WO2012137636A1 - 全芳香族ポリエステル及びポリエステル樹脂組成物 - Google Patents

全芳香族ポリエステル及びポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2012137636A1
WO2012137636A1 PCT/JP2012/058050 JP2012058050W WO2012137636A1 WO 2012137636 A1 WO2012137636 A1 WO 2012137636A1 JP 2012058050 W JP2012058050 W JP 2012058050W WO 2012137636 A1 WO2012137636 A1 WO 2012137636A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polyester
aromatic polyester
wholly aromatic
constituent unit
Prior art date
Application number
PCT/JP2012/058050
Other languages
English (en)
French (fr)
Inventor
横田俊明
大竹峰生
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to KR1020137025765A priority Critical patent/KR101413813B1/ko
Priority to CN2012800151602A priority patent/CN103459459A/zh
Priority to EP12768632.7A priority patent/EP2695905B1/en
Priority to US14/009,119 priority patent/US20140212614A1/en
Priority to SG2013071667A priority patent/SG193608A1/en
Priority to JP2013508822A priority patent/JP5546081B2/ja
Publication of WO2012137636A1 publication Critical patent/WO2012137636A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]

Definitions

  • the present invention relates to a wholly aromatic polyester that is excellent in heat resistance and toughness and can be produced by a normal polymerization apparatus, and a composition thereof.
  • a wholly aromatic polyester using 1,4-phenylenedicarboxylic acid, 1,4-dihydroxybenzene, 4,4′-dihydroxybiphenyl, etc. as a copolymerization component has a high melting point of 350 ° C. or higher and is used in a general-purpose apparatus. Too high for melt processing. In addition, various methods have been tried to lower the melting point of such a high melting point to a temperature that can be processed by a general-purpose melt processing machine. There is a problem that heat resistance represented by mechanical strength in the vicinity) cannot be maintained.
  • JP-A-59-43021, JP-A-59-62630 and JP-A-2-16120 disclose 6-hydroxy-2-naphthoic acid, diol component, dicarboxylic acid. Copolyesters that combine components have been proposed. Summary of the Invention
  • An object of the present invention is to provide a wholly aromatic polyester that solves the above problems and is excellent in heat resistance and toughness.
  • the present invention comprises structural units represented by the following general formulas (I), (II), (III), (IV) and (V) as essential structural components, and (I) 35 to 75 mol%, (II) 2 to 8 mol%, (III) 4.5 to 30.5 mol%, (IV) 2 to 8 mol%, (IV) V is a wholly aromatic polyester exhibiting optical anisotropy when melted, characterized in that the structural unit is 12.5 to 32.5 mol% and the structural unit (II) + (IV) is 4 to 10 mol% .
  • the wholly aromatic polyester that exhibits anisotropy at the time of melting comprising the specific structural unit obtained in the present invention and the composition thereof have good fluidity at the time of melting and heat resistance of the molded product, and are excellent in toughness, Further, since the molding process temperature is not so high, injection molding, extrusion molding and compression molding are possible without using a molding machine having a special structure, and it can be processed into various three-dimensional molded products, fibers, films and the like. Particularly, it is suitable for a molded product such as a connector, a CPU socket, a relay switch component, a bobbin, an actuator, a noise reduction filter case, or a heat fixing roll of OA equipment.
  • FIG. 1 is a diagram showing a molded product used for evaluation of cracks in the molded product in the example, (a) is a plan view thereof, and (b) is a diagram showing dimensions thereof.
  • the unit of the numerical values in the figure is mm.
  • Structural unit (I) is introduced from 4-hydroxybenzoic acid.
  • the structural unit (II) is introduced from 6-hydroxy-2-naphthoic acid.
  • the structural unit (III) is introduced from 1,4-phenylenedicarboxylic acid.
  • the structural unit (IV) is introduced from 1,3-phenylenedicarboxylic acid.
  • the structural unit (V) is introduced from 4,4'-dihydroxybiphenyl.
  • the constitutional units (I) to (V) are contained, and the constitutional units (I) are contained in an amount of 35 to 75 mol% (preferably 40 to 65 mol%) and (II) with respect to all constitutional units.
  • the unit is 2 to 8 mol% (preferably 3 to 7 mol%)
  • the structural unit (III) is 4.5 to 30.5 mol% (preferably 13 to 26 mol%)
  • the structural unit (IV) is 2 to 8 mol% % (Preferably 3 to 7 mol%)
  • the structural unit (V) is 12.5 to 32.5 mol% (preferably 15.5 to 29 mol%)
  • the structural unit (II) + (IV) is 4 to 10 mol% ( Preferably it is in the range of 5 to 10 mol%.
  • the constituent unit of (I) When the constituent unit of (I) is less than 35 mol% and more than 75 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, making it impossible to produce a polymer having a desired molecular weight. Therefore, it is not preferable. If the structural unit (II) is less than 2 mol%, the toughness is low and this is not preferred. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
  • the constituent unit of (III) When the constituent unit of (III) is less than 4.5 mol% and more than 30.5 mol%, the melting point becomes remarkably high, and in some cases the polymer solidifies in the reactor during production, making it impossible to produce a polymer with a desired molecular weight. Therefore, it is not preferable.
  • the constituent unit of (IV) When the constituent unit of (IV) is less than 2 mol%, the toughness is low and not preferable. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
  • the constituent unit of (V) is less than 12.5 mol% and more than 32.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor at the time of production to produce a polymer having a desired molecular weight. Since it becomes impossible, it is not preferable.
  • the structural unit of (II) + (IV) is less than 4 mol%, the heat of crystallization of the polymer determined by differential calorimetry showing the crystallization state of the polymer is 2.5 J / g or more, and the toughness is preferably reduced. Absent.
  • a preferable value for the amount of crystallization heat is 2.3 J / g or less, and more preferably 2.0 J / g or less.
  • the heat resistance of the polymer is lowered, which is not preferable.
  • the heat of crystallization is a differential calorimetry. After observing the endothermic peak temperature (Tm1) observed when the polymer is measured from room temperature to 20 ° C / min, the temperature is maintained at Tm1 + 40 ° C for 2 minutes. Then, the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when the temperature is measured at 20 ° C./min.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 59-43021 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2-16120 (Patent Document 3) propose liquid crystal polymers having both heat resistance and easy processability.
  • the structural unit (I) is 64 mol%
  • (II) is 1 mol%
  • (III) is 15.5 mol%
  • (IV) is 2 mol%.
  • a liquid crystal polymer composed of 17.5 mol% of mol% and (V) has been proposed, but this liquid crystal polymer has a problem of low toughness.
  • the amount of the structural units (I) to (V) and the amount of the structural units (II) + (IV) are restricted to the above ranges, so that heat resistance, easy processability, manufacturability are improved.
  • a wholly aromatic polyester excellent in both toughness could be obtained.
  • the wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like is used for the polymerization.
  • an acylating agent for the polymerization monomer or a monomer having terminal activated as an acid chloride derivative can be used.
  • the acylating agent include acid anhydrides such as acetic anhydride.
  • catalysts can be used for these polymerizations, and typical ones include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali and alkaline earth of carboxylic acids. Metal salts, Lewis acid salts such as BF 3 and the like.
  • the amount of catalyst used is generally about 0.001 to 1% by weight, particularly about 0.003 to 0.2% by weight, based on the total weight of the monomers.
  • liquid paraffin high heat resistant synthetic oil, inert mineral oil, or the like is used as a solvent.
  • the reaction conditions are a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in the melt reaction, the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C., and the final pressure is 1 to 100 Torr (ie 133 to 13,300 Pa), preferably 1 to 50 Torr (ie 133 to 6,670 Pa).
  • all the raw material monomers, the acylating agent and the catalyst can be charged in the same reaction vessel to start the reaction (one-step system), or the hydroxyl groups of the raw material monomers (I), (II) and (V) are acylated. After acylating with an agent, it can also be reacted with the carboxyl groups of (III) and (IV) (two-stage system).
  • the melt polymerization is performed after the inside of the reaction system has reached a predetermined temperature, and the pressure reduction is started to a predetermined degree of pressure reduction. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.
  • the polymer produced by the above polymerization method can be further increased in molecular weight by solid-phase polymerization that is heated at normal pressure or reduced pressure in an inert gas.
  • Preferred conditions for the solid phase polymerization reaction are a reaction temperature of 230 to 350 ° C., preferably 260 to 330 ° C., and a final ultimate pressure of 10 to 760 Torr (ie 1,330 to 101,080 Pa).
  • the liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability.
  • the wholly aromatic polyesters comprising the structural units (I) to (V) may not form an anisotropic melt phase depending on the constituent components and the sequence distribution in the polymer, but the polymer according to the present invention is melted. Limited to wholly aromatic polyesters that sometimes exhibit optical anisotropy.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using an Olympus polarizing microscope and observing it at a magnification of 150 times in a nitrogen atmosphere.
  • the polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
  • liquid crystallinity and melting point liquid crystallinity expression temperature
  • liquid crystallinity expression temperature liquid crystallinity expression temperature
  • the melting point (liquid crystallinity expression temperature) is preferably as high as possible from the viewpoint of heat resistance, but it is 300 to 390 ° C in consideration of thermal degradation during polymer melt processing and heating capability of the molding machine. Is a preferred guideline. In addition, More preferably, it is 380 degrees C or less.
  • melt viscosity at a shear rate of 1000 sec ⁇ 1 at a temperature 10 to 40 ° C. higher than the melting point is preferably 1 ⁇ 10 5 Pa ⁇ s or less. More preferably, it is 5 Pa ⁇ s or more and 1 ⁇ 10 2 Pa ⁇ s or less. These melt viscosities are generally realized by having liquid crystallinity.
  • the polyester of the present invention can be blended with various fibrous, powdery, and plate-like inorganic and organic fillers according to the purpose of use.
  • fibrous fillers examples include glass fibers, asbestos fibers, silica fibers, silica / alumina fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, and silicates such as wollastonite.
  • examples thereof include inorganic fibrous materials such as fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass.
  • a particularly typical fibrous filler is glass fiber.
  • High melting point organic fibrous materials such as polyamide, fluororesin, polyester resin, and acrylic resin can also be used.
  • the granular filler carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollastonite Oxalates such as iron oxide, titanium oxide, zinc oxide, antimony trioxide, oxides of metals such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfates of metals such as calcium sulfate and barium sulfate
  • Other examples include ferrite, silicon carbide, silicon nitride, boron nitride, and various metal powders.
  • examples of the plate-like filler include mica, glass flakes, talc, and various metal foils.
  • organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.
  • inorganic and organic fillers can be used alone or in combination of two or more.
  • the combined use of the fibrous filler and the granular or plate-like filler is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties and the like.
  • the blending amount of the inorganic filler is 120 parts by weight or less, preferably 20 to 80 parts by weight with respect to 100 parts by weight of the wholly aromatic polyester.
  • the fibrous filler is glass fiber
  • the platy filler is mica and talc
  • the blending amount is 30 to 80 parts by weight with respect to 100 parts by weight of the wholly aromatic polyester.
  • the fiber length of the glass fiber is preferably 200 ⁇ m or more.
  • a composition containing such a glass fiber in the above blending amount is particularly remarkable in improving the heat distortion temperature and mechanical properties.
  • a sizing agent or a surface treatment agent can be used if necessary.
  • thermoplastic resin may be added to the polyester of the present invention as long as it does not impair the purpose of the present invention.
  • thermoplastic resin used in this case are: Polyolefins such as polyethylene and polypropylene, aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate and aromatic diols such as diols, polyacetals (homo or copolymers), polystyrene , Polyvinyl chloride, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, fluororesin and the like. These thermoplastic resins can be used in combination of two or more.
  • Polyolefins such as polyethylene and polypropylene
  • aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate and aromatic diols such as diols, polyacetals (homo or copolymers), polystyrene , Polyvinyl chloride, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, fluororesin and the like.
  • the method of the physical property measurement in an Example is as follows. [Melting point] After observing the endothermic peak temperature (Tm1) observed when the polymer was measured at room temperature from 20 ° C / min on a Perkin Elmer DSC, it was held for 2 minutes at a temperature of (Tm1 + 40) ° C. The sample was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and then the temperature of an endothermic peak observed when measured under a temperature rise condition of 20 ° C./min was measured again.
  • the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when measured under a temperature lowering condition of 20 ° C./min was measured.
  • Melt viscosity The melt viscosity at a shear rate of 1000 sec ⁇ 1 was calculated by measuring with a Capillograph manufactured by Toyo Seiki using an orifice having an inner diameter of 1 mm and a length of 20 mm at a temperature 10 to 20 ° C. higher than the melting point.
  • Softening temperature A 1mm thick disk is molded from the prepared polyester with a hot press. The molded article is heated at a rate of 20 ° C / min on a hot plate while applying a constant load of 12.7MPa. Was the softening temperature when 5% of the thickness of the molded product reached.
  • Example 1 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • the obtained polymer had a melting point of 361 ° C., a crystallization temperature of 311 ° C., a heat of crystallization of 1.4 J / g, a softening temperature of 271 ° C., and a melt viscosity of 10 Pa ⁇ s.
  • Examples 2-8 A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer and the charging ratio (mol%) were as shown in Table 1. These results are shown in Table 1.
  • Comparative Examples 1-12 A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer and the charging ratio (mol%) were as shown in Table 1. These results are shown in Table 1. In Comparative Examples 8 to 9, the polymer solidified in the reactor at the time of production, and a polymer having a desired molecular weight could not be produced.
  • APAP in the table is 4-acetoxyaminophenol.
  • Example 9 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • the obtained polymer had a melting point of 358 ° C., a crystallization temperature of 307 ° C., a heat of crystallization of 1.6 J / g, and a melt viscosity of 9 Pa ⁇ s.
  • mice AB-25S manufactured by Yamaguchi Mica Kogyo Co., Ltd., and 33.3 parts by weight of an average particle size of 25 ⁇ m were blended and kneaded with a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester composition. It was. After drying this wholly aromatic polyester composition at 140 ° C. for 3 hours and using an injection molding machine, the molded product shown in FIG. 1 is injection molded under the following molding conditions. It did not occur and showed good toughness characteristics. The results are shown in Table 2.
  • the evaluation injection-molded product shown in FIG. 1 has an outer diameter of 23.6 mm, 31 holes of ⁇ 3.2 mm inside, and a minimum wall thickness of 0.16 mm.
  • Molding machine Sumitomo Heavy Industries SE30DUZ Cylinder temperature; (Nozzle) 370 °C -375 °C -360 °C -350 °C (Example 9) 340 ° C-340 ° C-330 ° C-320 ° C (Examples 10 to 11) 355 ° C-355 ° C-345 ° C-335 ° C (Comparative Example 13) 350 ° C-350 ° C-340 ° C-330 ° C (Comparative Example 14) 370 ° C-375 ° C-360 ° C-350 ° C (Comparative Example 15) Mold temperature: 140 °C Injection speed: 50mm / min Holding pressure: 100MPa Holding pressure
  • Example 10 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • the melting point of the obtained polymer was 323 ° C.
  • the crystallization temperature was 274 ° C.
  • the heat of crystallization was 1.8 J / g
  • the melt viscosity was 10 Pa ⁇ s.
  • Example 11 A polymer was obtained in the same manner as in Example 10.
  • the obtained polymer had a melting point of 319 ° C., a crystallization temperature of 273 ° C., a heat of crystallization of 1.9 J / g, and a melt viscosity of 8 Pa ⁇ s.
  • 33.3 parts by weight of mica was blended and kneaded with 100 parts by weight of the pellets using a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester composition. After drying this wholly aromatic polyester composition at 140 ° C. for 3 hours, the molded product was injection-molded using an injection molding machine in the same manner as in Example 9. As a result, the moldability was good and cracks in the molded product did not occur. Showed good toughness characteristics. The results are shown in Table 2.
  • Example 12 A polymer was obtained in the same manner as in Example 9. The obtained polymer had a melting point of 358 ° C., a crystallization temperature of 307 ° C., a heat of crystallization of 1.6 J / g, and a melt viscosity of 9 Pa ⁇ s.
  • talc Crown Talc PP manufactured by Matsumura Sangyo Co., Ltd., 23.1 parts by weight of an average particle size of 12.8 ⁇ m
  • glass fiber ECS03T-786H manufactured by Nippon Electric Glass Co., Ltd., fiber diameter of 10 ⁇ m, 30.8 parts by weight of chopped strands having a length of 3 mm were blended and kneaded by a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester composition. After drying this wholly aromatic polyester composition at 140 ° C. for 3 hours, the molded product was injection-molded using an injection molding machine in the same manner as in Example 9.
  • Example 13 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • the obtained polymer had a melting point of 354 ° C., a crystallization temperature of 303 ° C., a heat of crystallization of 1.6 J / g, and a melt viscosity of 10 Pa ⁇ s.
  • Comparative Examples 13-15 Polymerization was conducted in the same manner as in Example 9 as Comparative Example 10, Comparative Example 11, and Comparative Example 12, as shown in Table 2, with respect to the types of raw material monomers and the charging ratio (mol%).
  • the resulting polymer of Comparative Example 13 had a melting point of 338 ° C., a crystallization temperature of 286 ° C., a crystallization heat amount of 2.6 J / g, and a melt viscosity of 10 Pa ⁇ s.
  • the obtained polymer of Comparative Example 14 had a melting point of 335 ° C., a crystallization temperature of 291 ° C., a heat of crystallization of 3.1 J / g, and a melt viscosity of 20 Pa ⁇ s.
  • the polymer of Comparative Example 15 obtained had a melting point of 356 ° C., a crystallization temperature of 306 ° C., a crystallization heat amount of 3.0 J / g, and a melt viscosity of 12 Pa ⁇ s. Further, after 100 parts by weight of the pellets, mica was blended and kneaded by a twin-screw extruder so as to be 11.1, 25.0, and 33.3 parts by weight, respectively, to obtain a pellet-shaped wholly aromatic polyester composition, Example 9 and Similarly, the molded product was injection-molded and evaluated for toughness (cracking of the molded product). These results are shown in Table 2. In either case, the molded product was cracked.
  • Comparative Examples 16-17 A polymer was obtained in the same manner as in Comparative Example 14. The obtained polymer had a melting point of 335 ° C., a crystallization temperature of 291 ° C., a heat of crystallization of 3.1 J / g, and a melt viscosity of 20 Pa ⁇ s. Further, with respect to 100 parts by weight of the pellets, the blending amounts shown in Table 2 were respectively blended and kneaded by a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester composition, and then molded in the same manner as in Example 9. The product was injection molded and evaluated for toughness (cracking of the molded product). These results are shown in Table 2. In either case, the molded product was cracked.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)

Abstract

 本発明は、耐熱性および靱性に優れ、通常の重合装置で製造可能な全芳香族ポリエステルを提供する。4-ヒドロキシ安息香酸から導入される構成単位(I)、6-ヒドロキシ-2-ナフトエ酸から導入される構成単位(II)、1,4-フェニレンジカルボン酸から導入される構成単位(III)、1,3-フェニレンジカルボン酸から導入される構成単位(IV)、4,4'-ジヒドロキシビフェニルから導入される構成単位(V)からなり、全構成単位に対して(I)の構成単位が35~75モル%、(II)の構成単位が2~8モル%、(III)の構成単位が4.5~30.5モル%、(IV)の構成単位が2~8モル%、(V)の構成単位が12.5~32.5モル%、(II)+(IV)の構成単位が4~10モル%である溶融時に光学的異方性を示す全芳香族ポリエステル。

Description

全芳香族ポリエステル及びポリエステル樹脂組成物
 本発明は、耐熱性および靱性に優れ、通常の重合装置で製造可能な全芳香族ポリエステル及びその組成物に関するものである。
背景技術
 全芳香族ポリエステルとして現在市販されているものは4-ヒドロキシ安息香酸が主成分である。しかし、4-ヒドロキシ安息香酸のホモポリマーは、融点が分解点よりも高くなってしまうため、種々の成分を共重合することにより低融点化する必要がある。
 共重合成分として、1,4-フェニレンジカルボン酸、1,4-ジヒドロキシベンゼン、4,4’-ジヒドロキシビフェニル等を用いた全芳香族ポリエステルは、融点が350℃以上と高く、汎用の装置にて溶融加工を行うには高すぎる。また、このような高い融点のものを、汎用の溶融加工機器で加工できる温度まで融点を下げるために種々の方法が試みられているが、低融点化がある程度実現される一方で高温(融点下近傍)での機械的強度に代表される耐熱性を保てないという問題がある。
 これらの問題を解決するために、特開昭59-43021号公報、特開昭59-62630号公報及び特開平2-16120号公報では、6-ヒドロキシ-2-ナフトエ酸、ジオール成分、ジカルボン酸成分を組み合わせた共重合ポリエステルが提案されている。
発明の概要
 しかしながら、特開昭59-43021号公報、特開昭59-62630号公報及び特開平2-16120号公報で提案されている共重合ポリエステルは靱性が低く、成形時に成形品に割れが発生するという問題点がある。
 本発明は、上記問題点を解決し、耐熱性および靱性に優れたる全芳香族ポリエステルの提供を目的とする。
 本発明者らは上記目的を達成するため鋭意研究した結果、4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、1,4-フェニレンジカルボン酸、1,3-フェニレンジカルボン酸、4,4’-ジヒドロキシビフェニルで構成されるポリマーにおいて、6-ヒドロキシ-2-ナフトエ酸および1,3-フェニレンジカルボン酸を特定の限定された量で組み合わせることが上記目的達成のために有効であることを見出し、本発明を完成するに至った。
 即ち本発明は、必須の構成成分として下記一般式(I),(II),(III),(IV)および(V)で表される構成単位からなり、全構成単位に対して(I)の構成単位が35~75モル%、(II)の構成単位が2~8モル%、(III)の構成単位が4.5~30.5モル%、(IV)の構成単位が2~8モル%、(V)の構成単位が12.5~32.5モル%、(II)+(IV)の構成単位が4~10モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステルである。
Figure JPOXMLDOC01-appb-C000002
 本発明で得られる特定の構成単位よりなる溶融時に異方性を示す全芳香族ポリエステル及びその組成物は、溶融時の流動性及び成形品の耐熱性が良好で、なおかつ靭性に優れており、また成形加工温度があまり高くないために、特殊な構造を持った成形機を用いずとも射出成形や押出成形、圧縮成形が可能であり、種々の立体成形品、繊維、フィルム等に加工出来る。特に、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース又はOA機器の加熱定着ロール等の成形品に好適である。
図1は実施例で成形品の割れ評価に用いた成形品を示す図であり、(a)はその平面図、(b)はその寸法を示す図である。尚、図中の数値の単位はmmである。
発明の詳細な説明
 上記(I)~(V)の構成単位を具現化するには通常のエステル形成能を有する種々の化合物が使用される。以下に本発明を構成する全芳香族ポリエステルを形成するために必要な原料化合物について順を追って詳しく説明する。
 構成単位(I)は、4-ヒドロキシ安息香酸から導入される。
 構成単位(II)は、6-ヒドロキシ-2-ナフトエ酸から導入される。
 構成単位(III)は、1,4-フェニレンジカルボン酸から導入される。
 構成単位(IV)は、1,3-フェニレンジカルボン酸から導入される。
 また、構成単位(V)は、4,4’-ジヒドロキシビフェニルから導入される。
 本発明では、上記構成単位(I)~(V)を含み、全構成単位に対して(I)の構成単位が35~75モル%(好ましくは40~65モル%)、(II)の構成単位が2~8モル%(好ましくは3~7モル%)、(III)の構成単位が4.5~30.5モル%(好ましくは13~26モル%)、(IV)の構成単位が2~8モル%(好ましくは3~7モル%)、(V)の構成単位が12.5~32.5モル%(好ましくは15.5~29モル%)、(II)+(IV)の構成単位が4~10モル%(好ましくは5~10モル%)の範囲にあることが必要である。
 (I)の構成単位が35モル%未満および75モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
 (II)の構成単位が2モル%未満では、靱性が低く好ましくない。また、8モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
 (III)の構成単位が4.5モル%未満および30.5モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
 (IV)の構成単位が2モル%未満では、靱性が低く好ましくない。また、8モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
 また、(V)の構成単位が12.5モル%未満および32.5モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
 また、(II)+(IV)の構成単位が4モル%未満では、ポリマーの結晶化状態を示す示差熱量測定により求められるポリマーの結晶化熱量が2.5J/g以上となり、靱性が低くなり好ましくない。結晶化熱量の好ましい値は、2.3J/g以下であり、より好ましくは2.0J/g以下である。また、10モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
 なお、結晶化熱量とは示差熱量測定において、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+40℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を指す。
 尚、本発明の全芳香族ポリエステルには、本発明の目的を阻害しない範囲で少量の公知の、上記(I)~(V)以外の他の構成単位を導入することもできる。
 前述の通り、特開昭59-43021号公報(特許文献1)や特開平2-16120号公報(特許文献3)では、耐熱性および易加工性を兼ね備えた液晶ポリマーが提案されており、たとえば、特開平2-16120号公報(特許文献3)の実施例には、構成単位(I)を64モル%、(II)を1モル%、(III)を15.5モル%、(IV)を2モル%、(V)を17.5モル%からなる液晶ポリマーが提案されているが、この液晶ポリマーは靱性が低いという問題点があった。
 これに対し、本発明では、構成単位(I)~(V)の量、並びに構成単位(II)+(IV)の量を上記範囲に規制することにより、耐熱性、易加工性、製造性、靱性の何れにも優れた全芳香族ポリエステルを得ることができたものである。
 本発明の全芳香族ポリエステルは、直接重合法やエステル交換法を用いて重合され、重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等が用いられる。
 本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられる。
 これらの重合に際しては種々の触媒の使用が可能であり、代表的なものはジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BF3の如きルイス酸塩等が挙げられる。触媒の使用量は一般にはモノマーの全重量に基いて約0.001乃至1重量%、特に約0.003乃至0.2重量%が好ましい。
 また、溶液重合又はスラリー重合を行う場合、溶媒としては流動パラフィン、高耐熱性合成油、不活性鉱物油等が用いられる。
 反応条件としては、反応温度200~380℃、最終到達圧力0.1~760Torr(即ち、13~101,080Pa)である。特に溶融反応では、反応温度260~380℃、好ましくは300~360℃、最終到達圧力1~100Torr(即ち、133~13,300Pa)、好ましくは1~50Torr(即ち、133~6,670Pa)である。
 反応は、全原料モノマー、アシル化剤及び触媒を同一反応容器に仕込んで反応を開始させる(一段方式)こともできるし、原料モノマー(I)、(II)及び(V)のヒドロキシル基をアシル化剤によりアシル化させた後、(III)及び(IV)のカルボキシル基と反応させる(二段方式)こともできる。
 溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系からポリマーを排出する。
 上記重合方法により製造されたポリマーは更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。固相重合反応の好ましい条件は、反応温度230~350℃、好ましくは260~330℃、最終到達圧力10~760Torr(即ち、1,330~101,080Pa)である。
 溶融時に光学的異方性を示す液晶性ポリマーであることは、本発明において熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)~(V)からなる全芳香族ポリエステルは、構成成分およびポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明に係わるポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認はオリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。上記ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。
 本発明の加工性の指標としては液晶性及び融点(液晶性発現温度)が考えられる。液晶性を示すか否かは溶融時の流動性に深く係わり、本願のポリエステルは溶融状態で液晶性を示すことが不可欠である。
 ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点またはそれ以上の温度で液晶性を示すことが加工性の指標となる。融点(液晶性発現温度)は、出来得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、300~390℃であることが好ましい目安となる。なお、より好ましくは、380℃以下である。
 更に、融点より10~40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×105 Pa・s以下であることが好ましい。更に好ましくは5Pa・s以上で1×102Pa・s以下である。これらの溶融粘度は液晶性を具備することで概ね実現される。
 次に本発明のポリエステルは使用目的に応じて各種の繊維状、粉粒状、板状の無機及び有機の充填剤を配合することができる。
 繊維状充填剤としてはガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物などの無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。尚、ポリアミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点有機質繊維状物質も使用することが出来る。
 一方、粉粒状充填剤としてはカーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイトの如き硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。
 又、板状充填剤としてはマイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。
 有機充填剤の例を示せば芳香族ポリエステル繊維、液晶性ポリマー繊維、芳香族ポリアミド、ポリイミド繊維等の耐熱性高強度合成繊維等である。
 これらの無機及び有機充填剤は一種又は二種以上併用することが出来る。繊維状充填剤と粒状又は板状充填剤との併用は特に機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。無機充填剤の配合量は、全芳香族ポリエステル100重量部に対し、120重量部以下、好ましくは20~80重量部である。
 特に好ましくは、繊維状充填剤としてガラス繊維、板状充填剤としてマイカ及びタルクであり、その配合量は、全芳香族ポリエステル100重量部に対し30~80重量部である。なお、ガラス繊維の繊維長は、200μm以上であることが好ましい。このようなガラス繊維は上記配合量で含む組成物は、熱変形温度、機械的物性等の向上が特に顕著である。
 これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用することができる。
 更に本発明のポリエステルには、本発明の企図する目的を損なわない範囲で他の熱可塑性樹脂を補助的に添加してもよい。
 この場合に使用する熱可塑性樹脂の例を示すと、ポリエチレン、ポリプロピレン等のポリオレィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ジカルボン酸とジオール等からなる芳香族ポリエステル、ポリアセタール(ホモ又はコポリマー)、ポリスチレン、ポリ塩化ビニル、ポリアミド、ポリカーボネート、ABS、ポリフェニレンオキシド、ポリフェニレンスルフィド、フッ素樹脂等を挙げることができる。またこれらの熱可塑性樹脂は2種以上混合して使用することができる。
実施例
 以下に実施例をもって本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性測定の方法は以下の通りである。
[融点]
 Perkin Elmer社製DSCにて、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[結晶化温度]
 Perkin Elmer社製DSCにて、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度を測定した。
[結晶化熱量]
 Perkin Elmer社製DSCにて、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を測定した。
[溶融粘度]
 融点よりも10~20℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて東洋精機製キャピログラフで測定し、剪断速度1000sec-1での溶融粘度を算出した。
[軟化温度]
 調製したポリエステルから、ホットプレスで厚さ1mmの円盤を成形し、この成形品に12.7MPaの一定荷重をかけながらホットプレート上で20℃/分で昇温し、荷重のかかった直径1mmの針が成形品厚みの5%に到達した時の温度を軟化温度とした。
実施例1
 攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4-ヒドロキシ安息香酸142g(48モル%)(HBA)
(II)6-ヒドロキシ-2-ナフトエ酸12g(3モル%)(HNA)
(III)テレフタル酸77g(21.7モル%)(TA)
(IV)イソフタル酸11g(3モル%)(IA)
(V)4,4’-ジヒドロキシビフェニル97g(24.3モル%)(BP)
酢酸カリウム触媒15mg
無水酢酸224g
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
 得られたポリマーの融点は361℃、結晶化温度は311℃、結晶化熱量は1.4J/g、軟化温度は271℃、溶融粘度は10Pa・sであった。
実施例2~8
 原料モノマーの種類、仕込み比率(モル%)を表1に示す通りとした以外は、実施例1と同様にしてポリマーを得た。これら結果を表1に示す。
比較例1~12
 原料モノマーの種類、仕込み比率(モル%)を表1に示す通りとした以外は、実施例1と同様にしてポリマーを得た。これら結果を表1に示す。尚、比較例8~9については、製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなかった。表中のAPAPは4-アセトキシアミノフェノールである。
Figure JPOXMLDOC01-appb-T000003
実施例9
 攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4-ヒドロキシ安息香酸1041g(48モル%)(HBA)
(II)6-ヒドロキシ-2-ナフトエ酸89g(3モル%)(HNA)
(III)テレフタル酸565g(21.7モル%)(TA)
(IV)イソフタル酸78g(3モル%)(IA)
(V)4,4’-ジヒドロキシビフェニル711g(24.3モル%)(BP)
酢酸カリウム触媒110mg
無水酢酸1645g
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて5Torr(即ち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。
 得られたポリマーの融点は358℃、結晶化温度は307℃、結晶化熱量は1.6J/g、溶融粘度は9Pa・sであった。
 このペレット100重量部に対してマイカ;(株)山口雲母工業製AB-25S、平均粒径25μmを33.3重量部を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た。この全芳香族ポリエステル組成物を140℃で3時間乾燥後、射出成形機を用いて図1に示す成形品を下記の成形条件で射出成形したところ、成形性は良好で、成形品の割れは発生せず良好な靭性特性を示した。結果を表2に示す。
 図1に示す評価用射出成形品は、外周が直径:23.6mmで内部に31個のφ3.2mmの孔が開いており、孔間距離の最小肉厚が0.16mmである。ゲートは図1の矢印部の3点ゲートを採用した。成形品割れ観察は実体顕微鏡を使用し、倍率5倍で孔周りの割れ発生状況を観察し、成形品に割れが発生していた場合は“×”、発生していなかった場合は“○”と判断した。
[成形条件]
成形機;住友重機械工業SE30DUZ
シリンダー温度;
(ノズル)370℃-375℃-360℃-350℃(実施例9)
     340℃-340℃-330℃-320℃(実施例10~11)
     355℃-355℃-345℃-335℃(比較例13)
     350℃-350℃-340℃-330℃(比較例14)
     370℃-375℃-360℃-350℃(比較例15)
金型温度;140℃
射出速度;50mm/min
保圧力;100MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
スクリュー背圧;1.2MPa
実施例10
 攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4-ヒドロキシ安息香酸:1266 g(57モル%)(HBA)
(II)6-ヒドロキシ-2-ナフトエ酸:91g(3モル%)(HNA)
(III)テレフタル酸:401g(15モル%)(TA)
(IV) イソフタル酸:134g(5モル%)(IA)
(V)4,4’-ジヒドロキシビフェニル599g(20モル%)(BP)
酢酸カリウム触媒110mg
無水酢酸1691g
 原料を仕込んだ後、反応系の温度を140 ℃に上げ、140 ℃で1時間反応させた。その後、更に360 ℃まで5.5 時間かけて昇温し、そこから20分かけて5Torr(即ち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。
 得られたポリマーの融点は323℃、結晶化温度は274℃、結晶化熱量は1.8J/g、溶融粘度は10 Pa・sであった。
 また、このペレット100重量部に対しマイカ11.1重量部を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た。この全芳香族ポリエステル組成物を140℃で3時間乾燥後、射出成形機を用いて実施例9と同様に成形品を射出成形したところ、成形性は良好で、成形品の割れは発生せず、良好な靭性特性を示した。結果を表2に示す。
実施例11
 実施例10と同様にしてポリマーを得た。得られたポリマーの融点は319 ℃、結晶化温度は273℃、結晶化熱量は1.9J/g、溶融粘度は8Pa・sであった。
 また、このペレット100重量部に対しマイカ33.3重量部を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た。この全芳香族ポリエステル組成物を140℃で3時間乾燥後、射出成形機を用いて実施例9と同様に成形品を射出成形したところ、成形性は良好で、成形品の割れは発生せず、良好な靭性特性を示した。結果を表2に示す。
実施例12
実施例9と同様にしてポリマーを得た。得られたポリマーの融点は358℃、結晶化温度は307℃、結晶化熱量は1.6J/g、溶融粘度は9Pa・sであった。
 また、このペレット100重量部に対し、タルク:松村産業(株)製クラウンタルクPP、平均粒径12.8μmを23.1重量部及びガラス繊維:日本電気硝子(株)製ECS03T-786H、繊維径10μm、長さ3mmのチョプドストランド30.8重量部を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た。この全芳香族ポリエステル組成物を140℃で3時間乾燥後、射出成形機を用いて実施例9と同様に成形品を射出成形したところ、成形性は良好で、成形品の割れは発生せず、良好な靭性特性を示した。結果を表2に示す。
実施例13
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4-ヒドロキシ安息香酸:1041g(48モル%)(HBA)
(II)6-ヒドロキシ-2-ナフトエ酸:89g(3モル%)(HNA)
(III)テレフタル酸:553g(21.2モル%)(TA)
(IV)イソフタル酸:91g(3.5モル%)(IA)
(V)4,4’-ジヒドロキシビフェニル:710g(24.3モル%)(BP)
酢酸カリウム触媒110mg
無水酢酸1644g
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて5Torr(即ち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
 得られたポリマーの融点は354℃、結晶化温度は303℃、結晶化熱量は1.6J/g、溶融粘度は10Pa・sであった。
 また、このペレット100重量部に対し、ガラス繊維66.7重量部を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た。この全芳香族ポリエステル組成物を140℃で3時間乾燥後、射出成形機を用いて実施例9と同様に成形品を射出成形したところ、成形性は良好で、成形品の割れは発生せず、良好な靭性特性を示した。結果を表2に示す。
比較例13~15
 原料モノマーの種類、仕込み比率(モル%)を表2に示す通り、それぞれ比較例10、比較例11、比較例12として実施例9と同様にして重合した。得られた比較例13のポリマーの融点は338℃、結晶化温度は286℃、結晶化熱量は2.6J/g、溶融粘度は10Pa・sであった。得られた比較例14のポリマーの融点は335 ℃、結晶化温度は291℃、結晶化熱量は3.1J/g、溶融粘度は20Pa・sであった。得られた比較例15のポリマーの融点は356℃、結晶化温度は306℃、結晶化熱量は3.0J/g、溶融粘度は12Pa・sであった。
 また、このペレット100 重量部に対し、それぞれマイカを11.1、25.0、33.3重量部になるよう二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た後、実施例9と同様に成形品を射出成形し靭性(成形品の割れ)を評価した。これら結果を表2に示す。
 何れの場合も成形品の割れが発生した。
比較例16~17
比較例14と同様にしてポリマーを得た。得られたポリマーの融点は335℃、結晶化温度は291℃、結晶化熱量は3.1J/g、溶融粘度は20Pa・sであった。  また、このペレット100重量部に対し、それぞれ表2に示す通りの配合量を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た後、実施例9と同様に成形品を射出成形し靭性(成形品の割れ)を評価した。これら結果を表2に示す。
 何れの場合も成形品の割れが発生した。
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1. 必須の構成成分として下記一般式(I),(II),(III),(IV)および(V)で表される構成単位からなり、全構成単位に対して(I)の構成単位が35~75モル%、(II)の構成単位が2~8モル%、(III)の構成単位が4.5~30.5モル%、(IV)の構成単位が2~8モル%、(V)の構成単位が12.5~32.5モル%、(II)+(IV)の構成単位が4~10モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステル。
    Figure JPOXMLDOC01-appb-C000001
  2. 全芳香族ポリエステルの融点より10~40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×105 Pa・s以下である請求項1記載の全芳香族ポリエステル。
  3. 融点が300~390℃である請求項1又は2記載の全芳香族ポリエステル。
  4. 請求項1~3の何れか1項記載の全芳香族ポリエステル100重量部に対し無機又は有機充填剤を120重量部以下配合してなるポリエステル樹脂組成物。
  5. 無機充填剤がガラス繊維、マイカ及びタルクから選ばれた1種又は2種以上であり、その配合量が全芳香族ポリエステル100重量部に対し20~80重量部である請求項4記載のポリエステル樹脂組成物。
  6. 請求項1~3の何れか1項記載の全芳香族ポリエステルもしくは請求項4又は5記載のポリエステル樹脂組成物を成形したポリエステル成形品。
  7. 成形品が、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース又はOA機器の加熱定着ロールである請求項6記載のポリエステル成形品。
  8. 成形品が、ポリエステル繊維である請求項6記載のポリエステル成形品。
  9. 成形品が、ポリエステルフィルムである請求項6記載のポリエステル成形品。
PCT/JP2012/058050 2011-04-01 2012-03-28 全芳香族ポリエステル及びポリエステル樹脂組成物 WO2012137636A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137025765A KR101413813B1 (ko) 2011-04-01 2012-03-28 전방향족 폴리에스터 및 폴리에스터 수지 조성물
CN2012800151602A CN103459459A (zh) 2011-04-01 2012-03-28 全芳香族聚酯及聚酯树脂组合物
EP12768632.7A EP2695905B1 (en) 2011-04-01 2012-03-28 Fully aromatic polyester and polyester resin composition
US14/009,119 US20140212614A1 (en) 2011-04-01 2012-03-28 Wholly aromatic polyester and polyester resin composition
SG2013071667A SG193608A1 (en) 2011-04-01 2012-03-28 Fully aromatic polyester and polyester resin composition
JP2013508822A JP5546081B2 (ja) 2011-04-01 2012-03-28 全芳香族ポリエステル及びポリエステル樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011081762 2011-04-01
JP2011-081762 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137636A1 true WO2012137636A1 (ja) 2012-10-11

Family

ID=46969037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058050 WO2012137636A1 (ja) 2011-04-01 2012-03-28 全芳香族ポリエステル及びポリエステル樹脂組成物

Country Status (9)

Country Link
US (1) US20140212614A1 (ja)
EP (1) EP2695905B1 (ja)
JP (1) JP5546081B2 (ja)
KR (1) KR101413813B1 (ja)
CN (1) CN103459459A (ja)
MY (1) MY166937A (ja)
SG (1) SG193608A1 (ja)
TW (1) TWI475068B (ja)
WO (1) WO2012137636A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050371A1 (ja) * 2012-09-26 2014-04-03 ポリプラスチックス株式会社 電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
WO2014050370A1 (ja) * 2012-09-27 2014-04-03 ポリプラスチックス株式会社 複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター
JP2014237740A (ja) * 2013-06-06 2014-12-18 ポリプラスチックス株式会社 複合樹脂組成物及び当該複合樹脂組成物から成形された平面状コネクター
WO2017068867A1 (ja) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 全芳香族ポリエステル及びその製造方法
JPWO2016047179A1 (ja) * 2014-09-26 2017-07-06 Kbセーレン株式会社 溶融異方性芳香族ポリエステル繊維およびその製造方法
JP2017535662A (ja) * 2014-08-20 2017-11-30 レジネート マテリアルズ グループ、インコーポレイテッド 再生ポリマー及び廃棄物からのポリエステルポリオール
WO2018066417A1 (ja) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
WO2018066416A1 (ja) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
WO2020204124A1 (ja) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
JPWO2022168706A1 (ja) * 2021-02-05 2022-08-11

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757308B1 (ko) * 2015-11-13 2017-07-12 세양폴리머주식회사 유동성이 향상된 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르
CN105837808B (zh) * 2016-02-01 2018-09-25 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
WO2021085224A1 (ja) * 2019-10-31 2021-05-06 ポリプラスチックス株式会社 樹脂組成物及び平面状コネクター
CN114630865B (zh) * 2019-10-31 2023-12-01 宝理塑料株式会社 树脂组合物和连接器
CN114316230A (zh) * 2021-12-28 2022-04-12 上海普利特化工新材料有限公司 一种全芳香族热致型液晶聚脂及其初生纤维

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943021A (ja) 1982-09-02 1984-03-09 Ueno Seiyaku Oyo Kenkyusho:Kk 芳香族(コ)ポリエステルの製法
JPS5962630A (ja) 1982-07-26 1984-04-10 セラニ−ズ・コ−ポレイシヨン 比較的低濃度の6−オキシ−2−ナフトイル部分を含む異方性溶融加工可能なポリエステル
JPH01152123A (ja) * 1987-10-31 1989-06-14 Bayer Ag 熱の下で高い寸法安定性を有するサーモトロピツク芳香族ポリエステル、それらの製造方法、そして成形物体、単繊維、繊維及びフイルムの製造のためのそれらの使用
JPH0216120A (ja) 1988-07-05 1990-01-19 Polyplastics Co 溶融時に光学的異方性を示すポリエステル樹脂及び樹脂組成物
JPH02265919A (ja) * 1989-04-07 1990-10-30 Mitsubishi Kasei Corp 芳香族ポリエステルおよびその製造方法
JP2001200034A (ja) * 2000-01-14 2001-07-24 Ticona Llc 伸縮自在なポリマーを製造するための組成物および方法ならびにそれらによって製造される造形物品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943021B2 (ja) * 1979-04-16 1984-10-19 富士通株式会社 デ−タ通信システム
US4219461A (en) * 1979-04-23 1980-08-26 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid, para-hydroxy benzoic acid, aromatic diol, and aromatic diacid capable of readily undergoing melt processing
US5227456A (en) * 1992-03-20 1993-07-13 Hoechst Celanese Corp. Wholly aromatic liquid crystalline polymers containing sulfonated ionic monomer units and laminates thereof
US6268419B1 (en) * 1999-03-30 2001-07-31 Nippon Petrochemical Co., Ltd Method of producing thermotropic liquid crystalline copolyester, thermotropic liquid crystalline copolyester composition obtained by the same method, and molding made of the same composition
JP4704046B2 (ja) * 2004-10-29 2011-06-15 ポリプラスチックス株式会社 押出し成形用樹脂組成物及び押出し成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962630A (ja) 1982-07-26 1984-04-10 セラニ−ズ・コ−ポレイシヨン 比較的低濃度の6−オキシ−2−ナフトイル部分を含む異方性溶融加工可能なポリエステル
JPS5943021A (ja) 1982-09-02 1984-03-09 Ueno Seiyaku Oyo Kenkyusho:Kk 芳香族(コ)ポリエステルの製法
JPH01152123A (ja) * 1987-10-31 1989-06-14 Bayer Ag 熱の下で高い寸法安定性を有するサーモトロピツク芳香族ポリエステル、それらの製造方法、そして成形物体、単繊維、繊維及びフイルムの製造のためのそれらの使用
JPH0216120A (ja) 1988-07-05 1990-01-19 Polyplastics Co 溶融時に光学的異方性を示すポリエステル樹脂及び樹脂組成物
JPH02265919A (ja) * 1989-04-07 1990-10-30 Mitsubishi Kasei Corp 芳香族ポリエステルおよびその製造方法
JP2001200034A (ja) * 2000-01-14 2001-07-24 Ticona Llc 伸縮自在なポリマーを製造するための組成物および方法ならびにそれらによって製造される造形物品

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050371A1 (ja) * 2012-09-26 2014-04-03 ポリプラスチックス株式会社 電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
JPWO2014050371A1 (ja) * 2012-09-26 2016-08-22 ポリプラスチックス株式会社 電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
WO2014050370A1 (ja) * 2012-09-27 2014-04-03 ポリプラスチックス株式会社 複合樹脂組成物及び該複合樹脂組成物から成形される平面状コネクター
JP2014237740A (ja) * 2013-06-06 2014-12-18 ポリプラスチックス株式会社 複合樹脂組成物及び当該複合樹脂組成物から成形された平面状コネクター
JP2017535662A (ja) * 2014-08-20 2017-11-30 レジネート マテリアルズ グループ、インコーポレイテッド 再生ポリマー及び廃棄物からのポリエステルポリオール
JPWO2016047179A1 (ja) * 2014-09-26 2017-07-06 Kbセーレン株式会社 溶融異方性芳香族ポリエステル繊維およびその製造方法
WO2017068867A1 (ja) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 全芳香族ポリエステル及びその製造方法
JP6157778B1 (ja) * 2015-10-21 2017-07-05 ポリプラスチックス株式会社 全芳香族ポリエステル及びその製造方法
WO2018066417A1 (ja) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
WO2018066416A1 (ja) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
JP6345376B1 (ja) * 2016-10-07 2018-06-20 ポリプラスチックス株式会社 複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品
JP6356938B1 (ja) * 2016-10-07 2018-07-11 ポリプラスチックス株式会社 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
WO2020204124A1 (ja) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
JPWO2022168706A1 (ja) * 2021-02-05 2022-08-11
WO2022168706A1 (ja) * 2021-02-05 2022-08-11 ポリプラスチックス株式会社 ファンインペラ用液晶性樹脂組成物及びそれを用いたファンインペラ
JP7281023B2 (ja) 2021-02-05 2023-05-24 ポリプラスチックス株式会社 ファンインペラ用液晶性樹脂組成物及びそれを用いたファンインペラ

Also Published As

Publication number Publication date
MY166937A (en) 2018-07-25
US20140212614A1 (en) 2014-07-31
JPWO2012137636A1 (ja) 2014-07-28
TWI475068B (zh) 2015-03-01
TW201245324A (en) 2012-11-16
JP5546081B2 (ja) 2014-07-09
EP2695905B1 (en) 2021-01-27
EP2695905A1 (en) 2014-02-12
EP2695905A4 (en) 2015-04-29
SG193608A1 (en) 2013-10-30
CN103459459A (zh) 2013-12-18
KR101413813B1 (ko) 2014-06-30
KR20140021586A (ko) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5546081B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP5032957B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP5753144B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物、並びにポリエステル成形品
JP6157778B1 (ja) 全芳香族ポリエステル及びその製造方法
JP5485216B2 (ja) 平面状コネクター
JP3730150B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP5753143B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物、並びにポリエステル成形品
EP1319678B1 (en) Wholly aromatic polyester and polyester resin composition
WO2017068869A1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP5032958B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6388749B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP6133000B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP6189750B2 (ja) 全芳香族ポリエステル、ポリエステル樹脂組成物、及びポリエステル成形品
WO2022210967A1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
WO2018020930A1 (ja) 全芳香族ポリエステルアミド及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508822

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137025765

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14009119

Country of ref document: US

Ref document number: 1301005572

Country of ref document: TH