanced Electronics Ltd Multi-board BGA package
JP2003101207A (en) 2001-09-27 2003-04-04 Nec Kyushu Ltd Solder ball and component connecting structure using the same
US6977440B2 (en) 2001-10-09 2005-12-20 Tessera, Inc. Stacked packages
SG118103A1 (en) 2001-12-12 2006-01-27 Micron Technology Inc BOC BGA package for die with I-shaped bond pad layout
KR100480909B1 (en) 2001-12-29 2005-04-07 주식회사 하이닉스반도체 method for manufacturing stacked chip package
TW523890B (en) 2002-02-07 2003-03-11 Macronix Int Co Ltd Stacked semiconductor packaging device
SG121705A1 (en) 2002-02-21 2006-05-26 United Test & Assembly Ct Ltd Semiconductor package
US7196415B2 (en) 2002-03-22 2007-03-27 Broadcom Corporation Low voltage drop and high thermal performance ball grid array package
DE10215654A1 (en) 2002-04-09 2003-11-06 Infineon Technologies Ag Electronic component with at least one semiconductor chip and flip-chip contacts and method for its production
US6924496B2 (en) 2002-05-31 2005-08-02 Fujitsu Limited Fingerprint sensor and interconnect
KR100958400B1 (en) 2002-06-05 2010-05-18 가부시끼가이샤 르네사스 테크놀로지 Semiconductor device
US7132311B2 (en) 2002-07-26 2006-11-07 Intel Corporation Encapsulation of a stack of semiconductor dice
JP2004063767A (en) 2002-07-29 2004-02-26 Renesas Technology Corp Semiconductor device
US6762942B1 (en) 2002-09-05 2004-07-13 Gary W. Smith Break away, high speed, folded, jumperless electronic assembly
JP3866178B2 (en) 2002-10-08 2007-01-10 株式会社ルネサステクノロジ IC card
AU2003301632A1 (en) 2002-10-22 2004-05-13 Unitive International Limited Stacked electronic structures including offset substrates
JP4110992B2 (en) 2003-02-07 2008-07-02 セイコーエプソン株式会社 Semiconductor device, electronic device, electronic apparatus, semiconductor device manufacturing method, and electronic device manufacturing method
WO2004080134A2 (en) 2003-02-25 2004-09-16 Tessera, Inc. High frequency chip packages with connecting elements
US7268425B2 (en) 2003-03-05 2007-09-11 Intel Corporation Thermally enhanced electronic flip-chip packaging with external-connector-side die and method
TW200419752A (en) 2003-03-18 2004-10-01 United Test Ct Inc Semiconductor package with heat sink
TWI313049B (en) 2003-04-23 2009-08-01 Advanced Semiconductor Eng Multi-chips stacked package
US7528421B2 (en) 2003-05-05 2009-05-05 Lamina Lighting, Inc. Surface mountable light emitting diode assemblies packaged for high temperature operation
KR20050001159A (en) 2003-06-27 2005-01-06 삼성전자주식회사 Multi-chip package having a plurality of flip chips and fabrication method thereof
KR100493063B1 (en) * 2003-07-18 2005-06-02 삼성전자주식회사 BGA package with stacked semiconductor chips and manufacturing method thereof
SG148877A1 (en) 2003-07-22 2009-01-29 Micron Technology Inc Semiconductor substrates including input/output redistribution using wire bonds and anisotropically conductive film, methods of fabrication and assemblies including same
US7462936B2 (en) 2003-10-06 2008-12-09 Tessera, Inc. Formation of circuitry with modification of feature height
US7061121B2 (en) 2003-11-12 2006-06-13 Tessera, Inc. Stacked microelectronic assemblies with central contacts
US7095104B2 (en) 2003-11-21 2006-08-22 International Business Machines Corporation Overlap stacking of center bus bonded memory chips for double density and method of manufacturing the same
US8998620B2 (en) 2003-12-02 2015-04-07 Super Talent Technology, Corp. Molding method for COB-EUSB devices and metal housing package
JP2005166892A (en) 2003-12-02 2005-06-23 Kingpak Technology Inc Stack type small-sized memory card
US7440286B2 (en) 2005-04-21 2008-10-21 Super Talent Electronics, Inc. Extended USB dual-personality card reader
DE10360708B4 (en) * 2003-12-19 2008-04-10 Infineon Technologies Ag Semiconductor module with a semiconductor stack, rewiring plate, and method of making the same
US20050173807A1 (en) 2004-02-05 2005-08-11 Jianbai Zhu High density vertically stacked semiconductor device
JP4370513B2 (en) 2004-02-27 2009-11-25 エルピーダメモリ株式会社 Semiconductor device
JP2005251957A (en) 2004-03-04 2005-09-15 Renesas Technology Corp Semiconductor device
US7489517B2 (en) 2004-04-05 2009-02-10 Thomas Joel Massingill Die down semiconductor package
US7078808B2 (en) 2004-05-20 2006-07-18 Texas Instruments Incorporated Double density method for wirebond interconnect
WO2005114728A1 (en) 2004-05-21 2005-12-01 Nec Corporation Semiconductor device, wiring board and manufacturing method thereof
KR20050119414A (en) 2004-06-16 2005-12-21 삼성전자주식회사 Stacked package comprising two edge pad-type semiconductor chips and method of manufacturing the same
KR100599687B1 (en) * 2004-06-29 2006-07-13 삼성에스디아이 주식회사 Fuel cell system and reformer used thereto
KR20060004298A (en) * 2004-07-09 2006-01-12 삼성테크윈 주식회사 Wireless electronic label
US7381593B2 (en) 2004-08-05 2008-06-03 St Assembly Test Services Ltd. Method and apparatus for stacked die packaging
JP4445351B2 (en) 2004-08-31 2010-04-07 株式会社東芝 Semiconductor module
US20060049513A1 (en) 2004-09-03 2006-03-09 Staktek Group L.P. Thin module system and method with thermal management
JP4601365B2 (en) * 2004-09-21 2010-12-22 ルネサスエレクトロニクス株式会社 Semiconductor device
US20060097400A1 (en) 2004-11-03 2006-05-11 Texas Instruments Incorporated Substrate via pad structure providing reliable connectivity in array package devices
US7786567B2 (en) 2004-11-10 2010-08-31 Chung-Cheng Wang Substrate for electrical device and methods for making the same
US7217994B2 (en) 2004-12-01 2007-05-15 Kyocera Wireless Corp. Stack package for high density integrated circuits
TWI256092B (en) 2004-12-02 2006-06-01 Siliconware Precision Industries Co Ltd Semiconductor package and fabrication method thereof
JP2006172122A (en) 2004-12-15 2006-06-29 Toshiba Corp Card type storage device
WO2006068643A1 (en) 2004-12-20 2006-06-29 Semiconductor Components Industries, L.L.C. Semiconductor package structure having enhanced thermal dissipation characteristics
JP4086068B2 (en) 2004-12-27 2008-05-14 日本電気株式会社 Semiconductor device
KR20060080424A (en) 2005-01-05 2006-07-10 삼성전자주식회사 Memory card mounting multi-chip package
US7112875B1 (en) 2005-02-17 2006-09-26 Amkor Technology, Inc. Secure digital memory card using land grid array structure
US7205656B2 (en) 2005-02-22 2007-04-17 Micron Technology, Inc. Stacked device package for peripheral and center device pad layout device
KR100630741B1 (en) 2005-03-04 2006-10-02 삼성전자주식회사 Stack type semiconductor package having a multiple molding process and manufacturing method thereof
US7196427B2 (en) 2005-04-18 2007-03-27 Freescale Semiconductor, Inc. Structure having an integrated circuit on another integrated circuit with an intervening bent adhesive element
JP4704800B2 (en) * 2005-04-19 2011-06-22 エルピーダメモリ株式会社 Multilayer semiconductor device and manufacturing method thereof
US7250675B2 (en) 2005-05-05 2007-07-31 International Business Machines Corporation Method and apparatus for forming stacked die and substrate structures for increased packing density
KR101070913B1 (en) 2005-05-19 2011-10-06 삼성테크윈 주식회사 Stacked die package
US7402911B2 (en) 2005-06-28 2008-07-22 Infineon Technologies Ag Multi-chip device and method for producing a multi-chip device
SG130066A1 (en) 2005-08-26 2007-03-20 Micron Technology Inc Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices
DE102005041451A1 (en) 2005-08-31 2007-03-01 Infineon Technologies Ag USB interface plug in electronic unit has moulded housing with electronic components including multiple layer connections through lead frame integrated in connector
JP4108701B2 (en) 2005-09-12 2008-06-25 株式会社ルネサステクノロジ IC card manufacturing method
US7602054B2 (en) 2005-10-05 2009-10-13 Semiconductor Components Industries, L.L.C. Method of forming a molded array package device having an exposed tab and structure
JP2007123595A (en) * 2005-10-28 2007-05-17 Nec Corp Semiconductor device and its mounting structure
JP2007134426A (en) 2005-11-09 2007-05-31 Renesas Technology Corp Multichip module
US20070152310A1 (en) * 2005-12-29 2007-07-05 Tessera, Inc. Electrical ground method for ball stack package
JP2007188916A (en) 2006-01-11 2007-07-26 Renesas Technology Corp Semiconductor device
KR100673965B1 (en) 2006-01-11 2007-01-24 삼성테크윈 주식회사 Printed circuit board and manufacturing method for semiconductor package using the printed circuit board
KR100690247B1 (en) * 2006-01-16 2007-03-12 삼성전자주식회사 Double encapsulated semiconductor package and manufacturing method thereof
US20070176297A1 (en) 2006-01-31 2007-08-02 Tessera, Inc. Reworkable stacked chip assembly
JP4946872B2 (en) 2006-02-02 2012-06-06 パナソニック株式会社 Memory card manufacturing method
SG135074A1 (en) 2006-02-28 2007-09-28 Micron Technology Inc Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
KR20070088177A (en) 2006-02-24 2007-08-29 삼성테크윈 주식회사 Semiconductor package and method of manufacturing the same
US20080029879A1 (en) 2006-03-01 2008-02-07 Tessera, Inc. Structure and method of making lidded chips
US7514780B2 (en) 2006-03-15 2009-04-07 Hitachi, Ltd. Power semiconductor device
US7768075B2 (en) 2006-04-06 2010-08-03 Fairchild Semiconductor Corporation Semiconductor die packages using thin dies and metal substrates
CN100511588C (en) 2006-04-14 2009-07-08 泰特科技股份有限公司 Lead frame chip-level encapsulation method
US20070241441A1 (en) 2006-04-17 2007-10-18 Stats Chippac Ltd. Multichip package system
SG136822A1 (en) 2006-04-19 2007-11-29 Micron Technology Inc Integrated circuit devices with stacked package interposers
TW200743190A (en) 2006-05-10 2007-11-16 Chung-Cheng Wang A heat spreader for electrical device
JP5026736B2 (en) 2006-05-15 2012-09-19 パナソニックヘルスケア株式会社 Refrigeration equipment
WO2008007257A2 (en) 2006-06-20 2008-01-17 Nxp B.V. Integrated circuit and assembly therewith
US20080023805A1 (en) * 2006-07-26 2008-01-31 Texas Instruments Incorporated Array-Processed Stacked Semiconductor Packages
TWI306658B (en) 2006-08-07 2009-02-21 Chipmos Technologies Inc Leadframe on offset stacked chips package
US7638868B2 (en) 2006-08-16 2009-12-29 Tessera, Inc. Microelectronic package
US7906844B2 (en) 2006-09-26 2011-03-15 Compass Technology Co. Ltd. Multiple integrated circuit die package with thermal performance
TWI370515B (en) 2006-09-29 2012-08-11 Megica Corp Circuit component
KR100825784B1 (en) * 2006-10-18 2008-04-28 삼성전자주식회사 Semiconductor package suppressing a warpage and wire open defects and manufacturing method thereof
KR100885911B1 (en) 2006-11-16 2009-02-26 삼성전자주식회사 Semiconductor package impproving a thermal spreading performance
JP4389228B2 (en) 2006-11-29 2009-12-24 エルピーダメモリ株式会社 Memory module
US7772683B2 (en) 2006-12-09 2010-08-10 Stats Chippac Ltd. Stacked integrated circuit package-in-package system
KR101533120B1 (en) 2006-12-14 2015-07-01 램버스 인코포레이티드 Multi-die memory device
JP2008177241A (en) 2007-01-16 2008-07-31 Toshiba Corp Semiconductor package
CN101232004A (en) 2007-01-23 2008-07-30 联华电子股份有限公司 Chip stack package structure
KR101057368B1 (en) 2007-01-31 2011-08-18 후지쯔 세미컨덕터 가부시키가이샤 Semiconductor device and manufacturing method thereof
JP5285224B2 (en) 2007-01-31 2013-09-11 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Circuit equipment
JP2008198841A (en) 2007-02-14 2008-08-28 Elpida Memory Inc Semiconductor device
JP2008235576A (en) 2007-03-20 2008-10-02 Fujitsu Ltd Heat dissipation structure of electronic component and semiconductor device
US20080237844A1 (en) 2007-03-28 2008-10-02 Aleksandar Aleksov Microelectronic package and method of manufacturing same
US7638869B2 (en) 2007-03-28 2009-12-29 Qimonda Ag Semiconductor device
US20080237887A1 (en) 2007-03-29 2008-10-02 Hem Takiar Semiconductor die stack having heightened contact for wire bond
US7872356B2 (en) 2007-05-16 2011-01-18 Qualcomm Incorporated Die stacking system and method
US20080296717A1 (en) 2007-06-01 2008-12-04 Tessera, Inc. Packages and assemblies including lidded chips
JP2008306128A (en) 2007-06-11 2008-12-18 Shinko Electric Ind Co Ltd Semiconductor device and its production process
US7868445B2 (en) 2007-06-25 2011-01-11 Epic Technologies, Inc. Integrated structures and methods of fabrication thereof with fan-out metallization on a chips-first chip layer
KR100876889B1 (en) 2007-06-26 2009-01-07 주식회사 하이닉스반도체 Semiconductor package, and multi-chip semiconductor package using the semiconductor package
SG148901A1 (en) 2007-07-09 2009-01-29 Micron Technology Inc Packaged semiconductor assemblies and methods for manufacturing such assemblies
KR101341566B1 (en) 2007-07-10 2013-12-16 삼성전자주식회사 A socket, a test equipment, and method for manufacturing a multi-chip semiconductor device package
US8299626B2 (en) 2007-08-16 2012-10-30 Tessera, Inc. Microelectronic package
US7442045B1 (en) 2007-08-17 2008-10-28 Centipede Systems, Inc. Miniature electrical ball and tube socket with self-capturing multiple-contact-point coupling
US20090051043A1 (en) 2007-08-21 2009-02-26 Spansion Llc Die stacking in multi-die stacks using die support mechanisms
US7872340B2 (en) 2007-08-31 2011-01-18 Stats Chippac Ltd. Integrated circuit package system employing an offset stacked configuration
US7880310B2 (en) 2007-09-28 2011-02-01 Intel Corporation Direct device attachment on dual-mode wirebond die
US7851267B2 (en) 2007-10-18 2010-12-14 Infineon Technologies Ag Power semiconductor module method
JP2009164160A (en) 2007-12-28 2009-07-23 Panasonic Corp Semiconductor device laminate and packaging method
US20090166065A1 (en) 2008-01-02 2009-07-02 Clayton James E Thin multi-chip flex module
JP5207868B2 (en) 2008-02-08 2013-06-12 ルネサスエレクトロニクス株式会社 Semiconductor device
US8138610B2 (en) 2008-02-08 2012-03-20 Qimonda Ag Multi-chip package with interconnected stacked chips
US8354742B2 (en) 2008-03-31 2013-01-15 Stats Chippac, Ltd. Method and apparatus for a package having multiple stacked die
US8159052B2 (en) 2008-04-10 2012-04-17 Semtech Corporation Apparatus and method for a chip assembly including a frequency extending device
US7928562B2 (en) 2008-07-22 2011-04-19 International Business Machines Corporation Segmentation of a die stack for 3D packaging thermal management
US20100044861A1 (en) 2008-08-20 2010-02-25 Chin-Tien Chiu Semiconductor die support in an offset die stack
US8253231B2 (en) 2008-09-23 2012-08-28 Marvell International Ltd. Stacked integrated circuit package using a window substrate
KR101479461B1 (en) 2008-10-14 2015-01-06 삼성전자주식회사 Stack package and method of manufacturing the same
JP5056718B2 (en) 2008-10-16 2012-10-24 株式会社デンソー Manufacturing method of electronic device
JP5176893B2 (en) 2008-11-18 2013-04-03 日立金属株式会社 Solder balls
US8049339B2 (en) 2008-11-24 2011-11-01 Powertech Technology Inc. Semiconductor package having isolated inner lead
US7951643B2 (en) 2008-11-29 2011-05-31 Stats Chippac Ltd. Integrated circuit packaging system with lead frame and method of manufacture thereof
KR101011863B1 (en) 2008-12-02 2011-01-31 앰코 테크놀로지 코리아 주식회사 Semiconductor package and fabricating?method thereof
US20100193930A1 (en) 2009-02-02 2010-08-05 Samsung Electronics Co., Ltd. Multi-chip semiconductor devices having conductive vias and methods of forming the same
US8026589B1 (en) * 2009-02-23 2011-09-27 Amkor Technology, Inc. Reduced profile stackable semiconductor package
JP5671681B2 (en) 2009-03-05 2015-02-18 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Multilayer semiconductor device
EP2406821A2 (en) 2009-03-13 2012-01-18 Tessera, Inc. Stacked microelectronic assemblies having vias extending through bond pads
US8026608B2 (en) * 2009-03-24 2011-09-27 General Electric Company Stackable electronic package
KR101566407B1 (en) 2009-03-25 2015-11-05 삼성전자주식회사 stacked memory devices
TWI401785B (en) 2009-03-27 2013-07-11 Chipmos Technologies Inc Stacked multichip package
US8039316B2 (en) 2009-04-14 2011-10-18 Stats Chippac Ltd. Integrated circuit packaging system with stacked integrated circuit and heat spreader with openings and method of manufacture thereof
KR101601847B1 (en) 2009-05-21 2016-03-09 삼성전자주식회사 semiconductor package
KR20100134354A (en) 2009-06-15 2010-12-23 삼성전자주식회사 Semiconductor package, stack module, card and electronic system
TWM370767U (en) 2009-06-19 2009-12-11 fu-zhi Huang Modulized computer
US20100327419A1 (en) 2009-06-26 2010-12-30 Sriram Muthukumar Stacked-chip packages in package-on-package apparatus, methods of assembling same, and systems containing same
TWI474331B (en) 2009-06-30 2015-02-21 Hitachi Ltd Semiconductor device
US20110085304A1 (en) 2009-10-14 2011-04-14 Irvine Sensors Corporation Thermal management device comprising thermally conductive heat spreader with electrically isolated through-hole vias
US20110309152A1 (en) 2010-06-22 2011-12-22 Kim Young-Sun Plastic card package and plastic card package manufacturing method
US10128206B2 (en) * 2010-10-14 2018-11-13 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive pillar structure
US8553420B2 (en) 2010-10-19 2013-10-08 Tessera, Inc. Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics
US8378478B2 (en) 2010-11-24 2013-02-19 Tessera, Inc. Enhanced stacked microelectronic assemblies with central contacts and vias connected to the central contacts
KR101118711B1 (en) 2010-12-17 2012-03-12 테세라, 인코포레이티드 Enhanced stacked microelectric assemblies with central contacts
KR101061531B1 (en) 2010-12-17 2011-09-01 테세라 리써치 엘엘씨 Enhanced stacked microelectronic assemblies with central contacts and improved ground or power distribution
TW201239998A (en) 2011-03-16 2012-10-01 Walton Advanced Eng Inc Method for mold array process to prevent peripheries of substrate exposed
US8338963B2 (en) 2011-04-21 2012-12-25 Tessera, Inc. Multiple die face-down stacking for two or more die
US8970028B2 (en) 2011-12-29 2015-03-03 Invensas Corporation Embedded heat spreader for package with multiple microelectronic elements and face-down connection
US8928153B2 (en) 2011-04-21 2015-01-06 Tessera, Inc. Flip-chip, face-up and face-down centerbond memory wirebond assemblies
US8304881B1 (en) 2011-04-21 2012-11-06 Tessera, Inc. Flip-chip, face-up and face-down wirebond combination package
US9013033B2 (en) 2011-04-21 2015-04-21 Tessera, Inc. Multiple die face-down stacking for two or more die
US8502390B2 (en) 2011-07-12 2013-08-06 Tessera, Inc. De-skewed multi-die packages
US8436457B2 (en) 2011-10-03 2013-05-07 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
US8723327B2 (en) 2011-10-20 2014-05-13 Invensas Corporation Microelectronic package with stacked microelectronic units and method for manufacture thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941033A (en) 1988-12-27 1990-07-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
US5148266A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5347159A (en) 1990-09-24 1994-09-13 Tessera, Inc. Semiconductor chip assemblies with face-up mounting and rear-surface connection to substrate
US5679977A (en) 1990-09-24 1997-10-21 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US6703713B1 (en) * 2002-09-10 2004-03-09 Siliconware Precision Industries Co., Ltd. Window-type multi-chip semiconductor package
US20050181544A1 (en) 2003-12-30 2005-08-18 Tessera, Inc. Microelectronic packages and methods therefor
US20070218689A1 (en) * 2006-03-17 2007-09-20 Stats Chippac Ltd. Stacked integrated circuit package-in-package system
KR20110041843A (en) 2009-10-16 2011-04-22 엘지전자 주식회사 Hybrid storage device and operating method for the same

Also Published As

Publication number Publication date
US20180025967A1 (en) 2018-01-25
TW201546986A (en) 2015-12-16
JP2014512688A (en) 2014-05-22
BR112013027142A2 (en) 2017-01-10
US20150115477A1 (en) 2015-04-30
CN103620778B (en) 2017-05-17
KR20140027998A (en) 2014-03-07
TWI505420B (en) 2015-10-21
US9806017B2 (en) 2017-10-31
KR102005830B1 (en) 2019-07-31
US8928153B2 (en) 2015-01-06
EP2700100A1 (en) 2014-02-26
CN103620778A (en) 2014-03-05
US20120267796A1 (en) 2012-10-25
TW201248812A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
US9806017B2 (en) Flip-chip, face-up and face-down centerbond memory wirebond assemblies
US9093291B2 (en) Flip-chip, face-up and face-down wirebond combination package
US9281295B2 (en) Embedded heat spreader for package with multiple microelectronic elements and face-down connection
US9875955B2 (en) Low cost hybrid high density package
US9312239B2 (en) Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics
JP2013546199A (en) Improved stacked microelectronic assembly with central contact and improved ground or power distribution
WO2006106569A1 (en) Stacked type semiconductor device and method for manufacturing same
US8872318B2 (en) Through interposer wire bond using low CTE interposer with coarse slot apertures
US9543277B1 (en) Wafer level packages with mechanically decoupled fan-in and fan-out areas
JP2001156248A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12714917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012714917

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137030219

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013027142

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013027142

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131021