WO2012132612A1 - 熱媒流量推定装置、熱源機、及び熱媒流量推定方法 - Google Patents

熱媒流量推定装置、熱源機、及び熱媒流量推定方法 Download PDF

Info

Publication number
WO2012132612A1
WO2012132612A1 PCT/JP2012/053802 JP2012053802W WO2012132612A1 WO 2012132612 A1 WO2012132612 A1 WO 2012132612A1 JP 2012053802 W JP2012053802 W JP 2012053802W WO 2012132612 A1 WO2012132612 A1 WO 2012132612A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
refrigerant
compressor
parameter
heat medium
Prior art date
Application number
PCT/JP2012/053802
Other languages
English (en)
French (fr)
Inventor
松尾 実
上田 憲治
利彦 新家
小野 仁意
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280003087.7A priority Critical patent/CN103140729B/zh
Priority to KR1020137007302A priority patent/KR20130063533A/ko
Priority to US13/824,215 priority patent/US9541318B2/en
Priority to EP12763681.9A priority patent/EP2693141B1/en
Publication of WO2012132612A1 publication Critical patent/WO2012132612A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1351Mass flow of refrigerants through the evaporator of the cooled fluid upstream or downstream of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor

Definitions

  • the present invention relates to a heat medium flow rate estimation device, a heat source machine, and a heat medium flow rate estimation method.
  • Patent Document 1 discloses a refrigeration load based on measured values of the chilled water outlet temperature, the chilled water inlet temperature, and the chilled water flow rate, and a heat exchange coefficient based on the cooling water inlet temperature and the refrigerated load.
  • the cooling water flow rate estimation method for calculating and outputting the cooling water flow rate from the measured value and the heat exchange coefficient sent from the sensor group is described.
  • Patent Document 2 includes a plurality of differential pressure sensors for measuring the differential pressure between the cold / hot water inlet / outlet of each air conditioner and a flow sensor for measuring the entire cold / hot water flow rate for the plurality of air conditioners. Describes the technology to determine the relationship between flow rate and differential pressure by creating a flow path that operates only one differential pressure sensor by switching valves etc. before cooling operation, and determining the flow rate of cold / hot water with the differential pressure sensor during cooling operation Has been.
  • a flow meter that measures the cooling water flow rate is used to calculate the cooling water flow rate.
  • a flow rate sensor and a plurality of differential pressure sensors that measure the flow rate of the entire cold / hot water are used.
  • a flow meter that measures the flow rate of another fluid is used, or the differential pressure of another fluid is measured. Since a differential pressure gauge is used, the flow rate of the fluid cannot be grasped at low cost.
  • the present invention has been made in view of such circumstances, and a heat medium flow rate estimation device, a heat source device, and a heat medium flow rate estimation method capable of calculating the flow rate of a heat medium without using a flow meter.
  • the purpose is to provide.
  • the heat medium flow rate estimation device, the heat source unit, and the heat medium flow rate estimation method of the present invention employ the following means.
  • the heat medium flow rate estimation device includes a compressor that compresses a refrigerant, a condenser that condenses the compressed refrigerant by a heat source medium, and evaporates the condensed refrigerant and heats the refrigerant and heat.
  • a heat medium flow rate estimating device for estimating a flow rate of a heat medium of a heat source machine comprising an evaporator that exchanges heat with the medium, the first parameter reflecting the suction air volume of the compressor, and the compressor
  • An aerodynamic characteristic map in which a rotating stall line that becomes a rotating stall and a plurality of mechanical Mach number lines that indicate the sound speed of the refrigerant sucked by the compressor are stored on a map that is displayed with the second parameter reflecting the head.
  • Storage means a first parameter calculating means for calculating the second parameter, and calculating the first parameter according to the second parameter from the aerodynamic characteristic map, and the first parameter calculating means.
  • the amount of heat exchanged between the refrigerant and the heat medium in the evaporator is calculated based on the amount of intake air of the compressor corresponding to the calculated first parameter, and the flow rate of the heat medium is calculated based on the amount of heat.
  • Heat medium flow rate calculating means for calculating is
  • the heat medium flow rate estimation device is a device that estimates the flow rate of the heat medium of the heat source device including the compressor that compresses the refrigerant and the condenser that condenses the compressed refrigerant by the heat source medium. is there.
  • the storage means provided in the heat medium flow rate estimation device has a turning stall which becomes a turning stall on a map displayed with a first parameter reflecting the suction air amount of the compressor and a second parameter reflecting the head of the compressor.
  • An aerodynamic characteristic map in which a line and a plurality of mechanical Mach number lines indicating the speed of sound of the refrigerant sucked by the compressor are stored is stored.
  • the aerodynamic characteristic map is created by carrying out a compressor operation test in advance.
  • the second parameter and the machine Mach number are values corresponding to the operating state of the compressor. Since the first parameter can be specified by the second parameter and the machine Mach number, the second parameter and the machine Mach number (the compressor sucks in).
  • the first parameter that is, the intake air amount of the compressor.
  • the second parameter and the sound speed of the refrigerant can be calculated from the pressure in the evaporator and the pressure in the condenser.
  • First parameters are first calculated by the first parameter calculation means, and first parameters corresponding to the second parameters are calculated from the aerodynamic characteristic map.
  • the amount of heat exchanged between the refrigerant and the heat medium in the evaporator is calculated by the heat medium flow rate calculation means based on the suction air volume of the compressor according to the first parameter calculated by the first parameter calculation means,
  • the flow rate of the heat medium is calculated based on the amount of heat. That is, the flow rate of the heat medium is calculated by the heat medium flow rate calculation means based on the heat balance between the refrigerant and the heat medium in the evaporator.
  • the amount of heat exchanged in the evaporator is calculated using the intake air amount of the compressor calculated based on the aerodynamic characteristic map, and the flow rate of the heat medium is calculated from the amount of heat, so a flow meter is not used.
  • the flow rate of the heat medium can be calculated.
  • the heat medium flow rate calculation means includes the suction air volume of the compressor based on the first parameter calculated by the first parameter calculation means, and the density of the refrigerant sucked into the compressor.
  • the flow rate of the refrigerant flowing through the evaporator is calculated from the difference between the calculated refrigerant flow rate and the enthalpy on the inlet side and the enthalpy on the outlet side of the evaporator.
  • the amount of heat exchanged may be calculated in step (b), and the flow rate of the heat medium may be calculated based on the difference between the calculated amount of heat and the temperature at which the heat medium flows into and out of the evaporator.
  • the compressor is capable of controlling the rotational speed
  • the storage means stores a plurality of aerodynamic characteristic maps that differ according to the rotational speed of the compressor.
  • the first parameter calculation means may calculate the first parameter corresponding to the second parameter from the aerodynamic characteristic map corresponding to the rotation speed of the compressor. By doing in this way, since the 1st parameter according to the 2nd parameter is computed from the aerodynamic characteristic map corresponding to the number of rotations of a compressor, the flow volume of a heat carrier can be computed more accurately.
  • the compressor includes a vane that adjusts a refrigerant flow rate at a refrigerant inlet
  • the storage unit includes a plurality of aerodynamic characteristic maps that differ depending on the opening degree of the vane.
  • the first parameter calculating means may calculate the first parameter corresponding to the second parameter from the aerodynamic characteristic map corresponding to the opening degree of the vane. By doing so, the first parameter corresponding to the second parameter is calculated from the aerodynamic characteristic map corresponding to the opening degree of the vane provided at the refrigerant inlet of the compressor, so the flow rate of the heat medium is calculated with higher accuracy. it can.
  • a bypass pipe for flowing the refrigerant in the condenser to the evaporator is provided between the condenser and the evaporator, and the refrigerant flowing through the bypass pipe
  • the storage means stores a plurality of aerodynamic characteristic maps that differ according to the opening of the valve
  • the first parameter calculation means corresponds to the opening of the valve
  • the first parameter corresponding to the second parameter may be calculated from the aerodynamic characteristic map.
  • the 1st parameter according to the 2nd parameter is computed from the aerodynamic characteristic map corresponding to the opening of the valve provided in the bypass piping which bypasses a condenser and an evaporator,
  • the flow rate can be calculated with higher accuracy.
  • a heat source apparatus includes a compressor that compresses a refrigerant, a condenser that condenses the compressed refrigerant with a heat source medium, and evaporates the condensed refrigerant and heat-exchanges the refrigerant and the heat medium. And an evaporator for any one of the above, and a heat medium flow rate estimating device.
  • a heat medium flow rate estimation method includes a compressor that compresses a refrigerant, a condenser that condenses the compressed refrigerant with a heat source medium, and evaporates the condensed refrigerant, and the refrigerant and the heat medium.
  • a heat medium flow rate estimating method for estimating a flow rate of a heat medium of a heat source machine comprising: a first parameter reflecting a suction air volume of the compressor; and a head of the compressor. On the map displayed with the reflected second parameter, an aerodynamic characteristic map showing a turning stall line that becomes a turning stall and a plurality of mechanical Mach number lines that indicate the sound speed of the refrigerant sucked by the compressor is stored in the storage means.
  • a second amount of heat that is exchanged between the refrigerant and the heat medium in the evaporator is calculated based on the intake air amount of the compressor according to the first parameter, and a flow rate of the heat medium is calculated based on the amount of heat. And a process.
  • the turbo refrigerator 10 includes a compressor 12 that compresses the refrigerant, a condenser 14 that condenses the high-temperature and high-pressure gas refrigerant compressed by the compressor 12 by a heat source medium (cooling water), and the condenser 14 that is condensed.
  • the compressor 12 is a centrifugal two-stage compressor, and is driven by an electric motor 28 whose rotational speed is controlled by an inverter 13 that changes an input frequency from the power supply 11.
  • An inlet vane (IGV) 32 for controlling the flow rate of the intake refrigerant is provided at the refrigerant inlet of the compressor 12 so that the capacity of the compressor 12 can be controlled.
  • the compressor 12 is also referred to as a suction temperature sensor 17 for measuring the temperature of the refrigerant to be sucked (hereinafter referred to as “compressor suction temperature Ts”), and the pressure of the refrigerant to be sucked (hereinafter referred to as “compressor suction pressure Ps”). ) Is provided.
  • the outputs of the suction temperature sensor 17 and the suction pressure sensor 19 are input to the control device 30.
  • the subcooler 16 is provided on the downstream side of the refrigerant flow of the condenser 14 so as to supercool the condensed refrigerant.
  • the condenser 14 and the subcooler 16 are inserted with cooling heat transfer tubes 34 for cooling them.
  • a hot water outlet temperature sensor 54 is provided at the cooling water outlet (warm water outlet) of the cooling heat transfer pipe 34. The output of the hot water outlet temperature sensor 54 is input to the control device 30.
  • the evaporator 24 that is a heat exchanger is provided with a pressure sensor 60 that measures the evaporator pressure Pe that is the pressure in the evaporator 24.
  • the output of the pressure sensor 60 is input to the control device 30.
  • a refrigerant having a rated temperature (for example, 7 ° C.) is obtained by absorbing heat in the evaporator 24.
  • the evaporator 24 is inserted with a cold water heat transfer tube 36 for cooling the cold water supplied to the external load.
  • a chilled water inlet temperature sensor 64 that measures the inlet temperature To of the chilled water flowing into the evaporator 24 is provided in the chilled water heat transfer tube 36 upstream of the evaporator 24.
  • a chilled water outlet temperature sensor 62 that measures the outlet temperature Ti of the chilled water that has flowed out of the evaporator 24 is provided at the chilled water outlet nozzle on the downstream side of the evaporator 24.
  • the outputs of the cold water inlet temperature sensor 64 and the cold water outlet temperature sensor 62 are input to the control device 30.
  • a hot gas bypass (hereinafter referred to as “HGBP”) piping 38 is provided between the gas phase portion of the condenser 14 and the vapor phase portion of the evaporator 24.
  • the HGBP piping 38 includes an HGBP piping 38.
  • An HGBP valve 40 is provided for controlling the flow rate of the refrigerant flowing in the interior, and by adjusting the HGBP flow rate by the HGBP valve 40, it is possible to control the capacity of a very small region that is not sufficiently controlled by the inlet vane 32. It has become.
  • the control device 30 controls the entire turbo chiller 10 and includes a rotation speed control unit 30a, a cold water flow rate estimation unit 30b, and an expansion valve opening degree control unit 30c.
  • the rotation speed control unit 30 a outputs an instruction frequency corresponding to the instruction rotation number of the electric motor 28 to the inverter 13 based on the state quantities (pressure, temperature, etc.) in each part of the turbo chiller 10.
  • the cold water flow rate estimating unit 30b calculates the cold water flow rate and outputs the calculation result to the expansion valve opening degree control unit 30c.
  • the expansion valve opening control unit 30c generates an expansion valve opening command value based on the state quantity (pressure, temperature, etc.) of each part of the turbo chiller 10 and the cold water flow rate input from the cold water flow rate estimation unit 30b, By transmitting the expansion valve opening command value to the high pressure expansion valve 18 and the low pressure expansion valve 20, the opening degrees of the high pressure expansion valve 18 and the low pressure expansion valve 20 are controlled.
  • the control device 30 also controls various devices necessary for controlling the centrifugal chiller 10, such as the opening degree of the inlet vane 32 and the opening degree of the HGBP valve 40.
  • the refrigeration capacity Q of the turbo chiller 10 is obtained based on the inlet temperature To and outlet temperature Ti of the cold water flowing through the evaporator 24 and the cold water flow rate Gw. Specifically, as shown in the following equation (1), the cold water inlet / outlet temperature difference (Ti ⁇ To) is multiplied by the cold water flow rate Gw [kg / s] and the cold water specific heat cp [kJ / (kg ⁇ ° C.)]. A refrigerating capacity Q is obtained.
  • an evaporator refrigerant flow rate Ge which is a flow rate of the refrigerant flowing through the evaporator 24 is obtained by the following equation (2).
  • k is a constant.
  • the saturation temperature Te calculated from the evaporator refrigerant flow rate Ge, the specific volume V (Te) [m 3 / kg] of the saturated gas, the outer diameter D [m] of the impeller of the compressor 12 and the evaporator pressure Pe.
  • the flow rate variable ⁇ is obtained by the following equation (3).
  • This flow rate variable is a dimensionless number reflecting the suction air volume of the compressor 12.
  • the flow rate variable ⁇ is obtained from the refrigerating capacity Q and the evaporator pressure Pe.
  • the pressure variable ⁇ is a dimensionless number reflecting the head of the compressor 12, and the refrigerant gas enthalpy difference ⁇ h (obtained from the saturation temperature Te calculated from the condenser pressure Pc, the evaporator pressure Pe, and the evaporator pressure Pe) Te) and the suction refrigerant sound speed a (Te) at the saturation temperature Te calculated from the evaporator pressure Pe of the evaporator 24 are obtained by the following equation (4).
  • the pressure variable ⁇ is obtained from the condenser pressure Pc and the evaporator pressure Pe, and is obtained regardless of the peripheral speed of the impeller.
  • the current operating state of the compressor 12 is estimated by the flow rate variable ⁇ and the pressure variable ⁇ .
  • the storage unit 36 included in the control device 30 includes an aerodynamic characteristic map 42 of the compressor 12.
  • This aerodynamic characteristic map 42 is created by carrying out an operation test of the compressor 12 in advance, and on the map of the flow rate variable ⁇ with respect to the pressure variable ⁇ , the rotation stall line at which the compressor 12 causes the rotation stall. L is shown.
  • an aerodynamic characteristic map 42 as shown in FIG. 2 is obtained.
  • the area below the turning stall line L is a stable area S that does not cause turning stall or surging
  • the area above the turning stall line L is an area that does not cause turning stall or surging.
  • the stable region NS is set.
  • the aerodynamic characteristic map 42 is a map (maximum opening degree map) of 100% in which the opening degree of the inlet vane 32 is the maximum opening degree.
  • a plurality of mechanical Mach number lines M indicating the mechanical Mach number (suction refrigerant sonic speed which is the sonic speed of the refrigerant sucked by the compressor 12) are shown.
  • Each machine Mach number line shows the same value of the machine Mach number, and the machine Mach number increases as it goes upward. Since the flow variable ⁇ is specified by the pressure variable ⁇ and the mechanical Mach number, by calculating the pressure variable ⁇ and the mechanical Mach number, the flow rate variable ⁇ , that is, the suction of the compressor 12 is modified by modifying the equation (3). The air volume can be calculated.
  • the turbo refrigerator 10 does not include a flow sensor for measuring the flow rate of cold water or cooling water because the flow rate sensor for measuring the flow rate is expensive or the number of parts is reduced. However, in order to operate the refrigerator at the design value, it is necessary to manage the flow rate of the cold water.
  • the turbo refrigerator 10 calculates a pressure variable ⁇ , calculates a flow variable ⁇ according to the pressure variable ⁇ from the aerodynamic characteristic map, and sucks the compressor 12 according to the calculated flow variable ⁇ .
  • the amount of heat exchanged between the refrigerant and the cold water in the evaporator 24 is calculated, and a cold water flow rate estimating process for calculating the flow rate of the cold water based on the heat quantity is performed. That is, in the cold water flow rate estimation process, the flow rate variable ⁇ corresponding to the operation state of the compressor 12 is calculated, and the refrigerant in the evaporator 24 is used using the heat amount based on the intake air amount of the compressor 12 calculated from the flow rate variable ⁇ .
  • the flow rate of cold water is calculated from the heat balance between the cold water and the cold water.
  • FIG. 3 is a flowchart showing a flow of a chilled water flow rate estimation program executed by the chilled water flow rate estimation unit 30b included in the control device 30 when the chilled water flow rate estimation process is performed.
  • the chilled water flow rate estimation program is a chilled water flow rate estimation unit.
  • the information is stored in advance in a predetermined area of the storage unit 30b. This program is executed at predetermined time intervals, for example.
  • step 100 the suction refrigerant sound speed a (Te), the pressure variable ⁇ , and the suction refrigerant density ⁇ are calculated.
  • the suction refrigerant sound speed a (Te) is calculated based on the saturation temperature Te calculated from the evaporator pressure Pe as described above, and the pressure variable ⁇ is calculated based on the equation (4).
  • the suction refrigerant density ⁇ is calculated from the compressor suction temperature Ts measured by the suction temperature sensor 17 provided in the compressor 12 and the compressor suction pressure Ps measured by the suction pressure sensor 19.
  • a flow rate variable ⁇ corresponding to the calculated pressure variable ⁇ and the suction refrigerant sound speed a (Te) is calculated from the aerodynamic characteristic map 42. That is, in step 100 and step 102, the flow rate variable ⁇ corresponding to the operating state of the compressor 12 is calculated.
  • the evaporator refrigerant flow rate Ge is calculated by the following equation (5).
  • Qs is the suction air volume [m 3 / s] of the compressor 12.
  • the suction air volume Qs is calculated from the following equation (6) using the flow rate variable ⁇ calculated in step 102.
  • the following formula (6) is a formula obtained by modifying the formula (3) in order to calculate the suction air volume Qs.
  • the suction refrigerant sound speed a (Te) is calculated in step 100, and the outer diameter D of the impeller of the compressor 12 is calculated. Is obtained from the design value of the compressor 12.
  • the enthalpy hei on the inlet side of the evaporator 24 and the enthalpy heo on the outlet side of the evaporator 24 are calculated.
  • the chilled water flow rate is calculated based on the heat balance between the refrigerant and the chilled water in the evaporator 24 in steps 104 to 110.
  • the chilled water flow rate estimating unit 30b outputs the calculated chilled water flow rate Gw to the expansion valve opening degree control unit 30c.
  • An expansion valve opening command value is generated based on the cold water flow rate input from the estimation unit 30b.
  • control device 30 is on the map displayed by the flow rate variable ⁇ reflecting the suction air volume of the compressor 12 and the pressure variable ⁇ reflecting the head of the compressor 12.
  • a storage unit 36 that stores an aerodynamic characteristic map 42 in which a plurality of mechanical Mach number lines indicating a rotational stall line that becomes a rotational stall and a sound speed of the refrigerant sucked by the compressor 12 are stored.
  • the control device 30 can calculate the flow rate of cold water without using a flow meter.
  • the cold water flow rate estimation unit 30b calculates the flow rate of the refrigerant flowing through the evaporator 24 from the suction air volume of the compressor 12 based on the calculated flow rate variable ⁇ and the density of the refrigerant sucked into the compressor 12, and The amount of heat exchanged between the refrigerant and cold water in the evaporator 24 is calculated from the flow rate and the difference between the enthalpy on the inlet side and the enthalpy on the outlet side of the evaporator 24, and the calculated heat amount and cold water are sent to the evaporator 24.
  • the flow rate of cold water is calculated on the basis of the difference in temperature that flows in and out. Therefore, the control device 30 according to the first embodiment can easily calculate the flow rate of the cold water by using a measurement result obtained by a measuring instrument that measures the pressure and temperature of the refrigerant and the cold water.
  • the configuration of the turbo chiller 10 according to the second embodiment is the same as the configuration of the turbo chiller 10 according to the first embodiment shown in FIG.
  • the storage unit 36 according to the second embodiment controls the instruction frequency sent from the inverter 13 to the electric motor 28, the rotational speed of the compressor 12 can be controlled.
  • a plurality of aerodynamic characteristic maps 42 that differ depending on the number of rotations are stored.
  • the aerodynamic characteristic map 42 according to the second embodiment is represented such that the flow rate variable for the same pressure variable increases as the rotational speed of the compressor 12 increases.
  • step 102 of the cold water flow rate estimation program an aerodynamic characteristic map 42 corresponding to the rotation speed (indicated frequency) of the compressor 12 is selected from the storage unit 36, and a pressure variable is selected from the selected aerodynamic characteristic map 42.
  • a flow variable ⁇ corresponding to ⁇ is calculated.
  • the control device 30 calculates the flow rate variable ⁇ corresponding to the pressure variable ⁇ from the aerodynamic characteristic map 42 corresponding to the rotation speed of the compressor 12, so It can be calculated with high accuracy.
  • the configuration of the turbo chiller 10 according to the third embodiment is the same as the configuration of the turbo chiller 10 according to the first embodiment shown in FIG.
  • the storage unit 36 stores a plurality of aerodynamic characteristic maps 42 that differ depending on the opening degree of the inlet vane 32.
  • the aerodynamic characteristic map 42 according to the third embodiment is represented such that the flow rate variable for the same pressure variable increases as the opening degree of the inlet vane 32 increases.
  • step 102 of the cold water flow rate estimation program an aerodynamic characteristic map 42 corresponding to the opening degree of the inlet vane 32 is selected from the storage unit 36, and the pressure variable ⁇ is selected from the selected aerodynamic characteristic map 42.
  • a flow variable ⁇ is calculated.
  • the control device 30 according to the third embodiment calculates the flow rate variable ⁇ corresponding to the pressure variable ⁇ from the aerodynamic characteristic map 42 corresponding to the opening degree of the inlet vane 32, so that the flow rate of cold water is further increased. It can be calculated with high accuracy.
  • the configuration of the turbo refrigerator 10 according to the fourth embodiment is the same as the configuration of the turbo refrigerator 10 according to the first embodiment shown in FIG.
  • the storage unit 36 according to the fourth embodiment includes a plurality of aerodynamic characteristic maps 42 that differ depending on the opening degree of the HGBP valve 40. I remember it.
  • the aerodynamic characteristic map 42 according to the fourth embodiment is represented such that the flow rate variable for the same pressure variable increases as the opening degree of the HGBP valve 40 increases.
  • step 102 of the cold water flow rate estimation program an aerodynamic characteristic map 42 corresponding to the opening degree of the HGBP valve 40 is selected from the storage unit 36, and the pressure variable ⁇ is selected from the selected aerodynamic characteristic map 42.
  • a flow variable ⁇ is calculated.
  • the control device 30 according to the fourth embodiment calculates the flow rate variable ⁇ corresponding to the pressure variable ⁇ from the aerodynamic characteristic map 42 corresponding to the opening degree of the HGBP valve 40, so that the flow rate of cold water is further increased. It can be calculated with high accuracy.
  • the mode in which the heat source medium flowing in the cooling heat transfer tube 34 inserted into the condenser 14 is the cooling water has been described.
  • the present invention is not limited to this, and the heat source medium is a gas. (Outside air) and the condenser may be an air heat exchanger.
  • the present invention is not limited thereto, and the present invention may be applied to a heat pump turbo chiller that can also perform a heat pump operation. .
  • centrifugal chiller 10 has been described with respect to a form using a centrifugal compressor.
  • the present invention is not limited to this and can be applied to other compression formats, for example, A screw heat pump using a screw compressor may be used.
  • the processing flow of the cold water flow rate estimation program described in each of the above embodiments is also an example, and unnecessary steps are deleted, new steps are added, or the processing order is changed within a range not departing from the gist of the present invention. Or you may.

Abstract

 流量計を用いることなく、熱媒の流量を算出することを目的とする。制御装置(30)は、圧縮機(12)の吸込風量を反映した流量変数(θ)と、圧縮機(12)のヘッドを反映した圧力変数(Ω)とで表示されたマップ上に、旋回失速となる旋回失速線、及び圧縮機(12)が吸い込む冷媒の音速を示す複数の機械マッハ数線が示された空力特性マップを記憶した記憶部(36)を備え、冷水流量推算部(30b)によって、圧力変数(Ω)を算出し、空力特性マップから圧力変数(Ω)に応じた流量変数(θ)を算出し、算出した流量変数(θ)に応じた圧縮機(12)の吸込風量に基づいて、蒸発器(24)において冷媒と冷水との間で交換される熱量を算出し、該熱量に基づいて冷水の流量を算出する。

Description

熱媒流量推定装置、熱源機、及び熱媒流量推定方法
 本発明は、熱媒流量推定装置、熱源機、及び熱媒流量推定方法に関するものである。
 熱源機、例えば冷凍機を設計値で運転させるためには、蒸発器へ流入する熱媒(冷水)の流量の管理が必要であるが、流量を計測する流量計は高価である、部品点数を少なくする等の理由により、熱媒の流量を計測するための流量計が冷凍機に設置されない場合がある。
 そこで、流量を計測する技術として、特許文献1には、冷水出口温度、冷水入口温度及び冷水流量の計測値に基づいて冷凍負荷を算出し、冷却水入口温度及び冷凍負荷に基づいて熱交換係数を算出し、センサー群から送られてくる計測値と熱交換係数から冷却水流量を算出し、出力する冷却水流量推定方式が記載されている。
 特許文献2には、複数の空気調和機に対して、個々の空気調和機の冷温水入口出口間の差圧を計測する複数の差圧センサーと全体の冷温水流量を計測する流量センサーを備え、冷房運転前にバルブ切換え等により一つの差圧センサーのみ動作する流路を作って流量と差圧の関係を求めておき、冷房運転時には該差圧センサーにより冷温水の流量を求める技術が記載されている。
特開平7-91764号公報 特開2005-155973号公報
 しかしながら、特許文献1に記載の技術では、冷却水流量を算出するために、冷水流量を計測する流量計を用いている。特許文献2に記載の技術では、個々の空気調和機の冷温水の流量を計測するために、全体の冷温水の流量を計測する流量センサー及び複数の差圧センサーを用いている。
 上記のように、特許文献1,2に記載の技術では、所定の流体の流量を算出するために、他の流体の流量を計測する流量計を用いたり、他の流体の差圧を計測する差圧計を用いたりしているため、低コストで流体の流量を把握することができない。
 本発明は、このような事情に鑑みてなされたものであって、流量計を用いることなく、熱媒の流量を算出することができる熱媒流量推定装置、熱源機、及び熱媒流量推定方法を提供することを目的とする。
 上記課題を解決するために、本発明の熱媒流量推定装置、熱源機、及び熱媒流量推定方法は以下の手段を採用する。
 すなわち、本発明の一態様に係る熱媒流量推定装置は、冷媒を圧縮する圧縮機と、圧縮された冷媒を熱源媒体によって凝縮させる凝縮器と、凝縮された冷媒を蒸発させると共に該冷媒と熱媒とを熱交換する蒸発器と、を備えた熱源機の熱媒の流量を推定する熱媒流量推定装置であって、前記圧縮機の吸込風量を反映した第1パラメータと、前記圧縮機のヘッドを反映した第2パラメータとで表示されたマップ上に、旋回失速となる旋回失速線、及び前記圧縮機が吸い込む冷媒の音速を示す複数の機械マッハ数線が示された空力特性マップを記憶した記憶手段と、前記第2パラメータを算出し、前記空力特性マップから該第2パラメータに応じた前記第1パラメータを算出する第1パラメータ算出手段と、前記第1パラメータ算出手段によって算出された前記第1パラメータに応じた前記圧縮機の吸込風量に基づいて、前記蒸発器において冷媒と熱媒との間で交換される熱量を算出し、該熱量に基づいて熱媒の流量を算出する熱媒流量算出手段と、を備える。
 上記態様によれば、熱媒流量推定装置は、冷媒を圧縮する圧縮機と、圧縮された冷媒を熱源媒体によって凝縮させる凝縮器と、を備えた熱源機の熱媒の流量を推定する装置である。
 熱媒流量推定装置が備える記憶手段には、圧縮機の吸込風量を反映した第1パラメータと、圧縮機のヘッドを反映した第2パラメータとで表示されたマップ上に、旋回失速となる旋回失速線、及び前記圧縮機が吸い込む冷媒の音速を示す複数の機械マッハ数線が示された空力特性マップが記憶されている。空力特性マップは、予め圧縮機の運転試験を綿密に行うことによって作成されるものである。
 第2パラメータ及び機械マッハ数は、圧縮機の運転状態に対応した値であり、第1パラメータは、第2パラメータ及び機械マッハ数で特定できるため、第2パラメータ及び機械マッハ数(圧縮機が吸い込む冷媒の音速)を算出することで、第1パラメータ、すなわち圧縮機の吸込風量の算出が可能である。第2パラメータ及び冷媒の音速は、蒸発器内の圧力や凝縮器内の圧力から算出できる。
 第1パラメータ算出手段によって、まず第2パラメータが算出され、空力特性マップから該第2パラメータに応じた第1パラメータが算出される。
 熱媒流量算出手段によって、第1パラメータ算出手段で算出された第1パラメータに応じた圧縮機の吸込風量に基づいて、蒸発器において冷媒と熱媒との間で交換される熱量が算出され、該熱量に基づいて熱媒の流量が算出される。すなわち、熱媒流量算出手段によって、蒸発器における冷媒と熱媒との熱バランスにより熱媒の流量が算出される。
 このように、空力特性マップに基づいて算出した圧縮機の吸込風量を用いて、蒸発器で交換される熱量を算出し、該熱量から熱媒の流量を算出するので、流量計を用いることなく、熱媒の流量を算出することができる。
 上記熱媒流量推定装置においては、熱媒流量算出手段が、前記第1パラメータ算出手段によって算出された前記第1パラメータに基づいた前記圧縮機の吸込風量、及び前記圧縮機に吸い込まれる冷媒の密度から、前記蒸発器を流れる冷媒の流量を算出し、該算出した冷媒の流量、及び前記蒸発器の入口側のエンタルピと出口側のエンタルピの差から、前記蒸発器において冷媒と熱媒との間で交換される熱量を算出し、該算出した熱量、及び熱媒が前記蒸発器へ流入出する温度の差に基づいて、熱媒の流量を算出してもよい。
 このようにすることで、冷媒や熱媒の圧力や温度を計測する計測器による計測結果等を用いて、容易に熱媒の流量を算出できる。
 上記熱媒流量推定装置においては、前記圧縮機には、回転数の制御が可能とされており、前記記憶手段が、前記圧縮機の回転数に応じて異なる複数の前記空力特性マップを記憶し、第1パラメータ算出手段が、前記圧縮機の回転数に対応した前記空力特性マップから前記第2パラメータに応じた前記第1パラメータを算出してもよい。
 このようにすることで、圧縮機の回転数に対応した空力特性マップから第2パラメータに応じた第1パラメータを算出するので、熱媒の流量をより精度高く算出できる。
 上記熱媒流量推定装置においては、前記圧縮機には、冷媒入口に冷媒流量を調節するベーンが備えられており、前記記憶手段が、前記ベーンの開度に応じて異なる複数の前記空力特性マップを記憶し、第1パラメータ算出手段が、前記ベーンの開度に対応した前記空力特性マップから前記第2パラメータに応じた前記第1パラメータを算出してもよい。
 このようにすることで、圧縮機の冷媒入口に設けられたベーンの開度に対応した空力特性マップから第2パラメータに応じた第1パラメータを算出するので、熱媒の流量をより精度高く算出できる。
 上記熱媒流量推定装置においては、前記凝縮器と前記蒸発器の間には、前記凝縮器内にある冷媒を前記蒸発器へと流すためのバイパス配管が設けられると共に、該バイパス配管を流れる冷媒の流量を調整するための弁が設けられ、前記記憶手段が、前記弁の開度に応じて異なる複数の前記空力特性マップを記憶し、第1パラメータ算出手段が、前記弁の開度に対応した前記空力特性マップから前記第2パラメータに応じた前記第1パラメータを算出してもよい。
 このようにすることで、凝縮器と蒸発器とをバイパスするバイパス配管に設けられた弁の開度に対応した空力特性マップから第2パラメータに応じた第1パラメータを算出するので、熱媒の流量をより精度高く算出できる。
 本発明の一態様に係る熱源機は、冷媒を圧縮する圧縮機と、圧縮された冷媒を熱源媒体によって凝縮させる凝縮器と、凝縮された冷媒を蒸発させると共に該冷媒と熱媒とを熱交換する蒸発器と、上記何れかの熱媒流量推定装置と、を備える。
 本発明の一態様に係る熱媒流量推定方法は、冷媒を圧縮する圧縮機と、圧縮された冷媒を熱源媒体によって凝縮させる凝縮器と、凝縮された冷媒を蒸発させると共に該冷媒と熱媒とを熱交換する蒸発器と、を備えた熱源機の熱媒の流量を推定する熱媒流量推定方法であって、前記圧縮機の吸込風量を反映した第1パラメータと、前記圧縮機のヘッドを反映した第2パラメータとで表示されたマップ上に、旋回失速となる旋回失速線、及び前記圧縮機が吸い込む冷媒の音速を示す複数の機械マッハ数線が示された空力特性マップが記憶手段に予め記憶されており、前記第2パラメータを算出することによって、前記空力特性マップから該第2パラメータに応じた前記第1パラメータを算出する第1工程と、前記第1工程によって算出された前記第1パラメータに応じた前記圧縮機の吸込風量に基づいて、前記蒸発器において冷媒と熱媒との間で交換される熱量を算出し、該熱量に基づいて熱媒の流量を算出する第2工程と、を含む。
 本発明によれば、流量計を用いることなく、熱媒の流量を算出することができる、という優れた効果を有する。
本発明の第1実施形態である圧縮機を備えたターボ冷凍機を示した概略構成図である。 本発明の第1実施形態に係る空力特性マップを示した図である。 本発明の第1実施形態に係る冷水流量推算プログラムの処理の流れを示すフローチャートである。
 以下に、本発明に係る熱媒流量推定装置、熱源機、及び熱媒流量推定方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 以下、本発明の第1実施形態について説明する。
 図1に、本第1実施形態に係る熱源機の一例であるターボ冷凍機10の構成を示す。
 ターボ冷凍機10は、冷媒を圧縮する圧縮機12と、圧縮機12によって圧縮された高温高圧のガス冷媒を熱源媒体(冷却水)によって凝縮する凝縮器14と、凝縮器14にて凝縮された液相の冷媒(液冷媒)に対して過冷却を与えるサブクーラ16と、サブクーラ16からの液冷媒を膨張させる高圧膨張弁18と、高圧膨張弁18に接続されるとともに圧縮機12の中間段及び低圧膨張弁20に接続される中間冷却器22と、低圧膨張弁20によって膨張させられた液冷媒を蒸発させると共に該冷媒と熱媒(冷水)とを熱交換する蒸発器24を備えている。
 圧縮機12は、遠心式の2段圧縮機であり、電源11からの入力周波数を変更するインバータ13により回転数制御された電動モータ28によって駆動されている。圧縮機12の冷媒吸入口には、吸入冷媒流量を制御する入口ベーン(IGV)32が設けられており、圧縮機12の容量制御が可能となっている。また、圧縮機12は、吸い込む冷媒の温度(以下、「圧縮機吸込温度Ts」という。)を計測するための吸込温度センサー17、吸い込む冷媒の圧力(以下、「圧縮機吸込圧力Ps」という。)を計測するための吸込圧力センサー19が設けられている。吸込温度センサー17及び吸込圧力センサー19の出力は、制御装置30に入力される。
 サブクーラ16は、凝縮器14の冷媒流れ下流側に、凝縮された冷媒に対して過冷却を与えるように設けられている。
 凝縮器14及びサブクーラ16には、これらを冷却するための冷却伝熱管34が挿通されている。冷却伝熱管34の冷却水の出口(温水出口)には、温水出口温度センサー54が設けられている。温水出口温度センサー54の出力は、制御装置30に入力される。
 熱交換器である蒸発器24には、蒸発器24内の圧力である蒸発器圧力Peを計測する圧力センサー60が設けられている。この圧力センサー60の出力は、制御装置30に入力される。蒸発器24において吸熱されることによって定格温度(例えば7℃)の冷媒が得られる。蒸発器24には、外部負荷へ供給される冷水を冷却するための冷水伝熱管36が挿通されている。蒸発器24よりも上流側の冷水伝熱管36には、蒸発器24内へ流入する冷水の入口温度Toを計測する冷水入口温度センサー64が設けられている。蒸発器24よりも下流側の冷水出口ノズルには、蒸発器24から流出した冷水の出口温度Tiを計測する冷水出口温度センサー62が設けられている。冷水入口温度センサー64及び冷水出口温度センサー62の出力は、制御装置30に入力される。
 凝縮器14の気相部と蒸発器24の気相部との間には、ホットガスバイパス(以下、「HGBP]という。)配管38が設けられている。HGBP配管38には、HGBP配管38内を流れる冷媒の流量を制御するためのHGBP弁40が設けられている。HGBP弁40によってHGBP流量を調整することにより、入口ベーン32では制御が十分でない非常に小さな領域の容量制御が可能となっている。
 制御装置30は、ターボ冷凍機10の全体の制御を司り、回転数制御部30a、冷水流量推算部30b、及び膨張弁開度制御部30cを備える。
 回転数制御部30aは、ターボ冷凍機10各部における状態量(圧力、温度等)に基づいて、電動モータ28の指示回転数に応じた指示周波数をインバータ13に出力する。
 冷水流量推算部30bは、冷水流量を算出し、該算出結果を膨張弁開度制御部30cへ出力する。
 膨張弁開度制御部30cは、ターボ冷凍機10各部の状態量(圧力、温度等)及び冷水流量推算部30bから入力された冷水流量に基づいて、膨張弁開度指令値を生成し、該膨張弁開度指令値を高圧膨張弁18及び低圧膨張弁20へ送信することによって、高圧膨張弁18及び低圧膨張弁20の開度を制御する。
 制御装置30は、入口ベーン32の開度、HGBP弁40の開度等、ターボ冷凍機10の制御に必要な各種機器も制御する。
 ターボ冷凍機10の冷凍能力Qは、蒸発器24を流れる冷水の入口温度To及び出口温度Ti並びに冷水流量Gwに基づいて得られる。具体的には、下式(1)のように、冷水の出入口温度差(Ti-To)に冷水流量Gw[kg/s]及び冷水比熱cp[kJ/(kg・℃)]を乗じて、冷凍能力Qが得られる。
Figure JPOXMLDOC01-appb-M000001
 この冷凍能力Qと、圧縮機12の出入口における冷媒ガスのエンタルピ差Δhとに基づいて、次式(2)により、蒸発器24を流れる冷媒の流量である蒸発器冷媒流量Geが得られる。
Figure JPOXMLDOC01-appb-M000002
 kは定数である。
 蒸発器冷媒流量Geと、飽和ガスの比体積V(Te)[m3/kg]と、圧縮機12の羽根車の外径D[m]と、蒸発器圧力Peから算出される飽和温度Teにおける吸込冷媒音速a(Te)[m/s]とに基づいて、次式(3)により、流量変数θが得られる。この流量変数は、圧縮機12の吸込風量を反映した無次元数である。
Figure JPOXMLDOC01-appb-M000003
 このように、流量変数θは、冷凍能力Qおよび蒸発器圧力Peから得られるものである。
 圧力変数Ωは、圧縮機12のヘッドを反映した無次元数であり、凝縮器圧力Pc、蒸発器圧力Pe及び蒸発器圧力Peから算出される飽和温度Teから得られる冷媒ガスのエンタルピ差Δh(Te)と、蒸発器24の蒸発器圧力Peから算出される飽和温度Teにおける吸込冷媒音速a(Te)とから、次式(4)により得られる。
Figure JPOXMLDOC01-appb-M000004
 このように、圧力変数Ωは、凝縮器圧力Pc、蒸発器圧力Peから得られるものであり、羽根車の周速と無関係に得られる。
 以上の流量変数θ及び圧力変数Ωによって、圧縮機12の現在の運転状態が推定される。
 制御装置30が有する記憶部36は、圧縮機12の空力特性マップ42を備えている。この空力特性マップ42は、予め圧縮機12の運転試験を綿密に行うことで作成されるものであり、圧力変数Ωに対する流量変数θのマップ上に、圧縮機12が旋回失速を起こす旋回失速線Lが示されたものである。例えば、図2に示すような空力特性マップ42が得られる。この空力特性マップ42において、旋回失速線Lよりも下側の領域は、旋回失速やサージングを起こさない安定領域Sとされ、旋回失速線Lよりも上側の領域は、旋回失速やサージングを起こす不安定領域NSとされる。本実施形態において、この空力特性マップ42は、入口ベーン32の開度が最大開度である100%のもの(最大開度時マップ)である。
 空力特性マップ42には、機械マッハ数(圧縮機12が吸い込む冷媒の音速である吸込冷媒音速)を示す複数の機械マッハ数線Mが示されている。各機械マッハ数線は同一の値の機械マッハ数を示し、上方に行くに従い機械マッハ数は大きくなる。
 流量変数θは、圧力変数Ω及び機械マッハ数で特定されるため、圧力変数Ω及び機械マッハ数を算出することで、流量変数θ、すなわち(3)式を変形することで圧縮機12の吸込風量の算出が可能である。
 本第1実施形態に係るターボ冷凍機10は、流量を計測する流量センサーは高価である、部品点数を少なくする等の理由により、冷水や冷却水の流量を計測する流量センサーを備えていない。しかしながら、冷凍機を設計値で運転させるためには、冷水の流量の管理が必要である。
 本第1実施形態に係るターボ冷凍機10は、圧力変数Ωを算出し、空力特性マップから圧力変数Ωに応じた流量変数θを算出し、算出した流量変数θに応じた圧縮機12の吸込風量に基づいて、蒸発器24において冷媒と冷水との間で交換される熱量を算出し、該熱量に基づいて冷水の流量を算出する冷水流量推算処理を行う。
 すなわち、冷水流量推算処理は、圧縮機12の運転状態に対応した流量変数θを算出し、流量変数θから算出される圧縮機12の吸込み風量に基づいた熱量を用いて、蒸発器24における冷媒と冷水との熱バランスにより冷水の流量を算出する。
 図3は、冷水流量推算処理を行う場合に、制御装置30が備える冷水流量推算部30bによって実行される冷水流量推算プログラムの処理の流れを示すフローチャートであり、冷水流量推算プログラムは冷水流量推算部30bが備える記憶部の所定領域に予め記憶されている。本プログラムは、例えば、所定時間間隔毎に実行される。
 ステップ100では、吸込冷媒音速a(Te)、圧力変数Ω、及び吸込冷媒密度ρを算出する。
 吸込冷媒音速a(Te)は、上述したように蒸発器圧力Peから算出される飽和温度Teに基づいて算出され、圧力変数Ωは、(4)式に基づいて算出される。吸込冷媒密度ρは、圧縮機12に設けられた吸込温度センサー17で計測された圧縮機吸込温度Tsと吸込圧力センサー19で計測された圧縮機吸込圧力Psとから算出される。
 次のステップ102では、算出した圧力変数Ω及び吸込冷媒音速a(Te)に対応した流量変数θを空力特性マップ42から算出する。すなわち、ステップ100,ステップ102によって、圧縮機12の運転状態に対応した流量変数θが算出される。
 次のステップ104では、蒸発器冷媒流量Geを下記(5)式によって算出する。
Figure JPOXMLDOC01-appb-M000005
 Qsは、圧縮機12の吸込風量[m3/s]である。
 吸込風量Qsは、ステップ102で算出した流量変数θを用いて下記(6)式から算出される。下記(6)式は、吸込風量Qsを算出するために(3)式を変形した式であり、吸込冷媒音速a(Te)はステップ100で算出され、圧縮機12の羽根車の外径Dは圧縮機12の設計値から求められる。
Figure JPOXMLDOC01-appb-M000006
 次のステップ106では、蒸発器24の入口側のエンタルピhei及び蒸発器24の出口側のエンタルピheoを算出する。
 次のステップ108では、蒸発器24において冷水と冷媒との間で交換される熱量である蒸発器交換熱量Qe[kW(=kJ/sec)]を下記(7)式から算出する。
Figure JPOXMLDOC01-appb-M000007
 次のステップ110では、冷水流量Gwを算出し、本プログラムを終了する。
Figure JPOXMLDOC01-appb-M000008
 このように、ステップ104からステップ110によって、蒸発器24における冷媒と冷水との熱バランスにより冷水流量が算出される。
 冷水流量推算部30bは、算出した冷水流量Gwを膨張弁開度制御部30cへ出力し、膨張弁開度制御部30cは、ターボ冷凍機10各部の状態量(圧力、温度等)及び冷水流量推算部30bから入力された冷水流量に基づいて、膨張弁開度指令値を生成する。
 以上説明したように、本第1実施形態に係る制御装置30は、圧縮機12の吸込風量を反映した流量変数θと、圧縮機12のヘッドを反映した圧力変数Ωとで表示されたマップ上に、旋回失速となる旋回失速線、及び圧縮機12が吸い込む冷媒の音速を示す複数の機械マッハ数線が示された空力特性マップ42を記憶した記憶部36を備え、冷水流量推算部30bによって、圧力変数Ωを算出し、空力特性マップ42から圧力変数Ωに応じた流量変数θを算出し、算出した流量変数θに応じた圧縮機12の吸込風量に基づいて、蒸発器24において冷媒と冷水との間で交換される熱量を算出し、該熱量に基づいて冷水の流量を算出する。
 従って、本第1実施形態に係る制御装置30は、流量計を用いることなく、冷水の流量を算出することができる。
 冷水流量推算部30bは、算出した流量変数θに基づいた圧縮機12の吸込風量、及び圧縮機12に吸い込まれる冷媒の密度から、蒸発器24を流れる冷媒の流量を算出し、算出した冷媒の流量、及び蒸発器24の入口側のエンタルピと出口側のエンタルピの差から、蒸発器24において冷媒と冷水との間で交換される熱量を算出し、算出した熱量、及び冷水が蒸発器24へ流入出する温度の差に基づいて、冷水の流量を算出する。
 従って、本第1実施形態に係る制御装置30は、冷媒や冷水の圧力や温度を計測する計測器による計測結果等を用いて、容易に冷水の流量を算出できる。
〔第2実施形態〕
 以下、本発明の第2実施形態について説明する。
 本第2実施形態に係るターボ冷凍機10の構成は、図1に示す第1実施形態に係るターボ冷凍機10の構成と同様であるので説明を省略する。
 ただし、本第2実施形態に係る記憶部36は、インバータ13から電動モータ28に送られる指示周波数を制御することによって、圧縮機12の回転数が制御可能とされていることから、圧縮機12の回転数に応じて異なる複数の空力特性マップ42を記憶している。
 本第2実施形態に係る空力特性マップ42は、圧縮機12の回転数が高いほど、同じ圧力変数に対する流量変数が大きくなるように表わされている。
 本第2実施形態では、冷水流量推算プログラムのステップ102において、圧縮機12の回転数(指示周波数)に対応した空力特性マップ42を記憶部36から選択し、選択した空力特性マップ42から圧力変数Ωに応じた流量変数θを算出する。
 以上のように、本第2実施形態に係る制御装置30は、圧縮機12の回転数に対応した空力特性マップ42から圧力変数Ωに応じた流量変数θを算出するので、冷水の流量をより精度高く算出できる。
〔第3実施形態〕
 以下、本発明の第3実施形態について説明する。
 本第3実施形態に係るターボ冷凍機10の構成は、図1に示す第1実施形態に係るターボ冷凍機10の構成と同様であるので説明を省略する。
 ただし、本第3実施形態に係る記憶部36は、ターボ冷凍機10が入口ベーン32を備えていることから、入口ベーン32の開度に応じて異なる複数の空力特性マップ42を記憶している。
 本第3実施形態に係る空力特性マップ42は、入口ベーン32の開度が大きいほど、同じ圧力変数に対する流量変数が大きくなるように表わされている。
 本第3実施形態では、冷水流量推算プログラムのステップ102において、入口ベーン32の開度に対応した空力特性マップ42を記憶部36から選択し、選択した空力特性マップ42から圧力変数Ωに応じた流量変数θを算出する。
 以上のように、本第3実施形態に係る制御装置30は、入口ベーン32の開度に対応した空力特性マップ42から圧力変数Ωに応じた流量変数θを算出するので、冷水の流量をより精度高く算出できる。
〔第4実施形態〕
 以下、本発明の第4実施形態について説明する。
 本第4実施形態に係るターボ冷凍機10の構成は、図1に示す第1実施形態に係るターボ冷凍機10の構成と同様であるので説明を省略する。
 ただし、本第4実施形態に係る記憶部36は、ターボ冷凍機10がHGBP配管38と共にHGBP弁40を備えていることから、HGBP弁40の開度に応じて異なる複数の空力特性マップ42を記憶している。
 本第4実施形態に係る空力特性マップ42は、HGBP弁40の開度が大きいほど、同じ圧力変数に対する流量変数が大きくなるように表わされている。
 本第4実施形態では、冷水流量推算プログラムのステップ102において、HGBP弁40の開度に対応した空力特性マップ42を記憶部36から選択し、選択した空力特性マップ42から圧力変数Ωに応じた流量変数θを算出する。
 以上のように、本第4実施形態に係る制御装置30は、HGBP弁40の開度に対応した空力特性マップ42から圧力変数Ωに応じた流量変数θを算出するので、冷水の流量をより精度高く算出できる。
 以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 上記各実施形態では、凝縮器14に挿通される冷却伝熱管34内を流れる熱源媒体を冷却水とする形態について説明したが、本発明は、これに限定されるものではなく、熱源媒体を気体(外気)とし、凝縮器を空気熱交換器とする形態としてもよい。
 上記各実施形態では、冷凍運転を行うターボ冷凍機10に本発明を適用した場合について説明したが、これに限らず、本発明をヒートポンプ運転も可能なヒートポンプ式ターボ冷凍機に適用してもよい。
 上記各実施形態では、ターボ冷凍機10を、遠心圧縮機を用いる形態について説明したが、本発明はこれに限定されるものではなく、他の圧縮形式であっても適用することができ、例えばスクリュー圧縮機を用いたスクリューヒートポンプであってもよい。
 上記各実施形態で説明した冷水流量推算プログラムの処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
 10  ターボ冷凍機
 12  圧縮機
 14  凝縮器
 24  蒸発器
 32  入口ベーン
 30  制御装置
 30b 冷水流量推算部
 36  記憶部
 38  HGBP配管
 40  HGBP弁

Claims (7)

  1.  冷媒を圧縮する圧縮機と、圧縮された冷媒を熱源媒体によって凝縮させる凝縮器と、凝縮された冷媒を蒸発させると共に該冷媒と熱媒とを熱交換する蒸発器と、を備えた熱源機の熱媒の流量を推定する熱媒流量推定装置であって、
     前記圧縮機の吸込風量を反映した第1パラメータと、前記圧縮機のヘッドを反映した第2パラメータとで表示されたマップ上に、旋回失速となる旋回失速線、及び前記圧縮機が吸い込む冷媒の音速を示す複数の機械マッハ数線が示された空力特性マップを記憶した記憶手段と、
     前記第2パラメータを算出し、前記空力特性マップから該第2パラメータに応じた前記第1パラメータを算出する第1パラメータ算出手段と、
     前記第1パラメータ算出手段によって算出された前記第1パラメータに応じた前記圧縮機の吸込風量に基づいて、前記蒸発器において冷媒と熱媒との間で交換される熱量を算出し、該熱量に基づいて熱媒の流量を算出する熱媒流量算出手段と、
    を備えた熱媒流量推定装置。
  2.  熱媒流量算出手段は、
     前記第1パラメータ算出手段によって算出された前記第1パラメータに基づいた前記圧縮機の吸込風量、及び前記圧縮機に吸い込まれる冷媒の密度から、前記蒸発器を流れる冷媒の流量を算出し、
     該算出した冷媒の流量、及び前記蒸発器の入口側のエンタルピと出口側のエンタルピの差から、前記蒸発器において冷媒と熱媒との間で交換される熱量を算出し、
     該算出した熱量、及び熱媒が前記蒸発器へ流入出する温度の差に基づいて、熱媒の流量を算出する請求項1記載の熱媒流量推定装置。
  3.  前記圧縮機は、回転数の制御が可能とされており、
     前記記憶手段は、前記圧縮機の回転数に応じて異なる複数の前記空力特性マップを記憶し、
     第1パラメータ算出手段は、前記圧縮機の回転数に対応した前記空力特性マップから前記第2パラメータに応じた前記第1パラメータを算出する請求項1又は請求項2記載の熱媒流量推定装置。
  4.  前記圧縮機は、冷媒入口に冷媒流量を調節するベーンが備えられており、
     前記記憶手段は、前記ベーンの開度に応じて異なる複数の前記空力特性マップを記憶し、
     第1パラメータ算出手段は、前記ベーンの開度に対応した前記空力特性マップから前記第2パラメータに応じた前記第1パラメータを算出する請求項1又は請求項2記載の熱媒流量推定装置。
  5.  前記凝縮器と前記蒸発器の間には、前記凝縮器内にある冷媒を前記蒸発器へと流すためのバイパス配管が設けられると共に、該バイパス配管を流れる冷媒の流量を調整するための弁が設けられ、
     前記記憶手段は、前記弁の開度に応じて異なる複数の前記空力特性マップを記憶し、
     第1パラメータ算出手段は、前記弁の開度に対応した前記空力特性マップから前記第2パラメータに応じた前記第1パラメータを算出する請求項1又は請求項2記載の熱媒流量推定装置。
  6.  冷媒を圧縮する圧縮機と、
     圧縮された冷媒を熱源媒体によって凝縮させる凝縮器と、
     凝縮された冷媒を蒸発させると共に該冷媒と熱媒とを熱交換する蒸発器と、
     請求項1から請求項5の何れか1項に記載の熱媒流量推定装置と、
    を備えた熱源機。
  7.  冷媒を圧縮する圧縮機と、圧縮された冷媒を熱源媒体によって凝縮させる凝縮器と、凝縮された冷媒を蒸発させると共に該冷媒と熱媒とを熱交換する蒸発器と、を備えた熱源機の熱媒の流量を推定する熱媒流量推定方法であって、
     前記圧縮機の吸込風量を反映した第1パラメータと、前記圧縮機のヘッドを反映した第2パラメータとで表示されたマップ上に、旋回失速となる旋回失速線、及び前記圧縮機が吸い込む冷媒の音速を示す複数の機械マッハ数線が示された空力特性マップが記憶手段に予め記憶されており、前記第2パラメータを算出することによって、前記空力特性マップから該第2パラメータに応じた前記第1パラメータを算出する第1工程と、
     前記第1工程によって算出された前記第1パラメータに応じた前記圧縮機の吸込風量に基づいて、前記蒸発器において冷媒と熱媒との間で交換される熱量を算出し、該熱量に基づいて熱媒の流量を算出する第2工程と、
    を含む熱媒流量推定方法。
PCT/JP2012/053802 2011-03-31 2012-02-17 熱媒流量推定装置、熱源機、及び熱媒流量推定方法 WO2012132612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280003087.7A CN103140729B (zh) 2011-03-31 2012-02-17 载热体流量推测装置、热源机、及载热体流量推测方法
KR1020137007302A KR20130063533A (ko) 2011-03-31 2012-02-17 열매체 유량 추정 장치, 열원기 및 열매체 유량 추정 방법
US13/824,215 US9541318B2 (en) 2011-03-31 2012-02-17 Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
EP12763681.9A EP2693141B1 (en) 2011-03-31 2012-02-17 Hot medium flow rate estimator, heat source, and hot medium flow rate estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081188 2011-03-31
JP2011081188A JP5812653B2 (ja) 2011-03-31 2011-03-31 熱媒流量推定装置、熱源機、及び熱媒流量推定方法

Publications (1)

Publication Number Publication Date
WO2012132612A1 true WO2012132612A1 (ja) 2012-10-04

Family

ID=46930374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053802 WO2012132612A1 (ja) 2011-03-31 2012-02-17 熱媒流量推定装置、熱源機、及び熱媒流量推定方法

Country Status (6)

Country Link
US (1) US9541318B2 (ja)
EP (1) EP2693141B1 (ja)
JP (1) JP5812653B2 (ja)
KR (1) KR20130063533A (ja)
CN (1) CN103140729B (ja)
WO (1) WO2012132612A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181904A (ja) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc 冷凍装置および冷凍機の制御装置
WO2014208668A1 (ja) * 2013-06-27 2014-12-31 三菱日立パワーシステムズ株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置
JP2016080202A (ja) * 2014-10-10 2016-05-16 三菱重工業株式会社 熱源システム及びその冷却水制御装置並びに制御方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159923A (ja) * 2013-02-20 2014-09-04 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
JP6304623B2 (ja) * 2014-02-12 2018-04-04 パナソニックIpマネジメント株式会社 湯水混合装置
JP6433709B2 (ja) * 2014-07-30 2018-12-05 三菱重工サーマルシステムズ株式会社 ターボ冷凍機及びその制御装置並びにその制御方法
JP5841281B1 (ja) * 2015-06-15 2016-01-13 伸和コントロールズ株式会社 プラズマ処理装置用チラー装置
US10161783B2 (en) * 2016-04-12 2018-12-25 Hamilton Sundstrand Corporation Flow sensor bit for motor driven compressor
KR102354891B1 (ko) * 2017-05-31 2022-01-25 삼성전자주식회사 공기 조화기 및 그 제어 방법
CN107729600B (zh) * 2017-09-01 2020-03-27 珠海格力电器股份有限公司 蒸发器仿真计算方法
DE102018103127A1 (de) * 2018-02-13 2019-08-14 Truma Gerätetechnik GmbH & Co. KG Überwachungssystem sowie Netzüberwachungsschaltung
JP6844663B2 (ja) * 2019-07-09 2021-03-17 ダイキン工業株式会社 水量調整装置
DE102021214679A1 (de) 2021-12-20 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Steuerung einer Kreisprozessanlage und Kompressionsanordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255818A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP2008121451A (ja) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd ターボ冷凍機およびその制御方法
JP2009127950A (ja) * 2007-11-26 2009-06-11 Denso Corp 冷凍サイクル装置
JP2010121629A (ja) * 2010-01-20 2010-06-03 Mitsubishi Heavy Ind Ltd ターボ冷凍機およびその圧縮機ならびにその制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3082951A (en) * 1953-07-01 1963-03-26 Univ Columbia Method for calculating performance of refrigeration apparatus
US3876326A (en) * 1974-01-30 1975-04-08 Simmonds Precision Products Surge control system
US4156578A (en) * 1977-08-02 1979-05-29 Agar Instrumentation Incorporated Control of centrifugal compressors
JPH0490462A (ja) * 1990-08-02 1992-03-24 Toshiba Corp 冷凍機の能力評価装置
JP3253190B2 (ja) 1993-09-27 2002-02-04 大阪瓦斯株式会社 吸収式冷温水機の冷却水流量推定方式
US5873257A (en) * 1996-08-01 1999-02-23 Smart Power Systems, Inc. System and method of preventing a surge condition in a vane-type compressor
JPH1089783A (ja) * 1996-09-12 1998-04-10 Sanyo Electric Co Ltd 冷凍機
US6718781B2 (en) * 2001-07-11 2004-04-13 Thermo King Corporation Refrigeration unit apparatus and method
JP4385738B2 (ja) 2003-11-21 2009-12-16 株式会社日立プラントテクノロジー 空調設備
JP4727142B2 (ja) 2003-12-18 2011-07-20 三菱重工業株式会社 ターボ冷凍機およびその圧縮機ならびにその制御方法
US7200524B2 (en) * 2004-05-06 2007-04-03 Carrier Corporation Sensor fault diagnostics and prognostics using component model and time scale orthogonal expansions
US7380404B2 (en) * 2005-01-05 2008-06-03 Carrier Corporation Method and control for determining low refrigerant charge
JP2010127494A (ja) * 2008-11-26 2010-06-10 Corona Corp ヒートポンプ式給湯機
DE102009003978A1 (de) 2009-01-07 2010-07-08 Man Turbo Ag Verfahren zur Bestimmung einer Eigenschaft eines Gases mittels einer Strömungsmaschine
JP5401286B2 (ja) * 2009-12-04 2014-01-29 株式会社日立ハイテクノロジーズ 試料台の温度制御機能を備えた真空処理装置及びプラズマ処理装置
JP5058324B2 (ja) * 2010-10-14 2012-10-24 三菱電機株式会社 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255818A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP2008121451A (ja) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd ターボ冷凍機およびその制御方法
JP2009127950A (ja) * 2007-11-26 2009-06-11 Denso Corp 冷凍サイクル装置
JP2010121629A (ja) * 2010-01-20 2010-06-03 Mitsubishi Heavy Ind Ltd ターボ冷凍機およびその圧縮機ならびにその制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181904A (ja) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc 冷凍装置および冷凍機の制御装置
WO2014208668A1 (ja) * 2013-06-27 2014-12-31 三菱日立パワーシステムズ株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置
JP2015010506A (ja) * 2013-06-27 2015-01-19 三菱重工業株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置
CN105247222A (zh) * 2013-06-27 2016-01-13 三菱日立电力系统株式会社 压缩机的校正转数的计算方法、压缩机的控制方法,以及执行这些方法的装置
US10260513B2 (en) 2013-06-27 2019-04-16 Mitsubishi Hitachi Power Systems, Ltd. Corrected RPM calculation method for finding a corrected RPM of a compressor using a sound velocity of an inlet gas sucked into the compressor, and RPM of the compressor, and a reference state quantity
JP2016080202A (ja) * 2014-10-10 2016-05-16 三菱重工業株式会社 熱源システム及びその冷却水制御装置並びに制御方法

Also Published As

Publication number Publication date
EP2693141A4 (en) 2014-10-29
US20130174601A1 (en) 2013-07-11
JP5812653B2 (ja) 2015-11-17
JP2012215350A (ja) 2012-11-08
US9541318B2 (en) 2017-01-10
CN103140729B (zh) 2015-05-06
EP2693141A1 (en) 2014-02-05
EP2693141B1 (en) 2018-11-28
KR20130063533A (ko) 2013-06-14
CN103140729A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5812653B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
JP5427563B2 (ja) インバータターボ冷凍機の性能評価装置
JP5244420B2 (ja) ターボ冷凍機および熱源システムならびにこれらの制御方法
JP5523972B2 (ja) ターボ冷凍機の性能評価装置
JP5669402B2 (ja) ヒートポンプ及びヒートポンプの熱媒流量演算方法
JP5554277B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
KR101618487B1 (ko) 열원 시스템의 대수 제어장치 및 그 방법 및 열원 시스템
JP6324707B2 (ja) 熱源機及びその制御方法
JP5642448B2 (ja) 流量推定装置、熱源機、及び流量推定方法
JP2007225140A (ja) ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法
JP5931774B2 (ja) ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
JP2013164213A (ja) ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
JP6219160B2 (ja) ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
JP5144959B2 (ja) 熱源機およびその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003087.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824215

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137007302

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012763681

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE