WO2012133868A1 - 衝撃吸収部材 - Google Patents

衝撃吸収部材 Download PDF

Info

Publication number
WO2012133868A1
WO2012133868A1 PCT/JP2012/058775 JP2012058775W WO2012133868A1 WO 2012133868 A1 WO2012133868 A1 WO 2012133868A1 JP 2012058775 W JP2012058775 W JP 2012058775W WO 2012133868 A1 WO2012133868 A1 WO 2012133868A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing member
main body
impact
shock
body portion
Prior art date
Application number
PCT/JP2012/058775
Other languages
English (en)
French (fr)
Inventor
近藤 修
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280016144.5A priority Critical patent/CN103459207B/zh
Priority to KR1020137025489A priority patent/KR101558340B1/ko
Priority to EP12764031.6A priority patent/EP2692588B1/en
Priority to US14/004,610 priority patent/US9505362B2/en
Publication of WO2012133868A1 publication Critical patent/WO2012133868A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R2019/262Arrangements for mounting bumpers on vehicles comprising yieldable mounting means with means to adjust or regulate the amount of energy to be absorbed

Definitions

  • the present invention relates to an impact absorbing member that can efficiently absorb energy caused by a car collision.
  • an impact absorbing member is attached to the front bumper of the automobile.
  • the impact absorbing member absorbs energy due to collision, and absorbs energy by deforming a hollow box (so-called crash box) inside by impact of collision.
  • crash box a hollow box inside by impact of collision.
  • Patent Document 1 various impact absorbing members are put into practical use, and an example thereof is disclosed in Patent Document 1.
  • the shock absorbing member disclosed in Patent Document 1 is “a first part made of a cylindrical body having an outer wall made of a metal material, and a bent part formed by being bent outward and continuous with the outer wall of the first part.
  • a second portion that is a portion, and a third portion that is continuous with the second portion and that forms a support portion of the second portion, and the cylindrical body extends from an end of the first portion. Impact that absorbs impact energy by continuously generating bending deformation in which the length of the folded portion formed by folding the outer wall of the first portion is increased by the impact load applied in the axial direction of the first portion.
  • the absorbing member wherein the first portion has a plurality of ridge lines provided extending in the axial direction of the cylindrical body at least in a range where the bending deformation is continuously generated in the outer wall.
  • the first portion and the third part are both provided extending in a direction substantially parallel to the axial direction of the cylindrical body” (see claim 10 of Patent Document 1). ).
  • Patent Document 1 A shock that absorbs impact energy by continuously generating a bending deformation in which the length of the folded portion formed by folding the outer wall of the first portion is increased.
  • the energy absorption performance of the “absorbing member” was examined.
  • a deformation form of the shock absorbing member it is expressed as “the outer wall is folded” in the prior art, but in the description of the present invention, it is expressed as “the main body part is turned over and deformed”.
  • the reaction force increases the amount of energy absorption.
  • the vehicle main body side to which the shock absorbing member is attached is required to have enough strength to resist the reaction force. Therefore, the rigidity on the vehicle body side must be increased, which increases the cost.
  • increasing the reaction force from the middle of the stroke means that the reaction force is small in the first half of the stroke, and the absorbed energy per weight of the shock absorbing member is small.
  • the impact force is along the axial direction of the impact absorbing member, the above deformation occurs.
  • the impact absorbing member is attached in the middle of the deformation. There is a problem that the entire shock absorbing member breaks (falls down) when it comes into contact with the member.
  • the present invention has been made to solve such a problem, and does not increase the cost of the vehicle, increases the absorbed energy per weight of the shock absorbing member, prevents the entire shock absorbing member from falling, and stably deforms.
  • An object of the present invention is to obtain an impact absorbing member capable of
  • the inventor considers making the reaction force constant throughout the stroke, that is, making the deformation energy constant in order to increase the absorbed energy per weight of the shock absorbing member and not increase the cost on the vehicle side. did.
  • a taper shape was considered in which the cross-sectional area in the axial direction of the shock absorbing member is reduced toward the tip of the shock absorbing member.
  • the present invention is based on the above knowledge, and specifically comprises the following configuration.
  • An impact absorbing member includes a cylindrical main body portion, and a flange portion provided on a proximal end side of the main body portion via a bent portion formed continuously from the main body portion. , An impact absorbing member that absorbs impact energy by the main body part turning over and deforming by an impact load acting on the distal end side of the main body part,
  • the cross section of the main body portion orthogonal to the axial direction is a regular polygon, and the cross sectional area orthogonal to the axial direction is tapered toward the tip side.
  • the main body portion is characterized in that an axially orthogonal cross-sectional shape is a regular octagon.
  • linear grooves extending in the axial direction are provided at equal intervals on the side wall of the main body.
  • the axial cross section of the main body portion of the impact absorbing member is made into a regular polygon, and the cross sectional area perpendicular to the axial direction is tapered so that the tip side becomes smaller, thereby increasing the cost of the vehicle. Therefore, the absorbed energy per weight of the shock absorbing member can be increased.
  • the shock absorbing member 1 includes a cylindrical main body 3 and a flange provided through a bent portion 5 formed continuously from the main body 3 on the base end side of the main body 3. 7, and an impact absorbing member 1 that absorbs impact energy when the main body part 3 is turned over by an impact load acting on the distal end side of the main body part 3.
  • the cross-sectional area perpendicular to the axial direction is tapered toward the tip side.
  • the shock absorbing member 1 is made of a metal material.
  • the main body 3 is a cylindrical body having a regular octagonal cross section in the axial direction. It is formed of a metal material, and the main body 3 has a tapered shape in which the cross section area in the axial direction becomes smaller toward the tip side.
  • the taper angle ⁇ may be appropriately set so that the reaction force becomes a constant value.
  • the bent portion 5 is provided on the base end side of the main body portion 3 and has a U shape protruding downward.
  • the bent portion 5 has an effect of inducing an initial turnover deformation when an impact force is applied to the impact absorbing member 1. In the absence of the bent portion 5, it has been confirmed that buckling occurs at the base end portion of the main body portion 3 at the initial stage when the impact force is applied, leading to a reduction in the reaction force.
  • the flange portion 7 is provided in a ring shape on the outer peripheral side of the bent portion 5 and serves as an attachment portion for attaching the shock absorbing member 1 to the bracket 9 on the vehicle side.
  • an opening having an area larger than the area of the portion where the bent portion 5 of the shock absorbing member 1 is provided is provided on the bracket 9 side. It is necessary to have
  • FIG. 3 when an impact load as shown by an arrow A is applied to the upper end side of the impact absorbing member 1, the manner in which the main body 3 is deformed inside out is shown in the order of increasing deformation in FIG. This is shown in FIG. FIG. 4 is an enlarged view of the deformed portion in FIG.
  • FIG. 3 when an impact load is applied to the upper end side of the impact absorbing member 1, the main body 3 is turned over from the bent portion 5. At this time, as shown in FIG. 4, the curvature of deformation decreases as the amount of deformation increases.
  • the shock absorbing member 1 of the present embodiment has a tapered shape in which the axially orthogonal cross section becomes smaller toward the upper end side, the deformation volume becomes smaller toward the upper end side. That is, the reaction force that is increased by the deformation curvature being reduced is offset by the deformation volume being reduced so that the reaction force is substantially constant. Further, because of the taper shape, even when the impact force acts with a deviation from the axial direction, there is a space between the bracket 9 and the impact absorbing member 1 contacts the bracket 9 during the deformation of the impact absorbing member 1. This prevents the entire shock absorbing member 1 from being folded (falling down).
  • the reaction force becomes constant even when the deformation amount is increased, so that the cost of the vehicle is not increased and the absorbed energy per weight of the shock absorbing member 1 can be increased.
  • an impact absorbing member 10 having a cylindrical main body having an octagonal cross section in the axial direction as shown in FIG. 5 was used.
  • the comparative example is different from the present embodiment in that the present embodiment has a tapered shape, but the comparative example has the same axial orthogonal cross-sectional area from the base end side to the upper end side. .
  • the vertical axis represents the reaction force (kN), and the horizontal axis represents the stroke (mm).
  • the reaction force is substantially constant after the stroke of 60 mm, whereas in the comparative example, the reaction force gradually increases even when the stroke exceeds 60 mm. Yes.
  • the maximum reaction force in the comparative example is about 30 (kN) larger than that in the present embodiment. For this reason, when the impact absorbing member 10 of the comparative example is installed in a vehicle, it is necessary to provide rigidity that can resist the maximum reaction force on the vehicle side, which increases the cost.
  • the maximum reaction force is the same as that of the present embodiment, it means that the energy that can be absorbed is smaller than that of the present embodiment. In other words, the absorbed energy of the present embodiment is large if the maximum reaction force is the same as that of the comparative example. Thus, in this embodiment, the energy absorption performance is excellent without increasing the cost on the vehicle side.
  • the energy due to automobile collisions may not always work perpendicular to the flange horizontal part. If the energy due to the collision acts from an oblique direction, the side wall of the main body 3 of the shock absorbing member 1 may come into contact with the peripheral edge of the opening of the bracket 9. Since the side wall has a tapered shape, there is an effect that the side wall of the main body 3 is less likely to contact the peripheral edge of the opening of the bracket 9.
  • the present embodiment will be described with reference to FIGS. 7 and 8, the same parts as those in FIGS. 1 and 2 showing the first and second embodiments are denoted by the same reference numerals.
  • the impact absorbing member 11 of the present embodiment is the same as that of the first embodiment, but is provided with linear grooves 13 that extend linearly from the base end side to the upper end side at equal intervals on each side surface of the main body 3. is there.
  • the groove depth of the linear groove 13 is set so as to become shallower toward the upper end side.
  • the vertical axis represents the reaction force (kN), and the horizontal axis represents the stroke (mm).
  • the reaction force in the present embodiment is higher than that in the first embodiment in the initial stage where the stroke is up to 40 mm.
  • the stroke exceeds 60 mm, the reaction force is substantially constant as in the first embodiment.
  • the reaction force at the initial stage of deformation can be made larger than that in the first embodiment, and as a result, the amount of impact energy absorbed can be increased.
  • the energy absorption performance is excellent without increasing the cost on the vehicle side as in the first embodiment, and the energy absorption amount is larger than that in the first embodiment. is there.
  • the cross section in the axial direction of the main body 3 is an octagon
  • the present invention is not limited to this, and a quadrangular, pentagonal, hexagonal, 7 Also included are polygons that are square or octagonal or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Dampers (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

車両のコスト増にならず、衝撃吸収部材の重量当たりの吸収エネルギーを大きくすることができる衝撃吸収部材を提供する。衝撃吸収部材1は、筒状の本体部3と、本体部3の基端側に本体部3に連続して形成された屈曲部5を介して設けられたフランジ部7とを備え、本体部3の先端側に作用する衝撃荷重によって本体部3が裏返り変形をすることで衝撃エネルギーを吸収する衝撃吸収部材1であって、本体部3の軸方向直交断面を正多角形にすると共に、軸方向に直交する断面積が先端側ほど小さくなるテーパ形状にしたことを特徴とするものである。

Description

衝撃吸収部材
 本発明は、自動車の衝突によるエネルギーを効率良く吸収できる衝撃吸収部材に関するものである。
 自動車が前面衝突する際の衝撃を緩和するために、自動車のフロントバンパーに衝撃吸収部材が装着される。衝撃吸収部材は衝突によるエネルギーを吸収するものであり、内部が空洞の箱体(いわゆるクラッシュボックス)が衝突の衝撃で変形することによってエネルギーを吸収する。
 今日では種々の衝撃吸収部材が実用化されており、その一例が特許文献1に開示されている。
 特許文献1に開示された衝撃吸収部材は、「金属材料からなる外壁を有する筒状体からなる第1の部分と、該第1の部分の外壁に連続するとともに外側に折れ曲がって形成される折れ曲がり部である第2の部分と、該第2の部分に連続するとともに該第2の部分の支持部をなす第3の部分とを有し、前記第1の部分の端部から前記筒状体の軸方向へ向けて負荷される衝撃荷重によって、前記第1の部分の外壁が折り返されて形成される折り返し部の長さが増加する曲げ変形を連続して生じることにより衝撃エネルギーを吸収する衝撃吸収部材であって、前記第1の部分は、前記外壁のうちで、少なくとも、前記曲げ変形を連続して生じる範囲に、前記筒状体の軸方向へ延びて設けられる複数の稜線を有することを特徴とする」ものである(特許文献1の請求項1参照)。
 また、「前記第1の部分および前記第3の部分は、いずれも、前記筒状体の軸方向と略平行な方向へ延びて設けられる」とされている(特許文献1の請求項10参照)。
特開2002−356179号公報
 発明者は、特許文献1に記載されたような「第1の部分の外壁が折り返されて形成される折り返し部の長さが増加する曲げ変形を連続して生じることにより衝撃エネルギーを吸収する衝撃吸収部材」のエネルギー吸収性能について検討した。
 なお、衝撃吸収部材の変形形態として、従来技術では「外壁が折り返される」と表現しているが本発明の説明においては、「本体部が裏返り変形をする」と表現しており、両者は表現が異なるが同じ意味である。
 検討の対象として、断面を八角形にしたものについて、断面が円形のものとの比較検討を行った。
 ストロークが50mm以降の定常変形状態において、円断面のものは反力が一定値であるが、八角形断面のものは徐々に反力が増加した。この理由は、八角形断面のものはストロークが増加するに伴って壁の折り返し変形の曲率が小さくなるために、変形のエネルギーが増大するためと考えられる。
 反力が増加するということはそれだけエネルギー吸収量も大きくなるが、その一方で衝撃吸収部材が取り付けられる車両本体側は当該反力に抵抗できるだけの強度が要求される。そのため、車両本体側の剛性を高めなければならず、コストが増大する。
 また、ストロークの途中から反力が増大するということは、逆にいえばストロークの前半では反力が小さいことを意味しており、衝撃吸収部材の重量当たりの吸収エネルギーが小さい。
 また、衝撃力が衝撃吸収部材の軸方向に沿った場合には上記変形が生ずるが、衝撃力が軸方向からずれて作用する場合には、衝撃吸収部材が変形の途中で衝撃吸収部材を取り付けている部材に当接して衝撃吸収部材全体が折れる(倒れ込む)という問題があった。
 本発明はかかる課題を解決するためになされたものであり、車両のコスト増にならず、衝撃吸収部材の重量当たりの吸収エネルギーを大きくし、衝撃吸収部材全体の倒れ込みを防止し、安定した変形をすることができる衝撃吸収部材を得ることを目的としている。
 発明者は衝撃吸収部材の重量当たりの吸収エネルギーを高め、車両側のコスト増にならないようにするために、ストロークの全体で反力を一定値にする、つまり変形エネルギーを一定にすることを検討した。
 その結果、折り返し変形の曲率の変化を制御して変形エネルギーを一定にすることは困難であるため、変形している部分の体積を変形が増すに伴って小さくなるようにすることで、変形エネルギーを一定にすることを考えた。具体的には、衝撃吸収部材の先端にいくほど衝撃吸収部材の軸方向直交断面積を小さくするというテーパ形状にすることを考えた。
 本発明は上記のような知見に基づくものであり、具体的には以下の構成からなるものである。
(1)本発明に係る衝撃吸収部材は、筒状の本体部と、該本体部の基端側に前記本体部に連続して形成された屈曲部を介して設けられたフランジ部とを備え、前記本体部の先端側に作用する衝撃荷重によって前記本体部が裏返り変形をすることで衝撃エネルギーを吸収する衝撃吸収部材であって、
 前記本体部の軸方向直交断面を正多角形にすると共に、軸方向に直交する断面積が先端側ほど小さくなるテーパ形状にしたことを特徴とするものである。
(2)また、上記の(1)に記載のものにおいて、前記本体部は、軸方向直交断面形状が正八角形であることを特徴とするものである。
(3)また、上記(1)又は(2)に記載のものにおいて、前記本体部の側壁に、軸方向に延びる直線状溝を等間隔で設けたことを特徴とするものである。
 本発明においては、衝撃吸収部材における本体部の軸方向直交断面を正多角形にすると共に、軸方向に直交する断面積が先端側ほど小さくなるテーパ形状にしたことにより、車両のコスト増にならず、衝撃吸収部材の重量当たりの吸収エネルギーを大きくすることができる。
本発明の一実施の形態に係る衝撃吸収部材の斜視図である。 本発明の一実施の形態に係る衝撃吸収部材の断面図である。 本発明の一実施の形態に係る衝撃吸収部材の作用の説明図である。 図3の一部を拡大して示す図である。 本発明の一実施の形態に係る衝撃吸収部材の効果を説明するために用いた比較例の断面図である。 本発明の一実施の形態に係る衝撃吸収部材の効果を説明するグラフである。 本発明の他の実施の形態に係る衝撃吸収部材の斜視図である。 本発明の他の実施の形態に係る衝撃吸収部材の断面図である。 本発明の他の実施の形態に係る衝撃吸収部材の効果を説明するグラフである。
[実施の形態1]
 本実施の形態1に係る衝撃吸収部材1は、筒状の本体部3と、本体部3の基端側に本体部3に連続して形成された屈曲部5を介して設けられたフランジ部7とを備え、本体部3の先端側に作用する衝撃荷重によって本体部3が裏返り変形をすることで衝撃エネルギーを吸収する衝撃吸収部材1であって、本体部3の軸方向直交断面を正八角形にすると共に、軸方向に直交する断面積が先端側ほど小さくなるテーパ形状にしたことを特徴とするものである。
 なお、衝撃吸収部材1は金属材料によって形成されている。
 以下、各構成部分を詳細に説明する。
<本体部>
 本体部3は、軸方向直交断面が正八角形の筒状体からなるものである。金属材料によって形成され、また、本体部3は先端側になるほど軸方向直交断面積が小さくなるテーパ状になっている。テーパ角度αは、反力が一定値になるように適宜設定すればよい。
<屈曲部>
 屈曲部5は、本体部3の基端側に設けられ、下方に向かって突出するU字状をしている。屈曲部5は、衝撃吸収部材1に衝撃力が作用した際に、初期の裏返り変形を誘発する作用を有している。屈曲部5がない場合には、衝撃力が作用した初期において、本体部3の基端部に座屈が生じ、反力の低下を招くことを確認している。
<フランジ部>
 フランジ部7は、屈曲部5の外周側にリング状に設けられて、衝撃吸収部材1を車両側のブラケット9に取り付ける取付部となる。なお、衝撃吸収部材1が裏返り変形をするためには、ブラケット9側には、図2に示すように、衝撃吸収部材1の屈曲部5が設けられている部位の面積よりも大きな面積の開口を有することが必要である。
 上記のように構成された本実施の形態の衝撃吸収部材1について、衝撃荷重が作用した際の作用を図3、図4に基づいて説明する。
 図3においては、衝撃吸収部材1の上端側に矢印Aで示すような衝撃荷重が作用した際に、本体部3が裏返り変形をする様子を、変形量が大きくなる順に図3(a)~図3(c)に示している。図4は図3における変形部を拡大して示したものである。
 図3に示すように、衝撃吸収部材1の上端側に衝撃荷重が作用すると、屈曲部5を起点として本体部3が裏返り変形を行う。このとき、図4に示すように、変形量が大きくなるにしたがって、変形の曲率が小さくなる。前述したように、変形の曲率が小さくなると、反力が大きくなる。
 しかしながら、本実施の形態の衝撃吸収部材1は、上端側になるほど軸方向直交断面が小さくなるテーパ形になっているので、上端側ほど変形体積が小さくなっている。つまり、変形の曲率が小さくなることで反力が大きくなるのを、変形体積が小さくなることで相殺し、反力がほぼ一定になるようにしている。
 また、テーパ形のため、衝撃力が軸方向よりずれて作用する場合でも、ブラケット9との間に空間があるため、衝撃吸収部材1の変形の途中で衝撃吸収部材1がブラケット9と接触することがなく、衝撃吸収部材1全体の折れ(倒れ込み)を防止できる。
 このように、変形量が増しても反力が一定になることで、車両のコスト増にならず、衝撃吸収部材1の重量当たりの吸収エネルギーを大きくすることができる。
 上記の効果を確認するための実験をおこなったので、以下説明する。比較例として、図5に示すような軸方向直交断面が八角形の筒状の本体部を有する衝撃吸収部材10を用いた。比較例が本実施の形態のものと異なる点は、本実施の形態のものがテーパ形であるが、比較例は基端側から上端側までの軸方向直交断面積が同じである点である。
 実験の結果を図6に示す。図6は縦軸が反力(kN)、横軸がストローク(mm)を示している。
 図6に示されるように、本実施の形態のものでは、ストロークが60mm以降は反力がほぼ一定でるのに対して、比較例ではストロークが60mmを超えても反力が徐々に大きくなっている。その結果、比較例は本実施の形態のものよりも最大反力が約30(kN)近く大きくなっている。
 このため、比較例の衝撃吸収部材10を車両に設置した場合には、車両側において最大反力に対して抵抗できる剛性を持たせる必要があり、その分コスト増となる。換言すれば、比較例のものでは、最大反力が本実施の形態と同じであれば、吸収できるエネルギーが本実施の形態よりも小さいことを意味する。逆にいえば、本実施の形態のものは、比較例に比べて最大反力が同じであれば、吸収エネルギーが大きい。
 このように、本実施の形態では、車両側のコスト増になることなく、エネルギー吸収性能に優れている。
 自動車の衝突によるエネルギーは、必ずしもフランジ水平部に対して垂直に作用しない場合がある。衝突によるエネルギーが斜め方向から作用すると、衝撃吸収部材1の本体部3の側壁がブラケット9の開口部の周縁に接触する恐れがあるが、本実施の形態の衝撃吸収部材1の本体部3の側壁はテーパ形状になっているので、本体部3の側壁がブラケット9の開口部の周縁に接触しにくくなっているとい効果もある。
[実施の形態2]
 本実施の形態を図7~図9に基づいて説明する。なお、図7、図8において、実施の形態1,2を示した図1、2と同一部分には同一の符号が付してある。
 本実施の形態の衝撃吸収部材11は、実施の形態1のものにおいて、本体部3における各側面に、基端側から上端側に直線状に延びる直線状溝13を等間隔で設けたものである。直線状溝13の溝深さは上端側になるにしたがって浅くなるように設定されている。
 本実施の形態の効果を確認するため、実施の形態1と同様の実験を実施の形態1の衝撃吸収部材1との比較を行った。
 実験の結果を図9に示す。図9においては、図6と同様に、縦軸が反力(kN)、横軸がストローク(mm)を示している。
 図9に示されるように、本実施の形態のものでは、ストロークが40mmまでの初期の段階において、実施の形態1のものよりも反力が増していることが分かる。そして、ストロークが60mmを超えると実施の形態1と同様に反力がほぼ一定である。
 このように、本実施の形態によれば、変形の初期における反力を実施の形態1のものよりも大きくすることができ、その結果、衝撃エネルギー吸収量を増すことができる。
 このように、本実施の形態では、実施の形態1と同様に車両側のコスト増になることなく、エネルギー吸収性能に優れており、実施の形態1よりもエネルギー吸収量が大きくなるという効果がある。
 なお、上記の実施の形態においては、本体部3の軸方向直交断面を八角形にした例を示したが、本発明はこれに限られるものではなく、4角形、5角形、6角形、7角形あるいは8角形以上の多角形のものも含む。
  1 衝撃吸収部材(実施の形態1)
  3 本体部
  5 屈曲部
  7 フランジ部
  9 ブラケット
 10 衝撃吸収部材(比較例)
 11 衝撃吸収部材(実施の形態2)
 13 直線状溝

Claims (3)

  1.  筒状の本体部と、該本体部の基端側に前記本体部に連続して形成された屈曲部を介して設けられたフランジ部とを備え、前記本体部の先端側に作用する衝撃荷重によって前記本体部が裏返り変形をすることで衝撃エネルギーを吸収する衝撃吸収部材であって、
     前記本体部の軸方向直交断面を正多角形にすると共に、軸方向に直交する断面積が先端側ほど小さくなるテーパ形状にしたことを特徴とする衝撃吸収部材。
  2.  前記本体部は、軸方向直交断面形状が正八角形であることを特徴とする請求項1記載の衝撃吸収部材。
  3.  前記本体部の側壁に、軸方向に延びる直線状溝を等間隔で設けたことを特徴とする請求項1又は2に記載の衝撃吸収部材。
PCT/JP2012/058775 2011-03-28 2012-03-26 衝撃吸収部材 WO2012133868A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280016144.5A CN103459207B (zh) 2011-03-28 2012-03-26 冲击吸收构件
KR1020137025489A KR101558340B1 (ko) 2011-03-28 2012-03-26 충격 흡수 부재
EP12764031.6A EP2692588B1 (en) 2011-03-28 2012-03-26 Shock-absorbing member
US14/004,610 US9505362B2 (en) 2011-03-28 2012-03-26 Shock-absorbing member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-069261 2011-03-28
JP2011069261A JP5729074B2 (ja) 2011-03-28 2011-03-28 衝撃吸収部材

Publications (1)

Publication Number Publication Date
WO2012133868A1 true WO2012133868A1 (ja) 2012-10-04

Family

ID=46931556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058775 WO2012133868A1 (ja) 2011-03-28 2012-03-26 衝撃吸収部材

Country Status (7)

Country Link
US (1) US9505362B2 (ja)
EP (1) EP2692588B1 (ja)
JP (1) JP5729074B2 (ja)
KR (1) KR101558340B1 (ja)
CN (1) CN103459207B (ja)
TW (1) TWI455843B (ja)
WO (1) WO2012133868A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160001726A1 (en) * 2013-02-19 2016-01-07 Magna International Inc. Impact absorbing element
US20210219738A1 (en) * 2016-10-06 2021-07-22 Skydex Technologies, Inc. Tiered void cells
CN113757289A (zh) * 2021-09-06 2021-12-07 天津大学 一种基于刚性折纸的可折展多孔承载结构

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015117005A1 (de) * 2015-10-06 2017-04-06 Benteler Automobiltechnik Gmbh Crashbox
US9731670B2 (en) 2016-01-12 2017-08-15 Ford Global Technologies, Llc Sequentially buckling vehicle crush can
CN107687497A (zh) * 2016-08-05 2018-02-13 李洋 一种具有凹多边形截面并一端带有折痕的吸能盒
CN107972613B (zh) * 2017-11-16 2020-10-09 华侨大学 一种分级溃缩的高效吸能装置
US11104283B2 (en) * 2018-11-16 2021-08-31 Aisin Seiki Kabushiki Kaisha Vehicular energy absorbing member and manufacturing method thereof
CN109664849B (zh) * 2019-01-14 2020-09-25 大连理工大学 一种基于剪纸图案设计的碰撞吸能盒
JP7281814B2 (ja) * 2019-11-27 2023-05-26 学校法人明治大学 衝撃吸収材および衝撃吸収材の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053017A (ja) * 1998-08-05 2000-02-22 Mazda Motor Corp 自動車のエネルギー吸収構造
JP2002356179A (ja) 2001-05-31 2002-12-10 Nissan Motor Co Ltd 自動車の車体前部構造
JP2010083455A (ja) * 2008-10-02 2010-04-15 Honda Motor Co Ltd 車体前部構造
JP2011021644A (ja) * 2009-07-14 2011-02-03 Sumitomo Metal Ind Ltd 衝撃吸収部材

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146014A (en) * 1959-08-12 1964-08-25 Gen Motors Corp Energy absorbing vehicle bumper assembly
US3216593A (en) * 1962-07-06 1965-11-09 Cellasto Inc Draught gear for vehicles
US4901486A (en) * 1987-03-06 1990-02-20 Kajima Corporation Elasto-plastic damper
DE4127381C2 (de) * 1991-03-16 2003-12-18 Volkswagen Ag Deformationselement, insbesondere für ein Kraftfahrzeug
US5224574A (en) * 1991-03-16 1993-07-06 Volkswagen Ag Deformation structure, in particular for a motor vehicle
DE4241110A1 (en) * 1991-12-16 1993-06-17 Volkswagen Ag Inverting deformation member for vehicles - has flange on hollow support pointing inwards and defining opening with inner edge for deforming member
US5293973A (en) * 1991-12-16 1994-03-15 Volkswagen Ag Deformation member having an eversion portion
DE19711647C2 (de) * 1997-03-20 2002-05-02 Daimler Chrysler Ag Energieverzehrendes Element, insbesondere zum Stoßenergieabbau in Kraftfahrzeugen
US7625023B2 (en) * 2000-02-07 2009-12-01 Oakwood Energy Management, Inc. Modular energy absorber with ribbed wall structure
US6942262B2 (en) * 2001-09-27 2005-09-13 Shape Corporation Tubular energy management system for absorbing impact energy
US6588830B1 (en) * 2002-07-01 2003-07-08 Daimlerchrysler Corporation Energy absorbing frame rail tip
DE102004039592C5 (de) 2004-08-13 2008-05-21 Benteler Automobiltechnik Gmbh Crashbox
US20060237976A1 (en) 2005-04-20 2006-10-26 Shape Corporation Crushable structure manufactured from mechanical expansion
JP4795713B2 (ja) * 2005-04-22 2011-10-19 フタバ産業株式会社 衝撃吸収装置
DE102005021663B3 (de) * 2005-05-06 2006-05-04 Benteler Automobiltechnik Gmbh Crashbox
CN101258057A (zh) * 2005-09-09 2008-09-03 丰田铁工株式会社 车辆用冲击吸收部件
FR2893688B1 (fr) * 2005-11-21 2010-03-05 Visteon Global Tech Inc Dispositif absorbeur d'energie de forme tronconique et element de remplissage comprenant plusieurs tels dispositifs
PL1914144T3 (pl) 2006-10-19 2010-01-29 Voith Turbo Scharfenberg Gmbh & Co Kg Urządzenie rozpraszające energię dla pojazdów wieloczłonowych
US20080098601A1 (en) * 2006-10-30 2008-05-01 Shape Corporation Tubular tapered crushable structures and manufacturing methods
DE202006018616U1 (de) * 2006-12-08 2008-04-17 Cosma Engineering Europe Ag Energieabsorptionsvorrichtung
JP2009029174A (ja) * 2007-07-24 2009-02-12 Sumitomo Metal Ind Ltd 車体の衝撃エネルギー吸収方法、及び衝撃吸収部材ならびに車両
JP5632147B2 (ja) * 2009-10-13 2014-11-26 新日鐵住金株式会社 クラッシュボックス
EP2298610B1 (de) * 2010-05-06 2013-07-10 ISE Automotive GmbH Crashelement
WO2012040826A1 (en) * 2010-09-28 2012-04-05 Magna International Inc. Scalable crush can for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053017A (ja) * 1998-08-05 2000-02-22 Mazda Motor Corp 自動車のエネルギー吸収構造
JP2002356179A (ja) 2001-05-31 2002-12-10 Nissan Motor Co Ltd 自動車の車体前部構造
JP2010083455A (ja) * 2008-10-02 2010-04-15 Honda Motor Co Ltd 車体前部構造
JP2011021644A (ja) * 2009-07-14 2011-02-03 Sumitomo Metal Ind Ltd 衝撃吸収部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692588A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160001726A1 (en) * 2013-02-19 2016-01-07 Magna International Inc. Impact absorbing element
US10696255B2 (en) * 2013-02-19 2020-06-30 Magna International Inc. Impact absorbing element
US20210219738A1 (en) * 2016-10-06 2021-07-22 Skydex Technologies, Inc. Tiered void cells
CN113757289A (zh) * 2021-09-06 2021-12-07 天津大学 一种基于刚性折纸的可折展多孔承载结构
CN113757289B (zh) * 2021-09-06 2022-08-26 天津大学 一种基于刚性折纸的可折展多孔承载结构

Also Published As

Publication number Publication date
JP2012201286A (ja) 2012-10-22
TWI455843B (zh) 2014-10-11
US9505362B2 (en) 2016-11-29
KR20130130846A (ko) 2013-12-02
US20140034435A1 (en) 2014-02-06
EP2692588A1 (en) 2014-02-05
EP2692588B1 (en) 2015-10-28
CN103459207A (zh) 2013-12-18
KR101558340B1 (ko) 2015-10-07
JP5729074B2 (ja) 2015-06-03
CN103459207B (zh) 2016-06-29
TW201238811A (en) 2012-10-01
EP2692588A4 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5729074B2 (ja) 衝撃吸収部材
JP3912422B2 (ja) クラッシュボックス
JP5949925B2 (ja) クラッシュボックス及び自動車車体
JP4733702B2 (ja) 車両用クラッシュ・ボックス
US7931318B2 (en) Bumper attachment portion structure
JP4386036B2 (ja) クラッシュボックス
CN107792162B (zh) 转向装置
WO2015092832A1 (ja) 鉄道車両の衝突エネルギー吸収装置
US9539965B2 (en) Bumper moment inducer
JP2006207725A (ja) 衝撃吸収部材
JP2010126067A (ja) 衝撃吸収部材
JP4604740B2 (ja) 衝撃吸収部材
JP5034793B2 (ja) 衝撃吸収方法
JP4036234B2 (ja) クラッシュボックス
JP5056198B2 (ja) 自動車車体の衝撃吸収構造
JP2006021603A (ja) 歩行者脚部保護バンパ構造
JP2017036037A (ja) ステアリング装置
JP5486250B2 (ja) 衝撃吸収具及び車両用バンパ装置
JP2006232198A (ja) 車両用衝撃吸収部材
JP2014019206A (ja) 衝撃吸収式ステアリングコラムの支持装置
JP6089993B2 (ja) 衝撃吸収部材
JP2018062213A (ja) ステアリング装置
JP2014104911A (ja) 衝撃吸収式ステアリングコラムの支持装置
JP2007098971A (ja) 衝撃吸収装置
JP2019084864A (ja) 車両の衝撃吸収構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012764031

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025489

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14004610

Country of ref document: US