WO2012128280A1 - 膨こう性測定方法 - Google Patents

膨こう性測定方法 Download PDF

Info

Publication number
WO2012128280A1
WO2012128280A1 PCT/JP2012/057168 JP2012057168W WO2012128280A1 WO 2012128280 A1 WO2012128280 A1 WO 2012128280A1 JP 2012057168 W JP2012057168 W JP 2012057168W WO 2012128280 A1 WO2012128280 A1 WO 2012128280A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration curve
sample
measurement
measured
puffiness
Prior art date
Application number
PCT/JP2012/057168
Other languages
English (en)
French (fr)
Inventor
則男 勝山
弘 湯浅
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to RU2013131286/28A priority Critical patent/RU2541148C1/ru
Priority to BR112013016290A priority patent/BR112013016290A2/pt
Priority to EP12761079.8A priority patent/EP2637017A4/en
Priority to CN201280004831.5A priority patent/CN103299175B/zh
Priority to JP2013505984A priority patent/JP5617032B2/ja
Publication of WO2012128280A1 publication Critical patent/WO2012128280A1/ja
Priority to US13/908,698 priority patent/US9759650B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a method for measuring the swellability of cigarettes, and more particularly to a method for measuring the swellability of cigarettes using near infrared spectroscopy.
  • the swelling property is a numerical value obtained by calculating a volume of 1 g when a tobacco leaf cut into a chopped state is compressed at a constant pressure for a certain time. In other words, if the cigarette swellability is high, many cigarettes can be made per weight. Moreover, the number of cigarettes that can be produced from 1 kg of raw material can be estimated by measuring the swelling property. Therefore, it is useful in manufacturing planning, and in addition, raw materials with low manufacturing costs can be selected and used for variety development and leaf group design. Therefore, the swellability of cigarettes is an important factor from the viewpoint of raw material costs and is an indispensable element in product design.
  • near-infrared spectroscopy which irradiates a sample with near-infrared rays and measures its transmission absorption spectrum, diffuse reflection spectrum, etc., is non-destructive and can be measured quickly, so it is widely used in various fields. ing.
  • JP 2001-17084 A Japanese Patent Publication “JP 2000-74828 A (published March 14, 2000)”
  • chopped leaf tobacco is conditioned for 2-7 days in a conditioned room strictly controlled at a constant temperature and humidity until it reaches equilibrium, and then measured by a measuring instrument. Yes. Furthermore, in order to obtain an accurate measurement value, it is common to repeat the measurement 2 to 5 times and to express the average. In other words, the conventional measurement of swellability requires a great deal of labor and time.
  • an object of the present invention is to provide a method capable of measuring the swellability of tobacco without performing complicated work.
  • the method for measuring puffiness includes a step of irradiating a sample of a tobacco material with near infrared rays and measuring a transmission absorption spectrum or a diffuse reflection spectrum, and the measured transmission absorption spectrum. Or a step of calculating an estimated value of bulging from a calibration curve prepared in advance using the diffuse reflection spectrum.
  • the present invention uses a step of irradiating a sample of a raw material that emphasizes swelling with near infrared rays and measuring a transmission absorption spectrum or diffuse reflection spectrum, and using the measured transmission absorption spectrum or diffuse reflection spectrum. And a method for measuring the swellability of the raw material, including a step of calculating a swellability estimated value from a calibration curve prepared in advance.
  • the method for measuring swellability it is possible to quickly measure the swellability of a raw material that emphasizes swellability, such as a tobacco raw material, without performing a complicated operation.
  • the method for measuring swellability includes a step of irradiating a sample of a raw material that emphasizes swellability with near infrared rays and measuring a transmission absorption spectrum or a diffuse reflection spectrum, and the measured transmission absorption spectrum or the above And a step of calculating a puffiness estimated value from a calibration curve prepared in advance using a diffuse reflection spectrum.
  • near infrared spectrum the transmission absorption spectrum and diffuse reflection spectrum by near infrared irradiation are referred to as “near infrared spectrum”.
  • the target raw material that can be used as a sample to which the measurement method of the present invention is applied is a raw material that places importance on swelling, and examples thereof include cotton, hemp, wool, herbal medicine, and tobacco.
  • the form of the raw material that can be used as a sample to which the measurement method of the present invention is applied is not particularly limited, and examples thereof include a cut form and a powder form.
  • the raw material is a tobacco raw material, it can be engraved form, powder form, lamina form (deboned leaf portion), sheet piece form, etc. More preferably, it is in the form.
  • the method for measuring puffiness according to the present invention includes a step of irradiating a sample of tobacco raw material with near infrared rays to measure a transmission absorption spectrum or diffuse reflection spectrum, and a measured transmission absorption spectrum or diffuse reflection. And a step of calculating a puffiness estimated value from a calibration curve prepared in advance using a spectrum.
  • the swellability of tobacco raw materials is composed of the cut volume and the gap between the cuts.
  • the time volume is a factor determined by the amount of time, and can be estimated from the apparent density.
  • the gap between the gaps is a factor that is determined by the nature of the cuts, and is a factor that is affected by the elastic modulus, the cut shape, and the cut orientation (arrangement). Therefore, the swelling property cannot be estimated only from the apparent density.
  • Swellability is a physical characteristic amount expressed in units of “cc / g”, and is a numerical value obtained by calculating a volume of 1 g when a tobacco leaf cut into a chopped state is compressed at a certain pressure for a certain time.
  • the swellability is constant when the raw material is cut into a width of about 0.8 mm and a length of 1 mm to 10 mm in order to fill the cigarette roll with the raw material leaves.
  • constant weight (g ) Is a volume value of 1 g when a constant pressure is compressed over a certain period of time.
  • the amount of sample required for measurement is much smaller than that of the conventional measurement method described later.
  • an amount of about 1 to 2 g per sample is sufficient, and even with a chop, a sample of less than 10 g can be sufficiently measured.
  • the tobacco material sample may be in the same form as the tobacco material sample used when the calibration curve was created. From the viewpoint of improving the uniformity of the sample, it is preferably a sample (powder) in the form of a powder obtained by pulverizing tobacco raw materials with a pulverizer. The measurement accuracy can be further improved by increasing the uniformity of the sample.
  • measurement is usually performed using powder. Therefore, when the measurement sample is powder, the sample for content component analysis can be used as it is for the measurement of swelling. Alternatively, the sample used for the measurement of swelling can be used as it is in other content component analysis.
  • the near-infrared ray irradiated to the tobacco raw material sample when measuring the sample with unknown swelling is in the wavelength region of 800 nm to 2500 nm, and includes at least a specific wavelength used when calculating the swelling from the calibration curve. Just do it.
  • a near-infrared spectrometer (NIR) generally used for near-infrared spectroscopy can be used.
  • ⁇ ⁇ which wavelength is used for actual swelling measurement from the measured near-infrared spectrum depends on the tobacco raw material and raw material type or calibration curve. Which wavelength is used for the swelling measurement can be determined by a calibration curve creation method described later. For example, when the swelling property is measured using the estimation formula A5 in Example 1 to be described later, at least wavelengths near 1342.5 nm, 1736.5 nm, 1830.5 nm, 2345.0 nm, and 2432.5 nm are used. It suffices if near infrared rays are irradiated. When the calibration curve is obtained by PLS (Partial Least Squares) regression analysis, all wavelengths used for the PLS regression analysis are used for the measurement of swelling by near infrared spectroscopy.
  • PLS Partial Least Squares
  • Measurement methods for other items using near infrared spectroscopy for example, nicotine measurement using near infrared spectroscopy, leaf chemical measurement using near infrared spectroscopy, etc. are known.
  • the measurement of the other items can be performed simultaneously with the measurement of the swelling.
  • the calibration curve used for calculating the swelling in the measuring method according to the present invention is created by multivariate analysis using near infrared spectra of samples of a plurality of tobacco raw materials whose swelling is known. Preferably there is. Therefore, when the calibration curve does not exist, in the measurement method according to the present invention, after measuring the near-infrared spectrum of a plurality of samples of tobacco raw materials whose swelling properties are known, the calibration curve is obtained by multivariate analysis. It is preferable to further include a step of creating.
  • MLR multivariate analysis
  • PLS Partial Least (Squares) regression analysis
  • principal component regression analysis principal component regression analysis
  • Fourier transform analysis can be used, among which multiple regression analysis and PLS regression Analysis is preferred.
  • the number of samples of a plurality of tobacco raw materials with known swellability used for preparing a calibration curve is preferably 30 samples or more, and more preferably 70 samples or more. Since the accuracy of the calibration curve increases as the number of samples increases, the upper limit is not limited, and may be, for example, 2000 samples or less, but may be more.
  • tobacco raw material whose swelling property is known refers to a tobacco raw material whose swelling property is measured by a conventional measurement method.
  • Conventional measurement methods include cutting tobacco and cutting the tobacco into 2-7 until it reaches equilibrium in a conditioned room strictly adjusted to 22 ⁇ 1.0 ° C, 60 ⁇ 3.0% RH. It is harmonized day by day and measured with a bulge measuring device in the same room.
  • One measurement requires a cigarette of 10 to 15 g with a small swellability measuring machine and 60 to 100 g with a large swellability measuring machine.
  • the measurement with the bulge measuring device requires about 20 minutes per sample.
  • the wavelength region of the near-infrared spectrum for creating the calibration curve may be appropriately selected, and is, for example, 800 nm to 2500 nm. However, it is not limited to this wavelength region, and may be a narrower wavelength region.
  • the near-infrared spectrum can be measured by scanning every arbitrary wavelength interval within the above wavelength range, for example, every 0.5 nm.
  • near-infrared light that has been spectrally separated into monochromatic light with respect to a tobacco sample having a known swellability is distributed within a certain wavelength region (for example, 800 nm to 2500 nm) at regular intervals (for example, 0.5 nm intervals). ). Since near infrared transmission and / or diffuse reflection occurs in the sample, the intensity of monochromatic light not absorbed by the sample is measured by a detector. The spectrum of the absorption intensity at each wavelength in the sample is displayed from the difference from the reference intensity measured in advance, and the displayed spectrum information is acquired as data.
  • the above-described processing is performed on a plurality of samples, preferably 30 samples or more, thereby acquiring a plurality of pieces of spectral information data.
  • each data After measuring a transmission absorption spectrum or a diffuse reflection spectrum, these are converted into a secondary differential spectrum. Principal component analysis is performed using the obtained secondary differential spectrum and the bulge value measured using the conventional measurement method, and the principal component (main wavelength) that contributes to the objective variable (bulge value) is selected. To do. Next, a calibration curve is created by performing multivariate analysis such as multiple regression analysis and PLS regression analysis.
  • this calibration curve can be used from the next measurement, and the step of creating a calibration curve is not necessary.
  • a transmission absorption spectrum or a diffuse reflection spectrum is measured using a plurality of types of tobacco materials such as yellow, Burley, Orient, and native species, and a single calibration curve is created using them.
  • the swelling property can be measured using a common calibration curve for samples of different types of tobacco raw materials.
  • the time and equipment required for harmony are not required, so there is no need to perform complicated preparation work and complicated measurement work that requires skill.
  • the swelling property can be measured quickly by a simple method.
  • the measurement can be completed in a short time (about 1/20) compared to the conventional measurement method, and a small amount of sample is required for the measurement.
  • the measurement result obtained has a high correlation with the result obtained by the conventional measurement method.
  • powder when used as a measurement sample, it can be measured with high accuracy with a sample of 1 to 2 g per point.
  • Example 1 Measurement of swelling property of yellow species
  • Tobacco engravings of domestic and foreign cigarettes whose swellability was measured using a conventional swellability measurement method were pulverized with a pulverizer.
  • the leaf tobacco powder that passed through the screen of a grinder having a stitch of about 1 mm was used as a calibration curve preparation sample.
  • the transmission absorption spectrum was measured at 0.5 nm intervals in the near infrared wavelength region of 800 to 2500 nm.
  • a calibration curve preparation sample is packed in a quartz vial (29 mm diameter), and after being compressed with a dedicated tool, a near-infrared spectrometer (model: XM-1100, manufactured by FOSS NIRSystems) is used.
  • the near-infrared ray was irradiated from the bottom of the vial, the near-infrared ray reflected for each wavelength was detected, and the transmission absorption spectrum was measured from the difference from the reference intensity.
  • the coefficient of determination (R 2 ) was 0.720 to 0.882, and the standard error was 0.144 to 0.219.
  • FIG. 1 shows the relationship between the swelling value obtained by the conventional measurement method and the estimated swelling value obtained by the near-infrared spectroscopy using the estimation formula (A5) for each calibration curve preparation sample. This is shown ("CAL" in FIG. 1).
  • Example 2 Measurement of bulgeability of Burley species
  • a calibration curve was prepared by multiple regression analysis in the same manner as in Example 1 except that the calibration curve preparation sample was 177 samples of tobacco burley species at home and abroad.
  • the following estimation formulas (B1) to (B5) could be obtained.
  • Y obtained by the following estimation formula is an estimated value of puffiness.
  • K (1) to K (5) indicate the absorbances at wavelengths of 1152.5 nm, 2263.5 nm, 2360.0 nm, 1792.5 nm, and 1892.5 nm, which were differentiated after the spectrum measurement, respectively.
  • the coefficient of determination (R 2 ) was 0.55589 to 0.7556, and the standard error was 0.1636 to 0.2173.
  • FIG. 2 shows the relationship between the swelling value obtained by the conventional measuring method and the estimated swelling value obtained by the near infrared spectroscopy using the estimation formula (B5) for each calibration curve preparation sample. This is shown ("CAL" in FIG. 2).
  • Example 3 Measurement of puffiness of Orient species
  • a calibration curve was prepared by multiple regression analysis in the same manner as in Example 1 except that 71 samples of domestic and foreign tobacco orientation species were used as the calibration curve preparation sample.
  • the following estimation formulas (C1) to (C5) could be obtained.
  • Y obtained by the following estimation formula is an estimated value of puffiness.
  • K (1) to K (5) indicate absorbances at wavelengths of 2264.0 nm, 2357.0 nm, 1515.5 nm, 1701.0 nm, and 1207.0 nm, respectively, which were differentiated after the spectrum measurement.
  • the coefficient of determination (R 2 ) was 0.5534 to 0.7828, and the standard error was 0.1749 to 0.2435.
  • FIG. 3 shows the relationship between the swelling value obtained by the conventional measurement method and the estimated swelling value obtained by the near-infrared spectroscopy using the estimation formula (C5) for each calibration curve preparation sample. This is shown ("CAL" in FIG. 3).
  • Example 4 Measurement of puffiness of yellow, Burley and Orient species
  • a calibration curve was prepared by multiple regression analysis in the same manner as in Example 1 except that the calibration curve was prepared using a total of 424 samples of 176 cigarette yellow species, 177 samples of Burley species and 71 samples of Orient species.
  • the following estimation formulas (D1) to (D5) could be obtained.
  • Y obtained by the following estimation formula is an estimated value of puffiness.
  • K (1) to K (5) indicate absorbances at wavelengths of 1341.0 nm, 2439.0 nm, 2355.0 nm, 2077.5 nm, and 1977.0 nm, respectively, which were differentiated after the spectrum measurement.
  • FIG. 4 shows the relationship between the swelling value obtained by the conventional measurement method and the estimated swelling value obtained by the near-infrared spectroscopy using the estimation formula (D5) for each calibration curve preparation sample. This is shown ("CAL" in FIG. 4).
  • the puffiness value obtained by the conventional measurement method and the puffiness value obtained by the near infrared spectroscopy are used.
  • Example 5 Measurement of puffiness of yellow, Burley, Orient and native species using PLS regression analysis
  • the calibration curve preparation sample was a total of 1421 samples of domestic and foreign tobacco yellow species 640 samples, Burley species 568 samples, Orient species 142 samples, and native species 71 samples, respectively, and the transmission absorption spectrum was obtained in the same manner as in Example 1. Was measured.
  • the correlation between the measured transmission absorption spectrum and the swelling measured by the conventional method was analyzed using PLS regression analysis.
  • general-purpose VISION software manufactured by FOSS NIRSystems
  • each transmission absorption spectrum is spectrally converted by the second derivative method, and then PLS is performed.
  • a calibration curve was created by regression analysis. As a result, a calibration curve having a practically sufficient correlation with a determination coefficient (R 2 ) of 0.8977 was obtained.
  • FIG. 5 shows the relationship between the swelling value obtained by the conventional measurement method and the estimated swelling value obtained by the near infrared spectroscopy using the estimation formula for each calibration curve preparation sample ( “CAL” in FIG. 5).
  • Absorption spectrum is measured every 0.5 nm within a wavelength range of 800 nm to 2500 nm, and using the estimation formula obtained above, 213 samples of yellow species, 189 samples of Burley species, 47 samples of Orient species and 24 samples of conventional species The estimated swelling value was calculated for a total of 473 samples.
  • Example 6 Pulverization measurement using yellow, Burley, Orient, and native species cut samples using PLS regression analysis
  • the calibration curve preparation sample was a total of 631 samples of domestic and foreign cigarette yellow species 284 samples, Burley species 221 samples, Orient species 63 sumps and conventional species 63 samples. Was measured. However, for the measurement, the tobacco itself was used instead of the powdered sample.
  • the correlation between the measured transmission absorption spectrum and the swelling measured by the conventional method was analyzed by PLS regression analysis using the same method as in Example 5. As a result, a calibration curve having a practically sufficient correlation with a coefficient of determination (R 2 ) of 0.8811 was obtained.
  • FIG. 6 shows the relationship between the swelling value obtained by the conventional measurement method and the estimated swelling value obtained by the near-infrared spectroscopy using the estimation formula for each calibration curve preparation sample ( “CAL” in FIG. 6).
  • CAL the estimation formula for each calibration curve preparation sample
  • Absorption spectra are measured every 0.5 nm within a wavelength range of 800 to 2500 nm, and using the estimation formula obtained above, 93 yellow species, 72 Burley species, 21 Orient species, and 21 native species The estimated swelling value was calculated for a total of 207 samples.
  • a calibration curve with a high determination coefficient can be obtained even if the calibration curve preparation sample is in the form of an engraving, and the swelling property can be estimated by near infrared spectroscopy as in the case of the powdery sample. Further, it was shown that even in the case of the engraved form, the puffability of different types of tobacco raw materials can be accurately measured using a common calibration curve.
  • the present invention can be used for the design and manufacture of cigarettes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)

Abstract

 煩雑な作業を行うことなくたばこ等の原料の膨こう性を測定する方法を提供するため、本発明は、原料の試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線から膨こう性推定値を算出する工程とを含むことを特徴とする。

Description

膨こう性測定方法
 本発明は、たばこ刻の膨こう性を測定する方法に関し、詳細には近赤外分光法を利用してたばこ刻の膨こう性を測定する方法に関する。
 シガレット(紙巻きたばこ)の製品設計にあたっては、葉たばこの種々の化学特性および物理特性を考慮する必要がある。葉たばこの物理特性の一つとしてたばこ刻の膨こう性がある。膨こう性は、刻状態にした葉たばこを、一定圧力で一定時間、圧縮したときの刻1gの体積を求めた数値である。つまり、たばこ刻の膨こう性が高ければ、重量当たりたくさんのシガレットを作ることができる。また、膨こう性を測定することにより、1kgの原料刻から製造できるシガレット本数を推定できる。そのため、製造計画立案において有用であり、さらに、品種開発および葉組設計を行う上で製造コストの低い原材料を選抜でき、使用することができる。したがって、たばこ刻の膨こう性は、原料コストの観点から重要なファクターであるとともに、製品設計上不可欠な要素である。
 ところで、試料に近赤外線を照射し、その透過吸収スペクトルや拡散反射スペクトル等を測定する近赤外分光法は、非破壊かつ迅速にその測定が可能であることから、様々な分野において広く利用されている。
日本国公開特許公報「特開2001-17084号公報(2001年1月23日公開)」 日本国公開特許公報「特開2000-74828号公報(2000年3月14日公開)」
五月女英平ら、「イチゴ果実硬度の非破壊推定モデルの開発」、農業環境工学関連学会合同大会講演要旨集(CD-ROM)、2006年、1428頁 VERRIER J.L. et al, Contribution of near infrared spectroscopy(NIRS) to detect nicotine conversion to nornicotine in Burley tobacco, CORESTA Meeting, 2009. HANA M. et al, J. of Near Infrared Spectrosc.,1995, 3, 133-142. MA X. et al, Determination of chemical components in tobacco leaves by FT-NIR spectroscopy :study of influence of spectral ranges on PLS modeling, Chinese Journal of Spectroscopy Laboratory 2003-02. DUAN Y.-q. et al, FT-NIR Spectroscopic Determination of Five Key Chemical Components in Tobacco Sheets, Laser & Infrared 2007-10.
 従来の膨こう性の測定方法では、刻状にした葉たばこを、一定温度および一定湿度に厳密に調節された調和室で平衡状態になるまで2~7日間調和した後に、測定器により測定している。さらに、正確な測定値を得るためには2~5回繰り返し測定し、その平均で表すのが一般的である。すなわち、これまでの膨こう性の測定では、非常に多くの手間および時間がかかってしまう。
 一方、葉たばこの特性の測定に近赤外分光法を利用している従来の技術は、たばこ刻または葉中の化学物質(灰分、全揮発性酸または塩基、ニコチン、全糖、全窒素、カリウム、塩素、還元糖、および有機物等)を測定するものである。葉たばこの物理特性の測定に利用する例は知られておらず、また葉たばこの物理特性の測定に利用できるか否かについて知られていない。
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、煩雑な作業を行うことなくたばこ刻の膨こう性を測定することができる方法を提供することにある。
 本発明者らは、上記課題に鑑み鋭意検討した結果、近赤外分光法を利用してたばこ刻の膨こう性を測定できることを見出し、本発明を完成するに至った。
 本発明に係る膨こう性測定方法は、上記課題を解決するために、たばこ原料の試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線から膨こう性推定値を算出する工程とを含むことを特徴とする。
 さらに、本発明は、膨こう性を重視する原料の試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線から膨こう性推定値を算出する工程とを含む、原料の膨こう性測定方法も包含する。
 本発明に係る膨こう性の測定方法によれば、煩雑な作業を行うことなく迅速に、たばこ原料等、膨こう性を重視する原料の膨こう性を測定することができる。
重回帰分析を行い作成した検量線を用いて近赤外分光法により測定した膨こう性値と、従来の測定方法により測定した膨こう性値との相関を示す図である。 重回帰分析を行い作成した検量線を用いて近赤外分光法により測定した膨こう性値と、従来の測定方法により測定した膨こう性値との相関を示す図である。 重回帰分析を行い作成した検量線を用いて近赤外分光法により測定した膨こう性値と、従来の測定方法により測定した膨こう性値との相関を示す図である。 重回帰分析を行い作成した検量線を用いて近赤外分光法により測定した膨こう性値と、従来の測定方法により測定した膨こう性値との相関を示す図である。 PLS回帰分析を行い作成した検量線を用いて近赤外分光法により測定した膨こう性値と、従来の測定方法により測定した膨こう性値との相関を示す図である。 刻試料を用いてPLS回帰分析を行い作成した検量線を用いて近赤外分光法により測定した膨こう性値と、従来の測定方法により測定した膨こう性値との相関を示す図である。
 本発明に係る膨こう性の測定方法の実施形態について説明すれば以下の通りである。
 本発明に係る膨こう性の測定方法は、膨こう性を重視する原料の試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線から膨こう性推定値を算出する工程とを含むことを特徴とする原料の膨こう性測定方法である。
 以下、近赤外線照射による透過吸収スペクトルおよび拡散反射スペクトルのことを「近赤外スペクトル」と称する。
 本発明の測定方法を適用する試料として使用できる対象原料は、膨こう性を重視する原料であり、例えば、綿、麻、羊毛、漢方薬およびたばこ等を挙げることができる。
 本発明の測定方法を適用する試料として使用できる原料の形態は、特に限定されないが、例えば、刻形態および粉末形態等を挙げることができる。原料がたばこ原料である場合には、刻形態、粉末形態、ラミナ形態(除骨葉部分)およびシート片形態等を挙げることができ、なかでも、刻形態または粉末形態であることが好ましく、粉末形態であることがより好ましい。
 一実施形態において、本発明に係る膨こう性の測定方法は、たばこ原料の試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された透過吸収スペクトルまたは拡散反射スペクトルを用いて、予め作成された検量線から膨こう性推定値を算出する工程とを含むことを特徴とするたばこ原料の膨こう性測定方法である。以下では、たばこ原料の膨こう性を測定する場合を例に挙げて説明する。
 たばこ原料の膨こう性は、刻体積および刻間空隙により構成されている。刻体積は刻の量により定まる因子であり、見掛密度から推定することができる。刻間空隙は刻の性質により定まる因子であり、弾性率、刻の形状および刻の配向(並び方)の影響を受ける因子である。したがって、膨こう性は、見掛密度のみから推定できるものではない。
 膨こう性は、「cc/g」の単位で表される物理特性量であり、刻状態にした葉たばこをある一定圧力で一定時間圧縮したときの、刻1gの体積を求めた数値である。従来の膨こう性測定法によれば、膨こう性は、原料葉をシガレット巻きに充填するために、幅約0.8mm、長さ1mm~10mmに裁刻された刻状の原料を、一定温度(22℃)および一定湿度(60%RH)に厳密に調節された調和室で、平衡状態(平衡水分含量:10~12%)になるまで2~7日間調和した後、一定重量(g)の刻に一定圧力を一定時間かけて圧縮したときの刻1gの体積の値である。
 本発明の測定に用いられるたばこ原料および原料のタイプに制限はなく、黄色種、バーレー種、オリエント種または在来種等のたばこ刻、シートタバコおよび緩和刻(膨化処理した刻)等、従来紙巻きたばこに用いられている任意の原料および原料のタイプについて測定することができる。
 測定に用いる試料の水分調整は特に必要ではなく、6~13%の水分含量であれば測定できる。そのため、本測定方法の使用にあたっては、後述する従来の測定方法のような厳密な水分調整を必要としない。
 また、測定に必要な試料の量は、後述する従来の測定方法に比べてはるかに少なくて済む。たとえば、粉体の場合には、1サンプルあたり1~2g程度の量で充分であり、刻であっても10g未満の試料で充分に測定することができる。
 本発明に係る測定方法において、たばこ原料の試料は、検量線を作成したときに用いられたたばこ原料の試料と同一形態であればよい。試料の均一性を高める観点からは、たばこ原料を粉砕機で粉状にした粉末形態の試料(粉体)であることが好ましい。試料の均一性を高くすることにより、測定の精度をより向上させることができる。なお、葉たばこの内容成分分析においては、通常、紛体を用いて測定を行っている。そのため、測定試料を粉体とする場合には、内容成分分析用の試料をそのまま膨こう性の測定に利用することができる。あるいは、膨こう性の測定に用いた試料をそのまま他の内容成分分析において利用することができる。
 膨こう性未知試料の測定に際してたばこ原料の試料に照射する近赤外線は、800nm~2500nmの波長領域であり、少なくとも、検量線から膨こう性を算出する際に用いられる特定の波長が含まれていればよい。スペクトルの測定には、近赤外分光法に一般的に用いられている近赤外分光測定装置(NIR)を用いることができる。
 測定された近赤外スペクトルからどの波長を実際の膨こう性測定に用いるかは、たばこ原料および原料タイプまたは検量線により異なるものである。どの波長を膨こう性測定に用いるかは、後述する検量線の作成手法により決定することができる。例えば、後述する実施例1における推定式A5を利用して、膨こう性を測定する場合には、少なくとも波長1342.5nm、1736.5nm、1830.5nm、2345.0nm、および2432.5nm付近の近赤外線が照射されていればよい。なお、検量線がPLS(Partial Least Squares)回帰分析により得られたものである場合には、PLS回帰分析に利用したすべての波長を近赤外分光法による膨こう性の測定に利用する。
 近赤外分光法を利用した他の項目の測定法(例えば、近赤外分光法を利用したニコチンの測定法、近赤外分光法を利用した葉中化学物質の測定法等)が知られている場合に、当該測定に用いられる波長を含めておくことにより、膨こう性の測定と同時に、当該他の項目の測定も行うことができる。
 本発明に係る測定方法において膨こう性の算出に用いられる検量線は、膨こう性が既知である複数のたばこ原料の試料の近赤外スペクトルを用いて、多変量解析によって作成されたものであることが好ましい。そのため、当該検量線が存在しない場合には、本発明に係る測定方法において、膨こう性が既知である複数のたばこ原料の試料の近赤外スペクトルを測定後、多変量解析によって上記検量線を作成する工程をさらに含むことが好ましい。
 多変量解析としては、重回帰分析(MLR:Multiple Linear Regression)、PLS(Partial Least Squares)回帰分析、主成分回帰分析、およびフーリエ変換解析を利用することができ、中でも、重回帰分析およびPLS回帰分析が好ましい。
 検量線を作成するために用いられる、膨こう性が既知である複数のたばこ原料の試料の数としては、30サンプル以上であることが好ましく、70サンプル以上であることがより好ましい。サンプル数が多いほど検量線の精度が高まるため、上限に制限はなく、例えば、2000サンプル以下であり得るが、それ以上であってもよい。
 本明細書において、「膨こう性が既知であるたばこ原料」とは、従来の測定方法により膨こう性を測定したたばこ原料のことを指す。従来の測定方法は、葉たばこを裁刻し、刻状にしたたばこを、22±1.0℃、60±3.0%RHに厳密に調節された調和室で平衡状態になるまで2~7日間調和し、同室内にて膨こう性測定機により測定するものである。一回の測定には、小型機の膨こう性測定機で10~15g、大型機の膨こう性測定機で60~100gの刻たばこを必要とする。また、正確な測定値を得るために、2~5回繰り返し測定して、その平均を取得する方法が一般的である。また、膨こう性測定機による測定には、1サンプルあたり20分程度要する。
 検量線を作成するための近赤外スペクトルの波長領域は、適宜選択すればよく、例えば800nm~2500nmである。しかしながらこの波長領域に限定されるものではなく、より狭い波長領域であってもよい。また、近赤外スペクトルは、上記波長範囲内で任意の一定波長間隔毎、例えば0.5nm毎に走査して測定することができる。
 次に、検量線の具体的な作成方法について説明する。
 まず、膨こう性が既知であるたばこ刻の試料に対して、分光されて単色光となった近赤外線を、ある波長領域内(例えば、800nm~2500nm)、一定間隔(例えば、0.5nm間隔)で照射する。試料において近赤外線の透過吸収および/または拡散反射が起こるため、試料に吸収されなかった単色光強度を検出器によって測定する。事前に測定したレファレンス強度との違いから試料における各波長の吸収強度のスペクトルを表示し、表示したスペクトル情報をデータとして取得する。複数の試料、好ましくは30サンプル以上について上記の処理を行い、これにより、複数のスペクトル情報のデータを取得する。それぞれのデータについて、透過吸収スペクトルまたは拡散反射スペクトルを測定した後、これらを2次微分スペクトルに変換する。得られた2次微分スペクトルおよび従来の測定法を用いて測定された膨こう性値を用いて主成分分析を行い、目的変数(膨こう性値)に寄与する主成分(主波長)を選択する。次いで、重回帰分析およびPLS回帰分析等の多変量解析を行うことによって、検量線を作成する。
 なお検量線が作成されれば、その次の測定からはこの検量線を用いればよく、検量線を作成する工程は不要となる。
 また、黄色種、バーレー種、オリエント種および在来種等、複数種のたばこ原料を用いて透過吸収スペクトルまたは拡散反射スペクトルを測定し、それらを利用して一つの検量線を作成した場合には、相違する種類のたばこ原料の試料について、共通の検量線を用いて膨こう性を測定することができる。
 以上のように、本発明に係る膨こう性の測定方法によれば、調和に要する時間および設備が不要となるため、煩雑な準備作業および熟練を要する複雑な測定作業を行う必要がなく、従来の測定方法に比べて簡易な方法で迅速に膨こう性を測定することができる。また、従来の測定方法に比べ、短時間(約1/20)で測定を完了することができるとともに、測定に必要な試料も少量で済む。また、得られる測定結果は、従来の測定方法により得られる結果と高い相関がある。特に、測定試料として粉体を用いた場合には、1点当り1~2gの試料でもって、高い精度で測定することができる。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 〔実施例1:黄色種の膨こう性測定〕
 (検量線の作成)
 従来の膨こう性測定法を用いて膨こう性を測定した、国内外のたばこ黄色種のたばこ刻を、粉砕機で粉状にした。編み目約1mmの粉砕機のふるいを通過した葉たばこ粉末を、検量線作成試料として用いた。検量線作成試料について、800~2500nmの近赤外波長領域に関し、0.5nm間隔で透過吸収スペクトルを測定した。具体的には、石英製バイアル瓶(29mm径)に検量線作成試料を1~2g程度詰め、専用具で鎮圧した後、近赤外線分光測定装置(FOSS NIRSystems社製、型式:XM-1100)を用いて、バイアル瓶の底面から近赤外線を照射し、波長毎に反射する近赤外線を検出してレファレンス強度との違いから透過吸収スペクトルを測定した。
 検量線作成試料176サンプルについて透過吸収スペクトルを測定した後、当該スペクトルと、従来の測定方法により得られていた膨こう性との相関を多変量解析手法を用いて解析して、検量線を作成した。詳細には、上記近赤外線分光測定装置に内蔵された汎用VISIONソフト(FOSS NIRSystems社製)を用いて、各透過吸収スペクトルを2次微分法でスペクトル変換し、目的変数を既知膨こう性値、主成分を主波長として主成分分析を行った後に、重回帰分析によって検量線を作成した。その結果、以下の推定式(A1)~(A5)を得ることができた。下記推定式によって得られるYが膨こう性の推定値である。K(1)~K(5)は、それぞれ、スペクトル測定後に微分処理された、波長1342.5nm、1736.5nm、2345.0nm、2432.5nm、および1830.5nmにおける吸光度を示している。
 これらの推定式は、決定係数(R)が0.720~0.882であり、標準誤差は0.144~0.219であった。
Figure JPOXMLDOC01-appb-T000001
 各検量線作成試料について、従来の測定法により得られた膨こう性値と、推定式(A5)を用いて近赤外分光法により得られた膨こう性推定値との関係を図1に示す(図1中、「CAL」)。
 (近赤外分光法による膨こう性の測定)
 膨こう性値が未知である黄色種たばこ刻について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いて膨こう性を推定した。まず、検量線作成試料の調製と同様にして、膨こう性値が未知である黄色種たばこ刻を粉砕機で粉状にし、ふるいにかけて測定試料とした。透過吸収スペクトルを測定し、スペクトル測定後に微分処理した波長1342.5nm、1736.5nm、1830.5nm、2345.0nm、および2432.5nmにおける吸光度および推定式(A5)を用いて、測定試料43サンプルについて膨こう性推定値を算出した。なお、1サンプルの測定に要する時間は、1分以下である。
 なお、各測定試料について近赤外分光法により膨こう性を推定した後、従来の測定法により同一試料の膨こう性を測定し、近赤外分光法により得られた膨こう性推定値と、従来の測定法により得られた膨こう性値との相関関係を調べた。結果を図1に示す(図1中、「Vali」)。
 図1に示すとおり、従来の測定方法により得られた膨こう性値と、近赤外分光法により得られた膨こう性の推定値との間には高い相関が見られた。すなわち、近赤外分光法を用いた本発明に係る膨こう性の測定方法により、精度よく、簡便に、たばこ刻の膨こう性を測定することができる。
 〔実施例2:バーレー種の膨こう性測定〕
 (検量線の作成)
 検量線作成試料を、国内外のたばこバーレー種177サンプルとした以外は、実施例1と同様にして、重回帰分析によって検量線を作成した。その結果、以下の推定式(B1)~(B5)を得ることができた。下記推定式によって得られるYが膨こう性の推定値である。K(1)~K(5)は、それぞれ、スペクトル測定後に微分処理された、波長1152.5nm、2263.5nm、2360.0nm、1792.5nm、および1892.5nmにおける吸光度を示している。
 これらの推定式は、決定係数(R)が0.55589~0.7556であり、標準誤差が0.1636~0.2173であった。
Figure JPOXMLDOC01-appb-T000002
 各検量線作成試料について、従来の測定法により得られた膨こう性値と、推定式(B5)を用いて近赤外分光法により得られた膨こう性推定値との関係を図2に示す(図2中、「CAL」)。
 (近赤外分光法による膨こう性の測定)
 膨こう性値が未知であるバーレー種たばこ刻について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いて膨こう性を推定した。まず、検量線作成試料の調製と同様にして、膨こう性値が未知であるバーレー種たばこ刻を粉砕機で粉状にし、ふるいにかけて測定試料とした。透過吸収スペクトルを測定し、スペクトル測定後に微分処理した波長1152.5nm、1792.5nm、1892.5nm、2263.5nm、および2360.0nmにおける吸光度および推定式(B5)を用いて、測定試料47サンプルについて膨こう性推定値を算出した。
 なお、各測定試料について近赤外分光法により膨こう性を推定した後、従来の測定法により同一試料の膨こう性を測定し、近赤外分光法により得られた膨こう性推定値と、従来の測定法により得られた膨こう性値との相関関係を調べた。結果を図2に示す(図2中、「Vali」)。
 図2に示すとおり、実施例1とは別のたばこ原料を用いた場合であっても、従来の測定方法により得られた膨こう性値と、近赤外分光法により得られた膨こう性の推定値との間には高い相関が見られた。
 〔実施例3:オリエント種の膨こう性測定〕
 (検量線の作成)
 検量線作成試料を、国内外のたばこオリエント種71サンプルとした以外は、実施例1と同様にして、重回帰分析によって検量線を作成した。その結果、以下の推定式(C1)~(C5)を得ることができた。下記推定式によって得られるYが膨こう性の推定値である。K(1)~K(5)は、それぞれ、スペクトル測定後に微分処理された、波長2264.0nm、2357.0nm、1515.5nm、1701.0nm、および1207.0nmにおける吸光度を示している。
 これらの推定式は、決定係数(R)が0.5534~0.7828であり、標準誤差が0.1749~0.2435であった。
Figure JPOXMLDOC01-appb-T000003
 各検量線作成試料について、従来の測定法により得られた膨こう性値と、推定式(C5)を用いて近赤外分光法により得られた膨こう性推定値との関係を図3に示す(図3中、「CAL」)。
 (近赤外分光法による膨こう性の測定)
 膨こう性値が未知であるオリエント種たばこ刻について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いて膨こう性を推定した。まず、検量線作成試料の調製と同様にして、膨こう性値が未知であるオリエント種たばこ刻を粉砕機で粉状にし、ふるいにかけて測定試料とした。透過吸収スペクトルを測定し、スペクトル測定後に微分処理した波長1207.0nm、1515.5nm、1701.0nm、2264.0nm、および2357.0nmにおける吸光度および推定式(C5)を用いて、測定試料19サンプルについて膨こう性推定値を算出した。
 なお、各測定試料について近赤外分光法により膨こう性を推定した後、従来の測定法により同一試料の膨こう性を測定し、近赤外分光法により得られた膨こう性推定値と、従来の測定法により得られた膨こう性値との相関関係を調べた。結果を図3に示す(図3中、「Vali」)。
 図3に示すとおり、上述の実施例とは別のたばこ原料を用いた場合であっても、従来の測定方法により得られた膨こう性値と、近赤外分光法により得られた膨こう性の推定値との間には高い相関が見られた。
 〔実施例4:黄色種、バーレー種およびオリエント種の膨こう性測定〕
 (検量線の作成)
 検量線作成試料をたばこ黄色種176サンプル、バーレー種177サンプルおよびオリエント種71サンプルの計424サンプルとした以外は、実施例1と同様にして、重回帰分析によって検量線を作成した。その結果、以下の推定式(D1)~(D5)を得ることができた。下記推定式によって得られるYが膨こう性の推定値である。K(1)~K(5)は、それぞれ、スペクトル測定後に微分処理された、波長1341.0nm、2439.0nm、2355.0nm、2077.5nm、および1977.0nmにおける吸光度を示している。
 これらの推定式は、決定係数(R)が0.7731~0.8961であり、標準誤差が0.2204~0.3237であった。
Figure JPOXMLDOC01-appb-T000004
 各検量線作成試料について、従来の測定法により得られた膨こう性値と、推定式(D5)を用いて近赤外分光法により得られた膨こう性推定値との関係を図4に示す(図4中、「CAL」)。
 (近赤外分光法による膨こう性の測定)
 膨こう性値が未知である黄色種、バーレー種およびオリエント種それぞれのたばこ刻について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いて膨こう性を推定した。まず、検量線作成試料の調製と同様にして、膨こう性値が未知である黄色種、バーレー種またはオリエント種のたばこ刻を粉砕機で粉状にし、ふるいにかけて測定試料とした。透過吸収スペクトルを測定し、スペクトル測定後に微分処理した波長1341.0nm、1977.0nm、2077.5nm、2355.0nm、および2439.0nmにおける吸光度および推定式(D5)を用いて、黄色種43サンプル、バーレー種47サンプル、およびオリエント種19サンプルについて膨こう性推定値を算出した。
 なお、各測定試料について近赤外分光法により膨こう性を推定した後、従来の測定法により同一試料の膨こう性を測定し、近赤外分光法により得られた膨こう性推定値と、従来の測定法により得られた膨こう性値との相関関係を調べた。結果を図4に示す(図4中、「Vali」)。
 図4に示すとおり、検量線が複数の異なるたばこ原料を用いて作成されてものであっても、従来の測定方法により得られた膨こう性値と、近赤外分光法により得られた膨こう性の推定値との間には高い相関が見られた。すなわち、測定試料におけるたばこ原料が相違しても、共通の検量線を用いて、精度よくたばこ刻の膨こう性を測定することができる。
 〔実施例5:PLS回帰分析を利用した、黄色種、バーレー種、オリエント種および在来種の膨こう性測定〕
 (検量線の作成)
 検量線作成試料を、国内外のたばこ黄色種640サンプル、バーレー種568サンプル、オリエント種142サンプルおよび在来種71サンプルの計1421サンプルとして、それぞれについて、実施例1の同様の手法により透過吸収スペクトルを測定した。測定した透過吸収スペクトルと従来の手法により測定した膨こう性との相関をPLS回帰分析を用いて解析した。詳細には、上記近赤外線分光測定装置に内蔵された汎用VISIONソフト(FOSS NIRSystems社製)を用いて、各透過吸収スペクトルを2次微分法でスペクトル変換し、主成分分析を行った後に、PLS回帰分析によって検量線を作成した。その結果、決定係数(R)が0.8977である実用上十分な相関が認められる検量線が得られた。
 各検量線作成試料について、従来の測定法により得られた膨こう性値と、推定式を用いて近赤外分光法により得られた膨こう性の推定値との関係を図5に示す(図5中、「CAL」)。
 (近赤外分光法による膨こう性の測定)
 膨こう性値が未知である黄色種、バーレー種、オリエント種および在来種のたばこ刻について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いて膨こう性を推定した。まず、検量線作成試料の調製と同様にして、膨こう性値が未知である黄色種、バーレー種、オリエント種または在来種のたばこ刻を粉砕機で粉状にし、ふるいにかけて測定試料とした。波長800nm~2500nmの領域内で、0.5nm毎に吸収スペクトルを測定し、上記で得た推定式を用いて、黄色種213サンプル、バーレー種189サンプル、オリエント種47サンプルおよび在来種24サンプルの計473サンプルについて膨こう性推定値を算出した。
 なお、各測定試料について近赤外分光法により膨こう性を推定した後、従来の測定法により同一試料の膨こう性を測定し、近赤外分光法により得られた膨こう性推定値と、従来の測定法により得られた膨こう性値との相関関係を調べた。結果を図5に示す(図5中、「Vali」)。
 図5に示すとおり、多変量解析としてPLS回帰分析を行った場合であっても、従来の測定方法により得られた膨こう性値と、近赤外分光法により得られた膨こう性の推定値との間には高い相関が見られた。また、PLS回帰分析により検量線を作成した場合であっても、相違する種類のたばこ原料の膨こう性について、共通の検量線を用いて精度よく測定できることが示された。
 〔実施例6:PLS回帰分析を利用した、黄色種、バーレー種、オリエント種および在来種の刻試料を用いた膨こう性測定〕
(検量線の作成)
 検量線作成試料を、国内外のたばこ黄色種284サンプル、バーレー種221サンプル、オリエント種63サンプおよび在来種63サンプルの計631サンプルとして、それぞれについて、実施例1と同様の手法により透過吸収スペクトルを測定した。ただし、測定には、粉状にした試料ではなく、たばこ刻自体を用いた。測定した透過吸収スペクトルと従来の手法により測定した膨こう性との相関を、実施例5と同様の手法によりPLS回帰分析を用いて解析した。その結果、決定係数(R)が0.8811である実用上十分な相関が認められる検量線が得られた。
 各検量線作成試料について、従来の測定法により得られた膨こう性値と、推定式を用いて近赤外分光法により得られた膨こう性の推定値との関係を図6に示す(図6中、「CAL」)。
(近赤外分光法による膨こう性の測定)
 膨こう性値が未知である黄色種、バーレー種、オリエント種および在来種のたばこ刻について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いて膨こう性を推定した。まず、検量線作成試料の調整と同様にして、膨こう性値が未知である黄色種、バーレー種、オリエント種および在来種のたばこ刻をそのまま測定試料とした。波長800~2500nmの領域内で、0.5nm毎に吸収スペクトルを測定し、上記で得た推定式を用いて、黄色種93サンプル、バーレー種72サンプル、オリエント種21サンプル、および在来種21サンプルの計207サンプルについて膨こう性推定値を算出した。
 なお、各測定試料について近赤外分光法により膨こう性を推定した後、従来の測定法により同一試料の膨こう性を測定し、近赤外分光法により得られた膨こう性値との相関関係を調べた。結果を図6に示す(図6中、「Vali」)。
 図6に示すとおり、検量線作成試料が刻形態のものであっても高い決定係数の検量線が得られ、粉状の試料と同様、近赤外分光法により膨こう性を推定できる。また、刻形態の場合であっても、相違する種類のたばこ原料の膨こう性について、共通の検量線を用いて精度よく測定できることが示された。
 本発明は、紙巻きたばこの設計および製造に利用することができる。

Claims (6)

  1.  膨こう性を重視する原料の試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、
     測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線から膨こう性推定値を算出する工程とを含むことを特徴とする原料の膨こう性測定方法。
  2.  たばこ原料の試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、
     測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線から膨こう性推定値を算出する工程とを含むことを特徴とするたばこ原料の膨こう性測定方法。
  3.  上記たばこ原料の試料が、刻形態または粉末形態であることを特徴とする請求項2に記載の膨こう性測定方法。
  4.  上記たばこ原料の試料が、粉末形態であることを特徴とする請求項2または3に記載の膨こう性測定方法。
  5.  膨こう性が既知である複数の上記原料の試料の透過吸収スペクトルまたは拡散反射スペクトルを用いて、多変量解析によって上記検量線を作成する工程をさらに含むことを特徴とする請求項1~3の何れか1項に記載の膨こう性測定方法。
  6.  上記多変量解析は、重回帰分析またはPLS回帰分析であることを特徴とする請求項5に記載の膨こう性測定方法。
PCT/JP2012/057168 2011-03-22 2012-03-21 膨こう性測定方法 WO2012128280A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2013131286/28A RU2541148C1 (ru) 2011-03-22 2012-03-21 Способ измерения заполняющей способности
BR112013016290A BR112013016290A2 (pt) 2011-03-22 2012-03-21 método para medir capacidade de enchimento
EP12761079.8A EP2637017A4 (en) 2011-03-22 2012-03-21 METHOD FOR MEASURING FILLING CAPACITY
CN201280004831.5A CN103299175B (zh) 2011-03-22 2012-03-21 填充性测定方法
JP2013505984A JP5617032B2 (ja) 2011-03-22 2012-03-21 膨こう性測定方法
US13/908,698 US9759650B2 (en) 2011-03-22 2013-06-03 Filling-capacity measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/056802 WO2012127615A1 (ja) 2011-03-22 2011-03-22 膨こう性測定方法
JPPCT/JP2011/056802 2011-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/908,698 Continuation US9759650B2 (en) 2011-03-22 2013-06-03 Filling-capacity measuring method

Publications (1)

Publication Number Publication Date
WO2012128280A1 true WO2012128280A1 (ja) 2012-09-27

Family

ID=46878809

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/056802 WO2012127615A1 (ja) 2011-03-22 2011-03-22 膨こう性測定方法
PCT/JP2012/057168 WO2012128280A1 (ja) 2011-03-22 2012-03-21 膨こう性測定方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056802 WO2012127615A1 (ja) 2011-03-22 2011-03-22 膨こう性測定方法

Country Status (6)

Country Link
US (1) US9759650B2 (ja)
EP (1) EP2637017A4 (ja)
CN (1) CN103299175B (ja)
BR (1) BR112013016290A2 (ja)
RU (1) RU2541148C1 (ja)
WO (2) WO2012127615A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048290A (zh) * 2013-01-07 2013-04-17 中国农业科学院烟草研究所 一种检测烟丝填充值的方法
CN103344598A (zh) * 2013-06-18 2013-10-09 川渝中烟工业有限责任公司 一种梗丝与卷烟叶组配伍性的判定方法
CN108645746A (zh) * 2018-06-08 2018-10-12 云南中烟工业有限责任公司 基于炉挥发物的电加热不燃烧卷烟感官质量分析方法
WO2019004003A1 (ja) * 2017-06-28 2019-01-03 日本たばこ産業株式会社 葉たばこ中骨の膨こう性の推定方法
CN112985995A (zh) * 2021-04-30 2021-06-18 河南中烟工业有限责任公司 烟丝刚柔度测量方法及装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090802B (zh) * 2013-02-02 2016-03-16 中国农业科学院烟草研究所 一种检测烟叶厚度的方法
CN104166803A (zh) * 2014-08-19 2014-11-26 云南中烟工业有限责任公司 一种表征烟丝结构分布均匀性的方法
CN104182629A (zh) * 2014-08-19 2014-12-03 云南中烟工业有限责任公司 一种基于主成分分析的烟支物理指标综合稳定性表征方法
DE102014223625A1 (de) * 2014-11-19 2016-05-19 Hauni Maschinenbau Ag Verfahren und Stromtrockner zum Trocknen eines Tabakmaterials
CN104634744B (zh) * 2014-12-19 2017-12-01 云南省烟草公司昆明市公司 一种基于反射光谱的烟叶成熟度测定方法
CN105661617B (zh) * 2016-01-05 2017-06-16 泉州装备制造研究所 一种造纸法再造烟叶涂布均匀性在线检测系统及检测方法
CN107153104B (zh) * 2017-05-10 2019-09-24 浙江中烟工业有限责任公司 一种通过卷烟机运行参数表征烟丝填充值的方法
CN108572150A (zh) * 2018-04-16 2018-09-25 成都大学 一种基于高光谱检测香肠中三磷酸腺苷及细菌数的方法
CN109709057B (zh) * 2018-12-29 2021-12-07 四川碧朗科技有限公司 水质指标预测模型构建方法及水质指标监测方法
CN110736718B (zh) * 2019-10-16 2022-07-19 浙江中烟工业有限责任公司 一种烤烟烟丝的产地及等级识别方法
CN113892668B (zh) * 2021-11-17 2023-06-16 河南中烟工业有限责任公司 一种烟丝干燥工序的结团烟丝的控制方法
CN114295579A (zh) * 2021-12-28 2022-04-08 贵州中烟工业有限责任公司 一种基于近红外光谱的烟叶醇化判定方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144675A (ja) * 1990-10-04 1992-05-19 Japan Tobacco Inc たばこ原料の膨化方法
JP2000074828A (ja) 1998-09-03 2000-03-14 Idemitsu Kosan Co Ltd 近赤外スペクトル法による炭化水素の物性値の分析方法
JP2000333663A (ja) * 1999-05-25 2000-12-05 Japan Tobacco Inc 喫味用物品若しくはその部品の密度検出装置
JP2001017084A (ja) 1999-07-13 2001-01-23 Morinaga & Co Ltd ココア成分含有食品のpH測定方法及び該pH測定方法を利用したココア成分含有食品の製造方法
WO2002003818A1 (fr) * 2000-07-11 2002-01-17 Japan Tobacco Inc. Dispositif de mesure du facteur de remplissage d'une charge permettant de former un boudin
WO2002035211A1 (fr) * 2000-10-25 2002-05-02 Japan Tobacco Inc. Dispositif de detection de densite pour la degustation d'article ou de composant de celui-ci
JP2002153251A (ja) * 2001-10-02 2002-05-28 Japan Tobacco Inc たばこ刻の配合方法
JP2009275314A (ja) * 2008-05-15 2009-11-26 Mitsubishi Rayon Co Ltd アセテートトウの品質測定方法、その捲縮レベルの制御方法及び制御装置
JP2011017565A (ja) * 2009-07-07 2011-01-27 Nagoya Univ 木材の光学式品質評価方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234783A (en) 1975-09-12 1977-03-16 Japan Tobacco Inc Apparatus for measuring expansiveness and frictional property of shred ded tabacco
JPS52154599A (en) * 1976-06-15 1977-12-22 Japan Tobacco Inc Method for imparting water resistance to molded smoking composition
GB8506149D0 (en) 1985-03-09 1985-04-11 Haigh Chadwick Ltd Textile structure measurement
US4805641A (en) * 1985-07-31 1989-02-21 Korber Ag Method and apparatus for ascertaining the density of wrapped tobacco fillers and the like
US4986285A (en) 1986-03-06 1991-01-22 Korber Ag Method and apparatus for ascertaining the density of wrapped tobacco fillers and the like
DE3801115C2 (de) * 1987-01-31 1996-10-17 Hauni Werke Koerber & Co Kg Verfahren und Vorrichtung zum Bestimmen der Dichte eines Faserstrangs der tabakverarbeitenden Industrie
US4819668A (en) * 1987-04-02 1989-04-11 R. J. Reynolds Tobacco Company Cigarette cut filler containing rare and specialty tobaccos
DE3725366A1 (de) 1987-07-31 1989-02-09 Hauni Werke Koerber & Co Kg Vorrichtung zur messung der dichte eines tabakstranges
US5010904A (en) 1989-12-21 1991-04-30 R. J. Reynolds Tobacco Company Method and apparatus for detecting loose ends of cigarettes
JP3100224B2 (ja) 1992-03-26 2000-10-16 雪印乳業株式会社 近赤外線によるナチュラルチーズの熟成度合の非破壊的測定法
JPH06288892A (ja) * 1993-03-31 1994-10-18 Japan Tobacco Inc 粒度測定装置
US5469872A (en) * 1993-12-06 1995-11-28 R. J. Reynolds Tobacco Company Tobacco expansion processes and apparatus
JPH07310223A (ja) * 1994-05-17 1995-11-28 Toray Ind Inc 繊維糸条の付着油剤量の測定方法およびその装置
EP0803726A3 (en) 1996-04-26 1998-03-25 Japan Tobacco Inc. Method and apparatus for discriminating coal species
JP3268972B2 (ja) * 1996-04-26 2002-03-25 東北電力株式会社 炭種性状判別方法
GB9624035D0 (en) * 1996-11-19 1997-01-08 Infrared Eng Infrared measuring gauge
IT1288494B1 (it) * 1996-11-20 1998-09-22 Sasib Spa Metodo e dispositivo per il controllo senza contatto diretto delle teste delle sigarette, o simili.
US6606568B2 (en) 2000-06-28 2003-08-12 Midwest Research Institute Method for predicting dry mechanical properties from wet wood and standing trees
JP2002340792A (ja) * 2001-05-17 2002-11-27 Opt Giken Kk 高分子材料の密度測定方法
US7294838B2 (en) * 2001-10-30 2007-11-13 Rae Todd A Traversing measurement system for a dryer and associated method
DE10229451A1 (de) 2002-07-01 2004-01-15 Reemtsma Cigarettenfabriken Gmbh Verfahren zur Verbesserung der Füllfähigkeit von Tabak
RU2250452C2 (ru) * 2003-05-13 2005-04-20 Научно-исследовательский институт пищеконцентратной промышленности и специальной пищевой технологии (Государственное научное учреждение) Способ определения технологических параметров табака
KR200412339Y1 (ko) 2005-12-26 2006-03-27 이태수 니코틴 함량이 낮은 담배

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144675A (ja) * 1990-10-04 1992-05-19 Japan Tobacco Inc たばこ原料の膨化方法
JP2000074828A (ja) 1998-09-03 2000-03-14 Idemitsu Kosan Co Ltd 近赤外スペクトル法による炭化水素の物性値の分析方法
JP2000333663A (ja) * 1999-05-25 2000-12-05 Japan Tobacco Inc 喫味用物品若しくはその部品の密度検出装置
JP2001017084A (ja) 1999-07-13 2001-01-23 Morinaga & Co Ltd ココア成分含有食品のpH測定方法及び該pH測定方法を利用したココア成分含有食品の製造方法
WO2002003818A1 (fr) * 2000-07-11 2002-01-17 Japan Tobacco Inc. Dispositif de mesure du facteur de remplissage d'une charge permettant de former un boudin
WO2002035211A1 (fr) * 2000-10-25 2002-05-02 Japan Tobacco Inc. Dispositif de detection de densite pour la degustation d'article ou de composant de celui-ci
JP2002153251A (ja) * 2001-10-02 2002-05-28 Japan Tobacco Inc たばこ刻の配合方法
JP2009275314A (ja) * 2008-05-15 2009-11-26 Mitsubishi Rayon Co Ltd アセテートトウの品質測定方法、その捲縮レベルの制御方法及び制御装置
JP2011017565A (ja) * 2009-07-07 2011-01-27 Nagoya Univ 木材の光学式品質評価方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DUAN Y.-Q. ET AL.: "FT-NIR Spectroscopic Determination of Five Key Chemical Components in Tobacco Sheets", LASER & INFRARED, October 2007 (2007-10-01)
HANA M. ET AL., J. OF NEAR INFRARED SPECTROSC., vol. 3, 1995, pages 133 - 142
HIDEHIRA SOUTOME ET AL.: "Development of non- destructive estimation model of strawberry fruit firmness", PROCEEDINGS OF PRESENTATION JOINT CONFERENCE ON ENVIRONMENTAL ENGINEERING IN AGRICULTURE (CD-ROM, 2006, pages 1428
MA X. ET AL.: "Determination of chemical components in tobacco leaves by FT-NIR spectroscopy: study of influence of spectral ranges on PLS modeling", CHINESE JOURNAL OF SPECTROSCOPY LABORATORY, February 2003 (2003-02-01)
See also references of EP2637017A4
VERRIER J.L. ET AL.: "Contribution of near infrared spectroscopy (NIRS) to detect nicotine conversion to nornicotine in Burley tobacco", CORESTA MEETING, 2009

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048290A (zh) * 2013-01-07 2013-04-17 中国农业科学院烟草研究所 一种检测烟丝填充值的方法
CN103344598A (zh) * 2013-06-18 2013-10-09 川渝中烟工业有限责任公司 一种梗丝与卷烟叶组配伍性的判定方法
WO2019004003A1 (ja) * 2017-06-28 2019-01-03 日本たばこ産業株式会社 葉たばこ中骨の膨こう性の推定方法
CN108645746A (zh) * 2018-06-08 2018-10-12 云南中烟工业有限责任公司 基于炉挥发物的电加热不燃烧卷烟感官质量分析方法
CN108645746B (zh) * 2018-06-08 2020-08-14 云南中烟工业有限责任公司 基于炉挥发物的电加热不燃烧卷烟感官质量分析方法
CN112985995A (zh) * 2021-04-30 2021-06-18 河南中烟工业有限责任公司 烟丝刚柔度测量方法及装置
CN112985995B (zh) * 2021-04-30 2023-05-16 河南中烟工业有限责任公司 烟丝刚柔度测量方法及装置

Also Published As

Publication number Publication date
RU2541148C1 (ru) 2015-02-10
WO2012127615A1 (ja) 2012-09-27
EP2637017A4 (en) 2014-10-15
EP2637017A1 (en) 2013-09-11
US9759650B2 (en) 2017-09-12
US20130268239A1 (en) 2013-10-10
BR112013016290A2 (pt) 2016-09-27
RU2013131286A (ru) 2015-01-20
CN103299175A (zh) 2013-09-11
CN103299175B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2012128280A1 (ja) 膨こう性測定方法
WO2012128281A1 (ja) 見掛密度測定方法
Duan et al. Determination of 27 chemical constituents in Chinese southwest tobacco by FT-NIR spectroscopy
Gupta et al. Real-time near-infrared monitoring of content uniformity, moisture content, compact density, tensile strength, and Young's modulus of roller compacted powder blends
Woo et al. Classification of cultivation area of ginseng radix with NIR and Raman spectroscopy
CN103278473B (zh) 白胡椒中胡椒碱及水分含量的测定和品质评价方法
CN104990895B (zh) 一种基于局部区域的近红外光谱信号标准正态校正方法
Martín-Tornero et al. Comparative quantification of chlorophyll and polyphenol levels in grapevine leaves sampled from different geographical locations
Xue et al. Dynamic prediction models for alkaloid content using NIR technology for the study and online analysis of parching in Areca Seed
Taira et al. Direct sugar content analysis for whole stalk sugarcane using a portable near infrared instrument
Hein et al. Predicting microfibril angle in Eucalyptus wood from different wood faces and surface qualities using near infrared spectra
Zhang et al. Wavelet unfolded partial least squares for near-infrared spectral quantitative analysis of blood and tobacco powder samples
Arslan et al. NIR spectroscopy coupled chemometric algorithms for rapid antioxidants activity assessment of Chinese dates (Zizyphus Jujuba Mill.)
Luo et al. Near infrared spectroscopy combination with PLS to monitor the parameters of naproxen tablet preparation process
Bindereif et al. Complementary use of 1H NMR and multi-element IRMS in association with chemometrics enables effective origin analysis of cocoa beans (Theobroma cacao L.)
CN104596975A (zh) 近红外漫反射光谱技术测定造纸法再造烟叶木质素的方法
CN104596976A (zh) 近红外漫反射光谱技术测定造纸法再造烟叶蛋白质的方法
WO2013145437A1 (ja) メンソール含量測定方法
JP5822985B2 (ja) 膨こう性測定方法
JP5617032B2 (ja) 膨こう性測定方法
WO2019004003A1 (ja) 葉たばこ中骨の膨こう性の推定方法
CN102680427A (zh) 一种应用近红外光谱分析技术鉴别卷烟表香质量的方法
Kadiroğlu et al. Classification of Turkish extra virgin olive oils by a SAW detector electronic nose
CN110887809B (zh) 一种基于近红外光谱技术测定烟丝中梗含量的方法
Giokas et al. Multivariate chemometric discrimination of cigarette tobacco blends based on the UV–Vis spectrum of their hydrophilic extracts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505984

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012761079

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013131286

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013016290

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013016290

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130625