JP2008121451A - ターボ冷凍機およびその制御方法 - Google Patents

ターボ冷凍機およびその制御方法 Download PDF

Info

Publication number
JP2008121451A
JP2008121451A JP2006303785A JP2006303785A JP2008121451A JP 2008121451 A JP2008121451 A JP 2008121451A JP 2006303785 A JP2006303785 A JP 2006303785A JP 2006303785 A JP2006303785 A JP 2006303785A JP 2008121451 A JP2008121451 A JP 2008121451A
Authority
JP
Japan
Prior art keywords
inlet vane
variable
refrigerant
turbo
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006303785A
Other languages
English (en)
Inventor
Kenji Ueda
憲治 上田
Yoshinori Shirakata
芳典 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006303785A priority Critical patent/JP2008121451A/ja
Priority to US12/442,562 priority patent/US8336324B2/en
Priority to CNA2007800193708A priority patent/CN101454576A/zh
Priority to KR1020087028328A priority patent/KR20090008379A/ko
Priority to PCT/JP2007/071821 priority patent/WO2008056782A1/ja
Publication of JP2008121451A publication Critical patent/JP2008121451A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Abstract

【課題】 高い効率を有する2段ターボ圧縮機を備えたターボ冷凍機を提供する。
【解決手段】 第1羽根車の第1入口ベーンおよび第2羽根車の第2入口ベーンの開度を制御する制御部を備えたターボ冷凍機において、制御部は、従属モード優先領域Aにて第1入口ベーンに従属させて第2入口ベーンを動作させる従属モードと、独立モード優先領域Bにて第1入口ベーンとは独立に第2入口ベーンの開度を増大させる独立モードとを備えていることを特徴とする。
【選択図】 図3

Description

本発明は、冷媒を2段で圧縮するターボ圧縮機を備えたターボ冷凍機およびその制御方法に関するものである。
ターボ冷凍機の冷媒圧縮機に用いられるターボ圧縮機として、冷媒を2段で圧縮する2段ターボ圧縮機が多用されている。2段ターボ圧縮機は、第1羽根車と、この第1羽根車の下流に位置する第2羽根車とを備えている。このような、2段ターボ圧縮機には、各羽根車の冷媒吸込口にそれぞれ第1入口ベーンおよび第2入口ベーンを備えたものがある(特許文献1参照)。一般に、第2入口ベーンの開度は、第1入口ベーンの開度と同等またはそれ以上として、リンク機構等によって第1入口ベーンの開度に従属させている。
特開2003−307197号公報(段落[0025]及び図2)
近年の省エネルギー化の要請により、ターボ冷凍機のCOP(成績係数)向上のため、ターボ圧縮機の高効率化が要求されている。
そこで、本発明者等は、2段圧縮ターボ圧縮機を効率の観点から検討し、第2入口ベーンの開度を第1入口ベーンの開度に従属させた方が効率が良い場合と、第2入口ベーンの開度を第1入口ベーンとは独立に制御して第2入口ベーンの開度を開けた方が効率が良い場合が存在することを見出した。
本発明は、このような事情に鑑みてなされたものであって、高い効率を有する2段ターボ圧縮機を備えたターボ冷凍機およびその制御方法を提供することを目的とする。
上記課題を解決するために、本発明のターボ冷凍機およびその制御方法は以下の手段を採用する。
すなわち、本発明にかかるターボ冷凍機は、第1羽根車および該第1羽根車の下流に位置する第2羽根車を備えて冷媒を2段で圧縮するターボ圧縮機と、該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器によって凝縮された冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器とを備え、前記ターボ冷凍機の前記第1羽根車および前記第2羽根車の冷媒吸込口には、それぞれ、吸い込まれる冷媒ガスの羽根車への流入角度を変えることによりガス流量を調整する第1入口ベーンおよび第2入口ベーンが設けられ、これら第1入口ベーンおよび第2入口ベーンの開度を制御する制御部を備えたターボ冷凍機において、前記制御部は、前記第1入口ベーンに従属させて前記第2入口ベーンを動作させる従属モードと、前記第1入口ベーンとは独立に前記第2入口ベーンの開度を増大させる独立モードとを備えていることを特徴とする。
本発明者等は鋭意検討した結果、第1羽根車および第2羽根車を備えた2段圧縮のターボ圧縮機では、第1入口ベーンとは独立に第2入口ベーンの開度を増大させる独立モードよりも、第1入口ベーンに従属させて第2入口ベーンを動作させる従属モードの方が効率が良い運転範囲が存在し、一方、従属モードよりも独立モードの方が効率が良い運転範囲が存在することを見出した。そこで、制御部によって従属モードと独立モードとを使い分けることとし、幅広い運転範囲において効率が良い運転を選択できることとした。
なお、従属モードの場合、第2入口ベーンの開度は、第1入口ベーンの開度と同等またはそれ以上とするのが好ましい。
また、独立モードの場合、第2入口ベーンの開度は、従属モード時の第2ベーン入口開度よりも大きくなるように制御され、さらには、第1羽根車のみで冷媒吸込量を調整するように第2入口ベーンを無効化する程度に該第2入口ベーンの開度を大きく開けることが好ましい。
さらに、本発明のターボ冷凍機によれば、前記制御部は、運転時に、前記凝縮器における凝縮圧力および前記蒸発器における蒸発圧力に基づいて決定される第1変数を運転時第1変数として演算し、かつ、前記独立モードよりも前記従属モードの方が前記ターボ圧縮機の効率が良い従属モード優先領域と、前記従属モードよりも前記独立モードの方が前記ターボ圧縮機の効率が良い独立モード優先領域とが区別される第1変数を分岐第1変数として備え、前記運転時第1変数と前記分岐第1変数とを比較することにより、前記従属モードおよび前記独立モードを切り替えることを特徴とする。
本発明者等は、前記独立モードよりも前記従属モードの方が前記ターボ圧縮機の効率が良い従属モード優先領域と、前記従属モードよりも前記独立モードの方が前記ターボ圧縮機の効率が良い独立モード優先領域とは、凝縮圧力および蒸発圧力に基づいて決定される第1変数によって区別できることを見出した。そこで、制御部は、凝縮圧力および蒸発圧力に基づいて決定される第1変数を運転時に演算し、運転時第1変数として得ておき、この運転時第1変数と分岐第1変数とを比較することにより、各モードを切り替えることとした。第1変数は、圧力センサを用いて正確な測定が可能な凝縮圧力および蒸発圧力から得られる変数なので、精度良い制御が可能となる。特に、第1変数として圧力変数を用いれば、圧力変数は凝縮圧力、蒸発圧力および吸込冷媒の飽和ガス音速で決まるので、さらに精度良く求めることができる。
なお、中間冷却器を備えたターボ冷凍機の場合には、さらに中間冷却器の圧力である中間圧力を用いても良い。
さらに、本発明のターボ冷凍機によれば、前記制御部は、前記ターボ圧縮機の回転数毎に、前記第1入口ベーン及び前記第2入口ベーンの100%開度においてサージが生じる圧力変数を100%開度サージ圧力変数として備え、前記第1変数は、前記ターボ冷凍機の所定回転数における圧力変数を、該所定回転数に対応する前記100%開度サージ圧力変数で除した値とされていることを特徴とする。
第1入口ベーンおよび第2入口ベーンが100%開度のときのサージ圧力変数を用いることとしたので、サージ圧力変数が一意に決まり、各入口ベーンが他の開度のときのサージ圧力変数を用いる場合よりも基準が明確になる。また、所定回転数における圧力変数を、該所定回転数に対応する100%開度圧力変数で除することにより規格化された第1変数を得ることとしたので、回転数に依存しない第1変数を使用することができる。したがって、この第1変数で制御することにより、ターボ圧縮機の回転数が異なっても、同一の基準の分岐第1変数で制御でき、簡便で高応答の制御が実現される。
また、本発明のターボ冷凍機の制御方法は、第1羽根車および該第1羽根車の下流に位置する第2羽根車を備えて冷媒を2段で圧縮するターボ圧縮機と、該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器によって凝縮された冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器とを備え、前記ターボ冷凍機の前記第1羽根車および前記第2羽根車の冷媒吸込口には、それぞれ、吸込冷媒流量を調整する第1入口ベーンおよび第2入口ベーンが設けられ、これら第1入口ベーンおよび第2入口ベーンの開度を制御するターボ冷凍機の制御方法において、前記第1入口ベーンに従属させて前記第2入口ベーンを動作させる従属モードと、前記第1入口ベーンとは独立に前記第2入口ベーンの開度を増大させる独立モードとが切替可能とされていることを特徴とする。
本発明者等は鋭意検討した結果、第1羽根車および第2羽根車を備えた2段圧縮のターボ圧縮機では、第1入口ベーンとは独立に第2入口ベーンの開度を増大させる独立モードよりも、第1入口ベーンに従属させて第2入口ベーンを動作させる従属モードの方が効率が良い運転範囲が存在し、一方、従属モードよりも独立モードの方が効率が良い運転範囲が存在することを見出した。そこで、制御部によって従属モードと独立モードとを使い分けることとし、幅広い運転範囲において効率が良い運転を選択できることとした。
また、独立モードの場合、第2入口ベーンの開度は、従属モード時の第2ベーン入口開度よりも大きくなるように制御され、さらには、第1羽根車のみで冷媒吸込量を調整するように第2入口ベーンを無効化する程度に該第2入口ベーンの開度を大きく開けることが好ましい。
従属モードと独立モードとを使い分けて第1入口ベーンおよび第2入口ベーンの開度を制御することにより、幅広い運転範囲において効率が良いターボ圧縮機の運転を選択できる。したがって、省エネルギーに適したCOPが高いターボ冷凍機およびその制御方法を提供することができる。
[第1実施形態]
以下に、本発明の第1実施形態について、図面を参照して説明する。
図1には、2段ターボ圧縮機を用いたターボ冷凍機の概略構成図が示されている。同図に示されたターボ冷凍機1は、2段圧縮2段膨張のサイクルを構成している。
ターボ冷凍機1は、冷媒を圧縮するターボ圧縮機3と、圧縮機によって圧縮された冷媒を凝縮させる凝縮器5と、冷媒を蒸発させる蒸発器6と、凝縮器5と蒸発器6との間に設けられた中間冷却器7とを備えている。また、中間冷却器7と凝縮器5との間の冷媒配管には第1膨張弁9が、中間冷却器7と蒸発器6との間の冷媒配管には第2膨張弁10が、それぞれ設けられている。
ターボ圧縮機3は、高圧力比が得られる遠心圧縮機となっている。
ターボ圧縮機3は、電動モータ27と、増速機28と、この増速機28の出力側に設けられた第1羽根車30及び第2羽根車32とを備えている。
電動モータ27は、インバータ電源により駆動される場合と系統電力(50Hzまたは60Hz)により駆動される場合があり、インバータ電源により駆動される場合はターボ冷凍機1の制御部20によって周波数制御されるようになっている。これにより、電動モータ27のモータ軸が所望の回転数で駆動される。系統電力により駆動される場合は回転数は一定となる。
増速機28は、電動モータ27と羽根車30,32との間に設けられ、電動モータ27のモータ軸の回転数を増速させる。
第1羽根車30及び第2羽根車32は、冷媒流路上に直列に接続されており、第1羽根車30によって圧縮された後に第2羽根車32によってさらに圧縮されるようになっている。中間冷却器7からのガス冷媒は、第1羽根車30と第2羽根車32との間(中間段)に導入される。
第1羽根車30の冷媒吸込口には、吸込冷媒流量を調整する第1入口ベーン30aが設けられ、また、第2羽根車32の冷媒吸込口には、吸込冷媒流量を調整する第2入口ベーン32aが設けられている。第1入口ベーン30a及び第2入口ベーン32aは、それぞれ、モータ30b,32bによって駆動されるようになっている。各モータ30b,32bは、ターボ冷凍機1の制御部20によって制御される。第1入口ベーン30aの開度は、蒸発器6によって冷却された後の冷水出口温度が所望温度となるように制御される。第2入口ベーン32aは、第1入口ベーン30aと同等またはそれ以上の開度で従属して制御される(従属モード)、または、第1入口ベーン30aの開度とは独立して、従属モード時の第2入口ベーン開度よりも大きい開度で制御される(独立モード)。
凝縮器5は、例えばフィン・アンド・チューブ式の熱交換器とされている。凝縮器5には、冷却水配管12が接続されており、この冷却水配管12によって供給される冷却水により凝縮熱が除去される。凝縮器5には、凝縮圧力Pを計測するための凝縮圧力センサ5sが設けられている。凝縮圧力センサ5sの出力は、制御部20へと送信される。
蒸発器6は、シェル・アンド・チューブ式の熱交換器とされている。蒸発器6には、冷水配管11が接続されており、この冷水配管11内を流れる水とシェル内の冷媒とが熱交換を行う。冷水配管11は、外部負荷(図示せず)と接続されている。一般に、冷房時の冷水入口温度は12℃に、冷水出口温度は7℃に設定される。蒸発器6には、蒸発圧力Pを計測するための蒸発圧力センサ6sが設けられている。蒸発圧力センサ6sの出力は、制御部20へと送信される。
中間冷却器7は、凝縮器5と蒸発器6との間に設けられ、第1膨張弁9で膨張した冷媒液がガスと液が気液分離するのに十分な内容積となっている。中間冷却器7には、中間圧力Pを計測するための中間圧力センサ7sが設けられている。中間圧力センサ7sの出力は、制御部20へと送信される。
中間冷却器7には、第1羽根車30と第2羽根車32との間に接続される中間圧冷媒配管7aが接続されている。中間圧冷媒配管7aの下端(冷媒流れの上流端)は、中間冷却器7内の上方空間に位置しており、中間冷却器7内のガス冷媒を吸い込むようになっている。
中間冷却器7では、凝縮器5からの高圧液冷媒が蒸発するようになっており、この蒸発潜熱によって中間圧冷媒配管7aを介して蒸発器6へと導かれる液冷媒が冷却される。そして、蒸発して飽和温度付近となったガス冷媒は、第1羽根車30によって低圧から中間圧まで圧縮されたガス冷媒と混合され、第2羽根車32によって中間圧から圧縮されるガス冷媒を冷却している。
第1膨張弁9は、凝縮器5と中間冷却器7との間に設けられており、液冷媒を絞ることによって等エンタルピ膨張させるものである。
第2膨張弁10は、蒸発器6と中間冷却器7との間に設けられており、液冷媒を絞ることによって等エンタルピ膨張させるものである。
第1膨張弁9および第2膨張弁10は、それぞれ、ターボ冷凍機1の制御部20によってその開度が制御されるようになっている。
制御部20は、ターボ冷凍機1の制御盤内の制御基板に設けられており、CPUおよびメモリを備えている。制御部20は、外気温、冷媒圧力、冷温水出入口温度等に基づき制御周期ごとにデジタル演算により各制御量を算出するようになっている。
また、制御部20は、各演算量に基づいて、冷水出口温度が設定温度となるようにターボ圧縮機3の第1入口ベーン30aの開度を制御する。また、制御部20は、後述する従属モードおよび独立モードに応じて、第2入口ベーンの開度を制御する。
次に、上記構成のターボ冷凍機1の動作について説明する。
ターボ圧縮機3は、電動機27によって駆動され、制御部20によるインバータ制御により所定周波数で回転させられる。第1入口ベーン30aは、制御部20によって、設定温度(例えば、冷水出口温度7℃)を達成するようにその開度が調整されている。第2入口ベーン32aは、制御部20によって、後に詳述する従属モードまたは独立モードが選択され、各モードに応じた開度に設定されている。
蒸発器6から吸い込まれた低圧のガス冷媒(図2の状態A)は、ターボ圧縮機3によって圧縮され、中間圧まで圧縮される(図3の状態B)。中間圧まで圧縮されたガス冷媒は、中間圧冷媒配管7aから流入する中間圧のガス冷媒によって冷却される(図3の状態C)。中間圧のガス冷媒によって冷却されたガス冷媒は、ターボ圧縮機3によって更に圧縮され高圧のガス冷媒となる(図3の状態D)。
ターボ圧縮機3から吐出された高圧のガス冷媒は、冷媒配管19aを通り、凝縮器5へと導かれる、
凝縮器5において、冷却水配管12によって供給される冷却水によって高圧のガス冷媒は略等圧に冷却され、高圧の液冷媒となる(図3の状態E)。高圧の液冷媒は、冷媒配管19bを通り第1膨張弁9へと導かれ、この第1膨張弁9によって等エンタルピ的に中間圧まで膨張させられる(図3の状態F)。中間圧まで膨張させられた冷媒は、冷媒配管19cを介して中間冷却器7へと導かれる。中間冷却器7において、一部の冷媒は蒸発し(図3の状態Fから状態C)、中間圧冷媒配管7aを介してターボ圧縮機3の中間段へと導かれる。中間冷却器7において蒸発せずに凝縮したままの液冷媒は、中間冷却器7内に貯留される。中間冷却器7内に貯留された中間圧の液冷媒は、冷媒配管19dを介して第2膨張弁10へと導かれる。中間圧の液冷媒は、第2膨張弁10によって等エンタルピ的に低圧まで膨張させられる(図3の状態G)。
低圧まで膨張させられた冷媒は、蒸発器6において蒸発し(図3の状態Gから状態A)、冷水配管11内を流れる冷水から熱を奪う。これにより、12℃で流入した冷水は7℃で外部負荷側に返送されることになる。
蒸発器6において蒸発した低圧のガス冷媒は、ターボ圧縮機3の低圧段へと導かれ、再び圧縮される。
次に、第1入口ベーン30aおよび第2入口ベーン32aを制御する方法について説明する。ターボ冷凍機1の制御部20は、ターボ圧縮機3の運転状態に応じて従属モードまたは独立モードを選択し、各モードに応じた開度が各入口ベーン30a,32aに与えられる。従属モードでは、第1入口ベーン30aの開度に従属して第2入口ベーン32aの開度が決定される。例えば、第1入口ベーン30aの開度と同等の開度となるように第2入口ベーン32aの開度が決定される。あるいは、第1入口ベーン30aの開度と比例関係をなすような開度となるように第2入口ベーン32aの開度が決定される。ただし、第2入口ベーン32aの開度が第1入口ベーン30aの開度よりも小さい場合には、ターボ冷凍機1の運転が不安定となるので、第2入口ベーン32aの開度は、第1入口ベーン30aの開度と同等またはそれ以上に設定される。
一般には、入口ベーンの開度が大きい領域(例えば70%開度以上)では、従属モードの方が風量(ターボ圧縮機の能力に相当)に対する分解能が高いので、基本運転モードとしては従属モードが選択される。そして、従属モードよりも独立モードの方がターボ圧縮機3の効率が高い運転領域では、独立モードを選択し、第2入口ベーン32aの開度を、従属モード時の開度よりも大きくなるように制御する。
図3には、従属モードと独立モードとを切り替える考え方が示されている。
同図において、横軸は流量変数θ(無次元数)、縦軸は圧力変数Ω(無次元数)を示す。
流量変数θは、
θ=Q/(a×D) ・・・(1)
として表される。ここで、Qは風量(m/s)、aは吸込冷媒の飽和ガス音速(m/s)、Dは羽根車30,32の外径(m)である。
また、圧力変数(第1変数)Ωは、
Ω=(h1+h2)×g/(a) ・・・(2)
として表される。ここで、h1は第1羽根車30におけるエンタルピ落差(図2参照)、h2は第2羽根車32におけるエンタルピ落差(図2参照)、gは重力加速度である。なお、エンタルピ落差h1,h2は、図2から理解されるように、蒸発圧力P、中間圧力P及び凝縮圧力Pからそれぞれ等エントロピー圧縮に従い得ることができる。
図3に示した破線は、サージが発生するサージ限界線Sである。また、L1は、第1入口ベーン30a及び第2入口ベーン32aの開度がともに100%のときの運転曲線である。図3に示すように、ある回転数の下で、従属モードのターボ圧縮機の効率と独立モードの効率とを計測し、いずれのモードの方が効率が良いかについて検討すると、分岐線L2よりも下の領域すなわち分岐線L2よりも圧力変数が低く、流量変数が高い領域では、従属モードの効率が独立モードの効率よりも高く、分岐線L2よりも上の領域すなわち分岐線L2よりも圧力変数が高く、流量変数が低い領域では、独立モードの効率が従属モードの効率よりも高くなることを見出した。そこで、分岐線L2よりも下の領域を従属モード優先領域Aとし、分岐線L2よりも上の領域を独立モード優先領域Bとして、入口ベーン30a,32aの開度を制御することとする。
次に、具体的な入口ベーン30a,32aの開度の決定の仕方について説明する。
図4に示すように、ターボ圧縮機3の特性として、吸込冷媒のマッハ数M1,M2・・・ごとに、運転曲線が異なる。なお、図4は、両入口ベーン30a,32aの開度が100%のときのものである。そして、図5に示すように、あるマッハ数(図5ではマッハ数M2)に着目して、流量変数θ−圧力変数Ω線図を作成する。次に、図6に示すように、あるマッハ数(図6ではマッハ数M2)におけるΩ−θ線図を作成する。このΩ−θ線図には、従属モード時の第1入口ベーン30aの開度ごとに運転曲線が書き込まれ、さらに、図3を用いて説明した分岐線L2が書き込まれる。そして、第1入口ベーン30aの開度IGV1毎に、分岐線L2との交点から、分岐圧力変数Ωthを得る。この分岐圧力変数Ωthは、各マッハ数(ターボ圧縮機3の回転数)Mに対して、第1入口ベーン30aの開度ごとに整理され、マッハ数Mおよび第1入口ベーン開度IGV1に応じた変数となる。この分岐圧力変数Ωth(M,IGV1)は、予め実験等により得ておき、ターボ冷凍機1の制御部20のメモリに格納される。
図7に示すように、制御部20は、ターボ冷凍機1の運転時には、ターボ圧縮機3の回転数から得られるマッハ数M、凝縮圧力P、中間圧力Pおよび蒸発圧力Pから式(2)に基づいて、現在の第1入口ベーン開度IGV1における運転時圧力変数Ωnow(M,IGV1)を演算する(ステップS1)。
そして、ステップS3に進み、この運転時圧力変数Ωnow(M,IGV1)が、同一のマッハ数Mおよび同一の第1入口ベーン開度IGV1における分岐圧力変数Ωth(M,IGV1)を超えた場合には(ステップS3におけるYES)、ステップS5へと進み、独立モードを選択して第2入口ベーン32aの開度を開けていく。これにより、図3に示した独立モード優先領域Bでの運転が実現される。第2ベーン32aの開度は、従属モード時の開度よりも大きくなるように制御され、例えば、全開となるように制御しても良い。
ステップS3にて、運転時圧力変数Ωnow(M,IGV1)が分岐圧力変数Ωthを下回る場合には(ステップS3におけるNO)、ステップS7へと進み、従属モードを選択し、例えば第2入口ベーン32aの開度を第1入口ベーン30aの開度と同等とする。これにより、図3に示した従属モード優先領域Aでの運転が実現される。
このように、分岐圧力変数Ωth(M,IGV1)を閾値として、独立モードと従属モードとを切り替えることにより、常に効率の良い入口ベーン30a,32a開度の組合せとなる運転を選択することができる。
また、流量変数θを用いずに圧力変数Ωによって制御することができるので、精度良くかつ簡便に制御を行うことができる。なぜなら、流量変数θは、式(1)に示したように風量Qを得る必要があり、風量を得るには蒸発器6によって冷却される冷水の出入口温度差だけでなく冷水の流量を計測する流量計が必要となる。一般に、冷水流量を計測する流量計はターボ冷凍機には設けられておらず、また流量計を設置したとしても流量計の精度はそれほど高くない。したがって、冷水流量の推定値を用いるか、精度が比較的低い流量計による冷水流量を用いる必要があるため、流量変数θによる制御は精度が低くなる。
以上の通り、本実施形態にかかるターボ冷凍機1によれば、以下の作用効果を奏する。
ターボ冷凍機1の制御部20によって従属モードと独立モードとを使い分けることにより、幅広い運転範囲においてターボ圧縮機3効率が良い運転を選択できることとした。したがって、省エネルギーに適したCOPが高いターボ冷凍機1を提供することができる。
また、凝縮圧力および蒸発圧力に基づいて決定される圧力変数を運転時に演算し、運転時圧力変数Ωnowとして得ておき、この運転時圧力変数Ωnowと分岐圧力変数Ωthとを比較することにより、各モードを切り替えることとした。圧力変数は、圧力センサを用いて正確な測定が可能な凝縮圧力および蒸発圧力から得られる変数なので、精度良い制御が可能となる。特に、高い精度で演算することが困難な流量変数を用いずに制御することができるので、高精度の制御が可能となる。
[第2実施形態]
次に、本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対して、従属モードおよび独立モードの選択方法のみが異なる。したがって、他の構成等については第1実施形態と同様であるので、その説明は省略する。
本実施形態では、ターボ圧縮機3の回転数に依存せずに、簡便に両入口ベーン30a,32aの開度を決定することができる。
図4を用いて説明したように、ターボ圧縮機3の特性として、吸込冷媒のマッハ数M1,M2・・・ごとに、運転曲線が異なる。したがって、マッハ数ごとにサージが発生する点(θ,Ω)が異なる。ひるがえって考えると、マッハ数(ターボ圧縮機3の回転数)が決まると、サージが発生する圧力変数Ωsurが一意に決まることになる。この両入口ベーンの100%開度におけるサージが発生する圧力変数を100%開度サージ圧力変数Ωsur(M)として、マッハ数Mごとに、予め実験等により得ておく。100%開度サージ圧力変数Ωsur(M)は、ターボ冷凍機1の制御部20のメモリに格納されている。
そして、100%開度サージ圧力変数Ωsur(M)を用いて、以下の制御用圧力変数Ωbを導入する。
Ωb=Ω/Ωsur(M) ・・・(3)
このように、一意で決まる各マッハ数(回転数)における100%開度サージ圧力変数Ωsur(M)で除することによって規格化することにより、制御用圧力変数Ωbは、ターボ圧縮機3の回転数に依存しない変数となる。
そして、制御用圧力変数(第1変数)Ωbを用いて、第2入口ベーン32aの開度IGV2の関数を作成する。
IGV2=f(Ωb) ・・・(4)
この関数は、ターボ冷凍機の負荷に応じて低下する凝縮圧力Pcに基づき算定されるΩから導出されるΩb、(例えばJIS規格で規定される冷却水温度から算定される)と最適なIGV2の関係をあらかじめ実験により得ておく。この場合、負荷の影響は排除される。例えば、第2入口ベーン32aの開度の関数は、制御用圧力変数Ωbの3次式や2次式で表される。
このような制御用圧力変数Ωbを導入すれば、図8に示すように、マッハ数すなわちターボ圧縮機3の回転数に依存せずに、従属モード時の第1入口ベーン開度IGV1ごとに分岐点となる分岐制御用圧力変数Ωb_th(IGV1)が一つに定まる。
ターボ冷凍機1の制御部20のメモリには、図8に示したマップが格納されており、このマップを参照しながら両入口ベーン30a,32aの開度の制御が行われる。
具体的には、図9に示すように、両入口ベーン30a,32aの開度制御が行われる。
制御部20は、運転時における運転時制御用圧力変数Ωb_now(IGV1)をリアルタイムで演算する(ステップS10)。そして、この運転時制御用圧力変数Ωb_now(IGV1)に基づいて、式(4)から、第2入口ベーン32aの演算開度IGV2_calを演算する(ステップS11)。このとき、制御部20のメモリに格納されたマッハ数Mに応じた100%開度サージ圧力変数Ωsur(M)が用いられる。
そして、ステップS12へと進み、運転時制御用圧力変数Ωb_now(IGV1)と分岐制御用圧力変数Ωb_th(IGV1)とを比較し、運転時制御用圧力変数Ωb_now(IGV1)が、分岐制御用圧力変数Ωb_th(IGV1)を下回っている場合(ステップS12にてNO)には、従属モードを選択する(ステップS14)。そして、ステップS11にて得られた第2入口ベーン32aの演算開度IGV2_calが第1入口ベーン開度IGV1よりも小さい場合または大きい場合(ステップS16にてYES)は、第2入口ベーン開度IGV2が第1入口ベーン開度IGV1と同等となるように制御する(ステップS18)。
ステップS11において得られた第2入口ベーン32aの演算開度IGV2_calが第1入口ベーン開度IGV1と同等である場合(ステップS16にてNO)は、演算開度IGV2_calをそのまま採用する(ステップS20)。
ステップS12にて、運転時制御用圧力変数Ωb_now(IGV1)が、分岐制御用圧力変数Ωb_th(IGV1)を上回っている場合(YES)には、独立モードを選択する(ステップS22)。そして、ステップS24へと進み、ステップS11において得られた第2入口ベーン32aの演算開度IGV2_calが第1入口ベーン開度IGV1よりも小さい場合または同等の場合(ステップS24にてYES)には、第2入口ベーン開度IGV2が現在の第2入口ベーン開度IGV2すなわち従属モードにおける第2入口ベーン開度を上回るように制御する(ステップS26)。
ステップS24にて、ステップS11において得られた第2入口ベーン32aの演算開度IGV2_calが第1入口ベーン開度IGV1よりも大きい場合(ステップS24にてNO)には、演算開度IGV2_calをそのまま採用する(ステップS28)。
以上の通り、本実施形態にかかるターボ冷凍機1によれば、運転時の圧力変数Ωを、同一回転数に対応する100%開度圧力変数Ωsurで除することにより規格化した制御用圧力変数Ωbを得ることとしたので、回転数に依存しない変数を使用することができる。したがって、この制御用圧力変数Ωbで制御することにより、ターボ圧縮機3の回転数が異なっても、同一の基準の分岐制御用圧力変数Ωb_thで制御でき、簡便で高応答の制御が実現される。
本発明の第1実施形態にかかるターボ冷凍機の全体構成を示した概略図である。 図1のターボ圧縮機の冷媒サイクルを示した圧力−エンタルピ線図である。 従属モードまたは独立モードでターボ圧縮機の効率が反転する分岐線が示された流量変数θ−圧力変数Ω線図である。 マッハ数ごとにターボ圧縮機の運転曲線を示した流量変数θ−圧力変数Ω線図である。 マッハ数M2におけるサージ圧力変数Ωsur(M2)を示した流量変数θ−圧力変数Ω線図である。 マッハ数M2において、第1入口ベーン開度ごとに分岐線L2との交点を示した流量変数θ−圧力変数Ω線図である。 圧力変数に基づいて第1入口ベーン開度および第2入口ベーン開度を制御する方法を示したフローチャートである。 本発明の第2実施形態について、制御用圧力変数Ωbを用いて表現した流量変数θ−圧力変数Ω線図である。 制御用圧力変数Ωbに基づいて第1入口ベーン開度および第2入口ベーン開度を制御する方法を示したフローチャートである。
符号の説明
1 ターボ冷凍機
3 ターボ圧縮機
5 凝縮器
6 蒸発器
20 制御部
30 第1羽根車
30a 第1入口ベーン
32 第2羽根車
32a 第2入口ベーン
A 従属モード優先領域
B 独立モード優先領域
Ω 圧力変数(第1変数)
Ωnow 運転時圧力変数(運転時第1変数)
Ωth 分岐圧力変数(分岐第1変数)
Ωsur 100%開度サージ圧力変数
Ωb 制御用圧力変数(第1変数)
Ωb_th 分岐制御用圧力変数(分岐第1変数)
Ωb_now 運転時制御用圧力変数(運転時第1変数)

Claims (4)

  1. 第1羽根車および該第1羽根車の下流に位置する第2羽根車を備えて冷媒を2段で圧縮するターボ圧縮機と、
    該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
    該凝縮器によって凝縮された冷媒を膨張させる膨張弁と、
    該膨張弁によって膨張された冷媒を蒸発させる蒸発器とを備え、
    前記ターボ冷凍機の前記第1羽根車および前記第2羽根車の冷媒吸込口には、それぞれ、吸込冷媒流量を調整する第1入口ベーンおよび第2入口ベーンが設けられ、
    これら第1入口ベーンおよび第2入口ベーンの開度を制御する制御部を備えたターボ冷凍機において、
    前記制御部は、前記第1入口ベーンに従属させて前記第2入口ベーンを動作させる従属モードと、前記第1入口ベーンとは独立に前記第2入口ベーンの開度を増大させる独立モードとを備えていることを特徴とするターボ冷凍機。
  2. 前記制御部は、運転時に、前記凝縮器における凝縮圧力および前記蒸発器における蒸発圧力に基づいて決定される第1変数を運転時第1変数として演算し、かつ、
    前記独立モードよりも前記従属モードの方が前記ターボ圧縮機の効率が良い従属モード優先領域と、前記従属モードよりも前記独立モードの方が前記ターボ圧縮機の効率が良い独立モード優先領域とが区別される第1変数を分岐第1変数として備え、
    前記運転時第1変数と前記分岐第1変数とを比較することにより、前記従属モードおよび前記独立モードを切り替えることを特徴とする請求項1記載のターボ冷凍機。
  3. 前記制御部は、前記ターボ圧縮機の回転数毎に、前記第1入口ベーン及び前記第2入口ベーンの100%開度においてサージが生じる圧力変数を100%開度サージ圧力変数として備え、
    前記第1変数は、前記ターボ冷凍機の所定回転数における圧力変数を、該所定回転数に対応する前記100%開度サージ圧力変数で除した値とされていることを特徴とする請求項2記載のターボ冷凍機。
  4. 第1羽根車および該第1羽根車の下流に位置する第2羽根車を備えて冷媒を2段で圧縮するターボ圧縮機と、
    該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
    該凝縮器によって凝縮された冷媒を膨張させる膨張弁と、
    該膨張弁によって膨張された冷媒を蒸発させる蒸発器とを備え、
    前記ターボ冷凍機の前記第1羽根車および前記第2羽根車の冷媒吸込口には、それぞれ、吸込冷媒流量を調整する第1入口ベーンおよび第2入口ベーンが設けられ、
    これら第1入口ベーンおよび第2入口ベーンの開度を制御するターボ冷凍機の制御方法において、
    前記第1入口ベーンに従属させて前記第2入口ベーンを動作させる従属モードと、前記第1入口ベーンとは独立に前記第2入口ベーンの開度を増大させる独立モードとが切替可能とされていることを特徴とするターボ冷凍機の制御方法。
JP2006303785A 2006-11-09 2006-11-09 ターボ冷凍機およびその制御方法 Withdrawn JP2008121451A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006303785A JP2008121451A (ja) 2006-11-09 2006-11-09 ターボ冷凍機およびその制御方法
US12/442,562 US8336324B2 (en) 2006-11-09 2007-11-09 Turbo chiller and control method therefor
CNA2007800193708A CN101454576A (zh) 2006-11-09 2007-11-09 涡轮制冷机及其控制方法
KR1020087028328A KR20090008379A (ko) 2006-11-09 2007-11-09 터보 냉동기 및 그 제어 방법
PCT/JP2007/071821 WO2008056782A1 (fr) 2006-11-09 2007-11-09 Dispositif de turbo-réfrigération et procédé de commande associé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303785A JP2008121451A (ja) 2006-11-09 2006-11-09 ターボ冷凍機およびその制御方法

Publications (1)

Publication Number Publication Date
JP2008121451A true JP2008121451A (ja) 2008-05-29

Family

ID=39364592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303785A Withdrawn JP2008121451A (ja) 2006-11-09 2006-11-09 ターボ冷凍機およびその制御方法

Country Status (5)

Country Link
US (1) US8336324B2 (ja)
JP (1) JP2008121451A (ja)
KR (1) KR20090008379A (ja)
CN (1) CN101454576A (ja)
WO (1) WO2008056782A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111950A (ja) * 2009-11-25 2011-06-09 Kobe Steel Ltd 多段遠心圧縮機の容量制御方法
WO2012132612A1 (ja) * 2011-03-31 2012-10-04 三菱重工業株式会社 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
CN104006562A (zh) * 2013-02-27 2014-08-27 荏原冷热系统株式会社 涡轮制冷机
KR20160062942A (ko) * 2014-11-26 2016-06-03 현대중공업 주식회사 다단 압축기 및 이를 이용한 서지 제어방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427563B2 (ja) * 2009-11-20 2014-02-26 三菱重工業株式会社 インバータターボ冷凍機の性能評価装置
JP5984456B2 (ja) * 2012-03-30 2016-09-06 三菱重工業株式会社 熱源システムの制御装置、熱源システムの制御方法、熱源システム、電力調整ネットワークシステム、及び熱源機の制御装置
GB2522593B (en) 2012-12-04 2019-01-16 Trane Int Inc Chiller capacity control apparatuses, methods, and systems
JP5738262B2 (ja) 2012-12-04 2015-06-17 三菱重工コンプレッサ株式会社 圧縮機制御装置、圧縮機システムおよび圧縮機制御方法
CN108826775B (zh) * 2013-01-25 2021-01-12 特灵国际有限公司 用于控制具有带有可变速度驱动器的离心式压缩机的冷却器系统的方法和系统
JP6778884B2 (ja) * 2017-01-16 2020-11-04 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138798A (ja) * 1983-01-28 1984-08-09 Hitachi Ltd 多段流体機械の容量調節装置
JPS59160097A (ja) * 1983-03-02 1984-09-10 Hitachi Ltd 多段圧縮機の容量調節方法
JPS608497A (ja) 1983-06-29 1985-01-17 Hitachi Ltd 多段圧縮機の容量調節装置
JP2003307197A (ja) 2002-04-12 2003-10-31 Mitsubishi Heavy Ind Ltd ターボ形圧縮機およびそれを用いた冷凍装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111950A (ja) * 2009-11-25 2011-06-09 Kobe Steel Ltd 多段遠心圧縮機の容量制御方法
WO2012132612A1 (ja) * 2011-03-31 2012-10-04 三菱重工業株式会社 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
JP2012215350A (ja) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
US9541318B2 (en) 2011-03-31 2017-01-10 Mitsubishi Heavy Industries, Ltd. Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
CN104006562A (zh) * 2013-02-27 2014-08-27 荏原冷热系统株式会社 涡轮制冷机
JP2014163625A (ja) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
KR20160062942A (ko) * 2014-11-26 2016-06-03 현대중공업 주식회사 다단 압축기 및 이를 이용한 서지 제어방법
KR102251736B1 (ko) * 2014-11-26 2021-05-14 현대중공업터보기계 주식회사 다단 압축기 및 이를 이용한 서지 제어방법

Also Published As

Publication number Publication date
WO2008056782A1 (fr) 2008-05-15
US8336324B2 (en) 2012-12-25
US20100024456A1 (en) 2010-02-04
CN101454576A (zh) 2009-06-10
KR20090008379A (ko) 2009-01-21

Similar Documents

Publication Publication Date Title
JP2008121451A (ja) ターボ冷凍機およびその制御方法
US9453668B2 (en) Refrigeration cycle apparatus and refrigerant circulating method
JP5244420B2 (ja) ターボ冷凍機および熱源システムならびにこれらの制御方法
EP3614070B1 (en) Air conditioner
JP5981180B2 (ja) ターボ冷凍機及びその制御方法
US11821668B2 (en) Systems and methods for implementing ejector refrigeration cycles with cascaded evaporation stages
JP2007212040A (ja) ターボ冷凍機およびその制御方法
JP5010364B2 (ja) 熱源機およびその制御方法、並びに、熱源システムおよびその運転方法
JP2006250479A (ja) 空気調和機
JP4550153B2 (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP5227919B2 (ja) ターボ冷凍機
JP2011196684A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP6176470B2 (ja) 冷凍機
JP2006284034A (ja) 空気調和装置およびその膨張弁制御方法
JP2006284057A (ja) 空気調和装置およびその運転方法
JP2009243881A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP4767340B2 (ja) ヒートポンプ装置の制御装置
JP2008096072A (ja) 冷凍サイクル装置
JP2008208810A (ja) ターボ冷凍機用遠心圧縮機
JP2010159967A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP5713570B2 (ja) 冷凍機ユニットおよびその制御方法
JP2019078429A (ja) 冷凍サイクルの制御装置、熱源装置、及びその制御方法
JP2013053849A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP5144959B2 (ja) 熱源機およびその制御方法
JP2006284058A (ja) 空気調和装置およびその制御方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202