WO2019004003A1 - 葉たばこ中骨の膨こう性の推定方法 - Google Patents

葉たばこ中骨の膨こう性の推定方法 Download PDF

Info

Publication number
WO2019004003A1
WO2019004003A1 PCT/JP2018/023265 JP2018023265W WO2019004003A1 WO 2019004003 A1 WO2019004003 A1 WO 2019004003A1 JP 2018023265 W JP2018023265 W JP 2018023265W WO 2019004003 A1 WO2019004003 A1 WO 2019004003A1
Authority
WO
WIPO (PCT)
Prior art keywords
swelling
leaf tobacco
bone
leaf
expansion
Prior art date
Application number
PCT/JP2018/023265
Other languages
English (en)
French (fr)
Inventor
弥 清水
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2019004003A1 publication Critical patent/WO2019004003A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/04Humidifying or drying tobacco bunches or cut tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/08Blending tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/18Other treatment of leaves, e.g. puffing, crimpling, cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a method of estimating the swelling of leaf tobacco inner bone, and more particularly to a method of estimating the swelling of leaf tobacco middle bone using near-infrared spectroscopy.
  • the swelling property is a numerical value obtained by determining the volume per 1 g when each of the lamina is compressed and the compression is applied for a fixed time at a constant pressure after the swelling and after cutting and bulging.
  • Patent Document 1 As a method to easily investigate the swelling of leaf tobacco, it is irradiated with near infrared rays at laminar time, its absorption spectrum or diffuse reflection spectrum is measured, and the measured value and a calibration curve prepared in advance are used. A method has been developed to calculate an estimate of the swellability of the time (Patent Document 1).
  • Patent Document 1 A well-known method for measuring the swellability of leaf tobacco material is as described in paragraph 0006 and paragraph 0021 of Patent Document 1.
  • the method is to measure the leaf tobacco to be measured with a measuring machine after being harmonized for 2 to 7 days until it is in an equilibrium state in a harmony room strictly controlled to a constant temperature and a constant humidity. Furthermore, in order to obtain an accurate measurement value, it is common to repeat measurement 2 to 5 times and express it by the average. That is, conventional measurement of swelling takes a great deal of labor and time. Therefore, Patent Document 1 discloses a simple method of estimating swelling using NIR.
  • the middle bone portion of the leaf is also used as a raw material, and the swelling property of the middle bone is as simple as lamina. It is desirable to calculate estimated values for However, in the invention described in Patent Document 1, the calculation of the estimated value of the swelling in leaf tobacco middle bone is not assumed. In addition, when the inventors of the present invention actually applied the invention described in Patent Document 1 to leaf tobacco middle bone, it was found that the measurement accuracy is extremely low.
  • the center bone of the leaf tobacco is subjected to a swelling treatment before cutting.
  • this expansion treatment the inner bone is impregnated with water, expanded and cut, and then the overheated steam is brought into contact for a short time and then dried rapidly to expand the inner bone and increase its expansion property. It is. Therefore, what is important as the expansion property of the tobacco inner bone is the expansion property after expansion processing.
  • Patent Document 1 the middle bone of leaf tobacco is not to be measured. Furthermore, the technique of Patent Document 1 does not take into consideration at all the influence of the expansion value on the expansion process.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method capable of estimating the bulging properties of the leaf tobacco middle bone after the bulging process without performing a complicated operation. Moreover, the process control method of the swelling property in leaf tobacco inner bone using the said estimation method is provided.
  • the method for estimating the swelling of leaf tobacco middle bone comprises applying visible light and near infrared light of 400 nm to 2500 nm wavelength to the inner bone of leaf tobacco before expansion treatment. Irradiating and measuring the transmission absorption spectrum or the diffuse reflection spectrum, and using the measured transmission absorption spectrum or the diffuse reflection spectrum, calculate the swelling estimated value after the swelling processing from the calibration model created in advance And a process.
  • a humidity control step of adjusting the moisture content of the inner leaf tobacco a cutting step of spreading and cutting the inner leaf tobacco after the humidity adjustment step
  • the above-mentioned leaf tobacco middle bone after the cutting step is brought into contact with superheated steam, dried, and subjected to a swelling treatment, and a swelling step is carried out, using the estimated value obtained by the above-mentioned method for estimating the swelling property of leaf tobacco middle bone It is preferable to set the conditions in at least one of the humidity control process, the cutting process, and the expansion process.
  • the swelling property estimation value of a leaf tobacco medium bone after expansion processing from the leaf tobacco middle bone before expansion processing is quickly performed without complicated work. Can be calculated. Moreover, the process control method of the swelling property in leaf tobacco inner bone can be provided using the said estimation method.
  • FIG. 5 is a diagram of a correlation loading plot in content content and swellability.
  • black circles represent loading plots of the respective content components, and open squares represent swelling loading plots.
  • It is a figure of a calibration model which is a result of PLS regression analysis of a spectrum of near-infrared rays and the obtained swelling. It is a figure of the loading plot used for creation of a calibration model.
  • FIG. 5 is a plot of regression coefficients of a calibration model.
  • the method for estimating the swelling comprises the steps of: irradiating a leaf tobacco inner bone with visible light and near infrared light, and measuring a transmission absorption spectrum or a diffuse reflection spectrum, and the measured transmission absorption spectrum or the diffuse reflection And a step of calculating an estimated swelling value from a calibration model prepared in advance using a spectrum.
  • the thing of the transmission absorption spectrum and diffuse reflection spectrum by visible light and near infrared irradiation is called a “near infrared spectrum.”
  • intermediate bone is intended to mean the intermediate bone described in the above-mentioned “cigarette dictionary”, including the petiole.
  • mist bone in the present specification refers to "leaf tobacco middle bone” unless otherwise noted.
  • Leaf tobacco inner bones are puffed and cut prior to measurement of swelling.
  • the expansion process includes a humidity control process, a cutting process, and an expansion process.
  • superheated steam is brought into contact for a short time in the expansion step and then rapidly dried.
  • the midbone can be expanded and its swelling can be enhanced.
  • the expansion treatment makes the leaf tobacco highly combustible and relieves the taste.
  • superheated steam is steam of 100 ° C. or higher.
  • the swelling property of the leaf tobacco inner bone varies depending on the conditions of the expansion treatment, but it is a physical property quantity expressed in units of "cc / g", and the cut tobacco leaf bone is compressed for a fixed time at a certain pressure It is the figure which asked for the volume of 1g every time it did.
  • the bulging properties of the tobacco inner bone are determined by the volume and space between the volumes.
  • the engraving volume is a factor determined by the amount of engraving and can be estimated from the apparent density.
  • the air gap is a factor determined by the nature of the engrave and is a factor affected by the elastic modulus, the shape of the engrave and the orientation of the engrave. Therefore, the swelling can not be estimated from the apparent density alone.
  • it refers to the leaf tobacco inner bone after the swelling processing made into the cut state.
  • swelling properties of the leaf tobacco middle bone refer to the swelling properties of the leaf tobacco middle bone after the expansion treatment, unless otherwise specified.
  • the inventors of the present invention have found that the swelling properties of the tobacco middle bone after the expansion treatment correlates with the specific components of the tobacco inner bone before expansion processing.
  • the method of estimating the swelling of leaf inner tobacco according to the present invention is based on this correlation.
  • the expansion property estimated in the present embodiment is subjected to the expansion processing under the same conditions as the expansion processing at the time of creating the calibration model. It is after swelling.
  • a wavelength of 800 nm to 2500 nm is used in general near infrared spectroscopy, for example, near infrared spectroscopy described in Patent Document 1 described above. That is, it is near-infrared spectroscopy using only near-infrared light.
  • a wavelength in the range of 400 nm to 2500 nm including the range of 400 nm to 800 nm which is a visible light range is used.
  • the near-infrared spectroscopy in the present embodiment is a broad near-infrared spectroscopy using both visible light and near-infrared light.
  • the visible light region By including the visible light region, it becomes possible to include the wavelength according to the specific content component contributing to the swelling of the tobacco inner bone, and it becomes possible to estimate the swelling of the tobacco inner bone with high accuracy.
  • the wavelength range for irradiating the tobacco inner bone of the swelling unknown sample is 400 nm to 2500 nm, at least a specific wavelength used when calculating the swelling from the calibration model may be included.
  • a near infrared spectrophotometer generally used for near infrared spectroscopy can be used.
  • wavelengths used for the actual prediction of the diffusivity from the measured near-infrared spectrum depends on the type of raw material or the calibration model. Which wavelength is used for the swelling estimation can be determined by the method of preparing a calibration model described later. When the calibration model is obtained by PLS regression analysis, all wavelengths used for PLS regression analysis are used for estimation of swelling by near infrared spectroscopy.
  • Known methods of measuring other items using near-infrared spectroscopy for example, methods of measuring nicotine using near-infrared spectroscopy, methods of measuring chemical substances in leaves using near-infrared spectroscopy, etc. are known. In this case, by including the wavelength used for the estimation, measurement of the other items can be performed simultaneously with the estimation of the swelling.
  • the calibration model used to calculate the swelling in the estimation method according to the present embodiment is created by multivariate analysis using near-infrared spectra of multiple leaf tobacco middle bones for which the swelling after expansion processing is known. It is preferable that
  • PLS regression analysis As multivariate analysis, PLS regression analysis, multiple regression analysis, and principal component regression analysis can be used.
  • the sample before the expansion process is used to estimate the expansion property of the sample after the expansion process which brings about changes in chemical properties and physical properties, and can not be directly attributed to a specific wavelength.
  • PLS regression analysis or principal component regression analysis is preferred because it is assumed.
  • leaf tobacco middle bone with known swelling property refers to leaf tobacco middle bone whose swelling property was measured by the existing measurement method.
  • the existing measurement method is to cut leaf tobacco, and the cut tobacco is equilibrated in a harmonized room strictly adjusted to 22 ⁇ 1.0 ° C., 60 ⁇ 3.0% RH (equilibrium water content: 10 It is harmonized for 2 to 7 days until it reaches ⁇ 12%, and it is measured with a swelling measuring machine in the same room. For one measurement, it is necessary to cut 10 to 15 g of a small-sized machine and 60 to 100 g of tobacco on a large-sized machine. In addition, in order to obtain an accurate measurement value, it is common to measure repeatedly by 2 to 5 times and obtain the average. In addition, it takes about 20 minutes per sample for the measurement by the swelling measuring machine.
  • leaf tobacco middle bone which can be used as a sample to which the estimation method of the present embodiment is applied is not particularly limited, for example, inner bone immediately after deboning, minced form, pulverized powder and the like can be mentioned. From the viewpoint of enhancing the uniformity of the sample, powder is preferable. The accuracy of the estimation can be further improved by increasing the uniformity of the sample.
  • the content component of leaf tobacco is usually analyzed using powder. Therefore, when the measurement sample is a powder, the sample for analyzing the content component can be used as it is to estimate the swelling property, or the sample used for estimating the swelling property can be used as it is in the content component analysis It can be used.
  • leaf tobacco inner bone used in the estimation of the present embodiment, and it is possible to estimate any type used in conventional cigarettes, such as leaf inner tobacco leaves such as yellow type, burley type or conventional type. Can.
  • the amount of sample required for estimation is, for example, in the case of powder, an amount of about 1 to 2 g per sample.
  • a sample of leaf tobacco mid-bone which has a known swelling after the expansion treatment, is crushed.
  • the powder sample is irradiated with visible light and near infrared light of wavelengths 400 nm to 2500 nm at regular intervals (for example, 0.5 nm intervals). Because one or both of visible light and near infrared transmission absorption and diffuse reflection occur in the sample, the light intensity not absorbed by the sample is measured by the detector.
  • the spectrum of the absorption intensity of each wavelength in the sample is displayed based on the difference from the reference intensity measured in advance, and the displayed spectrum information is acquired as data.
  • the above process is performed on a plurality of samples, preferably 30 samples or more. Thereby, data of a plurality of spectrum information is acquired.
  • the near infrared spectrum is measured and then converted to a second derivative spectrum.
  • Principal component analysis is performed using the obtained second derivative spectrum and the swelling value measured using the existing measurement method, and an explanatory variable (near infrared spectrum) contributing to the dependent variable (bulging value)
  • an explanatory variable near infrared spectrum
  • a calibration model is created by performing multivariate analysis such as PLS regression analysis.
  • this calibration model may be used from the next estimation, and the process of creating a calibration model becomes unnecessary.
  • the swelling property of the leaf tobacco middle bone can not be simply measured, and the swelling property after the expansion processing can not be estimated before the expansion processing is applied.
  • the swelling property estimation method according to the present embodiment it is possible to easily estimate the swelling property of the leaf tobacco middle bone after the expansion processing before the expansion processing is performed. Moreover, the estimation result obtained is highly accurate.
  • the expansion treatment refers to a treatment for expanding the middle bone to enhance its expansion property, which is closely correlated with the expansion property.
  • the steps of swelling the leaf tobacco inner bone are the steps of impregnating the inner bone with water to prepare a desired water content (for example, 15 to 50%), pressing, cutting and cutting (cutting
  • a desired water content for example, 15 to 50%
  • pressing, cutting and cutting cutting
  • the latter mid bone includes, by way of example, a step of contacting the superheated steam for a short time (for example, 5 seconds at 260 ° C.), and drying and swelling the mid bone.
  • the thickness after pressing, the size and shape at the time of cutting, the water content, and the temperature and contact time of water vapor can be appropriately adjusted in the actual manufacturing process, and are not limited to those described above.
  • the swelling property estimated value obtained according to the present embodiment shows a high value in a certain middle bone material
  • the swelling property estimated value obtained according to the present embodiment in a certain middle bone material When it has been found that the value of B is a low value, it is possible to adjust to a desired swelling property appropriate value by performing a swelling process under predetermined conditions and then blending the both at an appropriate ratio.
  • the estimated value of elasticity obtained by the present embodiment shows a value (for example, a high value) outside the standard value (control range) of elasticity. Also, if it is found that the swelling property estimated value obtained according to this embodiment shows a low value in a certain bone material, after subjected to a swelling process under predetermined conditions, the two are blended at an appropriate ratio. By doing this, it is possible to adjust to the desired swelling proper value.
  • the estimated swelling value in the present embodiment is an estimated value when measured under the conditions of a predetermined expansion treatment.
  • a leaf tobacco medium bone raw material showing a value outside the specification value (management range) at the time of manufacturing of the swelling property is detected in advance in the swelling process.
  • the swellability can be enhanced by adjusting the conditions such as extending the time of contact with water vapor.
  • the swelling property is reduced in at least any one of the above-described steps during actual swelling treatment. It can be made available by adjusting the conditions for the purpose.
  • the swelling can be reduced by adjusting the condition such as lowering the water content after impregnation.
  • the estimation method of the swelling property of leaf tobacco middle bone since it is possible to obtain the estimated value of the swelling property in advance and optimize it, it is possible to receive raw materials or from farmers. At the time of shipment, it will be possible to grade receiving materials or shipping materials using estimates as evaluation indicators.
  • the desired effect can be achieved in reducing the waste loss of the material in the production site, improving the efficiency of material management and manufacturing control, etc. can get.
  • a method for estimating the swelling properties of a tobacco inner bone which comprises irradiating the inner bone of a tobacco leaf before expansion treatment with visible light and near infrared light having a wavelength of 400 nm to 2500 nm, And a step of calculating a swelling estimated value after the swelling processing from a calibration model prepared in advance using the measured transmission absorption spectrum or the diffuse reflection spectrum.
  • the inner bone of the leaf tobacco before the said expansion processing is a powder.
  • the calibration model is a multivariate after measuring a transmission absorption spectrum or a diffuse reflection spectrum by irradiating a plurality of the above-mentioned leaf tobacco middle bones having known swelling properties with visible light and near-infrared light having a wavelength of 400 nm to 2500 nm. Preferably, it is generated by analysis.
  • the multivariate analysis is preferably PLS regression analysis.
  • a humidity control step of adjusting the moisture content of the inner leaf tobacco a cutting step of spreading and cutting the inner leaf tobacco after the humidity adjustment step
  • the above-mentioned leaf tobacco middle bone after the cutting step is brought into contact with superheated steam, dried, and subjected to a swelling treatment, and a swelling step is carried out, using the estimated value obtained by the above-mentioned method for estimating the swelling property of leaf tobacco middle bone It is preferable to set the conditions in at least one of the humidity control process, the cutting process, and the expansion process.
  • Example ⁇ (Examination of the relationship between the content of leaf tobacco inner bone content and swelling) The amount of components was measured using 17 points of leaf tobacco inner bone, content components such as cell wall components, saccharides and amino acids, and qualitative indexes such as color, and all 38 measurement items, using the existing analysis method. In addition, all samples were subjected to swelling treatment, and the value of the swelling after swelling was obtained using the existing measurement method.
  • wavelength range In general near infrared spectroscopy, wavelengths in the range of 800 nm to 2500 nm are used. However, in this wavelength range, the wavelength corresponding to the specific measurement item related to the above-mentioned swellability has not been completely covered. Therefore, a wavelength of 400 nm to 2500 nm including the visible light region is used.
  • the swelling property was measured using the existing measurement method using 47 points of leaf tobacco inner bone.
  • the leaf tobacco inner bone at 47 points was crushed to a diameter of 1 mm or less and used as a calibration model preparation sample.
  • transmission and absorption spectra were obtained at intervals of 0.5 nm for visible light and near infrared wavelength regions of wavelengths 400 nm to 2500 nm using a near infrared spectroscopy analyzer (NIRS XDS Multibial Analyzer, manufactured by Nireco). It was measured.
  • NIRS XDS Multibial Analyzer manufactured by Nireco
  • 1 to 2 g of a calibration model preparation sample is packed in a quartz vial (29 mm in diameter) and pressed with a special tool, and then visible light and the visible light from the bottom of the vial are measured using a near infrared spectrometer.
  • the near infrared light was irradiated, the near infrared light reflected for each wavelength was detected, and the transmission absorption spectrum was measured from the difference from the reference intensity.
  • the correlation between the spectrum and the swelling property obtained by the existing measurement method was analyzed using the multivariate analysis method to create a calibration model .
  • calibration is performed by performing PLS regression analysis using the near infrared spectrum as the explanatory variable X and the value of the swelling as the dependent variable Y, using the statistical analysis software VISION attached to the above-mentioned near infrared spectrometer. I created a model.
  • the prepared calibration model is shown in FIG. The factor number was 6, the determination coefficient (R 2 ) was 0.7098, the SEC was 6.2 cc / 100 g / rating, and the SECV was 9.1 cc / 100 g / rating.
  • the loading plot in the wavelength range of 400 nm to 2500 nm used to create this calibration model is shown in FIG.
  • the wavelength region where the absolute value of the loading plot is large is considered to greatly contribute to the calibration model, which indicates that the visible light region with a wavelength of 400 nm to 800 nm is important for this calibration model.
  • a plot of the regression coefficient of the created calibration model is shown in FIG. The regression coefficient is an important coefficient when actually estimating the swelling from the transmission absorption spectrum. This also indicates that the visible light region of wavelengths 400 nm to 800 nm is important for this calibration model.
  • Comparative Example An attempt was made to estimate the swellability after the swelling process using the technique described in Patent Document 1 described above. Specifically, using the calibration curve prepared in Example 1 of Patent Document 1, according to the procedure described in Example 1 of Patent Document 1, with regard to the 17 points in the leaf tobacco medium bone tested in the above-mentioned Example, The estimated value of swelling was calculated and used as the estimated value of the comparative example.
  • the value of the swellability obtained using the existing measurement method is Xt
  • Opening difference ratio (%) ((
  • the results are shown in Table 1.
  • the calibration model obtained in the present example is a calibration model which has a maximum differential ratio of up to 5.0% and an average of 1.9%. That is, it is clear that the estimated value obtained in the present embodiment is approximately equal to the value of the swellability obtained using the existing measurement method. That is, it shows that the method is remarkably excellent as a method for estimating the swelling after the expansion treatment using the leaf tobacco inner bone before the expansion treatment.
  • the difference ratio was a maximum of 31.7% and an average of 29.5%. This indicates that the estimated value of the comparative example is far from the value of the swellability obtained using the existing measurement method, and can not be used as a method of estimating the swellability after the swelling treatment.
  • the present invention can be utilized in the design and manufacture of cigarettes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

膨化処理を施す前の葉たばこ中骨において、その膨化処理後の膨こう性を推定できる方法を提供する。膨化処理前の葉たばこの中骨に波長400nm~2500nmの可視光線および近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成した検量モデルから膨化処理後の膨こう性推定値を算出する工程とを含む。

Description

葉たばこ中骨の膨こう性の推定方法
 本発明は葉たばこ中骨の膨こう性を推定する方法に関し、詳細には近赤外分光法を利用して葉たばこ中骨の膨こう性を推定する方法に関する。
 シガレット(紙巻きたばこ)の製品設計にあたっては、葉たばこの種々の化学特性および物理特性を考慮する必要がある。葉たばこの物理特性の一つとして、膨こう性がある。膨こう性とは、ラミナは裁刻後に、中骨は膨化処理および裁刻後に、一定圧力で一定時間、圧縮したときのそれぞれの1gあたりの体積を求めた数値である。
 葉たばこの膨こう性が高ければ、重量当たりたくさんのシガレットを作ることができる。そのため、葉たばこの膨こう性を調べることは製造計画立案において有用であり、さらに、品種開発および葉組設計を行う上での製造コストの低い原材料を選抜、および使用するためにも有用である。したがって、葉たばこの膨こう性は、原料コストの観点から重要な要因であるとともに、製品設計上不可欠な要素である。
 葉たばこの膨こう性を簡便に調べる方法として、ラミナ刻に近赤外線を照射して、その吸収スペクトルまたは拡散反射スペクトル等を測定し、測定値とあらかじめ作成された検量線とを用いることで、ラミナ刻の膨こう性の推定値を算出する方法が開発されている(特許文献1)。
日本国公開特許公報「特開2014-211444号公報(2014年11月13日公開)」
 周知技術としての葉たばこ原料の膨こう性の測定方法は特許文献1の段落0006および段落0021に記載の通りである。その方法は、測定対象とする葉たばこを、一定温度および一定湿度に厳密に調節された調和室で平衡状態になるまで2~7日間調和した後に、測定機により測定するものである。さらに、正確な測定値を得るためには2~5回繰り返し測定し、その平均で表すのが一般的である。すなわち、従来の膨こう性の測定では、非常に多くの手間および時間がかかってしまう。そこで特許文献1では、NIRを使用した簡便な膨こう性推定方法を開示している。
 一方で、シガレットの製造においては、特許文献1の測定対象であったラミナに加えて、葉の中骨部分も原料として用いられており、中骨の膨こう性においても、ラミナと同様、簡便に推定値を算出することが望まれている。しかしながら、特許文献1に記載の発明では葉たばこ中骨における膨こう性の推定値の算出を想定していない。また、本願発明者らが実際に特許文献1に記載の発明を葉たばこ中骨に適用したところ、その測定精度は著しく低いことが分かった。
 ところで、葉たばこの中骨には、葉たばこの燃焼性を高め、喫味を緩和させるため、裁刻前に膨化処理が施される。この膨化処理とは、中骨に水分を含浸させ、圧展、裁断した後、過熱水蒸気を短時間接触させてから急速に乾燥させることで中骨を膨張させ、その膨こう性を高める処理のことである。よって、葉たばこ中骨の膨こう性として重要となるのは、膨化処理後の膨こう性である。
 しかしながら特許文献1では、葉たばこの中骨を測定対象としていない。さらに、特許文献1の技術は、膨化処理を施すことによって膨こう性値が受ける影響について一切考慮されていない。
 そのため、本発明は上記の問題点に鑑みてなされたものであり、その目的は、煩雑な作業を行うことなく膨化処理後の葉たばこ中骨の膨こう性を推定できる方法を提供することにある。また、当該推定方法を利用した、葉たばこ中骨における膨こう性の工程管理方法を提供する。
 本願発明者が鋭意検討した結果、驚くべきことに、近赤外分光法を利用することにより、膨化処理を施す前の葉たばこ中骨を試料として用いても膨化処理後の膨こう性を推定できることを見出し、本発明を完成させるに至った。すなわち、上記の課題を解決するために、本発明の一態様に係る葉たばこ中骨の膨こう性の推定方法は、膨化処理前の葉たばこの中骨に波長400nm~2500nmの可視光線および近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成した検量モデルから膨化処理後の膨こう性推定値を算出する工程とを含むことを特徴とする。
 膨こう性が異なる複数の葉たばこ中骨をブレンドする方法としては、上述の葉たばこ中骨の膨こう性の推定方法により得られた推定値を用いて、ブレンドする葉たばこ中骨を決定することが好ましい。
 また、膨化処理された葉たばこ中骨の製造方法としては、葉たばこ中骨の水分含量を調整する調湿工程、上記調湿工程後の上記葉たばこ中骨を圧展および裁刻する裁刻工程、上記裁刻工程後の上記葉たばこ中骨を過熱水蒸気に接触させた後に乾燥し、膨化処理を施す膨化工程を含み、上述の葉たばこ中骨の膨こう性の推定方法により得られた推定値を用いて、上記調湿工程、上記裁刻工程、および上記膨化工程のうちの少なくとも何れか1つにおける条件を設定することが好ましい。
 本発明に係る葉たばこ中骨の膨こう性の推定方法によれば、煩雑な作業を行うことなく迅速に、膨化処理前の葉たばこ中骨から、膨化処理後の葉たばこ中骨の膨こう性推定値を算出することができる。また、当該推定方法を利用して、葉たばこ中骨における膨こう性の工程管理方法を提供することができる。
内容成分および膨こう性における相関ローディングプロットの図である。図1中、黒丸は各内容成分のローディングプロットを表し、白四角は膨こう性のローディングプロットを表す。 近赤外線のスペクトルと得られた膨こう性とのPLS回帰分析の結果である、検量モデルの図である。 検量モデルの作成に使用した、ローディングプロットの図である。 検量モデルの回帰係数のプロットの図である。
 以下、本発明の一実施形態について、詳細に説明する。
 本実施形態に係る膨こう性の推定方法は、葉たばこ中骨に可視光線および近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量モデルから膨こう性推定値を算出する工程とを含むことを特徴とする葉たばこ中骨の膨こう性の推定方法である。
 以下、可視光線および近赤外線照射による透過吸収スペクトルおよび拡散反射スペクトルのことを「近赤外スペクトル」と称する。
 文献:たばこ総合研究センター編「たばこの辞典 第2版」(山愛書院、2010年6月20日)p.88図8によれば、葉たばこの全葉は大まかに葉肉、中骨および葉柄に分類される。葉たばこ原料の製造においては、シガレットの製造の前段階(原料加工)において、葉肉、中骨および葉柄にそれぞれ分ける除骨工程を経過する。葉肉は除骨葉またはラミナとも呼ばれ、シガレットの香喫味に主に関わる原料となる。中骨および葉柄は全葉からラミナを除いた残りの部位で、その後の加工を経てラミナ同様、シガレット製造に使用される原料となる。本明細書において中骨とは、上述「たばこの辞典」で記載の中骨に、葉柄も含めたものを意図している。また、本明細書における「中骨」とは、特に断りがなければ「葉たばこ中骨」を指すものとする。
 葉たばこ中骨には、膨こう性の測定に先立って膨化処理および裁刻される。膨化処理は、調湿工程、裁刻工程、および膨化工程を含む。詳細には、調湿工程で中骨に水分を含浸させ、裁刻工程で中骨を圧展、裁断した後、膨化工程で過熱水蒸気を短時間接触させてから急激に乾燥させる処理である。これにより、中骨を膨張させ、その膨こう性を高めることができる。また、膨化処理により、葉たばこは燃焼性が高くなり、喫味が緩和される。ここで、過熱水蒸気とは、100℃以上の水蒸気のことである。
 葉たばこ中骨の膨こう性は、膨化処理の条件により変動するが、「cc/g」の単位で表される物理特性量であり、刻状態にした葉たばこ中骨をある一定圧力で一定時間圧縮したときの、刻1gの体積を求めた数値である。
 葉たばこ中骨の膨こう性は、刻体積および刻間空隙により決定されている。刻体積は刻の量により定まる因子であり、みかけ密度から推定することができる。刻間空隙は刻の性質により定まる因子であり、弾性率、刻の形状および刻の配向(並び方)の影響を受ける因子である。したがって、膨こう性は、みかけ密度のみから推定できるものではない。なお、葉たばこの中骨に関して説明している場合の刻とは、刻状態にした膨化処理後の葉たばこ中骨を指す。
 また、本明細書において「葉たばこ中骨の膨こう性」とは、特に断りのない限り膨化処理後の葉たばこ中骨の膨こう性のことを指す。
 本願発明者らは、膨化処理後の葉たばこ中骨の膨こう性が、膨化処理前の葉たばこ中骨における特定の内容成分と相関することを見出している。本願発明に係る葉たばこ中骨の膨こう性の推定方法は、この相関関係に基づいている。なお、葉たばこ中骨の膨こう性は、膨化処理の条件により変動するため、本実施形態で推定される膨こう性は、検量モデルを作成した際の膨化処理と同じ条件で膨化処理を行った後の膨こう性である。
 実際に葉たばこ中骨の内容成分と膨こう性の関係性について多変量解析を行い、検量モデルに用いる波長領域を決定した経緯については実施例で述べる。
 検量モデルに用いる波長領域について、一般的な近赤外分光法、例えば上述した特許文献1に記載の近赤外分光法では、800nm~2500nmの波長を使用する。すなわち近赤外線のみを用いた近赤外分光法である。しかしながら、本実施形態では、可視光領域である400nm~800nmの領域も含む、400nm~2500nmの領域の波長を用いている。
 すなわち、本実施形態における近赤外分光法は、可視光線および近赤外線の両方を用いた広義の近赤外分光法である。可視光領域も含めることにより、葉たばこ中骨の膨こう性へ寄与する特定の内容成分に係る波長が含まれるようになり、精度高く、葉たばこ中骨の膨こう性を推定できるようになる。
 なお、膨こう性未知試料の葉たばこ中骨に照射する波長領域は、400nm~2500nmであるが、少なくとも、検量モデルから膨こう性を算出する際に用いられる特定の波長が含まれていればよい。スペクトルの測定には、近赤外分光法に一般的に用いられている近赤外分光測定装置を用いることができる。
 測定された近赤外スペクトルからどの波長を実際の膨こう性推定に用いるかは、原料の種類または検量モデルにより異なるものである。どの波長を膨こう性推定に用いるかは、後述する検量モデルの作成手法により決定することができる。なお、検量モデルがPLS回帰分析により得られたものである場合には、PLS回帰分析に利用したすべての波長を近赤外分光法による膨こう性の推定に利用する。
 近赤外分光法を利用した他の項目の測定法(例えば、近赤外分光法を利用したニコチンの測定法、近赤外分光法を利用した葉中化学物質の測定法等)が知られている場合に、当該推定に用いられる波長を含めておくことにより、膨こう性の推定と同時に、当該他の項目の測定も行うことができる。
 本実施形態に係る推定方法において膨こう性の算出に用いられる検量モデルは、膨化処理後の膨こう性が既知である複数の葉たばこ中骨の近赤外スペクトルを用いて、多変量解析によって作成されたものであることが好ましい。
 多変量解析としては、PLS回帰分析、重回帰分析、および主成分回帰分析を利用することができる。本実施形態では、膨化処理前の試料を用いて化学特性および物性の変化をもたらす膨化処理を施した後の試料の膨こう性を推定するものであり、直接的に特定の波長へと帰属できないと想定されることからPLS回帰分析あるいは主成分回帰分析が好ましい。
 本明細書において、「膨こう性が既知である葉たばこ中骨」とは、既存の測定方法により膨こう性を測定した葉たばこ中骨のことを指す。既存の測定方法は、葉たばこを裁刻し、刻状にしたたばこを、22±1.0℃、60±3.0%RHに厳密に調節された調和室で平衡状態(平衡水分含量:10~12%)になるまで2~7日間調和し、同室内にて膨こう性測定機により測定するものである。一回の測定には、小型機の膨こう性測定機で10~15g、大型機の膨こう性測定機で60~100gのたばこ刻を必要とする。また、正確な測定値を得るために、2~5回繰り返し測定して、その平均を取得する方法が一般的である。また、膨こう性測定機による測定には、1サンプルあたり20分程度要する。
 本実施形態の推定方法を適用する試料として使用できる葉たばこ中骨の形態は、特に限定されないが、例えば除骨直後の中骨、刻形態、および粉砕された粉体等を挙げることができる。試料の均一性を高める観点からは、粉体であることが好ましい。試料の均一性を高くすることにより、推定の精度をより向上させることができる。
 なお、葉たばこの内容成分は、通常、粉体を用いて分析している。そのため、測定試料を粉体とする場合には、内容成分分析用の試料をそのまま膨こう性の推定に利用することができる、あるいは、膨こう性の推定に用いた試料をそのまま内容成分分析において利用することができる。
 本実施形態の推定に用いられる葉たばこ中骨の種類に制限はなく、黄色種、バーレー種または在来種等の葉たばこ中骨等、従来の紙巻きたばこに用いられている任意の種類について推定することができる。
 推定に用いる試料の水分調整は特に必要ではなく、6~13%の水分含量であれば推定できる。
 また、推定に必要な試料の量は、たとえば、粉体の場合には、1サンプルあたり1~2g程度の量である。
 次に、検量モデルの具体的な作成方法について説明する。
 まず、膨化処理後の膨こう性が既知である葉たばこ中骨の試料を粉砕する。この粉体試料に対し、波長400nm~2500nmの可視光線および近赤外線を、一定間隔(例えば、0.5nm間隔)で照射する。試料において可視光線および近赤外線の透過吸収および拡散反射の一方または両方が起こるため、試料に吸収されなかった光強度を検出器によって測定する。事前に測定したレファレンス強度との違いから試料における各波長の吸収強度のスペクトルを表示し、表示したスペクトル情報をデータとして取得する。上記の処理を、複数の試料、好ましくは30サンプル以上について行う。これにより、複数のスペクトル情報のデータを取得する。
 それぞれのデータについて、近赤外スペクトルを測定した後、これらを2次微分スペクトルに変換する。得られた2次微分スペクトルおよび既存の測定法を用いて測定された膨こう性値を用いて主成分分析を行い、従属変数(膨こう性値)に寄与する説明変数(近赤外スペクトル)を選択する。次いで、PLS回帰分析等の多変量解析を行うことによって、検量モデルを作成する。
 なお検量モデルが作成されれば、その次の推定からはこの検量モデルを用いればよく、検量モデルを作成する工程は不要となる。
 また、黄色種、バーレー種および在来種等、複数種の葉たばこ中骨を用いて近赤外スペクトルを測定し、それらを利用して一つの検量モデルを作成した場合には、相違する種類の葉たばこ中骨について、共通の検量モデルを用いて膨こう性を推定することができる。
 作成された検量モデルから、その近赤外スペクトルごとの回帰係数を求めることができ、この回帰係数を用いることで、近赤外スペクトルから膨こう性を推定することができる。
 以上のように、従来は、葉たばこ中骨の膨こう性は簡便に測定することができず、かつ膨化処理を施す前に、膨化処理後の膨こう性を推定することができなかった。しかし、本実施形態に係る膨こう性の推定方法によれば、膨化処理後の葉たばこ中骨の膨こう性を、膨化処理を施す前に簡便に推定することができる。また、得られる推定結果は高精度である。
 膨化処理とは上述のとおり、中骨を膨張させてその膨こう性を高める処理のことを指し、膨こう性と密接に相関するものである。
葉たばこ中骨に施される膨化処理の工程は、上述のとおり、中骨に水分を含浸させ所望の水分含量(一例として15~50%)に調製する工程、圧展し、裁断する工程(裁断後の中骨は一例として幅および長さ共に0.2mm程度)、および過熱水蒸気を短時間(一例として260℃で5秒間)接触させ、中骨を乾燥し、膨化させる工程を含むものである。圧展後の厚さ、裁断時の大きさおよび形状、水分含量、ならびに水蒸気の温度および接触時間等は、実際の製造工程では適宜調整され得るものであり上記したものに限定されない。
 また、膨化処理を施す前に膨化処理後の葉たばこ中骨の膨こう性の推定値を得ることができるため、膨化処理後の膨こう性を制御することを目的に、用いる葉たばこ中骨およびこれをブレンドする際の配合を調節することで、膨化処理後の膨こう性を最適化することも可能となる。
 具体的には、膨化処理後の膨こう性の異なる中骨材料をブレンドすることによって、所望の膨こう性適正値に調整することが可能となる。また、膨化処理後の中骨をブレンドする際の、その配合割合を事前に知得できることにも適用され得るものである。
 一例として、ある中骨材料において、本実施形態により得られた膨こう性推定値が高い値を示すことが判明し、またある中骨材料において、本実施形態により得られた膨こう性推定値が低い値を示すことが判明した場合に、所定の条件で膨化処理を施した後に、その両者を適当な割合でブレンドすることで、所望の膨こう性適正値に調整することができる。
 さらなる例として、ある中骨材料において、本実施形態により得られた膨こう性推定値が膨こう性の規格値(管理幅)を外れた値(例えば、高い値)を示すことが判明し、またある中骨材料において、本実施形態により得られた膨こう性推定値が低い値を示すことが判明した場合に、所定の条件で膨化処理を施した後に、その両者を適当な割合でブレンドすることで、所望の膨こう性適正値に調整することができる。
上述のとおり、本実施形態における膨こう性推定値は、所定の膨化処理の条件の下で測定した場合の推定値である。これにより、所定の条件で膨化処理を施すことを前提とした場合に、膨こう性の製造時の規格値(管理幅)を外れる値を示す葉たばこ中骨原料を膨化処理の事前に検出することができる。
 よって膨化処理を施す前に膨化処理後の葉たばこ中骨の膨こう性の推定値を得ることができ、膨化処理後の膨こう性を制御することを目的に、膨化処理の条件を調節することができる。これによって、膨化処理後の膨こう性を最適化することも可能となる。
 例えば、水蒸気に接触させる時間を延長する等の条件調節を行うことにより、膨こう性を高めることができる。同様に、上述の管理幅の上限より高い膨こう性推定値を示す中骨原料については、実際の膨化処理時に、上述の工程のうちの少なくとも何れか1つの工程において、膨こう性を低下せしめるための条件調節を行うことで、利用可能とすることができる。例えば、含浸させた後の水分含量を低くする等の条件調節を行うことにより、膨こう性を低下せしめることができる。
 同様に、上述の管理幅の下限より低い膨こう性推定値を示す中骨原料については、実際の膨化処理時に、上述の工程のうちの少なくとも何れか1つの工程において、膨こう性を高めるための条件設定を行うことで、利用可能とすることができる。
 さらに、本実施形態に係る葉たばこ中骨の膨こう性の推定方法によれば、事前に膨こう性の推定値を得て、それを最適化することができるため、原料の受け入れ時または農家からの出荷時に、推定値を評価指標とした受け入れ原料または出荷原料のグレーディングも可能となる。
 従って、本実施形態の推定方法を中骨原料の製造におけるステップをして組み入れることで、製造現場での中骨原料の廃棄ロスの低減、原料管理および製造管理の効率化等に所望の効果が得られる。
 すなわち、本実施形態による推定法を葉たばこ中骨原料の製造管理に適切に組み入れた新規な工程管理方法を提供することができ、従来のシガレット原料製造に対し、歩留まりまたは生産効率を一層高める効果を奏することが可能になる。
 〔まとめ〕
 本発明の一態様に係る葉たばこ中骨の膨こう性の推定方法は、膨化処理前の葉たばこの中骨に波長400nm~2500nmの可視光線および近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成した検量モデルから膨化処理後の膨こう性推定値を算出する工程と、を含む。
 また、上記膨化処理前の葉たばこの中骨は、粉体であることが好ましい。
 また、上記検量モデルは、膨こう性が既知である複数の上記葉たばこ中骨に波長400nm~2500nmの可視光線および近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定した上で、多変量解析によって作成されることが好ましい。
 さらに、上記多変量解析は、PLS回帰分析であることが好ましい。
 膨こう性が異なる複数の葉たばこ中骨をブレンドする方法としては、上述の葉たばこ中骨の膨こう性の推定方法により得られた推定値を用いて、ブレンドする葉たばこ中骨を決定することが好ましい。
 また、上記決定することでは、さらに上記膨こう性が異なる複数の葉たばこ中骨の配合割合を決定することが好ましい。
 また、膨化処理された葉たばこ中骨の製造方法としては、葉たばこ中骨の水分含量を調整する調湿工程、上記調湿工程後の上記葉たばこ中骨を圧展および裁刻する裁刻工程、上記裁刻工程後の上記葉たばこ中骨を過熱水蒸気に接触させた後に乾燥し、膨化処理を施す膨化工程を含み、上述の葉たばこ中骨の膨こう性の推定方法により得られた推定値を用いて、上記調湿工程、上記裁刻工程、および上記膨化工程のうちの少なくとも何れか1つにおける条件を設定することが好ましい。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 〔実施例〕
 (葉たばこ中骨の内容成分と膨こう性との関係性の検討)
 葉たばこ中骨を17点用い、細胞壁構成成分、糖類およびアミノ酸等といった内容成分、および色等の定性的な指標、全38の測定項目について、既存の分析法を用いて成分量を測定した。また、全てのサンプルに膨化処理を施し、既存の測定方法を用いて、膨化後の膨こう性の値を取得した。
 得られた膨こう性の値に対し、前述の測定項目を説明変数XとするPLS回帰分析において、主成分空間におけるスコアのプロット(図1)から6項目の測定項目が膨こう性と関係していることを確認した。図1中、破線で囲んだ部分のプロットが膨こう性との相関が高い測定項目のプロットである。また、その6項目を抽出して作成したPLS回帰モデルでは、決定係数(R)0.8877と高い相関が認められた。
 (波長領域の決定)
 一般的な近赤外分光法では800nm~2500nmの領域の波長を用いている。しかしながら、この波長領域では、前述の膨こう性に関連する特定の測定項目に対応する波長をカバーしきれていなかった。そのため、可視光領域を含む波長400nm~2500nmの波長を用いることとした。
 (検量モデルの作成)
 葉たばこ中骨を47点用い、既存の測定方法を用いて膨こう性を測定した。また、47点の葉たばこ中骨を直径1mm以下となるよう粉砕し、検量モデル作成試料として用いた。検量モデル作成試料について、近赤外分光分析装置(NIRS XDS Multibial Analyzer、ニレコ社製)を用いて、波長400nm~2500nmの可視光線および近赤外波長領域に関し、0.5nm間隔で透過吸収スペクトルを測定した。具体的には、石英製バイアル瓶(29mm径)に検量モデル作成試料を1~2g程度詰め、専用具で鎮圧した後、近赤外分光分析装置を用いて、バイアル瓶の底面から可視光線および近赤外線を照射し、波長毎に反射する近赤外線を検出してレファレンス強度との違いから透過吸収スペクトルを測定した。
 検量モデル作成試料について、透過吸収スペクトルを測定した後、当該スペクトルと、既存の測定方法により得られていた膨こう性との相関について、多変量解析手法を用いて解析し、検量モデルを作成した。詳細には、上記近赤外分光分析装置に付随する統計解析ソフトウェアVISIONを用いて、近赤外スペクトルを説明変数X、膨こう性の値を従属変数Yとする、PLS回帰分析を行って検量モデルを作成した。作成した検量モデルを図2に示す。Factor数は6、決定係数(R)は0.7098、SECは6.2cc/100g/rating、SECVは9.1cc/100g/ratingであった。
 この検量モデルの作成に使用した400nm~2500nmの波長領域におけるローディングプロットを図3に示す。一般的に、ローディングプロットの絶対値が大きい波長領域は検量モデルに大きく寄与するとされており、ここから、波長400nm~800nmの可視光領域がこの検量モデルに重要であることを示している。さらに、作成された検量モデルの回帰係数のプロットを図4に示す。回帰係数は、透過吸収スペクトルから実際に膨こう性を推定する際に重要な係数である。ここからも、波長400nm~800nmの可視光領域がこの検量モデルに重要であることを示している。
 (近赤外分光法による膨こう性の推定)
 膨こう性の値が未知である葉たばこ中骨17点について、近赤外分光法によりスペクトル測定を行い、上記で得られた検量モデルを用いて膨こう性を推定した。まず、検量モデル作成試料の調製と同様にして、膨こう性の値が未知である葉たばこ中骨を直径1mm以下になるよう粉砕し、推定試料とした。推定試料について透過吸収スペクトルを測定し、作成された検量モデルから膨こう性を推定した。
 〔比較例〕
 上述の特許文献1に記載の技術を用いて、膨化処理後の膨こう性の推定を試みた。具体的には、特許文献1の実施例1で作成された検量線を用いて、特許文献1の実施例1に記載の手順に従い、上述の実施例で供試した葉たばこ中骨17点について、膨こう性の推定値を算出し、比較例の推定値とした。
 〔妥当性の評価〕
 実施例および比較例のそれぞれ17点について、既存の測定方法を用いて得た膨こう性の値をXtとし、推定値Xeとの開差から開差率を次の式により算出した:
 開差率(%)=((|Xt-Xe|)/Xt)×100
 結果を表1に示す。表1より、本実施例で得られた検量モデルは、最大5.0%、平均1.9%の開差率となる検量モデルである。すなわち、本実施例で得られる推定値は既存の測定方法を用いて得た膨こう性の値とほぼ等しい値であることが明らかである。すなわち、膨化処理前の葉たばこ中骨を用いて膨化処理後の膨こう性を推定する方法として著しく優れていることを示している。
 一方、葉たばこ中骨を対象としては開発されていない、従来知られているNIR検量モデルを用いた方法では、開差率は最大31.7%、平均29.5%であった。これは、比較例の推定値が既存の測定方法を用いて得た膨こう性の値から大きくかけ離れており、膨化処理後の膨こう性を推定する方法としては利用できないことを示している。
Figure JPOXMLDOC01-appb-T000001
 本発明は、紙巻きたばこの設計および製造に利用することができる。

Claims (7)

  1.  膨化処理前の葉たばこの中骨に波長400nm~2500nmの可視光線および近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程と、
     測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成した検量モデルから膨化処理後の膨こう性推定値を算出する工程と、を含むことを特徴とする葉たばこ中骨の膨こう性の推定方法。
  2.  上記膨化処理前の葉たばこの中骨が、粉体であることを特徴とする請求項1に記載の葉たばこ中骨の膨こう性の推定方法。
  3.  上記検量モデルが、膨こう性が既知である複数の上記葉たばこ中骨に波長400nm~2500nmの可視光線および近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルの値を多変量解析することによって作成されることを特徴とする請求項1または2に記載の葉たばこ中骨の膨こう性の推定方法。
  4.  上記多変量解析が、重回帰分析、またはPLS回帰分析であることを特徴とする請求項3に記載の葉たばこ中骨の膨こう性の推定方法。
  5.  膨こう性が異なる複数の葉たばこ中骨をブレンドする方法であって、
     請求項1~4の何れか1項に記載の葉たばこ中骨の膨こう性の推定方法により得られた推定値を用いて、ブレンドする葉たばこ中骨を決定することを特徴とする複数の葉たばこ中骨をブレンドする方法。
  6.  上記決定することでは、さらに上記膨こう性が異なる複数の葉たばこ中骨の配合割合を決定することを特徴とする請求項5に記載の複数の葉たばこ中骨をブレンドする方法。
  7.  膨化処理された葉たばこ中骨の製造方法であって、
     葉たばこ中骨の水分含量を調整する調湿工程、
     上記調湿工程後の上記葉たばこ中骨を圧展および裁刻する裁刻工程、
     上記裁刻工程後の上記葉たばこ中骨を過熱水蒸気に接触させた後に乾燥し、膨化処理を施す膨化工程を含み、
     請求項1~4の何れか1項に記載の葉たばこ中骨の膨こう性の推定方法により得られた推定値を用いて、上記調湿工程、上記裁刻工程、および上記膨化工程のうちの少なくとも何れか1つにおける条件を設定することを特徴とする膨化処理された葉たばこ中骨の製造方法。
PCT/JP2018/023265 2017-06-28 2018-06-19 葉たばこ中骨の膨こう性の推定方法 WO2019004003A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126609 2017-06-28
JP2017126609 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004003A1 true WO2019004003A1 (ja) 2019-01-03

Family

ID=64742962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023265 WO2019004003A1 (ja) 2017-06-28 2018-06-19 葉たばこ中骨の膨こう性の推定方法

Country Status (1)

Country Link
WO (1) WO2019004003A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688003A (zh) * 2017-09-04 2018-02-13 南京大学 一种消除植被冠层结构和地表背景影响的叶片反射率卫星遥感提取方法
CN111307724A (zh) * 2020-03-03 2020-06-19 红云红河烟草(集团)有限责任公司 一种建立基于色差法测定配方烟丝中梗丝含量模型的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388933A (en) * 1981-06-25 1983-06-21 Philip Morris, Inc. Tobacco stem treatment and expanded tobacco product
JPH0391472A (ja) * 1989-09-02 1991-04-17 Hf & Ph F Reemtsma Gmbh & Co タバコの充填容量を決定するための方法および装置
US20050098186A1 (en) * 2003-02-05 2005-05-12 British American Tobacco (Germany) Gmbh Pressure-conditioning method
WO2012128280A1 (ja) * 2011-03-22 2012-09-27 日本たばこ産業株式会社 膨こう性測定方法
WO2012132008A1 (ja) * 2011-03-31 2012-10-04 日本たばこ産業株式会社 たばこ原料の膨化方法およびその装置
WO2016157414A1 (ja) * 2015-03-31 2016-10-06 日本たばこ産業株式会社 たばこ原料の膨嵩性測定装置及び膨嵩性測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388933A (en) * 1981-06-25 1983-06-21 Philip Morris, Inc. Tobacco stem treatment and expanded tobacco product
JPH0391472A (ja) * 1989-09-02 1991-04-17 Hf & Ph F Reemtsma Gmbh & Co タバコの充填容量を決定するための方法および装置
US20050098186A1 (en) * 2003-02-05 2005-05-12 British American Tobacco (Germany) Gmbh Pressure-conditioning method
WO2012128280A1 (ja) * 2011-03-22 2012-09-27 日本たばこ産業株式会社 膨こう性測定方法
WO2012132008A1 (ja) * 2011-03-31 2012-10-04 日本たばこ産業株式会社 たばこ原料の膨化方法およびその装置
WO2016157414A1 (ja) * 2015-03-31 2016-10-06 日本たばこ産業株式会社 たばこ原料の膨嵩性測定装置及び膨嵩性測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688003A (zh) * 2017-09-04 2018-02-13 南京大学 一种消除植被冠层结构和地表背景影响的叶片反射率卫星遥感提取方法
CN107688003B (zh) * 2017-09-04 2020-06-30 南京大学 一种消除植被冠层结构和地表背景影响的叶片反射率卫星遥感提取方法
CN111307724A (zh) * 2020-03-03 2020-06-19 红云红河烟草(集团)有限责任公司 一种建立基于色差法测定配方烟丝中梗丝含量模型的方法

Similar Documents

Publication Publication Date Title
WO2012127615A1 (ja) 膨こう性測定方法
WO2012128281A1 (ja) 見掛密度測定方法
Stanfill et al. Global surveillance of oral tobacco products: total nicotine, unionised nicotine and tobacco-specific N-nitrosamines
Ciccoritti et al. FT-NIR spectroscopy and multivariate classification strategies for the postharvest quality of green-fleshed kiwifruit varieties
Baqueta et al. Quality control parameters in the roasted coffee industry: a proposal by using MicroNIR spectroscopy and multivariate calibration
Pierce et al. Comparison of sample handling and data treatment methods for determining moisture and fat in Cheddar cheese by near-infrared spectroscopy
WO2019004003A1 (ja) 葉たばこ中骨の膨こう性の推定方法
Soares et al. Inline simultaneous quantitation of tobacco chemical composition by infrared hyperspectral image associated with chemometrics
Jantra et al. Nondestructive determination of dry matter and soluble solids content in dehydrator onions and garlic using a handheld visible and near infrared instrument
Jimenez et al. Differentiation of Ecuadorian National and CCN‐51 cocoa beans and their mixtures by computer vision
CN112801300A (zh) 预测烟草样品香气量的方法、装置和计算机可读取介质
Arslan et al. NIR spectroscopy coupled chemometric algorithms for rapid antioxidants activity assessment of Chinese dates (Zizyphus Jujuba Mill.)
KR20100004129A (ko) 근적외선 분광기를 이용한 산물벼의 비파괴적 현미 및 백미단백질 함량 측정 방법
Paulsen et al. Maize starch yield calibrations with near infrared reflectance
Camps et al. Determination of artemisinin and moisture content of Artemisia annua L. dry powder using a hand-held near infrared spectroscopy device
Bag et al. FT‐NIR spectroscopy: a rapid method for estimation of moisture content in bael pulp
WO2013145437A1 (ja) メンソール含量測定方法
JP5822985B2 (ja) 膨こう性測定方法
JP5617032B2 (ja) 膨こう性測定方法
CN110887809A (zh) 一种基于近红外光谱技术测定烟丝中梗含量的方法
Díaz et al. Combined use of a near-infrared spectrometer and a visible light grain segregator for accurate non-destructive determination of amylose content in rice
Li et al. Rapid analysis of alcohol content during the green jujube wine fermentation by FT-NIR
Wu et al. Uniformity evaluation of stem distribution in cut tobacco and single cigarette by near infrared spectroscopy
Cano-Reinoso et al. Determination of α-guaiene and azulene chemical content in patchouli aromatic oil (Pogostemon cablin Benth.) from Indonesia by Near-infrared spectroscopy
Beghi et al. Rapid determination of crucial parameters for the optimization of milling process by using visible/near infrared spectroscopy on intact olives and olive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP