WO2012137375A1 - 非水系二次電池用セパレータおよび非水系二次電池 - Google Patents

非水系二次電池用セパレータおよび非水系二次電池 Download PDF

Info

Publication number
WO2012137375A1
WO2012137375A1 PCT/JP2011/074258 JP2011074258W WO2012137375A1 WO 2012137375 A1 WO2012137375 A1 WO 2012137375A1 JP 2011074258 W JP2011074258 W JP 2011074258W WO 2012137375 A1 WO2012137375 A1 WO 2012137375A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
secondary battery
porous layer
polyvinylidene fluoride
adhesive
Prior art date
Application number
PCT/JP2011/074258
Other languages
English (en)
French (fr)
Inventor
西川 聡
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US13/704,116 priority Critical patent/US9065119B2/en
Priority to KR1020137000123A priority patent/KR101297769B1/ko
Priority to CN201180049820.4A priority patent/CN103155219B/zh
Priority to JP2013508720A priority patent/JP5432417B2/ja
Priority to EP11863010.2A priority patent/EP2696391B1/en
Publication of WO2012137375A1 publication Critical patent/WO2012137375A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Further, in recent years, these batteries have been studied for application to automobiles and the like because of their high energy density.
  • a technique is known that uses a separator in which a porous layer made of a polyvinylidene fluoride resin (hereinafter also referred to as an adhesive porous layer) is formed on a polyolefin microporous film, which is a conventional separator (for example, see Patent Document 1).
  • an adhesive porous layer made of a polyvinylidene fluoride resin (hereinafter also referred to as an adhesive porous layer) is formed on a polyolefin microporous film, which is a conventional separator (for example, see Patent Document 1).
  • the adhesive porous layer is hot-pressed over the electrode in a state containing the electrolytic solution, the electrode and the separator can be satisfactorily bonded and can function as an adhesive. Therefore, the cycle life of the soft pack battery can be improved.
  • a battery element is manufactured by winding the electrode and the separator in an overlapped state, and the element is enclosed in the metal can exterior together with an electrolytic solution. Is made.
  • a battery element is produced in the same manner as the battery with the above metal can, and this is put together with the electrolyte in the soft pack exterior.
  • a battery is produced by encapsulating and finally adding a hot press process. Therefore, in the case of using the separator having the adhesive porous layer as described above, a battery element can be produced in the same manner as the battery with the above metal can outer case. There is also an advantage that no change is required.
  • a positive electrode or a negative electrode of a general non-aqueous secondary battery includes a current collector, and an active material layer including an electrode active material and a binder resin formed on the current collector.
  • the adhesive porous layer mentioned above adhere attaches with respect to the binder resin in an electrode, when making it join with an electrode by hot press. Therefore, in order to ensure better adhesiveness, it is preferable that the amount of the binder resin in the electrode is large.
  • the binder resin used for the electrode is generally a polyvinylidene fluoride resin, but in recent years, the use of styrene-butadiene rubber is increasing. For an electrode using such a styrene-butadiene rubber, it has been difficult to obtain sufficient battery characteristics while achieving both ion permeability and adhesiveness in a separator having a conventional adhesive porous layer.
  • the porosity of the porous layer made of polyvinylidene fluoride resin is 50 to 90%, which is a very high porosity.
  • an adhesive porous layer having a high porosity has a problem that when subjected to a hot press process under severe bonding conditions, the porous structure is crushed due to insufficient mechanical properties. .
  • pores having a pore diameter of 0.05 to 10 ⁇ m are scattered on the surface of the adhesive porous layer.
  • both electrode adhesion, ion permeability and battery cycle characteristics are compatible. Is difficult.
  • the present invention is superior in adhesion to the electrode compared to the prior art, can ensure sufficient ion permeability even after being bonded to the electrode, and can withstand a mechanical press sufficiently. It aims at providing the separator for non-aqueous secondary batteries provided with the adhesive porous layer which has a physical property and a uniform porous structure.
  • a separator for a non-aqueous secondary battery comprising a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride-based resin formed on at least one surface of the porous substrate, the adhesive The porous layer has a porosity of 30% to 60%, and an average pore size of 1 nm to 100 nm. 2.
  • the separator for non-aqueous secondary batteries as described. 4). 4. The separator for a non-aqueous secondary battery according to any one of 1 to 3 above, wherein the adhesive porous layer is formed on both front and back surfaces of the porous substrate. 5. The total weight of both surfaces of the adhesive porous layer formed on both surfaces of the porous substrate is 1.0 g / m 2 or more and 3.0 g / m 2 or less, and one surface side of the adhesive porous layer 5.
  • the adhesion to the electrode is superior to that of the prior art, sufficient ion permeability can be secured even after bonding with the electrode, and further, the mechanical properties are uniform and uniform enough to withstand hot pressing.
  • a separator for a nonaqueous secondary battery provided with an adhesive porous layer having a porous structure can be provided. By using such a separator of the present invention, it is possible to provide a non-aqueous secondary battery having a high energy density and a high performance aluminum laminate pack exterior.
  • a separator for a non-aqueous secondary battery according to the present invention includes a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride-based resin formed on at least one surface of the porous substrate.
  • the numerical value range indicated by “ ⁇ ” means a numerical range including an upper limit value and a lower limit value.
  • the porous substrate means a substrate having pores or voids therein.
  • a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet.
  • the composite porous sheet etc. which were made to be mentioned can be mentioned.
  • a microporous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. Means.
  • the material constituting the porous substrate can be either an organic material or an inorganic material having electrical insulation.
  • a thermoplastic resin as a constituent material of the base material.
  • the shutdown function is a function to prevent the thermal runaway of the battery by blocking the movement of ions by melting the thermoplastic resin and closing the pores of the porous substrate when the battery temperature rises.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a polyolefin microporous membrane is suitable as a porous substrate using polyolefin.
  • a polyolefin microporous membrane having sufficient mechanical properties and ion permeability and applied to a conventional separator for a non-aqueous secondary battery can be used.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of having the shutdown function described above, and the polyethylene content is preferably 95% by weight or more.
  • a polyolefin microporous film containing polyethylene and polypropylene is preferable from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one sheet.
  • Such a microporous membrane preferably contains 95% by weight or more of polyethylene and 5% by weight or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a structure of at least two layers, and one of the two layers includes polyethylene and the other layer includes polypropylene.
  • a polyolefin microporous membrane having a structure is also preferred.
  • the weight average molecular weight of polyolefin is preferably 100,000 to 5,000,000. If the weight average molecular weight is less than 100,000, it may be difficult to ensure sufficient mechanical properties. On the other hand, if it exceeds 5 million, the shutdown characteristics may be deteriorated or molding may be difficult.
  • Such a polyolefin microporous membrane can be produced, for example, by the following method. That is, (i) a step of extruding a molten polyolefin resin from a T-die to form a sheet, (ii) a step of subjecting the sheet to crystallization treatment, (iii) a step of stretching the sheet, and (iv) heat treatment of the sheet A method of forming the microporous film by sequentially performing the steps is performed.
  • a step of melting a polyolefin resin together with a plasticizer such as liquid paraffin, extruding it from a T-die and cooling it to form a sheet (ii) a step of stretching the sheet, (iii) Examples include a method of forming a microporous film by sequentially performing a step of extracting a plasticizer from the sheet, and (iv) a step of heat-treating the sheet.
  • a plasticizer such as liquid paraffin
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, heat-resistant polymers such as aromatic polyamides and polyimides, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. Or a porous sheet made of a mixture of these fibrous materials.
  • the composite porous sheet a structure in which a functional layer is laminated on a porous sheet made of a microporous film or a fibrous material can be adopted. Such a composite porous sheet is preferable in that a further function can be added by the functional layer.
  • a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be used.
  • the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide.
  • a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
  • the composite method include a method of coating a functional sheet on a porous sheet, a method of bonding with an adhesive, and a method of thermocompression bonding.
  • the film thickness of the porous substrate is preferably in the range of 5 to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the Gurley value (JIS P8117) of the porous substrate is preferably in the range of 50 to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.
  • the puncture strength of the porous substrate is preferably 300 g or more from the viewpoint of improving the production yield.
  • Polyvinylidene fluoride resin A polyvinylidene fluoride resin is applied to the separator for a non-aqueous secondary battery of the present invention.
  • a polyvinylidene fluoride-based resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride), a copolymer of vinylidene fluoride and another copolymerizable monomer, or a mixture thereof can be used.
  • the monomer copolymerizable with vinylidene fluoride for example, one kind or two or more kinds such as tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, or vinyl fluoride can be used.
  • a polyvinylidene fluoride resin can be obtained by emulsion polymerization or suspension polymerization.
  • the polyvinylidene fluoride resin used for the separator for a non-aqueous secondary battery of the present invention preferably contains 98 mol% or more of vinylidene fluoride as a structural unit. When 98 mol% or more of vinylidene fluoride is contained, sufficient mechanical properties and heat resistance can be secured even under severe hot press conditions.
  • the polyvinylidene fluoride resin used in the present invention preferably has a weight average molecular weight in the range of 300,000 to 3,000,000.
  • the range of 300,000 to 2,000,000 is more preferable, and the range of 500,000 to 1,500,000 is more preferable. If the weight average molecular weight is less than 300,000, the adhesive porous layer may not have sufficient mechanical properties to withstand the adhesion process with the electrode, and sufficient adhesion may not be obtained. Further, when the weight average molecular weight is larger than 3 million, the viscosity of the slurry containing the resin is increased, so that it is difficult to form the adhesive porous layer, or good crystals are formed in the adhesive porous layer. This is not preferable because it may be difficult to obtain a suitable porous structure.
  • the porous structure of the adhesive porous layer is an important technical element.
  • the porous structure has a porosity of 30 to 60% and an average pore diameter of 1 to 100 nm.
  • the adhesive porous layer is composed of a polyvinylidene fluoride-based resin, has a number of micropores inside, and has a structure in which these micropores are connected. It means a porous layer in which gas or liquid can pass from one side to the other side.
  • the average pore diameter is calculated by using the pore surface area S of the adhesive porous layer calculated from the nitrogen gas adsorption amount and the pore volume V of the adhesive porous layer calculated from the porosity. Is calculated from the following formula 1, assuming that is cylindrical.
  • the specific surface area (m 2 / g) of the porous substrate applied by the nitrogen gas adsorption method and the composite film formed with the adhesive porous layer The specific surface area (m 2 / g) is measured. Then, the specific surface area is multiplied by the basis weight (g / m 2 ) to obtain the pore surface area per unit area of the sheet, and the pore surface area of the porous substrate is subtracted from the pore surface area of the composite membrane. Thus, the pore surface area S of the adhesive porous layer is calculated.
  • the porosity of the adhesive porous layer is 30 to 60%.
  • the porosity of the adhesive porous layer is 30% or more, good ion permeability can be obtained, and sufficient battery characteristics can be obtained.
  • the porosity of the adhesive porous layer is 60% or less, sufficient mechanical properties can be obtained to such an extent that the porous structure is not crushed when adhered to the electrode in the hot press step.
  • the porosity is 60% or less, the surface porosity becomes low and the area occupied by the polyvinylidene fluoride resin having an adhesive function increases, so that sufficient adhesive force can be secured.
  • the porosity of the adhesive porous layer is more preferably 30 to 50%.
  • the average pore size of the adhesive porous layer is 1 to 100 nm. If the average pore size of the adhesive porous layer is 100 nm or less, it becomes easy to have a porous structure in which uniform pores are uniformly dispersed, and the adhesion points with the electrode are uniformly dispersed, so that good adhesion can be obtained. Can do. In that case, since the movement of ions becomes uniform, sufficient cycle characteristics can be obtained, and even better load characteristics can be obtained. On the other hand, the average pore diameter is preferably as small as possible from the viewpoint of uniformity, but it is practically difficult to form a porous structure smaller than 1 nm.
  • the polyvinylidene fluoride-based resin swells.
  • the average pore diameter is preferably 1 nm or more.
  • the average pore size of the adhesive porous layer is more preferably 20 to 100 nm.
  • the above-described swelling due to the electrolytic solution varies depending on the type of polyvinylidene fluoride resin and the composition of the electrolytic solution, and the degree of failure associated with the swelling also varies.
  • the polyvinylidene fluoride resin for example, when a copolymer containing a large amount of a copolymer component such as hexafluoropropylene is used, the polyvinylidene fluoride resin tends to swell. Therefore, in the present invention, it is preferable to select a polyvinylidene fluoride-based resin that does not cause the above-mentioned problems associated with swelling in the range of an average pore diameter of 1 to 100 nm. From such a viewpoint, it is preferable to use a polyvinylidene fluoride resin containing 98 mol% or more of vinylidene fluoride.
  • the polyvinylidene fluoride resin When attention is paid to the electrolytic solution, for example, when an electrolytic solution having a high cyclic carbonate content such as ethylene carbonate or propylene carbonate having a high dielectric constant is used, the polyvinylidene fluoride resin easily swells. As a result, problems associated with the above-mentioned swelling are likely to occur. In this regard, if a polyvinylidene fluoride-based resin containing 98 mol% or more of vinylidene fluoride is used, sufficient ion permeability can be obtained even when an electrolytic solution consisting only of a cyclic carbonate is applied, and good battery performance is obtained. Since it is obtained, it is preferable.
  • the adhesive porous layer according to the present invention is characterized in that its average pore diameter is very small as compared with the conventional one, although it has an appropriate porosity as a separator for non-aqueous secondary batteries. Is. This means that a fine porous structure is developed and uniform. According to such a porous structure, since the movement of ions at the interface between the separator and the electrode becomes more uniform as described above, a uniform electrode reaction can be obtained. Therefore, the effect of improving the load characteristics and cycle characteristics of the battery can be obtained. In addition, since the polyvinylidene fluoride resin is uniformly distributed on the separator surface, the adhesion with the electrode becomes better.
  • the porous structure of the present invention also improves ion migration at the interface between the porous substrate and the adhesive porous layer.
  • the laminated separator is likely to be clogged at the interface between the two layers, and the ion migration is likely to be lowered. Therefore, it may be difficult to obtain good battery characteristics.
  • the adhesive porous layer in the present invention has a fine porous structure, is uniform, and has a relatively large number of pores. Therefore, since the probability that the hole of the porous substrate and the hole of the adhesive porous layer can be satisfactorily connected increases, clogging at the interface can be remarkably suppressed.
  • the adhesive porous layer has sufficient mechanical properties that can sufficiently withstand hot pressing and a uniform porous structure. Therefore, even when the amount of binder resin in the electrode is reduced and the hot press conditions are relaxed, superior adhesion is obtained compared to the conventional technology, and sufficient ion permeability is ensured even after bonding to the electrode. it can. Therefore, if such a separator is used, it is possible to provide a non-aqueous secondary battery having a high energy density and a high performance aluminum laminate pack exterior.
  • a method of applying a polyvinylidene fluoride resin having a high weight average molecular weight can be mentioned, and specifically, a polyfluoride having 600,000 or more, preferably 1,000,000 or more is used. It is preferable to apply a vinylidene chloride resin.
  • Another example is a method of increasing the content of vinylidene fluoride in the polyvinylidene fluoride resin. Specifically, it is preferable to use a polyvinylidene fluoride resin containing 98 mol% or more of vinylidene fluoride.
  • the method etc. which make the temperature of a coagulation bath lower and form a fine void
  • the adhesive porous layer can be mixed with fillers or other additives made of inorganic or organic substances within a range that does not impair the effects of the present invention.
  • a filler By mixing such a filler, it is possible to improve the slipperiness and heat resistance of the separator.
  • the inorganic filler for example, a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be used.
  • the organic filler for example, an acrylic resin or the like can be used.
  • the separator for a non-aqueous secondary battery of the present invention comprises a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride resin formed on at least one surface of the porous substrate.
  • the adhesive porous layer is an adhesive layer that adheres to the electrode by hot pressing in a state containing the electrolytic solution, it needs to exist as the outermost layer of the separator.
  • it is preferable to adhere both the positive electrode and the negative electrode to the separator from the viewpoint of cycle life it is preferable to form an adhesive porous layer on the front and back of the porous substrate.
  • the adhesive porous layer preferably has a sufficiently porous structure from the viewpoint of ion permeability.
  • the difference between the Gurley value of the porous substrate used and the Gurley value of the composite separator after forming the adhesive porous layer is 300 seconds / 100 cc or less, more preferably 150 seconds / 100 cc or less, More preferably, it is 100 seconds / 100 cc or less.
  • this difference is higher than 300 seconds / 100 cc, the adhesive porous layer is too dense to inhibit ion permeation, and sufficient battery characteristics may not be obtained.
  • the Gurley value of the separator for a non-aqueous secondary battery of the present invention is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of obtaining sufficient battery performance.
  • the porosity of the non-aqueous secondary battery separator is suitably in the range of 30% or more and 60% or less from the viewpoint of obtaining the effects of the present invention and good mechanical properties of the separator.
  • the weight of the polyvinylidene fluoride resin is preferably in the range of 0.5 g / m 2 or more and 1.5 g / m 2 or less on one surface from the viewpoint of adhesion to the electrode, ion permeability and battery load characteristics. It is.
  • the total weight of the polyvinylidene fluoride-based resin is preferably 1.0 g / m 2 or more and 3.0 g / m 2 or less.
  • the weight difference between the front and back surfaces is also important.
  • the total weight of both surfaces of the adhesive porous layer formed on the front and back of the porous substrate is 1.0 to 3.0 g / m 2
  • the weight of one surface side of the adhesive porous layer is The weight difference on the other side is preferably 20% or less with respect to the total weight of both sides. If this exceeds 20%, curling may become prominent, which may hinder handling and may reduce cycle characteristics.
  • the curvature of the separator for a non-aqueous secondary battery is preferably in the range of 1.5 to 2.5 from the viewpoint of ensuring good ion permeability.
  • the film thickness of the non-aqueous secondary battery separator is preferably 5 to 35 ⁇ m from the viewpoint of mechanical strength and energy density.
  • the film thickness on one side of the adhesive porous layer is preferably in the range of 0.5 to 5 ⁇ m from the viewpoint of ensuring adhesion and good ion permeability.
  • the fibril diameter of the polyvinylidene fluoride resin in the adhesive porous layer is preferably in the range of 10 to 1000 nm from the viewpoint of cycle characteristics.
  • the membrane resistance of the non-aqueous secondary battery separator is preferably in the range of 1 to 10 ohm ⁇ cm 2 from the viewpoint of securing sufficient battery load characteristics.
  • the membrane resistance is a resistance value when the separator is impregnated with the electrolytic solution, and is measured by an alternating current method.
  • the above numerical values are values measured at 20 ° C. using 1M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) as the electrolytic solution.
  • the separator for a non-aqueous secondary battery of the present invention described above is an adhesive porous material in which a solution containing a polyvinylidene fluoride resin is directly applied onto a porous substrate to solidify the polyvinylidene fluoride resin. It can be manufactured by a method in which the layer is formed integrally on the porous substrate.
  • a polyvinylidene fluoride resin is dissolved in a solvent to prepare a coating solution.
  • This coating solution is applied onto the porous substrate and immersed in an appropriate coagulation solution.
  • the layer made of polyvinylidene fluoride resin has a porous structure.
  • the coagulating liquid is removed by washing with water, and the adhesive porous layer can be integrally formed on the porous substrate by drying.
  • a good solvent that dissolves the polyvinylidene fluoride resin can be used.
  • a good solvent for example, a polar amide solvent such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide and the like can be suitably used.
  • a phase separation agent that induces phase separation in addition to the good solvent.
  • phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • Such a phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
  • what is necessary is just to mix or melt
  • the composition of the coating solution preferably includes a polyvinylidene fluoride resin at a concentration of 3 to 10% by weight.
  • a solvent it is preferable to use a mixed solvent containing 60% by weight or more of a good solvent and 40% by weight or less of a phase separation agent from the viewpoint of forming an appropriate porous structure.
  • the coagulation liquid water, a mixed solvent of water and the good solvent, or a mixed solvent of water, the good solvent, and the phase separation agent can be used.
  • a mixed solvent of water, a good solvent, and a phase separation agent is preferable.
  • the mixing ratio of the good solvent and the phase separation agent should be adjusted to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin.
  • the concentration of water is preferably 40 to 90% by weight from the viewpoint of forming a good porous structure and improving productivity.
  • the conventional coating methods such as Meyer bar, die coater, reverse roll coater, and gravure coater can be applied to the porous substrate.
  • the adhesive porous layer is formed on both sides of the porous substrate, it is possible to solidify, wash and dry after coating the coating solution one side at a time. From the viewpoint of productivity, it is preferable to solidify, wash and dry after coating.
  • the separator of this invention can be manufactured also with the dry-type coating method besides the wet coating method mentioned above.
  • the dry coating method is a method in which a coating liquid containing a polyvinylidene fluoride resin and a solvent is applied onto a porous substrate, and the solvent is removed by volatilization by drying the coating liquid. How to get.
  • the coating film tends to be a dense film compared to the wet coating method, and it is almost impossible to obtain a porous layer unless a filler or the like is added to the coating liquid.
  • a filler or the like is added to the coating liquid.
  • the separator of the present invention can also be produced by a method in which an adhesive porous layer and a porous substrate are prepared separately, and these sheets are superposed and combined by thermocompression bonding or an adhesive.
  • a method of obtaining the adhesive porous layer as an independent sheet the coating liquid is applied onto the release sheet, and the adhesive porous layer is formed by using the wet coating method or the dry coating method described above. Examples include a method of peeling only the porous layer.
  • Non-aqueous secondary battery of the present invention is characterized by using the separator of the present invention described above.
  • the non-aqueous secondary battery has a configuration in which a separator is disposed between a positive electrode and a negative electrode, and these battery elements are enclosed in an exterior together with an electrolytic solution.
  • a lithium ion secondary battery is suitable as the non-aqueous secondary battery.
  • the structure which formed the electrode layer which consists of a positive electrode active material, binder resin, and a conductive support agent on a positive electrode collector can be employ
  • the positive electrode active material include lithium cobaltate, lithium nickelate, spinel structure lithium manganate, and olivine structure lithium iron phosphate.
  • the adhesive porous layer of the separator is disposed on the positive electrode side, since the polyvinylidene fluoride resin has excellent oxidation resistance, LiMn 1/2 Ni 1 1 that can operate at a high voltage of 4.2 V or higher.
  • a positive electrode active material such as 2 O 2 or LiCo 1/3 Mn 1/3 Ni 1/3 O 2 can be easily applied.
  • binder resin examples include polyvinylidene fluoride resin.
  • conductive assistant examples include acetylene black, ketjen black, and graphite powder.
  • current collector examples include aluminum foil having a thickness of 5 to 20 ⁇ m.
  • the negative electrode a structure in which an electrode layer made of a negative electrode active material and a binder resin is formed on the negative electrode current collector can be adopted, and a conductive additive may be added to the electrode layer as necessary.
  • a negative electrode active material for example, a carbon material that can occlude lithium electrochemically, a material that forms an alloy with lithium such as silicon or tin, and the like can be used.
  • the binder resin include polyvinylidene fluoride resin and butylene-stadiene rubber.
  • the separator for a non-aqueous secondary battery since the adhesiveness is good, sufficient adhesiveness can be ensured even when not only polyvinylidene fluoride resin but also a butylene-stadiene rubber is used as the negative electrode binder.
  • the conductive assistant include acetylene black, ketjen black, and graphite powder.
  • the current collector include copper foil having a thickness of 5 to 20 ⁇ m. Moreover, it can replace with said negative electrode and can also use metal lithium foil as a negative electrode.
  • the electrolytic solution has a structure in which a lithium salt is dissolved in an appropriate solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • the solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof, ⁇ -butyrolactone, ⁇ -Cyclic esters such as valerolactone or a mixed solvent thereof can be suitably used.
  • the separator provided with the conventional adhesive porous layer it may be difficult to exhibit the adhesion to the electrode depending on the type of the electrolytic solution used, but according to the separator of the present invention, the type of the electrolytic solution However, there is a great advantage in that good adhesiveness can be exhibited.
  • the separator for a non-aqueous secondary battery of the present invention can be applied to a battery with a metal can exterior, but it is suitably used for a soft pack battery with an aluminum laminate film exterior because of its good adhesiveness to the electrode.
  • the positive electrode and the negative electrode are joined via a separator, impregnated with an electrolytic solution, and enclosed in an aluminum laminate film.
  • a non-aqueous secondary battery can be obtained by hot-pressing it.
  • an electrode and a separator can be bonded well, and a non-aqueous secondary battery excellent in cycle life can be obtained.
  • the adhesion between the electrode and the separator is good, the battery is excellent in safety.
  • the void volume V per 1 m 2 of sheet is calculated from the porosity. Assuming that all the holes are cylindrical, the average hole diameter (diameter) d is calculated from the hole surface area S and the hole volume V according to the following formula 2.
  • d 4 ⁇ V / S (Formula 2) d: average pore diameter of the adhesive porous layer V: pore volume of the adhesive porous layer S: pore surface area of the adhesive porous layer This d is the average pore diameter of the adhesive porous layer made of polyvinylidene fluoride resin It was.
  • Frm thickness It measured using the contact-type thickness meter (made by LITEMATIC Mitutoyo).
  • the measurement terminal was a cylindrical one having a diameter of 5 mm, and was adjusted so that a load of 7 g was applied during the measurement.
  • Weight A sample was cut into 10 cm ⁇ 10 cm and its weight was measured. The basis weight was determined by dividing the weight by the area.
  • Weight of polyvinylidene fluoride resin The weight of the polyvinylidene fluoride resin was measured from the spectrum intensity of FK ⁇ using an energy dispersive X-ray fluorescence analyzer (EDX-800HS Shimadzu Corporation). In this measurement, the weight of the polyvinylidene fluoride resin on the surface irradiated with X-rays is measured. Therefore, when a porous layer made of polyvinylidene fluoride resin is formed on both the front and back surfaces, the weight of each polyvinylidene fluoride resin on the front and back surfaces is measured by measuring the front and back surfaces. The weight can be measured.
  • Wa weight per unit area of the base material (g / m 2)
  • Wb weight of polyvinylidene fluoride resin (g / m 2)
  • t represents the thickness ([mu] m).
  • Table 1 shows the measurement results of average pore diameter and weight (total weight on both surfaces, surface weight, back surface weight, ratio of weight difference between the front surface side and back surface side to the total weight on both surfaces), and the Gurley value of the separator.
  • the separators of the following examples and comparative examples are also collectively shown in Table 1.
  • Examples 2 to 5 Using the same coating liquid as in Example 1 and a polyethylene microporous membrane, the coating amount was changed as shown in Table 1 by the same method to obtain a separator for a non-aqueous secondary battery of the present invention.
  • Examples 6 and 7 Using the same coating liquid as in Example 1 and a polyethylene microporous membrane, by the same method, only the coating amount on the front and back sides was changed as shown in Table 1 to obtain the non-aqueous secondary battery separator of the present invention. It was.
  • Example 8 Except that a polyolefin microporous membrane (M824 Celgard) having a film thickness of 12 ⁇ m, a Gurley value of 425 seconds / 100 cc, and a porosity of 38% consisting of a three-layer structure of polypropylene / polyethylene / polypropylene was used as the polyolefin microporous membrane.
  • the separator for non-aqueous secondary batteries of this invention was obtained like 1.
  • a separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 1 except that the polyvinylidene fluoride was used and the coating amount on both sides was 0.8 g / m 2 .
  • Comparative Example 2 The separator for the non-aqueous secondary battery was the same as Comparative Example 1 except that the concentration of the polyvinylidene fluoride resin was 8% by weight and the dimethylacetamide / tripropylene glycol was 55/45 weight ratio. Got.
  • Example 3 A non-aqueous secondary battery separator was obtained in the same manner as in Example 1 except that the temperature of the coagulation liquid was 0 ° C.
  • Example 1 the polyvinylidene fluoride resin of Example 1 is relatively difficult to swell in the electrolyte solution. From this, it is preferable to select an appropriate polyvinylidene fluoride resin for the porous structure of the adhesive porous layer. I know it ’s good.
  • Example 1 is significantly smaller.
  • the curvature is the polyolefin microporous membrane. It is presumed to reflect the clogging of the interface between the adhesive and the adhesive porous layer. In other words, it can be said that the higher the curvature, the greater the degree of clogging.
  • the system of the comparative example uses a polyvinylidene fluoride resin that easily swells in the electrolyte, it is necessary to consider clogging due to this swelling. Based on the above-described contents, it is considered that the system having a large average pore diameter in Comparative Example 2 is less affected by swelling, but the curvature is significantly high even in such a system. This seems to reflect the fact that the adhesive porous layer in the present invention is fine and uniform porous and therefore is not prone to clogging stochastically. Accordingly, the porous structure as in the present invention can prevent clogging of the interface, and the configuration of the present invention is considered suitable from the viewpoint of ion migration.
  • the porosity of the porous layer made of the polyvinylidene fluoride resin is small, but in such a configuration, there are few pores formed in the porous layer made of the polyvinylidene fluoride resin.
  • the formation of an interface with the polyolefin microporous film is not preferable, and clogging becomes remarkable, and therefore the curvature is high. Therefore, the membrane resistance is high at 20 ° C. or ⁇ 20 ° C., and sufficient ion permeability is not obtained. This tendency is more remarkable at ⁇ 20 ° C.
  • a lead tab was welded to the positive electrode and the negative electrode, the positive and negative electrodes were joined via a separator, an electrolyte solution was impregnated, and sealed in an aluminum pack using a vacuum sealer.
  • the electrolyte used here was 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio).
  • a test battery was produced by applying a load of 20 kg per 1 cm 2 of electrode with a hot press machine and performing hot pressing at 90 ° C. for 2 minutes.
  • Load characteristic test The load characteristic test was performed using the produced non-aqueous secondary battery. The load characteristics of the battery were determined by measuring a relative discharge capacity of 2C with reference to a discharge capacity of 0.2C at 25 ° C., and using this as an index. This test was performed on batteries using the separators of Examples 1 to 9 and Comparative Examples 1 to 4. The results are shown in Table 3.
  • porous layer Most of the porous layer is attached to the electrode surface, but the one that is partially damaged is judged to have a medium uniformity ( ⁇ ), and most of the adhesive porous layer is attached to the electrode surface. Those that were severely damaged were judged to have poor uniformity (x).
  • thermomechanical property measurement TMA
  • each separator was cut out to a width of 4 mm, and both ends thereof were pressed with a chuck, and set so that the distance between chucks was 10 mm.
  • the applied load was 10 mN, the temperature was raised at a rate of temperature rise of 10 ° C./min, and the temperature at which the separator broke was measured.
  • the separator of Example 1 was confirmed to break at 155 ° C., whereas the separator of Example 8 was confirmed to break at 180 ° C. It can be seen that applying polypropylene is preferable from the viewpoint of heat resistance.
  • Example 1 and Comparative Examples 1 to 4 were tested for adhesion to electrodes using various electrolytes in the same manner as described above.
  • 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) is used as the electrolytic solution A
  • 1M LiPF 6 ethylene carbonate / propylene carbonate / ethyl methyl carbonate (3/2/5 weight ratio) is used as the electrolytic solution B
  • 1M LiPF 6 ethylene carbonate / propylene carbonate (1/1 weight ratio) was used as the electrolytic solution C.
  • Table 4 The results are shown in Table 4.
  • Table 4 shows the relative peel strength when the peel strength obtained for each of the positive electrode and negative electrode of the separator of Example 1 is 100, and the average peel strength between the positive electrode and the negative electrode is 70 or more. Is described as ⁇ , those of 50 or more and less than 70 are described as ⁇ , and those of less than 50 are described as ⁇ .
  • the non-aqueous secondary battery separator of the present invention can be suitably used for a non-aqueous secondary battery, and is particularly suitable for a non-aqueous secondary battery having an aluminum laminate exterior, which is important for bonding with an electrode.

Abstract

 本発明は、電極との接着性に優れ、電極と接着した後にも十分なイオン透過性を確保でき、さらに、熱プレスにも十分に耐え得る力学的物性と均一な多孔質構造を有する接着性多孔質層を備えた非水系二次電池用セパレータを提供することを目的とする。本発明の非水系二次電池用セパレータは、多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、前記接着性多孔質層は、空孔率が30~60%であり、かつ、平均孔径が1~100nmであることを特徴とする。

Description

非水系二次電池用セパレータおよび非水系二次電池
 本発明は非水系二次電池用セパレータおよび非水系二次電池に関するものである。
 リチウムイオン二次電池に代表されるような非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯用電子機器の電源として広く用いられている。更に近年においてこれらの電池は高エネルギー密度を有するという特徴から自動車などへの適用も検討されている。
 携帯用電子機器の小型化・軽量化に伴い、非水系二次電池の外装の簡素化がなされてきている。当初は外装としてステンレス製の電池缶が用いられていたが、アルミ缶製の外装が開発され、さらには現在ではアルミラミネートパック製のソフトパック外装も開発されている。アルミラミネート製のソフトパック外装の場合、外装が柔らかいため、充放電に伴って電極とセパレータとの間に隙間が形成される場合があり、サイクル寿命が悪くなるという技術的課題がある。この課題を解決するという観点から、電極とセパレータを接着する技術が重要であり、多くの技術的提案がなされている。
 その1つの提案として、従来のセパレータであるポリオレフィン微多孔膜にポリフッ化ビニリデン系樹脂からなる多孔質層(以下、接着性多孔質層ともいう)を成形したセパレータを用いる技術が知られている(例えば特許文献1参照)。接着性多孔質層は、電解液を含んだ状態で電極に重ねて熱プレスすると、電極とセパレータを良好に接合させることができ、接着剤として機能し得る。そのため、ソフトパック電池のサイクル寿命を改善することができる。
 また、従来の金属缶外装を用いて電池を作製する場合、電極とセパレータを重ね合わせた状態で捲回して電池素子を作製し、この素子を電解液と共に金属缶外装内に封入して、電池を作製する。一方、上述した特許文献1のようなセパレータを用いてソフトパック電池を作製する場合は、上記の金属缶外装の電池と同様にして電池素子を作製し、これを電解液と共にソフトパック外装内に封入して、最後に熱プレス工程を加えて、電池を作製する。よって、上記のような接着性多孔質層を有したセパレータを用いる場合、上記の金属缶外装の電池と同様にして電池素子を作製できるため、従来の金属缶外装電池の製造工程に対し大幅な変更を加える必要がない、というメリットもある。
 上述した背景から、ポリオレフィン微多孔膜に接着性多孔質層を積層したセパレータは、過去に様々な技術提案がなされてきた。例えば、特許文献1では、十分な接着性の確保とイオン透過性の両立という観点から、ポリフッ化ビニリデン系樹脂層の多孔構造と厚みに着眼して、新たな技術提案がなされている。
特許第4127989号公報
 ところで、一般的な非水系二次電池の正極あるいは負極は、集電体と、この集電体上に形成された電極活物質およびバインダー樹脂を含む活物質層から構成されている。そして、上述した接着性多孔質層は、熱プレスによって電極と接合させた場合、電極中のバインダー樹脂に対して接着する。そのため、より良好な接着性を確保するためには、電極内のバインダー樹脂の量は多い方が好ましい。
 しかしながら、電池のエネルギー密度をより高めるためには、電極中の活物質の含有量を高める必要があり、バインダー樹脂の含有量は少ない方が好ましい。そのため、従来技術において十分な接着性を確保するためには、より高い温度や高い圧力といった厳しい条件で熱プレスを行う必要があった。そして、従来技術においては、そのような厳しい条件で熱プレスした場合、ポリフッ化ビニリデン系樹脂からなる接着性多孔質層の多孔構造が潰れてしまう問題があった。そのため、熱プレス工程後のイオン透過性が十分でなくなり、良好な電池特性を得るのが困難であった。
 また、従来は電極に用いるバインダー樹脂はポリフッ化ビニリデン系樹脂が一般的だったのに対し、近年はスチレン-ブタジエンゴムを適用する場合も増えてきている。このようなスチレン-ブタジエンゴムを用いた電極に対しては、従来の接着性多孔質層を備えたセパレータでは、イオン透過性と接着性を両立して十分な電池特性を得ることが難しかった。
 例えば、特許文献1に記載のセパレータでは、ポリフッ化ビニリデン系樹脂からなる多孔質層の空孔率が50~90%であり、非常に高い空孔率となっている。しかし、このような高い空孔率を有した接着性多孔質層は、厳しい接着条件で熱プレス工程を施した場合、力学物性が不十分なために多孔質構造が潰れてしまうといった課題がある。さらに、当該接着性多孔質層の表面には孔径0.05~10μmの孔が点在している。しかし、このような不均一な表面孔構造では、電極のバインダー樹脂量を減らし、かつ、熱プレス条件を緩和した場合に、電極との接着性、イオン透過性および電池のサイクル特性を両立させることが難しい。
 このような背景から、本発明は、従来技術に比べて電極との接着性に優れ、電極と接着した後にも十分なイオン透過性を確保でき、さらに、熱プレスにも十分に耐え得る力学的物性と均一な多孔質構造を有する接着性多孔質層を備えた非水系二次電池用セパレータを提供することを目的とする。
 本発明は、上記課題を解決するために、以下の構成を採用する。
1. 多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、前記接着性多孔質層は、空孔率が30%以上60%以下であり、かつ、平均孔径が1nm以上100nm以下であることを特徴とする非水系二次電池用セパレータ。
2. 前記接着性多孔質層は空孔率が30%以上50%以下であり、前記ポリフッ化ビニリデン系樹脂はフッ化ビニリデンが98mol%以上含まれていることを特徴とする上記1に記載の非水系二次電池用セパレータ。
3. 前記多孔質基材の一方の面に形成されている前記接着性多孔質層の重量が、0.5g/m以上1.5g/m以下であることを特徴とする上記1または2に記載の非水系二次電池用セパレータ。
4. 前記接着性多孔質層は前記多孔質基材の表裏両面に形成されていることを特徴とする上記1~3のいずれかに記載の非水系二次電池用セパレータ。
5. 前記多孔質基材の両面に形成された前記接着性多孔質層の両面合計の重量が、1.0g/m以上3.0g/m以下であり、前記接着性多孔質層の一面側の重量と他面側の重量の差が、両面合計の重量に対して20%以下であることを特徴とする上記4に記載の非水系二次電池用セパレータ。
6. 前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜であることを特徴とする上記1~5のいずれかに記載の非水系二次電池用セパレータ。
7. 前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜であることを特徴とする上記1~5のいずれかに記載の非水系二次電池用セパレータ。
8. 前記ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含むことを特徴とする上記7に記載の非水系二次電池用セパレータ。
9. 上記1~8のいずれかに記載のセパレータを用いた非水系二次電池。
 本発明によれば、従来技術に比べて電極との接着性に優れ、電極と接着した後にも十分なイオン透過性を確保でき、さらに、熱プレスにも十分に耐え得る力学的物性と均一な多孔質構造を有する接着性多孔質層を備えた非水系二次電池用セパレータを提供することができる。このような本発明のセパレータを用いれば、エネルギー密度が高く、高性能なアルミラミネートパック外装の非水系二次電池を提供することが可能となる。
 本発明の非水系二次電池用セパレータは、多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、前記接着性多孔質層は、空孔率が30%以上60%以下であり、かつ、平均孔径が1nm以上100nm以下であることを特徴とする。以下、本発明について詳細に説明する。なお、以下において数値範囲で「~」と示したものは、上限値および下限値を含む数値範囲であることを意味する。
[多孔質基材]
 本発明において、多孔質基材とは内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜や、不織布、紙状シート等の繊維状物からなる多孔性シート、あるいは、これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層させた複合多孔質シート等を挙げることができる。なお、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材を構成する材料は、電気絶縁性を有する有機材料あるいは無機材料のいずれでも使用できる。特に、基材にシャットダウン機能を付与する観点からは、基材の構成材料として熱可塑性樹脂を使用することが好ましい。ここで、シャットダウン機能とは、電池温度が高まった場合に、熱可塑性樹脂が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
 ポリオレフィンを用いた多孔質基材としてはポリオレフィン微多孔膜が好適である。ポリオレフィン微多孔膜としては、十分な力学物性とイオン透過性を有した、従来の非水系二次電池用セパレータに適用されているポリオレフィン微多孔膜を用いることができる。そして、ポリオレフィン微多孔膜は、上述したシャットダウン機能を有するという観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては95重量%以上が好ましい。
 別途、高温にさらされたときに容易に破膜しない程度の耐熱性を付与するという観点では、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好適である。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つのシートにおいて混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95重量%以上のポリエチレンと、5重量%以下のポリプロピレンを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含む積層構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィンの重量平均分子量は10万~500万のものが好適である。重量平均分子量が10万より小さいと、十分な力学物性を確保するのが困難となる場合がある。また、500万より大きくなると、シャットダウン特性が悪くなる場合や、成形が困難になる場合がある。
 このようなポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、(i)溶融したポリオレフィン樹脂をT-ダイから押し出してシート化する工程、(ii)上記シートに結晶化処理を施す工程、(iii)シートを延伸する工程、および(iv)シートを熱処理する工程を順次実施して、微多孔膜を形成する方法が挙げられる。また、(i)流動パラフィンなどの可塑剤と一緒にポリオレフィン樹脂を溶融し、これをT-ダイから押し出し、これを冷却してシート化する工程、(ii)シートを延伸する工程、(iii)シートから可塑剤を抽出する工程、および(iv)シートを熱処理する工程を順次実施して微多孔膜を形成する方法等も挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレートなどのポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、芳香族ポリアミドやポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性高分子等からなる繊維状物、あるいは、これらの繊維状物の混合物からなる多孔性シートを用いることができる。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層した構成を採用できる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる点で好ましい。機能層としては、例えば耐熱性を付与するという観点では、耐熱性樹脂からなる多孔質層や、耐熱性樹脂および無機フィラーからなる多孔質層を用いることができる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、およびポリエーテルイミドから選ばれる1種または2種以上の耐熱性高分子が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等を好適に使用できる。なお、複合化の手法としては、多孔性シートに機能層をコーティングする方法、接着剤で接合する方法、熱圧着する方法等が挙げられる。
 本発明において、多孔質基材の膜厚は、良好な力学物性と内部抵抗を得る観点から、5~25μmの範囲が好適である。多孔質基材のガーレ値(JIS P8117)は、電池の短絡防止や十分なイオン透過性を得る観点から、50~800秒/100ccの範囲が好適である。多孔質基材の突刺強度は、製造歩留まりを向上させる観点から、300g以上が好適である。
[ポリフッ化ビニリデン系樹脂]
 本発明の非水系二次電池用セパレータには、ポリフッ化ビニリデン系樹脂を適用する。ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(すなわちポリフッ化ビニリデン)、フッ化ビニリデンと他の共重合可能なモノマーとの共重合体、あるいはこれらの混合物を用いることができる。フッ化ビニリデンと共重合可能なモノマーとしては、例えばテトラフロロエチレン、ヘキサフロロプロピレン、トリフロロエチレン、トリクロロエチレンあるいはフッ化ビニル等の一種類又は二種類以上を用いることができる。このようなポリフッ化ビニリデン系樹脂は、乳化重合または懸濁重合により得ることが可能である。
 本発明の非水系二次電池用セパレータに用いるポリフッ化ビニリデン系樹脂は、その構成単位としてフッ化ビニリデンが98mol%以上含まれていることが好ましい。フッ化ビニリデンが98mol%以上含まれている場合、厳しい熱プレス条件に対してもより十分な力学物性と耐熱性を確保できる。
 本発明に用いるポリフッ化ビニリデン系樹脂は、重量平均分子量が30万~300万の範囲のものが好ましい。より好ましくは30万~200万の範囲が好適であり、さらに好ましくは50万~150万の範囲が好適である。重量平均分子量が30万より小さいと、接着性多孔質層が電極との接着工程に耐える程の力学物性を有さない場合があり、十分な接着性が得られない場合がある。また、重量平均分子量が300万より大きくなると、樹脂を含むスラリーの粘度が高くなるため、接着性多孔質層の成形が困難となったり、接着性多孔質層に良好な結晶を形成することができず、好適な多孔構造を得ることが困難となる場合があるため好ましくない。
[接着性多孔質層]
 本発明において、接着性多孔質層の多孔構造は重要な技術要素である。その多孔構造は、空孔率が30~60%であり、かつ、平均孔径が1~100nmである。ここで、接着性多孔質層とは、ポリフッ化ビニリデン系樹脂を含んで構成されており、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった多孔質層を意味する。また、平均孔径は、窒素ガス吸着量から算出される接着性多孔質層の空孔表面積Sと、空孔率から算出される接着性多孔質層の空孔体積Vを用いて、すべての孔が円柱状であることを仮定して、以下の式1から算出する。
 d=4×V/S … (式1)
 d:接着性多孔質層の平均孔径
 V:接着性多孔質層の空孔体積
 S:接着性多孔質層の空孔表面積
 接着性多孔質層の空孔表面積Sを求めるためには、まず、窒素ガス吸着法で適用した多孔質基材の比表面積(m/g)と、接着性多孔質層を成形した複合膜の比表面積(m/g)を測定する。そして、それぞれの比表面積にそれぞれの目付(g/m)を乗算して、シートの単位面積あたりの空孔表面積を求め、多孔質基材の空孔表面積を複合膜の空孔表面積から減算することで、接着性多孔質層の空孔表面積Sを算出する。
 本発明においては、接着性多孔質層の空孔率は30~60%である。接着性多孔質層の空孔率が30%以上であれば、良好なイオン透過性が得られ、十分な電池特性を得ることができる。接着性多孔質層の空孔率が60%以下であれば、熱プレス工程で電極と接着させる際に、多孔質構造が潰れない程度の十分な力学物性を得ることができる。また、空孔率が60%以下であれば、表面開孔率が低くなり、接着機能を有するポリフッ化ビニリデン系樹脂が占める面積が増えるため、十分な接着力を確保することができる。なお、接着性多孔質層の空孔率は30~50%であればより好ましい。
 本発明においては、接着性多孔質層の平均孔径は1~100nmである。接着性多孔質層の平均孔径が100nm以下であれば、均一な空孔が均一に分散した多孔質構造になり易く、電極との接着点が均一に分散するため、良好な接着性を得ることができる。また、その場合、イオンの移動も均一となるため、十分なサイクル特性を得ることができ、さらに良好な負荷特性が得られる。一方、平均孔径は均一性という観点では出来るだけ小さいことが好ましいが、1nmより小さい多孔構造を形成することは現実的に困難である。また、接着性多孔質層に電解液を含浸させた場合、ポリフッ化ビニリデン系樹脂は膨潤するが、平均孔径が小さすぎると、膨潤により孔が閉塞し、イオン透過性が阻害されてしまう。このような観点からも平均孔径は1nm以上であることが好ましい。なお、接着性多孔質層の平均孔径は20~100nmであればより好ましい。
 上述した電解液による膨潤は、ポリフッ化ビニリデン系樹脂の種類や電解液の組成によっても異なり、膨潤に伴う不具合の程度も異なる。ポリフッ化ビニリデン系樹脂について着目すると、例えばヘキサフロロプロピレンのような共重合成分を多く含んだ共重合体を用いると、ポリフッ化ビニリデン系樹脂は膨潤しやすくなる。そのため、本発明では1~100nmの平均孔径の範囲において、前述の膨潤に伴う不具合を生じさせないようなポリフッ化ビニリデン系樹脂を選定することが好ましい。そのような観点では、フッ化ビニリデンを98mol%以上含むポリフッ化ビニリデン系樹脂を用いることが好ましい。
 また電解液について着目すると、例えば誘電率の高いエチレンカーボネートやプロピレンカーボネートといった環状カーボネートの含有量が高い電解液を用いると、ポリフッ化ビニリデン系樹脂は膨潤しやすくなる。その結果、前述の膨潤に伴う不具合も発生しやすくなる。この点、フッ化ビニリデンを98mol%以上含むポリフッ化ビニリデン系樹脂を用いれば、環状カーボネートのみからなる電解液を適用した場合であっても、十分なイオン透過性が得られ、良好な電池性能が得られるため好ましい。
 本発明における接着性多孔質層は、非水系二次電池用セパレータとして適当な空孔率を有しているにも関わらず、従来のものに比べて、その平均孔径が非常に小さいことが特徴的である。これは微細な多孔構造が発達していて、均一であることを意味する。このような多孔構造によれば、前述したように、セパレータと電極との界面におけるイオンの移動がより均一になるため、均一な電極反応が得られるようになる。そのため、電池の負荷特性やサイクル特性の向上効果が得られる。また、ポリフッ化ビニリデン系樹脂がセパレータ表面において均一に分布するため、電極との接着性がより良好なものとなる。
 さらに本発明の多孔構造は、多孔質基材と接着性多孔質層との界面におけるイオン移動も良好にする。一般的に、積層型セパレータは2層間の界面で目詰まりが発生しやすく、イオン移動が低下しやすいため、良好な電池特性を得るのが難しい場合がある。しかし、本発明における接着性多孔質層は、微細な多孔構造が発達しており、均一でかつその孔の数が比較的に多い。そのため、多孔質基材の孔と接着性多孔質層の孔を良好に接続できる確率が高くなるから、界面での目詰まりも著しく抑制できる。
 以上の通り、本発明のセパレータにおいては、接着性多孔質層が、熱プレスにも十分に耐え得る十分な力学的物性と均一な多孔質構造を有する。そのため、電極のバインダー樹脂量を減らし、かつ、熱プレス条件を緩和した場合であっても、従来技術に比べて優れた接着性が得られ、電極と接着した後にも十分なイオン透過性を確保できる。したがって、このようなセパレータを用いれば、エネルギー密度が高く、高性能なアルミラミネートパック外装の非水系二次電池を提供することが可能となる。
 本発明のような接着性多孔質層を得るためには、例えば重量平均分子量が高いポリフッ化ビニリデン系樹脂を適用する方法が挙げられ、具体的には60万以上、好ましくは100万以上のポリフッ化ビニリデン系樹脂を適用することが好ましい。また、ポリフッ化ビニリデン系樹脂におけるフッ化ビニリデンの含有量を高くする方法も挙げられ、具体的にはフッ化ビニリデンが98mol%以上含まれたポリフッ化ビニリデン系樹脂を用いることが好ましい。また、凝固浴の温度をより低くして、微細な空孔を形成する方法等も挙げられる。
 なお、接着性多孔質層には、本発明の効果を阻害しない範囲内で、無機物あるいは有機物からなるフィラーやその他添加物を混入することも可能である。このようなフィラーを混入させることで、セパレータの滑り性や耐熱性を改善させることが可能となる。無機フィラーとしては、例えばアルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等を用いることができる。有機フィラーとしては例えばアクリル樹脂等を用いることができる。
[非水系二次電池用セパレータ]
 本発明の非水系二次電池用セパレータは、上述したように、多孔質基材と、多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層とを備えている。ここで、接着性多孔質層は、電解液を含んだ状態で熱プレスによって電極と接着する接着層であるため、セパレータの最外層として存在する必要がある。当然、正極および負極の両方とセパレータを接着させた方がサイクル寿命の観点から好ましいので、多孔質基材の表裏に接着性多孔質層を形成させた方が好ましい。
 本発明において、接着性多孔質層は、イオン透過性という観点から十分に多孔化された構造であることが好ましい。具体的には用いた多孔質基材のガーレ値と、接着性多孔質層を形成した後の複合セパレータのガーレ値との差が、300秒/100cc以下、さらに好ましくは150秒/100cc以下、さらに好ましくは100秒/100cc以下であることが好ましい。この差が300秒/100ccより高い場合、接着性多孔質層が緻密すぎてイオン透過を阻害し、十分な電池の特性が得られない場合がある。
 本発明の非水系二次電池用セパレータのガーレ値は、十分な電池性能を得る観点から、50秒/100cc以上800秒/100cc以下の範囲が好適である。
 非水系二次電池用セパレータの空孔率は、本発明の効果とセパレータの力学物性を良好に得る観点から、30%以上60%以下の範囲が適当である。
 該ポリフッ化ビニリデン系樹脂の重量は、電極との接着性、イオン透過性および電池の負荷特性の観点から、一方の面で0.5g/m以上1.5g/m以下の範囲が好適である。表裏両面に接着性多孔質層を形成する場合、ポリフッ化ビニリデン系樹脂の合計重量は1.0g/m以上3.0g/m以下が好適である。
 本発明においては、接着性多孔質層を多孔質基材の両面に形成する場合、その表裏の重量差も重要である。具体的には、多孔質基材の表裏に形成された接着性多孔質層の両面合計の重量が1.0~3.0g/mであり、接着性多孔質層の一面側の重量と他面側の重量差が、両面合計の重量に対して20%以下であることが好ましい。これが20%を超えるとカールが顕著となることがあり、ハンドリング上支障となったり、サイクル特性が低下したりする場合もある。
 本発明において、非水系二次電池用セパレータの曲路率は、良好なイオン透過性を確保するという観点から、1.5~2.5の範囲であることが好ましい。非水系二次電池用セパレータの膜厚は、機械強度とエネルギー密度の観点から、5~35μmが好ましい。接着性多孔質層の片面の膜厚としては、接着性と良好なイオン透過性を確保するという観点から、0.5~5μmの範囲であることが好ましい。接着性多孔質層におけるポリフッ化ビニリデン系樹脂のフィブリル径は、サイクル特性の観点から、10~1000nmの範囲であることが好ましい。
 非水系二次電池用セパレータの膜抵抗は、十分な電池の負荷特性を確保するという観点から、1~10ohm・cmの範囲であることが好ましい。ここで膜抵抗とはセパレータに電解液を含浸させたときの抵抗値であり、交流法にて測定される。当然、電解液の種類、温度によって異なるが、上記の数値は電解液として1M LiBF プロピレンカーボネート/エチレンカーボネート(1/1重量比)を用い、20℃にて測定した数値である。
[非水系二次電池用セパレータの製造方法]
 上述した本発明の非水系二次電池用セパレータは、ポリフッ化ビニリデン系樹脂を含む溶液を多孔質基材上に直接塗工して、ポリフッ化ビニリデン系樹脂を固化させることで、接着性多孔質層を多孔質基材上に一体的に形成する方法で製造できる。
 具体的に、まずポリフッ化ビニリデン系樹脂を溶媒に溶解して、塗工液を作製する。この塗工液を多孔質基材上へ塗工し、適切な凝固液に浸漬する。これにより、相分離現象を誘発しながら、ポリフッ化ビニリデン系樹脂を固化させる。この工程でポリフッ化ビニリデン系樹脂からなる層は多孔構造となっている。その後、水洗することで凝固液を除去し、乾燥することで接着性多孔質層を多孔質基材上に一体的に形成することができる。
 上記の塗工液としては、ポリフッ化ビニリデン系樹脂を溶解する良溶媒を用いることができる。このような良溶媒としては、例えば、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミドなどの極性アミド溶媒を好適に用いることができる。良好な多孔構造を形成するという観点においては、上記の良溶媒に加えて、相分離を誘発させる相分離剤を混合させる方が好ましい。このような相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、あるいはトリプロピレングリコールなどが挙げられる。このような相分離剤は、塗工に適切な粘度が確保できる範囲で添加することが好ましい。また、接着性多孔質層にフィラーやその他添加物を混入させる場合は、上記塗工液中に混合あるいは溶解させればよい。
 塗工液の組成は、ポリフッ化ビニリデン系樹脂が3~10重量%の濃度で含まれていることが好ましい。溶媒としては、適切な多孔構造を形成する観点から、良溶媒を60重量%以上、相分離剤を40重量%以下含む混合溶媒を用いることが好ましい。
 凝固液としては、水、水と前記良溶媒の混合溶媒、あるいは、水と前記良溶媒と前記相分離剤の混合溶媒を用いることができる。特に水と良溶媒と相分離剤の混合溶媒が好ましく、その場合、良溶媒と相分離剤の混合比はポリフッ化ビニリデン系樹脂の溶解に用いた混合溶媒の混合比に合わせた方が生産性の観点から好適である。水の濃度は、良好な多孔構造を形成し、生産性を向上させる観点から、40~90重量%であることが好ましい。
 多孔質基材への塗工液の塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーターなどの従来の塗工方式を適用可能である。接着性多孔質層を多孔質基材の両面に形成する場合、塗工液を片面づつ塗工してから凝固、水洗および乾燥することも可能だが、塗工液を両面同時に多孔質基材上に塗工してから凝固、水洗および乾燥する方が、生産性の観点から好適である。
 なお、本発明のセパレータは、上述した湿式塗工法以外に、乾式塗工法でも製造することができる。ここで、乾式塗工法とは、ポリフッ化ビニリデン系樹脂と溶媒を含んだ塗工液を多孔質基材上に塗工し、これを乾燥することで溶媒を揮発除去することにより、多孔膜を得る方法をいう。ただし、乾式塗工法の場合、湿式塗工法と比べて塗工膜が緻密膜になり易く、塗工液にフィラー等を添加しなければ多孔質層を得ることは殆ど不可能である。また、このようなフィラー等を添加したとしても、良好な多孔質構造は得られ難い。よって、このような観点からすれば、本発明では湿式塗工法を用いることが好ましい。
 また、本発明のセパレータは、接着性多孔質層と多孔質基材を別個に作製しておき、これらのシートを重ね合わせて、熱圧着や接着剤により複合化する方法等によっても製造できる。接着性多孔質層を独立したシートとして得る方法としては、塗工液を剥離シート上に塗工し、上述した湿式塗工法あるいは乾式塗工法を用いて接着性多孔質層を形成し、接着性多孔質層のみを剥離する方法等が挙げられる。
[非水系二次電池]
 本発明の非水系二次電池は、上述した本発明のセパレータを用いたことを特徴とする。
 本発明において、非水系二次電池は、正極および負極の間にセパレータが配置され、これらの電池素子が電解液と共に外装内に封入された構成となっている。非水系二次電池としてはリチウムイオン二次電池が好適である。
 正極としては、正極活物質、バインダー樹脂および導電助剤からなる電極層を、正極集電体上に形成した構成を採用できる。正極活物質としては、例えばコバルト酸リチウム、ニッケル酸リチウム、スピネル構造のマンガン酸リチウム、あるいはオリビン構造のリン酸鉄リチウムなどが挙げられる。本発明では、セパレータの接着性多孔質層を正極側に配置した場合、ポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3といった正極活物質を適用しやすくなるという利点もある。バインダー樹脂としては例えばポリフッ化ビニリデン系樹脂などが挙げられる。導電助剤としては例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末などが挙げられる。集電体としては例えば厚さ5~20μmのアルミ箔などが挙げられる。
 負極としては、負極活物質、およびバインダー樹脂からなる電極層を、負極集電体上に形成した構成を採用でき、必要に応じて電極層中に導電助剤を添加してもよい。負極活物質としては、例えばリチウムを電気化学的に吸蔵することができる炭素材料や、シリコンあるいは錫などのリチウムと合金化する材料などを用いることができる。バインダー樹脂としては、例えばポリフッ化ビニリデン系樹脂やブチレン-スタジエンゴムなどが挙げられる。本発明の非水系二次電池用セパレータの場合、接着性が良好であるため、負極バインダーとしてポリフッ化ビニリデン系樹脂だけでなくブチレン-スタジエンゴムを用いた場合でも十分な接着性を確保できる。また、導電助剤としては例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末などが挙げられる。集電体としては例えば厚さ5~20μmの銅箔などが挙げられる。また、上記の負極に代えて、金属リチウム箔を負極として用いることも可能である。
 電解液は、リチウム塩を適切な溶媒に溶かした構成となっている。リチウム塩としては、例えばLiPF、LiBF、LiClOなどが挙げられる。溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート等の環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートおよびそのフッ素置換体等の鎖状カーボネート、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル、あるいは、これらの混合溶媒を好適に用いることができる。特に、環状カーボネート/鎖状カーボネート=20~40/80~60重量比の溶媒に、リチウム塩を0.5~1.5M溶解したものが好適である。なお、従来の接着性多孔質層を備えたセパレータにおいては、使用する電解液の種類によって電極に対する接着性を発揮し難い場合もあったが、本発明のセパレータによれば、電解液の種類によらず良好な接着性を発揮し得る点にも大きな利点がある。
 本発明の非水系二次電池用セパレータは金属缶外装の電池にも適用可能であるが、電極との接着性が良好であるためアルミラミネートフィルム外装のソフトパック電池に好適に用いられる。このような電池を作製する方法は、前記正極および負極をセパレータを介して接合させ、これに電解液を含浸させアルミラミネートフィルム内に封入する。それを熱プレスすることで、非水系二次電池を得ることができる。このような本発明の構成であれば、電極とセパレータを良好に接着でき、サイクル寿命に優れた非水系二次電池を得ることができる。また、電極とセパレータの接着性が良好なため、安全性にも優れた電池となる。電極とセパレータの接合方法は電極とセパレータを積層させていくスタック方式、電極とセパレータを一緒に捲回する方式などがあり、本発明はいずれにも適用可能である。
 以下、本発明を実施例により説明する。ただし、本発明は以下の実施例に限定されるものではない。
[測定方法]
(接着性多孔質層の平均孔径)
 ガス吸着法でBET式を適用することにより、ポリオレフィン微多孔膜の比表面積(m/g)と、接着性多孔質層を形成した複合セパレータの比表面積(m/g)を測定する。これら比表面積(m/g)にそれぞれの目付(g/m)を乗算して、シート1m当たりの空孔表面積を算出する。ポリオレフィン微多孔膜の空孔表面積を複合セパレータの空孔表面積から減算することで、接着性多孔質層1m当たりの空孔表面積Sを算出する。別途、空孔率からシート1m当たりの空孔体積Vを算出する。ここですべての孔が円柱状であることを仮定すると、平均孔径(直径)dは空孔表面積Sおよび空孔体積Vから以下の式2で算出される。
 d=4×V/S … (式2)
 d:接着性多孔質層の平均孔径
 V:接着性多孔質層の空孔体積
 S:接着性多孔質層の空孔表面積
 このdをポリフッ化ビニリデン系樹脂からなる接着性多孔質層の平均孔径とした。
(膜厚)
 接触式の厚み計(LITEMATIC ミツトヨ社製)を用いて測定した。測定端子は直径5mmの円柱状のものを用い、測定中には7gの荷重が印加されるように調整して行った。
(目付)
 サンプルを10cm×10cmに切り出し、その重量を測定した。重量を面積で割ることで目付を求めた。
(ポリフッ化ビニリデン系樹脂の重量)
 エネルギー分散型蛍光X線分析装置(EDX-800HS 島津製作所)を用いてFKαのスペクトル強度からポリフッ化ビニリデン系樹脂の重量を測定した。この測定ではX線を照射した面のポリフッ化ビニリデン系樹脂の重量が測定される。よって表裏両面にポリフッ化ビニリデン系樹脂からなる多孔質層を形成した場合、表裏各々の測定を行うことで表裏各々のポリフッ化ビニリデン系樹脂の重量が測定され、それを合計することで表裏合計の重量が測定できる。
(空孔率)
 複合セパレータの空孔率ε(%)は以下の式3から算出した。
 ε={1―(Wa/0.95+Wb/1.78)/t}×100 … (式3)
 ここで、Waは基材の目付(g/m)、Wbはポリフッ化ビニリデン系樹脂の重量(g/m)、tは膜厚(μm)である。
 接着性多孔質層の空孔率を算出する場合は、上記式3において、Wa=0(g/m)として、tは接着性多孔質層の厚み、すなわち複合セパレータの膜厚から基材の膜厚を引いた値とすることで、求められる。
(ガーレ値)
 JIS P8117に従い、ガーレ式デンソメータ(G-B2C 東洋精機社製)にて測定した。
[実施例1]
 ポリフッ化ビニリデン系樹脂としてクレハ化学社製のKFポリマー #9300(フッ化ビニリデン/ヘキサフロロプロピレン=98.9/1.1mol% 重量平均分子量195万)を用いた。該ポリフッ化ビニリデン系樹脂を5重量%の濃度でジメチルアセトアミド/トリプロピレングリコール=7/3重量比である混合溶媒に溶解し、塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、水/ジメチルアセトアミド/トリプロピレングリコール=57/30/13重量比の凝固液(40℃)に浸漬することで固化させた。これを水洗、乾燥することでポリオレフィン系微多孔膜の表裏両面にポリフッ化ビニリデン系樹脂からなる接着性多孔質層が形成された本発明の非水系二次電池用セパレータを得た。このセパレータについて、セパレータの膜厚、ポリフッ化ビニリデン系樹脂中のVDFの含有量、セパレータ(全体)と接着性多孔質層(PVdF層)の空孔率、接着性多孔質層(PVdF層)の平均孔径と重量(両面の合計重量、表面の重量、裏面の重量、表面側の重量と裏面側の重量差の両面合計重量に対する割合)、セパレータのガーレ値の測定結果を表1に示す。なお、以下の実施例および比較例のセパレータについても同様に表1にまとめて示す。
[実施例2~5]
 実施例1と同様の塗工液、およびポリエチレン微多孔膜を用い、同様の方法で、表1に示すように塗工量のみ変化させて本発明の非水系二次電池用セパレータを得た。
[実施例6、7]
 実施例1と同様の塗工液、およびポリエチレン微多孔膜を用い、同様の方法で、表1に示すように表裏の塗工量のみ変化させて本発明の非水系二次電池用セパレータを得た。
[実施例8]
 ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造からなる膜厚12μm、ガーレ値425秒/100cc、空孔率38%のポリオレフィン微多孔膜(M824 セルガード社)をポリオレフィン微多孔膜として用いた以外は、実施例1と同様にして本発明の非水系二次電池用セパレータを得た。
[実施例9]
 共重合組成がフッ化ビニリデン/ヘキサフロロプロピレン/クロロトリフロロエチレン=92.0/4.5/3.5重量比となるポリフッ化ビニリデン系樹脂を乳化重合にて作製した。このポリフッ化ビニリデン系樹脂の重量平均分子量は41万であった。該ポリフッ化ビニリデンを用い、両面の塗工量を0.8g/mにしたこと以外は実施例1と同様にして、本発明の非水系二次電池用セパレータを得た。
[比較例1]
 共重合組成がフッ化ビニリデン/ヘキサフロロプロピレン/クロロトリフロロエチレン=92.0/4.5/3.5重量比となるポリフッ化ビニリデン系樹脂を乳化重合にて作製した。このポリフッ化ビニリデン系樹脂の重量平均分子量は41万であった。該ポリフッ化ビニリデンを12重量%の濃度でジメチルアセトアミド/トリプロピレングリコール=60/40重量比である混合溶媒に溶解し、塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、水/ジメチルアセトアミド/トリプロピレングリコール=50/30/20重量比の凝固液(40℃)に浸漬することで固化させた。これを水洗、乾燥することでポリオレフィン系微多孔膜にポリフッ化ビニリデン系樹脂からなる多孔質層が形成された非水系二次電池用セパレータを得た。
[比較例2]
 塗工液の組成として、ポリフッ化ビニリデン系樹脂の濃度を8重量%とし、ジメチルアセトアミド/トリプロピレングリコール=55/45重量比とした以外、比較例1と同様にして非水系二次電池用セパレータを得た。
[比較例3]
 凝固液の温度を0℃とした以外は実施例1と同様の方法にて非水系二次電池用セパレータを得た。
[比較例4]
 ポリフッ化ビニリデン系樹脂としてクレハ化学社製のKFポリマー #9300(フッ化ビニリデン/ヘキサフロロプロピレン=98.9/1.1mol% 重量平均分子量195万)を用いた。該ポリフッ化ビニリデンを5重量%でNMPに溶解し塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、100℃で12時間真空乾燥させた。しかし、得られたポリフッ化ビニリデン膜は緻密であり、接着性多孔質層を形成することはできなかった。
[電解液を含浸させたときのセパレータの抵抗測定]
 電解液に1M LiBF プロピレンカーボネート/エチレンカーボネート=1/1重量比を用い、この電解液をセパレータに含浸させた。これをリードタブ付きのアルミ箔電極に挟みアルミパックに封入して試験セルを作製した。この試験セルの抵抗を交流インピーダンス法(測定周波数:100kHz)により20℃、-20℃にて測定した。この測定を実施例1、比較例1~3及び上記のポリエチレン微多孔膜(TN0901:SK社製)について実施した。その結果を表2に示す。また、得られた20℃の抵抗値から以下の式4を適用することで曲路率を算出した。この結果も表2に示す。
 τ={(R・ε/100)/(r・t)}1/2 … (式4)
 τ:曲路率
 R(ohm・cm):電解液を含浸させたときのセパレータの抵抗
 r(ohm・cm):電解液の比抵抗
 ε(%):空孔率
 t(cm):膜厚
[抵抗測定結果の解釈]
 -20℃の抵抗を20℃の抵抗で割った値については、実施例1、比較例2およびポリオレフィン微多孔膜では同等となっているのに対し、比較例1のものは著しく増大している。接着性多孔質層中に電解液が含浸した状態においては、膨潤した樹脂中に存在している電解液のイオンは、空孔中に存在している電解液のイオンに比べて移動速度が極めて遅く、その差は低温でより顕著となる。このことから、比較例1のものは実施例1のものに比べて、膨潤した樹脂が多量の電解液を含み、かつ、空孔に独立に存在している電解液量が少ないため、イオンの移動に差が生じ、低温における抵抗値が高くなったものと推定される。比較例1,2は実施例1に比べ電解液に膨潤しやすいポリフッ化ビニリデン系樹脂を適用しているが、このような樹脂を適用した場合は、孔径を小さくしていくと膨潤した樹脂中のイオンの量が増大していく。よって、このような樹脂を適用した場合は、ポリフッ化ビニリデン系樹脂からなる多孔質層の孔径を小さくしてしまうと、イオン透過性、特に低温におけるイオン透過性が低下してしまうため、好ましくない。それに対し、実施例1の場合は孔径が小さいにも関わらす、低温での抵抗増大が小さい。これは実施例1のポリフッ化ビニリデン系樹脂が比較的に電解液に膨潤し難いためであり、これより接着性多孔質層の多孔構造に対して適切なポリフッ化ビニリデン系樹脂を選定するのが良いことが分かる。
 実施例1と比較例1~3の曲路率を比較すると実施例1のものが有意に小さいことが分かる。いずれのサンプルにおいても同じポリオレフィン微多孔膜を用いていることと、接着性多孔質層の厚みがポリオレフィン微多孔膜の厚みに対して有意に薄いことを考えると、曲路率はポリオレフィン微多孔膜と接着性多孔質層との間の界面の目詰まりを反映したものと推定される。つまり、曲路率が高いほど、目詰まりの程度が大きいと言える。前述したように比較例の系は電解液に膨潤しやすいポリフッ化ビニリデン系樹脂を適用しているため、この膨潤による目詰まりも考慮する必要がある。前述した内容を踏まえると、比較例2の平均孔径が大きな系は膨潤の影響が小さいと思われるが、そのような系においても曲路率は有意に高い。これは本発明における接着性多孔質層が微細で均一な多孔質であるため、確率的に目詰まりし難いことを反映していると思われる。これより、本発明のような多孔質構造とすることで界面の目詰まりを防ぐことができ、本発明の構成はイオン移動という観点において好適であると考えられる。
 比較例3はポリフッ化ビニリデン系樹脂からなる多孔質層の空孔率が小さいものであるが、このような構成では該ポリフッ化ビニリデン系樹脂からなる多孔質層に形成されている孔が少ないため、ポリオレフィン微多孔膜との界面形成が好ましくなく、目詰まりが顕著となり、そのため曲路率が高くなっている。故に20℃でも-20℃でも膜抵抗が高く、十分なイオン透過性が得られていない。なお、この傾向は-20℃においてより顕著となっている。
[非水系二次電池の作製]
 (負極の作製)
 負極活物質である人造黒鉛(MCMB25-28 大阪ガス化学社製)300g、バインダーである日本ゼオン社製の「BM-400B」(スチレン-ブタジエン共重合体の変性体を40重量%含む水溶性分散液)7.5g、増粘剤であるカルボキシメチルセルロース3g、適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、得られた塗膜を乾燥し、プレスして負極活物質層を有する負極を作製した。
 (正極の作製)
 正極活物質であるコバルト酸リチウム(セルシードC 日本化学工業社製)粉末を89.5g、導電助剤のアセチレンブラック(デンカブラック 電気化学工業社製)4.5g、バインダーであるポリフッ化ビニリデン(KFポリマー W#1100 クレハ化学社製)を6重量%となるようにNMPに溶解した溶液をポリフッ化ビニリデンの重量が6重量%となるように双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、得られた塗膜を乾燥し、プレスして正極活物質層を有する正極を作製した。
 (電池の作製)
 前記の正極と負極にリードタブを溶接し、セパレータを介してこれら正負極を接合させ、電解液をしみ込ませてアルミパック中に真空シーラーを用いて封入した。ここで電解液は1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用いた。これを熱プレス機により電極1cm当たり20kgの荷重をかけ、90℃、2分の熱プレスを行うことで試験電池を作製した。
[負荷特性試験]
 負荷特性試験は前記作製した非水系二次電池を用いて実施した。電池の負荷特性は25℃にて0.2Cの放電容量を基準にした2Cの相対放電容量を測定し、これを指標とした。この試験を実施例1~9、比較例1~4のセパレータを用いた電池について実施した。その結果を表3に示す。
[充放電サイクル試験]
 充放電サイクル試験は前記作製した非水系二次電池を用いて実施した。充電条件は1C、4.2Vの定電流定電圧充電、放電条件は1C、2.75Vカットオフの定電流放電としサイクル特性試験を実施した。ここでサイクル特性の指標は100サイクル後の容量維持率とした。この試験を実施例1~9、比較例1~4のセパレータを用いた電池について実施した。その結果を表3に示す。
[電極と接着性確認]
 充放電サイクル試験後の電池を解体しセパレータと電極の接着性を確認した。接着性は接着力と均一性の観点から確認し、その結果を表3に示す。なお、接着力に関しては、正極側および負極側のそれぞれについて、実施例1のセパレータを用いた場合の剥離強度を100としたときの相対値で表3に示す。均一性に関しては、正極側および負極側のそれぞれについて剥離テストを行なった後に、接着性多孔質層がほぼ全て電極表面に付着していたものを均一性が良好(〇)と判断し、接着性多孔質層の大部分が電極表面に付着しているが一部破損しているものは均一性が中程度(△)と判断し、接着性多孔質層の大部分が電極表面に付着しておらず著しく破損していたものは均一性が不良(×)と判断した。
 比較例1,2では接着性が好ましくないが、これは接着性多孔質層の平均孔径が大きく空孔率が高いため、電極との接着工程である熱プレス時に接着性多孔質層が力学的に耐えることができず、電極とセパレータの間に保持されず外部にはみ出してしまったことによる。それに対し、実施例1~9ではそのようなことがなかった。このような観点から本発明非水系二次電池用セパレータの平均孔径、空孔率は好適であることが分かる。
[耐熱性評価]
 実施例1のセパレータと実施例8のセパレータ耐熱性を熱機械物性測定(TMA)により比較した。具体的には、それぞれのセパレータを幅4mmに切り出し、その両端をチャックで押さえ、チャック間距離が10mmとなるようにセットした。印加荷重10mNとし、昇温速度10℃/minで昇温させていき、セパレータが破断する温度を測定した。実施例1のセパレータは155℃で破断が確認されたの対し、実施例8のセパレータは180℃で破断が確認された。ポリプロピレンを適用することは耐熱性の観点からは好ましいことが分かる。
[電解液の種類と接着性]
 実施例1と比較例1~4のセパレータについて、各種電解液を用いて、上記と同様にして電極との接着性テストを実施した。なお、電解液Aとして1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用い、電解液Bとして1M LiPF エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート(3/2/5重量比)を用い、電解液Cとして1M LiPF エチレンカーボネート/プロピレンカーボネート(1/1重量比)を用いた。結果を表4に示す。なお、表4には、実施例1のセパレータの正極、負極おのおので得られた剥離強度を100としたときの剥離強度の相対値で、正極と負極の剥離強度の平均値が70以上のものについては〇と記載し、50以上70未満のものについては△と記載し、50未満のものについては×と記載した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 本発明の非水系二次電池セパレータは非水系二次電池に好適に用いることができ、特に電極との接合が重要なアルミラミネート外装の非水系二次電池に好適である。
 

Claims (9)

  1.  多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、
     前記接着性多孔質層は、空孔率が30%以上60%以下であり、かつ、平均孔径が1nm以上100nm以下であることを特徴とする非水系二次電池用セパレータ。
  2.  前記接着性多孔質層は空孔率が30%以上50%以下であり、
     前記ポリフッ化ビニリデン系樹脂はフッ化ビニリデンが98mol%以上含まれていることを特徴とする請求項1に記載の非水系二次電池用セパレータ。
  3.  前記多孔質基材の一方の面に形成されている前記接着性多孔質層の重量が、0.5g/m以上1.5g/m以下であることを特徴とする請求項1または2に記載の非水系二次電池用セパレータ。
  4.  前記接着性多孔質層は前記多孔質基材の表裏両面に形成されていることを特徴とする請求項1~3のいずれかに記載の非水系二次電池用セパレータ。
  5.  前記多孔質基材の両面に形成された前記接着性多孔質層の両面合計の重量が、1.0g/m以上3.0g/m以下であり、
     前記接着性多孔質層の一面側の重量と他面側の重量の差が、両面合計の重量に対して20%以下であることを特徴とする請求項4に記載の非水系二次電池用セパレータ。
  6.  前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜であることを特徴とする請求項1~5のいずれかに記載の非水系二次電池用セパレータ。
  7.  前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜であることを特徴とする請求項1~5のいずれかに記載の非水系二次電池用セパレータ。
  8.  前記ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含むことを特徴とする請求項7に記載の非水系二次電池用セパレータ。
  9.  請求項1~8のいずれかに記載のセパレータを用いた非水系二次電池。
PCT/JP2011/074258 2011-04-08 2011-10-21 非水系二次電池用セパレータおよび非水系二次電池 WO2012137375A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/704,116 US9065119B2 (en) 2011-04-08 2011-10-21 Separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR1020137000123A KR101297769B1 (ko) 2011-04-08 2011-10-21 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
CN201180049820.4A CN103155219B (zh) 2011-04-08 2011-10-21 非水系二次电池用隔膜及非水系二次电池
JP2013508720A JP5432417B2 (ja) 2011-04-08 2011-10-21 非水系二次電池用セパレータおよび非水系二次電池
EP11863010.2A EP2696391B1 (en) 2011-04-08 2011-10-21 Nonaqueous secondary battery separator and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-086388 2011-04-08
JP2011086388 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012137375A1 true WO2012137375A1 (ja) 2012-10-11

Family

ID=46968799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074258 WO2012137375A1 (ja) 2011-04-08 2011-10-21 非水系二次電池用セパレータおよび非水系二次電池

Country Status (7)

Country Link
US (1) US9065119B2 (ja)
EP (1) EP2696391B1 (ja)
JP (1) JP5432417B2 (ja)
KR (1) KR101297769B1 (ja)
CN (1) CN103155219B (ja)
TW (1) TWI497790B (ja)
WO (1) WO2012137375A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143614A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种锂硫电池
KR20150129669A (ko) * 2013-03-19 2015-11-20 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
JP2016051696A (ja) * 2014-08-29 2016-04-11 住友化学株式会社 非水二次電池用セパレータ、積層体、積層体の製造方法、および非水二次電池
EP2897197A4 (en) * 2013-03-20 2016-06-01 Lg Chemical Ltd DISCONNECTED MEMBRANE FOR AN ELECTROCHEMICAL DEVICE AND METHOD OF MANUFACTURING THEREOF
JP2017066356A (ja) * 2016-02-10 2017-04-06 住友化学株式会社 多孔質層、積層体、多孔質層を含む非水電解液二次電池用部材、および多孔質層を含む非水電解液二次電池
JP2017092050A (ja) * 2017-02-24 2017-05-25 住友化学株式会社 多孔質層、積層体、多孔質層を含む非水電解液二次電池用部材、および多孔質層を含む非水電解液二次電池
JP2017135111A (ja) * 2015-03-24 2017-08-03 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US9905882B2 (en) * 2012-11-22 2018-02-27 Samsung Sdi Co., Ltd. Positive active material layer for rechargeable lithium battery, separator for rechargeable lithium battery, and rechargeable lithium battery including at least one of same
US9991489B2 (en) 2015-10-02 2018-06-05 Sumitomo Chemical Company, Limited Porous layer, laminated body, nonaqueous electrolyte secondary battery member including the porous layer, and nonaqueous electrolyte secondary battery including the porous layer
JP2018101613A (ja) * 2016-12-20 2018-06-28 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス
CN109478622A (zh) * 2016-06-14 2019-03-15 索尔维公司 用于电化学装置的氟聚合物膜
US10361458B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10361418B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10367182B2 (en) 2016-06-21 2019-07-30 Sumitomo Chemical Company, Limited Laminated body
US10388932B2 (en) 2016-06-21 2019-08-20 Sumitomo Chemical Company, Limited Laminated body
US10461297B2 (en) 2016-06-21 2019-10-29 Sumitomo Chemical Company, Limited Laminated body
US10476066B2 (en) 2016-06-21 2019-11-12 Sumitomo Chemical Company, Limited Laminated body
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
WO2023145169A1 (ja) * 2022-01-26 2023-08-03 ダイキン工業株式会社 組成物、ポリマーおよび積層体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
KR20140018171A (ko) 2010-07-19 2014-02-12 옵토도트 코포레이션 전기화학 전지용 세퍼레이터
JP5603522B2 (ja) 2012-07-30 2014-10-08 帝人株式会社 非水電解質電池用セパレータおよび非水電解質電池
WO2014179355A1 (en) * 2013-04-29 2014-11-06 Madico, Inc. Nanoporous composite separators with increased thermal conductivity
JP6297685B2 (ja) 2013-10-31 2018-03-20 エルジー・ケム・リミテッド 電気化学素子用分離膜の製造方法及びその方法によって製造された電気化学素子用分離膜
CN104681858B (zh) * 2015-01-30 2017-05-10 中南大学 一种超薄柔性锂离子电池及其制备方法
US10777795B2 (en) * 2015-03-05 2020-09-15 Nec Corporation Separator including resin member formed inside porous substrate, and secondary battery equipped therewith
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
WO2016196870A1 (en) * 2015-06-03 2016-12-08 Celgard, Llc Improved low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods
US10777801B2 (en) * 2015-08-25 2020-09-15 Lg Chem, Ltd. Complex separator for electrochemical element, comprising bonding layer, and electrochemical element comprising same
CN107293680B (zh) * 2016-04-01 2020-09-22 宁德新能源科技有限公司 锂离子电池及其隔离膜
JP6430620B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430616B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6507217B1 (ja) 2017-12-19 2019-04-24 住友化学株式会社 非水電解液二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216734A (ja) * 2001-01-16 2002-08-02 Asahi Kasei Corp リチウム電池用セパレータ
JP2004111160A (ja) * 2002-09-17 2004-04-08 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池
JP2004146190A (ja) * 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP2005019156A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
JP2006027024A (ja) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp 多層多孔膜
JP4127989B2 (ja) 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2008254288A (ja) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp 複合微多孔膜、電池用セパレータ、及び複合微多孔膜の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001236687A1 (en) * 2000-02-04 2001-08-14 Amtek Research International Llc Freestanding microporous separator including a gel-forming polymer
TW531916B (en) * 2000-03-07 2003-05-11 Teijin Ltd Lithium ion secondary cell, separator, cell pack, and charging method
KR100573358B1 (ko) 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
JP2007188777A (ja) * 2006-01-13 2007-07-26 Sony Corp セパレータおよび非水電解質電池
CN101779311B (zh) * 2007-06-06 2013-11-20 帝人株式会社 非水系二次电池隔膜用聚烯烃微多孔膜基材、其制备方法、非水系二次电池隔膜和非水系二次电池
PL2927993T3 (pl) * 2008-01-30 2019-01-31 Lg Chem, Ltd. Separator dla urządzeń elektrochemicznych
KR101943647B1 (ko) * 2009-02-23 2019-01-29 가부시키가이샤 무라타 세이사쿠쇼 비수 전해질 조성물, 비수 전해질 이차 전지 및 비수 전해질 이차 전지의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216734A (ja) * 2001-01-16 2002-08-02 Asahi Kasei Corp リチウム電池用セパレータ
JP4127989B2 (ja) 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2004111160A (ja) * 2002-09-17 2004-04-08 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池
JP2004146190A (ja) * 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP2005019156A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
JP2006027024A (ja) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp 多層多孔膜
JP2008254288A (ja) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp 複合微多孔膜、電池用セパレータ、及び複合微多孔膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696391A4

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905882B2 (en) * 2012-11-22 2018-02-27 Samsung Sdi Co., Ltd. Positive active material layer for rechargeable lithium battery, separator for rechargeable lithium battery, and rechargeable lithium battery including at least one of same
KR20150129669A (ko) * 2013-03-19 2015-11-20 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
KR102151509B1 (ko) * 2013-03-19 2020-09-03 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
US10177359B2 (en) 2013-03-20 2019-01-08 Lg Chem, Ltd. Separator for electrochemical device and method for manufacturing the same
EP2897197A4 (en) * 2013-03-20 2016-06-01 Lg Chemical Ltd DISCONNECTED MEMBRANE FOR AN ELECTROCHEMICAL DEVICE AND METHOD OF MANUFACTURING THEREOF
CN104143614A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种锂硫电池
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
KR101762087B1 (ko) * 2014-08-29 2017-07-26 스미또모 가가꾸 가부시키가이샤 비수 이차 전지용 세퍼레이터, 적층체, 적층체의 제조 방법, 및 비수 이차 전지
US9865857B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
JP2016051696A (ja) * 2014-08-29 2016-04-11 住友化学株式会社 非水二次電池用セパレータ、積層体、積層体の製造方法、および非水二次電池
US10014506B2 (en) 2014-08-29 2018-07-03 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
JP2017135111A (ja) * 2015-03-24 2017-08-03 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US9991489B2 (en) 2015-10-02 2018-06-05 Sumitomo Chemical Company, Limited Porous layer, laminated body, nonaqueous electrolyte secondary battery member including the porous layer, and nonaqueous electrolyte secondary battery including the porous layer
JP2017066356A (ja) * 2016-02-10 2017-04-06 住友化学株式会社 多孔質層、積層体、多孔質層を含む非水電解液二次電池用部材、および多孔質層を含む非水電解液二次電池
CN109478622A (zh) * 2016-06-14 2019-03-15 索尔维公司 用于电化学装置的氟聚合物膜
US10361458B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10361418B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10367182B2 (en) 2016-06-21 2019-07-30 Sumitomo Chemical Company, Limited Laminated body
US10388932B2 (en) 2016-06-21 2019-08-20 Sumitomo Chemical Company, Limited Laminated body
US10461297B2 (en) 2016-06-21 2019-10-29 Sumitomo Chemical Company, Limited Laminated body
US10476066B2 (en) 2016-06-21 2019-11-12 Sumitomo Chemical Company, Limited Laminated body
JP2018101613A (ja) * 2016-12-20 2018-06-28 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス
JP2017092050A (ja) * 2017-02-24 2017-05-25 住友化学株式会社 多孔質層、積層体、多孔質層を含む非水電解液二次電池用部材、および多孔質層を含む非水電解液二次電池
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
WO2023145169A1 (ja) * 2022-01-26 2023-08-03 ダイキン工業株式会社 組成物、ポリマーおよび積層体

Also Published As

Publication number Publication date
TW201242136A (en) 2012-10-16
US9065119B2 (en) 2015-06-23
EP2696391B1 (en) 2016-03-30
KR20130036043A (ko) 2013-04-09
CN103155219A (zh) 2013-06-12
EP2696391A4 (en) 2014-02-12
JP5432417B2 (ja) 2014-03-05
KR101297769B1 (ko) 2013-08-20
EP2696391A1 (en) 2014-02-12
TWI497790B (zh) 2015-08-21
JPWO2012137375A1 (ja) 2014-07-28
CN103155219B (zh) 2016-01-06
US20130089770A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5432417B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5129895B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5670811B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
EP2696394B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP5282179B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
TWI501451B (zh) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5964951B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP5603522B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP4988973B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP4988972B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5837437B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5612797B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5951982B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049820.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13704116

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011863010

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137000123

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013508720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE