WO2012144168A1 - 投写レンズおよびこれを用いた投射型表示装置 - Google Patents

投写レンズおよびこれを用いた投射型表示装置 Download PDF

Info

Publication number
WO2012144168A1
WO2012144168A1 PCT/JP2012/002537 JP2012002537W WO2012144168A1 WO 2012144168 A1 WO2012144168 A1 WO 2012144168A1 JP 2012002537 W JP2012002537 W JP 2012002537W WO 2012144168 A1 WO2012144168 A1 WO 2012144168A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
conditional expression
projection lens
light
Prior art date
Application number
PCT/JP2012/002537
Other languages
English (en)
French (fr)
Inventor
山本 力
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280019218.0A priority Critical patent/CN103492923B/zh
Priority to JP2013510867A priority patent/JP5795363B2/ja
Publication of WO2012144168A1 publication Critical patent/WO2012144168A1/ja
Priority to US14/054,864 priority patent/US8947792B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Definitions

  • the present invention relates to a projection lens that enlarges and projects an image formed on a reduction-side conjugate surface onto a magnification-side conjugate surface, and a projection display device using the same.
  • Patent Documents 1, 2, and 3 As a projection lens constituting such a compact projector having excellent portability, a projection lens having a particularly small number of constituent lenses is known (see Patent Documents 1, 2, and 3).
  • Patent Document 1 has a small angle of view of about 25 ° to 30 °, and the size of the projected image when projected from a short distance cannot be said to be sufficiently large. Further, it cannot be said that a sufficient space for performing color composition or separating the illumination light and the projection light (reduction-side back focus of the projection lens) is secured. Furthermore, when considering portability, it is necessary to reduce the size of the light valve, but there is a problem that such a point is not considered.
  • the projection lenses described in Patent Document 2 and Patent Document 3 are known as projection lenses with improved angle of view and back focus.
  • the inclination of the reduction-side representative light beam (bisecting angle line described later) indicating the reduction-side telecentricity with respect to the optical axis is 11 ° to 15 °, and the telecentricity is insufficient. Yes.
  • telecentric on the reduction side refers to a light beam emitted from an arbitrary point on the reduction-side conjugate plane and converges on the enlargement-side conjugate plane, in each beam cross section of the beam emitted from the reduction-side conjugate plane.
  • the bisector is nearly parallel to the optical axis, and is completely telecentric, that is, if the bisector is completely parallel to the optical axis. It is not limited, and includes cases where there are some errors.
  • the case where there is a slight error is a case where the inclination of the bisector with respect to the optical axis is within a range of ⁇ 5 °.
  • the light beam cross section is a cross section cut along a plane passing through the optical axis.
  • the bisector is a bisector that divides the divergence angle in each light beam section emitted from the conjugate plane on the reduction side into two equal angles.
  • the present invention has been made in view of the above circumstances, and provides a telecentric projection lens and a projection display device using the same on the reduction side that are small, light, low-cost and excellent in portability.
  • the projection lens of the present invention is a projection lens for enlarging and projecting an image formed on a reduction-side conjugate surface onto an enlargement-side conjugate surface, and has a positive power in which at least one surface is an aspheric surface in order from the enlargement side.
  • a first lens having a concave surface on the enlargement side and having a negative power
  • a third lens having a convex surface on the reduction side and having a positive power
  • a fourth lens having a positive power.
  • conditional expression (D): ⁇ d1 ⁇ 35 is satisfied at the same time.
  • Bf is the air equivalent back focus on the reduction side
  • f is the focal length of the entire lens system
  • f1 is the focal length of the first lens
  • Nd1 is the refractive index with respect to the d-line of the first lens
  • ⁇ d1 is the d-line of the first lens.
  • the fourth lens has at least one aspherical surface, the outer periphery of the fourth lens has a non-circular shape, and conditional expressions (E): Nd4 ⁇ 1.6, (F): 40 ⁇ d4. It is desirable to satisfy at the same time.
  • Nd4 is a refractive index with respect to the d-line of the fourth lens
  • ⁇ d4 is an Abbe number based on the d-line of the fourth lens.
  • the projection lens is provided with an opening between the first lens and the second lens that limits the range through which the light beam emitted from the conjugate surface on the reduction side passes.
  • the projection lens preferably satisfies the conditional expression (G): 20 ⁇ S / OBJ ⁇ 65 and (H): 2.5 ⁇ / S ⁇ 10.0 simultaneously.
  • S is the maximum length (inches) of the image (projected image) projected onto the enlargement-side conjugate plane
  • OBJ is the projection distance (m) of the image (projection image) projected onto the enlargement-side conjugate plane
  • the projection lens satisfies the conditional expression (I): IH> TH.
  • IH is the maximum light beam height on the reduction-side conjugate plane
  • TH is the maximum effective light beam height in lenses other than the lens arranged on the most reduction side.
  • the projection display device of the present invention includes a light source, a light valve, an illumination optical unit that guides a light beam from the light source to the light valve, and the projection lens, and modulates the light beam from the light source with the light valve, The light-modulated light beam is projected through a projection lens.
  • the projection display device may be a single plate system having only one light valve.
  • the first lens having positive power in which at least one surface is an aspheric surface
  • the second lens having concave and negative power on the magnifying side
  • the convex side being positive on the reduction side
  • a third lens having a power and a fourth lens having a positive power are arranged, and the telescopic lens is made to be telecentric on the reduction side
  • conditional expression (D) The four conditional expressions ⁇ d1 ⁇ 35 are satisfied at the same time, so that this projection lens is compact, lightweight, low cost and excellent in portability. be able to.
  • conditional expression (A): 0.8 ⁇ Bf / f defines the back focus.
  • Conditional expression (B): 1.1 ⁇ f1 / f ⁇ 1.6 defines the ratio of the focal length of the first lens to the focal length of the entire lens system.
  • Conditional expression (D): ⁇ d1 ⁇ 35 defines the Abbe number of the first lens. If the projection lens is configured to exceed the upper limit of the conditional expression (D), there arises a problem that it becomes difficult to correct chromatic aberration.
  • the projection lens of the present invention can be made compact, lightweight, low-cost, excellent in portability, and telecentric on the reduction side without deteriorating optical performance.
  • the projection display apparatus of the present invention by using the projection lens of the present invention as described above, the apparatus can be made compact, lightweight, low cost and excellent in portability.
  • FIG. 5 is a diagram showing various aberrations of the projection lens of Example 1.
  • FIG. 6 is a diagram showing various aberrations of the projection lens of Example 2.
  • FIG. 6 is a diagram showing various aberrations of the projection lens of Example 3.
  • Sectional drawing showing a three-plate projection light modulator having three light valves Sectional view showing a single-plate projection light modulator having only one light valve
  • the figure which shows the example (a) of non-circular shape The figure which shows the example (b) of non-circular shape
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a projection lens of the present invention and a projection display device using the projection lens.
  • the projection lens 100 of the present invention shown in FIG. 1 has an image (image information) G formed on a reduction-side conjugate surface (conjugate position) Cps (that is, on the image forming surface 11m of the light valve 11 as a display element). Is a small projection lens that magnifies and projects the image on the enlargement side conjugate plane (conjugate position) Cpk (that is, on the screen 1).
  • the projection lens 100 has a positive power in which at least one surface (that is, one of the lens surface J1 and the lens surface J2) is aspherical in order from the enlargement side (the arrow Z side in the figure).
  • 1 lens L1 a second lens L2 having a negative power on the enlargement side lens surface J3, a third lens L3 having a positive power on the reduction side lens surface J6, and a fourth lens having a positive power.
  • L4 is arranged and consists of only four lenses.
  • the projection lens 100 is configured to be telecentric on the reduction side, and further, conditional expression (A): 0.8 ⁇ Bf / f, conditional expression (B): 1.1 ⁇ f1 / f. ⁇ 1.6, conditional expression (C): Nd1 ⁇ 1.7, and conditional expression (D): ⁇ d1 ⁇ 35 are satisfied at the same time.
  • conditional expression (A): 0.8 ⁇ Bf / f, conditional expression (B): 1.1 ⁇ f1 / f. ⁇ 1.6, conditional expression (C): Nd1 ⁇ 1.7, and conditional expression (D): ⁇ d1 ⁇ 35 are satisfied at the same time.
  • Bf is the air equivalent back focus on the reduction side of the projection lens 100
  • f1 is the focal length of the entire system of the projection lens 100
  • f1 is the focal length of the first lens L1
  • Nd1 is the refractive index of the first lens L1 with respect to the d-line.
  • the air equivalent back focus is the thickness of the optical member such as a filter or a cover glass when the optical member such as a filter or a cover glass is arranged between the lens surface arranged on the most reduction side and the conjugate surface on the reduction side. It is determined in terms of air.
  • the projection lens 100 satisfies the conditional expression (B ′): 1.2 ⁇ f1 / f ⁇ 1.5 in which the range is more limited than the conditional expression (B): 1.1 ⁇ f1 / f ⁇ 1.6. It is desirable to satisfy the condition, and it is desirable to satisfy the condition (D ′): ⁇ d1 ⁇ 30 in which the range is more limited than the conditional expression (D): ⁇ d1 ⁇ 35.
  • the projection lens 100 satisfies the conditional expression (A ′): 0.8 ⁇ Bf / f ⁇ 1.2, or satisfies the conditional expression (C ′): 1.5 ⁇ Nd1 ⁇ 1.7.
  • Conditional expression (D ′′): 17 ⁇ d1 ⁇ 35 may be satisfied.
  • the fourth lens L4 has at least one surface (either one of the lens surface J7 or the lens surface J8) as an aspherical surface and an outer periphery with a noncircular shape. Further, conditional expression (E): Nd4 ⁇ 1.6 and conditional expression (F): 40 ⁇ d4 can be satisfied at the same time.
  • Nd4 is the refractive index of the fourth lens L4 with respect to the d-line
  • ⁇ d4 is the Abbe number with respect to the d-line of the fourth lens L4.
  • the fourth lens L4 satisfies the conditional expression (F ′): 50 ⁇ d4 in which the range is more limited than the above (F): 40 ⁇ d4.
  • the fourth lens L4 can satisfy the conditional expression (E ′): 1.4 ⁇ Nd4 ⁇ 1.6, or can satisfy (F ′′): 40 ⁇ d4 ⁇ 85. .
  • the non-circular shape of the outer periphery of the fourth lens L4 means that the lens shape when viewed from the optical axis Z1 direction is various shapes different from the circular shape. That is, “the lens is non-circular” means that the shape of the lens viewed from the direction of the optical axis Z1 does not form a circular shape.
  • the lens shape when viewed from the optical axis Z1 direction is a so-called D-cut obtained by cutting one arcuate region (region located in the ⁇ Y direction) from the circular shape (FIG. 9A).
  • D-cut obtained by cutting one arcuate region (region located in the ⁇ Y direction) from the circular shape (FIG. 9A).
  • a shape obtained by further cutting one arcuate region (region located in the ⁇ X direction) from the shape shown in FIG. 9B see the non-circular shape (c) shown in FIG. 9C) or the like can be employed.
  • region shown with the broken line in the 4th lens L4 shown in FIG. 1 is the part cut into non-circular shape like the non-circular shape (b) shown in the said FIG. 9B (Two arcuate area
  • the fourth lens L4 a non-circular shape including the effective light beam passage region, an unnecessary lens portion (the effective light beam does not pass through) of the fourth lens L4 having the highest maximum effective light beam height is obtained. It is possible to prevent the lens from having an excessively large outer diameter.
  • an opening Ko having an opening that restricts a range through which a light beam emitted from the conjugate surface Cps on the reduction side passes.
  • the “aperture” only needs to have a function of restricting the passage of the light beam, and includes a variable aperture.
  • the projection lens 100 can satisfy the conditional expression (G): 20 ⁇ S / OBJ ⁇ 65 and (H): 2.5 ⁇ / S ⁇ 10.0 simultaneously.
  • S is the maximum length (inches) of the image G projected onto the enlargement-side conjugate plane Cpk
  • OBJ is the projection distance (m) of the image G projected onto the enlargement-side conjugate plane Cpk
  • is the enlargement-side conjugate plane Cpk. This is the magnification of the image G projected on the conjugate plane Cpk.
  • the “maximum length” means a distance between two points at which the interval is maximum in the projection area on the enlargement-side conjugate plane Cpk on which the image G is projected.
  • the conjugate plane Cpk When the image G projected on the screen is rectangular or square, it is determined as the diagonal length.
  • the projection distance of the image G is determined from the surface apex P1 (the point where the lens surface J1 and the optical axis Z1 intersect) on the lens surface J1 on the enlargement side of the first lens L1, which is the lens surface disposed on the most enlargement side. This is the distance to the conjugate plane Cpk on the enlargement side.
  • the projection lens 100 satisfies the conditional expression (I): IH> TH.
  • IH is the maximum image height of the image G formed on the reduction-side conjugate plane Cps
  • TH is the maximum effective light beam height in lenses other than the fourth lens arranged on the most reduction side.
  • the maximum effective luminous flux height in the lens other than the fourth lens is the height of the effective luminous flux that passes through the third lens L3, the second lens L2, and the first lens L1 (lenses other than the fourth lens L4) ( This is the maximum value of the distance from the optical axis Z1.
  • conditional expressions (A) to (D) have already been described, they will be omitted, and conditional expressions (E) to (I) will be described.
  • conditional expression (F): 40 ⁇ d4 defines the Abbe number based on the d-line of the fourth lens L4. If the lower limit of conditional expression (F) is not reached, there is a problem that it becomes difficult to correct chromatic aberration.
  • conditional expression (G): 20 ⁇ S / OBJ ⁇ 65 defines the size of the projected image with respect to the projection distance. If the projection lens 100 is configured so as to be out of the range of the conditional expression (G), it is difficult to project so as to satisfy an appropriate projection image size and an appropriate projection distance.
  • conditional expression (H): 2.5 ⁇ / S ⁇ 10.0 defines the ratio of the size of the projected image to the magnification of the projected image.
  • the above conditional expression (I): IH> TH defines the maximum effective luminous flux height. If the above conditional expression (I) is not satisfied, the third lens L3, the second lens L2, the first lens L1, and the like are more likely to be non-circular in order to suppress the increase in size of the device, so that the cost is low. And weight reduction becomes difficult.
  • the projection display device 200 equipped with the projection lens 100 includes a light source 20, a light valve 11, a projection light modulation unit 300 including an illumination optical unit 25 that guides a light beam from the light source 20 to the light valve 11, and the like.
  • the projection lens 100, and the light beam 20 guided from the light source 20 is light-modulated through the light valve 11 on which the image G is formed, and the screen 1 is arranged on the enlargement conjugate plane Cpk through the projection lens 100.
  • the projected image is enlarged.
  • a light beam provided with image information indicating an image G formed on the image forming surface 11 m of the light valve 11 constitutes a projection light modulation unit 300.
  • the light enters the projection lens 100 through various filters such as a low-pass filter and an infrared cut filter, a cover glass of a light valve, a glass block (indicated by reference numeral 2ab in the figure), and the like.
  • the projected image is enlarged and projected on the screen 1 arranged in Cpk.
  • color synthesizing means such as a cross dichroic prism, a DMD prism for separating illumination light and projection light, an LCOS PBS, and the like can be arranged. is there.
  • the projection display device 200 can be a single-plate system having only one light valve 11 or a multi-panel system having a plurality of light valves 11.
  • FIG. 8A is an enlarged view showing a three-plate projection light modulation section
  • FIG. 8B is an enlarged view showing a single-plate projection light modulation section.
  • the projection light modulation unit 300 when the projection display device 200 is a three-plate system, the projection light modulation unit 300 includes a light source 20, transmissive liquid crystal panels 11a, 11b, and 11c that are light valves, and a light source 20.
  • the illumination optical unit 25 guides the luminous flux emitted from each of the transmissive liquid crystal panels 11a to 11c, and the cross dichroic prism 14 which is a luminous flux synthesis optical system for synthesizing the luminous fluxes that have passed through the transmissive liquid crystal panels 11a to 11c. Can be.
  • the illumination optical unit 25 can include an integrator 19 such as a fly eye disposed between the light source 20 and the dichroic mirror 12.
  • the white light beam emitted from the light source 20 is color-separated into three types of light beams (G light, B light, and R light) through the illumination optical unit 25, and enters each of the liquid crystal panels 11a to 11c corresponding to each color.
  • the light is modulated.
  • the light beams modulated through the liquid crystal panels 11a to 11c are color-combined by the cross dichroic prism 14 and then projected onto the screen 1 through the projection lens 100.
  • the illumination optical unit 25 of the projection light modulation unit 300 includes dichroic mirrors 12 and 13 for color separation, total reflection mirrors 18a, 18b, and 18c, condenser lenses 16a, 16b, and 16c, and the like. .
  • the light modulation unit 300 for projection is not limited to the above-described mode using the transmission type liquid crystal display panel, and other light modulation means such as a reflection type liquid crystal display panel or DMD can be adopted. It is.
  • the liquid crystal panel 11t which is a light valve, is a single plate
  • the projection light modulation unit 300 includes a light source 20 composed of LEDs that emit RGB colors
  • One transmissive liquid crystal panel 11t and an illumination optical unit 25 having a condenser lens 16 that guides a light beam emitted from the light source 20 to the transmissive liquid crystal panel 11t may be provided.
  • the illumination optical unit 25 can include an integrator 19 such as a fly eye disposed between the light source 20 and the dichroic mirror 12.
  • an image corresponding to each color of RGB is sequentially displayed on one transmissive liquid crystal panel 11t, and in synchronism with this, a light beam having a corresponding color is output from the light source 20 composed of LEDs of each color of RGB.
  • the RGB light beams sequentially emitted from the light source 20 are passed through the illumination optical unit 25 and light modulated by the liquid crystal panel 11t on which an image synchronized with the light emission of each RGB color is formed, and light modulated through the liquid crystal panel 11t.
  • a light beam carrying a frame sequential color image can be enlarged and projected onto the screen 1 through the projection lens 100.
  • FIG. 2 is a cross-sectional view showing the projection lens of Example 1.
  • the first lens L1 which is a double-sided aspherical lens having a biconvex shape on the optical axis Z, in order from the enlargement side, the opening Ko, and a flat surface in which the enlargement-side lens surface forms a concave surface.
  • a second lens L2 that is a concave lens
  • a third lens L3 that is a positive meniscus lens with a convex surface facing the reduction side
  • a fourth lens L4 that is a double-sided aspheric lens that forms a biconvex shape on the optical axis Z are arranged. It will be.
  • a projection light modulator is disposed on the reduction side of the projection lens 101. More specifically, a glass block 2a, a cover glass 2b, and a light valve 11 are arranged in order from the enlargement side.
  • a light beam representing the image formed on the image forming surface 11m of the light valve 11 enters the projection lens through the cover glass 2b and the glass block 2a. Through this projection lens, it is projected on the enlargement side.
  • the glass block 2a and the like can be omitted.
  • the projection lens 101 is configured to satisfy all the conditional expressions (A) to (I) as shown in Table 4 to be described later.
  • Table 1 below shows basic data of the projection lens 101 of Example 1.
  • the upper part of Table 1 shows lens data, and the lower part shows aspherical coefficients.
  • the * mark added to the surface number of the lens data indicates that the surface is an aspherical surface.
  • the focal length (mm) of the entire lens system is shown in the lower part of the upper stage of Table 1.
  • Optical element (optical member) that sequentially increases from the enlargement side toward the reduction side.
  • ⁇ dj represents the Abbe number based on the d-line of the j-th optical element (optical member).
  • the curvature radius is positive when convex on the enlargement side and negative when convex on the reduction side.
  • the aspheric coefficient shown in the lower part of Table 1 is created so as to determine the aspheric shape by applying to the following aspheric expression.
  • FIG. 3 is a sectional view showing the projection lens of Example 2.
  • the projection lens 102 of Example 2 constitutes, in order from the magnification side, the first lens L1, which is a double-sided aspheric lens having a biconvex shape on the optical axis Z, the opening Ko, and the magnification side lens in the cemented lens.
  • the second lens L2, the third lens L3 constituting the reduction lens of the cemented lens, and the fourth lens L4, which is a double-sided aspheric lens having a biconvex shape on the optical axis Z, are arranged.
  • FIG. 3 shows a state where only the glass block 2 a is arranged on the reduction side of the projection lens 102.
  • the projection lens 102 is configured to satisfy all the conditional expressions (A) to (I) as shown in Table 4 to be described later.
  • Table 2 below shows basic data of the projection lens 102 of Example 2.
  • the upper part of Table 2 shows lens data, and the lower part shows aspherical coefficients.
  • FIG. 4 is a sectional view showing the projection lens of Example 3.
  • the projection lens 103 according to the third embodiment includes, in order from the enlargement side, a first lens L1 that is a double-sided aspheric lens having a biconvex shape on the optical axis Z, an opening Ko, and a negative meniscus with a concave surface facing the enlargement side.
  • FIG. 4 shows a state where only the glass block 2 a is arranged on the reduction side of the projection lens 103.
  • the projection lens 102 is configured to satisfy all the conditional expressions (A) to (I) as shown in Table 4 to be described later.
  • Table 3 below shows basic data of the projection lens 103 of Example 3.
  • the upper part of Table 3 shows lens data, and the lower part shows aspherical coefficients.
  • FIGS. 5 to 7 are aberration diagrams showing various aberrations (spherical aberration, astigmatism, distortion and lateral chromatic aberration) of the projection lenses according to Examples 1 to 3.
  • FIGS. In these aberration diagrams ⁇ indicates a half angle of view, the aberration diagram of spherical aberration shows aberration curves of d-line, F-line and C-line, and the aberration diagram of lateral chromatic aberration shows F-line (dotted line: The same is true for the following, and the aberration curves for the C-line (two-dot chain line: the same applies hereinafter) are shown.
  • FIGS. 5 to 8 in the projection lenses according to Examples 1 to 4, each aberration including distortion and lateral chromatic aberration is well corrected.
  • the projection lens according to the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the curvature radius R and the lens interval (or lens thickness) D of each lens can be changed as appropriate. Is possible.
  • the projection display device of the present invention is not limited to the one having the above configuration, and various device configurations including the projection lens of the present invention are possible.
  • the light valve for example, a transmissive or reflective liquid crystal display element, or a micro mirror element in which a large number of micro mirrors capable of changing the inclination are formed on a substantially flat surface (for example, manufactured by Texas Instruments). Digital micromirror device) can be used.
  • the illumination optical system an appropriate configuration corresponding to the type of light valve can be adopted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

投写レンズにおいて、小型・軽量・低コストで携帯性に優れたものとする。拡大側から順に、少なくとも1面が非球面からなる正のパワーを有する第1レンズL1、拡大側が凹面で負のパワーを有する第2レンズL2、縮小側が凸面で正のパワーを有する第3レンズL3、正のパワーを有する第4レンズL4を配し、縮小側にテレセントリックとなるようにするとともに、条件式(A):0.8<Bf/f、条件式(B):1.1<f1/f<1.6、条件式(C):Nd1<1.7、条件式(D):νd1<35を同時に満足するように構成して、縮小側の共役面Cpsに形成された画像が拡大側の共役面Cpkへ拡大投写されるようにする。

Description

投写レンズおよびこれを用いた投射型表示装置
 本発明は、縮小側の共役面に形成された画像を拡大側の共役面へ拡大投写する投写レンズおよびこれを用いた投射型表示装置に関するものである。
 従来より、液晶などを用いた透過型・反射型ライトバルブや、配列された微小ミラーを偏向させ光を変調するDMDを用いた小型の投写レンズおよびこれを用いた投射型表示装置(プロジェクタともいう)が知られている。
 また、近年、そのようなプロジェクタの市場はパソコンの普及にともなって拡大しており、ライトバルブの小型化や光源の高効率化などを背景に携帯性に優れた小型のプロジェクタの製品化も要請されている。
 そのような携帯性に優れた小型のプロジェクタを構成する投写レンズとして、特に構成レンズ枚数を少なくしたものが知られている(特許文献1、2、3参照)。
特開2004-361651号公報 特開2010-97078号公報 特開2010-175832号公報
 しかしながら、特許文献1に記載のプロジェクタは、画角が25°~30°程度と小さく、近距離から投写する時の投写画像のサイズが十分な大きさとは言えない。また、色合成を行ったり照明光と投写光の分離を行ったりするためのスペース(投写レンズの縮小側バックフォーカス)が十分に確保されているとは言えない。さらに、携帯性を考慮した場合、ライトバルブのサイズも小さくする必要があるが、そのような点について考慮されていないという問題がある。
 また、画角やバックフォーカスを改善した投写レンズとして特許文献2や特許文献3に記載の投写レンズが知られている。しかしながら、これらの投写レンズは、小型化しつつレンズを明るくするために重要となる第1レンズの非球面化について十分に考慮されたものとは言えない。より具体的には、例えば、第1レンズの非球面化について、低コスト化や軽量化等の考慮が不足している。さらに、特許文献2では、縮小側のテレセントリック性を示す縮小側代表光線(後述する2等分角線)の光軸に対する傾きが11°~15°でありテレセントリック性が不十分なものになっている。
 なお、縮小側にテレセントリックとは、縮小側の共役面上の任意の点から発せられて拡大側の共役面上に収束する光束に関し、縮小側の共役面上から発せられる光束の各光束断面における2等分角線が光軸に対して平行に近い状態であることを意味するものであり、完全にテレセントリックな場合、すなわち上記2等分角線が光軸に対して完全に平行な場合に限るものではなく、多少の誤差がある場合をも含むものを意味する。ここで多少の誤差がある場合とは、光軸に対する前記2等分角線の傾きが±5°の範囲内の場合である。
 上記光束断面は、光軸を通る平面で切断される断面である。また、2等分角線は、縮小側の共役面上から発せられる各光束断面における拡がり角を等しい角度に二つに分ける2等分線である。
 本発明は、上記事情に鑑みてなされたものであり、小型・軽量・低コストで携帯性に優れた縮小側にテレセントリックな投写レンズおよびこれを用いた投写型表示装置を提供するものである。
 本発明の投写レンズは、縮小側の共役面に形成された画像を拡大側の共役面へ拡大投写する投写レンズであって、拡大側から順に、少なくとも1面が非球面からなる正のパワーを有する第1レンズ、拡大側が凹面で負のパワーを有する第2レンズ、縮小側が凸面で正のパワーを有する第3レンズ、正のパワーを有する第4レンズのみを配して構成され、縮小側にテレセントリックであり、条件式(A):0.8<Bf/f、条件式(B):1.1<f1/f<1.6、条件式(C):Nd1<1.7、条件式(D):νd1<35を同時に満足することを特徴とするものである。ただし、Bfは縮小側の空気換算バックフォーカス、fはレンズ全系の焦点距離、f1は第1レンズの焦点距離、Nd1は第1レンズのd線に対する屈折率、νd1は第1レンズのd線を基準としたアッベ数である。
 前記第4レンズは、少なくとも1面が非球面からなり、第4レンズの外周部の輪郭が非円形形状であり、さらに条件式(E):Nd4<1.6、(F):40<νd4を同時に満足するものとすることが望ましい。ただし、Nd4は第4レンズのd線に対する屈折率、νd4は第4レンズのd線を基準としたアッベ数である。
 前記投写レンズは、第1レンズと第2レンズとの間に、縮小側の共役面から発せられた光束を通す範囲を制限する開口が設けられたものとすることが望ましい。
 前記投写レンズは、条件式(G):20<S/OBJ<65、(H):2.5<β/S<10.0を同時に満足するものとすることが望ましい。ただし、Sは拡大側の共役面に投写される画像(投写画像)の最大長さ(インチ)、OBJは拡大側の共役面へ投写される画像(投写画像)の投写距離(m)、βは拡大側の共役面へ投写される画像(投写画像)の拡大倍率である。
 前記投写レンズは、条件式(I):IH>THを満足するものとすることが望ましい。ただし、IHは縮小側の共役面における最大光線高、THは最も縮小側に配置されたレンズ以外のレンズにおける最大有効光束高さである。
 本発明の投写型表示装置は、光源と、ライトバルブと、光源からの光束をライトバルブへ導く照明光学部と、前記投写レンズとを備え、光源からの光束をライトバルブで光変調し、その光変調された光束を投写レンズに通して投写することを特徴とするものである。
 前記投写型表示装置は、ライトバルブを1つのみ備えた単板方式からなるものとすることができる。
 本発明の投写レンズによれば、拡大側から順に、少なくとも1面が非球面からなる正のパワーを有する第1レンズ、拡大側が凹面で負のパワーを有する第2レンズ、縮小側が凸面で正のパワーを有する第3レンズ、正のパワーを有する第4レンズのみを配して構成し、さらに、縮小側にテレセントリックとなるように、かつ、条件式(A):0.8<Bf/f、条件式(B):1.1<f1/f<1.6、条件式(C):Nd1<1.7
・・・(C)、および条件式(D):νd1<35の4つの条件式を同時に満足するようにしたので、この投写レンズを小型・軽量・低コストで携帯性に優れたものとすることができる。
 すなわち、条件式(A):0.8<Bf/fは、バックフォーカスを規定するものである。この条件式(A)を満足するように上記投写レンズを構成することにより、縮小側のバックフォーカスを確保することができ、これにより、照明光と投影光の分離や、互いに異なる色を表す光の合成等が容易となる。
 また、条件式(B):1.1<f1/f<1.6は、レンズ全系の焦点距離に対する第1レンズの焦点距離の比率を規定するものである。条件式(B)を満足するように上記投写レンズを構成することにより、拡大側に配されているレンズのパワーを強くしても性能を低下させないようにすることができる。一方、条件式(B)の下限を下回ると、縮小側のバックフォーカスの確保が難しくなるとともに、収差の補正が難しくなるという問題が生じる。
 また、条件式(C):Nd1<1.7は、第1レンズの屈折率を規定するものである。条件式(C)の上限を上回るように投写レンズを構成すると、第1レンズにプラスチックレンズを適用することが難しくなるため、この投写レンズの低コスト化および軽量化が難しくなる。
 また、条件式(D):νd1<35は、第1レンズのアッベ数を規定するものである。条件式(D)の上限を上回るように投写レンズを構成すると、色収差の補正が難しくなるという問題が生じる。
 上記のようなことにより、本発明の投写レンズを、光学性能を低下させることなく、小型・軽量・低コストで携帯性に優れ縮小側にテレセントリックなものとすることができる。
 また、本発明の投写型表示装置によれば、上記のような本発明の投写レンズを用いることにより、この装置を、小型・軽量・低コストで携帯性に優れたものとすることができる。
本発明の実施の形態による投写レンズの概略構成を示す断面図 実施例1の投写レンズの概略構成を示す断面図 実施例2の投写レンズの概略構成を示す断面図 実施例3の投写レンズの概略構成を示す断面図 実施例1の投写レンズの諸収差を示す図 実施例2の投写レンズの諸収差を示す図 実施例3の投写レンズの諸収差を示す図 ライトバルブを3つ有する3板方式の投写用光変調部を示す断面図 ライトバルブを1つのみ有する単板方式の投写用光変調部を示す断面図 非円形形状の例(a)を示す図 非円形形状の例(b)を示す図 非円形形状の例(c)を示す図
 以下、本発明の投写レンズおよびこの投写レンズを用いた投写型表示装置について図面を参照して説明する。
 図1は、本発明の投写レンズおよびこの投写レンズを用いた投写型表示装置の概略構成を示す断面図である。
 図1に示す本発明の投写レンズ100は、縮小側の共役面(共役位置)Cps上(すなわち、表示素子であるライトバルブ11の画像形成面11m上)に形成された画像(画像情報)Gを拡大側の共役面(共役位置)Cpk上(すなわち、スクリーン1上)に拡大投写する小型の投写レンズである。
 この投写レンズ100は、拡大側(図中矢印-Z方向の側)から順に、少なくとも1面(すなわち、レンズ面J1またはレンズ面J2のいずれか一方)が非球面である正のパワーを有する第1レンズL1、拡大側のレンズ面J3が凹面で負のパワーを有する第2レンズL2、縮小側のレンズ面J6が凸面で正のパワーを有する第3レンズL3、正のパワーを有する第4レンズL4を配して構成したものであり、4枚のレンズのみからなるものである。
 上記投写レンズ100は、縮小側にテレセントリックとなるように構成されたものであり、さらに、条件式(A):0.8<Bf/f、条件式(B):1.1<f1/f<1.6、条件式(C):Nd1<1.7、および条件式(D):νd1<35を同時に満足するものである。ただし、Bfは投写レンズ100における縮小側の空気換算バックフォーカス、fは投写レンズ100の全系の焦点距離、f1は第1レンズL1の焦点距離、Nd1は第1レンズL1のd線に関する屈折率、νd1は第1レンズL1のd線を基準としたアッベ数である。
 なお、空気換算バックフォーカスは、最も縮小側に配されたレンズ面から縮小側の共役面までの間にフィルタやカバーガラス等の光学部材が配されている場合に、それらの光学部材の厚みを空気換算して定められるものである。
 なお、投写レンズ100は、上記条件式(B):1.1<f1/f<1.6よりも範囲を限定した条件式(B′):1.2<f1/f<1.5を満足するものとすることが望ましく、また、上記条件式(D):νd1<35よりも範囲を限定した条件式(D′):νd1<30を満足するものとすることが望ましい。
 なお、投写レンズ100は、条件式(A′):0.8<Bf/f<1.2を満足したり、条件式(C′):1.5<Nd1<1.7を満足したり、条件式(D″):17<νd1<35を満足したりするものとすることができる。
 また、第4レンズL4は、少なくとも1面(レンズ面J7またはレンズ面J8のいずれか一方)を非球面とし、かつ、外周部の輪郭を非円形形状とし、さらに条件式(E):Nd4<1.6、および条件式(F):40<νd4を同時に満足するものとすることができる。ただし、Nd4は第4レンズL4のd線に関する屈折率、νd4は第4レンズL4のd線を基準としたアッベ数である。
 この第4レンズL4は、上記(F):40<νd4よりも範囲を限定した条件式(F′):50<νd4を満足するものとすることがより望ましい。
 また、第4レンズL4は、条件式(E′):1.4<Nd4<1.6を満足したり、(F″):40<νd4<85を満足したりするものとすることができる。
 なお、第4レンズL4の外周部の輪郭を非円形形状にするとは、光軸Z1方向から見たときのレンズ形状を円形形状とは異なる種々の形状とすることを意味する。すなわち、「レンズが非円形形状」とは、光軸Z1方向から見たレンズの形状が円形形状をなすものではないことを意味する。
 図9A、図9B、図9Cに上記非円形形状の例を示す。例えば、非円形形状として、光軸Z1方向から見たときのレンズ形状が、円形状から1つの弓形領域(-Y方向に位置する領域)を切り取った、いわゆるDカットを施したもの(図9Aに示す非円形形状(a)の図を参照)、または、円形状からY方向に対向する2つの弓形領域を切り取ったもの(図9Bに示す非円形形状(b)の図を参照)、この図9Bに示す形状からさらに1つの弓形領域(-X方向に位置する領域)を切り取ったもの(図9Cに示す非円形形状(c)の図を参照)等を採用することができる。
 なお、図1に示す第4レンズL4中の破線で示す領域は、上記図9Bに示す非円形形状(b)のように非円形形状にカットされた部分(Y方向に対向する2つの弓形領域)を示している。
 このように、第4レンズL4を、有効光束通過領域を含む非円形形状とすることにより、最大有効光束高さが最も高くなる第4レンズL4の不要な(有効光束が透過しない)レンズ部分を設けないようにし、レンズの外径が大きくなり過ぎるのを防止することができる。
 第1レンズL1と第2レンズL2との間には、縮小側の共役面Cpsから発せられた光束を通す範囲を制限する開口を備えた開口部Koを配置することができる。このような開口を設けることにより、縮小側のテレセントリック性を向上させることができる。
 なお、「開口」は、光束の通過を制限する機能を有していればよく、可変絞りも含むものである。
 また、投写レンズ100は、条件式(G):20<S/OBJ<65、および(H):2.5<β/S<10.0を同時に満足するものとすることができる。ただし、Sは拡大側の共役面Cpkへ投写される画像Gの最大長さ(インチ)、OBJは拡大側の共役面Cpkへ投写される画像Gの投写距離(m)、βは拡大側の共役面Cpkに投写される画像Gの拡大倍率である。
 なお、上記「最大長さ」は、画像Gが投射される拡大側の共役面Cpk上の投写領域中において間隔が最大となる2点間の距離を意味するものであり、例えば、共役面Cpkに投射される画像Gが長方形や正方形をなす場合には対角の長さとして定められるものである。
 また、画像Gの投写距離は、最も拡大側に配されたレンズ面である第1レンズL1の拡大側のレンズ面J1における面頂P1(レンズ面J1と光軸Z1とが交わる点)から、拡大側の共役面Cpkまでの距離である。
 さらに、投写レンズ100は、条件式(I):IH>THを満足するものとすることが望ましい。ただし、IHは縮小側の共役面Cpsに形成される画像Gの最大像高、THは最も縮小側に配置された第4レンズ以外のレンズにおける最大有効光束高さである。
 ここで、第4レンズ以外のレンズにおける最大有効光束高さは、第4レンズL4以外のレンズである、第3レンズL3、第2レンズL2、および第1レンズL1を通る有効光束の高さ(光軸Z1からの距離)の最大値である。
 以下、上記各条件式の技術的意義について説明する。なお、条件式(A)~(D)については既に説明済みなので省略し、条件式(E)~(I)について説明する。
 上記条件式(E):Nd4<1.6は、第4レンズL4のd線に関する屈折率を規定するものである。条件式(E)の上限を上回ると、第4レンズL4へのプラスチックレンズの適用が難しくなり、投写レンズ100および投写型表示装置200を低コスト化・軽量化することが難しくなる。
 上記条件式(F):40<νd4は、第4レンズL4のd線を基準にしたアッベ数を規定するものである。条件式(F)の下限を下回ると、色収差の補正が難しくなるという問題が生じる。
 上記条件式(G):20<S/OBJ<65は、投写距離に対する投写画像のサイズを規定するものである。上記条件式(G)の範囲から外れるように投写レンズ100を構成すると、適切な投写画像のサイズと適切な投写距離とを満たすように投写することが難しくなる。
 上記条件式(H):2.5<β/S<10.0は、投写画像の拡大倍率に対する投写画像のサイズの比率を規定するものである。条件式(H)を満足することにより、装置の大型化を抑制しつつ、照明効率の向上および画面の高精細化を図ることができる。
 上記条件式(I):IH>THは、最大有効光束高さを規定するものである。上記条件式(I)が満足されないと、第3レンズL3、第2レンズL2、および第1レンズL1なども装置の大型化を抑制するために非円形形状にする可能性が高まるため、低コスト化・軽量化が難しくなる。
 また、上記投写レンズ100を搭載した投写型表示装置200は、光源20、ライトバルブ11、その光源20からの光束をライトバルブ11へ導く照明光学部25等を備えた投写用光変調部300と、上記投写レンズ100とを備え、光源20から導かれた光束を、画像Gが形成されているライトバルブ11を介して光変調し投写レンズ100を通して拡大側の共役面Cpkに配されたスクリーン1へ拡大投写するものである。
 図1に示すように、この投写型表示装置200は、ライトバルブ11の画像形成面11m上に形成された画像Gを示す画像情報を与えられた光束が、投写用光変調部300を構成するローパスフィルタや赤外線カットフィルタ等の各種フィルタやライトバルブのカバーガラスやガラスブロック(図中符号2abで示す)等を介して、この投写レンズ100に入射され、この投写レンズ100により拡大側の共役面Cpkに配されたスクリーン1に拡大投写されるようになっている。
 なお、具体的には、上記ガラスブロックとして、クロスダイクロイックプリズム等の色合成手段や、照明光と投影光を分離するためのDMD用のプリズムやLCOS用のPBS等を配設することが可能である。
 また、上記投写型表示装置200は、1つのライトバルブ11のみを備えた単板方式からなるものとしたり、複数のライトバルブ11を備えた多板方式としたりすることができる。
 図8Aは3板方式の投写用光変調部を拡大して示す図、図8Bは単板方式の投写用光変調部を拡大して示す図である。
 図8Aに示すように、投写型表示装置200が3板方式の場合には、投写用光変調部300は、光源20と、ライトバルブである透過型液晶パネル11a、11b、11cと、光源20から発せられた光束を透過型液晶パネル11a~11cそれぞれへ導く照明光学部25と、透過型液晶パネル11a~11cを通った光束を合成する光束合成光学系であるクロスダイクロイックプリズム14とを備えたものとすることができる。なお、照明光学部25は、光源20とダイクロイックミラー12の間に配されたフライアイ等のインテグレータ19を有するものとすることができる。
 光源20から発せられた白色光の光束は照明光学部25を通して、3種類の色の光束(G光、B光、R光)に色分解され、各色に対応する液晶パネル11a~11cそれぞれに入射し光変調される。
 液晶パネル11a~11cを通して光変調された各光束は、クロスダイクロイックプリズム14により色合成された後、投写レンズ100を通ってスクリーン1に投写される。
 なお、この投写用光変調部300の照明光学部25には、色分解のためのダイクロイックミラー12、13、全反射ミラー18a、18b、18c、コンデンサレンズ16a、16b、16c等が配されている。
 投写用光変調部300は、上記のような透過型の液晶表示パネルを用いた態様に限られるものではなく、反射型の液晶表示パネルあるいはDMD等の他の光変調手段を採用することも可能である。
 また、よりコンパクト化を促進するためには、図8Bに示すように、ライトバルブである液晶パネル11tを単板とし、投写用光変調部300は、RGB各色を発するLEDよりなる光源20と、1つの透過型液晶パネル11tと、光源20から発せられた光束を透過型液晶パネル11tへ導くコンデンサレンズ16を有する照明光学部25とを備えたものとすることができる。なお、照明光学部25は、光源20とダイクロイックミラー12の間に配されたフライアイ等のインテグレータ19を有するものとすることができる。
 そして、RGB各色に対応した画像を順次1つの透過型液晶パネル11t上に表示させ、これと同期させて、RGB各色のLEDよりなる光源20から対応する色を持つ光束を出力させる。この光源20から順次発せられたRGB各色の光束を照明光学部25に通して、RGB各色の発光と同期した画像が形成される液晶パネル11tで光変調させ、この液晶パネル11tを通して光変調された面順次のカラー画像を担持した光束を、投写レンズ100に通してスクリーン1へ拡大投写させることができる。
 このようにライトバルブを単板とすることにより、上述した、色分解のためのダイクロイックミラー12、13、色合成のためのクロスダイクロイックプリズム14、全反射ミラー18a~18cなどを省略することが可能となる。
 以下、本発明に係る投写レンズの具体的な実施例について説明する。なお、各実施例において、互いに同様の作用効果を奏する構成要素については同一の符号を付し、重複する説明は省略する。
 図2は実施例1の投写レンズを示す断面図である。この実施例1の投写レンズ101は、拡大側から順に、光軸Z上で両凸形状をなす両面非球面レンズである第1レンズL1、開口部Ko、拡大側のレンズ面が凹面をなす平凹レンズである第2レンズL2、縮小側に凸面を向けた正のメニスカスレンズである第3レンズL3、光軸Z上で両凸形状をなす両面非球面レンズである第4レンズL4を配置してなるものである。
 なお、この図2においては、投写レンズ101の縮小側に、投写用光変調部が配置されている。より具体的には、拡大側から順に、ガラスブロック2a、カバーガラス2b、ライトバルブ11が配置されている。
 なお、投写レンズ101では、ライトバルブ11の画像形成面11mに形成された画像を表す光束(画像情報を与えられた光束)が、カバーガラス2bおよびガラスブロック2aを介して、投写レンズに入射し、この投写レンズを通して拡大側に投写されるようになっている。
 なお、1つのライトバルブのみを用いて投写型表示装置を構成する場合には、ガラスブロック2a等は省略可能である。
 さらに投写レンズ101は、後述する表4に示すように、上記条件式(A)~(I)を全て満足するように構成されている。
 下記表1に実施例1の投写用レンズ101の基本的なデータを示す。表1の上段にはレンズデータを、下段には非球面係数を示す。なお、レンズデータの面番号に付加した*印は、その面が非球面であることを示している。また、表1の上段の下部にレンズ全系の焦点距離(mm)を示す。なお、表1の上段に示すレンズデータに関し、曲率半径Riはi番目(i=1、2、3、・・・)の面の曲率半径(mm)を示し、面間隔Di(i=1、2、3、・・・)はi番目の面とi+1番目の面との光軸Z1上における面間隔(mm)を示す。レンズデータの符号Riおよび符号Diは、レンズ面等を示す符号Si(i=1、2、3、・・・)と対応している。
 Ndjは拡大側から縮小側に向かうに従い順次増加するj番目(j=1、2、3、・・・)の光学要素(光学部材)について波長587.6nm(d線)に対する屈折率を示し、νdjはj番目の光学要素(光学部材)のd線を基準としたアッベ数を示す。
 なお、曲率半径は拡大側に凸の場合を正、縮小側に凸の場合を負としている。
Figure JPOXMLDOC01-appb-T000001
 表1の下段に示す非球面係数は、下記非球面式に適用して非球面形状が定められるように作成されたものである。
Figure JPOXMLDOC01-appb-M000001
 なお、上記表1に示すレンズデータや非球面係数の読み取り方等については以下に示す各実施例においても同様なので、その説明を省略する。
 図3は実施例2の投写レンズを示す断面図である。この実施例2の投写レンズ102は、拡大側から順に、光軸Z上で両凸形状をなす両面非球面レンズである第1レンズL1、開口部Ko、接合レンズにおける拡大側のレンズを構成する第2レンズL2、接合レンズにおける縮小側のレンズを構成する第3レンズL3、光軸Z上で両凸形状をなす両面非球面レンズである第4レンズL4を配置してなるものである。
 なお、この図3においては、投写レンズ102の縮小側に、ガラスブロック2aのみが配置されている状態を示している。
 さらに投写レンズ102は、後述する表4に示すように、上記条件式(A)~(I)を全て満足するように構成されている。
 下記表2に実施例2の投写用レンズ102の基本的なデータを示す。表2の上段にはレンズデータを、下段には非球面係数を示す。
Figure JPOXMLDOC01-appb-T000002
 図4は実施例3の投写レンズを示す断面図である。この実施例3の投写レンズ103は、拡大側から順に、光軸Z上で両凸形状をなす両面非球面レンズである第1レンズL1、開口部Ko、拡大側に凹面を向けた負のメニスカスレンズである第2レンズL2、縮小側に凸面を向けた正のメニスカスレンズである第3レンズL3、光軸Z上で両凸形状をなす両面非球面レンズである第4レンズL4を配置してなるものである。
 なお、この図4においては、投写レンズ103の縮小側に、ガラスブロック2aのみが配置されている状態を示している。
 さらに投写レンズ102は、後述する表4に示すように、上記条件式(A)~(I)を全て満足するように構成されている。
 下記表3に実施例3の投写用レンズ103の基本的なデータを示す。表3の上段にはレンズデータを、下段には非球面係数を示す。
Figure JPOXMLDOC01-appb-T000003
 図5~7は、実施例1~3に係る投写レンズそれぞれの諸収差(球面収差、非点収差、ディストーションおよび倍率色収差)を示す収差図である。これらの収差図において、ωは半画角を示し、球面収差の収差図にはd線、F線およびC線の収差曲線を示し、倍率色収差の収差図にはd線に対するF線(点線:以下同じ)およびC線(2点鎖線:以下同じ)の収差曲線を示している。図5~8に示すように、実施例1~4に係る投写レンズは、歪曲収差や倍率色収差をはじめ各収差が良好に補正されている。
 なお、本発明の投写レンズとしては、上記実施例のものに限られるものではなく種々の態様の変更が可能であり、例えば各レンズの曲率半径Rおよびレンズ間隔(もしくはレンズ厚)Dを適宜変更することが可能である。
 また、本発明の投写型表示装置としても、上記構成のものに限られるものではなく、本発明の投写レンズを備えた種々の装置構成が可能である。ライトバルブとしては、例えば、透過型または反射型の液晶表示素子や、傾きを変えることができる微小な鏡が略平面上に多数形成された微小ミラー素子(例えば、テキサス・インスツルメント社製のデジタルマイクロミラーデバイス)を用いることができる。また、照明光学系としても、ライトバルブの種類に対応した適切な構成を採用することができる。
Figure JPOXMLDOC01-appb-T000004

Claims (15)

  1.  縮小側の共役面に形成された画像を拡大側の共役面へ拡大投写する投写レンズであって、
     拡大側から順に、少なくとも1面が非球面からなる正のパワーを有する第1レンズ、拡大側が凹面で負のパワーを有する第2レンズ、縮小側が凸面で正のパワーを有する第3レンズ、正のパワーを有する第4レンズのみを配して構成され、
     縮小側にテレセントリックであり、
     以下の条件式(A)~(D)を同時に満足することを特徴とする投写レンズ。
       0.8<Bf/f ・・・(A)
       1.1<f1/f<1.6 ・・・(B)
       Nd1<1.7 ・・・(C)
       νd1<35 ・・・(D)
    ただし、
    Bf:縮小側のバックフォーカス
    f:レンズ全系の焦点距離
    f1:第1レンズの焦点距離
    Nd1:第1レンズの屈折率
    νd1:第1レンズのアッベ数
  2.  前記第4レンズが、少なくとも1面が非球面からなり、前記第4レンズの外周部の輪郭が非円形形状であり、さらに以下の条件式(E)、(F)を同時に満足することを特徴とする請求項1記載の投写レンズ。
       Nd4<1.6 ・・・(E)
       40<νd4 ・・・(F)
    ただし、
    Nd4:第4レンズの屈折率
    νd4:第4レンズのアッベ数
  3.  前記第1レンズと前記第2レンズとの間に、前記縮小側の共役面から発せられた光束を通す範囲を制限する開口が設けられていることを特徴とする請求項1または2記載の投写レンズ。
  4.  以下の条件式(G)、(H)を同時に満足することを特徴とする請求項1から3のいずれか1項記載の投写レンズ。
       20<S/OBJ<65 ・・・(G)
       2.5<β/S<10.0 ・・・(H)
    ただし、
    S:拡大側の共役面に投写される画像の最大長さ(インチ)
    OBJ:拡大側の共役面に投写される画像までの投写距離(m)
    β:拡大側の共役面へ投写される画像の拡大倍率
  5.  以下の条件式(I)を満足することを特徴とする請求項4記載の投写レンズ。
       IH>TH ・・・(I)
    ただし、
    IH:縮小側の共役面における最大光線高
    TH:最も縮小側に配置されたレンズ以外のレンズにおける最大有効光束高さ
  6.  以下の条件式(A′)を満足することを特徴とする請求項1記載の投写レンズ。
       0.8<Bf/f<1.2・・・(A′)
  7.  以下の条件式(B′)を満足することを特徴とする請求項1記載の投写レンズ。
       1.2<f1/f<1.5 ・・・(B′)
  8.  以下の条件式(C′)を満足することを特徴とする請求項1記載の投写レンズ。
       1.5<Nd1<1.7 ・・・(C′)
  9.  以下の条件式(D′)を満足することを特徴とする請求項1記載の投写レンズ。
       νd1<30 ・・・(D′)
  10.  以下の条件式(D″)を満足することを特徴とする請求項1記載の投写レンズ。
       17<νd1<35 ・・・(D″)
  11.  以下の条件式(E′)を満足することを特徴とする請求項2記載の投写レンズ。
       1.4<Nd4<1.6・・・(E′)
  12.  以下の条件式(F′)を満足することを特徴とする請求項2記載の投写レンズ。
       50<νd4・・・(F′)
  13.  以下の条件式(F″)を満足することを特徴とする請求項2記載の投写レンズ。
       40<νd4<85・・・(F″)
  14.  光源と、ライトバルブと、前記光源からの光束を前記ライトバルブへ導く照明光学部と、請求項1から13のいずれか1項記載の投写レンズとを備え、前記光源からの光束を前記ライトバルブで光変調し、該光変調された光束を前記投写レンズに通して投写するものであることを特徴とする投写型表示装置。
  15.  前記ライトバルブを1つのみ備えた単板方式からなるものであることを特徴とする請求項14記載の投写型表示装置。
PCT/JP2012/002537 2011-04-19 2012-04-12 投写レンズおよびこれを用いた投射型表示装置 WO2012144168A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280019218.0A CN103492923B (zh) 2011-04-19 2012-04-12 投影镜头和使用该投影镜头的投影型显示设备
JP2013510867A JP5795363B2 (ja) 2011-04-19 2012-04-12 投写レンズおよびこれを用いた投射型表示装置
US14/054,864 US8947792B2 (en) 2011-04-19 2013-10-16 Projection lens and projection-type display apparatus using the lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011092720 2011-04-19
JP2011-092720 2011-04-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/054,864 Continuation US8947792B2 (en) 2011-04-19 2013-10-16 Projection lens and projection-type display apparatus using the lens

Publications (1)

Publication Number Publication Date
WO2012144168A1 true WO2012144168A1 (ja) 2012-10-26

Family

ID=47041302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002537 WO2012144168A1 (ja) 2011-04-19 2012-04-12 投写レンズおよびこれを用いた投射型表示装置

Country Status (4)

Country Link
US (1) US8947792B2 (ja)
JP (1) JP5795363B2 (ja)
CN (1) CN103492923B (ja)
WO (1) WO2012144168A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869450A (zh) * 2012-12-18 2014-06-18 广景科技有限公司 Led数字微型投影机投影镜头
CN111965824A (zh) * 2020-08-26 2020-11-20 北京耐德佳显示技术有限公司 一种光学镜组及使用其的近眼显示系统
US11327324B2 (en) 2016-06-09 2022-05-10 3M Innovative Properties Company Display system and light guide

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672553B (zh) 2017-07-31 2019-09-21 大立光電股份有限公司 投影鏡頭系統、投影裝置、感測模組及電子裝置
CN108107549B (zh) * 2017-11-03 2022-12-13 玉晶光电(厦门)有限公司 光学透镜组
CN116819728A (zh) * 2017-12-15 2023-09-29 浙江舜宇光学有限公司 投影镜头
CN109932820A (zh) * 2017-12-18 2019-06-25 中强光电股份有限公司 显示器
CN110161657B (zh) * 2019-06-06 2021-07-23 歌尔光学科技有限公司 投影镜头及投影显示设备
CN112147758B (zh) * 2019-06-26 2023-07-28 中强光电股份有限公司 光学镜头及头戴式显示装置
TW202323900A (zh) * 2019-08-30 2023-06-16 南韓商三星電機股份有限公司 光學成像系統
CN112666676A (zh) * 2019-10-15 2021-04-16 曼德电子电器有限公司 成像镜头和像素投影成像装置
JP7191005B2 (ja) * 2019-12-25 2022-12-16 富士フイルム株式会社 接眼レンズ、観察光学系、および光学装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309014A (ja) * 1988-06-07 1989-12-13 Asahi Optical Co Ltd 前絞り投影レンズ
JPH0244308A (ja) * 1988-08-05 1990-02-14 R D S Kk プロジエクシヨンレンズ
JPH06160707A (ja) * 1992-11-18 1994-06-07 Casio Comput Co Ltd 投影レンズ
JP2010079252A (ja) * 2008-09-01 2010-04-08 Fujinon Corp 小型投写レンズおよびこれを用いた投写型表示装置
JP2010175832A (ja) * 2009-01-29 2010-08-12 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
JP2011002518A (ja) * 2009-06-16 2011-01-06 Fujifilm Corp 投写光学系、およびこれを用いた投写型表示装置
JP3165336U (ja) * 2010-04-30 2011-01-13 一品光学工業股▲ふん▼有限公司 4枚式投影レンズシステム及びその投影装置
JP2011237758A (ja) * 2010-04-30 2011-11-24 E-Pin Optical Industry Co Ltd 4枚式投影レンズシステム及びその投影装置
JP2012027420A (ja) * 2010-07-28 2012-02-09 Konica Minolta Opto Inc 投影光学系及び投影装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3165336B2 (ja) 1994-09-20 2001-05-14 日東工器株式会社 開扉角度制限付丁番型ドアクローザ
JP2004361651A (ja) 2003-06-04 2004-12-24 Ricoh Co Ltd テレセントリックレンズ系および走査光学系・画像表示装置及び画像撮影装置
CN101726833B (zh) * 2008-10-10 2011-06-08 鸿富锦精密工业(深圳)有限公司 投影镜头
JP5288254B2 (ja) 2008-10-17 2013-09-11 株式会社ニコン レンズ系
TWI443407B (zh) * 2011-12-27 2014-07-01 Asia Optical Co Inc Miniature projection lens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309014A (ja) * 1988-06-07 1989-12-13 Asahi Optical Co Ltd 前絞り投影レンズ
JPH0244308A (ja) * 1988-08-05 1990-02-14 R D S Kk プロジエクシヨンレンズ
JPH06160707A (ja) * 1992-11-18 1994-06-07 Casio Comput Co Ltd 投影レンズ
JP2010079252A (ja) * 2008-09-01 2010-04-08 Fujinon Corp 小型投写レンズおよびこれを用いた投写型表示装置
JP2010175832A (ja) * 2009-01-29 2010-08-12 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
JP2011002518A (ja) * 2009-06-16 2011-01-06 Fujifilm Corp 投写光学系、およびこれを用いた投写型表示装置
JP3165336U (ja) * 2010-04-30 2011-01-13 一品光学工業股▲ふん▼有限公司 4枚式投影レンズシステム及びその投影装置
JP2011237758A (ja) * 2010-04-30 2011-11-24 E-Pin Optical Industry Co Ltd 4枚式投影レンズシステム及びその投影装置
JP2012027420A (ja) * 2010-07-28 2012-02-09 Konica Minolta Opto Inc 投影光学系及び投影装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869450A (zh) * 2012-12-18 2014-06-18 广景科技有限公司 Led数字微型投影机投影镜头
US11327324B2 (en) 2016-06-09 2022-05-10 3M Innovative Properties Company Display system and light guide
US11927768B2 (en) 2016-06-09 2024-03-12 3M Innovative Properties Company Display system and light guide
CN111965824A (zh) * 2020-08-26 2020-11-20 北京耐德佳显示技术有限公司 一种光学镜组及使用其的近眼显示系统
CN111965824B (zh) * 2020-08-26 2023-02-10 北京耐德佳显示技术有限公司 一种光学镜组及使用其的近眼显示系统

Also Published As

Publication number Publication date
CN103492923B (zh) 2015-09-30
JP5795363B2 (ja) 2015-10-14
CN103492923A (zh) 2014-01-01
JPWO2012144168A1 (ja) 2014-07-28
US8947792B2 (en) 2015-02-03
US20140043690A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5795363B2 (ja) 投写レンズおよびこれを用いた投射型表示装置
JP5670602B2 (ja) 投写用レンズおよび投写型表示装置
JP5042708B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP2010079252A (ja) 小型投写レンズおよびこれを用いた投写型表示装置
JP5468966B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP5480074B2 (ja) 投写用レンズおよび投写型表示装置
JP4874692B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP5480089B2 (ja) 投写用レンズおよび投写型表示装置
JP2011033737A (ja) 投写光学系およびこれを用いた投写型表示装置
JP5259353B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP5480064B2 (ja) 投写用レンズおよび投写型表示装置
JP2011209564A (ja) 投写用レンズおよびこれを用いた投写型表示装置
US20140022519A1 (en) Projection optical system and projection display apparatus
JP5199148B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP5259503B2 (ja) 投写光学系、およびこれを用いた投写型表示装置
JP5210196B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP2009116106A (ja) 投射用レンズおよび投射型画像表示装置
JP5275902B2 (ja) 投写用広角レンズおよび投写型表示装置
JP6072720B2 (ja) 投写レンズ及び投写型表示装置
JP5229961B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP2012073337A (ja) 投写用レンズおよび投写型表示装置
JP2010170045A (ja) 投写レンズおよびこれを用いた投写型表示装置
JP5229955B2 (ja) 投写レンズおよびこれを用いた投写型表示装置
JP2010217452A (ja) 投写レンズおよびこれを用いた投写型表示装置
JP5229959B2 (ja) 投写レンズおよびこれを用いた投写型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774467

Country of ref document: EP

Kind code of ref document: A1