WO2012140963A1 - 車両用インホイールモータユニットの潤滑制御装置 - Google Patents

車両用インホイールモータユニットの潤滑制御装置 Download PDF

Info

Publication number
WO2012140963A1
WO2012140963A1 PCT/JP2012/054866 JP2012054866W WO2012140963A1 WO 2012140963 A1 WO2012140963 A1 WO 2012140963A1 JP 2012054866 W JP2012054866 W JP 2012054866W WO 2012140963 A1 WO2012140963 A1 WO 2012140963A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
wheel motor
motor unit
vehicle
oil pump
Prior art date
Application number
PCT/JP2012/054866
Other languages
English (en)
French (fr)
Inventor
山内 康弘
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011201798A external-priority patent/JP5884352B2/ja
Priority claimed from JP2011201801A external-priority patent/JP5794065B2/ja
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12771495.4A priority Critical patent/EP2698565B1/en
Priority to US13/819,105 priority patent/US9726057B2/en
Priority to CN201280002819.0A priority patent/CN103109112B/zh
Publication of WO2012140963A1 publication Critical patent/WO2012140963A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0447Control of lubricant levels, e.g. lubricant level control dependent on temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0409Features relating to lubrication or cooling or heating characterised by the problem to increase efficiency, e.g. by reducing splash losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a lubrication control device useful for a drive unit for each wheel (hereinafter referred to as an in-wheel motor unit) used in an electric vehicle that can run by driving wheels by individual electric motors.
  • the in-wheel motor unit includes, for example, a reduction gear mechanism such as a planetary gear set in addition to the above-described electric motor as described in Patent Document 1, and these are configured as one unit, and the rotational power from the electric motor is supplied.
  • the wheel is transmitted to the wheel under deceleration by the reduction gear mechanism to drive the wheel.
  • the in-wheel motor unit needs to lubricate the reduction gear mechanism.
  • the oil agitation resistance increases the power consumption of the in-wheel motor unit (electric motor) and is the most important issue for an electric vehicle, because the lubrication for that purpose depends on the scraped oil from the rotating body in the in-wheel motor unit. Electricity costs will be greatly degraded.
  • Patent Document 1 using an oil pump that consumes much less power compared to the power consumed by oil agitation resistance, the oil in the lower part in the in-wheel motor unit is sucked.
  • predetermined lubrication is performed by supplying oil toward a lubrication-required portion.
  • the lubrication control technology described in Patent Document 1 uses the amount of lubricating oil in the high-temperature side in-wheel motor unit when the oil temperature in the in-wheel motor unit of the pair of wheels on the left and right is different from each other.
  • the suction amount) is made larger than the lubricating oil amount (oil suction amount by the oil pump) of the low-temperature side in-wheel motor unit so as to eliminate the oil temperature difference between the left and right in-wheel motor units.
  • the difference between the left and right wheel drive force due to the oil temperature difference between the left and right in-wheel motor units is alleviated, and the in-wheel motor-driven electric vehicle (in-wheel motor drive vehicle) travels. Stability can be improved.
  • the electric motor in the in-wheel motor unit is required to have a larger diameter than the reduction gear mechanism and to reduce the radial dimension of the in-wheel motor unit as much as possible as shown in Patent Document 1. Considering that it is necessary to ensure mountability, a large gap cannot be set between the electric motor and the in-wheel motor unit case.
  • the oil pump needs to suck in oil in the lower part of the in-wheel motor unit case even when the vehicle vibrates or tilts, so that the oil pump can inhale oil during these vibrations and tilts.
  • the oil level in the lower part of the motor unit case must be increased considerably. For these reasons, it is inevitable that a large-diameter electric motor (rotary rotor) is immersed in the oil in the lower part of the in-wheel motor unit.
  • the difference in the oil level in the lower part of the left and right in-wheel motor unit case as described above means that the oil immersion amount of the electric motor (rotary rotor) located below the oil level is between the left and right in-wheel motor units. Means different.
  • the present invention provides a lubrication control device for an in-wheel motor unit for a vehicle that can solve the above-mentioned problem by controlling the oil pump so that the oil level in the lower part in the left and right in-wheel motor unit case is kept the same.
  • the purpose is to provide.
  • the in-wheel motor unit lubrication control device of the present invention is configured as follows. First, an in-wheel motor drive vehicle that is a premise of the present invention and a lubrication control device for an in-wheel motor unit used therein will be described.
  • An in-wheel motor drive vehicle includes at least a pair of left and right wheels.
  • the in-wheel motor unit lubrication control device used in this vehicle can be driven by a wheel motor unit, and each oil pump is installed in the in-wheel motor unit paired on the left and right. Lubricated with oil sucked from the lower part of the wheel motor unit case.
  • the present invention drives the oil pump for such an in-wheel motor unit lubrication control device so that the oil suction amount from the oil pump is equal to the oil level in the lower part of the case of the left and right in-wheel motor unit. It is characterized by the structure provided with the oil pump drive control means to control.
  • the oil immersion amount of the large-diameter rotating member in the in-wheel motor unit is the same between the left and right in-wheel motor units, and the oil stirring resistance by the large-diameter rotating member is also the same between the left and right in-wheel motor units. Therefore, a driving force difference is not generated between the left and right wheels, and the above problem that the running stability of the in-wheel motor driven vehicle is deteriorated can be solved.
  • FIG. 1 shows the oil guide installed in the oil gallery of the in-wheel motor unit in Fig. 1.
  • (a) is a detailed longitudinal section of the oil guide as seen in the direction of the arrow, taken along the line II-II in Fig. 2
  • Side view (b) is a detailed front view of the oil guide as seen from the right side of FIG. 2 (a).
  • 2 is a flowchart showing a lubrication control program executed by an oil pump controller in FIG.
  • FIG. 4 is a characteristic diagram showing an oil suction amount control characteristic of an oil pump driven and controlled by the lubrication control program of FIG.
  • FIG. 2 is a time chart showing the oil temperature change characteristic of the in-wheel motor unit in FIG. 1 for each oil immersion amount of the rotor.
  • FIG. 5 is a characteristic diagram showing a change characteristic of an oil pump target rotational speed necessary for realizing the constant flow rate shown in FIG. 4 in the constant flow rate control region of FIG.
  • FIG. 5 is a change characteristic diagram showing a change characteristic related to a reduction allowance ⁇ VSP0 of the oil pump starting vehicle speed VSP0 in FIG. 4 using an integral value of a required drive torque as a parameter.
  • FIG. 5 is a change characteristic diagram showing a change characteristic related to a decrease allowance ⁇ VSP0 of the oil pump starting vehicle speed VSP0 in FIG. 4 with a travel distance in a state where the oil pump is stopped as a parameter.
  • FIG. 1 is a vertical side view showing an in-wheel motor unit including a lubrication control device according to an embodiment of the present invention.
  • 1 is a case main body of the in-wheel motor unit
  • 2 is a rear cover of the case main body 1.
  • a unit case 3 of the in-wheel motor unit is constituted by the combination of the case main body 1 and the rear cover 2.
  • the in-wheel motor unit shown in FIG. 1 is configured by housing an electric motor 4 and a planetary gear type reduction gear set 5 (hereinafter simply referred to as “reduction gear set”) in a unit case 3.
  • the electric motor 4 includes an annular stator 6 fitted and fixed to the inner periphery of the case body 1, and a rotor 7 arranged concentrically with a radial gap on the inner periphery of the annular stator 6. To do.
  • the reduction gear set 5 is used to drive-couple between the input shaft 8 and the output shaft 9 that are arranged to face each other in a coaxial manner, and is concentric with the sun gear 11 and the sun gear 11 shifted in the axial direction approaching the output shaft 9.
  • a fixed ring gear 12 arranged, a stepped planetary pinion (stepped pinion) 13 meshing with the sun gear 11 and the ring gear 12, a pinion shaft 14 rotatably supporting the stepped planetary pinion 13, and the pinion shaft 14 And the carriers 15a and 15b supporting the.
  • the input shaft 8 includes the sun gear 11 integrally formed at the inner end near the output shaft 9 and extends the input shaft 8 rearward from the sun gear 11 toward the rear cover 2.
  • the output shaft 9 extends in the opposite direction (forward) from the reduction gear set 5 and protrudes from the opening of the front end (right side of the figure) of the case body 1, and a wheel 16 is attached to the output shaft 9 at the protruding portion as described later. Join.
  • the input shaft 8 and the output shaft 9 are formed by inserting the coaxial butted ends of the two into a mutually rotatable manner, and interposing a bearing 17 that enables a ball bearing between the two, thereby providing an input / output shaft bearing. Set the fitting part.
  • the portions of the input shaft 8 and the output shaft 9 that are spaced apart from the bearing 17 in the axial direction are respectively supported on the unit case 3 by a bearing 18 that allows a ball bearing and a bearing 19 that allows a double-row angular bearing.
  • the bearing 19 is interposed between the inner periphery of the end lid 20 that closes the front end opening of the case body 1 and the outer periphery of the wheel hub 21 that is fitted to the protruding portion of the output shaft 9 that protrudes from the front end opening of the case body 1.
  • the electric motor 4 has its rotor 7 coupled to the input shaft 8, and this coupling position is defined as the axial position between the reduction gear set 5 and the bearing 18.
  • the ring gear 12 is prevented from turning in the front end opening of the case main body 1 and is fixed so as not to come off.In order to prevent this, the ring gear 12 is prevented from coming off by a seal adapter 22 that closes the front end opening of the case main body 1.
  • the seal adapter 22 is attached to the front end of the case body 1 with a bolt 22a, and the end cover 20 is attached to the seal adapter 22 with the bolt 20a.
  • the stepped planetary pinion 13 includes a large-diameter gear portion 13a that meshes with the sun gear 11 on the input shaft 8, and a small-diameter gear portion 13b that meshes with the ring gear 12 and rolls the stepped planetary pinion 13 along the inner periphery of the ring gear 12. Is a stepped pinion (planetary gear).
  • the stepped planetary pinion 13 is arranged so that the large-diameter gear portion 13a is located on the side far from the output shaft 9 and the small-diameter gear portion 13b is located on the side close to the output shaft 9.
  • the stepped planetary pinions 13 are, for example, arranged as a set of four at equal intervals in the circumferential direction, and the stepped planetary pinions 13 are held via the pinion shaft 14 by a common carrier 15a, 15b while maintaining this circumferentially equal interval arrangement. Support for rotation.
  • the carriers 15a and 15b function as output rotating members of the reduction gear set 5, and are provided at the inner end of the output shaft 9 close to the input shaft 8 so as to be integrated therewith. Therefore, the carriers 15a and 15b and the stepped planetary pinion 13 (pinion shaft 14) project from the output shaft 9 toward the input shaft 8 and are attached to the output shaft 9.
  • a brake drum 25 is provided concentrically with the wheel hub 21, and a plurality of wheel bolts 26 are implanted so as to penetrate the wheel hub 21 and the brake drum 25 and protrude in the axial direction.
  • the wheel disc is brought into close contact with the bottom surface of the brake drum 25 so that the wheel bolt 26 penetrates into the bolt hole made in the wheel disc, and in this state, the wheel nut 27 is tightened and screwed. By doing so, the wheel 16 is attached to the output shaft 9.
  • the rotor 7 of the electric motor 4 is rotationally driven by the electromagnetic force from now on, and the rotational driving force is transmitted to the sun gear 11 of the reduction gear set 5 via the input shaft 8.
  • the sun gear 11 rotates the stepped planetary pinion 13 via the large-diameter gear portion 13a.
  • the stepped planetary pinion 13 has a small-diameter gear portion 13b. Performs a planetary motion that rolls along the ring gear 12.
  • the planetary motion of the stepped planetary pinion 13 is transmitted to the output shaft 9 via the carriers 15a and 15b, and the output shaft 9 is rotated in the same direction as the input shaft 8.
  • the reduction gear set 5 decelerates the rotation from the electric motor 4 to the input shaft 8 at a ratio determined by the number of teeth of the sun gear 11 and the number of teeth of the ring gear 12, and transmits it to the output shaft 9.
  • the rotation to the output shaft 9 is transmitted to the wheel 16 via the wheel hub 21 and the wheel bolt 26 coupled thereto, and the wheel 16 can be driven to rotate.
  • a wheel (not shown) on the opposite side in the left-right direction that forms a pair with the wheel 16 is also rotated in the same manner by an in-wheel motor unit of the same specification as in FIG.
  • the vehicle can be driven by rotational driving with force.
  • the brake shoe 27 is pressed against the inner peripheral surface of the brake drum 25 to frictionally brake the wheels 16.
  • the electric motor 4 does not need to be lubricated, a partition wall is provided in the case body 1 between the electric motor 4 and the reduction gear set 5, and the housing for the electric motor 4 and the reduction gear set 5 are provided.
  • the electric motor 4 and the reduction gear set 5 cannot be arranged close to each other so as to overlap in the radial direction as shown in FIG.
  • the mountability of the wheel motor unit decreases due to the increase in the axial direction of the wheel motor unit.
  • the storage chamber of the electric motor 4 and the storage chamber of the reduction gear set 5 are made common, and the electric motor 4 and the reduction gear set 5 are placed in the case body 1 in the radial overlap state.
  • the lubrication of the reduction gear set 5, the lubrication of the bearing 17 between the input / output shafts 8 and 9, and the lubrication of the bearing 18 between the input shaft 8 and the unit case 3 are as follows. This is done by a simple lubrication control device.
  • Lubricating oil 31 is stored in the lower part of the unit case 3 as shown in FIG. 1, and an electric oil pump 32 is provided in the lower part.
  • the oil pump 32 has a suction port 32a and a discharge port 32b, and the suction port 32a is opened through the oil filter 33 to a storage portion for the oil 31 in the lower part in the unit case 3.
  • the amount of oil 31 stored is such that the level 31a does not become lower than the suction port 32a even when the vehicle is vibrated or tilted, and the oil pump 32 is removed from the suction port 32a even when the vehicle is vibrated or tilted.
  • Oil 31 can be inhaled, and the amount of oil 31 stored for all in-wheel motor drive wheels is such that the static oil level 31a at the lower part in the in-wheel motor unit is the same.
  • a concentric circular oil gallery 34 is formed on the input shaft 8, and the oil gallery 34 is passed through a discharge port 32 b of the oil pump 32.
  • the oil gallery 34 is defined between the end face of the input shaft 8 far from the output shaft 9 and the end face of the bearing 18 and an oil cap 35 fitted to the rear cover 2 so as to face both the end faces.
  • An oil guide 38 is interposed between the end face of the input shaft 8 far from the output shaft 9 and the end face of the bearing 18 and the oil cap 35. 2A and 2B, the oil guide 38 has a disk shape as a whole, a guide cylinder 38a is projected from the center thereof, and a guide hole 38b is formed in the peripheral portion.
  • the oil guide 38 is installed by inserting a guide cylinder 38a into a corresponding end of a hollow hole 8a provided at the center of the input shaft 8 as shown in FIG. , 9 open in the interengagement cavity.
  • a radial oil hole 42 extending radially outward is provided in the carrier 15a, and a radial oil hole 8b is also provided in the input shaft 8 in alignment with the radial oil hole 42.
  • the radially outer end of the radial oil hole 42 provided in the carrier 15a is communicated with the hollow hole 43 at the center of the pinion shaft 14.
  • the pinion shaft 14 is provided with an oil ejection hole 44 extending radially outward from the hollow hole 43, and oil can be supplied from the oil ejection hole 44 to a lubrication required portion of the reduction gear set 5 by centrifugal force. Do it like this.
  • the input shaft 8 is further provided with a radial oil hole 8c extending from the hollow hole 8a toward the bearing 17 interposed in the mutual fitting portion of the input / output shafts 8 and 9, from here to the bearing 17 as well. Be able to supply oil.
  • the oil in the hollow hole 43 and the oil ejection hole 44 of the pinion shaft 14 receives centrifugal force and is ejected from the oil ejection hole 44 as shown by the arrow in FIG. , And supplied to the lubrication required portion of the reduction gear set 5.
  • the oil jetted from the jet holes 44 includes a guide cylinder 38a from the oil gallery 34 to the oil guide 38, a hollow hole 8a in the input shaft 8, a radial oil hole 8b, and a radial oil hole.
  • the oil is replenished by the oil directed to the pinion shaft hollow hole 43 through 42, and the oil supply to the reduction gear set 5 can be continuously performed.
  • the stored oil in the oil gallery 34 passes through the peripheral guide hole 38b provided in the oil guide 38, goes to the bearing 18 as indicated by an arrow in FIG.
  • the oil that has reached the hollow hole 8a of the input shaft 8 from the oil gallery 34 through the guide cylinder 38a of the oil guide 38 simultaneously passes through the radial oil hole 8c as shown by the arrow in FIG. It reaches the bearing 17 and is also used for lubrication of the bearing 17.
  • the reduction gear set 5 is a mechanical element, metal powder is generated during transmission, and this metal powder is mixed in the circulating oil as described above.
  • the oil mixed with the metal powder reaches the lower oil reservoir in the housing 3 through the input shaft hollow hole 8a, the reduction gear set 5, and the electric motor 4 from the pump 32, and is sucked and circulated again by the pump 32.
  • An axial groove 47 is provided in the housing inner peripheral surface 3a to which the lower part 6a of the stator 6 immersed in the oil reservoir is fitted, and both ends 47a and 47b of the axial groove 47 are spaces 45 on both axial sides of the electric motor 4, respectively.
  • the oil 31 is opened and closed so that the oil 31 travels between the housing space 45 on the side where the speed reduction gear set 5 is located and the housing space 46 on the opposite side through the axial groove 47.
  • a permanent magnet 48 is fixed in the housing 3 so as to approach the opening end 47a of the axial groove 47 close to the housing space 45 on the side where the reduction gear set 5 is located.
  • the stator 6 is preferably molded so that at least the lower part 6a does not penetrate oil.
  • the metal powder mixed in when the oil passes through the reduction gear set 5 is adsorbed by the permanent magnet 37 when entering the open end 47a of the axial groove 47 from the oil reservoir in the reduction gear housing space 45, and the oil Can be removed from within.
  • the metal powder can be prevented from adhering to the electric motor 4, and the electric motor 4 is deteriorated in performance due to the adhesion of the metal powder, and the power performance of the in-wheel motor type electric vehicle is reduced. The problem can be avoided.
  • the oil pump controller 51 in FIG. 1 controls the lubrication through the drive control of the oil pump 32 as follows.
  • the oil pump controller 51 is required to calculate a signal from the oil temperature sensor 52 that detects the oil temperature Temp of the lubricating oil 31, a signal from the vehicle speed sensor 53 that detects the vehicle speed VSP, and a required driving torque Td of the vehicle.
  • a signal from the driving torque calculator 54 and a signal from the odometer 55 that measures the vehicle mileage L while the oil pump 32 is stopped are input.
  • the required drive torque calculator 54 can calculate the required drive torque Td by a known calculation from the accelerator opening operated by the driver and the rotational speed information such as the vehicle speed VSP.
  • the odometer 55 is reset to 0 when the vehicle is stopped, and can measure the mileage L by integrating the vehicle mileage when the oil pump is stopped.
  • the oil pump controller 51 executes the control program shown in FIG. 3 based on the above input information, and drives the oil pump 32 so that the oil suction amount by the oil pump 32 is as shown in FIG. Control.
  • step S11 in FIG. 3 it is checked whether or not the vehicle speed VSP is equal to or higher than the set vehicle speed VSP1 in FIG. Since the rotor 7 has a large diameter, the set vehicle speed VSP1 is a high value in which the oil stirring resistance to the rotor 7 immersed in the oil 31 exceeds an allowable level (a level that can be almost ignored) as indicated by D in FIG. This is the lower limit vehicle speed (for example, 30 km / h) in the vehicle speed range. In this high vehicle speed range, if the oil level 31a in the lower part of the in-wheel motor unit case is different between the left and right wheels, the oil immersion amount D of the rotor 7 between the left and right wheels, that is, the oil stirring resistance to the rotor 7 is large. On the other hand, a large driving force difference is generated between the left and right wheels, which causes a problem that the running stability of the vehicle deteriorates.
  • an allowable level a level that can be almost ignored
  • FIG. 5 shows how the oil temperature Temp in the in-wheel motor unit varies depending on the oil immersion amount D of the rotor 7 under a certain vehicle speed VSP of the set vehicle speed VSP1 or higher. It is the characteristic view which showed how it changed.
  • step S12 when it is determined in step S11 that the vehicle speed VSP is equal to or higher than the set vehicle speed VSP1, in step S12 in FIG. 3, the oil pump 32 of each of the left and right in-wheel motor units has an oil suction amount Q. Drive control is performed so that the constant flow rate Qconst in FIG. 4 is maintained. Therefore, step S12 corresponds to the oil pump drive control means in the present invention.
  • the oil pump controller 51 has a constant flow rate (for example, a constant flow rate (see FIG. 6) considering this characteristic because the oil suction amount Q varies depending on the oil temperature Temp even at the same rotational speed of the oil pump 32.
  • Qconst the oil pump target rotational speed Nop is obtained from the oil temperature Temp, and this is instructed to the oil pump 32 as shown in FIG. 1, and the oil pump 32 is driven and controlled to become the target rotational speed Nop.
  • the oil pump 32 can control the oil pump suction amount Q to the constant flow rate Qconst shown in FIG. 4 in the high vehicle speed range (VSP ⁇ VSP1) under any oil temperature Temp. it can.
  • the above-mentioned constant flow rate Qconst is the minimum unit required oil amount necessary to lubricate the reduction gear set 5 in the in-wheel motor unit.For example, the oil amount at the vehicle speed at which this unit required oil amount is the largest. Set.
  • the oil level 31a in the lower part of the left and right in-wheel motor units is kept the same during the operation of the oil pump 32, so that the oil stirring resistance to the rotor 7 exceeds the permissible level (VSP ⁇ VSP1) Even so, the oil agitation resistance to the rotor 7 in the left and right in-wheel motor units is kept the same, there is no drive force difference between the left and right wheels, and the running stability of the vehicle deteriorates. The problem can be avoided.
  • the reduction gear set 5 is set to the minimum oil (minimum The above problem can be solved while lubricating as required by the pump power consumption).
  • step S11 of FIG. 3 If it is determined in step S11 of FIG. 3 that the vehicle speed is in the low vehicle speed range (VSP ⁇ VSP1), the control proceeds to step S13 corresponding to the oil pump drive control means in the present invention, and the oil pump 32 is changed as follows. Control the flow rate. The reason is that when the vehicle speed is low (VSP ⁇ VSP1), the rotational speed of the rotor 7 is slow, the oil agitation resistance is below an allowable level, and the above-mentioned problems relating to running stability are not caused. This is because the demand is low and it is desirable to avoid the operation of the oil pump 32 as much as possible from the viewpoint of saving electricity costs and noise of the oil pump.
  • the oil pump 32 is not located on the inside of the vehicle body, where sound insulation measures can be taken, but it is installed on the in-wheel motor unit that is exposed outside the vehicle.
  • VSP ⁇ VSP1 the low vehicle speed range
  • the operating sound of the oil pump 32 makes noise that feels strange to both passengers and people around the vehicle. It is preferable to make it as low as possible or to make the oil pump 32 inactive as much as possible, and this is also preferable from the viewpoint of saving power consumption.
  • variable flow rate control of the oil pump 32 in the low vehicle speed range (VSP ⁇ VSP1) executed in step S13 the required drive torque Td is 0, and the travel distance L when the oil pump is stopped is 0.
  • the oil suction amount Q by the oil pump 32 is set to 0 until the vehicle speed VSP increases to the oil pump starting vehicle speed VSP0.
  • the oil pump 32 is stopped and the oil pump 32 is moved from the oil pump starting speed VSP0 to reach the set vehicle speed VSP1. Is controlled to increase in a quadratic curve up to a constant flow rate Qconst.
  • This constant flow rate Qconst is the oil suction amount (predetermined amount in the present invention) of the oil pump 32 to make the oil level 31a in the lower part in the left and right in-wheel motor units the same, as is apparent from the above-mentioned place. As described above, the minimum required oil amount for lubricating the reduction gear set 5 in the in-wheel motor unit is made to correspond.
  • the oil pump controller 51 is an oil pump for realizing the oil suction amount Q that varies between 0 and a constant flow rate Qconst as described above.
  • the target rotational speed Nop is obtained according to the oil temperature Temp based on the same concept as described above with reference to FIG. 6, and this is instructed to the oil pump 32 as shown in FIG.
  • the oil pump 32 controls the oil pump suction amount Q so as to follow the characteristic indicated by the solid line in FIG. 4 in the low vehicle speed range (VSP ⁇ VSP1). be able to.
  • the oil pump starting vehicle speed VSP0 is caused by the residual oil stored in the lubricating oil passage from the oil gallery 34 to the oil ejection hole 44 being ejected by centrifugal force due to the start of wheel driving by the in-wheel motor unit.
  • the reason is that if the oil pump 32 is kept stopped even after reaching the oil pump starting vehicle speed VSP0 determined in this way, the lubricating oil is not temporarily supplied to the reduction gear set 5, and the reduction gear set 5 This is because it is damaged by temporary lubrication failure.
  • the required drive torque Td becomes larger than 0, the required lubricating oil amount of the reduction gear set 5 increases, and the oil pump starting vehicle speed VSP0 decreases as shown by the wavy characteristics in FIG. It is necessary to start 32.
  • the reduction gear set 5 is in a torque transmission state even if the vehicle speed VSP is 0, so it is necessary to lubricate this.
  • the required lubricating oil amount of the reduction gear set 5 is as illustrated by Qo in FIG.
  • a map related to the reduction allowance ⁇ VSP0 of the starting vehicle speed VSP0 is obtained in advance through experiments or the like and prepared. Note that the decrease amount ⁇ VSP0 of the oil pump starting vehicle speed VSP0 is VSP0 as the maximum value ⁇ is apparent from FIG. 4, and the map of FIG. 7 shows that the integral value ⁇ Td of the required drive torque Td is greater than or equal to a certain value ⁇ Tdm.
  • the oil pump controller 51 controls the oil pump 32 by the above-described control.
  • Drive control is performed so that the suction amount Q changes according to the solid line characteristics of FIG. 4, but if the integral value ⁇ Td of the required drive torque Td exceeds 0, the oil corresponding to the integral value ⁇ Td of the required drive torque Td from the map of FIG.
  • An oil pump 32 is obtained so as to achieve a change characteristic of the oil suction amount Q as illustrated by the wavy line in FIG. 4, in which a reduction allowance ⁇ VSP0 of the pump start vehicle speed VSP0 is obtained and (VSP0 ⁇ VSP0) is an oil pump start vehicle speed Is controlled.
  • L ⁇ Lm prevents the residual oil from disappearing or less than a predetermined amount, so that the oil pump 32 is not inoperative and a lubrication failure does not occur.
  • the oil pump 32 is controlled by the above-described control.
  • the drive control is performed so that the oil suction amount Q changes according to the solid line characteristic in FIG. 4, but when the travel distance L in the oil pump stop state exceeds 0, the travel distance L in the oil pump stop state from the map in FIG.
  • the oil pump starting vehicle speed VSP0 is reduced according to the pressure ⁇ VSP0 and (VSP0- ⁇ VSP0) is set as the oil pump starting vehicle speed, the change characteristic of the oil suction amount Q as illustrated by the wavy line in FIG. 4 is achieved.
  • the oil pump 32 is controlled to be driven.
  • the reduction gear set 5 is set to the minimum oil (minimum The above problem can be solved while lubricating as required by the pump power consumption).
  • the oil pump target rotation speed Nop is obtained from the oil temperature Temp based on the constant flow rate (Qconst) realization characteristic of the oil pump 32 illustrated in FIG.
  • the oil pump 32 controls the oil pump suction amount Q to the constant flow rate Qconst shown in FIG. 4 in the high vehicle speed range (VSP ⁇ VSP1) under any oil temperature Temp in order to control the drive so as to be several Nop. It is possible to achieve the above-mentioned effects with certainty.
  • the constant flow rate control of the oil pump 32 is performed so that the oil agitation resistance to the rotor 7 exceeds an allowable level, and the high vehicle speed region (VSP ⁇ VSP1) only, the oil stirring resistance to the rotor 7 is less than the permissible level, it does not cause “running stability problem” and the lubrication requirement of the reduction gear set 5 is low.
  • VSP ⁇ VSP1 the oil pump 32 is controlled at a variable flow rate so that the oil suction amount Q is smaller than the constant flow rate Qconst as shown in FIG. 4 and the lower the vehicle speed VSP, the smaller the oil suction amount.
  • VSP ⁇ VSP1 low vehicle speed range
  • VSP ⁇ VSP0 extreme vehicle speed range of VSP ⁇ VSP0 including stopping
  • the in-wheel motor drive vehicle is in a silent running state, so the operating sound of the oil pump 32 is
  • the number of revolutions of the oil pump 32 it is preferable for the number of revolutions of the oil pump 32 to be as low as possible, or to make the oil pump 32 inactive if possible, from the viewpoint of saving electricity costs. But it's better to do that.
  • the oil pump 32 is operated in the low vehicle speed range (VSP ⁇ VSP1), and the oil suction amount is smaller as the oil suction amount Q is smaller than the constant flow rate Qconst as shown in FIG. 4 and the vehicle speed VSP is lower. Since the variable flow rate control is performed so as to satisfy the above requirement, the above requirement can be realized. Especially in the extreme vehicle speed range of VSP ⁇ VSP0 including stopping, the oil pump 32 is stopped while the operation is unnecessary from the viewpoint of lubrication, so that the operation sound of the oil pump 32 is prevented from becoming "noise". In addition, the power consumption of the oil pump 32 can be prevented from increasing due to unnecessary operation.
  • the oil pump 32 and the oil suction amount Q are As shown in FIG. 4, when the drive control is performed so as to gradually increase to obtain the above-described effect, the oil suction amount Q is lower in the left and right in-wheel motor unit case when the vehicle speed increases so that the vehicle speed VSP reaches the set vehicle speed VSP1.
  • the oil pump 32 is driven and controlled so that the oil level 31a at the same level is the same Qconst, the left and right in-wheel motor units at the transition from the low vehicle speed range (VSP ⁇ VSP1) to the high vehicle speed range (VSP ⁇ VSP1)
  • the oil level 31a in the lower part of the case can be made the same, and a large difference in driving force between the left and right wheels is generated when shifting to the high vehicle speed rotation region (VSP ⁇ VSP1). It is possible to avoid the problem of worsening the.
  • the oil suction amount becomes a predetermined amount that equalizes the oil level 31a in the lower part in the case of the left and right in-wheel motor units. Since the oil pump 32 is driven and controlled, it is possible to ensure that the oil level 31a at the lower part in the case of the left and right in-wheel motor units becomes the same at the transition from the low vehicle speed region to the high vehicle speed region.
  • the oil immersion amount of the large-diameter rotating member (rotor 7 of the electric motor 4) in the in-wheel motor unit can be made the same between the left and right in-wheel motor units.
  • the oil stirring resistance by the large-diameter rotating member can be the same between the left and right in-wheel motor units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • General Details Of Gearings (AREA)

Abstract

オイル攪拌抵抗が許容レベルを超える高車速域(VSP≧VSP1)において、左右インホイールモータユニットのオイルレベルが異なると、左右輪間におけるオイル攪拌抵抗の差が大きくなって、大きな左右輪間駆動力差により車両の走行安定性が悪化する。そのため高車速域(VSP≧VSP1)においては、左右インホイールモータユニットのオイルポンプをそれぞれ、オイル吸送量Qがともに、ユニット要求油量対応の一定流量Qconstに保たれるよう駆動制御する。これにより、左右インホイールモータユニットのオイルレベルが同じにされ続け、左右インホイールモータユニット内でのオイル攪拌抵抗が同じになって、左右輪間に駆動力差を発生させることがなく、走行安定性の悪化を回避し得る。

Description

車両用インホイールモータユニットの潤滑制御装置
 本発明は、車輪を個々の電動モータにより駆動して走行可能な電気自動車に用いられる、車輪ごとの駆動ユニット(以下、インホイールモータユニットと称する)に有用な潤滑制御装置に関するものである。
 インホイールモータユニットは、例えば特許文献1に記載のように、上記の電動モータに加えて、遊星歯車組などの減速歯車機構を具え、これらを1ユニットに構成し、電動モータからの回転動力を減速歯車機構による減速下に車輪に伝達して、当該車輪を駆動するものである。
 従ってインホイールモータユニットは、上記の減速歯車機構を潤滑する必要がある。
 しかしそのための潤滑を、インホイールモータユニット内の回転体による掻き上げ油に頼るのでは、オイル攪拌抵抗がインホイールモータユニット(電動モータ)の消費電力を増大させ、電気自動車にとって最重要課題である電費の大幅な悪化を招く。
 そこで従来は、特許文献1にも記載されている通り、オイル攪拌抵抗による消費電力に比べて遙かに消費電力が少ないオイルポンプを用いて、インホイールモータユニット内下部におけるオイルを吸入し、このオイルを潤滑要求箇所へ向け供給して所定の潤滑を行うことが多い。
 この潤滑に際し特許文献1所載の潤滑制御技術は、左右で対をなす車輪のインホイールモータユニット内における油温が相互に異なる場合、高温側インホイールモータユニットの潤滑油量(オイルポンプによるオイル吸送量)を、低温側インホイールモータユニットの潤滑油量(オイルポンプによるオイル吸送量)よりも多くして、左右インホイールモータユニット間の油温差をなくそうとするものである。
 かかるインホイールモータユニットの潤滑制御技術によれば、左右インホイールモータユニット間の油温差に起因した左右輪駆動力差が緩和され、インホイールモータ駆動式電気自動車(インホイールモータ駆動車両)の走行安定性を向上させることができる。
 しかし特許文献1に記載のごとく、左右インホイールモータユニットの潤滑油量(オイルポンプによるオイル吸送量)を異ならせる技術では、左右インホイールモータユニット内下部におけるオイルレベルを異ならせることとなり、以下のような問題を生ずる。
 つまり、インホイールモータユニット内の電動モータは、特許文献1にも図示されている通り、減速歯車機構よりも大径であり、インホイールモータユニットの径方向寸法をできるだけ小さくして、要求される搭載性を確保する必要があることを考えると、電動モータとインホイールモータユニットケースとの間に大きな隙間を設定することができない。
 一方で、車両の振動時や傾斜時もオイルポンプはインホイールモータユニットケース内下部のオイルを吸送する必要があり、これら振動時や傾斜時もオイルポンプがオイルを吸入し得るよう、インホイールモータユニットケース内下部のオイルレベルを相当に高くしなければならない。
 これらの理由から、大径の電動モータ(回転ロータ)がインホイールモータユニット内下部のオイル中に浸漬されるのは必至である。
 ところで特許文献1に記載のように、左右インホイールモータユニットの潤滑油量(オイルポンプによるオイル吸送量)を異ならせるのでは、左右インホイールモータユニットケース内下部におけるオイルのレベルを異ならせることとなり、以下のような問題を生ずる。
 つまり、上記のように左右インホイールモータユニットケース内下部のオイルレベルが異なるということは、オイルレベルよりも下方に位置している電動モータ(回転ロータ)のオイル浸漬量が左右インホイールモータユニット間で相違することを意味する。
 このように電動モータ(回転ロータ)のオイル浸漬量が左右インホイールモータユニット間で異なると、電動モータ(回転ロータ)によるオイル攪拌抵抗も左右インホイールモータユニット間で異なり、左右輪間に駆動力差を発生させてしまい、インホイールモータ駆動車両の走行安定性を悪化させるという問題を生ずる。
特開2008-195233号公報
 本発明は、左右インホイールモータユニットケース内下部のオイルレベルが同じに保たれるようオイルポンプを制御することにより、上記の問題を解消し得るようにした車両用インホイールモータユニットの潤滑制御装置を提供することを目的とする。
 この目的のため、本発明の車両用インホイールモータユニットの潤滑制御装置は、以下のごとくにこれを構成する。
 先ず、本発明の前提となるインホイールモータ駆動車両、および、これに用いられるインホイールモータユニットの潤滑制御装置を説明するに、インホイールモータ駆動車両は、少なくとも左右一対の車輪を、個々のインホイールモータユニットにより駆動して走行可能なものであり、また、この車両に用いられるインホイールモータユニットの潤滑制御装置は、左右で対をなす上記インホイールモータユニット内を、個々のオイルポンプがインホイールモータユニットケース内下部から吸送したオイルにより潤滑するものである。
 本発明は、かかるインホイールモータユニットの潤滑制御装置に対し、上記オイルポンプを、該オイルポンプからのオイル吸送量が上記左右インホイールモータユニットのケース内下部におけるオイルレベルを同じとなすよう駆動制御するオイルポンプ駆動制御手段を設けた構成に特徴づけられる。
 上記した本発明による車両用インホイールモータユニットの潤滑制御装置にあっては、オイルポンプからのオイル吸送量が、左右インホイールモータユニットのケース内下部におけるオイルレベルを同じとなすように駆動制御することから、左右インホイールモータユニットのケース内下部におけるオイルレベルが同じに保たれていることとなる。
 このため、インホイールモータユニット内における大径回転メンバのオイル浸漬量が左右インホイールモータユニット間で同じであり、当該大径回転メンバによるオイル攪拌抵抗も左右インホイールモータユニット間で同じになる。
 従って、左右輪間に駆動力差を発生させることがなく、インホイールモータ駆動車両の走行安定性が悪化するという前記の問題を解消することができる。
本発明の一実施例になる潤滑制御装置を具えたインホイールモータユニットを示す縦断側面図である。 図1におけるインホイールモータユニットのオイルギャラリ内に設置したオイルガイドを示し、 (a)は、図2(b)のII-II線上で断面とし、矢の方向に見て示すオイルガイドの詳細縦断側面図、 (b)は、図2(a)の右側から見て示すオイルガイドの詳細正面図である。 図1におけるオイルポンプコントローラが実行する潤滑制御プログラムを示すフローチャートである。 図3の潤滑制御プログラムによって駆動制御されるオイルポンプのオイル吸送量制御特性を示す特性線図である。 図1におけるインホイールモータユニットの油温変化特性を、ロータのオイル浸漬量ごとに示すタイムチャートである。 図4の一定流量制御域で、同図に示す一定流量を実現するのに必要なオイルポンプ目標回転数の変化特性を示す特性線図である。 図4におけるオイルポンプ起動車速VSP0の低下代ΔVSP0に関した変化特性を、要求駆動トルクの積分値をパラメータとして示す変化特性図である。 図4におけるオイルポンプ起動車速VSP0の低下代ΔVSP0に関した変化特性を、オイルポンプ停止状態での走行距離をパラメータとして示す変化特性図である。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
 図1は、本発明の一実施例になる潤滑制御装置を具えたインホイールモータユニットを示す縦断側面図である。
 この図において、1は、インホイールモータユニットのケース本体、2は、該ケース本体1のリヤカバーで、これらケース本体1およびリヤカバー2の相互合体により、インホイールモータユニットのユニットケース3を構成する。
 図1に示すインホイールモータユニットは、ユニットケース3内に電動モータ4および遊星歯車式減速歯車組5(以下、単に「減速歯車組」と言う)を収納して構成する。
 電動モータ4は、ケース本体1の内周に嵌合して固設した円環状のステータ6と、かかる円環状ステータ6の内周にラジアルギャップを持たせて同心に配したロータ7とで構成する。
 減速歯車組5は、同軸に突き合わせて対向配置した入力軸8および出力軸9間を駆動結合する用をなし、サンギヤ11と、このサンギヤ11に対し出力軸9に接近する軸線方向へずらせて同心配置した固定のリングギヤ12と、これらサンギヤ11およびリングギヤ12に噛合する段付きプラネタリピニオン(段付きピニオン)13と、かかる段付きプラネタリピニオン13を回転自在に支持するピニオンシャフト14と、該ピニオンシャフト14を支持したキャリア15a,15bとにより構成する。
 入力軸8は、出力軸9に近い内端に前記のサンギヤ11を一体成形して具え、この入力軸8をサンギヤ11からリヤカバー2に向かう後方へ延在させる。
 出力軸9は、減速歯車組5から反対方向(前方)に延在させて、ケース本体1の前端(図の右側)開口より突出させ、この突出箇所において出力軸9に後述のごとく車輪16を結合する。
 これら入力軸8および出力軸9は、両者の同軸突き合わせ端部を相互に相対回転可能に貫入させ合って、両者間にボールベアリングを可とするベアリング17を介在させることにより、入出力軸間軸受嵌合部を設定する。
 このベアリング17から軸線方向に離間した入力軸8および出力軸9の箇所をそれぞれ、ボールベアリングを可とするベアリング18および複列アンギュラベアリングを可とするベアリング19でユニットケース3に軸受する。
 なおベアリング19は、ケース本体1の前端開口を塞ぐ端蓋20の内周と、ケース本体1の前端開口から突出する出力軸9の突出部に嵌着したホイールハブ21の外周との間に介在させる。
 前記の電動モータ4は、そのロータ7を入力軸8に結合し、この結合位置を、減速歯車組5とベアリング18との間における軸線方向位置とする。
 ケース本体1の前端開口内に前記のリングギヤ12を廻り止め、且つ抜け止めして固設し、この抜け止めに際しては、ケース本体1の前端開口を塞ぐシールアダプタ22により当該リングギヤ12の抜け止めを行う。
 シールアダプタ22はボルト22aによりケース本体1の前端に取着し、このシールアダプタ22に対し端蓋20をボルト20aで取着する。
 段付きプラネタリピニオン13は、入力軸8上のサンギヤ11に噛合する大径ギヤ部13a、およびリングギヤ12に噛合して段付きプラネタリピニオン13をリングギヤ12の内周に沿い転動させる小径ギヤ部13bを一体に有した段付きピニオン(遊星歯車)とする。
 この段付きプラネタリピニオン13は、大径ギヤ部13aが出力軸9から遠い側に位置し、小径ギヤ部13bが出力軸9に近い側に位置するような向きに配置する。
 段付きプラネタリピニオン13は、例えば4個一組として円周方向等間隔に配置し、この円周方向等間隔配置を保って段付きプラネタリピニオン13を共通なキャリア15a,15bによりピニオンシャフト14を介し回転自在に支持する。
 キャリア15a,15b は、減速歯車組5の出力回転メンバとして機能させ、入力軸8に近い出力軸9の内端に設けてこれに一体化するよう結着する。
 このため、キャリア15a,15bおよび段付きプラネタリピニオン13(ピニオンシャフト14)は、出力軸9から入力軸8側へ張り出して出力軸9に取り付けられることとなる。
 次に、出力軸9に対する車輪16の結合要領を詳述する。
 ホイールハブ21に同心に、ブレーキドラム25を一体結合して設け、これらホイールハブ21およびブレーキドラム25を貫通して軸線方向に突出するよう複数個のホイールボルト26を植設する。
 車輪16の取り付けに際しては、そのホイールディスクに穿ったボルト孔にホイールボルト26が貫通するよう当該ホイールディスクをブレーキドラム25の底面に密接させ、この状態でホイールボルト26にホイールナット27を緊締螺合することにより、出力軸9に対する車輪16の取り付けを行う。
 電動モータ4のステータ6に通電すると、これからの電磁力で電動モータ4のロータ7が回転駆動され、その回転駆動力は入力軸8を介して減速歯車組5のサンギヤ11に伝達される。
 これによりサンギヤ11は、大径ギヤ部13aを介して段付きプラネタリピニオン13を回転させるが、このとき固定のリングギヤ12が反力受けとして機能するため、段付きプラネタリピニオン13は、小径ギヤ部13bがリングギヤ12に沿って転動するような遊星運動を行う。
 かかる段付きプラネタリピニオン13の遊星運動はキャリア15a,15bを介して出力軸9に伝達され、出力軸9を入力軸8と同方向に回転させる。
 上記の伝動作用により減速歯車組5は、電動モータ4から入力軸8への回転を、サンギヤ11の歯数およびリングギヤ12の歯数により決まる比で減速して出力軸9に伝達する。
 出力軸9への回転は、これに結合したホイールハブ21およびホイールボルト26を介して車輪16に伝達され、この車輪16を回転駆動させることができる。
 なお、車輪16と対をなす左右方向反対側における車輪(図示せず)も、図1におけると同様な同仕様のインホイールモータユニットで同様に回転駆動され、これら対をなす左右輪の同じ駆動力での回転駆動により車両を走行させることができる。
 車両の制動に際しては、ブレーキドラム25のドラム内周面にブレーキシュー27を押し付けることにより車輪16を摩擦制動させる。
 上記したインホイールモータユニットにおいては、入力軸8および出力軸9間における減速歯車組5の潤滑が必要である。
 なお、電動モータ4は潤滑する必要がないことから、電動モータ4と減速歯車組5との間に配してケース本体1内に隔壁を設け、電動モータ4の収納室と、減速歯車組5の収納室とを区画することも考えられるが、この場合、電動モータ4および減速歯車組5を図1に示すごとく径方向へオーバーラップするよう相互に接近させて配置することができなくなり、インホイールモータユニットがその軸線方向長大化により搭載性が低下する。
 そこで本実施例においては図1に示すごとく、電動モータ4の収納室および減速歯車組5の収納室を共通化し、電動モータ4および減速歯車組5を径方向オーバーラップ状態でケース本体1内の同じ室内に接近配置し、インホイールモータユニットの軸線方向寸法を短縮することによりその搭載性を向上させる。
 その上で本実施例においては、減速歯車組5の潤滑と、入出力軸8,9間におけるベアリング17の潤滑と、入力軸8およびユニットケース3間におけるベアリング18の潤滑とを、以下のような潤滑制御装置により行うこととする。
 先ず図1に基づきそのための潤滑油路を説明するに、ユニットケース3内の下部に図1のごとく潤滑オイル31を貯留し、その下部に電動式のオイルポンプ32を設ける。
 オイルポンプ32は吸入ポート32aおよび吐出ポート32bを有し、吸入ポート32aはオイルフィルタ33を経てユニットケース3内の下部におけるオイル31の貯留部に開口させる。
 なおオイル31の貯留量は、そのレベル31aが車両の振動や傾斜によっても吸入ポート32aよりも低くなることのないような量とし、車両の振動時や傾斜時もオイルポンプ32が吸入ポート32aからオイル31を吸入し得るようにし、全てのインホイールモータ駆動車輪についてオイル31の貯留量は、インホイールモータユニット内下部の静的オイルレベル31aが同じになるようなものとする。
 リヤカバー2には、入力軸8に同心の円形オイルギャラリ34を形成し、このオイルギャラリ34にオイルポンプ32の吐出ポート32bを通じさせる。
 オイルギャラリ34は、出力軸9から遠い入力軸8の端面およびベアリング18の端面と、これら両端面に対向するようリヤカバー2に嵌着したオイルキャップ35との間に画成して、リヤカバー2に形成する。
 出力軸9から遠い入力軸8の端面およびベアリング18の端面と、オイルキャップ35との間にオイルガイド38を介在させる。
 このオイルガイド38は、図2(a),(b)に明示するごとく全体を円板状とし、その中心部にガイド筒38aを突設し、周辺部にガイド孔38bを穿設する。
 上記のオイルガイド38は、図1に示すように入力軸8の中心に設けた中空孔8aの対応端にガイド筒38aを挿入して設置し、中空孔8aの反対端を、入出力軸8,9の相互嵌合空所内に開口させる。
 キャリア15aには、径方向外方へ延在する径方向油孔42を設け、この径方向油孔42に整列させて入力軸8にも径方向油孔8bを設ける。
 キャリア15aに設けた径方向油孔42の径方向外端は、ピニオンシャフト14の中心における中空孔43に通じさせる。
 ピニオンシャフト14には更に、その中空孔43から径方向外方に延在するオイル噴出孔44を設け、該オイル噴出孔44から遠心力によりオイルを減速歯車組5の潤滑要求箇所へ供給し得るようになす。
 入力軸8には更に、その中空孔8aから、入出力軸8,9の相互嵌合部に介在させたベアリング17に向けて延在する径方向油孔8cを設け、ここからベアリング17へもオイルを供給し得るようにする。
 図1,2につき上述した潤滑油路の作用を以下に説明する。
 インホイールモータユニットの作動中、ベアリング17,18および減速歯車組5の潤滑が必要である場合は、オイルポンプ32を駆動させる。
 オイルポンプ32を駆動させると、インホイールモータユニットケース3内の下部における潤滑オイル31が図1の矢印で示すように、ポート32aを経て吸入され、ポート32bから吐出され、その後この吐出オイルはオイルギャラリ34に至る。
 インホイールモータユニットによる車輪16の回転駆動中は、ピニオンシャフト14の中空孔43およびオイル噴出孔44内のオイルが遠心力を受けて、図1に矢印で示すようにオイル噴出孔44から噴出され、減速歯車組5の潤滑要求箇所へ供給される。
 かかる噴出孔44からのオイル噴出分は、図1に矢印で示すごとく、オイルギャラリ34からオイルガイド38のガイド筒38a、入力軸8の中空孔8a、径方向油孔8b、および径方向油孔42を経てピニオンシャフト中空孔43に向かうオイルにより補充され、減速歯車組5へのオイル供給を継続的に行うことができる。
 オイルギャラリ34内の貯留オイルは他方で、オイルガイド38に設けた周辺部ガイド孔38bを通過して、図1に矢印で示すごとくベアリング18に向かい、当該ベアリング18の潤滑に供される。
 オイルギャラリ34からオイルガイド38のガイド筒38aを経て入力軸8の中空孔8aに達したオイルは同時に、図1に矢印で示すごとく径方向油孔8cを経て、入出力軸8,9間のベアリング17に達し、当該ベアリング17の潤滑にも供される。
 ところで減速歯車組5は、機械要素であるため伝動中に金属粉が発生し、この金属粉は、上記のごとく循環しているオイル中に混入する。
 かように金属粉が混入したオイルは、ポンプ32から入力軸中空孔8a、減速歯車組5、電動モータ4を経てハウジング3内の下部オイル溜まりに至り、再びポンプ32により吸入されて循環する。
 この循環中、オイル内に混入した金属粉は、一部が電動モータ4内の永久磁石に吸着され、時間の経過とともに電動モータ4への金属粉付着量が増大する。
 かように電動モータ4への金属粉付着量が増大すると、電動モータ4の性能低下を招き、インホイールモータ式電気自動車の動力性能が低下する。
 図1のインホイールモータユニットには、この問題解決のため、以下のような対策を施す。
 オイル溜まりに浸漬したステータ6の下部6aが嵌合するハウジング内周面3aに軸線方向溝47を設け、軸線方向溝47の両端47a,47bをそれぞれ、電動モータ4の軸線方向両側における空間45,46に開口させ、減速歯車組5が位置する側のハウジング空間45と反対側におけるハウジング空間46との間におけるオイル31の往来が、ほとんど軸線方向溝47を経て行われるようにする。
 また、減速歯車組5が位置する側のハウジング空間45に近い軸線方向溝47の開口端47aに接近させてハウジング3内に永久磁石48を固設する。
 なおステータ6は、少なくとも下部6aを、オイルが浸透しないようモールド成形するのが良い。
 かくして、オイルが減速歯車組5を通過するときに混入した金属粉を、減速機収納空間45内のオイル溜まりから軸線方向溝47の開口端47aに入るときに永久磁石37で吸着して、オイル内から除去することができる。
 これにより、電動モータ4に金属粉が付着するのを防止することができ、金属粉の付着で電動モータ4が性能を低下されて、インホイールモータ式電気自動車の動力性能が低下するという上記の問題を回避することができる。
 インホイールモータユニット(減速歯車組5およびベアリング17,18)の前記潤滑に際し、図1のオイルポンプコントローラ51はオイルポンプ32の駆動制御を介し、以下のごとくに当該潤滑を制御する。
 そのためオイルポンプコントローラ51には、潤滑オイル31の油温Tempを検出する油温センサ52からの信号と、車速VSPを検出する車速センサ53からの信号と、車両の要求駆動トルクTdを演算する要求駆動トルク演算部54からの信号と、オイルポンプ32が停止状態である間における車両走行距離Lを計測する走行距離計55からの信号とをそれぞれ入力する。
 なお要求駆動トルク演算部54は、運転者が操作するアクセル開度と、車速VSPなどの回転速度情報とから、周知の演算により要求駆動トルクTdを演算することができる。
 また走行距離計55は、停車時に0にリセットされ、オイルポンプ停止状態での車両走行距離を積算して上記の走行距離Lを計測することができる。
 オイルポンプコントローラ51は、上記の入力情報をもとに図3の制御プログラムを実行して、オイルポンプ32によるオイル吸送量が図4に例示するようなものとなるよう、オイルポンプ32を駆動制御する。
 図3のステップS11においては、車速VSPが図4の設定車速VSP1以上か否かをチェックする。
 この設定車速VSP1は、ロータ7が大径であるため図1にDで示すごとくオイル31中に浸漬しているロータ7へのオイル攪拌抵抗が許容レベル(殆ど無視できるようなレベル)を超える高車速域の下限車速(例えば30km/h)である。
 この高車速域においては、左右輪間でインホイールモータユニットケース内下部のオイルレベル31aが異なっていると、左右輪間でロータ7のオイル浸漬量D、つまりロータ7へのオイル攪拌抵抗が大きく違って、左右輪間に大きな駆動力差を発生させ、車両の走行安定性が悪化するという問題を生ずる。
 図5により付言するに、この図5は、設定車速VSP1以上の或る車速VSPのもと無負荷状態で、ロータ7のオイル浸漬量Dに応じてインホイールモータユニット内の油温Tempが如何様に変化するかを示した特性図である。
 ロータ7のオイル浸漬量Dが大きいほど、油温Tempの時間変化割合が急であり、このことは、ロータ7のオイル浸漬量Dが大きいほど、ロータ7へのオイル攪拌抵抗が大きくなって、動力損失による車輪駆動力低下が激しいことを意味する。
 従って、ロータ7へのオイル攪拌抵抗が許容レベルを超える高車速域(VSP≧VSP1)では、左右インホイールモータユニットのオイルレベル31aが異なっていると、左右輪間におけるロータ7のオイル浸漬量Dが違うことに起因したロータ7へのオイル攪拌抵抗差が大きくなって、左右輪間に大きな駆動力差を発生させ、車両の走行安定性が悪化するという問題を生ずる。
 そこで本実施例においては、ステップS11において車速VSPが設定車速VSP1以上であると判定する場合、図3のステップS12において、左右インホイールモータユニットのオイルポンプ32をそれぞれ、オイル吸送量Qがともに図4の一定流量Qconstに保たれるように駆動制御する。
 従ってステップS12は、本発明におけるオイルポンプ駆動制御手段に相当する。
 この駆動制御に当たってオイルポンプコントローラ51は、オイルポンプ32の同じ回転速度のもとでも、そのオイル吸送量Qが油温Tempに応じて異なるため、この特性を考慮した例えば図6の一定流量(Qconst)実現特性を基に油温Tempからオイルポンプ目標回転数Nopを求めて、これを図1のごとくオイルポンプ32へ指令し、オイルポンプ32がこの目標回転数Nopとなるよう駆動制御する。
 かかる駆動制御によれば、如何なる油温Tempのもとでも、オイルポンプ32はオイルポンプ吸送量Qを、高車速域(VSP≧VSP1)での図4に示す一定流量Qconstに制御することができる。
 そして上記の一定流量Qconstは、インホイールモータユニット内の減速歯車組5を潤滑するのに必要な最小限のユニット必要油量とし、例えばこのユニット必要油量が最も多くなる車速時の油量に設定する。
 左右インホイールモータユニットのオイルポンプ32によるオイル吸送量Qがともに上記の一定流量Qconstに保たれるようオイルポンプ32を駆動制御する場合、前記した通り左右インホイールモータユニット内下部の静的オイルレベル31aが同じであることによって、オイルポンプ32の作動中も左右インホイールモータユニット内下部のオイルレベル31aが同じにされ続けることとなる。
 かようにオイルポンプ32の作動中も左右インホイールモータユニット内下部のオイルレベル31aが同じに保たれることにより、ロータ7へのオイル攪拌抵抗が許容レベルを超える高車速域(VSP≧VSP1)であっても、左右インホイールモータユニット内におけるロータ7へのオイル攪拌抵抗が同じに保たれ、左右輪間に駆動力差を発生させることがなくて、車両の走行安定性が悪化するという上記の問題を回避することができる。
 しかも、図4における上記の一定流量Qconstをインホイールモータユニット内の減速歯車組5を潤滑するのに必要な最小限のユニット必要油量としたため、減速歯車組5を最小限のオイル(最小限のポンプ消費電力)で要求通りに潤滑しつつ、上記の問題解決を実現することができる。
 図3のステップS11において(VSP<VSP1)の低車速域であると判定する場合、制御を、本発明におけるオイルポンプ駆動制御手段に相当するステップS13に進め、オイルポンプ32を以下のように可変流量制御する。
 その理由は、低車速域(VSP<VSP1)である場合、ロータ7の回転速度が遅く、オイル攪拌抵抗が許容レベル以下であって、上記の走行安定性に関する問題を生ずることがないと共に、潤滑要求度が低くて、電費の節約およびオイルポンプ騒音の観点からもオイルポンプ32の作動をできるだけ避けたいためである。
 ちなみにオイルポンプ32は、遮音対策が可能な車体内方に位置するものでなく、車外にむき出しにされているインホイールモータユニットに設置するため、遮音対策が不能であり、特に、インホイールモータ駆動車両が無音走行状態となる低車速域(VSP<VSP1)では、オイルポンプ32の作動音が、乗員はもとより車外周辺の人にも、違和感のある騒音となるため、オイルポンプ32の回転数を可能な限り低くしたり、オイルポンプ32を可能な限り非作動状態にするのが好ましく、電費節約の観点からも、そのようにするのが良い。
 そのため、ステップS13で実行する低車速域(VSP<VSP1)におけるオイルポンプ32の可変流量制御に当たっては、要求駆動トルクTdが0であり、且つ、オイルポンプ停止状態での走行距離Lが0である場合、図4の低車速域(VSP<VSP1)における実線特性(基本特性)で示すように、車速VSPがオイルポンプ起動車速VSP0に上昇するまでは、オイルポンプ32によるオイル吸送量Qを0にしてオイルポンプ32を停止状態にしておき、車速VSPがオイルポンプ起動車速VSP0から上昇して前記の設定車速VSP1に達するまでの間に、オイルポンプ32を、オイル吸送量Qが0から前記の一定流量Qconstまで二次曲線的に増大するよう駆動制御する。
 

 この一定流量Qconstは前記した処から明らかなように、左右インホイールモータユニット内下部のオイルレベル31aを同じにするための、オイルポンプ32のオイル吸送量(本発明における所定量)であり、前記した通り、インホイールモータユニット内の減速歯車組5を潤滑するのに必要な最小限のユニット必要油量に対応させる。
 低車速域(VSP<VSP1)におけるオイルポンプ32の上記駆動制御に際してもオイルポンプコントローラ51は、前記のごとく0から一定流量Qconstまでの間で変化するオイル吸送量Qを実現するためのオイルポンプ目標回転数Nopを、図6につき前述したと同様な考え方により油温Tempに応じ求めて、これを図1のごとくオイルポンプ32へ指令する。
 かかる駆動制御によれば、如何なる油温Tempのもとでも、オイルポンプ32はオイルポンプ吸送量Qを、低車速域(VSP<VSP1)での図4に実線で示す特性に沿うよう制御することができる。
 ここでオイルポンプ起動車速VSP0は、インホイールモータユニットによる車輪駆動の開始によって、オイルギャラリ34からオイル噴出孔44までの潤滑油路内に貯まっていた残留オイルが遠心力で噴出され始め、この残留オイルが全て無くなるときの車速、若しくは残留オイルが所定量未満になるときの車速とする。
 その理由は、このように定めたオイルポンプ起動車速VSP0に達した後もオイルポンプ32を停止させたままにすると、減速歯車組5へ潤滑オイルが一時的に供給されないこととなり、減速歯車組5が一時的な潤滑不良により損傷されるためである。
 しかして、要求駆動トルクTdが0よりも大きくなると、減速歯車組5の要求潤滑油量が多くなり、オイルポンプ起動車速VSP0は図4に波線特性で示すごとくに低下させて、早期にオイルポンプ32を起動させる必要がある。
 例えば登坂路で電動モータ4のトルクにより停車させておく所謂「ヒルホールド」時は、車速VSPが0であっても、減速歯車組5がトルク伝達状態であるため、これを潤滑する必要があり、車速VSPが0の停車状態であっても減速歯車組5の要求潤滑油量は図4にQoで例示するごときものとなる。
 そこで本実施例においては、図4にΔVSP0で示したオイルポンプ起動車速VSP0の低下代に関するマップとして、要求駆動トルクTdの積分値ΣTdの増大に応じ、例えば図7に示すごとくに大きくなるオイルポンプ起動車速VSP0の低下代ΔVSP0に関したマップを、実験などにより予め求め、用意しておく。
 なお、オイルポンプ起動車速VSP0の低下代ΔVSP0は、最大値αが図4から明らかなようにVSP0であり、図7のマップは、要求駆動トルクTdの積分値ΣTdが或る値ΣTdm以上であるとき、ΔVSP0=αによりオイルポンプ起動車速VSP0を0となし、停車状態からオイルポンプ32を駆動して、例えば上記したヒルホールド時の要求を満足させ得ることを意味する。
 オイルポンプコントローラ51は、低車速域(VSP<VSP1)で図3のステップS13を実行するに際し、要求駆動トルクTdの積分値ΣTdが0である場合は、前記した制御によりオイルポンプ32を、オイル吸送量Qが図4の実線特性によって変化するよう駆動制御するが、要求駆動トルクTdの積分値ΣTdが0を超えたら、図7のマップから要求駆動トルクTdの積分値ΣTdに応じたオイルポンプ起動車速VSP0の低下代ΔVSP0を求め、(VSP0-ΔVSP0)をオイルポンプ起動車速とする、図4に波線で例示したようなオイル吸送量Qの変化特性が達成されるようにオイルポンプ32を駆動制御する。
 一方で、オイルポンプ停止状態での走行距離Lが車両の発進により0よりも大きくなると、前記残留オイル量が遠心力による噴出で低下されることから、オイルポンプ起動車速VSP0を図4に波線特性で示すごとくに低下させて、早期にオイルポンプ32を起動させる必要がある。
 そこで本実施例においては、オイルポンプ停止状態での走行距離Lの増大に応じ、例えば図8に示すごとくに大きくなるオイルポンプ起動車速VSP0の低下代ΔVSP0に関したマップを、実験などにより予め求め、用意しておく。
 なお図8のマップは、オイルポンプ停止状態での走行距離Lが或る値Lm以上であるとき、ΔVSP0=αによりオイルポンプ起動車速VSP0を0となし、停車状態からオイルポンプ32を駆動して、L≧Lmにより前記の残留オイルが無くなっていたり、所定量未満であるのにもかかわらず、オイルポンプ32の非作動期間が発生して潤滑不良の事態が発生することのないようにする。
 そしてオイルポンプコントローラ51は、低車速域(VSP<VSP1)で図3のステップS13を実行するに際し、オイルポンプ停止状態での走行距離Lが0である場合は、前記した制御によりオイルポンプ32を、オイル吸送量Qが図4の実線特性によって変化するよう駆動制御するが、 オイルポンプ停止状態での走行距離Lが0を超えたら、図8のマップからオイルポンプ停止状態での走行距離Lに応じたオイルポンプ起動車速VSP0の低下代ΔVSP0を求め、(VSP0-ΔVSP0)をオイルポンプ起動車速とするがごとき、図4に波線で例示したようなオイル吸送量Qの変化特性が達成されるようオイルポンプ32を駆動制御する。
 上記した本実施例の構成になるインホイールモータユニットの潤滑制御にあっては、ロータ7へのオイル攪拌抵抗が許容レベルを超える高車速域(VSP≧VSP1)で、左右インホイールモータユニットのオイルポンプ32をそれぞれ、オイル吸送量Qがともに図4の一定流量Qconstに保たれるよう駆動制御するため、左右インホイールモータユニット内下部の静的オイルレベル31aが同じであることによって、オイルポンプ32の作動中も左右インホイールモータユニット内下部のオイルレベル31aが同じにされ続けることとなる。
 従って、ロータ7へのオイル攪拌抵抗が許容レベルを超える高車速域(VSP≧VSP1)であっても、左右インホイールモータユニット内におけるロータ7へのオイル攪拌抵抗が同じに保たれ、左右輪間に駆動力差を発生させることがなくて、車両の走行安定性が悪化するという問題を回避することができる。
 そしてこの効果を、オイルポンプ32の単純な一定流量制御により達成するため、コスト上も益するところ大なるものである。
 しかも、図4における上記の一定流量Qconstをインホイールモータユニット内の減速歯車組5を潤滑するのに必要な最小限のユニット必要油量としたため、減速歯車組5を最小限のオイル(最小限のポンプ消費電力)で要求通りに潤滑しつつ、上記の問題解決を実現することができる。
 更に、上記オイルポンプ32の駆動制御に際し、図6に例示したオイルポンプ32の一定流量(Qconst)実現特性を基に油温Tempからオイルポンプ目標回転数Nopを求め、オイルポンプ32がこの目標回転数Nopとなるよう駆動制御するため、如何なる油温Tempのもとでも、オイルポンプ32はオイルポンプ吸送量Qを、高車速域(VSP≧VSP1)での図4に示す一定流量Qconstに制御することができ、上記の効果を確実に奏し得る。
 また本実施例おいては、上記オイルポンプ32の一定流量制御を、ロータ7へのオイル攪拌抵抗が許容レベルを超え、発明解決課題である「走行安定性の問題」を生ずる高車速域(VSP≧VSP1)のみに実行し、 ロータ7へのオイル攪拌抵抗が許容レベル未満であって、「走行安定性の問題」を生ずることのないと共に減速歯車組5の潤滑要求度が低い低車速域(VSP<VSP1)においては、オイルポンプ32を、オイル吸送量Qが図4に示すごとく一定流量Qconstよりも少なく、且つ車速VSPが低いほど少ないオイル吸送量となるよう、可変流量制御するため、以下の効果を得ることができる。
 つまり、かかる低車速域(VSP<VSP1)、特に停車を含むVSP<VSP0の極車速領域においては、インホイールモータ駆動車両が無音走行状態であることから、オイルポンプ32の作動音が、乗員にとっても、車外周辺の人にとっても、違和感のある騒音となるため、オイルポンプ32の回転数を可能な限り低くしたり、オイルポンプ32をできれば非作動状態にするのが好ましく、電費節約の観点からも、そのようにするのが良い。
 本実施例では、上記の低車速域(VSP<VSP1)でオイルポンプ32を、オイル吸送量Qが図4に示すごとく一定流量Qconstよりも少なく、且つ車速VSPが低いほど少ないオイル吸送量となるよう、可変流量制御するため、上記の要求を実現することができる。
 特に停車を含むVSP<VSP0の極車速領域においては、潤滑の観点から作動が不要である間、オイルポンプ32を停止させるようにしたため、オイルポンプ32の作動音が「騒音」となるのを防止することができると共に、オイルポンプ32の消費電力が不要な作動で多くなるのを防止することができる。
 そして、インホイールモータユニットケース内下部のオイル31による攪拌抵抗が許容レベルを超えない設定車速VSP1未満の低車速領域(VSP<VSP1)で車速上昇につれ、オイルポンプ32を、オイル吸送量Qが図4に示すごとく徐々に増大するよう駆動制御して前記の効果が得られるようにするに際し、車速VSPが設定車速VSP1に達する車速上昇時にオイル吸送量Qが左右インホイールモータユニットケース内下部におけるオイルレベル31aを同じとなす所定量Qconstになるようオイルポンプ32を駆動制御するため、低車速領域(VSP<VSP1)から高車速領域(VSP≧VSP1)への遷移時に、左右インホイールモータユニットのケース内下部におけるオイルレベル31aを同じにすることができ、高車速転領域(VSP≧VSP1)への移行時に大きな左右輪駆動力差が発生して走行安定性を悪化させるという問題を回避することができる。
 すなわち、インホイールモータユニットケース内下部のオイルによる攪拌抵抗が許容レベルを超えない設定車速未満の低車速領域で、車速上昇につれオイル吸送量が徐々に増大するようオイルポンプ32を駆動制御するため、低車速領域での無駄なオイルポンプ32の駆動を抑制して、例えば騒音対策や、電費の節約を行い得る。
 つまり、設定車速への車速上昇により低車速領域から高車速領域へ遷移するとき、オイル吸送量が、左右インホイールモータユニットのケース内下部におけるオイルレベル31aを同じとなすような所定量になるようオイルポンプ32を駆動制御するため、低車速領域から高車速領域への遷移時に左右インホイールモータユニットのケース内下部におけるオイルレベル31aが同じになるのを保証することができる。
 このため低車速領域から高車速領域への遷移時に、インホイールモータユニット内における大径回転メンバ(電動モータ4のロータ7)のオイル浸漬量を左右インホイールモータユニット間で同じにし得ることとなり、当該大径回転メンバによるオイル攪拌抵抗も左右インホイールモータユニット間で同じにすることができる。
 従って、大径回転メンバ(電動モータ4のロータ7)によるオイル攪拌抵抗を許容し得なくなった高車速領域への移行時であっても、左右インホイールモータユニット間に駆動力差を発生させることがなく、インホイールモータ駆動車両の走行安定性が悪化するということもない。

Claims (13)

  1.  少なくとも左右一対の車輪を、個々のインホイールモータユニットにより駆動して走行可能なインホイールモータ駆動車両に用いられ、
     左右で対をなす前記インホイールモータユニット内を、個々のオイルポンプがインホイールモータユニットケース内下部から吸送したオイルにより潤滑するインホイールモータユニットの潤滑制御装置において、
     前記オイルポンプを、該オイルポンプからのオイル吸送量が前記左右インホイールモータユニットのケース内下部におけるオイルレベルを同じとなすよう駆動制御するオイルポンプ駆動制御手段を設けた車両用インホイールモータユニットの潤滑制御装置。
  2.  請求項1に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記オイルポンプからのオイル吸送量が前記左右インホイールモータユニットのケース内下部におけるオイルレベルを同じとなす一定量に保たれるよう駆動制御する車両用インホイールモータユニットの潤滑制御装置。
  3.  請求項1または2に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイル吸送量に関した一定量は、前記インホイールモータユニット内の潤滑に必要な最小限のオイル量である車両用インホイールモータユニットの潤滑制御装置。
  4.  請求項1~3のいずれか1項に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は前記オイルポンプを、オイル吸送量が温度変化に係わらず前記一定量に保たれるよう、オイル温度に応じて駆動制御するものである車両用インホイールモータユニットの潤滑制御装置。
  5.  前記左右インホイールモータユニットのケース内下部にそれぞれ、同じオイルレベルのオイルが貯留されたインホイールモータ駆動車両に用いられる、請求項1~4のいずれか1項に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、左右で対をなす前記オイルポンプによるオイル吸送量が同じになるよう、これらオイルポンプを駆動制御するものである車両用インホイールモータユニットの潤滑制御装置。
  6.  請求項1~5のいずれか1項に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記インホイールモータユニットケース内下部のオイルによる攪拌抵抗が許容レベルを超える高車速領域で、前記オイルポンプの駆動制御を遂行するものである車両用インホイールモータユニットの潤滑制御装置。
  7.  請求項6に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記高車速領域よりも低車速領域において、前記オイル吸送量が前記一定量よりも少なくなるよう前記オイルポンプを駆動制御するものである車両用インホイールモータユニットの潤滑制御装置。
  8.  請求項7に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記低車速領域において低車速ほど前記オイル吸送量が少なくなるよう、前記オイルポンプを駆動制御するものである車両用インホイールモータユニットの潤滑制御装置。
  9.  請求項1に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記インホイールモータユニットケース内下部のオイルによる攪拌抵抗が許容レベルを超えない設定車速未満の低車速領域で車速上昇につれ、前記オイルポンプを、該オイルポンプからのオイル吸送量が徐々に増大するよう駆動制御すると共に、前記設定車速への車速上昇時に前記オイル吸送量が前記左右インホイールモータユニットのケース内下部におけるオイルレベルを同じとなす所定量になるよう前記オイルポンプを駆動制御する車両用インホイールモータユニットの潤滑制御装置。
  10.  請求項9に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記設定車速以上の高車速領域で、前記オイルポンプを、該オイルポンプからのオイル吸送量が前記所定量に保たれるよう駆動制御するものである車両用インホイールモータユニットの潤滑制御装置。
  11.  請求項9または10に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイル吸送量に関した所定量は、前記インホイールモータユニット内の潤滑に必要な最小限のオイル量である車両用インホイールモータユニットの潤滑制御装置。
  12.  請求項9~11のいずれか1項に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記高車速領域で前記オイルポンプを、オイル吸送量が温度変化に係わらず前記所定量に保たれるよう、オイル温度に応じて駆動制御するものである車両用インホイールモータユニットの潤滑制御装置。
  13.  前記左右インホイールモータユニットのケース内下部にそれぞれ、同じオイルレベルのオイルが貯留されたインホイールモータ駆動車両に用いられる、請求項9~12のいずれか1項に記載された車両用インホイールモータユニットの潤滑制御装置において、
     前記オイルポンプ駆動制御手段は、前記高車速領域において、前記左右インホイールモータユニットのオイルポンプによるオイル吸送量が同じになるよう、これらオイルポンプを駆動制御するものである車両用インホイールモータユニットの潤滑制御装置。
PCT/JP2012/054866 2011-04-13 2012-02-28 車両用インホイールモータユニットの潤滑制御装置 WO2012140963A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12771495.4A EP2698565B1 (en) 2011-04-13 2012-02-28 Lubrication control device for in-wheel motor unit for vehicle
US13/819,105 US9726057B2 (en) 2011-04-13 2012-02-28 Lubrication control device for in-wheel motor unit for vehicle
CN201280002819.0A CN103109112B (zh) 2011-04-13 2012-02-28 车辆用轮内马达单元的润滑控制装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-088790 2011-04-13
JP2011088790 2011-04-13
JP2011089779 2011-04-14
JP2011-089779 2011-04-14
JP2011-201801 2011-09-15
JP2011201798A JP5884352B2 (ja) 2011-04-13 2011-09-15 車両用インホイールモータユニットの潤滑制御装置
JP2011201801A JP5794065B2 (ja) 2011-04-14 2011-09-15 車両用インホイールモータユニットの潤滑制御装置
JP2011-201798 2011-09-15

Publications (1)

Publication Number Publication Date
WO2012140963A1 true WO2012140963A1 (ja) 2012-10-18

Family

ID=48316003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054866 WO2012140963A1 (ja) 2011-04-13 2012-02-28 車両用インホイールモータユニットの潤滑制御装置

Country Status (4)

Country Link
US (1) US9726057B2 (ja)
EP (1) EP2698565B1 (ja)
CN (1) CN103109112B (ja)
WO (1) WO2012140963A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069280A1 (ja) * 2012-11-02 2014-05-08 Ntn株式会社 インホイールモータ駆動装置
US8720623B1 (en) 2012-11-12 2014-05-13 Hyundai Mobis Co., Ltd. In-wheel motor system
US20220356942A1 (en) * 2020-03-18 2022-11-10 Karma Automotive Llc Transmission system for an electric vehicle

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237724B (zh) * 2010-12-27 2015-11-25 川崎重工业株式会社 跨乘式电动车辆
US20140041619A1 (en) * 2011-04-27 2014-02-13 Nissan Motor Co., Ltd. Lubrication control apparatus for vehicle in-wheel motor unit
WO2013146358A1 (ja) * 2012-03-30 2013-10-03 本田技研工業株式会社 回転電機
JP5509289B2 (ja) * 2012-10-05 2014-06-04 本田技研工業株式会社 車両用駆動装置
US9533551B2 (en) 2015-03-16 2017-01-03 Thunder Power Hong Kong Ltd. Electric vehicle thermal management system with series and parallel structure
US10703211B2 (en) 2015-03-16 2020-07-07 Thunder Power New Energy Vehicle Development Company Limited Battery pack, battery charging station, and charging method
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US9550406B2 (en) 2015-03-16 2017-01-24 Thunder Power Hong Kong Ltd. Thermal dissipation system of an electric vehicle
US10173687B2 (en) 2015-03-16 2019-01-08 Wellen Sham Method for recognizing vehicle driver and determining whether driver can start vehicle
CN108698233B (zh) * 2016-02-25 2022-02-18 株式会社达谊恒 驱动装置
JP6725356B2 (ja) * 2016-07-29 2020-07-15 Kyb株式会社 鉄道車両用制振装置
JP6909071B2 (ja) * 2017-06-23 2021-07-28 Ntn株式会社 補助転舵機能付ハブユニットおよび車両
JP6531141B2 (ja) * 2017-08-29 2019-06-12 本田技研工業株式会社 車両駆動装置
CN111566910B (zh) * 2017-12-28 2023-12-19 日本电产株式会社 马达单元
WO2019208083A1 (ja) * 2018-04-27 2019-10-31 日本電産株式会社 モータユニット
CN112533783B (zh) * 2018-08-09 2024-05-14 日本电产株式会社 马达单元
EP4034406B1 (en) * 2019-09-26 2023-11-01 Volvo Truck Corporation Vehicle wheel end arrangement
US11529864B2 (en) * 2019-11-29 2022-12-20 Mitsubishi Heavy Industries, Ltd. Drive device for electric vehicle and electric vehicle
DE202021103902U1 (de) * 2020-07-22 2021-10-19 Hyundai Mobis Co., Ltd. Radnabenantriebsvorrichtung und Fahrzeug mit dieser
KR20220045317A (ko) * 2020-10-05 2022-04-12 현대자동차주식회사 모터의 냉각을 위한 오일 회수 구조
WO2022074997A1 (ja) * 2020-10-07 2022-04-14 ジヤトコ株式会社 動力伝達装置
JPWO2022074994A1 (ja) * 2020-10-07 2022-04-14
DE102021100958B3 (de) 2021-01-19 2022-07-14 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung eines Kühlsystems, Kühlsystem, Steuereinheit und Computerprogrammprodukt
JP2023071548A (ja) * 2021-11-11 2023-05-23 トヨタ自動車株式会社 車両の潤滑構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173762A (ja) * 1999-10-05 2001-06-26 Aisin Aw Co Ltd ドライブユニットの潤滑装置
JP2008195233A (ja) 2007-02-13 2008-08-28 Mazda Motor Corp インホイールモータを搭載する車両
JP2009241911A (ja) * 2008-04-01 2009-10-22 Toyota Motor Corp インホイールモータの冷却構造
JP2010247657A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 車両の駆動装置
JP2010249220A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 車両制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217085A (en) * 1992-05-04 1993-06-08 Ford Motor Company Lubrication and cooling system for a powertrain including an electric motor
JPH0681929A (ja) 1992-09-07 1994-03-22 Aisin Aw Co Ltd 電気自動車用ドライブユニット
IL119601A (en) * 1996-11-11 2002-03-10 Hoffmann & Hoffmann Ltd Oil lubrication rate monitor and controller
US7055486B2 (en) * 2003-03-28 2006-06-06 Caterpillar Inc. Fluid delivery control system
JP4441340B2 (ja) * 2004-06-23 2010-03-31 本田技研工業株式会社 モータ冷却システムおよびハイブリッド車
JP4501911B2 (ja) * 2006-08-11 2010-07-14 トヨタ自動車株式会社 インホイールモータ構造
AU2008283583B2 (en) * 2007-07-30 2011-03-03 Hitachi Construction Machinery Co., Ltd. Running driver of working vehicle
JP5071216B2 (ja) * 2008-04-16 2012-11-14 日産自動車株式会社 電動ユニット
JP5338399B2 (ja) 2009-03-13 2013-11-13 日産自動車株式会社 回転電機の冷媒流量制御装置
CN201428794Y (zh) * 2009-05-27 2010-03-24 比亚迪股份有限公司 一种行星轮系减速机构的润滑系统
US8079335B2 (en) * 2009-09-17 2011-12-20 Ford Global Technologies, Llc Inferred oil responsiveness using pressure sensor pulses
KR101199091B1 (ko) * 2010-08-31 2012-11-08 기아자동차주식회사 엔진 유압 및 유량 제어 시스템 및 그의 제어 방법
KR101209748B1 (ko) * 2010-11-17 2012-12-07 기아자동차주식회사 오일펌프의 출력 압력 제어시스템
CN103460564B (zh) * 2011-04-06 2016-05-11 本田技研工业株式会社 车辆用驱动装置
US20140041619A1 (en) * 2011-04-27 2014-02-13 Nissan Motor Co., Ltd. Lubrication control apparatus for vehicle in-wheel motor unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173762A (ja) * 1999-10-05 2001-06-26 Aisin Aw Co Ltd ドライブユニットの潤滑装置
JP2008195233A (ja) 2007-02-13 2008-08-28 Mazda Motor Corp インホイールモータを搭載する車両
JP2009241911A (ja) * 2008-04-01 2009-10-22 Toyota Motor Corp インホイールモータの冷却構造
JP2010247657A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 車両の駆動装置
JP2010249220A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698565A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069280A1 (ja) * 2012-11-02 2014-05-08 Ntn株式会社 インホイールモータ駆動装置
JP2014093845A (ja) * 2012-11-02 2014-05-19 Ntn Corp インホイールモータ駆動装置
CN104755314A (zh) * 2012-11-02 2015-07-01 Ntn株式会社 内轮电动机驱动装置
EP2915691A4 (en) * 2012-11-02 2016-07-13 Ntn Toyo Bearing Co Ltd RADIN MOTOR DRIVE UNIT
US10207576B2 (en) 2012-11-02 2019-02-19 Ntn Corporation In-wheel motor drive device
US8720623B1 (en) 2012-11-12 2014-05-13 Hyundai Mobis Co., Ltd. In-wheel motor system
DE102013201441A1 (de) * 2012-11-12 2014-05-15 Hyundai Mobis Co., Ltd. Radnabenmotorsystem
DE102013201441B4 (de) * 2012-11-12 2020-03-19 Hyundai Mobis Co., Ltd. Radnabenmotorsystem
US20220356942A1 (en) * 2020-03-18 2022-11-10 Karma Automotive Llc Transmission system for an electric vehicle

Also Published As

Publication number Publication date
EP2698565B1 (en) 2016-04-06
CN103109112B (zh) 2015-10-14
US20130153338A1 (en) 2013-06-20
US9726057B2 (en) 2017-08-08
EP2698565A4 (en) 2014-09-24
EP2698565A1 (en) 2014-02-19
CN103109112A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2012140963A1 (ja) 車両用インホイールモータユニットの潤滑制御装置
WO2012147407A1 (ja) 車両用インホイールモータユニットの潤滑制御装置
US10011261B2 (en) Control apparatus for hybrid vehicle
JP5079431B2 (ja) インホイールモータ駆動装置
JP5066925B2 (ja) 車輪駆動装置
JP6428737B2 (ja) 回転電機システム
JP2009219271A (ja) モータ駆動装置およびインホイールモータ駆動装置
JP2009257494A (ja) モータ駆動装置およびインホイールモータ駆動装置
JP2014240667A (ja) インホイールモータ駆動装置
JP5010490B2 (ja) モータ駆動装置およびインホイールモータ駆動装置
JP2009262616A (ja) モータ駆動装置およびインホイールモータ駆動装置
JP2009012569A (ja) インホイールモータ駆動装置
JP2014121941A (ja) インホイールモータ駆動装置
JP5765158B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP5176183B2 (ja) インホイールモータ駆動装置
WO2015016058A1 (ja) インホイールモータ駆動装置の潤滑装置
JP2012061912A (ja) ハイブリッド車両用駆動装置およびケース
JP5884352B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP5794065B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP5845758B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP5786581B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP4918051B2 (ja) モータ駆動装置およびインホイールモータ駆動装置
JP2015074325A (ja) インホイールモータ駆動装置
JP5380911B2 (ja) オイル供給構造
JP2013072494A (ja) オイルポンプ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002819.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13819105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012771495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE