WO2012143997A1 - 過給エンジンの制御装置 - Google Patents

過給エンジンの制御装置 Download PDF

Info

Publication number
WO2012143997A1
WO2012143997A1 PCT/JP2011/059541 JP2011059541W WO2012143997A1 WO 2012143997 A1 WO2012143997 A1 WO 2012143997A1 JP 2011059541 W JP2011059541 W JP 2011059541W WO 2012143997 A1 WO2012143997 A1 WO 2012143997A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
estimated value
throttle
waste gate
intake
Prior art date
Application number
PCT/JP2011/059541
Other languages
English (en)
French (fr)
Inventor
真知子 勝俣
龍太郎 森口
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/376,532 priority Critical patent/US9175597B2/en
Priority to PCT/JP2011/059541 priority patent/WO2012143997A1/ja
Priority to JP2011551142A priority patent/JP5182436B2/ja
Priority to CN201180003555.6A priority patent/CN103518047B/zh
Publication of WO2012143997A1 publication Critical patent/WO2012143997A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for a supercharged engine having a waste gate valve.
  • the waste gate valve opening must be estimated from the operation amount when the ECU operates the waste gate valve.
  • the waste gate valve opening degree is estimated from the operation amount of the waste gate valve using a predefined correspondence.
  • the estimated value of the waste gate valve opening is different from the actual value, which adversely affects engine control performed with reference to the estimated value of the waste gate valve opening. For this reason, when active control of the waste gate valve is performed, a technique capable of obtaining an accurate estimated value of the waste gate valve opening is also required.
  • Japanese Patent Laid-Open No. 2004-156525 describes correcting a valve lift amount that is an error factor based on an error between an actual intake valve flow rate and an estimated intake valve flow rate calculated using a model.
  • this publication does not mention the waste gate valve, and does not describe a method for obtaining an accurate estimated value of the waste gate valve opening.
  • the present invention uses a physical model that models the behavior of air in a supercharged engine.
  • a physical model is used for calculation for estimating the in-cylinder air amount in the control device for the supercharged engine.
  • the physical quantity calculated by the physical model of the supercharged engine includes a physical quantity that is determined by the waste gate valve opening and that can be measured by a sensor mounted on the supercharged engine.
  • the estimated value and actual value of the waste gate valve opening are It is possible to indirectly grasp the deviation. Then, the estimated value of the waste gate valve opening is adjusted by adjusting the correspondence relationship between the estimated value of the waste gate valve opening and the operation amount of the waste gate valve so that the difference between the measured value and the estimated value of the physical quantity is eliminated. Can be modified to match the actual value.
  • the supercharged engine control device includes a throttle model and an intake valve model as physical models.
  • the throttle model is a model of a relationship that is established among the throttle upstream pressure, the throttle downstream pressure, the throttle opening, and the throttle flow rate.
  • the throttle upstream pressure means the pressure in the space from the compressor to the throttle
  • the throttle downstream pressure means the pressure in the space from the throttle to the intake valve.
  • the flow rate of air passing through the throttle is mainly determined by the differential pressure and the flow path area.
  • the channel area is determined by the throttle opening.
  • the intake valve model models a relationship that is established among the throttle downstream pressure, the waste gate valve opening, and the intake valve flow rate.
  • the control device also has a function of estimating the waste gate valve opening from the operation amount of the waste gate valve. For the estimation, a correspondence relationship between a predetermined operation amount of the waste gate valve and the waste gate valve opening is used. The correspondence relationship is stored in the storage unit of the present control device in the form of map data. Further, the present control device has a function of acquiring measured values of the throttle opening, the throttle upstream pressure, and the intake flow rate.
  • the intake air flow rate means the flow rate of air taken into the intake passage of the supercharged engine. These physical quantities can be measured by sensors mounted on the supercharged engine. Based on these measured values and the estimated value of the waste gate valve opening, the present control device performs the following calculation using each of the physical models described above.
  • the present control device establishes a relationship (hereinafter referred to as a first relationship) established between the throttle downstream pressure and the intake valve flow rate based on the estimated value of the waste gate valve opening. Derived from the intake valve model. Further, the present control device derives a relationship (hereinafter referred to as a second relationship) between the throttle downstream pressure and the throttle flow rate from the throttle model based on the measured value of the throttle opening and the measured value of the throttle upstream pressure. To do. Next, the present control device calculates an estimated value of the intake valve flow rate when the intake valve flow rate and the throttle flow rate match based on the first relationship and the second relationship. Since both the first relation and the second relation can be expressed by equations, they are estimated from the current estimated value of the waste gate valve opening and the measured value of the throttle upstream pressure by solving the simultaneous equations. The intake valve flow rate can be obtained.
  • the present control device compares the estimated value of the intake valve flow rate obtained as described above with the measured value of the intake flow rate. Since the intake valve flow rate and the intake flow rate match in the steady state, comparing the estimated value of the intake valve flow rate with the measured value of the intake flow rate means that the estimated value and the measured value of the intake valve flow rate, that is, the actual value Equivalent to comparing values. If there is an error between the estimated value of the intake valve flow rate and the actual value, the error means that there is a deviation between the estimated value of the waste gate valve opening and the actual value. This is because, according to the intake valve model, the estimated value of the intake valve flow rate depends on the estimated value of the waste gate valve opening.
  • the control device based on the comparison result between the estimated value of the intake valve flow rate and the measured value of the intake flow rate, specifically, the estimated value of the intake valve flow rate, The correspondence between the estimated value of the waste gate valve opening and the operation amount of the waste gate valve is adjusted so that the measured value of the intake flow rate matches. If the estimated value of the intake valve flow rate matches the measured value of the intake flow rate, the deviation of the estimated value of the waste gate valve opening from the actual value is resolved.
  • the present control device uses the intake valve model to estimate the throttle downstream pressure based on the estimated value of the waste gate valve opening and the measured value of the intake flow rate. Calculate Since the intake valve flow rate and the intake flow rate coincide with each other in the steady state, the measured value of the intake flow rate can be treated as the actual value of the intake valve flow rate in the intake valve model.
  • the control device uses the throttle model to calculate the throttle upstream pressure based on the estimated value of the throttle downstream pressure calculated using the intake valve model, the measured value of the throttle opening, and the measured value of the intake flow rate. Calculate the estimate of. Since the intake valve flow rate and the throttle flow rate coincide with each other in the steady state, the measured value of the intake flow rate can be treated as the actual value of the throttle flow rate in the throttle model.
  • the present control device compares the estimated value of the throttle upstream pressure obtained as described above with the measured value. If there is an error between the estimated value and the measured value of the throttle upstream pressure, the error means that a deviation has occurred between the indicated value of the waste gate valve opening and the actual value. This is because, according to the throttle model and the intake valve model, the estimated value of the throttle downstream pressure is determined according to the estimated value of the waste gate valve opening, and the estimated value of the throttle upstream pressure is determined by the estimated value of the throttle downstream pressure.
  • the control device based on the comparison result between the estimated value and the measured value of the throttle upstream pressure, specifically, the estimated value and measured value of the throttle upstream pressure, So that the correspondence between the estimated value of the waste gate valve opening and the operation amount of the waste gate valve is adjusted. If the estimated value of the throttle upstream pressure matches the measured value, the deviation of the estimated value of the waste gate valve opening from the actual value can be eliminated.
  • the present invention can also adopt the third form described below.
  • the third embodiment of the present invention further features are added to the features of the first embodiment or the second embodiment.
  • the added features include that the supercharged engine to which the present invention is applied is an engine having a variable valve mechanism that makes the valve lift amount of the intake valve variable, and that the valve lift amount is a parameter of the intake valve model. Is included.
  • the estimated value of the valve lift amount is used in addition to the estimated value of the waste gate valve opening to determine the coefficient of the linear equation indicating the relationship between the throttle downstream pressure and the intake valve flow rate. It is done. In the case of an engine having a variable valve lift, it is known that the relationship between the throttle downstream pressure and the intake valve flow rate varies depending on the valve lift.
  • the relationship between the throttle downstream pressure and the intake valve flow rate can be expressed more accurately.
  • the in-cylinder air amount cannot be achieved as intended.
  • the difference between the estimated value and the actual value of the valve lift amount corresponds to the estimated value of the waste gate valve opening and the operation amount of the waste gate valve, which are performed in the first and second embodiments described above. It also affects the coordination of relationships. This is because the calculation result by the model depends on the estimated value of the valve lift.
  • the third embodiment of the present invention was created as a further problem to eliminate the deviation between the estimated value of the waste gate valve opening and the actual value, and to eliminate the deviation between the estimated value of the valve lift and the actual value. It is a thing.
  • the present control device includes a turbo rotational speed model and a compressor model as further physical models.
  • the turbo rotation speed model is a model of a relationship that is established among the intake valve flow rate, the waste gate valve opening, and the turbo rotation speed. Since the intake valve flow rate in the steady state is equivalent to the flow rate of the gas flowing into the turbine, if the intake valve flow rate and the waste gate valve opening are determined, the turbo speed should be uniquely identified from the operating characteristics of the turbocharger. Can do.
  • the compressor model is obtained by modeling the relationship that is established among the turbo speed, the throttle upstream pressure, and the compressor flow rate.
  • the flow rate of the air sent out by the compressor is mainly determined by the pressure difference before and after that and the rotation speed of the compressor.
  • the pressure upstream of the compressor is approximately equal to atmospheric pressure, and the compressor speed is equal to the turbo speed.
  • the control device performs the following calculation using these physical models.
  • This control device first estimates the valve lift amount from the operation amount of the variable valve mechanism. For this estimation, a predefined correspondence relationship between the operation amount of the variable valve mechanism and the valve lift amount is used. Further, the present control device calculates an estimated value of the turbo rotational speed using a turbo rotational speed model based on the estimated value of the waste gate valve opening and the measured value of the intake flow rate. Since the intake valve flow rate and the intake flow rate coincide with each other in the steady state, the measured value of the intake flow rate can be treated as the actual value of the intake valve flow rate in the turbo rotation speed model. Next, the present control device calculates the estimated value of the compressor flow rate using the compressor model based on the estimated value of the turbo rotational speed calculated using the turbo rotational speed model and the measured value of the throttle upstream pressure. .
  • the present control device compares the estimated value of the compressor flow rate obtained as described above with the measured value of the intake air flow rate. Since the compressor flow rate and the intake air flow rate coincide with each other in the steady state, comparing the estimated value of the compressor flow rate with the measured value of the intake air flow rate is obtained by comparing the estimated value of the compressor flow rate with the measured value, i.e. Equivalent to comparing. If there is an error between the estimated value and the actual value of the compressor flow rate, the error means that there is a deviation between the estimated value and the actual value of the waste gate valve opening.
  • the control device compares the estimated value of the compressor flow rate with the measured value of the intake flow rate, and adjusts the correspondence between the estimated value of the waste gate valve opening and the operation amount of the waste gate valve based on the comparison result. To do. Since the valve lift amount is not used in the calculation based on the turbo rotational speed model and the compressor model, the difference between the estimated value and the actual value of the valve lift amount does not affect the adjustment result of the correspondence relationship according to this method.
  • the present control apparatus adjusts the correspondence result between the estimated value of the waste gate valve opening and the operation amount of the waste gate valve by the above-described method, and the adjustment according to the first embodiment or the second embodiment of the present invention. Compare the results. If there is a deviation between the two, the deviation means that a deviation has occurred between the estimated value and the actual value of the valve lift.
  • the control device acquires an estimated value of the waste gate valve opening according to the correspondence adjusted by the above-described method, and uses the intake valve model based on the estimated value and the estimated value of the valve lift amount. Calculate the estimated intake valve flow rate.
  • the estimated value of the intake valve flow rate is compared with the measured value of the intake flow rate, and the correspondence between the estimated value of the valve lift amount and the operation amount of the variable valve mechanism is adjusted based on the comparison result. If the estimated value of the intake valve flow rate and the measured value of the intake flow rate coincide with each other by adjusting the correspondence relationship, the deviation of the estimated value of the valve lift amount from the actual value is also eliminated.
  • Embodiment 1 FIG. Embodiment 1 of the present invention will be described with reference to the drawings.
  • the engine to which the control device of the present embodiment is applied is a supercharged engine having a waste gate valve, and more specifically, a 4-cycle reciprocating engine capable of controlling torque by adjusting an air amount by a throttle.
  • FIG. 1 is a schematic diagram showing a configuration of a supercharged engine to which the control device of the present embodiment is applied.
  • the supercharged engine according to the present embodiment includes a turbocharger 30 including a compressor 32 provided in the intake passage 10 and a turbine 34 provided in the exhaust passage 20.
  • the intake passage 10 is connected to an intake manifold 18 attached to the engine body 2.
  • An air cleaner 12 is provided at the inlet of the intake passage 10, and an air flow meter 42 for measuring the intake air flow rate is disposed downstream of the air cleaner 12 and upstream of the compressor 32.
  • An intercooler 14 is provided between the compressor 32 and the throttle 16 in the intake passage 10.
  • a supercharging pressure sensor 44 for measuring the pressure upstream of the throttle 16, that is, the supercharging pressure, is attached to the outlet of the intercooler 14.
  • the intake passage 10 is provided with an air bypass valve 36 for bypassing the compressor 32 from the downstream side to the upstream side of the compressor 32 to recirculate air.
  • the exhaust passage 20 is connected to an exhaust manifold 22 attached to the engine body 2.
  • the exhaust passage 20 is provided with a waste gate valve 38 for allowing the exhaust gas to flow by bypassing the turbine 34.
  • This waste gate valve 38 is an active control compatible waste gate valve driven by E-VRV.
  • the control device of the present embodiment is realized as part of the function of an ECU (Electronic Control Unit) 40 that controls the supercharged engine.
  • ECU Electronic Control Unit
  • various information and signals related to the engine operating state and operating conditions are input to the ECU 40 from various sensors such as a throttle opening sensor 46 and an atmospheric pressure sensor 48.
  • the ECU 40 operates various actuators such as the throttle 16 and the waste gate valve 38 based on the information and signals.
  • an operation amount signal is supplied from the ECU 40 to the E-VRV.
  • the ECU 40 stores a map indicating the correspondence between the duty ratio, which is the operation amount of the waste gate valve 38, and the estimated value of the waste gate valve opening.
  • the ECU 40 as the control device has a function of estimating the amount of air in the cylinder.
  • a programmed air amount estimation model is used for the estimation of the air amount in the cylinder by the ECU 40.
  • the air amount estimation model is a physical model of air behavior in a supercharged engine, and its outline is represented by the functional block diagram of FIG.
  • the air amount estimation model used in the present embodiment includes a turbo speed model M1, a compressor model M2, an intercooler model M3, a throttle model M4, an intake manifold model M5, an intake valve model M6, and The ABV model M7 is included.
  • a turbo speed model M1 a compressor model M2, an intercooler model M3, a throttle model M4, an intake manifold model M5, an intake valve model M6, and The ABV model M7 is included.
  • the contents of each sub model included in the air amount estimation model will be described.
  • examples of mathematical formulas that can be used for these submodels are publicly known, and are not themselves feature points in the present invention, so that specific mathematical formulas for each submodel are not described. To do.
  • the turbo rotational speed model M1 is a rotational behavior model of the turbocharger 30, and a relationship that is established among the intake valve flow rate, the waste gate valve opening degree, and the turbo rotational speed is modeled.
  • the turbo rotational speed model M1 is configured by a map based on mathematical formulas or experimental data.
  • a waste gate valve opening (wgv) estimated from an operation amount of the waste gate valve 38 and an intake valve flow rate (mc) calculated by an intake valve model M6 described later are input.
  • the turbo rotation speed (Ntb) is calculated from the input information.
  • the compressor model M2 is a model of the compressor 32 of the turbocharger 30, and a relationship that is established among the turbo rotation speed, the supercharging pressure, and the compressor flow rate is modeled.
  • the compressor model M2 is configured by a map based on mathematical formulas or experimental data.
  • information such as a turbo speed (Ntb) calculated by the turbo speed model M1 and a supercharging pressure (Pic) calculated by an intercooler model M3 described later is input.
  • the compressor flow rate (mcp) is calculated.
  • the ABV model M7 is a model for calculating the flow rate of air returned from the downstream side of the compressor 32 to the upstream side by the air bypass valve 36.
  • the flow rate of the air bypass valve 36 can be calculated from the differential pressure before and after that and the duty ratio for operating the air bypass valve 36. Therefore, in the ABV model M7, the atmospheric pressure (Pa) measured by the atmospheric pressure sensor 48, the supercharging pressure (Pic) calculated by the intercooler model M3 described later, and the duty output from the ECU 40 to the air bypass valve 36.
  • the ratio (Dabv) is input, and the air bypass valve flow rate (mabv) is calculated from the input information.
  • the intercooler model M3 is a physical model constructed based on the conservation law regarding the air in the intercooler 14 in the intake passage 10. As the intercooler model M3, specifically, an energy conservation law formula and a flow rate conservation law formula are used. In the intercooler model M3, information such as the compressor flow rate (mcp) calculated by the compressor model M2, the throttle flow rate (mt) calculated by the throttle model M4 described later, and the ABV flow rate (mabv) calculated by the ABV model M7, etc. Is input, and the supercharging pressure (Pic) is calculated from the input information.
  • mcp compressor flow rate
  • mt throttle flow rate
  • mabv ABV flow rate
  • the throttle model M4 is a model for calculating the flow rate of air passing through the throttle 16, and specifically, based on the differential pressure before and after the throttle 16, the flow path area determined by the throttle opening, and the flow coefficient.
  • the orifice flow rate formula is used.
  • the throttle opening (TA) measured by the throttle opening sensor 46, the supercharging pressure (Pic) as the throttle upstream pressure calculated by the intercooler model M3, and the intake manifold model M5 described later are calculated.
  • Information such as the intake manifold pressure (Pm) as the throttle downstream pressure is input, and the throttle flow rate (mt) is calculated from the input information.
  • the intake manifold model M5 is a physical model constructed based on the conservation law regarding the air in the intake manifold 18. As the intake manifold model M5, specifically, an energy conservation law equation and a flow rate conservation law equation are used. In the intake manifold model M5, information such as a throttle flow rate (mt) calculated by the throttle model M4 and an intake valve flow rate (mc) calculated by an intake valve model M6 to be described later is input. The pressure (Pm) is calculated.
  • the intake valve model M6 is an experiment-based model that examined the relationship between the intake valve flow rate and the intake manifold pressure. Based on empirical rules obtained through experiments, in the intake valve model M6, the relationship between the intake air amount and the intake manifold pressure is approximated by a straight line. However, the coefficient of the linear equation is not a constant but a variable determined by the opening degree of the waste gate valve 38. This is because the opening of the waste gate valve 38 affects the back pressure, and if the back pressure changes, the ease of entering the air into the cylinder also changes. In the intake valve model M6, information such as the intake manifold pressure (Pm) calculated by the intake manifold model M5 and the waste gate valve opening (wgv) estimated from the operation amount of the waste gate valve 38 is input. An intake valve flow rate (mc) is calculated from the input information.
  • Pm intake manifold pressure
  • wgv waste gate valve opening
  • the ECU 40 calculates the intake valve flow rate using the air amount estimation model configured as described above, and calculates the in-cylinder air amount based on the intake valve flow rate.
  • the estimated value of the waste gate valve opening is used together with the measured values of the throttle opening and the supercharging pressure.
  • the measured value obtained by the sensor can be considered equal to the actual value as long as the sensor is correctly calibrated.
  • the estimated value of the waste gate valve opening is not necessarily equal to the actual value. This is because the correspondence between the waste gate valve opening and the manipulated variable defined in the map may differ from the actual one depending on individual differences of the waste gate valve 38 and changes with time.
  • the ECU 40 is provided with a function of correcting the estimated value of the waste gate valve opening according to the actual value as described below.
  • the horizontal axis of the graph shown in FIG. 3 is the intake manifold pressure (Pm), and the vertical axis is the throttle flow rate (mt) and the intake valve flow rate (mc).
  • the straight line A is a straight line showing the relationship between the intake manifold pressure (Pm) derived from the intake valve model M6 and the intake valve flow rate (mc) based on the estimated value of the waste gate valve opening.
  • the straight line B is a straight line showing the relationship between the intake manifold pressure (Pm) and the intake valve flow rate (mc) that should be obtained if the actual value of the waste gate valve opening is input to the intake valve model M6.
  • Curve C shows the relationship between the intake manifold pressure (Pm) and the throttle flow rate (mt) obtained by inputting the measured values of the throttle opening and the boost pressure to the throttle model M4.
  • Pm intake manifold pressure
  • mt throttle flow rate
  • the ratio of the intake manifold pressure to the supercharging pressure at the present time is obtained by substituting the intake flow rate (mafm) measured by the air flow meter 42 into the equation of curve C. Can be guessed.
  • the throttle flow rate (mt) and the intake valve flow rate (mc) coincide with each other. Therefore, if the supercharging pressure is known, the flow rate at the intersection of the curve C and the straight line A is calculated.
  • the intake valve flow rate (mcest) under the estimated value of degree can be obtained. More specifically, since the curve C and the straight line A are respectively represented by equations, the estimated intake valve flow rate (mcest) based on the estimated value of the waste gate valve opening is obtained by solving the simultaneous equations. Can be calculated.
  • the estimated value (mcest) of the intake valve flow rate thus obtained is compared with the intake flow rate (mafm) measured by the air flow meter 42. Since the intake valve flow rate and the intake flow rate match in the steady state, comparing the estimated value of the intake valve flow rate (mcest) with the measured value of the intake flow rate (mafm) mcest) and its actual value are equivalent. If the estimated value of the waste gate valve opening matches the actual value, the estimated value (mcest) of the intake valve flow rate also matches the actual value. However, if the estimated value of the waste gate valve opening deviates from the actual value, the estimated value (mcest) of the intake valve flow rate does not match the actual value.
  • the waste gate is determined by the presence of the error. It can be determined that there is a difference between the estimated value and the actual value of the valve opening.
  • the estimated value of the waste gate valve opening is associated with the operation amount of the waste gate valve 38 in the map.
  • the correspondence between the waste gate valve opening and the manipulated variable is adjusted by correcting the map data.
  • the operation amount is increased so that the intake valve flow rate calculated by the intake valve model M6 increases.
  • the waste gate valve opening is corrected to the plus side.
  • the operation amount is set so that the intake valve flow rate calculated by the intake valve model M6 decreases.
  • the waste gate valve opening is corrected to the minus side.
  • FIG. 4 shows a configuration for realizing such a correction method by the ECU 40.
  • the ECU 40 uses an intake valve model M6 and a throttle model M4. Further, the ECU 40 receives the waste gate valve opening (wgv) estimated from the operation amount, and the supercharging pressure (Picact) measured by the supercharging pressure sensor 44 and the throttle opening sensor 46.
  • the throttle opening (TA) and the intake air flow rate (mafm) measured by the air flow meter 42 are taken in.
  • the taken waste gate valve opening (wgv) is input to the intake valve model M6.
  • an equation indicating the relationship between the intake manifold pressure (Pm) and the intake valve flow rate (mc) is derived based on the waste gate valve opening (wgv).
  • the estimated value (mcest) of the intake valve flow rate is solved by solving a simultaneous equation of the equation specified by the boost pressure (Picact) and the throttle opening (TA) and the equation obtained by the intake valve model M6. Is calculated.
  • the ECU 40 calculates the difference between the estimated value (mcest) of the intake valve flow rate and the intake flow rate (mafm). Then, it is determined whether the difference value (mcest ⁇ mafm) is greater than zero. When the difference value is larger than zero, that is, when the estimated value (mcest) of the intake valve flow rate is larger than the intake flow rate (mafm), a predetermined value (-dwgv) smaller than zero is set as a correction amount of the waste gate valve opening (wgv). Is set.
  • the control device of the present embodiment is applied to the supercharged engine configured as shown in FIG. 1 as in the first embodiment, and is realized as part of the function of the ECU 40 that controls the supercharged engine.
  • the ECU 40 as the control device has a function of estimating the in-cylinder air amount using the air amount estimation model shown in FIG.
  • the difference between the control device of the present embodiment and the control device of the first embodiment is in the function of correcting the estimated value of the waste gate valve opening in accordance with the actual value.
  • a method for determining the deviation between the estimated value and the actual value of the waste gate valve opening employed in the present embodiment will be described with reference to FIG.
  • the estimated value of the waste gate valve opening is estimated to be smaller than the actual value.
  • the horizontal axis of the graph shown in FIG. 5 is the intake manifold pressure (Pm), and the vertical axis is the throttle flow rate (mt) and the intake valve flow rate (mc).
  • the straight line A shown in the graph is a straight line showing the relationship between the intake manifold pressure (Pm) and the intake valve flow rate (mc) obtained by inputting the estimated value of the waste gate valve opening to the intake valve model M6.
  • the estimated value (Pmest) of the intake manifold pressure is calculated by substituting the measured value (mafm) of the intake air flow rate into the equation representing the straight line A. Since the intake valve flow rate and the intake flow rate coincide with each other in the steady state, the measured value of the intake flow rate can be handled as the actual value of the intake valve flow rate in the intake valve model M6.
  • the estimated value (Pmest) of the intake manifold pressure calculated from the intake valve model M6 is input to the throttle model M4 together with the measured values of the throttle opening and the intake flow rate. Since the intake valve flow rate and the throttle flow rate coincide with each other in the steady state, the measured value of the intake flow rate can be handled as the actual value of the throttle flow rate in the throttle model M4.
  • a curve E shown in the graph is a curve showing the relationship between the intake manifold pressure (Pm) and the throttle flow rate (mt) specified by inputting such information to the throttle model M4.
  • the intake manifold pressure (Pm) becomes equal to the supercharging pressure.
  • the estimated value (Picest) of the supercharging pressure obtained in this way is compared with the supercharging pressure (Picact) measured by the supercharging pressure sensor 44. If there is an error between the estimated value (Picest) and measured value (Picact) of the supercharging pressure, the error means that there is a deviation between the indicated value of the waste gate valve opening and the actual value.
  • the estimated value of the intake manifold pressure (Pmest) is determined according to the estimated value of the waste gate valve opening, and the estimated value of the intake manifold pressure (Pmest) is used to estimate the supercharging pressure. This is because the value (Picest) is determined.
  • the waste gate valve opening degree is determined by the presence of the error. It can be determined that there is a difference between the estimated value and the actual value.
  • a straight line B shown in the graph indicates a relationship between the intake manifold pressure (Pm) and the intake valve flow rate (mc) that should be obtained if the actual value of the waste gate valve opening is input to the intake valve model M6. It is. However, since the actual value of the waste gate valve opening cannot be directly measured, the straight line B cannot actually be specified.
  • Curve C is a curve showing the relationship between the intake manifold pressure ((Pm) and the throttle flow rate (mt) obtained by inputting the measured values of the throttle opening and the boost pressure to the throttle model M4. In C, the value of the intake manifold pressure (Pm) when the throttle flow rate (mt) becomes zero coincides with the measured value (Picact) of the supercharging pressure.
  • the correspondence between the waste gate valve opening and the operation amount is corrected by correcting the map data that associates the waste gate valve opening with the operation amount of the waste gate valve 38. Relationship adjustments are made. In the adjustment, if the estimated value (Picest) of the supercharging pressure is larger than the measured value (Picact) as shown in the graph, the waste gate valve opening is corrected to the plus side with respect to the operation amount. Conversely, if the estimated value (Picest) of the supercharging pressure is smaller than the measured value (Picact), the waste gate valve opening is corrected to the minus side with respect to the operation amount.
  • FIG. 6 shows a configuration for realizing such a correction method by the ECU 40.
  • the ECU 40 uses an intake valve model M6 and a throttle model M4. Further, the ECU 40 receives the waste gate valve opening (wgv) estimated from the operation amount, and the supercharging pressure (Picact) measured by the supercharging pressure sensor 44 and the throttle opening sensor 46.
  • the throttle opening (TA) and the intake air flow rate (mafm) measured by the air flow meter 42 are taken in.
  • the taken waste gate valve opening (wgv) is input to the intake valve model M6 together with the intake flow rate (mafm).
  • an estimated value (Pmest) of the intake manifold pressure is calculated based on the waste gate valve opening (wgv) and the intake flow rate (mafm).
  • the estimated value (Pmest) of the intake manifold pressure calculated by the intake valve model M6 is input to the throttle model M4 together with the intake flow rate (mafm) and the throttle opening (TA).
  • an estimated value (Picest) of the supercharging pressure is calculated based on the input information.
  • the ECU 40 calculates the difference between the estimated value (Picest) and the measured value (Picact) of the supercharging pressure. Then, it is determined whether or not the difference value (Picest ⁇ Picact) is greater than zero. When the difference value is greater than zero, that is, when the estimated value (Picest) of the boost pressure is greater than the measured value (Picact), a predetermined value (dwgv) greater than zero is set as the correction amount for the waste gate valve opening (wgv) Is done.
  • the correction value of the waste gate valve opening (wgv) is a predetermined value ( ⁇ dwgv ) Is set.
  • ⁇ dwgv a predetermined value
  • dGA a predetermined value
  • the correction amount is set to zero regardless of the difference.
  • Embodiment 3 FIG. Next, Embodiment 3 of the present invention will be described with reference to the drawings.
  • the control device of the present embodiment is applied to a supercharged engine configured as shown in FIG. 1 as in the first and second embodiments.
  • a variable valve mechanism (not shown) is provided in the intake valve.
  • This variable valve mechanism is a device that varies the valve timing and valve lift amount of the intake valve.
  • the control device of the present embodiment is realized as a part of the function of the ECU 40 that controls such a supercharged engine.
  • the ECU 40 as the control device has a function of estimating the in-cylinder air amount using the air amount estimation model shown in FIG. 2 as in the first and second embodiments.
  • the valve timing and the valve lift amount are added as parameters in the intake valve model M6.
  • the valve timing and the valve lift amount are referred to in addition to the waste gate valve opening degree in determining the coefficient.
  • the correspondence between these parameters and each coefficient is determined by performing a test.
  • the valve timing used in the intake valve model M6 is a measured value, whereas an estimated value is used for the valve lift amount. This is because it is difficult to directly measure the valve lift as in the waste gate valve opening.
  • the ECU 40 stores a map showing the correspondence between the operation amount of the variable valve mechanism and the valve lift amount. By referring to the map, an estimated value of the valve lift amount corresponding to the operation amount of the variable valve mechanism is acquired.
  • the ECU 40 as the control device has a function of adjusting the correspondence between the waste gate valve opening and the operation amount of the waste gate valve defined in the map.
  • two methods can be adopted as adjustment methods.
  • One adjustment method is common to the adjustment method employed in the first embodiment.
  • a measured value of the valve timing and an estimated value of the valve lift amount are used in the calculation using the intake valve model M6.
  • the other adjustment method is an adjustment method unique to the present embodiment.
  • an adjustment method common to the first embodiment is referred to as a first adjustment method
  • an adjustment method unique to the present embodiment is referred to as a second adjustment method.
  • the horizontal axis of the graph shown in FIG. 7 is the turbo speed (Ntb), and the vertical axis is the intake flow rate (GA).
  • a curve G shown in this graph is a curve showing the relationship between the turbo rotational speed (Ntb) and the intake air flow rate (GA) obtained by inputting the estimated value of the waste gate valve opening to the turbo rotational speed model M1.
  • the estimated value (Ntbest) of the turbo rotational speed is calculated. Since the intake valve flow rate and the intake flow rate coincide with each other in a steady state, the measured value of the intake flow rate can be treated as the actual value of the intake valve flow rate in the turbo rotation speed model M1.
  • the curve H is a curve showing the relationship between the turbo speed (Ntb) and the intake flow rate (GA) that should be obtained if the actual value of the waste gate valve opening is input to the turbo speed model M1.
  • the turbo speed specified by the curve H and the measured value (mafm) of the intake flow rate is the true turbo speed.
  • the curve H shown in the graph is only virtual, and only the curve G can be practically derived.
  • the estimated value (Ntbest) of the turbo speed calculated from the turbo speed model M1 is input to the compressor model M2 together with the measured values of the supercharging pressure and the atmospheric pressure.
  • the horizontal axis of the graph shown in FIG. 8 is the ratio between the supercharging pressure (Pic) and the atmospheric pressure (Pa), and the vertical axis is the compressor flow rate (mcp).
  • a curve J shown in this graph is a curve showing a relationship between a pressure ratio (Pic / Pa) and a compressor flow rate (mcp) obtained by inputting an estimated value (Ntbest) of the turbo rotation speed to the compressor model M2.
  • the estimated value (mcpest) of the compressor flow rate obtained from the compressor model M2 and the measured value (mafm) of the intake flow rate by the air flow meter 42 are compared.
  • the compressor flow rate and the intake flow rate match, so comparing the estimated value of the compressor flow rate (mcpest) with the measured value of the intake flow rate (mafm) is equivalent to the estimated value of the compressor flow rate (mcpest). It is equivalent to comparing the actual value. If there is an error between the estimated value (mcpest) of the compressor flow rate and its actual value, this error means that a deviation has occurred between the indicated value of the waste gate valve opening and the actual value.
  • an estimated value (Ntbest) of the turbo speed is determined according to the estimated value of the waste gate valve opening, and the compressor flow rate is estimated based on the estimated value of the turbo speed (Ntbest). This is because the value (mcpest) is determined. From this, if there is an error (indicated by L in the graph) between the estimated value (mcpest) of the compressor flow rate and the measured value (mafm) of the intake flow rate, the waste gate valve is determined by the presence of the error. It can be determined that there is a difference between the estimated value of the opening and the actual value.
  • a curve K shown in the graph in FIG. 8 is a curve showing the relationship between the pressure ratio (Pic / Pa) and the compressor flow rate (mcp) that should be obtained if the actual value of the turbo speed is input to the compressor model M2. It is.
  • the coordinates determined by the pressure ratio measurement value (Picact / Paact) and the intake flow rate measurement value (mafm) are located on the curve K.
  • the curve K cannot be actually specified.
  • the waste gate valve opening and the operation are adjusted by correcting the map data that associates the waste gate valve opening with the operation amount of the waste gate valve 38.
  • the correspondence with the quantity is adjusted.
  • the turbo rotational speed calculated by the turbo rotational speed model M1 is set.
  • the waste gate valve opening is corrected to the plus side with respect to the manipulated variable so as to decrease the estimated value (Ntbest).
  • the estimated value (mcpest) of the compressor flow rate is smaller than the measured value (mafm) of the intake flow rate, the estimated value (Ntbest) of the turbo rotational speed calculated by the turbo rotational speed model M1 is increased.
  • the waste gate valve opening is corrected to the minus side with respect to the operation amount.
  • FIG. 9 shows a configuration for realizing such a correction method by the ECU 40.
  • the ECU 40 uses a turbo rotational speed model M1 and a compressor model M2. Further, the ECU 40 receives the waste gate valve opening (wgv) estimated from the operation amount, the intake air flow rate (mafm) measured by the air flow meter 42, and the supercharging pressure measured by the supercharging pressure sensor 44. (Picact) and the atmospheric pressure (Paact) measured by the atmospheric pressure sensor 48 are taken in.
  • wgv waste gate valve opening
  • the taken waste gate valve opening (wgv) is input to the turbo speed model M1 together with the intake flow rate (mafm).
  • an estimated value (Ntbest) of the turbo rotation speed is calculated based on the waste gate valve opening (wgv) and the intake flow rate (mafm).
  • the estimated value (Ntbest) of the turbo rotational speed calculated by the turbo rotational speed model M1 is input to the compressor model M2 together with the supercharging pressure (Picact) and the atmospheric pressure (Paact).
  • an estimated value (mcpest) of the compressor flow rate is calculated based on the input information.
  • the ECU 40 calculates the difference between the estimated value (mcpest) of the compressor flow rate and the intake flow rate (mafm). Then, it is determined whether or not the difference value (mcpest ⁇ mafm) is greater than zero.
  • a predetermined value (dwgv) greater than zero is set as the correction amount of the waste gate valve opening (wgv).
  • the correction value of the waste gate valve opening (wgv) is a predetermined value (-dwgv) smaller than zero. Is set. These correction amounts are added to the waste gate valve opening (wgv) when the absolute value of the difference value is larger than a predetermined value (dGA). When the absolute value of the difference value is equal to or less than a predetermined value (dGA), the correction amount is set to zero regardless of the difference.
  • the adjustment result of the correspondence relationship between the waste gate valve opening and the operation amount of the waste gate valve 38 obtained by the method described above is the adjustment result by the second adjustment method.
  • the adjustment result by the second adjustment method (hereinafter referred to as the second adjustment result) is not necessarily the same as the adjustment result by the first adjustment method (hereinafter referred to as the first adjustment result) which is the same method as in the first embodiment. It does not match. This is because the first adjustment result depends on the estimated value of the valve lift amount, whereas the second adjustment result does not depend on the estimated value of the valve lift amount. As with the waste gate valve opening, there may be a deviation between the estimated value and the actual value of the valve lift amount.
  • the first adjustment result using the intake valve model M6 includes an error corresponding to the first adjustment result.
  • the deviation means that there is a deviation between the estimated value and the actual value of the valve lift amount.
  • FIG. 10 is a flowchart showing a process for correcting the estimated value of the valve lift amount performed by the ECU 40.
  • FIG. 11 is a diagram for explaining a method for determining the deviation between the estimated value and the actual value of the valve lift amount employed in the present embodiment.
  • a method of correcting the estimated value of the valve lift amount according to the actual value will be described with reference to these drawings.
  • step S1 shown in the flowchart of FIG. 10 an estimated value (wgv1) of the waste gate valve opening is acquired using a map reflecting the first adjustment result.
  • step S2 an estimated value (wgv2) of the waste gate valve opening is acquired using a map reflecting the second adjustment result.
  • step S3 it is determined whether or not the two estimated values (wgv1, wgv2) of the waste gate valve opening coincide. If the two estimated values (wgv1, wgv2) match, it can be determined that the estimated value of the valve lift amount matches the actual value.
  • step S4 a linear equation representing the intake valve model M6 is determined based on the estimated value (wgv2) of the waste gate valve opening based on the second adjustment result and the estimated value of the current valve lift amount.
  • the straight line is shown as a straight line M in the graph of FIG.
  • the straight line N is a straight line showing the relationship between the intake manifold pressure (Pm) and the intake valve flow rate (mc) that should be obtained if the actual value of the valve lift is input to the intake valve model M6.
  • Pm intake manifold pressure
  • mc intake valve flow rate
  • the estimated value (mcest) of the intake valve flow rate is compared with the intake flow rate (mafm) measured by the air flow meter 42.
  • the valve lift amount is estimated. It can be determined that there is also an error between the value and the actual value.
  • the valve timing is also referred to as a parameter of the intake valve model M6. However, it is considered that the influence of the valve timing on the estimation accuracy of the waste gate valve opening is small compared to the valve lift amount.
  • valve lift amount in the present embodiment means a substantial valve lift amount including a deposit.
  • map data that associates the valve lift amount with the operation amount of the variable valve mechanism Is fixed. For example, as shown in FIG. 11, when the estimated value (mcest) of the intake valve flow rate is smaller than the measured value (mafm) of the intake flow rate, the intake valve flow rate calculated by the intake valve model M6 can be increased. The valve lift amount is corrected to the plus side with respect to the operation amount of the variable valve mechanism.
  • variable valve mechanism is controlled so that the intake valve flow rate calculated by the intake valve model M6 decreases.
  • the valve lift amount is corrected to the minus side with respect to the operation amount. In this manner, the correspondence relationship between the valve lift amount and the operation amount of the variable valve mechanism is adjusted.
  • step S6 After the process of step S6, the process returns to step S4 again, and the estimated value of the valve lift is recalculated according to the adjusted correspondence. Then, based on the estimated value (wgv2) of the waste gate valve opening and the recalculated estimated value of the valve lift, the estimated value (mcest) of the intake valve flow rate is recalculated using the intake valve model M6. Then, the estimated value (mcest) of the intake valve flow rate recalculated in step S5 is compared with the measured value (mafm) of the intake flow rate. Such a series of processes is repeatedly performed until the determination result of step S5 becomes affirmative. As a result, the deviation of the estimated value of the valve lift amount from the actual value is eliminated.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the waste gate obtained from the map is used instead of correcting the map data defining the correspondence.
  • a correction amount for adjustment may be added to the estimated value of the valve opening.
  • the adjustment method employed in the first embodiment is adopted as the first adjustment method.
  • the adjustment method employed in the second embodiment may be employed as the first adjustment method. it can.
  • the intake valve model M6 is also used in the adjustment method of the second embodiment, the adjustment result includes an error corresponding to a deviation between the estimated value and the actual value of the valve lift amount. Therefore, by comparing the adjustment result with the adjustment result by the second adjustment method, it can be determined whether or not there is a deviation between the estimated value and the actual value of the valve lift amount.
  • the supercharged engine according to the first and second embodiments may have a variable valve mechanism that makes the valve timing variable.
  • the coefficient of the linear equation is determined based on the waste gate valve opening and the valve timing.
  • the influence of the measurement error of the valve timing is as described above. However, if it is desired to eliminate it, the waste gate valve is opened only when the valve timing is fixed at the most advanced position or the most retarded position. The degree estimate value may be adjusted.
  • the supercharged engine according to the first and second embodiments may have a variable valve mechanism that makes the valve lift amount variable.
  • the adjustment result of the estimated value of the waste gate valve opening may include an error of a deviation between the estimated value of the valve lift amount and the actual value.
  • the estimation error of the waste gate valve opening is larger than that of the valve lift amount, and the estimation error of the waste gate valve opening has a large effect on the estimation accuracy of the cylinder air amount. Even if it is somewhat affected, the merit obtained by carrying out the present invention is not greatly impaired thereby. If it is desired to eliminate the influence of the estimation error of the valve lift amount, the estimated value of the waste gate valve opening may be adjusted only when the valve lift amount is fixed to the maximum or minimum.
  • an intercooler and an air bypass valve are not essential.
  • an EGR device may be provided in a supercharged engine to which the control device of the present invention is applied.
  • the ABV model may be omitted from the air amount estimation model.
  • it is a supercharged engine which has an EGR apparatus what is necessary is just to add an EGR model to an air quantity estimation model.

Abstract

 本発明の目的は、過給エンジンにおいてウェイストゲートバルブ開度を正確に推定できるようにすることである。この目的のため、本発明の1つの形態としての制御装置は、予め定義された対応関係に従いウェイストゲートバルブの操作量に対応するウェイストゲートバルブ開度の推定値を取得し、その推定値に基づいてスロットル下流圧力と吸気弁流量との間に成り立つ第1の関係を吸気弁モデルから導出する。また、スロットル開度の計測値とスロットル上流圧力の計測値とに基づいてスロットル下流圧力とスロットル流量との間に成り立つ第2の関係をスロットルモデルから導出する。そして、第1の関係及び第2の関係に基づいて吸気弁流量とスロットル流量とが一致する場合の吸気弁流量の推定値を計算し、それと吸気流量の計測値との比較結果に基づいてウェイストゲートバルブ開度の推定値とウェイストゲートバルブの操作量との対応関係を調整する。

Description

過給エンジンの制御装置
 本発明は、ウェイストゲートバルブを有する過給エンジンの制御装置に関する。
 現在注目されている過給エンジンの制御技術の一つが、E-VRV(Electronic Vacuum Regulating Valve)等の電動式アクチュエータを用いたウェイストゲートバルブのアクティブ制御である。このアクティブ制御では、ECUからの操作信号によってウェイストゲートバルブを任意の開度に動かし、それによりターボ回転数を能動的に制御することが行われる。これによれば過給圧を任意に調整することが可能であり、燃費性能や排気ガス性能のさらなる向上が期待できる。
 ただし、このようなアクティブ制御の実現のためには、ウェイストゲートバルブが実際にどれだけ開いているのかを正しく把握することが必要である。ウェイストゲートバルブを能動的に動作させたとしても、その開度が本来予定している開度からずれている場合にはエンジンの運転に支障が生じてしまうからである。例えば、高負荷状態においてウェイストゲートバルブが予定よりも閉じすぎていると、過剰な過給によってプレイグニッションが発生してしまう。逆に、ウェイストゲートバルブが予定よりも開きすぎていると、過給圧の不足によって所望の加速性能を得ることができなくなる。また、情報としてのウェイストゲートバルブ開度は、筒内空気量を正確に推定するための重要な情報でもある。
 ところが、センサ等の計測手段によってウェイストゲートバルブ開度を精度良く実測することは現実的に容易ではない。このため、ウェイストゲートバルブ開度が情報として必要であるならば、ECUがウェイストゲートバルブを操作するときの操作量からウェイストゲートバルブ開度を推定せざるを得ない。具体的には、予め定義された対応関係を用いてウェイストゲートバルブの操作量からウェイストゲートバルブ開度が推定されることになる。しかし、ウェイストゲートバルブの個体差や経時変化により、実際の対応関係と定義されている対応関係との間にずれが生じる可能性がある。その場合、ウェイストゲートバルブ開度の推定値は実際値とは異なったものとなり、ウェイストゲートバルブ開度の推定値を参照して行われるエンジン制御に悪影響を与えてしまう。このようなことから、ウェイストゲートバルブのアクティブ制御を実施する場合には、ウェイストゲートバルブ開度の正確な推定値を得ることのできる技術が併せて必要とされている。
 なお、本発明に関連する先行技術としては、以下に列挙する各特許文献に記載の技術を挙げることができる。例えば、特開2004-156525号公報には、実際の吸気弁流量とモデルを用いて計算した推定吸気弁流量との誤差に基づいて誤差要因であるバルブリフト量を補正することについて記載されている。しかし、同公報ではウェイストゲートバルブについては触れられておらず、ましてや、ウェイストゲートバルブ開度の正確な推定値を得るための方法については記載されていない。
特開2004-156525号公報 特開平11-218031号公報 特開2006-274834号公報 特開2006-274831号公報
 以上述べたように、ウェイストゲートバルブ開度を正確に推定できるようにすることは、ウェイストゲートバルブのアクティブ制御を実施する上での重要な課題として位置づけられる。このような課題を達成するためのアプローチとして、本発明では、過給エンジンにおける空気の挙動をモデル化した物理モデルを利用する。そのような物理モデルは、過給エンジンの制御装置において筒内空気量を推定するための計算に用いられている。過給エンジンの物理モデルにより計算される物理量の中には、ウェイストゲートバルブ開度によって値が決まり、かつ、過給エンジンに搭載されるセンサによって計測可能な物理量が含まれている。そのような物理量の計測値と、ウェイストゲートバルブ開度の推定値に基づき物理モデルを用いて計算した当該物理量の推定値とを比較することで、ウェイストゲートバルブ開度の推定値と実際値とのずれを間接的に把握することができる。そして、前記物理量の計測値と推定値との差が無くなるようにウェイストゲートバルブ開度の推定値とウェイストゲートバルブの操作量との対応関係を調整することにより、ウェイストゲートバルブ開度の推定値を実際値に合うように修正することが可能となる。
 具体的には、本発明が提供する過給エンジンの制御装置は、物理モデルとしてスロットルモデルと吸気弁モデルとを備えている。スロットルモデルは、スロットル上流圧力とスロットル下流圧力とスロットル開度とスロットル流量との間に成り立つ関係がモデル化されたものである。スロットル上流圧力とは、コンプレッサからスロットルまでの空間の圧力を意味し、スロットル下流圧力とは、スロットルから吸気弁までの空間の圧力を意味する。スロットルを通過する空気の流量は、主としてこれらの差圧と流路面積とによって決まることが知られている。流路面積はスロットル開度により決まる。一方、吸気弁モデルは、スロットル下流圧力とウェイストゲートバルブ開度と吸気弁流量との間に成り立つ関係をモデル化したものである。スロットル下流圧力と吸気弁を通過する空気の流量との間には直線で近似することができる関係があることが知られている。そして、その直線の式の傾きや切片を決定する係数の値にウェイストゲートバルブ開度が関係していることも知られている。これらの物理モデルは何れも数式で表すことが可能であり、何れも処理プログラムの形で本制御装置の記憶部に記憶されている。
 また、本制御装置は、ウェイストゲートバルブ開度をウェイストゲートバルブの操作量から推定する機能を備えている。その推定のためには、予め定義されているウェイストゲートバルブの操作量とウェイストゲートバルブ開度との対応関係が用いられる。対応関係はマップデータの形で本制御装置の記憶部に記憶されている。さらに、本制御装置は、スロットル開度、スロットル上流圧力、及び吸気流量の各計測値を取得する機能を備えている。吸気流量とは過給エンジンの吸気通路に吸入される空気の流量を意味する。これらの物理量は過給エンジンに搭載のセンサによって計測することができる。そして、これらの計測値とウェイストゲートバルブ開度の推定値とに基づき、本制御装置は、前述の各物理モデルを用いて以下の計算を実施する。
 本発明の第1の形態によれば、本制御装置は、ウェイストゲートバルブ開度の推定値に基づいて、スロットル下流圧力と吸気弁流量との間に成り立つ関係(以下、第1の関係)を吸気弁モデルから導出する。また、本制御装置は、スロットル開度の計測値とスロットル上流圧力の計測値とに基づいて、スロットル下流圧力とスロットル流量との間に成り立つ関係(以下、第2の関係)をスロットルモデルから導出する。次に、本制御装置は、第1の関係及び第2の関係に基づいて吸気弁流量とスロットル流量とが一致する場合の吸気弁流量の推定値を計算する。第1の関係と第2の関係はいずれも方程式で表すことができるので、それらの連立方程式を解くことによって、現在のウェイストゲートバルブ開度の推定値とスロットル上流圧力の計測値とから推定される吸気弁流量を得ることができる。
 そして、本制御装置は、上述のようにして得られた吸気弁流量の推定値と吸気流量の計測値とを比較する。定常状態であれば吸気弁流量と吸気流量とは一致することから、吸気弁流量の推定値と吸気流量の計測値とを比較することは、吸気弁流量の推定値と計測値、すなわち、実際値とを比較することと等価である。吸気弁流量の推定値と実際値との間に誤差がある場合、その誤差はウェイストゲートバルブ開度の推定値と実際値との間にずれが生じていることを意味する。吸気弁モデルによれば、吸気弁流量の推定値はウェイストゲートバルブ開度の推定値によってその値が左右されるからである。そこで、本発明の第1の形態によれば、本制御装置は、吸気弁流量の推定値と吸気流量の計測値との比較結果に基づいて、具体的には、吸気弁流量の推定値と吸気流量の計測値とが一致するように、ウェイストゲートバルブ開度の推定値とウェイストゲートバルブの操作量との対応関係を調整する。吸気弁流量の推定値と吸気流量の計測値とが一致するようになれば、ウェイストゲートバルブ開度の推定値の実際値に対するずれも解消されるようになる。
 また、本発明の第2の形態によれば、本制御装置は、ウェイストゲートバルブ開度の推定値、及び、吸気流量の計測値に基づいて、吸気弁モデルを用いてスロットル下流圧力の推定値を計算する。定常状態であれば吸気弁流量と吸気流量とは一致することから、吸気流量の計測値は吸気弁モデルにおいて吸気弁流量の実際値として扱うことができる。次に、本制御装置は、吸気弁モデルを用いて計算されたスロットル下流圧力の推定値、スロットル開度の計測値、及び、吸気流量の計測値に基づいて、スロットルモデルを用いてスロットル上流圧力の推定値を計算する。定常状態であれば吸気弁流量とスロットル流量とは一致することから、吸気流量の計測値はスロットルモデルにおいてスロットル流量の実際値として扱うことができる。
 そして、本制御装置は、上述のようにして得られたスロットル上流圧力の推定値をその計測値と比較する。スロットル上流圧力の推定値と計測値との間に誤差がある場合、その誤差はウェイストゲートバルブ開度の指示値と実際値との間にずれが生じていることを意味する。スロットルモデル及び吸気弁モデルによれば、ウェイストゲートバルブ開度の推定値に応じてスロットル下流圧力の推定値が決まり、スロットル下流圧力の推定値によってスロットル上流圧力の推定値が決まるからである。そこで、本発明の第2の形態によれば、本制御装置は、スロットル上流圧力の推定値と計測値との比較結果に基づいて、具体的には、スロットル上流圧力の推定値と計測値とが一致するように、ウェイストゲートバルブ開度の推定値とウェイストゲートバルブの操作量との対応関係を調整する。スロットル上流圧力の推定値と計測値とが一致するようになれば、ウェイストゲートバルブ開度の推定値の実際値に対するずれも解消されるようになる。
 以上の2つの形態を前提として、本発明は次に述べる第3の形態を採ることもできる。本発明の第3の形態では、第1の形態或いは第2の形態の特徴にさらなる特徴が追加される。その追加された特徴には、本発明が適用される過給エンジンが吸気弁のバルブリフト量を可変にする可変動弁機構を備えたエンジンであることと、吸気弁モデルのパラメータにバルブリフト量が含まれることが含まれる。本発明の第3の形態によれば、スロットル下流圧力と吸気弁流量との関係を示す直線の式の係数の決定にウェイストゲートバルブ開度の推定値に加えてバルブリフト量の推定値が用いられる。バルブリフト量可変のエンジンの場合、バルブリフト量によってスロットル下流圧力と吸気弁流量との関係が変化することは知られている。
 吸気弁モデルのバラメータにバルブリフト量が加えられることで、スロットル下流圧力と吸気弁流量との関係はより正確に表される。しかし、その一方でバルブリフト量の推定値と実際値との間にずれがある場合には、目標どおりに筒内空気量を実現することができない。さらに、バルブリフト量の推定値と実際値とのずれは、前述の第1の形態や第2の形態で行われているウェイストゲートバルブ開度の推定値とウェイストゲートバルブの操作量との対応関係の調整にも影響する。モデルによる計算結果はバルブリフト量の推定値によって左右されるからである。本発明の第3の形態は、ウェイストゲートバルブ開度の推定値と実際値とのずれを無くすことに加え、バルブリフト量の推定値と実際値とのずれを無くすことをさらなる課題として創案されたものである。
 本発明の第3の形態によれば、本制御装置は、さらなる物理モデルとしてターボ回転数モデルとコンプレッサモデルとを備えている。ターボ回転数モデルは、吸気弁流量とウェイストゲートバルブ開度とターボ回転数との間に成り立つ関係がモデル化されたものである。定常状態における吸気弁流量はタービンに流入するガスの流量と等価であるから、吸気弁流量とウェイストゲートバルブ開度が決まれば、過給機の動作特性からターボ回転数を一義的に特定することができる。一方、コンプレッサモデルは、ターボ回転数とスロットル上流圧力とコンプレッサ流量との間に成り立つ関係がモデル化されたものである。コンプレッサによって送り出される空気の流量は、主としてその前後の圧力差とコンプレッサの回転数とによって決まることが知られている。コンプレッサの上流の圧力は大気圧に略等しく、コンプレッサの回転数はターボ回転数に等しい。本発明の第3の形態によれば、本制御装置は、これらの物理モデルを用いて以下の計算を実施する。
 本制御装置は、まず、バルブリフト量を可変動弁機構の操作量から推定する。その推定のためには、予め定義されている可変動弁機構の操作量とバルブリフト量との対応関係が用いられる。また、本制御装置は、ウェイストゲートバルブ開度の推定値、及び、吸気流量の計測値に基づいて、ターボ回転数モデルを用いてターボ回転数の推定値を計算する。定常状態であれば吸気弁流量と吸気流量とは一致することから、吸気流量の計測値はターボ回転数モデルにおいて吸気弁流量の実際値として扱うことができる。次に、本制御装置は、ターボ回転数モデルを用いて計算されたターボ回転数の推定値、及び、スロットル上流圧力の計測値に基づいて、コンプレッサモデルを用いてコンプレッサ流量の推定値を計算する。
 そして、本制御装置は、上述のようにして得られたコンプレッサ流量の推定値を吸気流量の計測値と比較する。定常状態であればコンプレッサ流量と吸気流量とは一致することから、コンプレッサ流量の推定値と吸気流量の計測値とを比較することは、コンプレッサ流量の推定値と計測値、すなわち、実際値とを比較することと等価である。コンプレッサ流量の推定値と実際値との間に誤差がある場合、その誤差はウェイストゲートバルブ開度の推定値と実際値との間にずれが生じていることを意味する。ターボ回転数モデル及びコンプレッサモデルによれば、ウェイストゲートバルブ開度の推定値に応じてターボ回転数の推定値が決まり、ターボ回転数の推定値によってコンプレッサ流量の推定値が決まるからである。そこで、本制御装置は、コンプレッサ流量の推定値と吸気流量の計測値とを比較し、その比較結果に基づいてウェイストゲートバルブ開度の推定値とウェイストゲートバルブの操作量との対応関係を調整する。ターボ回転数モデル及びコンプレッサモデルによる計算にはバルブリフト量は用いられないことから、本方法による対応関係の調整結果にはバルブリフト量の推定値と実際値とのずれは影響しない。
 次に、本制御装置は、上述の方法によるウェイストゲートバルブ開度の推定値とウェイストゲートバルブの操作量との対応関係の調整結果と、本発明の第1の形態或いは第2の形態による調整結果とを比較する。両者の間にずれがある場合、そのずれはバルブリフト量の推定値と実際値との間にずれが生じていることを意味する。この場合、本制御装置は、上述の方法により調整された対応関係に従ってウェイストゲートバルブ開度の推定値を取得し、当該推定値とバルブリフト量の推定値とに基づいて吸気弁モデルを用いて吸気弁流量の推定値を計算する。そして、吸気弁流量の推定値と吸気流量の計測値とを比較し、その比較結果に基づいてバルブリフト量の推定値と可変動弁機構の操作量との対応関係を調整する。その対応関係の調整によって吸気弁流量の推定値と吸気流量の計測値とが一致するようになれば、バルブリフト量の推定値の実際値に対するずれも解消されるようになる。
本発明の各実施の形態の制御装置が適用される過給エンジンの構成を示す概略図である。 本発明の各実施の形態の制御装置で用いられている空気量推定モデルを示すブロック図である。 本発明の実施の形態1で採られるウェイストゲートバルブ開度の推定値と実際値とのずれの判定の方法について説明するための図である。 本発明の実施の形態1の制御装置が有するウェイストゲートバルブ開度の推定値の修正のための機能を示すブロック図である。 本発明の実施の形態2で採られるウェイストゲートバルブ開度の推定値と実際値とのずれの判定の方法について説明するための図である。 本発明の実施の形態2の制御装置が有するウェイストゲートバルブ開度の推定値の修正のための機能を示すブロック図である。 本発明の実施の形態3で採られるウェイストゲートバルブ開度の推定値と実際値とのずれの判定の方法について説明するための図である。 本発明の実施の形態3で採られるウェイストゲートバルブ開度の推定値と実際値とのずれの判定の方法について説明するための図である。 本発明の実施の形態3の制御装置が有するウェイストゲートバルブ開度の推定値の修正のための機能を示すブロック図である。 本発明の実施の形態3で行われるバルブリフト量の推定値の修正のための処理を示すフローチャートである。 本発明の実施の形態3で採られるバルブリフト量の推定値と実際値とのずれの判定の方法について説明するための図である。
実施の形態1.
 本発明の実施の形態1について図を参照して説明する。
 本実施の形態の制御装置が適用されるエンジンは、ウェイストゲートバルブを有する過給エンジンであり、より詳しくは、スロットルによる空気量の調整によってトルクを制御することのできる4サイクルレシプロエンジンである。図1は、本実施の形態の制御装置が適用される過給エンジンの構成を示す概略図である。本実施の形態にかかる過給エンジンは、吸気通路10に設けられたコンプレッサ32と排気通路20に設けられたタービン34とからなるターボ過給機30を備えている。吸気通路10はエンジン本体2に取り付けられた吸気マニホールド18に接続されている。吸気通路10の入口にはエアクリーナ12が設けられ、その下流であってコンプレッサ32よりも上流には吸気流量を計測するためのエアフローメータ42が配置されている。吸気通路10におけるコンプレッサ32とスロットル16との間にはインタークーラ14が設けられている。インタークーラ14の出口には、スロットル16の上流部の圧力、すなわち、過給圧を測定するための過給圧センサ44が取り付けられている。また、吸気通路10には、コンプレッサ32の下流側から上流側へコンプレッサ32をバイパスして空気を再循環させるためのエアバイパスバルブ36が設けられている。排気通路20はエンジン本体2に取り付けられた排気マニホールド22に接続されている。排気通路20には、タービン34をバイパスして排気ガスを流すためのウェイストゲートバルブ38が設けられている。このウェイストゲートバルブ38はE-VRVによって駆動されるアクティブ制御対応のウェイストゲートバルブである。
 本実施の形態の制御装置は、過給エンジンを制御するECU(Electronic Control Unit)40の機能の一部として実現される。ECU40には、エアフローメータ42や過給圧センサ44の他にもスロットル開度センサ46や大気圧センサ48等の各種のセンサから、エンジンの運転状態や運転条件に関する様々な情報や信号が入力される。ECU40は、それら情報や信号に基づいてスロットル16やウェイストゲートバルブ38等の各種のアクチュエータを操作する。ウェイストゲートバルブ38に関しては、ECU40からE-VRVに操作量信号が供給される。その信号に従いE-VRVが作動することにより、ウェイストゲートバルブ38は任意の開度に動かされる。ECU40には、ウェイストゲートバルブ38の操作量であるデューティ比とウェイストゲートバルブ開度の推定値との対応関係を示すマップが記憶されている。
 制御装置としてのECU40は、筒内の空気量を推定する機能を有している。ECU40による筒内の空気量の推定には、プログラムされている空気量推定モデルが用いられる。空気量推定モデルは、過給エンジンにおける空気の挙動を物理的にモデル化したものであって、その概要は図2の機能ブロック図によって表される。
 図2に示すように、本実施の形態で用いられる空気量推定モデルは、ターボ回転数モデルM1、コンプレッサモデルM2、インタークーラモデルM3、スロットルモデルM4、吸気マニホールドモデルM5、吸気弁モデルM6、及び、ABVモデルM7を含んでいる。以下、空気量推定モデルに含まれる各サブモデルの内容について説明する。ただし、これらのサブモデルに用いることができる数式の例については公知であり、また、それ自体は本発明における特徴点ではないことから、各サブモデルのための具体的な数式については記載を省略する。
 ターボ回転数モデルM1は、ターボ過給機30の回転挙動のモデルであって、吸気弁流量とウェイストゲートバルブ開度とターボ回転数との間に成り立つ関係がモデル化されている。ターボ回転数モデルM1は、数式或いは実験データに基づくマップによって構成されている。ターボ回転数モデルM1では、ウェイストゲートバルブ38の操作量から推定されたウェイストゲートバルブ開度(wgv)と、後述する吸気弁モデルM6で算出された吸気弁流量(mc)とが入力され、それらの入力情報からターボ回転数(Ntb)が算出される。
 コンプレッサモデルM2は、ターボ過給機30のコンプレッサ32のモデルであって、ターボ回転数と過給圧とコンプレッサ流量との間に成り立つ関係がモデル化されている。コンプレッサモデルM2は、数式或いは実験データに基づくマップによって構成されている。コンプレッサモデルM2では、ターボ回転数モデルM1で算出されたターボ回転数(Ntb)と、後述するインタークーラモデルM3で算出された過給圧(Pic)等の情報が入力され、それらの入力情報からコンプレッサ流量(mcp)が算出される。
 ABVモデルM7は、エアバイパスバルブ36によってコンプレッサ32の下流側から上流側に戻される空気の流量を算出するためのモデルである。エアバイパスバルブ36の流量は、その前後の差圧と、エアバイパスバルブ36を動作させるデューティ比から計算することができる。このため、ABVモデルM7では、大気圧センサ48によって計測された大気圧(Pa)、後述するインタークーラモデルM3で算出された過給圧(Pic)、及びECU40からエアバイパスバルブ36に出されるデューティ比(Dabv)が入力され、それらの入力情報からエアバイパスバルブ流量(mabv)が算出される。
 インタークーラモデルM3は、吸気通路10におけるインタークーラ14内の空気に関する保存則に基づいて構築された物理モデルである。インタークーラモデルM3としては、具体的にはエネルギー保存則の式と流量保存則の式とが用いられている。インタークーラモデルM3では、コンプレッサモデルM2で算出されたコンプレッサ流量(mcp)、後述するスロットルモデルM4で算出されたスロットル流量(mt)、及びABVモデルM7で算出されたABV流量(mabv)等の情報が入力され、それらの入力情報から過給圧(Pic)が算出される。
 スロットルモデルM4は、スロットル16を通過する空気の流量を算出するためのモデルであって、具体的には、スロットル16の前後の差圧、スロットル開度により決まる流路面積、及び流量係数を基本とするオリフィスの流量式が用いられている。スロットルモデルM4では、スロットル開度センサ46で計測されたスロットル開度(TA)、インタークーラモデルM3で算出されたスロットル上流圧力としての過給圧(Pic)、及び後述する吸気マニホールドモデルM5で算出されたスロットル下流圧力としての吸気マニホールド圧(Pm)等の情報が入力され、それらの入力情報からスロットル流量(mt)が算出される。
 吸気マニホールドモデルM5は、吸気マニホールド18内の空気に関する保存則に基づいて構築された物理モデルである。吸気マニホールドモデルM5としては、具体的にはエネルギー保存則の式と流量保存則の式とが用いられている。吸気マニホールドモデルM5では、スロットルモデルM4で算出されたスロットル流量(mt)、及び後述する吸気弁モデルM6で算出された吸気弁流量(mc)等の情報が入力され、それらの入力情報から吸気マニホールド圧(Pm)が算出される。
 吸気弁モデルM6は、吸気弁流量と吸気マニホールド圧との関係について調べた実験ベースのモデルである。実験で得られた経験則により、吸気弁モデルM6においては吸入空気量と吸気マニホールド圧との関係が直線で近似されている。ただし、その直線の方程式の係数は定数ではなく、ウェイストゲートバルブ38の開度によって決まる変数である。ウェイストゲートバルブ38の開度は背圧に影響し、背圧が変化すれば筒内への空気の入り易さも変化するためである。吸気弁モデルM6では、吸気マニホールドモデルM5で算出された吸気マニホールド圧(Pm)、及びウェイストゲートバルブ38の操作量から推定されたウェイストゲートバルブ開度(wgv)等の情報が入力され、それらの入力情報から吸気弁流量(mc)が算出される。
 ECU40は、以上のように構成される空気量推定モデルを用いて吸気弁流量を計算し、吸気弁流量に基づいて筒内空気量を計算する。その計算の過程においては、スロットル開度や過給圧の計測値とともにウェイストゲートバルブ開度の推定値が用いられている。センサによって得られた計測値は、センサが正しく較正されている限りにおいて実際値に等しいとみなすことができる。しかし、ウェイストゲートバルブ開度の推定値に関しては、必ずしも実際値に等しいとは言えない。ウェイストゲートバルブ38の個体差や経時変化によって、マップにおいて定義されているウェイストゲートバルブ開度と操作量との対応関係が実際のものと違ってしまう場合があるからである。この点に関し、ECU40には、以下に述べるように、ウェイストゲートバルブ開度の推定値を実際値に合わせて修正する機能が設けられている。
 まず、本実施の形態で採られるウェイストゲートバルブ開度の推定値と実際値とのずれの判定の方法について図3を用いて説明する。なお、ここでは、ウェイストゲートバルブ開度の推定値が実際値よりも小さく見積もられているケースを例にとって説明する。
 図3に示すグラフの横軸は吸気マニホールド圧(Pm)であり、縦軸はスロットル流量(mt)及び吸気弁流量(mc)である。グラフ中には2つの直線A、Bと1つの曲線Cが描かれている。直線Aは、ウェイストゲートバルブ開度の推定値に基づいて吸気弁モデルM6から導出される吸気マニホールド圧(Pm)と吸気弁流量(mc)との関係を示す直線である。一方、直線Bは、ウェイストゲートバルブ開度の実際値を吸気弁モデルM6に入力したならば得られるはずの吸気マニホールド圧(Pm)と吸気弁流量(mc)との関係を示す直線である。ただし、ウェイストゲートバルブ開度の実際値は直接計測できないことから、グラフに示す直線Bはあくまでも仮想であって、現実的に導出可能なのは直線Aのみである。曲線Cは、スロットル開度と過給圧の各計測値をスロットルモデルM4に入力することで得られる吸気マニホールド圧(Pm)とスロットル流量(mt)との関係を示している。この曲線Cから分かるように、スロットル開度と過給圧とが一定の場合、スロットル流量(mt)は吸気マニホールド圧(Pm)の増大とともに減少し、吸気マニホールド圧(Pm)の値が過給圧(Picact)に一致するときにスロットル流量(mt)はゼロになる。
 定常状態においてはスロットル流量と吸気流量とは一致することから、エアフローメータ42によって計測された吸気流量(mafm)を曲線Cの方程式に代入することにより、現時点における吸気マニホールド圧と過給圧の比を推測することができる。また、定常状態においてはスロットル流量(mt)と吸気弁流量(mc)とは一致することから、過給圧が分かれば曲線Cと直線Aの交点における流量を算出することで、ウェイストゲートバルブ開度の推定値のもとでの吸気弁流量(mcest)を求めることができる。より具体的には、曲線Cと直線Aはそれぞれに方程式で表されることから、その連立方程式を解くことで、ウェイストゲートバルブ開度の推定値のもとでの推定吸気弁流量(mcest)を算出することができる。
 本実施の形態では、このようにして得られた吸気弁流量の推定値(mcest)と、エアフローメータ42によって計測された吸気流量(mafm)とを比較する。定常状態であれば吸気弁流量と吸気流量とは一致することから、吸気弁流量の推定値(mcest)と吸気流量の計測値(mafm)とを比較することは、吸気弁流量の推定値(mcest)とその実際値とを比較することと等価である。ウェイストゲートバルブ開度の推定値が実際値に一致するのであれば、吸気弁流量の推定値(mcest)もその実際値に一致する。しかし、ウェイストゲートバルブ開度の推定値が実際値からずれているのであれば、吸気弁流量の推定値(mcest)はその実際値には一致していない。このことから、吸気弁流量の推定値(mcest)と吸気流量の計測値(mafm)との間に誤差(グラフにはDで示している)がある場合には、その誤差の存在をもってウェイストゲートバルブ開度の推定値と実際値との間にずれが生じていると判断することができる。
 次に、本実施の形態で採られるウェイストゲートバルブ開度の推定値の修正の方法について説明する。ウェイストゲートバルブ開度の推定値は、マップにおいてウェイストゲートバルブ38の操作量に対応付けられている。本実施の形態では、そのマップのデータを修正することにより、ウェイストゲートバルブ開度と操作量との対応関係の調整が行われる。その調整においては、吸気弁流量の推定値(mcest)が吸気流量の計測値(mafm)よりも小さいのであれば、吸気弁モデルM6で算出される吸気弁流量が増えるように、操作量に対してウェイストゲートバルブ開度はプラス側に修正される。逆に、吸気弁流量の推定値(mcest)が吸気流量の計測値(mafm)よりも大きいのであれば、吸気弁モデルM6で算出される吸気弁流量が減少するように、操作量に対してウェイストゲートバルブ開度はマイナス側に修正される。
 図4は、このような修正の方法をECU40により実現するための構成を示している。このブロック図に示すように、ECU40は、吸気弁モデルM6とスロットルモデルM4を利用する。また、ECU40には、操作量から推定されたウェイストゲートバルブ開度(wgv)が取り込まれるとともに、過給圧センサ44により計測された過給圧(Picact)、スロットル開度センサ46により計測されたスロットル開度(TA)、及び、エアフローメータ42により計測された吸気流量(mafm)が取り込まれる。
 取り込まれたウェイストゲートバルブ開度(wgv)は吸気弁モデルM6に入力される。吸気弁モデルM6では、ウェイストゲートバルブ開度(wgv)に基づいて、吸気マニホールド圧(Pm)と吸気弁流量(mc)との関係を示す方程式が導出される。スロットルモデルM4では、過給圧(Picact)及びスロットル開度(TA)により特定される方程式と吸気弁モデルM6で得られた方程式との連立方程式を解くことによって吸気弁流量の推定値(mcest)が算出される。
 次に、ECU40は、吸気弁流量の推定値(mcest)と吸気流量(mafm)との差分を算出する。そして、その差分値(mcest-mafm)はゼロより大きいかどうか判定される。差分値がゼロより大きい場合、すなわち吸気弁流量の推定値(mcest)が吸気流量(mafm)より大きいときには、ウェイストゲートバルブ開度(wgv)の修正量としてゼロより小さい所定値(-dwgv)が設定される。一方、差分値がゼロより小さい場合、すなわち吸気弁流量の推定値(mcest)が吸気流量(mafm)より小さいときには、ウェイストゲートバルブ開度(wgv)の修正量としてゼロより大きい所定値(dwgv)が設定される。これらの修正量は、差分値の絶対値が所定値(dGA)よりも大きい場合に、ウェイストゲートバルブ開度(wgv)に加算される。差分値の絶対値が所定値(dGA)以下である場合には、差分の有無に係らず修正量はゼロとされる。
 実施の形態2.
 次に、本発明の実施の形態2について図を参照して説明する。
 本実施の形態の制御装置は、実施の形態1と同様に、図1のように構成される過給エンジンに適用され、過給エンジンを制御するECU40の機能の一部として実現される。また、制御装置としてのECU40は、実施の形態1と同様に、図2に示す空気量推定モデルを用いて筒内空気量を推定する機能を有している。
 本実施の形態の制御装置と実施の形態1の制御装置との相違点は、ウェイストゲートバルブ開度の推定値を実際値に合わせて修正する機能の内容にある。まず、本実施の形態で採られるウェイストゲートバルブ開度の推定値と実際値とのずれの判定の方法について図5を用いて説明する。なお、ここでは、ウェイストゲートバルブ開度の推定値が実際値よりも小さく見積もられているものとする。
 図5に示すグラフの横軸は吸気マニホールド圧(Pm)であり、縦軸はスロットル流量(mt)及び吸気弁流量(mc)である。グラフに示す直線Aは、ウェイストゲートバルブ開度の推定値を吸気弁モデルM6に入力することで得られる吸気マニホールド圧(Pm)と吸気弁流量(mc)との関係を示す直線である。この直線Aを表す方程式に吸気流量の計測値(mafm)を代入することによって吸気マニホールド圧の推定値(Pmest)が計算される。定常状態であれば吸気弁流量と吸気流量とは一致することから、吸気流量の計測値は吸気弁モデルM6において吸気弁流量の実際値として扱うことができる。
 次に、吸気弁モデルM6から算出した吸気マニホールド圧の推定値(Pmest)をスロットル開度と吸気流量の各計測値とともに、スロットルモデルM4に入力する。定常状態であれば吸気弁流量とスロットル流量とは一致することから、吸気流量の計測値はスロットルモデルM4においてスロットル流量の実際値として扱うことができる。グラフに示す曲線Eは、これらの情報をスロットルモデルM4に入力することによって特定される吸気マニホールド圧(Pm)とスロットル流量(mt)との関係を示す曲線である。この曲線Eにおいてスロットル流量(mt)がゼロになるとき、吸気マニホールド圧(Pm)は過給圧に等しくなる。その過給圧の値を曲線Eの方程式を用いて算出することにより、ウェイストゲートバルブ開度の推定値のもとでの推定過給圧(Picest)を得ることができる。
 本実施の形態では、このようにして得られた過給圧の推定値(Picest)と、過給圧センサ44によって計測された過給圧(Picact)とを比較する。過給圧の推定値(Picest)と計測値(Picact)との間に誤差がある場合、その誤差はウェイストゲートバルブ開度の指示値と実際値との間にずれが生じていることを意味する。スロットルモデルM4及び吸気弁モデルM6によれば、ウェイストゲートバルブ開度の推定値に応じて吸気マニホールド圧の推定値(Pmest)が決まり、吸気マニホールド圧の推定値(Pmest)によって過給圧の推定値(Picest)が決まるからである。このことから、過給圧の推定値(Picest)と計測値(Picact)との間に誤差(グラフにはFで示している)がある場合には、その誤差の存在をもってウェイストゲートバルブ開度の推定値と実際値との間にずれが生じていると判断することができる。
 なお、グラフに示す直線Bは、ウェイストゲートバルブ開度の実際値を吸気弁モデルM6に入力したならば得られるはずの吸気マニホールド圧(Pm)と吸気弁流量(mc)との関係を示す直線である。ただし、ウェイストゲートバルブ開度の実際値は直接計測できないことから、実際には直線Bを特定することはできない。曲線Cは、スロットル開度と過給圧の各計測値をスロットルモデルM4に入力することで得られる吸気マニホールド圧((Pm)とスロットル流量(mt)との関係を示す曲線である。この曲線Cにおいてスロットル流量(mt)がゼロになるときの吸気マニホールド圧(Pm)の値は過給圧の計測値(Picact)に一致する。
 次に、本実施の形態で採られるウェイストゲートバルブ開度の推定値の修正の方法について説明する。本実施の形態では、実施の形態1の場合と同じく、ウェイストゲートバルブ開度をウェイストゲートバルブ38の操作量に対応付けるマップのデータを修正することにより、ウェイストゲートバルブ開度と操作量との対応関係の調整が行われる。その調整においては、グラフに示すように過給圧の推定値(Picest)が計測値(Picact)よりも大きいのであれば、操作量に対してウェイストゲートバルブ開度はプラス側に修正される。逆に、過給圧の推定値(Picest)が計測値(Picact)よりも小さいのであれば、操作量に対してウェイストゲートバルブ開度はマイナス側に修正される。
 図6は、このような修正の方法をECU40により実現するための構成を示している。このブロック図に示すように、ECU40は、吸気弁モデルM6とスロットルモデルM4を利用する。また、ECU40には、操作量から推定されたウェイストゲートバルブ開度(wgv)が取り込まれるとともに、過給圧センサ44により計測された過給圧(Picact)、スロットル開度センサ46により計測されたスロットル開度(TA)、及び、エアフローメータ42により計測された吸気流量(mafm)が取り込まれる。
 取り込まれたウェイストゲートバルブ開度(wgv)は吸気流量(mafm)とともに吸気弁モデルM6に入力される。吸気弁モデルM6では、ウェイストゲートバルブ開度(wgv)と吸気流量(mafm)とに基づいて吸気マニホールド圧の推定値(Pmest)が算出される。吸気弁モデルM6で算出された吸気マニホールド圧の推定値(Pmest)は、吸気流量(mafm)とスロットル開度(TA)とともにスロットルモデルM4に入力される。スロットルモデルM4では、それら入力情報に基づいて過給圧の推定値(Picest)が算出される。
 次に、ECU40は、過給圧の推定値(Picest)と計測値(Picact)との差分を算出する。そして、その差分値(Picest-Picact)はゼロより大きいかどうか判定される。差分値がゼロより大きい場合、すなわち過給圧の推定値(Picest)が計測値(Picact)より大きいときには、ウェイストゲートバルブ開度(wgv)の修正量としてゼロより大きい所定値(dwgv)が設定される。一方、差分値がゼロより小さい場合、すなわち過給圧の推定値(Picest)が計測値(Picact)より小さいときには、ウェイストゲートバルブ開度(wgv)の修正量としてゼロより小さい所定値(-dwgv)が設定される。これらの修正量は、差分値の絶対値が所定値(dGA)よりも大きい場合に、ウェイストゲートバルブ開度(wgv)に加算される。差分値の絶対値が所定値(dGA)以下である場合には、差分の有無に係らず修正量はゼロとされる。
 実施の形態3.
 次に、本発明の実施の形態3について図を参照して説明する。
 本実施の形態の制御装置は、実施の形態1、2と同様に、図1のように構成される過給エンジンに適用される。ただし、本実施の形態では、図示しない可変動弁機構が吸気弁に設けられている。この可変動弁機構は、吸気弁のバルブタイミングとバルブリフト量を可変にする装置である。本実施の形態の制御装置はこのような過給エンジンを制御するECU40の機能の一部として実現される。
 制御装置としてのECU40は、実施の形態1、2と同様に、図2に示す空気量推定モデルを用いて筒内空気量を推定する機能を有している。ただし、本実施の形態では、吸気弁モデルM6においてバルブタイミングとバルブリフト量がパラメータとして加えられる。具体的には、吸入空気量と吸気マニホールド圧との関係を近似する直線の方程式において、その係数の決定にウェイストゲートバルブ開度に加えてバルブタイミングとバルブリフト量が参照される。それらのパラメータと各係数との対応関係は試験を行って決定される。なお、吸気弁モデルM6において用いられるバルブタイミングは計測値であるのに対し、バルブリフト量は推定値が用いられる。バルブリフト量はウェイストゲートバルブ開度と同様に直接計測することが難しいためである。ECU40には可変動弁機構の操作量とバルブリフト量との対応関係を示すマップが記憶されている。そのマップを参照することによって、可変動弁機構の操作量に対応するバルブリフト量の推定値が取得される。
 また、制御装置としてのECU40は、マップで定義されているウェイストゲートバルブ開度とウェイストゲートバルブの操作量との対応関係を調整する機能を有している。その機能においては、調整の方法として2つの方法を採ることができる。一方の調整方法は、実施の形態1で採られている調整方法と共通している。ただし、本実施の形態の特徴として、吸気弁モデルM6を用いた計算においてバルブタイミングの計測値とバルブリフト量の推定値とが用いられる。もう一方の調整方法は、本実施の形態に特有の調整方法である。以下、実施の形態1と共通の調整方法を第1の調整方法と呼び、本実施の形態に特有の調整方法を第2の調整方法と呼ぶ。
 まず、第2の調整方法にかかるウェイストゲートバルブ開度の推定値と実際値とのずれの判定の方法について図7及び図8を用いて説明する。なお、ここでは、ウェイストゲートバルブ開度の推定値が実際値よりも小さく見積もられているものとする。
 図7に示すグラフの横軸はターボ回転数(Ntb)であり、縦軸は吸気流量(GA)である。このグラフに示す曲線Gは、ウェイストゲートバルブ開度の推定値をターボ回転数モデルM1に入力することで得られるターボ回転数(Ntb)と吸気流量(GA)との関係を示す曲線である。この曲線Gを表す方程式に吸気流量の計測値(mafm)を代入することによってターボ回転数の推定値(Ntbest)が計算される。定常状態であれば吸気弁流量と吸気流量とは一致することから、吸気流量の計測値はターボ回転数モデルM1において吸気弁流量の実際値として扱うことができる。一方、曲線Hは、ウェイストゲートバルブ開度の実際値をターボ回転数モデルM1に入力したならば得られるはずのターボ回転数(Ntb)と吸気流量(GA)との関係を示す曲線である。この曲線Hと吸気流量の計測値(mafm)とによって特定されるターボ回転数が真のターボ回転数である。ただし、ウェイストゲートバルブ開度の実際値は直接計測できないことから、グラフに示す曲線Hはあくまでも仮想であって、現実的に導出可能なのは曲線Gのみである。
 次に、ターボ回転数モデルM1から算出したターボ回転数の推定値(Ntbest)を過給圧と大気圧の各計測値とともに、コンプレッサモデルM2に入力する。図8に示すグラフの横軸は過給圧(Pic)と大気圧(Pa)との比であり、縦軸はコンプレッサ流量(mcp)である。このグラフに示す曲線Jは、ターボ回転数の推定値(Ntbest)をコンプレッサモデルM2に入力することで得られる圧力比(Pic/Pa)とコンプレッサ流量(mcp)との関係を示す曲線である。この曲線Jを表す方程式に過給圧の計測値(Picact)と大気圧の計測値(Paact)との比を代入することによって、ウェイストゲートバルブ開度の推定値のもとでの推定コンプレッサ流量(mcpest)を得ることができる。
 そして、コンプレッサモデルM2から得られたコンプレッサ流量の推定値(mcpest)と、エアフローメータ42による吸気流量の計測値(mafm)とを比較する。定常状態であればコンプレッサ流量と吸気流量とは一致することから、コンプレッサ流量の推定値(mcpest)と吸気流量の計測値(mafm)とを比較することは、コンプレッサ流量の推定値(mcpest)とその実際値とを比較することと等価である。コンプレッサ流量の推定値(mcpest)とその実際値との間に誤差がある場合、その誤差はウェイストゲートバルブ開度の指示値と実際値との間にずれが生じていることを意味する。ターボ回転数モデルM1及びコンプレッサモデルM2によれば、ウェイストゲートバルブ開度の推定値に応じてターボ回転数の推定値(Ntbest)が決まり、ターボ回転数の推定値(Ntbest)によってコンプレッサ流量の推定値(mcpest)が決まるからである。このことから、コンプレッサ流量の推定値(mcpest)と吸気流量の計測値(mafm)との間に誤差(グラフにはLで示している)がある場合には、その誤差の存在をもってウェイストゲートバルブ開度の推定値と実際値との間にずれが生じていると判断することができる。
 なお、図8においてグラフに示す曲線Kは、ターボ回転数の実際値をコンプレッサモデルM2に入力したならば得られるはずの圧力比(Pic/Pa)とコンプレッサ流量(mcp)との関係を示す曲線である。圧力比の計測値(Picact/Paact)と吸気流量の計測値(mafm)とで定まる座標はこの曲線Kの上に位置している。ただし、本実施の形態にかかる過給エンジンはターボ回転数の実際値を実測する手段を有していないことから、実際には曲線Kを特定することはできない。
 次に、第2の調整方法にかかるウェイストゲートバルブ開度の推定値の修正の方法について説明する。第2の調整方法によれば、第1の調整方法による場合と同じく、ウェイストゲートバルブ開度をウェイストゲートバルブ38の操作量に対応付けるマップのデータを修正することにより、ウェイストゲートバルブ開度と操作量との対応関係の調整が行われる。その調整においては、図8のグラフに示すようにコンプレッサ流量の推定値(mcpest)が吸気流量の計測値(mafm)よりも大きいのであれば、ターボ回転数モデルM1で算出されるターボ回転数の推定値(Ntbest)を減少させるように、操作量に対してウェイストゲートバルブ開度はプラス側に修正される。逆に、コンプレッサ流量の推定値(mcpest)が吸気流量の計測値(mafm)よりも小さいのであれば、ターボ回転数モデルM1で算出されるターボ回転数の推定値(Ntbest)を増大させるように、操作量に対してウェイストゲートバルブ開度はマイナス側に修正される。
 図9は、このような修正の方法をECU40により実現するための構成を示している。このブロック図に示すように、ECU40は、ターボ回転数モデルM1とコンプレッサモデルM2を利用する。また、ECU40には、操作量から推定されたウェイストゲートバルブ開度(wgv)が取り込まれるとともに、エアフローメータ42により計測された吸気流量(mafm)、過給圧センサ44により計測された過給圧(Picact)、及び、大気圧センサ48により計測された大気圧(Paact)が取り込まれる。
 取り込まれたウェイストゲートバルブ開度(wgv)は吸気流量(mafm)とともにターボ回転数モデルM1に入力される。ターボ回転数モデルM1では、ウェイストゲートバルブ開度(wgv)と吸気流量(mafm)とに基づいてターボ回転数の推定値(Ntbest)が算出される。ターボ回転数モデルM1で算出されたターボ回転数の推定値(Ntbest)は、過給圧(Picact)と大気圧(Paact)とともにコンプレッサモデルM2に入力される。コンプレッサモデルM2では、それら入力情報に基づいてコンプレッサ流量の推定値(mcpest)が算出される。
 次に、ECU40は、コンプレッサ流量の推定値(mcpest)と吸気流量(mafm)との差分を算出する。そして、その差分値(mcpest-mafm)はゼロより大きいかどうか判定される。差分値がゼロより大きい場合、すなわちコンプレッサ流量の推定値(mcpest)が吸気流量(mafm)より大きいときには、ウェイストゲートバルブ開度(wgv)の修正量としてゼロより大きい所定値(dwgv)が設定される。一方、差分値がゼロより小さい場合、すなわちコンプレッサ流量の推定値(mcpest)が吸気流量(mafm)より小さいときには、ウェイストゲートバルブ開度(wgv)の修正量としてゼロより小さい所定値(-dwgv)が設定される。これらの修正量は、差分値の絶対値が所定値(dGA)よりも大きい場合に、ウェイストゲートバルブ開度(wgv)に加算される。差分値の絶対値が所定値(dGA)以下である場合には、差分の有無に係らず修正量はゼロとされる。
 以上述べた方法により得られるウェイストゲートバルブ開度とウェイストゲートバルブ38の操作量との対応関係の調整結果が第2の調整方法による調整結果である。この第2の調整方法による調整結果(以下、第2の調整結果)は、実施の形態1と同様の方法である第1の調整方法による調整結果(以下、第1の調整結果)とは必ずしも一致しない。なぜなら、第1の調整結果はバルブリフト量の推定値によって左右されるのに対し、第2の調整結果にはバルブリフト量の推定値によっては左右されないからである。ウェイストゲートバルブ開度がそうであるように、バルブリフト量の推定値と実際値との間にはずれが生じている場合がある。その場合、吸気弁モデルM6が利用されている第1の調整結果には、その分の誤差が含まれてしまうことになる。言い換えれば、2つの調整結果の間にずれがある場合、そのずれはバルブリフト量の推定値と実際値との間にずれが生じていることを意味する。
 本実施の形態にかかるECU40は、第1の調整結果と第2の調整結果とが一致しない場合、第2の調整結果を基準としてバルブリフト量の推定値を実際値に合わせて修正する。図10は、ECU40により行われるバルブリフト量の推定値の修正のための処理を示すフローチャートである。図11は、本実施の形態で採られるバルブリフト量の推定値と実際値とのずれの判定の方法について説明するための図である。以下、これらの図を用いて、バルブリフト量の推定値を実際値に合わせて修正する方法について説明する。
 図10のフローチャートに示すステップS1では、第1の調整結果が反映されたマップを用いてウェイストゲートバルブ開度の推定値(wgv1)が取得される。ステップS2では、第2の調整結果が反映されたマップを用いてウェイストゲートバルブ開度の推定値(wgv2)が取得される。そして、ステップS3では、ウェイストゲートバルブ開度の2つの推定値(wgv1、wgv2)が一致するかどうか判定される。2つの推定値(wgv1、wgv2)が一致するのであれば、バルブリフト量の推定値は実際値に一致していると判断することができる。
 一方、2つの推定値(wgv1、wgv2)が一致しない場合には、バルブリフト量の推定値も実際値に一致していないと判断することができる。この場合は、ステップS4-S6の処理が繰り返し行われる。ステップS4では、第2の調整結果によるウェイストゲートバルブ開度の推定値(wgv2)と現在のバルブリフト量の推定値とに基づいて、吸気弁モデルM6を表す直線の方程式が決定される。その直線は図11のグラフにおいて直線Mとして示されている。この直線Mの方程式に現時点における吸気マニホールド圧の推定値(Pmest)が代入されることによって、現在のバルブリフト量の推定値に対応する吸気弁流量の推定値(mcest)が算出される。なお、直線Nは、バルブリフト量の実際値を吸気弁モデルM6に入力したならば得られるはずの吸気マニホールド圧(Pm)と吸気弁流量(mc)との関係を示す直線である。ただし、バルブリフト量の実際値は直接計測できないことから、グラフに示す直線Nはあくまでも仮想であって、現実的に導出可能なのは直線Mのみである。
 次のステップS5では、吸気弁流量の推定値(mcest)とエアフローメータ42により計測された吸気流量(mafm)とが比較される。図11に示すように吸気弁流量の推定値(mcest)と吸気流量の計測値(mafm)との間に誤差(グラフにはQで示している)がある場合には、バルブリフト量の推定値と実際値との間にも誤差があると判断することができる。なお、本実施の形態では吸気弁モデルM6のパラメータとしてバルブタイミングも参照されているが、バルブリフト量に比較してバルブタイミングがウェイストゲートバルブ開度の推定精度に与える影響は小さいと考えられる。バルブタイミングに関しては計測値が用いられているからであり、また、仮に計測誤差があったとしてもバルブリフト量の推定値に含まれうる誤差よりは小さいからである。ただし、バルブタイミングの計測誤差の影響を排除したいのであれば、バルブタイミングが最進角位置或いは最遅角位置に固定されている場合に限定してウェイストゲートバルブ開度の推定値の調整を行うようにすればよい。また、吸気マニホールド圧と吸気弁流量との関係には吸気弁に付着したデポジットの量も影響するが、それはバルブリフト量に含まれているとみなすことができる。つまり、本実施の形態におけるバルブリフト量とは、デポジットも含めた実質的なバルブリフト量を意味する。
 吸気弁流量の推定値(mcest)と吸気流量の計測値(mafm)との間に誤差がある場合は、次のステップS6において、バルブリフト量を可変動弁機構の操作量に対応付けるマップのデータが修正される。例えば、図11に示すように吸気弁流量の推定値(mcest)が吸気流量の計測値(mafm)よりも小さい場合には、吸気弁モデルM6で算出される吸気弁流量が増えるように、可変動弁機構の操作量に対してバルブリフト量はプラス側に修正される。逆に、吸気弁流量の推定値(mcest)が吸気流量の計測値(mafm)よりも大きい場合には、吸気弁モデルM6で算出される吸気弁流量が減少するように、可変動弁機構の操作量に対してバルブリフト量はマイナス側に修正される。このようにしてバルブリフト量と可変動弁機構の操作量との対応関係の調整が行われる。
 ステップS6の処理の後は再びステップS4に戻り、調整された対応関係に従いバルブリフト量の推定値が再計算される。そして、ウェイストゲートバルブ開度の推定値(wgv2)と再計算されたバルブリフト量の推定値とに基づいて吸気弁モデルM6を用いて吸気弁流量の推定値(mcest)が再計算される。そして、ステップS5において再計算された吸気弁流量の推定値(mcest)と吸気流量の計測値(mafm)とが比較される。このような一連の処理はステップS5の判定結果が肯定になるまで繰り返し実施される。これにより、バルブリフト量の推定値の実際値に対するずれは解消されるようになる。
その他.
 本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、ウェイストゲートバルブ開度とウェイストゲートバルブの操作量との対応関係の調整の方法としては、その対応関係を定義しているマップのデータを修正するのではなく、マップから得られたウェイストゲートバルブ開度の推定値に調整分の補正量を加えることでもよい。
 実施の形態3では、第1の調整方法として実施の形態1で採られている調整方法を採っているが、実施の形態2で採られている調整方法を第1の調整方法として採ることもできる。実施の形態2の調整方法でも吸気弁モデルM6が利用されることから、その調整結果にはバルブリフト量の推定値と実際値との間のずれ分の誤差が含まれる。したがって、その調整結果と第2の調整方法による調整結果とを比較することで、バルブリフト量の推定値と実際値との間にずれが生じているかどうか判定することができる。
 実施の形態1、2にかかる過給エンジンは、バルブタイミングを可変にする可変動弁機構を有していてもよい。その場合、吸気弁モデルでは、ウェイストゲートバルブ開度とバルブタイミングとに基づいて直線の方程式の係数が決定されることになる。バルブタイミングの計測誤差の影響については前述の通りであるが、それを排除したいのであれば、バルブタイミングが最進角位置或いは最遅角位置に固定されている場合に限定してウェイストゲートバルブ開度の推定値の調整を行うようにすればよい。
 また、実施の形態1、2にかかる過給エンジンは、バルブリフト量を可変にする可変動弁機構を有していてもよい。その場合、ウェイストゲートバルブ開度の推定値の調整結果にはバルブリフト量の推定値と実際値との間のずれ分の誤差が含まれる可能性はある。しかし、ウェイストゲートバルブ開度の推定誤差はバルブリフト量のそれよりも大きく、ウェイストゲートバルブ開度の推定誤差が筒内空気量の推定精度に与える影響は大きいことから、バルブリフト量の推定誤差が多少影響したとしても、本発明を実施することで得られるメリットがそれにより大きく損なわれることはない。バルブリフト量の推定誤差の影響を排除したいのであれば、バルブリフト量が最大或いは最小に固定されている場合に限定してウェイストゲートバルブ開度の推定値の調整を行うようにすればよい。
 本発明の制御装置が適用される過給エンジンにおいては、インタークーラやエアバイパスバルブは必須ではない。逆に、本発明の制御装置が適用される過給エンジンにはEGR装置が設けられていてもよい。その場合、省略する装備や追加する装備に応じて、図2に示す空気量推定モデルの構成を変えればよい。例えば、エアバイパスバルブを有しない過給エンジンであれば、空気量推定モデルからABVモデルを省略すればよい。また、EGR装置を有する過給エンジンであれば、空気量推定モデルにEGRモデルを追加すればよい。
M1 ターボ回転数モデル
M2 コンプレッサモデル
M3 インタークーラモデル
M4 スロットルモデル
M5 吸気マニホールドモデル
M6 吸気弁モデル
M7 ABVモデル

Claims (3)

  1.  ウェイストゲートバルブを有する過給エンジンの制御装置において、
     スロットル上流圧力とスロットル下流圧力とスロットル開度とスロットル流量との間に成り立つ関係がモデル化されたスロットルモデルと、
     スロットル下流圧力とウェイストゲートバルブ開度と吸気弁流量との間に成り立つ関係がモデル化された吸気弁モデルと、
     予め定義された対応関係に従い前記ウェイストゲートバルブの操作量に対応するウェイストゲートバルブ開度の推定値を取得する手段と、
     スロットル開度の計測値を取得する手段と、
     スロットル上流圧力の計測値を取得する手段と、
     吸気流量の計測値を取得する手段と、
     ウェイストゲートバルブ開度の前記推定値に基づいて、スロットル下流圧力と吸気弁流量との間に成り立つ関係(以下、第1の関係)を前記吸気弁モデルから導出する手段と、
     スロットル開度の前記計測値とスロットル上流圧力の前記計測値とに基づいて、スロットル下流圧力とスロットル流量との間に成り立つ関係(以下、第2の関係)を前記スロットルモデルから導出する手段と、
     前記第1の関係及び第2の関係に基づいて吸気弁流量とスロットル流量とが一致する場合の吸気弁流量の推定値を計算する手段と、
     吸気弁流量の前記推定値と吸気流量の前記計測値とを比較し、その比較結果に基づいてウェイストゲートバルブ開度の推定値と前記ウェイストゲートバルブの操作量との対応関係を調整する調整手段と、
    を備えることを特徴とする過給エンジンの制御装置。
  2.  ウェイストゲートバルブを有する過給エンジンの制御装置において、
     スロットル上流圧力とスロットル下流圧力とスロットル開度とスロットル流量との間に成り立つ関係がモデル化されたスロットルモデルと、
     スロットル下流圧力とウェイストゲートバルブ開度と吸気弁流量との間に成り立つ関係がモデル化された吸気弁モデルと、
     予め定義された対応関係に従い前記ウェイストゲートバルブの操作量に対応するウェイストゲートバルブ開度の推定値を取得する手段と、
     スロットル開度の計測値を取得する手段と、
     スロットル上流圧力の計測値を取得する手段と、
     吸気流量の計測値を取得する手段と、
     ウェイストゲートバルブ開度の前記推定値と吸気流量の前記計測値とに基づいて前記吸気弁モデルを用いてスロットル下流圧力の推定値を計算する手段と、
     スロットル下流圧力の前記推定値とスロットル開度の前記計測値と吸気流量の前記計測値とに基づいて前記スロットルモデルを用いてスロットル上流圧力の推定値を計算する手段と、
     スロットル上流圧力の前記推定値と前記計測値とを比較し、その比較結果に基づいてウェイストゲートバルブ開度の推定値と前記ウェイストゲートバルブの操作量との対応関係を調整する調整手段と、
    を備えることを特徴とする過給エンジンの制御装置。
  3.  前記過給エンジンは吸気弁のバルブリフト量を可変にする可変動弁機構を備えたエンジンであり、
     前記吸気弁モデルはバルブリフト量をパラメータとして含み、
     前記制御装置は、
     吸気弁流量とウェイストゲートバルブ開度とターボ回転数との間に成り立つ関係がモデル化されたターボ回転数モデルと、
     ターボ回転数とスロットル上流圧力とコンプレッサ流量との間に成り立つ関係がモデル化されたコンプレッサモデルと、
     予め定義された対応関係に従い前記可変動弁機構の操作量に対応するバルブリフト量の推定値を取得する手段と、
     ウェイストゲートバルブ開度の前記推定値と吸気流量の前記計測値とに基づいて前記ターボ回転数モデルを用いてターボ回転数の推定値を計算する手段と、
     ターボ回転数の前記推定値とスロットル上流圧力の前記計測値とに基づいて前記コンプレッサモデルを用いてコンプレッサ流量の推定値を計算する手段と、
     コンプレッサ流量の前記推定値と吸気流量の前記計測値とを比較し、その比較結果に基づいてウェイストゲートバルブ開度の推定値と前記ウェイストゲートバルブの操作量との対応関係を調整する第2の調整手段と、
     前記調整手段による調整結果と前記第2の調整手段による調整結果との間にずれがある場合に、前記第2の調整手段により調整された対応関係に従いウェイストゲートバルブ開度の推定値を取得し、当該推定値とバルブリフト量の前記推定値とに基づいて前記吸気弁モデルを用いて吸気弁流量の推定値を計算する手段と、
     吸気弁流量の前記推定値と吸気流量の前記計測値とを比較し、その比較結果に基づいてバルブリフト量の推定値と前記可変動弁機構の操作量との対応関係を調整する手段と、
    をさらに備えることを特徴とする請求項1又は2に記載の過給エンジンの制御装置。
PCT/JP2011/059541 2011-04-18 2011-04-18 過給エンジンの制御装置 WO2012143997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/376,532 US9175597B2 (en) 2011-04-18 2011-04-18 Control device for supercharged engine
PCT/JP2011/059541 WO2012143997A1 (ja) 2011-04-18 2011-04-18 過給エンジンの制御装置
JP2011551142A JP5182436B2 (ja) 2011-04-18 2011-04-18 過給エンジンの制御装置
CN201180003555.6A CN103518047B (zh) 2011-04-18 2011-04-18 增压发动机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059541 WO2012143997A1 (ja) 2011-04-18 2011-04-18 過給エンジンの制御装置

Publications (1)

Publication Number Publication Date
WO2012143997A1 true WO2012143997A1 (ja) 2012-10-26

Family

ID=47041150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059541 WO2012143997A1 (ja) 2011-04-18 2011-04-18 過給エンジンの制御装置

Country Status (4)

Country Link
US (1) US9175597B2 (ja)
JP (1) JP5182436B2 (ja)
CN (1) CN103518047B (ja)
WO (1) WO2012143997A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758647A (zh) * 2013-12-25 2014-04-30 浙江吉利控股集团有限公司 增加涡轮增压发动机的瞬态响应能力的控制方法及系统
WO2014154312A1 (de) * 2013-03-28 2014-10-02 Mtu Friedrichshafen Gmbh Verfahren und vorrichtung zum betrieb einer brennkraftmaschine
CN104295362A (zh) * 2013-07-17 2015-01-21 三菱自动车工业株式会社 发动机的控制装置
EP3124776A1 (en) 2015-07-28 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN106795806A (zh) * 2014-09-02 2017-05-31 大陆汽车有限公司 用于确定用于机动车的涡轮增压器的废气门的执行器的控制信号的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627733B1 (ja) 2013-05-01 2014-11-19 三菱電機株式会社 内燃機関のウエストゲートバルブ制御装置および内燃機関のウエストゲートバルブ制御方法
DE102013019150A1 (de) * 2013-11-14 2015-05-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum lastabhängigen Öffnen und Schließen einer Abblasventil-Klappe eines Verbrennungsmotors mit einem Turbolader
JP6036677B2 (ja) * 2013-12-26 2016-11-30 トヨタ自動車株式会社 電動ウェイストゲートバルブシステム
JP5734478B1 (ja) * 2014-02-25 2015-06-17 三菱電機株式会社 過給機付き内燃機関の制御装置
DE102014003276A1 (de) * 2014-03-12 2015-09-17 Man Truck & Bus Ag Brennkraftmaschine,insbesondere Gasmotor,für ein Kraftfahrzeug
US9702298B2 (en) * 2014-12-09 2017-07-11 Ford Global Technologies, Llc Diagnostic method for a compressor recirculation valve
US10012137B2 (en) * 2014-12-09 2018-07-03 Ford Global Technologies, Llc Diagnostic method for a compressor recirculation valve
US11053875B2 (en) 2016-02-10 2021-07-06 Garrett Transportation I Inc. System and method for estimating turbo speed of an engine
US10066541B2 (en) * 2016-04-29 2018-09-04 Fca Us Llc Physics-based vehicle turbocharger control techniques
US20180058350A1 (en) * 2016-08-31 2018-03-01 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine
CN106351756B (zh) * 2016-09-12 2019-08-06 奇瑞汽车股份有限公司 一种涡轮增压发动机电动废气旁通阀控制方法
DE102016011305B3 (de) * 2016-09-19 2018-02-15 Mtu Friedrichshafen Gmbh Regelverfahren für eine aufgeladene Brennkraftmaschine
WO2018067152A1 (en) 2016-10-06 2018-04-12 Cummins Inc. System, method, and apparatus for throttled engine control using turbocharger wastegate
DE102017203213B3 (de) * 2017-02-28 2018-07-26 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ventilhubumschaltsteuerung eines Verbrennungsmotors
GB2563393B (en) * 2017-06-12 2020-08-05 Jaguar Land Rover Ltd Controlling an air charge provided to an engine
CN109630257B (zh) * 2018-12-12 2020-07-24 安徽江淮汽车集团股份有限公司 废气旁通阀控制方法
CN111720204B (zh) * 2019-03-21 2021-08-17 上海汽车集团股份有限公司 一种发动机的控制方法及其装置
JP6941652B2 (ja) * 2019-10-16 2021-09-29 本田技研工業株式会社 過給圧設定装置
JP7207271B2 (ja) * 2019-11-12 2023-01-18 トヨタ自動車株式会社 内燃機関の制御装置
CN113494330A (zh) * 2020-03-20 2021-10-12 上海汽车集团股份有限公司 一种废气旁通阀控制方法及装置
CN114060143B (zh) * 2021-10-12 2022-08-23 上海交通大学 基于旁通阀流通特性的变海拔增压压力稳定性控制方法
CN115370489A (zh) * 2022-08-31 2022-11-22 广西玉柴船电动力有限公司 一种可以提高发动机效率的进气控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168007A (ja) * 2007-12-19 2009-07-30 Denso Corp 過給機付き内燃機関の制御装置
JP2010180781A (ja) * 2009-02-05 2010-08-19 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2010216305A (ja) * 2009-03-13 2010-09-30 Honda Motor Co Ltd 内燃機関の過給圧制御装置
JP2011027058A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd 過給機付き内燃機関の制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081425A (ja) * 1983-10-13 1985-05-09 Honda Motor Co Ltd タ−ボチヤ−ジヤ付内燃機関の過給圧制御装置
DE3543480A1 (de) * 1984-12-11 1986-06-12 Nissan Motor Co., Ltd., Yokohama, Kanagawa Vorrichtung und verfahren zum regeln des aufladungsdrucks in einem turbolader
DE4344960A1 (de) * 1993-12-30 1995-07-06 Bosch Gmbh Robert System zur Regelung der Aufladung einer Brennkraftmaschine
JPH09195782A (ja) * 1996-01-16 1997-07-29 Toyota Motor Corp 過給機の過給圧制御装置
US6012289A (en) 1997-11-19 2000-01-11 Caterpillar Inc. Apparatus and method for utilizing a learned wastegate control signal for controlling turbocharger operation
US6055811A (en) * 1998-04-15 2000-05-02 Caterpillar, Inc. Apparatus and method for controlling the air flow into an engine
DE10007013B4 (de) * 2000-02-16 2009-04-16 Robert Bosch Gmbh Vorrichtung zur Begrenzung der Drehzahl eines Abgasturboladers
DE10145038A1 (de) * 2001-09-13 2003-04-03 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben wenigstens eines Laders eines Verbrennungsmotors
JP2004027897A (ja) 2002-06-24 2004-01-29 Nissan Motor Co Ltd ターボ過給機の制御装置
JP4254203B2 (ja) 2002-11-06 2009-04-15 トヨタ自動車株式会社 可変動弁機構を備えた内燃機関の制御装置
JP2006274831A (ja) 2005-03-28 2006-10-12 Denso Corp ターボチャージャ付き内燃機関の制御装置
JP4434057B2 (ja) * 2005-03-28 2010-03-17 株式会社デンソー 内燃機関の過給圧制御装置
CN101082318B (zh) * 2006-05-31 2011-09-21 卡特彼勒公司 涡轮增压器控制系统
JP4253339B2 (ja) * 2006-09-21 2009-04-08 株式会社日立製作所 内燃機関の制御装置
JP4844335B2 (ja) 2006-10-11 2011-12-28 トヨタ自動車株式会社 排気バイパス弁の故障検出装置
JP4823948B2 (ja) * 2007-03-23 2011-11-24 富士重工業株式会社 エンジンの制御装置
US7681442B2 (en) * 2007-06-22 2010-03-23 Denso Corporation Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
JP4671068B2 (ja) 2009-01-29 2011-04-13 トヨタ自動車株式会社 内燃機関システム制御装置
IT1395983B1 (it) * 2009-10-15 2012-11-09 Magneti Marelli Spa Metodo di controllo di una valvola wastegate in un motore a combustione interna turbocompresso
IT1395984B1 (it) * 2009-10-15 2012-11-09 Magneti Marelli Spa Metodo di controllo con adattivita' di una valvola wastegate in un motore a combustione interna turbocompresso
EP2789837A4 (en) * 2011-12-07 2016-03-30 Toyota Motor Co Ltd CONTROL DEVICE FOR A PREBURNING ENGINE WITH A SUPER-LOADER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168007A (ja) * 2007-12-19 2009-07-30 Denso Corp 過給機付き内燃機関の制御装置
JP2010180781A (ja) * 2009-02-05 2010-08-19 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2010216305A (ja) * 2009-03-13 2010-09-30 Honda Motor Co Ltd 内燃機関の過給圧制御装置
JP2011027058A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd 過給機付き内燃機関の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154312A1 (de) * 2013-03-28 2014-10-02 Mtu Friedrichshafen Gmbh Verfahren und vorrichtung zum betrieb einer brennkraftmaschine
CN105531468A (zh) * 2013-03-28 2016-04-27 Mtu腓特烈港有限责任公司 用于驱动内燃机的方法和装置
RU2609139C1 (ru) * 2013-03-28 2017-01-30 Мту Фридрихсхафен Гмбх Способ и устройство для эксплуатации двигателя внутреннего сгорания
US9890720B2 (en) 2013-03-28 2018-02-13 Mtu Friedrichshafen Gmbh Method and device for operating an internal combustion engine
CN104295362A (zh) * 2013-07-17 2015-01-21 三菱自动车工业株式会社 发动机的控制装置
CN103758647A (zh) * 2013-12-25 2014-04-30 浙江吉利控股集团有限公司 增加涡轮增压发动机的瞬态响应能力的控制方法及系统
CN106795806A (zh) * 2014-09-02 2017-05-31 大陆汽车有限公司 用于确定用于机动车的涡轮增压器的废气门的执行器的控制信号的方法
EP3124776A1 (en) 2015-07-28 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
CN103518047A (zh) 2014-01-15
JP5182436B2 (ja) 2013-04-17
US20140034026A1 (en) 2014-02-06
CN103518047B (zh) 2016-08-31
US9175597B2 (en) 2015-11-03
JPWO2012143997A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5182436B2 (ja) 過給エンジンの制御装置
JP2012241625A (ja) 過給エンジンの制御装置
JP5754514B2 (ja) 過給エンジンの制御装置
US8762029B2 (en) Control device for internal combustion engine with supercharger
KR20130069470A (ko) 내연기관을 구비한 엔진 시스템에서 물리적 변수를 위한 모델링 값을 결정하는 방법 및 그 장치
JPWO2013157126A1 (ja) 過給機付き内燃機関の制御装置
JP5273318B2 (ja) 過給機付き内燃機関の空気量推定装置
JP2008248859A (ja) 制御方法、制御装置
JP5854131B2 (ja) 過給機付き内燃機関の制御装置
JP4673818B2 (ja) ターボチャージャ付き内燃機関の制御装置
JP5561236B2 (ja) 過給エンジンの制御装置
JP2013155613A (ja) 過給エンジンの制御装置
US10774768B2 (en) Method of modelling AFR to compensate for WRAF sensor
KR101535368B1 (ko) 엔진 제어 장치
KR20020008037A (ko) 엔진의 공기 시스템의 비선형 특성 변화를 보상하기 위한방법 및 장치
JP2018063586A (ja) プラント制御装置
WO2013175588A1 (ja) 過給エンジンの吸入空気量推定装置
JP5692104B2 (ja) 過給機付き内燃機関の空気量推定装置
JP2013155614A (ja) 過給エンジンの制御装置
JP2013117170A (ja) Egr装置付き過給エンジンの制御装置
JPH11351067A (ja) 内燃機関のegr制御装置
JP2015031181A (ja) 内燃機関の制御装置
JP2015140718A (ja) 絞り弁開度学習装置
JP2010112308A (ja) 制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011551142

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13376532

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864107

Country of ref document: EP

Kind code of ref document: A1