WO2012131878A1 - 縦型半導体装置 - Google Patents

縦型半導体装置 Download PDF

Info

Publication number
WO2012131878A1
WO2012131878A1 PCT/JP2011/057670 JP2011057670W WO2012131878A1 WO 2012131878 A1 WO2012131878 A1 WO 2012131878A1 JP 2011057670 W JP2011057670 W JP 2011057670W WO 2012131878 A1 WO2012131878 A1 WO 2012131878A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
surface density
cell region
resurf
Prior art date
Application number
PCT/JP2011/057670
Other languages
English (en)
French (fr)
Inventor
賢 妹尾
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/057670 priority Critical patent/WO2012131878A1/ja
Priority to CN201180049802.6A priority patent/CN103155152B/zh
Priority to US13/640,447 priority patent/US9035415B2/en
Priority to EP11862776.9A priority patent/EP2693483B1/en
Priority to JP2012524024A priority patent/JP5459403B2/ja
Publication of WO2012131878A1 publication Critical patent/WO2012131878A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Definitions

  • the present invention relates to a vertical semiconductor device.
  • Patent Documents 1-4 disclose a RESURF structure in a semiconductor device.
  • a RESURF structure is realized by disposing a diffusion layer in at least a part of the non-cell region.
  • a depletion layer spreading from the interface of the diffusion layer shares the voltage and relaxes the concentration of the electric field, thereby realizing a high breakdown voltage.
  • the present specification provides a technique for solving the above problems.
  • the present specification provides a technique for suppressing a decrease in breakdown voltage when external charges adhere to a vertical semiconductor device having a RESURF structure.
  • the vertical semiconductor device disclosed in the present specification includes a cell region and a non-cell region disposed outside the cell region.
  • the vertical semiconductor device has a diffusion layer in at least a part of the non-cell region.
  • the impurity surface density at the end near the cell region is higher than the impurity surface density satisfying the RESURF condition, and the end on the side far from the cell region.
  • the impurity surface density in the portion is lower than the impurity surface density satisfying the RESURF condition.
  • the impurity surface density when the vertical semiconductor device is viewed in plan, compared to the average gradient of the impurity surface density in the region of the impurity surface density lower than the impurity surface density that satisfies the resurf condition, the impurity surface density satisfies the resurf condition.
  • the average gradient of the impurity surface density in the high impurity surface density region is large.
  • the impurity surface density referred to here is a value obtained by integrating the impurity concentration in the diffusion layer in the depth direction of the diffusion layer, and corresponds to the impurity implantation amount per unit area when the vertical semiconductor device is viewed in plan view. To do.
  • the impurity surface density that satisfies the RESURF condition is about 1 ⁇ 10 12 [cm ⁇ 2 ].
  • the impurity surface density in the diffusion layer is preferably 5 ⁇ 10 13 [cm ⁇ 2 ] or less at the maximum.
  • the depletion layer spreading from the interface of the diffusion layer shares the voltage, and the electric field concentration is reduced.
  • the diffusion layer is formed such that the impurity surface density at the end near the cell region is higher than the impurity surface density satisfying the resurf condition, and the impurity surface density at the end far from the cell region is lower than the impurity surface density satisfying the resurf condition.
  • the impurity surface density of the diffusion layer decreases from the end near the cell region toward the end far from the cell region, and there is a portion where the impurity surface density satisfies the RESURF condition during that time. .
  • the formed depletion layer does not change greatly. According to the vertical semiconductor device, it is possible to suppress a decrease in breakdown voltage due to adhesion of external charges. Further, in the above vertical semiconductor device, the impurity concentration of the diffusion layer and the semiconductor layer below it varies during manufacturing, and the carrier distribution of the diffusion layer and the semiconductor layer below it is disturbed due to the variation of the impurity concentration. Even in this case, a large change does not occur in the formed depletion layer.
  • the vertical semiconductor device described above has less variation in breakdown voltage with respect to variations in impurity concentration during manufacturing.
  • a region having an impurity surface density lower than the impurity surface density satisfying the resurf condition is a gentle gradient region having a small average gradient of the impurity surface density, and is higher than the impurity surface density satisfying the resurf condition.
  • the region of impurity surface density is a steep region where the average gradient of impurity surface density is large. In the steep region, there are many surplus carriers that are not involved in the formation of the depletion layer. Therefore, even when external charges adhere to the surface of the diffusion layer and carriers in the diffusion layer decrease due to the influence of the external charges, the decrease in carriers in the diffusion layer is compensated by the surplus carriers existing in the steep slope region. be able to. A decrease in breakdown voltage due to the adhesion of external charges can be suppressed.
  • Another vertical semiconductor device disclosed in the present specification includes a cell region and a non-cell region disposed outside the cell region.
  • the vertical semiconductor device has a diffusion layer in at least a part of the non-cell region.
  • the distribution in the depth direction of the carrier concentration at the end portion on the side away from the cell region has a maximum value at a position deeper than the surface.
  • the depth at which the carrier concentration reaches a maximum value is preferably 0.5 [ ⁇ m] or more from the surface.
  • the depletion layer spreading from the interface of the diffusion layer shares the voltage and relaxes the concentration of the electric field.
  • the spread of the depletion layer changes according to the carrier concentration at the end of the diffusion layer on the side away from the cell region, and the breakdown voltage of the vertical semiconductor device is at the end of the diffusion layer on the side away from the cell region. This depends on the maximum value of the carrier concentration in the part.
  • the maximum value of the carrier concentration at the end of the diffusion layer on the side away from the cell region exists at a position deeper than the surface, and even when external charges adhere to the surface, the carrier concentration The maximum value of is difficult to change. According to the vertical semiconductor device, it is possible to suppress a decrease in breakdown voltage due to adhesion of external charges.
  • Another vertical semiconductor device disclosed in the present specification includes a cell region and a non-cell region disposed outside the cell region.
  • the vertical semiconductor device has a diffusion layer in at least a part of the non-cell region.
  • a polysilicon layer is stacked above the end of the diffusion layer on the side away from the cell region.
  • the impurity concentration of the same conductivity type as that of the diffusion layer in the polysilicon layer is lower than the maximum value of the impurity concentration in the diffusion layer below the polysilicon layer.
  • the depletion layer spreading from the interface of the diffusion layer shares the voltage and relaxes the concentration of the electric field.
  • the spread of the depletion layer changes according to the carrier concentration at the end of the diffusion layer on the side away from the cell region, and the breakdown voltage of the vertical semiconductor device is at the end of the diffusion layer on the side away from the cell region.
  • the polysilicon layer is stacked above the end of the diffusion layer on the side away from the cell region, and the carrier concentration is the maximum value at the end of the diffusion layer on the side away from the cell region.
  • the vertical semiconductor device it is possible to suppress a decrease in breakdown voltage due to adhesion of external charges.
  • FIG. 3 is a plan view of semiconductor devices 10, 300, and 400 according to Examples 1, 2, and 3.
  • FIG. 2 is a cross-sectional view of the semiconductor device 10 according to the first embodiment at a position indicated by line II-II in FIG.
  • the distribution of the p-type impurity surface density in the RESURF region 34 of the semiconductor device 10 of Example 1 is shown.
  • the electric field strength distribution in the depletion layer of the semiconductor device 10 of Example 1 is shown.
  • the relationship between the withstand voltage at the time of positive charge adhesion and the withstand voltage at the time of negative charge adhesion of the semiconductor device 10 of Example 1 is shown.
  • 7 shows another distribution of the p-type impurity surface density in the RESURF region 34 of the semiconductor device 10 according to the first embodiment.
  • 7 shows another distribution of the p-type impurity surface density in the RESURF region 34 of the semiconductor device 10 according to the first embodiment.
  • 7 shows another distribution of the p-type impurity surface density in the RESURF region 34 of the semiconductor device 10 according to the first embodiment.
  • 7 shows another distribution of the p-type impurity surface density in the RESURF region 34 of the semiconductor device 10 according to the first embodiment.
  • 7 shows another distribution of the p-type impurity surface density in the RESURF region 34 of the semiconductor device 10 according to the first embodiment.
  • 7 shows another distribution of the p-type impurity surface density in the RESURF region 34 of the semiconductor device 10 according to the first embodiment.
  • FIG. 2 The hole direction depth distribution in the outer peripheral side edge part C of the resurf area
  • the semiconductor device 10 of this embodiment includes a semiconductor element region 100 (corresponding to a cell region) in which a semiconductor element is formed, and a peripheral withstand voltage region 200 (non-null) surrounding the semiconductor element region 100.
  • the vertical semiconductor device includes a cell region.
  • an IGBT is formed in the semiconductor element region 100.
  • another power semiconductor element such as a MOSFET or a diode may be formed in the semiconductor element region 100, for example.
  • the semiconductor element region 100 is formed at a substantially central portion of the semiconductor layer 20, and the peripheral breakdown voltage region 200 is formed along the outer peripheral edge 22 of the semiconductor layer 20.
  • the peripheral breakdown voltage region 200 is a region for ensuring a breakdown voltage between the outer peripheral edge 22 of the semiconductor layer 20 and the semiconductor element region 100.
  • the semiconductor device 10 mainly includes a semiconductor layer 20, an insulating layer 40, a central electrode 50, an outer peripheral electrode 60, and a back electrode 80.
  • the semiconductor layer 20 is made of silicon.
  • the central electrode 50 is formed on the upper surface 24 of the semiconductor layer 20 in the semiconductor element region 100.
  • the center electrode 50 is an IGBT emitter electrode.
  • the outer peripheral electrode 60 is formed on the upper surface 24 of the semiconductor layer 20 and extends along the outer peripheral end 22 of the semiconductor layer 20.
  • the outer peripheral electrode 60 is a channel stop electrode.
  • the insulating layer 40 is formed on the upper surface 24 of the semiconductor layer 20 between the central electrode 50 and the outer peripheral electrode 60.
  • the back electrode 80 is formed on the lower surface 26 of the semiconductor layer 20.
  • the back electrode 80 is an IGBT collector electrode.
  • the back electrode contact region 38 is made of a p-type semiconductor having a high p-type impurity concentration.
  • the back electrode contact region 38 is formed over the entire surface layer region (region in the vicinity of the lower surface 26 including the lower surface 26) on the lower surface 26 side of the semiconductor layer 20.
  • the back electrode contact region 38 is ohmically connected to the back electrode 80.
  • the back electrode contact region 38 is an IGBT collector region in the semiconductor element region 100.
  • the center electrode contact region 32 is made of a p-type semiconductor having a high p-type impurity concentration.
  • the central electrode contact region 32 is a surface layer region (region in the vicinity of the upper surface 24 including the upper surface 24) on the upper surface 24 side of the semiconductor layer 20, and is formed in the semiconductor element region 100.
  • the center electrode contact region 32 is ohmically connected to the center electrode 50.
  • the center electrode contact region 32 is an IGBT body region in the semiconductor element region 100.
  • An isolation region that separates the two may be formed between the central electrode contact region 32 and the RESURF region 34.
  • the low-concentration n-type region 30 is composed of an n-type semiconductor having a low n-type impurity concentration.
  • the low-concentration n-type region 30 is mainly formed in an intermediate portion in the depth direction of the semiconductor layer 20.
  • the low concentration n-type region 30 is formed between the back electrode contact region 38 and the center electrode contact region 32.
  • the low concentration n-type region 30 in the semiconductor element region 100 functions as a drift region of the IGBT.
  • the semiconductor layer 20 in the semiconductor element region 100 includes various n-type or p-type in addition to the central electrode contact region 32, the low concentration n-type region 30, and the back electrode contact region 38.
  • a mold region (for example, an emitter region) is formed.
  • a gate electrode is formed in the semiconductor element region 100.
  • the IGBT in the semiconductor element region 100 is formed by the central electrode 50, the back electrode 80, the gate electrode, and various n-type or p-type semiconductor regions in the semiconductor element region 100.
  • the outer peripheral electrode contact region 36 is composed of an n-type semiconductor having a high n-type impurity concentration.
  • the peripheral electrode contact region 36 is a surface layer region on the upper surface 24 side of the semiconductor layer 20 and is formed on the outermost peripheral side of the peripheral withstand voltage region 200. That is, the outer peripheral electrode contact region 36 is formed at a position exposed at the outer peripheral end 22 of the semiconductor layer 20.
  • the outer peripheral electrode contact region 36 is ohmically connected to the outer peripheral electrode 60.
  • the outer peripheral electrode contact region 36 is a channel stop region.
  • the RESURF region 34 (corresponding to a diffusion layer) is composed of a p-type semiconductor having a low p-type impurity concentration.
  • the RESURF region 34 is a surface layer region on the upper surface 24 side of the semiconductor layer 20 and is formed in the peripheral withstand voltage region 200. One end of the RESURF region 34 is in contact with the central electrode contact region 32. Between the outer peripheral electrode contact region 36 and the RESURF region 34, the above-described low concentration n-type region 30 exists.
  • the peripheral electrode contact region 36 is separated from the RESURF region 34 by the low concentration n-type region 30.
  • the function of the peripheral withstand voltage region 200 of the semiconductor device 10 will be described.
  • the IGBT in the semiconductor element region 100 is on, a high potential difference does not occur between the electrodes of the semiconductor device 10.
  • the IGBT is turned off, the potentials of the outer peripheral electrode 60 and the back electrode 80 rise with respect to the potential of the central electrode 50.
  • a depletion layer extends from the central electrode contact region 32 into the low concentration n-type region 30.
  • the depletion layer extends from the central electrode contact region 32 toward the outer peripheral side in the surface layer region on the upper surface 24 side of the semiconductor layer 20.
  • the RESURF region 34 promotes the depletion layer to extend toward the outer peripheral side.
  • the depletion layer in the peripheral withstand voltage region 200 reaches the outer peripheral electrode contact region 36. Since the peripheral electrode contact region 36 has a high n-type impurity concentration, the depletion layer does not extend into the peripheral electrode contact region 36. That is, the depletion layer stops at the boundary between the peripheral electrode contact region 36 and the low concentration n-type region 30 as indicated by a dotted line 90 in FIG. Therefore, the depletion layer does not extend to the outer peripheral side from the outer peripheral electrode contact region 36. This prevents the depletion layer from extending to the outer peripheral edge 22 of the semiconductor layer 20.
  • a depletion layer is formed in a region between the central electrode contact region 32 and the outer peripheral electrode contact region 36 (that is, the low concentration n-type region 30 and the RESURF region 34). . Most of the voltage between the central electrode 50 and the outer peripheral electrode 60 is shared by this depleted region.
  • FIG. 3 shows the surface density distribution of the p-type impurity in the RESURF region 34.
  • the p-type impurity in the RESURF region 34 gradually decreases in surface density from the end B on the central side (side closer to the semiconductor element region 100) toward the end A on the outer peripheral side (side far from the semiconductor element region 100).
  • the p-type impurity surface density of the RESURF region 34 becomes the reference surface density at a position slightly closer to the center side end portion B than an intermediate position between the center side end portion B and the outer peripheral side end portion A.
  • the reference surface density is a surface density that satisfies a so-called RESURF condition.
  • a position where the p-type impurity surface density becomes the reference surface density is defined as a reference position P.
  • the average gradient of the p-type impurity surface density at the center side from the reference position P is set steeper than the average gradient of the p-type impurity surface density at the outer peripheral side from the reference position P.
  • the average gradient of the p-type impurity surface density at the center side from the reference position P is set to 1.3 times the average gradient of the p-type impurity surface density at the outer peripheral side from the reference position P.
  • the surface density of the p-type impurity in the RESURF region 34 is 5 ⁇ 10 13 [cm ⁇ 2 ] or less at the maximum.
  • FIG. 4 shows the electric field strength distribution in the depletion layer when a voltage is applied between the center electrode 50 and the outer peripheral electrode 60 with the IGBT turned off.
  • the solid line shows the case where the p-type impurity surface density in the resurf region 34 has the distribution shown in FIG. 3, and the broken line shows the p-type impurity surface density in the resurf region 34 constant at the reference surface density N 0. The case where it has distribution is shown.
  • the breakdown voltage of the semiconductor device 10 can be maximized under an ideal situation where there is no variation in the p-type impurity concentration.
  • the p-type impurity concentration varies, the p-type impurity surface density of the RESURF region 34 deviates from the RESURF condition throughout, and the electric field strength distribution in the depletion layer greatly fluctuates. This greatly affects the breakdown voltage of the semiconductor device 10.
  • the p-type impurity surface density in the resurf region 34 has the distribution shown in FIG. 3, and the electric field intensity distribution in the depletion layer is the maximum value in the vicinity of the reference position P. Distribution. Therefore, in an ideal situation where there is no variation in p-type impurity concentration, the breakdown voltage of the semiconductor device 10 is lower than when the p-type impurity surface density is constant at the reference surface density N 0 .
  • the semiconductor device 10 of this embodiment even when the p-type impurity concentration varies, the position where the p-type impurity surface density becomes the reference surface density N 0 , that is, the reference position P moves to the center side or the outer periphery side. However, the electric field strength distribution in the depletion layer does not vary so much, and the breakdown voltage of the semiconductor device 10 is hardly affected.
  • a semiconductor device 10 having high robustness against variations in p-type impurity concentration can be realized.
  • a steep slope region is formed in a range closer to the center than the reference position P of the RESURF region 34.
  • this steep region there are many surplus holes that are not involved in the formation of the depletion layer.
  • the movement of the holes in the steep region compensates for the decrease in holes due to the adhesion of positive charges. Therefore, according to the semiconductor device 10 of the present embodiment, it is possible to suppress the influence on the breakdown voltage when a positive charge is attached as an external charge.
  • FIG. 5 shows a semiconductor device when the p-type impurity surface density of the RESURF region 34 has the distribution shown in FIG. 3 (A) and when the gradient of the p-type impurity surface density of the RESURF region 34 is constant (B).
  • 10 shows the relationship between the withstand voltage when a positive charge is attached and the withstand voltage when a negative charge is attached.
  • the withstand voltage when a positive charge is attached and the withstand voltage when a negative charge is attached are in a trade-off relationship.
  • the breakdown voltage at the time of positive charge adhesion can be improved without lowering the breakdown voltage at the time of negative charge adhesion.
  • the breakdown voltage at the time of positive charge adhesion and the breakdown voltage at the time of negative charge adhesion can be improved beyond the trade-off limit when the gradient of the p-type impurity surface density of the RESURF region 34 is constant.
  • the RESURF region 34 having the p-type impurity surface density distribution as described above can be formed by various methods.
  • the RESURF region 34 having the p-type impurity surface density distribution as described above is formed by gradually decreasing the resist opening diameter at the time of p-type impurity implantation from the center side toward the outer peripheral side. Can do.
  • the RESURF region 34 having the p-type impurity surface density distribution as described above can also be formed by gradually increasing the distance between the openings of the resist from the central side toward the outer peripheral side.
  • the RESURF region 34 having the p-type impurity surface density distribution as described above can be formed by gradually reducing the thickness of the resist from the central side toward the outer peripheral side.
  • the average slope in the range exceeding the reference areal density N 0 is, if the average steep than the slope in the range of less than the reference surface density N 0, as what distribution Also good.
  • a distribution in which a steep slope region and a gentle slope region are switched may be used in a p-type impurity surface density higher than the reference surface density N 0 .
  • the distribution may be such that the steep slope region and the gentle slope region are switched at a p-type impurity surface density lower than 0 .
  • the distribution may be such that the p-type impurity surface density decreases stepwise, or as shown in FIG.
  • the p-type impurity surface density decreases in a curved line. Also good. Furthermore, as shown in FIG. 10, although the p-type impurity surface density repeatedly increases and decreases locally, a distribution in which the p-type impurity surface density gradually decreases may be adopted. Moreover, as shown in FIG. 11, it is good also as distribution which switches to the steep slope area
  • the corner portion 210 is more likely to concentrate an electric field than the straight portion 220, and the withstand voltage of the semiconductor device 10 is often determined according to the electric field strength distribution of the corner portion 210. Therefore, only the resurf region 34 in the corner portion 210 may have a p-type impurity surface density distribution as shown in FIG. 3, and the p-type impurity surface density in the resurf region 34 in the straight portion 220 may be constant. Alternatively, only the resurf region 34 in the corner portion 210 may have a p-type impurity surface density distribution as shown in FIG. 3 and the resurf region 34 in the straight portion 220 may have a constant gradient of p-type impurity surface density.
  • the semiconductor device 300 according to the present embodiment has substantially the same configuration as the semiconductor device 10 according to the first embodiment.
  • the same components as those of the semiconductor device 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 300 according to the present embodiment includes a resurf region 310 instead of the resurf region 34 according to the first embodiment.
  • the RESURF region 310 is composed of a p-type semiconductor having a low p-type impurity concentration.
  • the RESURF region 310 is a surface layer region on the upper surface 24 side of the semiconductor layer 20 and is formed in the peripheral withstand voltage region 200. One end of the RESURF region 310 is in contact with the center electrode contact region 32.
  • a low-concentration n-type region 30 exists between the outer peripheral electrode contact region 36 and the RESURF region 310.
  • the peripheral electrode contact region 36 is separated from the RESURF region 310 by the low concentration n-type region 30.
  • the RESURF region 310 has a hole concentration distribution shown in FIG. 13 in the depth direction from the surface at the end C on the outer peripheral side.
  • the hole concentration at the end C on the outer peripheral side increases from the surface in the depth direction, then reaches a maximum value at the depth D 0 , and then decreases in the depth direction.
  • the depth D 0 at which the hole concentration reaches the maximum value is 0.5 [ ⁇ m] from the surface.
  • the depth D 0 at which the hole concentration becomes the maximum value is preferably 0.5 [ ⁇ m] or more from the surface.
  • the semiconductor device 300 of this embodiment by forming the resurf region 310 as described above, it is possible to suppress the influence on the breakdown voltage of the semiconductor device 300 when external charges are attached.
  • the carrier distribution in the resurf region 310 is disturbed, which affects the formation of the depletion layer, and reduces the breakdown voltage of the semiconductor device 300. End up.
  • the breakdown voltage of the semiconductor device 300 depends on the maximum value of the hole concentration at the end C on the outer peripheral side of the RESURF region 310. If the maximum value of the hole concentration at the outer end C of the RESURF region 310 is reduced due to adhesion of external charges, the breakdown voltage of the semiconductor device 300 is reduced.
  • the hole concentration has a maximum value at the depth D 0 at the outer peripheral end C of the RESURF region 310. Therefore, even when external charges are attached, The maximum value of does not change so much. With such a configuration, it is possible to suppress a decrease in breakdown voltage of the semiconductor device 300 due to adhesion of external charges.
  • the semiconductor device 300 of the present embodiment is characterized in that the peak is arranged at a position deeper than the movement of the peak due to such segregation.
  • the ion implantation amount is 1 ⁇ at an acceleration energy of 1 [MeV] to 5 [MeV] at the outer peripheral end C. It can be formed by setting it to 10 12 [cm ⁇ 2 ] to 5 ⁇ 10 13 [cm ⁇ 2 ].
  • the surface concentration ratio ratio of the carrier concentration on the surface to the maximum value of the carrier concentration
  • the hole concentration in the RESURF region 310 only needs to have a depth direction distribution as shown in FIG.
  • the depth at which the hole concentration becomes maximum may be constant from the center side to the outer periphery side of the RESURF region 310.
  • the depth at which the hole concentration becomes maximum may be gradually increased from the center side to the outer periphery side of the RESURF region 310.
  • the depth at which the hole concentration becomes maximum may be irregularly increased or decreased from the center side to the outer periphery side of the RESURF region 310.
  • the RESURF region 310 itself may be formed at a deep position as a whole away from the surface of the semiconductor layer 20. In the end portion C on the outer peripheral side of the RESURF region 310, it is only necessary that the depth direction distribution of the hole concentration has a maximum value at a position deeper than the surface.
  • the upper end of the outer peripheral end C of the RESURF region 310 is formed. Further, a low concentration n-type region 312 may be further formed. Also in this case, in the end portion C on the outer peripheral side of the RESURF region 310, the hole concentration depth direction distribution can have a maximum value at a position deeper than the surface.
  • the semiconductor device is configured such that the n-type impurity concentration in the low concentration n-type region 312 is higher than the p-type impurity concentration in the RESURF region 310 There is a possibility that the breakdown voltage of 300 is reduced.
  • the n-type impurity concentration in the low-concentration n-type region 312 needs to be lower than the p-type impurity concentration in the RESURF region 310.
  • the semiconductor device 400 according to the present embodiment has substantially the same configuration as the semiconductor device 10 according to the first embodiment.
  • the same components as those of the semiconductor device 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 400 according to the present embodiment includes a resurf region 410 instead of the resurf region 34 according to the first embodiment.
  • the RESURF region 410 is composed of a p-type semiconductor having a low p-type impurity concentration.
  • the RESURF region 410 is a surface layer region on the upper surface 24 side of the semiconductor layer 20 and is formed in the peripheral withstand voltage region 200.
  • One end of the RESURF region 410 is in contact with the central electrode contact region 32.
  • a low-concentration n-type region 30 exists between the outer peripheral electrode contact region 36 and the RESURF region 410.
  • the peripheral electrode contact region 36 is separated from the RESURF region 310 by the low concentration n-type region 30.
  • a polysilicon layer 412 is laminated above the end D on the outer peripheral side of the RESURF region 410.
  • a p-type impurity of the same element as the p-type impurity in the RESURF region 410 is added to the polysilicon layer 412.
  • the p-type impurity concentration in the polysilicon layer 412 is set lower than the p-type impurity concentration in the RESURF region 410 below the polysilicon layer 412.
  • the polysilicon layer 412 is arranged as described above, and the semiconductor device 400 in the case where an external load is attached to the surface of the insulating layer 40 as in the semiconductor device 300 of the second embodiment. It is possible to suppress the influence on the withstand voltage. Since the polysilicon layer 412 is laminated above the end D on the outer peripheral side of the RESURF region 410, the depth at which the hole concentration reaches the maximum value in the RESURF region 410 is set to the thickness of the polysilicon layer 412. It can be a deep position. Thereby, even when an external load adheres to the surface of the insulating layer 40, the maximum value of the hole concentration at the end D on the outer peripheral side of the RESURF region 410 does not change so much. With such a configuration, it is possible to suppress a decrease in breakdown voltage of the semiconductor device 400 due to adhesion of external charges.
  • the semiconductor device 400 according to the present embodiment does not need to implant impurities with high energy when forming the resurf region 410 and the polysilicon layer 412. For this reason, the damage which silicon receives at the time of impurity implantation can be reduced.
  • carriers that pass through the low-concentration n-type region 30 from the back electrode contact region 38 and flow into the vicinity of the outer peripheral end D of the resurf region 410 are caused by the polysilicon layer 412. Be trapped. Carrier concentration in the vicinity of the outer peripheral end D of the RESURF region 410 can be suppressed, and the breakdown tolerance of the semiconductor device 400 can be improved.
  • the polysilicon layer 412 may have any configuration as long as the p-type impurity concentration is lower than the p-type impurity concentration in the RESURF region 410 below the polysilicon layer 412.
  • the polysilicon layer 412 may be p-type as a whole by adding only p-type impurities of the same element as the p-type impurity included in the RESURF region 410.
  • the polysilicon layer 412 may be an n-type as a whole by adding more n-type impurities together with a p-type impurity of the same element as the p-type impurities included in the RESURF region 410.
  • the n-type impurity of the polysilicon layer 412 is counter-doped, and the depth at which the hole concentration becomes the maximum value in the resurf region 410 is further increased. Can be deep.
  • the polysilicon layer 412 may be stacked at least above the outer end D of the RESURF region 410.
  • the polysilicon layer 412 is stacked only above the outer end D of the RESURF region 410.
  • the p-type impurity concentration in the polysilicon layer 412 may be lower than the p-type impurity concentration in the resurf region 410 below the upper end D of the resurf region 410.
  • the p-type impurity concentration in the polysilicon layer 412 may be higher than the p-type impurity concentration in the RESURF region 410 below it.
  • the polysilicon layer 412 may be laminated on the upper surface 24 of the semiconductor layer 20, or a trench is formed in the upper surface 24 of the semiconductor layer 20, and the trench is filled with polysilicon. You may form by doing.
  • the RESURF region 34 of the semiconductor device 10 of the first embodiment shown in FIG. 2 is formed so as to have the hole concentration distribution shown in FIG.
  • FIG. That is, the polysilicon layer 412 shown in FIG. 15 may be stacked above the end A on the outer peripheral side of the resurf region 34 of the semiconductor device 10 of the first embodiment shown in FIG. Or it can also be set as the structure which combined all the characteristics of Example 1, 2, and 3.

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 リサーフ構造を有する縦型半導体装置において、外部電荷が付着した場合の耐圧の低下を抑制する技術を提供する。 本明細書で開示する縦型半導体装置は、セル領域と、前記セル領域の外側に配置された非セル領域を備えている。その縦型半導体装置は、前記非セル領域の少なくとも一部に拡散層を有している。その拡散層では、前記縦型半導体装置を平面視したときに、前記セル領域に近い側の端部における不純物面密度が、リサーフ条件を満たす不純物面密度より高く、前記セル領域から遠い側の端部における不純物面密度が、リサーフ条件を満たす不純物面密度より低い。その拡散層では、前記縦型半導体装置を平面視したときに、リサーフ条件を満たす不純物面密度より低い不純物面密度の領域における不純物面密度の平均勾配に比べて、リサーフ条件を満たす不純物面密度より高い不純物面密度の領域における不純物面密度の平均勾配が大きい。

Description

縦型半導体装置
 本発明は、縦型半導体装置に関する。
 半導体装置の周辺耐圧構造として、FLR(Field Limiting Ring)構造や、リサーフ(REduced SURface Field)構造などが提案されている。一般に、リサーフ構造はFLR構造に比べて、小さな専有面積で高い耐圧を実現することができる。特許文献1-4に、半導体装置におけるリサーフ構造が開示されている。
米国特許出願公開第2007/0222023号 特開平7-193018号公報 特開平7-273325号公報 特開2001-15741号公報
 セル領域と、そのセル領域の外側に配置された非セル領域を備える縦型半導体装置では、非セル領域の少なくとも一部に拡散層を配置することで、リサーフ構造を実現する。このような縦型半導体装置では、非セル領域に電圧が印加された場合に、拡散層の界面から広がる空乏層が電圧を分担し、電界の集中を緩和することで、高耐圧を実現している。
 上記のような縦型半導体装置において、非セル領域の表面に、可動イオンなどの外部電荷が付着することがある。外部電荷が付着すると、非セル領域におけるキャリアの分布が乱されて、空乏層の形成に影響を及ぼす。その結果、縦型半導体装置の耐圧が低減してしまう。外部電荷が付着した場合であっても、耐圧の低下を抑制することが可能な技術が待望されている。
 本明細書は上記の課題を解決する技術を提供する。本明細書では、リサーフ構造を有する縦型半導体装置において、外部電荷が付着した場合の耐圧の低下を抑制する技術を提供する。
 本明細書で開示する縦型半導体装置は、セル領域と、前記セル領域の外側に配置された非セル領域を備えている。その縦型半導体装置は、前記非セル領域の少なくとも一部に拡散層を有している。その拡散層では、前記縦型半導体装置を平面視したときに、前記セル領域に近い側の端部における不純物面密度が、リサーフ条件を満たす不純物面密度より高く、前記セル領域から遠い側の端部における不純物面密度が、リサーフ条件を満たす不純物面密度より低い。その拡散層では、前記縦型半導体装置を平面視したときに、リサーフ条件を満たす不純物面密度より低い不純物面密度の領域における不純物面密度の平均勾配に比べて、リサーフ条件を満たす不純物面密度より高い不純物面密度の領域における不純物面密度の平均勾配が大きい。なお、ここでいう不純物面密度とは、拡散層における不純物濃度を拡散層の深さ方向に積分した値をいい、縦型半導体装置を平面視したときの、単位面積当たりの不純物注入量に相当する。半導体材料にシリコンが用いられている場合には、リサーフ条件を満たす不純物面密度は約1×1012[cm-2]である。なお、上記の拡散層における不純物面密度は、最大でも5×1013[cm-2]以下であることが好ましい。
 上記の縦型半導体装置では、非セル領域に電圧が印加された場合に、拡散層の界面から広がる空乏層が電圧を分担し、電界の集中を緩和する。拡散層は、セル領域に近い側の端部における不純物面密度がリサーフ条件を満たす不純物面密度より高く、セル領域から遠い側の端部における不純物面密度がリサーフ条件を満たす不純物面密度より低く形成されている。すなわち、拡散層の不純物面密度は、セル領域に近い側の端部からセル領域から遠い側の端部に向けて減少しており、その間にリサーフ条件を満たす不純物面密度となる部位が存在する。拡散層がこのような不純物面密度の分布を有する場合、外部電荷の付着により拡散層のキャリアの分布が乱された場合でも、形成される空乏層には大きな変化が生じない。上記の縦型半導体装置によれば、外部電荷の付着による耐圧低下を抑制することができる。また、上記の縦型半導体装置では、拡散層やその下方の半導体層の不純物濃度が製造時にばらつき、その不純物濃度のばらつきに起因して拡散層やその下方の半導体層のキャリアの分布が乱れた場合でも、形成される空乏層に大きな変化を生じない。上記の縦型半導体装置は、製造時の不純物濃度のばらつきに対して、耐圧の変動が少ない。
 また上記の縦型半導体装置では、リサーフ条件を満たす不純物面密度より低い不純物面密度の領域が、不純物面密度の平均勾配が小さい緩勾配領域となっており、リサーフ条件を満たす不純物面密度より高い不純物面密度の領域が、不純物面密度の平均勾配が大きい急勾配領域となっている。急勾配領域には、空乏層の形成に関与しない余剰のキャリアが多く存在する。従って、拡散層の表面に外部電荷が付着して、その外部電荷の影響で拡散層のキャリアが減少した場合でも、急勾配領域に存在する余剰のキャリアによって、拡散層のキャリアの減少を補償することができる。外部電荷の付着に起因する耐圧の低下を抑制することができる。
 本明細書が開示する他の縦型半導体装置は、セル領域と、前記セル領域の外側に配置された非セル領域を備えている。その縦型半導体装置は、前記非セル領域の少なくとも一部に拡散層を有している。その拡散層では、前記セル領域から離れた側の端部におけるキャリア濃度の深さ方向分布が、表面よりも深い位置で極大値を有する。なお、キャリア濃度が極大値となる深さは、好ましくは表面から0.5[μm]以上の深さである。
 この縦型半導体装置では、非セル領域に電圧が印加された場合に、拡散層の界面から広がる空乏層が電圧を分担し、電界の集中を緩和する。この空乏層の広がり方は、拡散層のセル領域から離れた側の端部におけるキャリア濃度に応じて変化しており、縦型半導体装置の耐圧は、拡散層のセル領域から離れた側の端部におけるキャリア濃度の最大値に依存する。上記の縦型半導体装置では、拡散層のセル領域から離れた側の端部におけるキャリア濃度の極大値が、表面よりも深い位置に存在しており、表面に外部電荷が付着した場合でもキャリア濃度の極大値が変化しにくい。上記の縦型半導体装置によれば、外部電荷の付着による耐圧低下を抑制することができる。
 本明細書が開示する他の縦型半導体装置は、セル領域と、前記セル領域の外側に配置された非セル領域を備えている。その縦型半導体装置は、前記非セル領域の少なくとも一部に拡散層を有している。その拡散層の前記セル領域から離れた側の端部の上方には、ポリシリコン層が積層されている。そのポリシリコン層の前記拡散層と同一導電型の不純物濃度は、その下方の前記拡散層における不純物濃度の最大値より低い。
 この縦型半導体装置では、非セル領域に電圧が印加された場合に、拡散層の界面から広がる空乏層が電圧を分担し、電界の集中を緩和する。この空乏層の広がり方は、拡散層のセル領域から離れた側の端部におけるキャリア濃度に応じて変化しており、縦型半導体装置の耐圧は、拡散層のセル領域から離れた側の端部におけるキャリア濃度の最大値に依存する。上記の縦型半導体装置では、拡散層のセル領域から離れた側の端部の上方にポリシリコン層が積層されており、拡散層のセル領域から離れた側の端部においてキャリア濃度が最大値となる位置が、ポリシリコン層の膜厚の分だけ、ポリシリコン層の表面から離されている。ポリシリコン層の表面に外部電荷が付着した場合でも、拡散層の端部におけるキャリア濃度の最大値が変化しにくい。上記の縦型半導体装置によれば、外部電荷の付着による耐圧低下を抑制することができる。
 また上記の縦型半導体装置では、縦型半導体装置の裏面側から非セル領域を流れて拡散層のセル領域から離れた側の端部の近傍に流れこむキャリアが、ポリシリコン層によってトラップされる。拡散層のセル領域から離れた側の端部の近傍におけるキャリアの集中を抑制し、縦型半導体装置の破壊耐量を向上することができる。
実施例1、2、3の半導体装置10、300、400の平面図。 実施例1の半導体装置10の図1のII-II線に示す位置の断面図。 実施例1の半導体装置10のリサーフ領域34におけるp型不純物面密度の分布を示している。 実施例1の半導体装置10の空乏層における電界強度分布を示している。 実施例1の半導体装置10の正電荷付着時の耐圧と負電荷付着時の耐圧の関係を示している。 実施例1の半導体装置10のリサーフ領域34におけるp型不純物面密度の他の分布を示している。 実施例1の半導体装置10のリサーフ領域34におけるp型不純物面密度の他の分布を示している。 実施例1の半導体装置10のリサーフ領域34におけるp型不純物面密度の他の分布を示している。 実施例1の半導体装置10のリサーフ領域34におけるp型不純物面密度の他の分布を示している。 実施例1の半導体装置10のリサーフ領域34におけるp型不純物面密度の他の分布を示している。 実施例1の半導体装置10のリサーフ領域34におけるp型不純物面密度の他の分布を示している。 実施例2の半導体装置300の図1のII-II線に示す位置の断面図。 実施例2の半導体装置300のリサーフ領域310の外周側端部Cにおける正孔濃度の深さ方向分布を示している。 実施例2の変形例の半導体装置300の図1のII-II線に示す位置の断面図。 実施例3の半導体装置400の図1のII-II線に示す位置の断面図。
 以下、図面を参照して実施例を説明する。以下の実施例では、半導体材料にシリコンが用いられた例を説明するが、その例に代えて、炭化シリコン、ガリウムヒ素、窒化ガリウム、ダイヤモンド等の半導体材料を用いてもよい。
(実施例1)
 図1に示すように、本実施例の半導体装置10は、半導体素子が形成されている半導体素子領域100(セル領域に相当する)と、半導体素子領域100の周囲を取り囲む周辺耐圧領域200(非セル領域に相当する)を備える縦型半導体装置である。本実施例では、半導体素子領域100内に、IGBTが形成されている。なお、他の例においては、半導体素子領域100内に、例えば、MOSFETやダイオード等の他のパワー半導体素子が形成されていてもよい。半導体素子領域100は、半導体層20の略中央部に形成されており、周辺耐圧領域200は、半導体層20の外周端22に沿って形成されている。周辺耐圧領域200は、半導体層20の外周端22と半導体素子領域100との間の耐圧を確保するための領域である。
 図2に示すように、半導体装置10は、主に半導体層20と、絶縁層40と、中央電極50と、外周電極60と、裏面電極80から構成されている。半導体層20は、シリコンにより構成されている。
 図1、2に示すように、中央電極50は、半導体素子領域100内の半導体層20の上面24に形成されている。中央電極50は、IGBTのエミッタ電極である。外周電極60は、半導体層20の上面24に形成されており、半導体層20の外周端22に沿って伸びている。外周電極60は、チャネルストップ電極である。絶縁層40は、中央電極50と外周電極60の間の半導体層20の上面24に形成されている。裏面電極80は、半導体層20の下面26に形成されている。裏面電極80は、IGBTのコレクタ電極である。
 半導体層20の内部には、低濃度n型領域30、中央電極コンタクト領域32、リサーフ領域34、外周電極コンタクト領域36、裏面電極コンタクト領域38が形成されている。裏面電極コンタクト領域38は、p型不純物濃度が高いp型半導体により構成されている。裏面電極コンタクト領域38は、半導体層20の下面26側の表層領域(下面26を含む下面26近傍の領域)の全域に形成されている。裏面電極コンタクト領域38は、裏面電極80に対してオーミック接続されている。裏面電極コンタクト領域38は、半導体素子領域100内のIGBTのコレクタ領域である。中央電極コンタクト領域32は、p型不純物濃度が高いp型半導体により構成されている。中央電極コンタクト領域32は、半導体層20の上面24側の表層領域(上面24を含む上面24近傍の領域)であって、半導体素子領域100内に形成されている。中央電極コンタクト領域32は、中央電極50に対してオーミック接続されている。中央電極コンタクト領域32は、半導体素子領域100内のIGBTのボディ領域である。なお、中央電極コンタクト領域32とリサーフ領域34の間に、両者を分離する分離領域が形成されていてもよい。低濃度n型領域30は、n型不純物濃度が低いn型半導体により構成されている。低濃度n型領域30は、主に、半導体層20の深さ方向の中間部に形成されている。半導体素子領域100内においては、低濃度n型領域30は、裏面電極コンタクト領域38と中央電極コンタクト領域32の間に形成されている。半導体素子領域100内の低濃度n型領域30は、IGBTのドリフト領域として機能する。なお、図示していないが、半導体素子領域100内の半導体層20内には、中央電極コンタクト領域32、低濃度n型領域30及び裏面電極コンタクト領域38の他にも、種々のn型またはp型の領域(例えば、エミッタ領域等)が形成されている。また、図示していないが、半導体素子領域100内には、ゲート電極が形成されている。半導体素子領域100内のIGBTは、中央電極50と、裏面電極80と、ゲート電極と、半導体素子領域100内の種々のn型またはp型の半導体領域によって形成されている。
 外周電極コンタクト領域36は、n型不純物濃度が高いn型半導体により構成されている。外周電極コンタクト領域36は、半導体層20の上面24側の表層領域であって、周辺耐圧領域200の最も外周側に形成されている。すなわち、外周電極コンタクト領域36は、半導体層20の外周端22に露出する位置に形成されている。外周電極コンタクト領域36は、外周電極60に対してオーミック接続されている。外周電極コンタクト領域36は、チャネルストップ領域である。
 リサーフ領域34(拡散層に相当する)は、p型不純物濃度が低いp型半導体により構成されている。リサーフ領域34は、半導体層20の上面24側の表層領域であって、周辺耐圧領域200内に形成されている。リサーフ領域34の一方の端部は、中央電極コンタクト領域32に接している。外周電極コンタクト領域36とリサーフ領域34の間には、上述した低濃度n型領域30が存在している。低濃度n型領域30によって、外周電極コンタクト領域36はリサーフ領域34から分離されている。
 次に、半導体装置10の周辺耐圧領域200の機能について説明する。半導体素子領域100内のIGBTがオンしている場合には、半導体装置10の各電極間に高い電位差は生じない。IGBTがオフすると、外周電極60及び裏面電極80の電位が、中央電極50の電位に対して上昇する。すると、中央電極コンタクト領域32から低濃度n型領域30内に空乏層が伸びる。周辺耐圧領域200内においては、空乏層は、半導体層20の上面24側の表層領域内を中央電極コンタクト領域32から外周側に向かって伸びる。このとき、リサーフ領域34は、空乏層が外周側に向かって伸びるのを促進する。これによって、中央電極コンタクト領域32の近傍で電界が集中することが抑制される。周辺耐圧領域200の空乏層は、外周電極コンタクト領域36に到達する。外周電極コンタクト領域36はn型不純物濃度が高いので、空乏層は外周電極コンタクト領域36の内部には伸展しない。すなわち、空乏層は、図2の点線90に示すように、外周電極コンタクト領域36と低濃度n型領域30の境界部で停止する。したがって、空乏層は、外周電極コンタクト領域36より外周側へは伸展しない。これによって、空乏層が半導体層20の外周端22まで伸展することが防止される。このように、IGBTがオフしている状態においては、中央電極コンタクト領域32と外周電極コンタクト領域36の間の領域(すなわち、低濃度n型領域30とリサーフ領域34)に空乏層が形成される。中央電極50と外周電極60の間の電圧の大部分は、この空乏化された領域が分担する。
 図3はリサーフ領域34におけるp型不純物の面密度分布を示している。リサーフ領域34におけるp型不純物は、中央側(半導体素子領域100に近い側)の端部Bから外周側(半導体素子領域100から遠い側)の端部Aに向けて、面密度が徐々に減少する面密度分布を有している。リサーフ領域34のp型不純物面密度は、中央側端部Bと外周側端部Aの中間の位置よりもやや中央側端部Bに近い位置において基準面密度となる。基準面密度はいわゆるリサーフ条件を満たす面密度であり、本実施例では基準面密度はN0=1×1012[cm-2]である。p型不純物面密度が基準面密度となる位置を基準位置Pとする。本実施例では、基準位置Pよりも中央側におけるp型不純物面密度の平均勾配は、基準位置Pよりも外周側におけるp型不純物面密度の平均勾配よりも急峻に設定されている。具体的には、基準位置Pよりも中央側におけるp型不純物面密度の平均勾配は、基準位置Pよりも外周側におけるp型不純物面密度の平均勾配の1.3倍に設定されている。以下ではp型不純物面密度の平均勾配が急峻な領域を急勾配領域といい、p型不純物面密度の平均勾配が緩やかな領域を緩勾配領域という。なお、本実施例では、リサーフ領域34におけるp型不純物の面密度は、最大でも5×1013[cm-2]以下である。
 図4はIGBTがオフしている状態で、中央電極50と外周電極60の間に電圧を印加した場合の、空乏層での電界強度分布を示している。図4において、実線はリサーフ領域34におけるp型不純物面密度が図3に示す分布を有する場合を示しており、破線はリサーフ領域34におけるp型不純物面密度が基準面密度N0で一定である分布を有する場合を示している。
 リサーフ領域34におけるp型不純物面密度が基準面密度N0で一定の場合、空乏層における電界強度分布は一様となる。従って、p型不純物濃度のばらつきがない理想的な状況の下では、半導体装置10の耐圧を最も高くすることができる。しかしながら、p型不純物濃度にばらつきが生じると、リサーフ領域34のp型不純物面密度が全体に亘ってリサーフ条件から外れてしまい、空乏層における電界強度分布が大きく変動してしまう。半導体装置10の耐圧に大きな影響を及ぼしてしまう。
 これに対して、本実施例の半導体装置10では、リサーフ領域34におけるp型不純物面密度が図3に示す分布を有しており、空乏層における電界強度分布は基準位置Pの近傍において最大値をとる分布となる。従って、p型不純物濃度のばらつきがない理想的な状況では、p型不純物面密度を基準面密度N0で一定とした場合に比べて、半導体装置10の耐圧が低い。しかしながら、本実施例の半導体装置10では、p型不純物濃度にばらつきが生じた場合でも、p型不純物面密度が基準面密度N0となる位置、すなわち基準位置Pが中央側または外周側に移動するものの、空乏層における電界強度分布はそれほど大きく変動せず、半導体装置10の耐圧にはほとんど影響しない。p型不純物濃度のばらつきに対してロバスト性の高い半導体装置10を実現することができる。
 次に、IGBTのオフ時に、可動イオン等の外部電荷が半導体装置10の耐圧に与える影響について検討する。絶縁層40の表面に外部電荷が付着すると、半導体層20におけるキャリアの分布が乱され、空乏層の形成に影響を及ぼす。例えば、外部電荷として正電荷が付着する場合、外部電荷に半導体層20の電子が引き寄せられる結果、リサーフ領域34の正孔が減少してしまう。逆に、外部電荷として負電荷が付着する場合、外部電荷に半導体層20の正孔が引き寄せられる結果、リサーフ領域34の正孔が増加してしまう。いずれの場合についても、空乏層の形成に影響を及ぼし、半導体装置10の耐圧を低減させてしまう。
 本実施例の半導体装置10では、リサーフ領域34の基準位置Pよりも中央側の範囲に急勾配領域が形成されている。この急勾配領域には、空乏層の形成に関与しない余剰の正孔が多く存在する。この急勾配領域の正孔が移動することで、正電荷の付着による正孔の減少が補償される。従って、本実施例の半導体装置10によれば、外部電荷として正電荷が付着した場合に耐圧に及ぼす影響を抑制することができる。
 図5に、リサーフ領域34のp型不純物面密度を図3に示す分布とした場合(A)と、リサーフ領域34のp型不純物面密度の勾配を一定とした場合(B)について、半導体装置10の正電荷付着時の耐圧と負電荷付着時の耐圧の関係を示している。一般に、正電荷付着時の耐圧と負電荷付着時の耐圧はトレードオフの関係となる。リサーフ領域34のp型不純物面密度の勾配を一定とした場合、その勾配を大きくすることで正電荷付着時の耐圧は向上するものの、負電荷付着時の耐圧は低下してしまう。
 リサーフ領域34のp型不純物面密度を図3に示す分布とすると、負電荷付着時の耐圧を低下させることなく、正電荷付着時の耐圧を向上することができる。リサーフ領域34のp型不純物面密度の勾配を一定とした場合のトレードオフの限界を超えて、正電荷付着時の耐圧と負電荷付着時の耐圧を向上することができる。
 上記のようなp型不純物面密度分布を有するリサーフ領域34は、種々の方法により形成することができる。例えば、p型不純物注入時のレジストの開口径を、中央側から外周側に向けて徐々に小さくしていくことによって、上記のようなp型不純物面密度分布を有するリサーフ領域34を形成することができる。あるいは、レジストの開口の間隔を中央側から外周側に向けて徐々に広くしていくことでも、上記のようなp型不純物面密度分布を有するリサーフ領域34を形成することができる。あるいは、レジストの厚みを中央側から外周側に向けて徐々に薄くしていくことで、上記のようなp型不純物面密度分布を有するリサーフ領域34を形成することができる。
 リサーフ領域34におけるp型不純物面密度の分布は、基準面密度N0を超える範囲における平均勾配が、基準面密度N0に満たない範囲における平均勾配よりも急峻であれば、どのような分布としてもよい。例えば、図6に示すように、基準面密度N0よりも高いp型不純物面密度において、急勾配領域と緩勾配領域が切り替わる分布としてもよいし、図7に示すように、基準面密度N0を下回るp型不純物面密度において、急勾配領域と緩勾配領域が切り替わる分布としてもよい。また、図8に示すように、p型不純物面密度がステップ状に減少していく分布としてもよいし、図9に示すように、p型不純物面密度が曲線状に減少していく分布としてもよい。さらに、図10に示すように、局所的にはp型不純物面密度が増減を繰り返しているものの、全体的にはp型不純物面密度が徐々に減少していく分布としてもよい。また、図11に示すように、中央側の端部Bから外周側の端部Aに向けて、急勾配領域から緩勾配領域に切り替わった後、さらに急勾配領域に切り替わる分布としてもよい。何れの場合についても、基準面密度N0を超える範囲における平均勾配が基準面密度N0に満たない範囲での平均勾配に比べて急峻な分布となっていればよい。
 なお、図1の周辺耐圧領域200においては、コーナー部210は直線部220に比べて電界集中がしやすく、半導体装置10の耐圧はコーナー部210の電界強度分布に応じて決まることが多い。従って、コーナー部210のリサーフ領域34のみについて図3に示すようなp型不純物面密度分布とし、直線部220のリサーフ領域34についてはp型不純物面密度を一定としてもよい。あるいは、コーナー部210のリサーフ領域34のみについて図3に示すようなp型不純物面密度分布とし、直線部220のリサーフ領域34についてはp型不純物面密度の勾配を一定としてもよい。
(実施例2)
 本実施例の半導体装置300は、実施例1の半導体装置10とほぼ同様の構成を備えている。以下では実施例1の半導体装置10と同様の構成については、同一の参照符号を付して詳細な説明を省略する。図12に示すように、本実施例の半導体装置300は、実施例1のリサーフ領域34の代わりに、リサーフ領域310を備えている。
 リサーフ領域310は、p型不純物濃度が低いp型半導体により構成されている。リサーフ領域310は、半導体層20の上面24側の表層領域であって、周辺耐圧領域200内に形成されている。リサーフ領域310の一方の端部は、中央電極コンタクト領域32に接している。外周電極コンタクト領域36とリサーフ領域310の間には、低濃度n型領域30が存在している。低濃度n型領域30によって、外周電極コンタクト領域36はリサーフ領域310から分離されている。
 リサーフ領域310は、外周側の端部Cにおいて、表面から深さ方向に、図13に示す正孔濃度の分布を有している。外周側の端部Cにおける正孔濃度は、表面から深さ方向に向けて増加した後、深さD0で極大値をとり、その後は深さ方向に向けて減少している。本実施例において、正孔濃度が極大値となる深さD0は、表面から0.5[μm]の深さである。正孔濃度が極大値となる深さD0は、表面からの深さが0.5[μm]以上であることが好ましい。
 本実施例の半導体装置300では、リサーフ領域310を上記のように形成することで、外部電荷が付着した場合の半導体装置300の耐圧に及ぼす影響を抑制することができる。実施例1で説明したように、絶縁層40の表面に外部電荷が付着すると、リサーフ領域310におけるキャリアの分布が乱され、空乏層の形成に影響を及ぼし、半導体装置300の耐圧を低減させてしまう。半導体装置300の耐圧は、リサーフ領域310の外周側の端部Cにおける正孔濃度の最大値に依存している。外部電荷の付着によってリサーフ領域310の外周側の端部Cにおける正孔濃度の最大値が低減してしまうと、半導体装置300の耐圧が低減してしまう。
 本実施例の半導体装置300では、リサーフ領域310の外周側の端部Cにおいて、深さD0で正孔濃度が極大値をとる分布としているので、外部電荷が付着した場合でも、正孔濃度の最大値はそれほど変化しない。このような構成とすることによって、外部電荷の付着による半導体装置300の耐圧の低下を抑制することができる。
 なお、リサーフ領域310のp型不純物濃度が最表面で最大値となるようにp型不純物を注入した場合でも、熱印加によるシリコン/酸化膜界面での偏析によって、最終的にp型不純物濃度のピーク(すなわち正孔濃度のピーク)は表面から0.4[μm]程度の深さになる。しかしながら、本実施例の半導体装置300では、このような偏析によるピークの移動よりもさらに深い位置にピークを配置することを特徴としている。
 本実施例の半導体装置300のリサーフ領域310は、例えばp型不純物としてボロンを注入する場合、外周側の端部Cについて、加速エネルギー1[MeV]~5[MeV]で、イオン注入量1×1012[cm-2]~5×1013[cm-2]とすることで形成することが出来る。このようにリサーフ領域310を形成する場合、リサーフ領域310の外周側の端部Cにおける、表面濃度比(キャリア濃度の極大値に対する、表面におけるキャリア濃度の比率)は、0.75以下となる。
 リサーフ領域310における正孔濃度は、外周側の端部Cにおいて、図13に示すような深さ方向分布を有していればよい。例えば、リサーフ領域310の中央側から外周側に亘って、正孔濃度が最大となる深さが一定であってもよい。あるいは、リサーフ領域310の中央側から外周側に向けて、正孔濃度が最大となる深さが徐々に深くなっていてもよい。あるいは、リサーフ領域310の中央側から外周側に向けて、正孔濃度が最大となる深さが不規則に増減していてもよい。あるいは、リサーフ領域310そのものが、半導体層20の表面から離れて、全体的に深い位置に形成されていてもよい。リサーフ領域310の外周側の端部Cにおいて、正孔濃度の深さ方向分布が、表面よりも深い位置で極大値をとるように形成されていればよい。
 なお、図14に示すように、外周側の端部Cにおいてp型不純物濃度が最表面で最大値となるようにリサーフ領域310を形成した後、リサーフ領域310の外周側の端部Cの上方に低濃度n型領域312をさらに形成してもよい。この場合も、リサーフ領域310の外周側の端部Cにおいて、正孔濃度の深さ方向分布を、表面よりも深い位置で極大値を有するようにすることができる。なお、このようにしてリサーフ領域310と低濃度n型領域312を形成する場合には、低濃度n型領域312におけるn型不純物濃度がリサーフ領域310におけるp型不純物濃度よりも高いと、半導体装置300の耐圧の低下を招くおそれがある。低濃度n型領域312におけるn型不純物濃度は、リサーフ領域310におけるp型不純物濃度よりも低くしておく必要がある。
(実施例3)
 本実施例の半導体装置400は、実施例1の半導体装置10とほぼ同様の構成を備えている。以下では実施例1の半導体装置10と同様の構成については、同一の参照符号を付して詳細な説明を省略する。図15に示すように、本実施例の半導体装置400は、実施例1のリサーフ領域34の代わりに、リサーフ領域410を備えている。
 リサーフ領域410は、p型不純物濃度が低いp型半導体により構成されている。リサーフ領域410は、半導体層20の上面24側の表層領域であって、周辺耐圧領域200内に形成されている。リサーフ領域410の一方の端部は、中央電極コンタクト領域32に接している。外周電極コンタクト領域36とリサーフ領域410の間には、低濃度n型領域30が存在している。低濃度n型領域30によって、外周電極コンタクト領域36はリサーフ領域310から分離されている。
 リサーフ領域410の外周側の端部Dの上方にはポリシリコン層412が積層されている。ポリシリコン層412には、リサーフ領域410のp型不純物と同一元素のp型不純物が添加されている。ポリシリコン層412におけるp型不純物の濃度は、その下方のリサーフ領域410におけるp型不純物濃度よりも低く設定されている。
 本実施例の半導体装置400では、ポリシリコン層412を上記のように配置することで、実施例2の半導体装置300と同様に、絶縁層40の表面に外部負荷が付着した場合の半導体装置400の耐圧に及ぼす影響を抑制することができる。リサーフ領域410の外周側の端部Dの上方にポリシリコン層412が積層されているので、リサーフ領域410において正孔濃度が極大値をとる深さを、ポリシリコン層412の厚さの分だけ深い位置とすることができる。これにより、絶縁層40の表面に外部負荷が付着した場合でも、リサーフ領域410の外周側の端部Dにおける正孔濃度の最大値はそれほど変化しない。このような構成とすることによって、外部電荷の付着による半導体装置400の耐圧の低下を抑制することができる。
 本実施例の半導体装置400は、実施例2の半導体装置300とは異なり、リサーフ領域410およびポリシリコン層412を形成する際に、高エネルギーで不純物を注入する必要がない。このため、不純物注入時にシリコンが受けるダメージを軽減することができる。
 また、本実施例の半導体装置400では、裏面電極コンタクト領域38から低濃度n型領域30を通過してリサーフ領域410の外周側の端部Dの近傍に流れこむキャリアが、ポリシリコン層412によってトラップされる。リサーフ領域410の外周側の端部Dの近傍におけるキャリアの集中を抑制し、半導体装置400の破壊耐量を向上することができる。
 ポリシリコン層412は、p型不純物濃度がその下方のリサーフ領域410におけるp型不純物濃度よりも低くなっていれば、どのように構成されていてもよい。例えば、ポリシリコン層412は、リサーフ領域410が含むp型不純物と同一元素のp型不純物のみが添加されて、全体としてp型となっていてもよい。あるいは、ポリシリコン層412は、リサーフ領域410が含むp型不純物と同一元素のp型不純物とともに、より多くのn型不純物が添加されて、全体としてn型となっていてもよい。この場合には、ポリシリコン層412の厚さの分に加えて、ポリシリコン層412のn型不純物がカウンタードープとなって、リサーフ領域410において正孔濃度が極大値となる深さを、より深くすることができる。
 ポリシリコン層412は、少なくともリサーフ領域410の外周側の端部Dの上方に積層されていればよく、例えば図15に示すようにリサーフ領域410の外周側の端部Dの上方のみに積層されていてもよいし、あるいはリサーフ領域410の全体を覆うようにリサーフ領域410の上方に積層されていてもよいし、あるいはリサーフ領域410の外周側の端部Dの上方に加えて、リサーフ領域410の他の箇所の上方にも部分的に積層されていてもよい。このような場合、ポリシリコン層412におけるp型不純物濃度は、リサーフ領域410の外周側の端部Dの上方で、その下方のリサーフ領域410のp型不純物濃度より低くしてあればよい。それ以外の箇所においては、ポリシリコン層412におけるp型不純物濃度は、その下方のリサーフ領域410のp型不純物濃度より高くしてあってもよい。
 ポリシリコン層412は、図15に示すように半導体層20の上面24上に積層されていてもよいし、半導体層20の上面24にトレンチを形成しておいて、そのトレンチにポリシリコンを充填することで形成してもよい。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
 例えば、実施例1と実施例2の特徴を組み合わせた構成とすることもできる。すなわち、図2に示す実施例1の半導体装置10のリサーフ領域34を、その外周側の端部Aにおいて、表面から深さ方向に、図13に示す正孔濃度の分布を有するように形成することもできる。あるいは、実施例1と実施例3の特徴を組み合わせた構成とすることもできる。すなわち、図2に示す実施例1の半導体装置10のリサーフ領域34の外周側の端部Aの上方に、図15に示すポリシリコン層412を積層する構成とすることもできる。あるいは、実施例1、2および3の特徴を全て組み合わせた構成とすることもできる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
10 半導体装置;20 半導体層;22 外周端;24 上面;26 下面;30 低濃度n型領域;32 中央電極コンタクト領域;34 リサーフ領域;36 外周電極コンタクト領域;38 裏面電極コンタクト領域;40 絶縁層;50 中央電極;60 外周電極;80 裏面電極;90 点線;100 半導体素子領域;200 周辺耐圧領域;210 コーナー部;220 直線部;300 半導体装置;310 リサーフ領域;312 低濃度n型領域;400 半導体装置;410 リサーフ領域;412 ポリシリコン層

Claims (5)

  1.  縦型半導体装置であって、
     セル領域と、前記セル領域の外側に配置された非セル領域を備えており、
     前記非セル領域の少なくとも一部に拡散層を有しており、
     前記拡散層では、前記縦型半導体装置を平面視したときに、前記セル領域に近い側の端部における不純物面密度が、リサーフ条件を満たす不純物面密度より高く、前記セル領域から遠い側の端部における不純物面密度が、リサーフ条件を満たす不純物面密度より低く、
     前記拡散層では、前記縦型半導体装置を平面視したときに、リサーフ条件を満たす不純物面密度より低い不純物面密度の領域における不純物面密度の平均勾配に比べて、リサーフ条件を満たす不純物面密度より高い不純物面密度の領域における不純物面密度の平均勾配が大きいことを特徴とする縦型半導体装置。
  2.  前記拡散層では、前記セル領域から離れた側の端部におけるキャリア濃度の深さ方向分布が、表面よりも深い位置で極大値を有することを特徴とする請求項1の縦型半導体装置。
  3.  前記拡散層の前記セル領域から離れた側の端部の上方にポリシリコン層が積層されており、
     前記ポリシリコン層の前記拡散層と同一導電型の不純物濃度が、その下方の前記拡散層における不純物濃度の最大値より低いことを特徴とする請求項1の縦型半導体装置。
  4.  縦型半導体装置であって、
     セル領域と、前記セル領域の外側に配置された非セル領域を備えており、
     前記非セル領域の少なくとも一部に拡散層を有しており、
     前記拡散層では、前記セル領域から離れた側の端部におけるキャリア濃度の深さ方向分布が、表面よりも深い位置で極大値を有することを特徴とする縦型半導体装置。
  5.  縦型半導体装置であって、
     セル領域と、前記セル領域の外側に配置された非セル領域を備えており、
     前記非セル領域の少なくとも一部に拡散層を有しており、
     前記拡散層の前記セル領域から離れた側の端部の上方にポリシリコン層が積層されており、
     前記ポリシリコン層の前記拡散層と同一導電型の不純物濃度が、その下方の前記拡散層における不純物濃度の最大値より低いことを特徴とする縦型半導体装置。
PCT/JP2011/057670 2011-03-28 2011-03-28 縦型半導体装置 WO2012131878A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/057670 WO2012131878A1 (ja) 2011-03-28 2011-03-28 縦型半導体装置
CN201180049802.6A CN103155152B (zh) 2011-03-28 2011-03-28 纵型半导体装置
US13/640,447 US9035415B2 (en) 2011-03-28 2011-03-28 Vertical semiconductor device comprising a resurf structure
EP11862776.9A EP2693483B1 (en) 2011-03-28 2011-03-28 Vertical-type semiconductor device
JP2012524024A JP5459403B2 (ja) 2011-03-28 2011-03-28 縦型半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057670 WO2012131878A1 (ja) 2011-03-28 2011-03-28 縦型半導体装置

Publications (1)

Publication Number Publication Date
WO2012131878A1 true WO2012131878A1 (ja) 2012-10-04

Family

ID=46929714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057670 WO2012131878A1 (ja) 2011-03-28 2011-03-28 縦型半導体装置

Country Status (5)

Country Link
US (1) US9035415B2 (ja)
EP (1) EP2693483B1 (ja)
JP (1) JP5459403B2 (ja)
CN (1) CN103155152B (ja)
WO (1) WO2012131878A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054319A1 (ja) * 2012-10-02 2014-04-10 三菱電機株式会社 半導体装置およびその製造方法
US9100000B2 (en) 2011-09-21 2015-08-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2017028263A (ja) * 2015-06-30 2017-02-02 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト 半導体装置および半導体装置形成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132568A1 (ja) 2012-03-05 2013-09-12 三菱電機株式会社 半導体装置
CN105940495B (zh) * 2014-01-29 2019-11-08 三菱电机株式会社 电力用半导体装置
JP7030515B2 (ja) * 2014-12-23 2022-03-07 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 逆導通半導体装置
US20220157951A1 (en) * 2020-11-17 2022-05-19 Hamza Yilmaz High voltage edge termination structure for power semicondcutor devices and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193018A (ja) 1993-12-27 1995-07-28 Takaoka Electric Mfg Co Ltd 高耐圧半導体素子の製造方法
JPH07273325A (ja) 1994-03-31 1995-10-20 Fuji Electric Co Ltd プレーナ型半導体素子およびその製造方法
JP2001015741A (ja) 1999-06-30 2001-01-19 Toshiba Corp 電界効果トランジスタ
JP2001077347A (ja) * 1999-07-21 2001-03-23 Intersil Corp 半導体デバイスのエッジパシベーション用の二つの傾斜を有する接合終端拡張
JP2002507325A (ja) * 1997-06-26 2002-03-05 エービービー リサーチ リミテッド pn接合を有するSiC半導体装置
JP2004214268A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 炭化珪素半導体装置
WO2007029375A1 (ja) * 2005-09-08 2007-03-15 Mitsubishi Denki Kabushiki Kaisha 半導体装置および半導体装置の製造方法
US20070222023A1 (en) 2006-03-14 2007-09-27 Infineon Technologies Austria Ag Integrated circuit having a semiconductor arrangement and method for producing it

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2835116B2 (ja) * 1989-09-29 1998-12-14 株式会社東芝 電力用icおよびその製造方法
US6200874B1 (en) * 1997-08-22 2001-03-13 Micron Technology, Inc. Methods for use in forming a capacitor
JP4230681B2 (ja) * 2001-07-06 2009-02-25 株式会社東芝 高耐圧半導体装置
US7026650B2 (en) * 2003-01-15 2006-04-11 Cree, Inc. Multiple floating guard ring edge termination for silicon carbide devices
JP4443884B2 (ja) 2003-09-18 2010-03-31 株式会社豊田中央研究所 半導体装置
JP2005311006A (ja) 2004-04-21 2005-11-04 Toyota Motor Corp 半導体装置およびその製造方法
JP4186919B2 (ja) * 2004-12-07 2008-11-26 三菱電機株式会社 半導体装置
JP2007042836A (ja) 2005-08-03 2007-02-15 Toyota Central Res & Dev Lab Inc 半導体装置
JP2007266123A (ja) 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc 半導体装置
JP2008103529A (ja) 2006-10-19 2008-05-01 Toyota Central R&D Labs Inc 半導体装置
JP2008147362A (ja) 2006-12-08 2008-06-26 Toyota Central R&D Labs Inc 半導体装置
JP2008227240A (ja) 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置とその製造方法
JP2008227238A (ja) 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置
JP2008227237A (ja) 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置
JP2008227239A (ja) 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置
JP2009164486A (ja) 2008-01-09 2009-07-23 Toyota Motor Corp 縦型ダイオードとその製造方法
JP5716619B2 (ja) 2011-09-21 2015-05-13 トヨタ自動車株式会社 半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193018A (ja) 1993-12-27 1995-07-28 Takaoka Electric Mfg Co Ltd 高耐圧半導体素子の製造方法
JPH07273325A (ja) 1994-03-31 1995-10-20 Fuji Electric Co Ltd プレーナ型半導体素子およびその製造方法
JP2002507325A (ja) * 1997-06-26 2002-03-05 エービービー リサーチ リミテッド pn接合を有するSiC半導体装置
JP2001015741A (ja) 1999-06-30 2001-01-19 Toshiba Corp 電界効果トランジスタ
JP2001077347A (ja) * 1999-07-21 2001-03-23 Intersil Corp 半導体デバイスのエッジパシベーション用の二つの傾斜を有する接合終端拡張
JP2004214268A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 炭化珪素半導体装置
WO2007029375A1 (ja) * 2005-09-08 2007-03-15 Mitsubishi Denki Kabushiki Kaisha 半導体装置および半導体装置の製造方法
US20070222023A1 (en) 2006-03-14 2007-09-27 Infineon Technologies Austria Ag Integrated circuit having a semiconductor arrangement and method for producing it

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B.W.LIOU ET AL.: "High Power Silicon Schottky Barrier Diodes with Different Edge Termination Structures", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 44, no. 40, 2005, pages L1244 - L1247, XP001245494 *
See also references of EP2693483A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9100000B2 (en) 2011-09-21 2015-08-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device
WO2014054319A1 (ja) * 2012-10-02 2014-04-10 三菱電機株式会社 半導体装置およびその製造方法
JP2017028263A (ja) * 2015-06-30 2017-02-02 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト 半導体装置および半導体装置形成方法
US9768291B2 (en) 2015-06-30 2017-09-19 Infineon Technologies Austria Ag Semiconductor device having a non-depletable doping region
US10096704B2 (en) 2015-06-30 2018-10-09 Infineon Technologies Austria Ag Semiconductor device having a non-depletable doping region

Also Published As

Publication number Publication date
CN103155152B (zh) 2015-07-01
EP2693483A4 (en) 2014-08-06
JP5459403B2 (ja) 2014-04-02
JPWO2012131878A1 (ja) 2014-07-24
CN103155152A (zh) 2013-06-12
EP2693483B1 (en) 2016-11-16
US20130037805A1 (en) 2013-02-14
EP2693483A1 (en) 2014-02-05
US9035415B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
JP5459403B2 (ja) 縦型半導体装置
JP4564509B2 (ja) 電力用半導体素子
US9059284B2 (en) Semiconductor device
JP4564510B2 (ja) 電力用半導体素子
US9472660B2 (en) Semiconductor device
JP5132123B2 (ja) 電力用半導体素子
JP4621708B2 (ja) 半導体装置及びその製造方法
JP4768259B2 (ja) 電力用半導体装置
CN105097934B (zh) 半导体器件及其制造方法
JP5406171B2 (ja) SiC半導体装置
US20130334598A1 (en) Semiconductor device and method for manufacturing same
WO2011039888A1 (ja) 半導体装置
JP5136578B2 (ja) 半導体装置
JP2006005275A (ja) 電力用半導体素子
JP2015207588A (ja) 半導体装置
JP2017168666A (ja) 半導体装置
JP6416143B2 (ja) 半導体装置
US9000478B2 (en) Vertical IGBT adjacent a RESURF region
US9954055B2 (en) Vertical power MOSFET device
CN108475701B (zh) 面积高效的浮置场环终端
JP5711646B2 (ja) ダイオード
US20150249149A1 (en) Semiconductor device and method of manufacturing semicounductor device
JP2015037188A (ja) 電力半導体素子及びその製造方法
US9613951B2 (en) Semiconductor device with diode
JP2008227240A (ja) 半導体装置とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049802.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012524024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13640447

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862776

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011862776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011862776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE