WO2012132393A1 - 非水電解質およびそれを用いた非水電解質二次電池 - Google Patents
非水電解質およびそれを用いた非水電解質二次電池 Download PDFInfo
- Publication number
- WO2012132393A1 WO2012132393A1 PCT/JP2012/002082 JP2012002082W WO2012132393A1 WO 2012132393 A1 WO2012132393 A1 WO 2012132393A1 JP 2012002082 W JP2012002082 W JP 2012002082W WO 2012132393 A1 WO2012132393 A1 WO 2012132393A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- fluorine atom
- nonaqueous electrolyte
- hydrocarbon group
- mass
- Prior art date
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 106
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 70
- -1 sultone compound Chemical class 0.000 claims abstract description 67
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 64
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 60
- 239000000654 additive Substances 0.000 claims abstract description 14
- 230000000996 additive effect Effects 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims description 73
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 65
- 239000000203 mixture Substances 0.000 claims description 62
- 229910002804 graphite Inorganic materials 0.000 claims description 59
- 239000010439 graphite Substances 0.000 claims description 59
- 239000003125 aqueous solvent Substances 0.000 claims description 33
- 239000007773 negative electrode material Substances 0.000 claims description 33
- 150000001875 compounds Chemical class 0.000 claims description 27
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 17
- 239000007774 positive electrode material Substances 0.000 claims description 14
- 239000011737 fluorine Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 229920002678 cellulose Polymers 0.000 claims description 9
- 239000001913 cellulose Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 6
- 229920002125 Sokalan® Polymers 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000004584 polyacrylic acid Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 14
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 6
- 238000003860 storage Methods 0.000 abstract description 23
- 239000002904 solvent Substances 0.000 abstract description 20
- 208000028659 discharge Diseases 0.000 description 44
- 229920003169 water-soluble polymer Polymers 0.000 description 37
- 239000011230 binding agent Substances 0.000 description 31
- 150000008053 sultones Chemical class 0.000 description 31
- 239000007789 gas Substances 0.000 description 30
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 29
- 238000000354 decomposition reaction Methods 0.000 description 25
- 229940126062 Compound A Drugs 0.000 description 24
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 24
- 230000002829 reductive effect Effects 0.000 description 23
- 229910052744 lithium Inorganic materials 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 21
- 239000002002 slurry Substances 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 150000002430 hydrocarbons Chemical group 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 238000006864 oxidative decomposition reaction Methods 0.000 description 12
- 150000005678 chain carbonates Chemical class 0.000 description 11
- 238000007600 charging Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000002612 dispersion medium Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000006258 conductive agent Substances 0.000 description 9
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 8
- 235000010980 cellulose Nutrition 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 229910003002 lithium salt Inorganic materials 0.000 description 7
- 159000000002 lithium salts Chemical class 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 239000002562 thickening agent Substances 0.000 description 7
- 239000001768 carboxy methyl cellulose Substances 0.000 description 6
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 6
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 238000010277 constant-current charging Methods 0.000 description 4
- 150000005676 cyclic carbonates Chemical class 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000002905 metal composite material Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000002174 Styrene-butadiene Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007607 die coating method Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910021384 soft carbon Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910014195 BM-400B Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910011456 LiNi0.80Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910014413 LiNi1/2Fe1/2O2 Inorganic materials 0.000 description 1
- 229910014411 LiNi1/2Mn1/2O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- ZCILODAAHLISPY-UHFFFAOYSA-N biphenyl ether Natural products C1=C(CC=C)C(O)=CC(OC=2C(=CC(CC=C)=CC=2)O)=C1 ZCILODAAHLISPY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- CZXGXYBOQYQXQD-UHFFFAOYSA-N methyl benzenesulfonate Chemical class COS(=O)(=O)C1=CC=CC=C1 CZXGXYBOQYQXQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery, and more particularly to an improvement of a non-aqueous electrolyte containing ethylene carbonate (EC) and propylene carbonate (PC).
- EC ethylene carbonate
- PC propylene carbonate
- a non-aqueous solvent solution of a lithium salt such as LiPF 6 or LiBF 4 is used as the non-aqueous electrolyte.
- the non-aqueous solvent include cyclic carbonates such as EC and PC, and chain carbonates such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and diethyl carbonate (DEC).
- EMC ethyl methyl carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- a plurality of carbonates are often used in combination. It is also known to add an additive to the non-aqueous electrolyte in order to improve battery characteristics.
- Patent Documents 1 and 2 disclose a non-aqueous electrolyte in which a sultone compound is added as an additive to a non-aqueous solvent containing EC as a main component.
- Patent Document 1 a sultone compound such as 1,3-propane sultone is added to a non-aqueous solvent containing EC or the like for the purpose of improving charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery.
- a non-aqueous electrolyte is proposed.
- a non-aqueous electrolyte containing 1,3-propane sultone, EC, and DEC at a volume ratio of 10:45:45 is used.
- Patent Document 2 a non-aqueous solvent in which an unsaturated sultone compound such as 1,3-propene sultone is added to a non-aqueous solvent containing EC or the like for the purpose of improving high-temperature storage characteristics of a non-aqueous electrolyte secondary battery.
- Proposed electrolyte a nonaqueous electrolyte in which 0.5 to 3 wt% of 1,3-propene sultone is added to a nonaqueous solvent containing EC and EMC at a weight ratio of 4: 6 is used.
- EC is excellent in lithium ion conductivity because of its high dielectric constant, but it has a relatively high melting point and tends to be highly viscous at low temperatures.
- chain carbonates such as DEC and EMC have a low viscosity although their dielectric constant is not so high. The increase in the viscosity of the nonaqueous electrolyte is particularly noticeable at low temperatures. At low temperatures, the ionic conductivity decreases and the discharge characteristics tend to decrease. Therefore, as in the examples of Patent Documents 1 and 2, EC is usually used in combination with a chain carbonate such as DEC or EMC.
- a non-aqueous electrolyte containing EC as a main solvent EC is oxidatively decomposed at the positive electrode during storage in a high temperature environment and during a charge / discharge cycle, and a large amount of gas such as CO and CO 2 is generated.
- the conventional non-aqueous electrolyte has a large amount of EC in the non-aqueous solvent, so that gas generation accompanying oxidative decomposition of EC at the positive electrode tends to be remarkable.
- gas generation due to the decomposition of EC tends to be remarkable.
- PC is high in electrical conductivity and suitable for nonaqueous electrolyte nonaqueous solvent, but has high viscosity. Further, PC has higher oxidation and decomposition resistance at the positive electrode than the chain carbonate, but is susceptible to reductive decomposition at the negative electrode. Therefore, as in Patent Documents 1 and 2, even if 1,3-propane sultone or 1,3-propene sultone is used, the reductive decomposition of PC cannot be sufficiently suppressed.
- An object of the present invention is to provide a nonaqueous electrolyte capable of suppressing gas generation during storage in a high temperature environment or during a charge / discharge cycle, and a nonaqueous electrolyte secondary battery using the same.
- One aspect of the present invention includes a non-aqueous solvent, a solute dissolved in the non-aqueous solvent, and an additive.
- the non-aqueous solvent includes EC and PC, and the EC content W EC in the non-aqueous solvent is 5 to 20 mass%, the content W PC of PC in the nonaqueous solvent is 40 to 60 mass%, additives include sultone compound containing a fluorine atom, relates to a nonaqueous electrolyte for a secondary battery.
- Another aspect of the present invention includes a positive electrode current collector, a positive electrode having a positive electrode mixture layer containing a positive electrode active material, formed on a surface of the positive electrode current collector, a negative electrode current collector, and a negative electrode current collector.
- a non-aqueous electrolyte comprising: a negative electrode having a negative electrode active material layer including a negative electrode active material; and a separator disposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte.
- gas generation can be suppressed even when the nonaqueous electrolyte secondary battery is stored in a high temperature environment and / or when the nonaqueous electrolyte secondary battery is repeatedly charged and discharged.
- FIG. 1 is a longitudinal sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
- the nonaqueous electrolyte of the present invention includes a nonaqueous solvent, a solute dissolved in the nonaqueous solvent, and an additive.
- the non-aqueous solvent contains EC and PC, and the additive contains a sultone compound containing a fluorine atom (hereinafter, sultone compound A).
- Non-aqueous electrolytes use EC with a high dielectric constant as the main solvent, so they are excellent in lithium ion conductivity, but they contain a large amount of EC, so they are especially suitable for storage in high temperature environments and charge / discharge cycles. Occasionally, the oxidative decomposition of EC at the positive electrode becomes remarkable, and the amount of gas generation increases.
- PC having a high dielectric constant and less oxidatively decomposed than EC is added to the nonaqueous solvent.
- the EC content in the aqueous solvent is relatively small.
- the PC content W PC in the non-aqueous solvent is relatively increased to 40 to 60% by mass, and the EC content W EC in the non-aqueous solvent is set to 5 to 20% by mass. It is relatively small.
- the reductive decomposition of PC occurs in the negative electrode particularly during storage in a high temperature environment or during a charge / discharge cycle, and the amount of gas generated increases.
- a negative electrode contains a carbon material
- PC reacts violently with a carbon material and degrades a negative electrode. Therefore, the sultone compound A is added as an additive to the nonaqueous electrolyte of the present invention. Thereby, reductive decomposition of PC can be suppressed effectively.
- the EC content W EC in the non-aqueous solvent is 5% by mass or more, preferably 7% by mass or more, and more preferably 10% by mass or more.
- the EC content W EC is 20% by mass or less, preferably 18% by mass or less, more preferably 15% by mass. It is as follows. These upper limit value and lower limit value may be arbitrarily combined. Suppression of gas generation due to oxidative decomposition of EC, and from the viewpoint of charge-discharge characteristics of the negative electrode, W EC is from 5 to 20% by weight, preferably 7 to 18 mass%, more preferably 10 to 15 mass%.
- the PC content W PC in the non-aqueous solvent is 40% by mass or more, preferably 42% by mass or more, and more preferably 45% by mass or more.
- the content W PC is 60% by mass or less, preferably 58% by mass or less, and more preferably 55% by mass or less.
- W PC for example 40-60 wt%, preferably 42-58 wt%, more preferably 45 to 55 wt %.
- the ratio of the PC content W PC to the EC content W EC : W PC / W EC is, for example, 2 in that the effect of suppressing the oxidative decomposition of EC and the effect of suppressing the reductive decomposition of PC can be obtained in a balanced manner. It is 25 to 6, preferably 3 to 6, and more preferably 3 to 5.
- W PC / W EC is 2.25 or more, gas generation due to oxidative decomposition of EC is more effectively suppressed particularly at the positive electrode.
- W PC / W EC is 6 or less, gas generation due to reductive decomposition of PC is suppressed more effectively particularly at the negative electrode.
- the molecule of the sultone compound A has a ring structure (sultone ring) containing a —SO 2 —O— group, and has a fluorine atom bonded directly or indirectly to the sultone ring.
- the sultone compound A may have a substituent such as a hydrocarbon group on the carbon atom constituting the sultone ring.
- the fluorine atom of the sultone compound A may be bonded to the carbon atom constituting the sultone ring, or may have a substituent such as a hydrocarbon group. When the hydrocarbon group has a fluorine atom, it is sufficient that at least one hydrogen atom in the hydrocarbon group is substituted with a fluorine atom.
- a stable coating (SIE: Solid Electrolyte Interface) derived from the sultone compound A is formed on the surface of the negative electrode.
- SIE Solid Electrolyte Interface
- the decomposition potential of PC is about 0.9 V on the basis of lithium, but sultone compound A forms a film at a high potential of 1.1 to 1.3 V. Therefore, the formation of the film derived from the sultone compound A occurs preferentially over the reductive decomposition of PC.
- metallic lithium may be deposited on the negative electrode surface.
- the deposited metallic lithium is very unstable and may cause ignition or heat generation, which may impair the safety of the battery.
- the battery may abnormally generate heat due to the deposited metallic lithium.
- the sultone compound A contained in the non-aqueous electrolyte of the present invention is considered to react with precipitated lithium to form a stable compound containing fluorine and lithium. Therefore, even when lithium is deposited on the negative electrode surface due to overcharge in a low temperature environment, the deposited lithium is stabilized by the sultone compound A. Thereby, even if the battery is stored in a high temperature environment, abnormal heat generation of the battery is suppressed. That is, by using sultone compound A, even if lithium is deposited, abnormal heat generation of the battery is hardly caused, and the safety of the battery is improved.
- Sultone compound A can be used individually by 1 type or in combination of 2 or more types.
- Examples of the sultone compound A include the following formula (A):
- R 1a to R 6a are each independently a fluorine atom, a hydrogen atom, or a hydrocarbon group that may contain a fluorine atom, and R 2a and R 3a are bonded to each other to form N may represent a repeating number of methylene groups having R 5a and R 6a and is an integer of 1 to 3.
- R 5a of each methylene group And R 6a may be the same or different from each other, and at least one of R 1a to R 6a is a fluorine atom or a hydrocarbon group containing at least one fluorine atom.
- Examples of the hydrocarbon group represented by R 1a to R 6a include saturated or unsaturated aliphatic hydrocarbon groups such as alkyl groups and alkenyl groups.
- Examples of the alkyl group include linear or branched alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, and pentyl groups.
- Examples of the alkenyl group include linear or branched alkenyl groups such as vinyl, 1-propenyl, 2-propenyl, 1-butenyl and 2-butenyl groups.
- the carbon number of the hydrocarbon group is, for example, 1 to 6, preferably 1 to 5, and more preferably 1 to 4.
- the number thereof can be appropriately selected according to the number of carbon atoms of the hydrocarbon group, and is, for example, 1 to 5, preferably 1 to 3, and more preferably 1 or 2.
- the hydrocarbon group is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
- a saturated sultone compound having R 2a and R 3a is represented by the following formula (A-1):
- an unsaturated sultone compound in which R 2a and R 3a are bonded to each other to form a double bond is represented by the following formula (A-2):
- Both the saturated sultone compound and the unsaturated sultone compound represented by the above formulas greatly suppress gas generation during storage in a high temperature environment and during charge / discharge cycles, and are compatible and stable in a nonaqueous electrolyte. Excellent in properties.
- the saturated sultone compound represented by the formula (A-1) is relatively easy to handle, as compared to the unsaturated sultone compound, the compound does not deactivate due to radical polymerization reaction due to oxygen in the air during storage. It is advantageous in that it is.
- the unsaturated sultone compound represented by the formula (A-2) the presence of a carbon-carbon double bond adjacent to the S atom of —SO 2 —O— causes non-electrons to be generated during film formation. Localize. And it becomes easy for a radical electron to exist stably on the carbon atom adjacent to a sulfur atom, and can raise the polymerization degree of the polymer structure in a film. Moreover, since the unsaturated sultone compound has a higher reduction potential than the saturated sultone compound, a film is likely to be preferentially formed on the negative electrode surface. Therefore, when an unsaturated sultone compound is used, reductive decomposition of PC on the negative electrode surface can be more effectively suppressed.
- the unsaturated sultone compound forms a film at a high potential of about 1.3 V (for example, about 1.2 to 1.3 V) based on lithium.
- the site of the methylene group having R 5a and R 6a having the repetition number n is, specifically, the following formula (a -1) to (a-3):
- R 7a to R 12a correspond to the R 5a and R 6a , and each independently represents a carbon atom that may contain a fluorine atom, a hydrogen atom, or a fluorine atom. Is a hydrogen group) Can be expressed as
- “at least one of R 1a to R 6a ” means that the site of the methylene group having the repeating number n of R 5a and R 6a is the formula (a-1 ) Is “at least one of R 1a to R 4a , R 7a and R 8a ”, and in the case of formula (a-2), “R 1a to R 4a and R 7a to R 8 In the case of formula (a-3), “at least one of 10a ” means “at least one of R 1a to R 4a and R 7a to R 12a ”. Note that “at least one of R 1a to R 6a ” means that in the formula (A-2), R 2a and R 3a are excluded in each case of the formulas (a-1) to (a-3). Means at least one of the following groups.
- the total number of fluorine atoms and hydrocarbon groups containing fluorine atoms which the sultone ring has as the groups R 1a to R 6a is Can be appropriately selected according to the number of members (that is, the number of repetitions n) and the presence or absence of a double bond, for example, 1 to 6, preferably 1 to 5, more preferably 1 to 3, particularly 1 or 2.
- At least one of R 1a to R 6a is preferably a fluorine atom.
- the substitution position of the fluorine atom and the hydrocarbon group having a fluorine atom is not particularly limited.
- at least one of R 1a to R 4a at least one of R 3a and R 4a is preferably a fluorine atom and / or a hydrocarbon group having a fluorine atom (in particular, a fluorine atom).
- the fluorine atom is bonded to at least a carbon atom far from the sulfur atom of the carbon-carbon double bond (that is, R 4a is a fluorine atom).
- R 4a is a fluorine atom.
- the unsaturated sultone compound having a fluorine atom at such a position is a stable compound containing lithium and fluorine, which is advantageous for the thermal stability of the battery without being affected by the steric hindrance of —SO 2 —O—.
- the coating film to be included is preferable because it is easily formed on the negative electrode surface.
- the saturated sultone compound represented by the above formula (A-1) can be specifically represented by the following formulas (1) to (3).
- R 1 to R 4 , R 7 to R 10 and R 15 to R 18 correspond to the R 1a to R 4a.
- R 5 , R 6 , R 11 , R 12 , R 19 and R 20 correspond to R 7a and R 8a
- R 13 , R 14 , R 21 and R 22 correspond to R 9a and R 10a
- R 23 and R 24 Corresponding to R 11a and R 12a
- sultone compounds of the formulas (1) to (3) will be described by taking a saturated sultone compound having a fluorine atom at the 2-position of the sultone ring as an example.
- 2-fluoro-1,3-propane sultone, 2 Examples include -fluoro-1,4-butane sultone, 2-fluoro-1,5-pentane sultone.
- 2-fluoro-1,4-butane sultone is represented by the formula (2), wherein R 7 , R 8 , and R 11 to R 14 are hydrogen atoms, and any one of R 9 and R 10 is a fluorine atom, A compound in which the other is a hydrogen atom.
- R 15 , R 16 , and R 19 to R 24 are hydrogen atoms, and one of R 17 and R 18 is a fluorine atom. , And the other is a hydrogen atom.
- the unsaturated sultone compound represented by the formula (A-2) can be specifically represented by the following formulas (4) to (6).
- R 25 , R 29 and R 35 correspond to R 1a
- R 26 , R 30 and R 36 correspond to R 4a
- R 27 , R 28 , R 31 , R 32 , R 37 and R 38 correspond to R 7a and R 8a
- R 33 , R 34 , R 39 and R 40 correspond to R 9a and R 10a
- R 41 and R 42 corresponds to R 11a and R 12a .
- sultone compounds of the formulas (4) to (6) will be described by taking an unsaturated sultone compound having a fluorine atom at the 2-position of the sultone ring as an example.
- 2-fluoro-1,3-propene sultone examples thereof include 2-fluoro-1,4-butene sultone and 2-fluoro-1,5-pentene sultone.
- 2-Fluoro-1,4-butene sultone is a compound in which R 29 and R 31 to R 34 are hydrogen atoms and R 30 is a fluorine atom in formula (5).
- 2-Fluoro-1,5-pentene sultone is a compound in which R 35 and R 37 to R 42 are hydrogen atoms and R 36 is a fluorine atom in formula (6).
- At least one selected from the compounds represented by the formulas (1), (2), (4) and (5) is preferable.
- the formula (1) The compound represented and / or the compound represented by Formula (4) is more preferable.
- 2-fluoro-1,3-propane sultone represented by the following formula (1a) is particularly preferable, and among the compounds represented by the formula (4). It is preferable to use 2-fluoro-1,3-propensulton represented by the following formula (4a). Use of such a compound is advantageous in that the safety of a battery using a non-aqueous electrolyte with a large amount of PC can be greatly improved.
- the content W S of sultone compound A in the non-aqueous electrolyte for example, 0.1 mass% or more, preferably 0.5 mass% or more, more preferably 1 mass% or more.
- the content W S of sultone compound A in the non-aqueous electrolyte for example, 5 wt% or less, preferably 4 wt% or less, still more preferably 3 mass% or less.
- the content W S of sultone compound A in the non-aqueous electrolyte for example, 0.1 To 5% by mass, preferably 0.5 to 4% by mass, more preferably 1 to 3% by mass.
- the viscosity of the nonaqueous electrolyte is, for example, 2 to 10 mPa ⁇ s at 25 ° C. From the viewpoint of the rate characteristics of the nonaqueous electrolyte secondary battery, the viscosity of the nonaqueous electrolyte at 25 ° C. is preferably 3 to 7 mPa ⁇ s.
- the viscosity can be measured, for example, by a rotary viscometer using a cone plate type spindle.
- high-viscosity PC is often used.
- a low-viscosity solvent such as chain carbonate
- the viscosity of the non-aqueous electrolyte is suitable for use in a non-aqueous electrolyte secondary battery.
- the viscosity can be easily controlled.
- the content of the chain carbonate in the non-aqueous solvent is, for example, 10 to 50% by mass, preferably 20 to 50% by mass, Preferably, it may be 30 to 50% by mass.
- DEC is particularly preferable from the viewpoint of more effectively improving the rate characteristics of the nonaqueous electrolyte secondary battery in a low temperature environment.
- the DEC content W DEC in the non-aqueous solvent is, for example, 10% by mass or more, preferably 15% by mass or more, and more preferably 20% by mass or more.
- the DEC content W DEC is, for example, 50 It is at most mass%, preferably at most 45 mass%, more preferably at most 40 mass%. These lower limit value and upper limit value can be arbitrarily combined.
- the DEC content W DEC is, for example, 10 to 50% by mass, preferably 15 to 45% by mass, and more preferably 20 to 40% by mass.
- Ratio of DEC content W DEC to EC content W EC is, for example, 1 to 5, preferably 1 to 4.5, more preferably 1 to 4 or 2 to 4.5. is there.
- the non-aqueous electrolyte in which the ratio W DEC / W EC is in such a range and the ratio W PC / W EC is in the above-described range has a large PC content and a relative EC and DEC content. Small. Therefore, the amount of gas generated derived from the decomposition reaction of EC and DEC can be more effectively reduced.
- the nonaqueous solvent may contain a solvent other than EC, PC and chain carbonate.
- solvents include, but are not limited to, cyclic carbonates other than EC and PC (such as butylene carbonate); cyclic carboxylic acid esters such as ⁇ -butyrolactone; fatty acid alkyl esters and the like. These other solvents may be used singly or in combination of two or more.
- the content of these other solvents may be, for example, 10% by mass or less, preferably 5% by mass or less, with respect to the entire non-aqueous solvent.
- the non-aqueous electrolyte is a known additive, for example, a cyclic carbonate having a polymerizable carbon-carbon unsaturated bond such as vinylene carbonate or vinyl ethylene carbonate; a fluorine such as fluoroethylene carbonate.
- Fluorine-containing compounds such as cyclic carbonates having atoms, fluorinated aromatic compounds, and fluorinated ethers; sultone compounds having no fluorine atoms such as 1,3-propane sultone; cyclic sulfones such as sulfolane; methylbenzene sulfonates, etc.
- sulfonate compound examples include aromatic compounds such as cyclohexylbenzene, biphenyl, and diphenyl ether.
- aromatic compounds such as cyclohexylbenzene, biphenyl, and diphenyl ether.
- These additives can be used individually by 1 type or in combination of 2 or more types. Content of these additives is 10 mass% or less with respect to the whole nonaqueous electrolyte, for example.
- the solute of the nonaqueous electrolyte is not particularly limited, and for example, various lithium salts can be used.
- lithium salts include lithium salts of inorganic acids (such as lithium salts of fluorine-containing acids such as LiPF 6 and LiBF 4 ), lithium imide compounds (LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2). And lithium salt of fluorine-containing acid imide such as 2 ). These lithium salts can be used singly or in combination of two or more.
- the concentration of the solute in the nonaqueous electrolyte is preferably 1.0 to 1.5 mol / L, more preferably 1.0 to 1.2 mol / L.
- non-aqueous electrolyte suppresses the reaction between the non-aqueous solvent contained in the non-aqueous electrolyte and the positive electrode and / or the negative electrode, and can remarkably suppress gas generation accompanying the decomposition of the non-aqueous solvent. Therefore, the non-aqueous electrolyte of the present invention is suitable for use as a non-aqueous electrolyte for a battery, particularly a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
- Non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte. Below, each component is demonstrated in detail.
- the positive electrode includes a positive electrode current collector and a positive electrode mixture layer including a positive electrode active material formed on the surface of the positive electrode current collector.
- Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
- the positive electrode current collector may be a non-porous conductive substrate or a porous conductive substrate having a plurality of through holes.
- a metal foil, a metal sheet, or the like can be used as the non-porous current collector.
- the porous current collector include a metal foil having a communication hole (perforation), a mesh body, a punching sheet, and an expanded metal.
- the thickness of the positive electrode current collector is, for example, 1 to 100 ⁇ m.
- the positive electrode mixture layer includes, for example, a conductive agent and a binder in addition to the positive electrode active material.
- the positive electrode active material is preferably a lithium-containing transition metal composite oxide.
- Representative examples of the lithium-containing transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 and the like.
- gas generation can be greatly suppressed even when a lithium-containing transition metal composite oxide containing nickel that easily decomposes EC is used as the positive electrode active material.
- the lithium-containing transition metal composite oxide containing nickel is also advantageous in that the capacity is high.
- the molar ratio of nickel to lithium contained in this composite oxide is preferably 30 to 100 mol%.
- the composite oxide preferably further contains at least one selected from the group consisting of manganese and cobalt.
- the molar ratio of manganese and cobalt contained in the composite oxide to lithium is preferably 70 mol% or less.
- Li x Ni y M z Me 1- (y + z) O 2 + d (M is at least one element selected from the group consisting of Co and Mn ) Me is at least one element selected from the group consisting of Al, Cr, Fe, Mg, and Zn, and 0.98 ⁇ x ⁇ 1.1, 0.3 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.7, 0.9 ⁇ y + z ⁇ 1, ⁇ 0.01 ⁇ d ⁇ 0.01).
- y is preferably 0.3 ⁇ y ⁇ 0.7 or 0.5 ⁇ y ⁇ 0.95.
- lithium nickel-containing composite oxide examples include LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Fe 1/2 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Mn 1 / Examples include 3 Co 1/3 O 2 .
- a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
- the conductive agent examples include carbon black such as acetylene black; conductive fiber such as carbon fiber; and carbon fluoride.
- the ratio of the conductive agent is, for example, 0.3 to 10 parts by mass per 100 parts by mass of the positive electrode active material.
- fluorine resins such as polyvinylidene fluoride (PVDF); acrylic resins such as polymethyl acrylate and ethylene-methyl methacrylate copolymer; rubbers such as styrene-butadiene rubber, acrylic rubber, or modified products thereof
- PVDF polyvinylidene fluoride
- acrylic resins such as polymethyl acrylate and ethylene-methyl methacrylate copolymer
- rubbers such as styrene-butadiene rubber, acrylic rubber, or modified products thereof
- the material can be exemplified.
- the ratio of the binder is, for example, 0.3 to 10 parts by mass per 100 parts by mass of the positive electrode active material.
- the positive electrode mixture layer can be formed, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder and a dispersion medium to the surface of the positive electrode current collector, drying, and rolling if necessary. .
- the positive electrode mixture layer may be formed on one side of the positive electrode current collector or on both sides.
- the thickness of the positive electrode mixture layer is, for example, 20 to 120 ⁇ m.
- dispersion medium examples include water, alcohols such as ethanol, ethers such as tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), or a mixed solvent thereof.
- the positive electrode mixture slurry may contain a thickener as necessary.
- the thickener include cellulose derivatives such as carboxymethyl cellulose (CMC); poly C 2-4 alkylene glycol such as polyethylene glycol.
- the proportion of the thickener is, for example, 0.1 to 10 parts by mass per 100 parts by mass of the positive electrode active material.
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material, which is formed on the surface of the negative electrode current collector.
- Examples of the material for the negative electrode current collector include stainless steel, nickel, copper, and copper alloys.
- Examples of the form of the negative electrode current collector include the same as those exemplified for the positive electrode current collector.
- the thickness of the negative electrode current collector can also be selected from the same range as that of the positive electrode current collector.
- the negative electrode active material layer may be formed on both surfaces of the negative electrode current collector, or may be formed on one surface. The thickness of the negative electrode active material layer is, for example, 10 to 100 ⁇ m.
- the negative electrode active material layer may be a deposited film of a negative electrode active material by a vapor phase method, or a mixture layer containing a negative electrode active material and a binder, and if necessary, a conductive agent and / or a thickener.
- the deposited film can be formed by depositing the negative electrode active material on the surface of the negative electrode current collector by a vapor phase method such as a vacuum evaporation method, a sputtering method, or an ion plating method.
- a vapor phase method such as a vacuum evaporation method, a sputtering method, or an ion plating method.
- the negative electrode active material for example, silicon, a silicon compound, a lithium alloy, and the like described later can be used.
- the negative electrode mixture layer is prepared by preparing a negative electrode mixture slurry containing a negative electrode active material, a binder, a dispersion medium, and, if necessary, a conductive agent and / or a thickener, and applying and drying on the surface of the negative electrode current collector. If necessary, it can be formed by rolling.
- Examples of the negative electrode active material include carbon materials; silicon, silicon compounds; lithium alloys containing at least one selected from tin, aluminum, zinc, and magnesium.
- the carbon material examples include graphite, coke, graphitized carbon, graphitized carbon fiber, and amorphous carbon.
- amorphous carbon for example, an easily graphitizable carbon material (soft carbon) that is easily graphitized by a heat treatment at a high temperature (for example, 2800 ° C.), a non-graphitizable carbon material that is hardly graphitized by the heat treatment ( Hard carbon).
- Soft carbon has a structure in which microcrystallites such as graphite are arranged in substantially the same direction, and hard carbon has a turbostratic structure.
- Examples of the silicon compound include silicon oxide SiO ⁇ (0.05 ⁇ ⁇ ⁇ 1.95). ⁇ is preferably 0.1 to 1.8, more preferably 0.15 to 1.6. In the silicon oxide, a part of silicon may be substituted with one or more elements. Examples of such elements include B, Mg, Ni, Co, Ca, Fe, Mn, Zn, C, N, and Sn.
- the negative electrode active material it is preferable to use a carbon material. From the viewpoint of increasing the negative electrode capacity, it is particularly preferable to use graphite particles.
- a graphite particle is a general term for particles including a region having a graphite structure.
- the graphite particles include natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like. These graphite particles can be used singly or in combination of two or more. From the viewpoint of more effectively suppressing the reductive decomposition of the nonaqueous solvent in the negative electrode, a graphite particle coated with a water-soluble polymer may be used as the negative electrode active material, if necessary.
- the diffraction image of graphite particles measured by the wide-angle X-ray diffraction method has a peak attributed to the (101) plane and a peak attributed to the (100) plane.
- the ratio of the peak intensity I (101) attributed to the (101) plane and the peak intensity I (100) attributed to the (100) plane is 0.01 ⁇ I (101) / I. It is preferable to satisfy (100) ⁇ 0.25, and it is more preferable to satisfy 0.08 ⁇ I (101) / I (100) ⁇ 0.20.
- the peak intensity means the peak height.
- the mass of the graphite particles contained in 1 cm 3 of the negative electrode mixture layer is preferably 1.3 to 1.8 g, more preferably 1.5 to 1.8 g. Since the film forming ability of the sultone compound A is very high, even if the graphite particles are densely packed in the above range and the relative amount of the sultone compound A existing in the vicinity of the surface of the graphite particles is reduced, the surface of the graphite particles In addition, a film derived from the sultone compound A can be sufficiently formed.
- the average particle diameter (D50) of the graphite particles is, for example, 5 to 40 ⁇ m, preferably 10 to 30 ⁇ m, and more preferably 14 to 25 ⁇ m.
- the average particle diameter can be measured by, for example, a commercially available laser diffraction type particle size distribution measuring apparatus.
- the average sphericity of the graphite particles is, for example, 0.85 to 0.95, preferably 0.90 to 0.95.
- the average sphericity is represented by 4 ⁇ S / L 2 (where S is the area of the orthographic image of graphite particles, and L is the perimeter of the orthographic image).
- S is the area of the orthographic image of graphite particles
- L is the perimeter of the orthographic image.
- the average sphericity of 100 arbitrary graphite particles is in the above range.
- the graphite particles coated with a water-soluble polymer are used as the negative electrode active material
- the graphite particles are preferably coated with a water-soluble polymer when the negative electrode mixture layer is produced.
- the non-aqueous electrolyte containing the sultone compound A can easily penetrate into the negative electrode mixture layer, and a film is formed almost uniformly on the surface of the graphite particles. Can do.
- the type of the water-soluble polymer is not particularly limited, but is a cellulose derivative; poly C 2-4 alkylene glycol such as polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, or a derivative thereof (substituent having a substituent, partial An ester etc.) can be illustrated. Of these, cellulose derivatives and polyacrylic acid are particularly preferable.
- Preferred cellulose derivatives include alkyl celluloses such as methyl cellulose; carboxyalkyl celluloses such as carboxymethyl cellulose (CMC); and alkali metal salts of carboxyalkyl cellulose such as Na salt of CMC.
- alkali metal forming the alkali metal salt include potassium and sodium.
- the weight average molecular weight of the cellulose derivative is preferably 10,000 to 1,000,000, for example.
- the weight average molecular weight of polyacrylic acid is preferably 5000 to 1,000,000.
- the amount of the water-soluble polymer contained in the negative electrode active material layer is, for example, 0.5 to 2.5 parts by mass, preferably 0.5 to 1 part per 100 parts by mass of the graphite particles. .5 parts by mass.
- the coating of the graphite particles with the water-soluble polymer can be performed by a known method.
- the surface of the graphite particles may be coated with a water-soluble polymer in advance prior to preparation of the negative electrode mixture slurry.
- the coating of the graphite particles can be performed by attaching an aqueous solution of a water-soluble polymer to the graphite particles and drying the graphite particles. It includes a step (step (a1)) of mixing graphite particles, water, and a water-soluble polymer, and drying the resulting mixture to obtain a dry mixture. For example, a water-soluble polymer is dissolved in water to prepare an aqueous solution of the water-soluble polymer.
- the obtained aqueous solution of the water-soluble polymer and graphite particles are mixed, and then the water is removed and the mixture is dried.
- the water-soluble polymer efficiently adheres to the surface of the graphite particles, and the coverage of the graphite particle surface with the water-soluble polymer is increased.
- the viscosity of the aqueous solution of the water-soluble polymer is preferably controlled to 1 to 10 Pa ⁇ s at 25 ° C.
- the viscosity is measured using a B-type viscometer at a peripheral speed of 20 mm / s and using a 5 mm ⁇ spindle.
- the amount of graphite particles mixed with 100 parts by mass of the aqueous solution of the water-soluble polymer is preferably 50 to 150 parts by mass.
- the drying temperature is preferably 80 to 150 ° C.
- the drying time is preferably 1 to 8 hours.
- step (a2) the binder adheres to the surface of the graphite particles coated with the water-soluble polymer. Because of the good slippage between the graphite particles, the binder attached to the surface of the graphite particles coated with the water-soluble polymer receives sufficient shearing force and is effective on the surface of the graphite particles coated with the water-soluble polymer. Act on.
- the negative electrode mixture slurry obtained is applied to a negative electrode current collector and dried to form a negative electrode mixture layer, whereby a negative electrode is obtained (step (a3)).
- the method for applying the negative electrode mixture slurry to the negative electrode current collector is not particularly limited.
- the negative electrode mixture slurry is applied in a predetermined pattern to the raw material of the negative electrode current collector by die coating.
- the drying temperature of the coating film is not particularly limited.
- the dried coating film is rolled with a rolling roll and controlled to a predetermined thickness. By the rolling process, the adhesive strength between the negative electrode mixture layer and the negative electrode current collector and the adhesive strength between the graphite particles coated with the water-soluble polymer are increased.
- the negative electrode mixture layer thus obtained is cut into a predetermined shape together with the negative electrode current collector to complete the negative electrode.
- the second method includes a step (step (b1)) of mixing graphite particles, a binder, water, and a water-soluble polymer, and drying the resulting mixture to obtain a dry mixture.
- a water-soluble polymer is dissolved in water to prepare an aqueous solution of the water-soluble polymer.
- the viscosity of the aqueous solution of the water-soluble polymer may be the same as in the first method.
- the aqueous solution of the obtained water-soluble polymer, the binder, and the graphite particles are mixed, and then the water is removed and the mixture is dried.
- the water-soluble polymer and the binder are efficiently attached to the surface of the graphite particles.
- the binder is preferably mixed with the aqueous solution of the water-soluble polymer in an emulsion state using water as a dispersion medium.
- step (b2) the obtained dry mixture and the dispersion medium are mixed to prepare a negative electrode mixture slurry.
- step (b2) the graphite particles coated with the water-soluble polymer and the binder are swollen to some extent by the dispersion medium, and the slipping property between the graphite particles is improved.
- the obtained negative electrode mixture slurry is applied to a negative electrode current collector, dried and rolled in the same manner as in the first method, thereby forming a negative electrode mixture layer, whereby a negative electrode is obtained (process) (B3)).
- the dispersion medium used when preparing the negative electrode mixture slurry by the first method and the second method is not particularly limited, but water, an aqueous alcohol solution, and the like are preferable, and water is most preferable. However, NMP or the like may be used.
- the content of the binder in the negative electrode mixture layer is, for example, 0.4 to 1.5 parts by mass, preferably 0.4 to 1 part by mass, per 100 parts by mass of the graphite particles.
- the surface of the graphite particles is coated with a water-soluble polymer, so that the binder adhering to the surface of the graphite particles receives sufficient shearing force and effectively acts on the surface of the graphite particles.
- a particulate binder having a small average particle size has a high probability of contacting the surface of the graphite particles. Therefore, sufficient binding properties are exhibited even with a small amount of the binder.
- the water permeation rate of the negative electrode mixture layer is preferably 3 to 40 seconds.
- the water penetration rate of the negative electrode mixture layer can be controlled by, for example, the coating amount of the water-soluble polymer.
- the nonaqueous electrolyte containing the sultone compound A is particularly likely to penetrate into the negative electrode. Thereby, reductive decomposition of PC can be suppressed more favorably.
- the water penetration rate of the negative electrode mixture layer is more preferably 10 to 25 seconds.
- the water permeation rate of the negative electrode mixture layer is measured in an environment of 25 ° C., for example, by the following method. 2 ⁇ l of water is dropped to bring the droplet into contact with the surface of the negative electrode mixture layer. By measuring the time until the contact angle ⁇ of water with respect to the surface of the negative electrode mixture layer becomes smaller than 10 °, the water permeation rate of the negative electrode mixture layer is obtained.
- the contact angle of water with the surface of the negative electrode mixture layer may be measured using a commercially available contact angle measuring device (for example, DM-301 manufactured by Kyowa Interface Science Co., Ltd.).
- the binder As the binder, the dispersion medium, the conductive agent, and the thickener used for the negative electrode mixture slurry, the same materials as those exemplified in the section of the positive electrode mixture slurry can be used.
- the binder particles having a rubber elasticity are preferable.
- a polymer containing a styrene unit and a butadiene unit (such as styrene-butadiene rubber (SBR)) is preferable. Such a polymer is excellent in elasticity and stable at the negative electrode potential.
- the average particle diameter of the particulate binder is, for example, 0.1 to 0.3 ⁇ m, preferably 0.1 to 0.25 ⁇ m.
- the average particle diameter of the binder is, for example, an SEM photograph of 10 binder particles taken with a transmission electron microscope (manufactured by JEOL Ltd., acceleration voltage 200 kV), and the average of these maximum diameters. It can be obtained as a value.
- the ratio of the binder is, for example, 0.4 to 1.5 parts by mass, preferably 0.4 to 1 part by mass with respect to 100 parts by mass of the negative electrode active material.
- the binder attached to the surface of the negative electrode active material particles receives a sufficient shear force, It acts effectively on the surface of the negative electrode active material particles.
- a binder that is particulate and has a small average particle size has a high probability of contacting the surface of the negative electrode active material particles. Therefore, sufficient binding properties are exhibited even with a small amount of the binder.
- the ratio of the conductive agent is not particularly limited, and is, for example, 0 to 5 parts by mass with respect to 100 parts by mass of the negative electrode active material.
- the proportion of the thickener is not particularly limited, and is, for example, 0 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
- the negative electrode can be produced according to the production method of the positive electrode.
- the thickness of the negative electrode active material layer is, for example, 30 to 110 ⁇ m.
- the negative electrode active material layer may be formed on one side of the negative electrode current collector or on both sides.
- the thickness of the negative electrode active material layer is, for example, 20 to 120 ⁇ m.
- separator a resin-made microporous film, nonwoven fabric or woven fabric can be used.
- resin which comprises a separator polyolefin, such as polyethylene and a polypropylene; Polyamide; Polyamideimide; Polyimide; Cellulose etc. can be illustrated, for example.
- the thickness of the separator is, for example, 5 to 100 ⁇ m, preferably 10 to 30 ⁇ m.
- the shape of the nonaqueous electrolyte secondary battery is not particularly limited, and may be a cylindrical shape, a flat shape, a coin shape, a square shape, or the like.
- the nonaqueous electrolyte secondary battery can be manufactured by a conventional method depending on the shape of the battery.
- a positive electrode, a negative electrode, and a separator disposed between them are wound to form an electrode group, and the electrode group and the nonaqueous electrolyte are accommodated in a battery case. it can.
- the electrode group is not limited to a wound one, but may be a laminated one or a folded one.
- the shape of the electrode group may be a cylindrical shape or a flat shape having an oval end surface perpendicular to the winding axis, depending on the shape of the battery or battery case.
- aluminum As the battery case material, aluminum, an aluminum alloy (such as an alloy containing a trace amount of a metal such as manganese or copper), a steel plate or the like can be used.
- Example 1 Production of negative electrode Step (i) CMC (molecular weight 400,000) as a water-soluble polymer was dissolved in water to obtain an aqueous solution having a CMC concentration of 1.0% by mass. 100 parts by mass of natural graphite particles (average particle size 20 ⁇ m, average sphericity 0.95) and 100 parts by mass of CMC aqueous solution were mixed and stirred while controlling the temperature of the mixture at 25 ° C. Thereafter, the mixture was dried at 150 ° C. for 5 hours to obtain a dry mixture. In the dry mixture, the amount of CMC per 100 parts by mass of graphite particles was 1.0 part by mass.
- Step (ii) 100 parts by weight of the dry mixture obtained in step (i), 0.6 parts by weight of particulate SBR (average particle size 0.12 ⁇ m) as a binder, 0.9 parts by weight of CMC, and an appropriate amount of water Were mixed to prepare a negative electrode mixture slurry.
- SBR was mixed with other components in an emulsion using water as a dispersion medium (BM-400B (trade name) manufactured by Nippon Zeon Co., Ltd., SBR content: 40% by mass).
- Step (iii) The obtained negative electrode mixture slurry was applied to both surfaces of an electrolytic copper foil (thickness 12 ⁇ m) as a negative electrode current collector by die coating to form a coating film. After the coating film was dried at 120 ° C., the dried coating film was rolled at a linear pressure of 250 kg / cm using a rolling roller to form a negative electrode mixture layer (thickness 160 ⁇ m, graphite density 1.65 g / cm 3 ). The negative electrode mixture layer was cut into a predetermined shape together with the negative electrode current collector to obtain a negative electrode.
- a nonaqueous electrolyte was prepared by adding a sultone compound to a mixed solvent of EC, PC, and DEC and further dissolving LiPF 6 .
- a sultone compound a compound represented by the formula (1a) (hereinafter, compound (1a)) was used.
- the mass ratio of EC, PC, DEC, and compound (1a) in the nonaqueous electrolyte was 10: 50: 40: 1.
- the concentration of LiPF 6 in the nonaqueous electrolyte was 1 mol / liter.
- the viscosity of the nonaqueous electrolyte at 25 ° C. was measured by a rotational viscometer (cone plate radius: 24 mm).
- the viscosity of the nonaqueous electrolyte at 25 ° C. was 5.4 mPa ⁇ s.
- a square lithium ion secondary battery as shown in FIG. 1 was produced.
- a negative electrode and a positive electrode are wound through a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 ⁇ m between the negative electrode and the positive electrode.
- Group 21 was configured.
- the electrode group 21 was housed in an aluminum square battery can 20.
- the battery can 20 has a bottom part and a side wall, the top part is opened, and the shape is substantially rectangular.
- the thickness of the main flat part of the side wall was 80 ⁇ m.
- an insulator 24 for preventing a short circuit between the battery can 20 and the positive electrode lead 22 or the negative electrode lead 23 was disposed on the upper part of the electrode group 21.
- a rectangular sealing plate 25 having a negative electrode terminal 27 surrounded by an insulating gasket 26 in the center was disposed in the opening of the battery can 20.
- the negative electrode lead 23 was connected to the negative electrode terminal 27.
- the positive electrode lead 22 was connected to the lower surface of the sealing plate 25.
- the end of the opening and the sealing plate 25 were welded with a laser to seal the opening of the battery can 20.
- 2.5 g of nonaqueous electrolyte was injected into the battery can 20 from the injection hole of the sealing plate 25.
- a prismatic lithium ion secondary battery (battery 1) having a height of 50 mm, a width of 34 mm, an inner space thickness of about 5.2 mm, and a design capacity of 850 mAh. .
- Example 2 A battery 2 was produced in the same manner as in Example 1 except that a compound represented by the formula (4a) (hereinafter, compound (4a)) was used as the sultone compound instead of the compound (1a).
- compound (4a) a compound represented by the formula (4a) (hereinafter, compound (4a)) was used as the sultone compound instead of the compound (1a).
- Comparative Example 1 A battery 3 was produced in the same manner as in Example 1 except that 1,3-propane sultone was used as the sultone compound instead of the compound (1a).
- Comparative Example 2 A battery 4 was produced in the same manner as in Example 1, except that 1,3-propene sultone was used as the sultone compound instead of the compound (4a).
- the batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated as follows. [Evaluation] (1) Evaluation of capacity maintenance rate during charge / discharge cycle The charge / discharge cycle of the battery was repeated at 45 ° C. In the charging / discharging cycle, in the charging process, constant current charging was performed at 600 mA until the voltage reached 4.2 V, and then constant voltage charging was performed at a voltage of 4.2 V. The time for the charging process was 2 hours 30 minutes in total for constant current charging and constant voltage charging. The rest time after the charging process was 10 minutes. On the other hand, in the discharge treatment, constant current discharge was performed at 850 mA until the voltage reached 2.5V. The rest time after the discharge treatment was 10 minutes.
- the discharge capacities at the 3rd and 500th cycles were determined, the discharge capacity at the 3rd cycle was regarded as 100%, and the discharge capacity at the 500th cycle was calculated as the capacity retention rate X (%) during the charge / discharge cycle.
- the other battery was charged under the same conditions as above and then stored at 85 ° C. for 3 days.
- the battery after storage was left in a 25 ° C. environment for 6 hours and then discharged under the same conditions as described above. Again, charging and discharging were performed under the same conditions as described above.
- the discharge capacity at the time of this discharge was calculated
- the discharge capacity before storage was regarded as 100%, and the discharge capacity after storage was calculated as the capacity retention rate Y (%) during high temperature storage.
- the batteries 1 and 2 of Examples 1 and 2 exhibited superior charge / discharge cycle characteristics, high-temperature storage characteristics, and safety as compared with the batteries 3 and 4 of Comparative Examples 1 and 2.
- the battery swelling was reduced because the generation of gas was reduced by reducing the reductive decomposition of PC and DEC at the negative electrode.
- the sultone compounds used in the examples have a higher reduction potential than the sultone compounds used in the comparative examples, in the examples, a coating is smoothly formed on the negative electrode surface at a potential higher than the reduction potential of PC. As a result, it is considered that reductive decomposition of PC at the negative electrode was effectively suppressed.
- the maximum value of the battery surface temperature was high. It has become.
- the maximum value of the battery surface temperature is not substantially different from the storage temperature. This is considered to be because in the battery of the example, the precipitated lithium was stabilized by the sultone compound containing a fluorine atom, so that heat generation was suppressed.
- Example 2 The sultone compound content W S in the non-aqueous electrolyte was changed to the values shown in Table 2.
- Battery 11 is a comparative example.
- the discharge capacity (index) at the third cycle in Table 2 is expressed as an index with the discharge capacity at the third cycle in the charge / discharge cycle test of each battery as 100, the discharge capacity at the third cycle of the battery 15 as 100. did.
- the coating film was not sufficiently formed, and the reductive decomposition of PC could not be sufficiently suppressed, so that charging / discharging could not be performed.
- the batteries 12 to 19 improved the charge / discharge cycle characteristics, the high-temperature storage characteristics, and the safety as compared with the battery 11.
- the non-aqueous electrolyte contains a sultone compound containing a fluorine atom, so that the same effect as that of the battery 1 is obtained according to the content of the sultone compound.
- the batteries 13 to 18 obtained better charge / discharge cycle characteristics, high-temperature storage characteristics, and safety.
- the batteries 13 to 18 obtained high discharge capacity. Therefore, the content of the sultone compound containing a fluorine atom in the nonaqueous electrolyte is preferably in the range of 0.1 to 5% by mass.
- Example 3 The PC content W PC in the non-aqueous solvent was changed to the values shown in Table 3, and the mass ratio of EC to DEC was set to 10:30.
- the sultone compound A was used at a content of 1 with respect to a total mass of EC, PC and DEC of 100. Except for the above, batteries 21 to 29 were produced and evaluated in the same manner as in Example 1, respectively. Batteries 21, 22 and 29 are comparative examples. The evaluation results are shown in Table 3.
- the batteries 23 to 28 exhibited excellent charge / discharge cycle characteristics, high-temperature storage characteristics, and safety.
- the amount of PC increased excessively, the amount of gas generated by the reductive decomposition of PC increased, and the capacity retention rates X and Y decreased.
- the amount of PC was excessively decreased, the amount of gas generated by oxidative decomposition of EC and DEC was increased, and the capacity retention ratios X and Y were decreased.
- Example 4 The EC content W EC in the non-aqueous solvent was changed to the values shown in Table 4, and the mass ratio of PC to DEC was set to 50:40.
- the sultone compound A was used at a content of 1 with respect to a total mass of EC, PC and DEC of 100. Except for the above, batteries 31 to 39 were prepared and evaluated in the same manner as in Example 1. Batteries 31, 32 and 39 are comparative examples. The evaluation results are shown in Table 4.
- the batteries 33 to 38 exhibited excellent charge / discharge cycle characteristics, high-temperature storage characteristics, and safety.
- the batteries 31 and 32 could not be charged / discharged because the EC amount was too small.
- the amount of EC increased excessively, the amount of gas generated by oxidative decomposition of EC increased, and the capacity retention rates X and Y decreased.
- the nonaqueous electrolyte of the present invention is useful as a nonaqueous electrolyte for secondary batteries used in electronic devices such as mobile phones, personal computers, digital still cameras, game devices, and portable audio devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
特許文献1および2では、主成分としてECを含む非水溶媒に、スルトン化合物を添加剤として加えた非水電解質が開示されている。
本発明の非水電解質は、非水溶媒と、非水溶媒に溶解した溶質と、添加剤とを含む。非水溶媒は、ECおよびPCを含み、添加剤は、フッ素原子を含むスルトン化合物(以下、スルトン化合物A)を含む。
そこで、本発明の非水電解質には、添加剤としてスルトン化合物Aを添加している。これにより、PCの還元分解を効果的に抑制することができる。
ECの酸化分解によるガス発生の抑制、および負極の充放電特性の観点から、WECは、5~20質量%、好ましくは7~18質量%、さらに好ましくは10~15質量%である。
スルトン化合物Aとしては、例えば、下記式(A):
で表される化合物が例示できる。
炭化水素基がフッ素原子を有する場合、その個数は、炭化水素基の炭素数に応じて、適宜選択できるが、例えば、1~5、好ましくは1~3、さらに好ましくは1または2である。
非水電解質の粘度を低減するためには、炭化水素基は、炭素数が1~5のアルキル基であるのが好ましく、炭素数が1~3のアルキル基がより好ましい。
で表すことができる。
で表すことができる。
で表すことができる。
非水電解質中の溶質の濃度は、好ましくは1.0~1.5モル/L、より好ましくは1.0~1.2モル/Lである。
本発明の非水電解質二次電池は、正極と、負極と、正極および負極の間に配されるセパレータと、上記の非水電解質を備える。
以下に、各構成要素について詳しく説明する。
正極は、正極集電体、および正極集電体の表面に形成された、正極活物質を含む正極合剤層を含む。
正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが挙げられる。
正極集電体の厚さは、例えば、1~100μmである。
正極活物質は、リチウム含有遷移金属複合酸化物であるのが好ましい。リチウム含有遷移金属複合酸化物の代表的な例としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO2等を挙げることができる。
本発明では、ECの含有量が比較的少ないため、ECを分解させやすいニッケルを含むリチウム含有遷移金属複合酸化物を正極活物質として用いる場合であっても、ガス発生を大きく抑制できる。ニッケルを含むリチウム含有遷移金属複合酸化物は、容量が高い点でも有利である。この複合酸化物に含まれるニッケルのリチウムに対するモル比が、30~100モル%であることが好ましい。
正極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。
結着剤の割合は、正極活物質100質量部当たり、例えば、0.3~10質量部である。
正極合剤層の厚さ(正極集電体の片面あたりの厚さ)は、例えば、20~120μmである。
増粘剤の割合は、例えば、正極活物質100質量部当たり、例えば、0.1~10質量部である。
負極は、負極集電体、および負極集電体の表面に形成された、負極活物質を含む負極活物質層を含む。
負極集電体の材質としては、例えば、ステンレス鋼、ニッケル、銅、銅合金などが挙げられる。
負極活物質層は、負極集電体の両方の表面に形成してもよく、一方の表面に形成してもよい。負極活物質層の厚みは、例えば、10~100μmである。
負極における非水溶媒の還元分解をより効果的に抑制する観点から、必要により、黒鉛粒子を、水溶性高分子で被覆したものを負極活物質として用いてもよい。
セルロース誘導体の重量平均分子量は、例えば、1万~100万が好適である。ポリアクリル酸の重量平均分子量は、5000~100万が好適である。
まず、第1の方法について説明する。
第1の方法では、黒鉛粒子の被覆は、黒鉛粒子に、水溶性高分子の水溶液を付着させ、乾燥させることにより行うことができる。黒鉛粒子と、水と、水溶性高分子とを混合し、得られた混合物を乾燥させて、乾燥混合物とする工程(工程(a1))を含む。例えば、水溶性高分子を水中に溶解させて、水溶性高分子の水溶液を調製する。得られた水溶性高分子の水溶液と黒鉛粒子とを混合し、その後、水分を除去して、混合物を乾燥させる。このように、混合物を一旦乾燥させることにより、黒鉛粒子の表面に水溶性高分子が効率的に付着し、水溶性高分子による黒鉛粒子表面の被覆率が高められる。
また、水溶性高分子の水溶液100質量部と混合する黒鉛粒子の量は、50~150質量部が好適である。
乾燥温度は80~150℃が好ましい。乾燥時間は1~8時間が好適である。
第2の方法は、黒鉛粒子と、結着剤と、水と、水溶性高分子とを混合し、得られた混合物を乾燥させて、乾燥混合物とする工程(工程(b1))を含む。例えば、水溶性高分子を水中に溶解させて、水溶性高分子の水溶液を調製する。水溶性高分子の水溶液の粘度は、第1の方法と同様でよい。次に、得られた水溶性高分子の水溶液と、結着剤と、黒鉛粒子とを混合し、その後、水分を除去して、混合物を乾燥させる。このように、混合物を一旦乾燥させることにより、黒鉛粒子の表面に水溶性高分子と結着剤とが効率的に付着する。よって、水溶性高分子による黒鉛粒子表面の被覆率が高められるとともに、水溶性高分子で被覆された黒鉛粒子の表面に結着剤が良好な状態で付着する。結着剤は、水溶性高分子の水溶液に対する分散性を高める観点から、水を分散媒とするエマルジョンの状態で水溶性高分子の水溶液と混合することが好ましい。
2μlの水を滴下して、液滴を負極合剤層の表面に接触させる。負極合剤層表面に対する水の接触角θが10°より小さくなるまでの時間を測定することで、負極合剤層の水浸透速度が求められる。負極合剤層表面に対する水の接触角は、市販の接触角測定装置(例えば、協和界面科学(株)製のDM-301)を用いて測定すればよい。
結着剤としては、粒子状でゴム弾性を有するものが好ましい。このような結着剤としては、スチレン単位およびブタジエン単位を含む高分子(スチレン-ブタジエンゴム(SBR)など)が好ましい。このような高分子は、弾性に優れ、負極電位で安定である。
負極活物質層は、負極集電体の片面に形成してもよく、両面に形成してもよい。負極活物質層の厚さ(負極集電体の片面あたりの厚さ)は、例えば、20~120μmである。
セパレータとしては、樹脂製の、微多孔フィルム、不織布または織布などが使用できる。セパレータを構成する樹脂としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリアミド;ポリアミドイミド;ポリイミド;セルロースなどが例示できる。
セパレータの厚みは、例えば、5~100μm、好ましくは10~30μmである。
非水電解質二次電池の形状は、特に制限されず、円筒形、扁平形、コイン形、角形などであってもよい。
非水電解質二次電池は、電池の形状などに応じて、慣用の方法により製造できる。円筒形電池または角形電池では、例えば、正極と、負極と、これらの間に配されるセパレータとを捲回して電極群を形成し、電極群および非水電解質を電池ケースに収容することにより製造できる。
(1)負極の作製
工程(i)
水溶性高分子としてのCMC(分子量40万)を水に溶解し、CMC濃度1.0質量%の水溶液を得た。天然黒鉛粒子(平均粒径20μm、平均球形度0.95)100質量部と、CMC水溶液100質量部とを混合し、混合物の温度を25℃に制御しながら攪拌した。その後、混合物を150℃で5時間乾燥させ、乾燥混合物を得た。乾燥混合物において、黒鉛粒子100質量部あたりのCMC量は1.0質量部であった。
工程(i)で得られた乾燥混合物100質量部と、結着剤としての粒子状のSBR(平均粒径0.12μm)0.6質量部と、CMC0.9質量部と、適量の水とを混合し、負極合剤スラリーを調製した。なお、SBRは、水を分散媒とするエマルジョン(日本ゼオン(株)製のBM-400B(商品名)、SBR含有量:40質量%)の状態で他の成分と混合した。
得られた負極合剤スラリーを、負極集電体である電解銅箔(厚さ12μm)の両面にダイコートにより塗布し、塗膜を形成した。塗膜を120℃で乾燥した後、圧延ローラを用いて乾燥塗膜を線圧250kg/cmで圧延し、負極合剤層(厚さ160μm、黒鉛密度1.65g/cm3)を形成した。負極合剤層を負極集電体とともに所定形状に裁断することにより、負極を得た。
正極活物質である100質量部のLiNi0.80Co0.15Al0.05O2に対し、結着剤であるPVDFを4質量部と、導電剤であるアセチレンブラック8質量部とを添加し、適量のNMPとともに混合し、正極合剤スラリーを調製した。得られた正極合剤スラリーを、正極集電体である厚さ20μmのアルミニウム箔の両面に、ダイコートにより塗布し、塗膜を形成した。塗膜を120℃で乾燥した後、圧延ローラを用いて乾燥塗膜を線圧1800kg/cmで圧延し、正極合剤層(厚さ140μm)を形成した。正極合剤層を正極集電体とともに所定形状に裁断することにより、正極を得た。
ECと、PCと、DECとの混合溶媒に、スルトン化合物を加え、さらにLiPF6を溶解させることにより、非水電解質を調製した。スルトン化合物としては、式(1a)で表される化合物(以下、化合物(1a))を用いた。非水電解質中のECと、PCと、DECと、化合物(1a)との質量比を、10:50:40:1とした。非水電解質中のLiPF6の濃度を1モル/リットルとした。
回転粘度計(コーンプレートの半径:24mm)によって25℃における非水電解質の粘度を測定した。25℃における非水電解質の粘度は、5.4mPa・sであった。
図1に示すような角型リチウムイオン二次電池を作製した。
負極と正極とを、これらの間に厚さ20μmのポリエチレン製の微多孔性フィルムからなるセパレータ(セルガード(株)製のA089(商品名))を介して捲回し、断面が略楕円形の電極群21を構成した。電極群21はアルミニウム製の角型の電池缶20に収容した。電池缶20は、底部と、側壁とを有し、上部は開口しており、その形状は略矩形である。側壁の主要平坦部の厚みは80μmとした。
スルトン化合物として、化合物(1a)に代えて、式(4a)で表される化合物(以下、化合物(4a))を用いる以外は、実施例1と同様の方法により電池2を作製した。
スルトン化合物として、化合物(1a)に代えて、1,3-プロパンスルトンを用いる以外は、実施例1と同様の方法により電池3を作製した。
スルトン化合物として、化合物(4a)に代えて、1,3-プロペンスルトンを用いた以外、実施例1と同様の方法により電池4を作製した。
[評価]
(1)充放電サイクル時の容量維持率の評価
45℃で、電池の充放電サイクルを繰り返した。充放電サイクルにおいて、充電処理では、600mAで、電圧が4.2Vになるまで定電流充電し、次いで4.2Vの電圧で、定電圧充電を行った。充電処理の時間は、定電流充電および定電圧充電の合計で2時間30分であった。また、充電処理後の休止時間を10分とした。一方、放電処理では、850mAで、電圧が2.5Vになるまで定電流放電を行った。放電処理後の休止時間を、10分とした。
上記(1)と同様の条件で、電池の充放電サイクルを繰り返し、3サイクル目の充電後における状態と、501サイクル目の充電後における状態とで、電池の縦50mm×横34mmの平面の中央部分において、この平面に垂直な方向における電池の厚みを測定した。その電池厚みの差から、充放電サイクル後における電池膨れの量(mm)を求めた。
各実施例または比較例について、同じ仕様の電池を2個準備した。
一方の電池については、25℃で、電池を充放電した。充電処理では、600mAで、電圧が4.2Vになるまで定電流充電し、次いで4.2Vの電圧で、定電圧充電を行った。充電処理の時間は、定電流充電および定電圧充電の合計で2時間30分であった。また、充電処理後の休止時間を10分とした。一方、放電処理では、170mAで、電圧が2.5Vになるまで定電流放電を行った。この放電時の放電容量を求め、保存前の放電容量とした。
保存前の放電容量を100%とみなし、保存後の放電容量を、高温保存時の容量維持率Y(%)として算出した。
上記(3)における保存前および保存後の充電時の電池について、電池の縦50mm×横34mmの平面の中央部分において、この平面に垂直な方向における電池の厚みを測定した。その電池厚みの差から、高温保存後における電池膨れの量(mm)を求めた。
各電池に対して、上記(1)と同じ条件で充放電を25℃の環境下で3サイクル実施した。次に、4サイクル目の充電を、-5℃の環境下において、600mAで、電圧が4.25Vになるまで定電流充電し、次いで4.25Vの電圧で定電圧充電を行った。4サイクル目の充電時間は、2時間30分とした。その後、5℃/分で130℃まで電池を昇温させた後、130℃にて3時間保持した。この時の電池表面の温度を、熱電対を用いて測定し、その最大値を求めた。
評価結果を表1に示す。
実施例の電池で、電池膨れが小さくなったのは、負極でのPCおよびDECの還元分解が抑制されたことにより、ガスの発生が低減されたことによるものと考えられる。特に、実施例で使用したスルトン化合物は、比較例で使用したスルトン化合物に比べて、還元電位が高いため、実施例では、PCの還元電位よりも高い電位で、負極表面に被膜がスムーズに形成されたたことにより、負極でのPCの還元分解が有効に抑制されたと考えられる。
非水電解質中のスルトン化合物の含有量WSを、表2に示す値に変更した。非水溶媒であるEC、PC、およびDECの質量比を、1:5:4とした。
上記以外、実施例1と同様の方法により、それぞれ電池11~19を作製し、評価した。電池11は比較例である。
それに対し、電池12~19では、電池11と比べて、充放電サイクル特性、高温保存特性、および安全性が向上した。
非水溶媒中のPCの含有量WPCを、表3に示す値に変更し、ECとDECとの質量比を、10:30とした。スルトン化合物Aは、EC、PCおよびDECの合計質量100に対して、1となるような含有量で使用した。
上記以外、実施例1と同様の方法により、それぞれ電池21~29を作製し、評価した。電池21、22および29は比較例である。
評価結果を表3に示す。
電池29では、PC量が過度に多くなり、PCの還元分解によるガス発生量が多くなり、容量維持率XおよびYが低下した。電池21および22では、PC量が過度に少なくなり、ECやDECの酸化分解によるガス発生量が多くなり、容量維持率XおよびYが低下した。
非水溶媒中のECの含有量WECを、表4に示す値に変更し、PCとDECとの質量比を、50:40とした。スルトン化合物Aは、EC、PCおよびDECの合計質量100に対して、1となるような含有量で使用した。
上記以外、実施例1と同様の方法により、それぞれ電池31~39を作製し、評価した。電池31、32および39は比較例である。
評価結果を表4に示す。
電池31および32では、EC量が過度に少ないため、充放電できなかった。電池39では、EC量が過度に多くなり、ECの酸化分解によるガス発生量が多くなり、容量維持率XおよびYが低下した。
21 電極群
22 正極リード
23 負極リード
24 絶縁体
25 封口板
26 絶縁ガスケット
27 負極端子
29 封栓
Claims (13)
- 非水溶媒と、前記非水溶媒に溶解した溶質と、添加剤とを含み、
前記非水溶媒は、エチレンカーボネートおよびプロピレンカーボネートを含み、
前記非水溶媒中の前記エチレンカーボネートの含有量WECが5~20質量%であり、
前記非水溶媒中の前記プロピレンカーボネートの含有量WPCが40~60質量%であり、
前記添加剤は、フッ素原子を含むスルトン化合物を含む、非水電解質。 - 前記スルトン化合物が、下記式(1):
下記式(2):
下記式(3):
- 前記スルトン化合物が、下記式(4):
下記式(5):
下記式(6):
- 前記非水電解質中の前記スルトン化合物の含有量WSが、0.1~5質量%である、請求項1~6のいずれか1項に記載の非水電解質。
- 正極集電体、および前記正極集電体の表面に形成された、正極活物質を含む正極合剤層を有する正極と、
負極集電体、および前記負極集電体の表面に形成された、負極活物質を含む負極活物質層を有する負極と、
前記正極と前記負極との間に配されるセパレータと、
請求項1~7のいずれか1項に記載の非水電解質と、を備える、非水電解質二次電池。 - 前記負極活物質が黒鉛粒子を含む、請求項8記載の非水電解質二次電池。
- 前記負極活物質層の1cm3中に含まれる前記黒鉛粒子の重量が、1.3~1.8gである、請求項9記載の非水電解質二次電池。
- 前記黒鉛粒子が、セルロース誘導体およびポリアクリル酸からなる群より選択される少なくとも一種で被覆されている、請求項9記載の非水電解質二次電池。
- 前記負極活物質層の表面に、前記スルトン化合物に由来する被膜が形成されている、請求項8~11のいずれか1項に記載の非水電解質二次電池。
- 前記正極活物質が、LixNiyMzMe1-(y+z)O2+d(Mは、CoおよびMnよりなる群から選ばれる少なくとも1種の元素であり、Meは、Al、Cr、Fe、Mg、およびZnよりなる群から選ばれる少なくとも1種の元素であり、0.98≦x≦1.1、0.3≦y≦1、0≦z≦0.7、0.9≦y+z≦1、-0.01≦d≦0.01)で表されるリチウムニッケル含有複合酸化物を含む、請求項8~12のいずれか1項に記載の非水電解質二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012800044210A CN103283076A (zh) | 2011-03-28 | 2012-03-26 | 非水电解质及使用其的非水电解质二次电池 |
JP2012529012A JP5089828B2 (ja) | 2011-03-28 | 2012-03-26 | 非水電解質およびそれを用いた非水電解質二次電池 |
US13/978,712 US20130330636A1 (en) | 2011-03-28 | 2012-03-26 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070415 | 2011-03-28 | ||
JP2011-070415 | 2011-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012132393A1 true WO2012132393A1 (ja) | 2012-10-04 |
Family
ID=46930169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002082 WO2012132393A1 (ja) | 2011-03-28 | 2012-03-26 | 非水電解質およびそれを用いた非水電解質二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130330636A1 (ja) |
JP (1) | JP5089828B2 (ja) |
CN (1) | CN103283076A (ja) |
WO (1) | WO2012132393A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014082139A (ja) * | 2012-10-18 | 2014-05-08 | Hitachi Maxell Ltd | 負極合剤含有組成物の製造方法、リチウム二次電池用負極、リチウム二次電池および負極合剤含有組成物用材料 |
JP2018530852A (ja) * | 2015-12-31 | 2018-10-18 | シジャジュアン サン タイ ケミカル | 高電圧リチウムイオン電池の電解液、その調製方法及びその応用 |
KR20190124520A (ko) * | 2018-04-26 | 2019-11-05 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7307543B2 (ja) * | 2016-06-30 | 2023-07-12 | ハイドロ-ケベック | 電極材料およびそれらの調製のためのプロセス |
KR101941401B1 (ko) * | 2018-02-07 | 2019-01-22 | 동우 화인켐 주식회사 | 전해액 조성물 및 이를 이용한 이차전지 |
CN110504479B (zh) * | 2018-05-17 | 2021-05-04 | 宁德时代新能源科技股份有限公司 | 锂离子电池 |
KR102138128B1 (ko) | 2018-11-26 | 2020-07-27 | 동우 화인켐 주식회사 | 전해액 조성물 및 이를 이용한 이차전지 |
CN112421109B (zh) * | 2020-11-19 | 2022-04-26 | 中节能万润股份有限公司 | 一种环状磺酸酯类锂离子电池电解液添加剂、其制备方法与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07235327A (ja) * | 1993-12-27 | 1995-09-05 | Fuji Elelctrochem Co Ltd | 非水電解液二次電池 |
JP2002329528A (ja) * | 2001-03-01 | 2002-11-15 | Mitsui Chemicals Inc | 非水電解液、それを用いた二次電池、および電解液用添加剤 |
JP2004303555A (ja) * | 2003-03-31 | 2004-10-28 | Tdk Corp | リチウムイオン二次電池 |
JP2007103246A (ja) * | 2005-10-06 | 2007-04-19 | Matsushita Battery Industrial Co Ltd | 非水電解質二次電池 |
JP2007149619A (ja) * | 2005-11-30 | 2007-06-14 | Sony Corp | 電池 |
WO2011039949A1 (ja) * | 2009-09-29 | 2011-04-07 | パナソニック株式会社 | 非水電解質およびそれを用いた非水電解質二次電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3883726B2 (ja) * | 1999-02-15 | 2007-02-21 | 三洋電機株式会社 | 非水系電解質二次電池 |
JP5095090B2 (ja) * | 2005-06-07 | 2012-12-12 | 日立マクセルエナジー株式会社 | 非水電解液二次電池 |
JP4366451B1 (ja) * | 2009-02-02 | 2009-11-18 | パナソニック株式会社 | 非水電解質二次電池及び非水電解質二次電池の製造方法 |
JPWO2010113419A1 (ja) * | 2009-03-31 | 2012-10-04 | パナソニック株式会社 | 非水電解質およびそれを用いた非水電解質二次電池 |
-
2012
- 2012-03-26 US US13/978,712 patent/US20130330636A1/en not_active Abandoned
- 2012-03-26 CN CN2012800044210A patent/CN103283076A/zh active Pending
- 2012-03-26 WO PCT/JP2012/002082 patent/WO2012132393A1/ja active Application Filing
- 2012-03-26 JP JP2012529012A patent/JP5089828B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07235327A (ja) * | 1993-12-27 | 1995-09-05 | Fuji Elelctrochem Co Ltd | 非水電解液二次電池 |
JP2002329528A (ja) * | 2001-03-01 | 2002-11-15 | Mitsui Chemicals Inc | 非水電解液、それを用いた二次電池、および電解液用添加剤 |
JP2004303555A (ja) * | 2003-03-31 | 2004-10-28 | Tdk Corp | リチウムイオン二次電池 |
JP2007103246A (ja) * | 2005-10-06 | 2007-04-19 | Matsushita Battery Industrial Co Ltd | 非水電解質二次電池 |
JP2007149619A (ja) * | 2005-11-30 | 2007-06-14 | Sony Corp | 電池 |
WO2011039949A1 (ja) * | 2009-09-29 | 2011-04-07 | パナソニック株式会社 | 非水電解質およびそれを用いた非水電解質二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014082139A (ja) * | 2012-10-18 | 2014-05-08 | Hitachi Maxell Ltd | 負極合剤含有組成物の製造方法、リチウム二次電池用負極、リチウム二次電池および負極合剤含有組成物用材料 |
JP2018530852A (ja) * | 2015-12-31 | 2018-10-18 | シジャジュアン サン タイ ケミカル | 高電圧リチウムイオン電池の電解液、その調製方法及びその応用 |
KR20190124520A (ko) * | 2018-04-26 | 2019-11-05 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
KR102251112B1 (ko) | 2018-04-26 | 2021-05-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
US12009520B2 (en) | 2018-04-26 | 2024-06-11 | Samsung Sdi Co., Ltd. | Secondary lithium battery anode and secondary lithium battery including same |
Also Published As
Publication number | Publication date |
---|---|
US20130330636A1 (en) | 2013-12-12 |
CN103283076A (zh) | 2013-09-04 |
JPWO2012132393A1 (ja) | 2014-07-24 |
JP5089828B2 (ja) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5426763B2 (ja) | 二次電池用非水電解質および非水電解質二次電池 | |
JP5089828B2 (ja) | 非水電解質およびそれを用いた非水電解質二次電池 | |
WO2011039949A1 (ja) | 非水電解質およびそれを用いた非水電解質二次電池 | |
JP5914811B2 (ja) | 二次電池用非水電解質および非水電解質二次電池 | |
JP5525599B2 (ja) | 二次電池用非水電解質およびそれを用いた非水電解質二次電池 | |
WO2010113419A1 (ja) | 非水電解質およびそれを用いた非水電解質二次電池 | |
WO2014147983A1 (ja) | 非水電解質二次電池 | |
JP2013218967A (ja) | 非水電解質および非水電解質二次電池 | |
JP5204929B1 (ja) | 二次電池用非水電解質および非水電解質二次電池 | |
CN112310470B (zh) | 电化学装置及包括其的电子装置 | |
JP6755182B2 (ja) | リチウムイオン二次電池 | |
JP6191602B2 (ja) | リチウムイオン二次電池 | |
WO2011118144A1 (ja) | 非水電解質およびそれを用いた非水電解質二次電池 | |
JP2018116831A (ja) | 電池の製造方法 | |
WO2012140858A1 (ja) | 非水電解質およびそれを用いた非水電解質二次電池 | |
JP4172175B2 (ja) | 非水電解液およびこれを用いた非水電解液二次電池 | |
WO2013008439A1 (ja) | 非水電解質およびそれを用いた非水電解質二次電池 | |
JP5153116B2 (ja) | 非水電解液二次電池 | |
JP2007294654A (ja) | 電気化学キャパシタ | |
JP6675141B2 (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
JP2013137945A (ja) | 非水電解質およびそれを用いた非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012529012 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12764003 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13978712 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12764003 Country of ref document: EP Kind code of ref document: A1 |