WO2012127997A1 - ポリフェニレンスルフィド複合繊維および不織布 - Google Patents

ポリフェニレンスルフィド複合繊維および不織布 Download PDF

Info

Publication number
WO2012127997A1
WO2012127997A1 PCT/JP2012/054906 JP2012054906W WO2012127997A1 WO 2012127997 A1 WO2012127997 A1 WO 2012127997A1 JP 2012054906 W JP2012054906 W JP 2012054906W WO 2012127997 A1 WO2012127997 A1 WO 2012127997A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
nonwoven fabric
fiber
polyphenylene sulfide
composite fiber
Prior art date
Application number
PCT/JP2012/054906
Other languages
English (en)
French (fr)
Inventor
中野洋平
矢掛善和
伊藤正士
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US14/005,999 priority Critical patent/US20140017966A1/en
Priority to ES12760981.6T priority patent/ES2572933T3/es
Priority to CN201280006269.XA priority patent/CN103328704B/zh
Priority to KR1020137020879A priority patent/KR20140039158A/ko
Priority to EP12760981.6A priority patent/EP2690208B1/en
Priority to JP2012515838A priority patent/JP5725426B2/ja
Priority to AU2012232449A priority patent/AU2012232449A1/en
Publication of WO2012127997A1 publication Critical patent/WO2012127997A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material

Definitions

  • the present invention relates to a fiber having a main component of polyphenylene sulfide (hereinafter sometimes abbreviated as “PPS”), excellent in heat resistance and chemical resistance, and a nonwoven fabric composed of the fiber. .
  • PPS polyphenylene sulfide
  • PPS resin has excellent heat resistance, flame retardancy, and chemical resistance, and is suitably used as engineer plastic, film, fiber, nonwoven fabric, and the like.
  • non-woven fabrics are expected to be utilized for industrial applications such as heat-resistant filters, electrical insulating materials, and battery separators by taking advantage of these characteristics.
  • thermal adhesive composite fiber containing a low melting point component in order to improve the thermal adhesiveness, it is conventionally known to use a thermal adhesive composite fiber containing a low melting point component.
  • Conventional non-woven fabrics composed of composite fibers using PPS resins include long-fiber non-woven fabrics composed of core-sheath composite fibers whose sheath component is composed of PPS resin and whose core component is composed of polyethylene terephthalate resin, and are thermally bonded. It has been proposed (see Patent Document 4).
  • the sheath component has a higher melting point than the core component, thermal adhesiveness is not different from that of single component fibers, and polyethylene terephthalate resin is inferior in flame retardancy and chemical resistance, so it is durable There was a big problem with sex.
  • An object of the present invention is to provide a non-woven fabric having high mechanical strength and a fiber excellent in thermal adhesiveness while utilizing the heat resistance, flame retardancy, chemical resistance and the like of PPS resin.
  • the present invention comprises a resin mainly containing polyphenylene sulfide mainly containing p-phenylene sulfide as component A, and a resin mainly containing copolymer polyphenylene sulfide containing at least one copolymer unit in addition to p-phenylene sulfide.
  • a composite fiber composed mainly of Component A and Component B, wherein Component B forms at least a part of the surface of the fiber.
  • the present invention is a nonwoven fabric characterized by being composed of the polyphenylene sulfide composite fiber of the present invention.
  • the PPS composite fiber of the present invention is excellent in thermal adhesiveness while having the heat resistance, chemical resistance and flame retardancy characteristics of the PPS resin. Therefore, the nonwoven fabric of the present invention has excellent mechanical strength while having the heat resistance, chemical resistance and flame retardancy characteristics of PPS resin, and can be used for various industrial applications.
  • the composite fiber of the present invention mainly contains component A and component B, and it is important that both of them mainly contain PPS. By doing so, excellent heat resistance, flame retardancy and chemical resistance can be obtained.
  • the PPS composite fiber of the present invention uses a resin mainly containing a copolymerized PPS as a component B to be combined with a component B containing a resin mainly containing PPS mainly composed of p-phenylene sulfide. It is important to form at least part of the surface of the fiber. By doing so, component B acts as an adhesive component, and a nonwoven fabric excellent in mechanical strength can be obtained.
  • the content of p-phenylene sulfide units in the component A PPS is preferably 93 mol% or more.
  • 93 mol% or more more preferably 95 mol% or more of p-phenylene sulfide units, a fiber excellent in spinnability and mechanical strength can be obtained.
  • the content of the PPS resin in Component A is preferably 85% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more from the viewpoints of heat resistance and chemical resistance.
  • the component A may be blended with a thermoplastic resin other than the PPS resin as long as the effects of the present invention are not impaired.
  • thermoplastic resin other than the PPS resin include polyetherimide, polyethersulfone, polysulfone, polyphenylene ether, polyester, polyarylate, polyamide, polyamideimide, polycarbonate, polyolefin, and polyetheretherketone.
  • a crystal nucleating agent a matting agent, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent, or the like may be added as long as the effects of the present invention are not impaired.
  • Component A has a melt flow rate (hereinafter sometimes abbreviated as MFR) measured in accordance with ASTM D1238-70 (measurement temperature 315.5 ° C., measurement load 5 kg load) of 100 to 300 g / 10 min. It is preferable that By setting the MFR to 100 g / 10 min or more, more preferably 140 g / 10 min or more, an appropriate fluidity can be obtained, a rise in the back pressure of the die is suppressed in melt spinning, and yarn breakage during pulling and drawing is also suppressed. Can do.
  • MFR melt flow rate
  • the MFR is 300 g / 10 min or less, more preferably 225 g / 10 min or less, the degree of polymerization or the molecular weight can be appropriately increased, and mechanical strength and heat resistance that can be put to practical use can be obtained.
  • the copolymerized PPS of component B refers to a component constituted by copolymerizing one or more copolymerized units in addition to the unit, with p-phenylene sulfide as the main repeating unit.
  • the content of p-phenylene sulfide units in the copolymerized PPS resin is preferably 70 to 97 mol% with respect to all repeating units.
  • the content of the p-phenylene sulfide unit is 70 mol% or more, more preferably 80 mol% or more, and still more preferably 85 mol% or more, a decrease in heat resistance can be suppressed.
  • the content of the p-phenylene sulfide unit is 97 mol% or less, more preferably 96 mol% or less, and still more preferably 95 mol% or less, a composite fiber excellent in thermal adhesiveness can be obtained.
  • Preferred examples of the copolymer unit include m-phenylene sulfide units represented by the following formula (1), and those represented by formulas (2) to (5).
  • X represents an alkylene, CO, or SO 2 unit.
  • R represents an alkyl, nitro, phenylene, or alkoxy group
  • a plurality of copolymer units other than p-phenylene sulfide may be present.
  • m-phenylene sulfide is preferred from the standpoint that it is easy to obtain a melting point with a balance between thermal adhesiveness and heat resistance and that the fiber has excellent spinnability.
  • the copolymerization amount in the copolymerized PPS is preferably 5 to 30 mol%.
  • the copolymerization amount in the copolymerized PPS is preferably 5 to 30 mol%.
  • a composite fiber excellent in thermal adhesiveness can be obtained.
  • a heat resistance fall can be suppressed by setting it as 30 mol% or less, More preferably, 25 mol% or less, More preferably, it is 20 mol% or less.
  • trifunctional phenyl sulfide represented by the following formula is preferably suppressed to 1 mol% or less of the copolymerized PPS from the viewpoint of excellent fiber spinnability.
  • examples of copolymerization in the copolymerized PPS include random copolymerization and block copolymerization.
  • random copolymerization is preferable because it can be easily controlled to a melting point that balances thermal adhesiveness and heat resistance.
  • the content of the copolymerized PPS in Component B is preferably 85% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more from the viewpoints of heat resistance and chemical resistance.
  • thermoplastic resin other than PPS examples include various thermoplastic resins such as polyetherimide, polyethersulfone, polysulfone, polyphenylene ether, polyester, polyarylate, polyamide, polyamideimide, polycarbonate, polyolefin, and polyetheretherketone. be able to.
  • a crystal nucleating agent a matting agent, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent, or the like may be added as long as the effects of the present invention are not impaired.
  • Component B preferably has an MFR measured in accordance with ASTM D1238-70 (measurement temperature 315.5 ° C., measurement load 5 kg load) of 100 to 300 g / 10 minutes.
  • MFR measured in accordance with ASTM D1238-70 (measurement temperature 315.5 ° C., measurement load 5 kg load) of 100 to 300 g / 10 minutes.
  • component B is used as a thermal adhesive component
  • the melting point of component B is preferably lower than the melting point of component A.
  • the melting point of Component B is preferably 200 to 275 ° C.
  • the melting point of component B can be appropriately adjusted depending on the molar ratio of the copolymer components.
  • the melting point difference between the melting point of component A and the melting point of component B is preferably 5 to 80 ° C.
  • the difference in melting point is preferably 5 ° C. or more, more preferably 10 ° C. or more, and further preferably 15 ° C. or more, a composite fiber having excellent thermal adhesiveness can be obtained.
  • the difference in melting point is 80 ° C. or less, more preferably 50 ° C. or less, and still more preferably 40 ° C. or less, a decrease in heat resistance can be suppressed.
  • the proportion of component B in the PPS composite fiber of the present invention is preferably 5 to 70% by mass.
  • the proportion of the second component is preferably 5% by mass or more, more preferably 10% by mass, and even more preferably 15% by mass or more, it is possible to obtain strong thermal bonding efficiently.
  • the proportion of component B is 70% by mass or less, more preferably 50% by mass or less, and even more preferably 30% by mass or less, a decrease in mechanical strength can be suppressed.
  • component B forms at least a part of the fiber surface.
  • a core-sheath type in which a circular component A is wrapped in a doughnut-shaped component B having the same center in the fiber cross section
  • a core-sheath eccentric type in which the center of component A and the center of component B are shifted
  • Sea-island type with component A as island component and component B as sea component parallel type with both components in parallel
  • lifted can be mention
  • the average single fiber fineness of the PPS composite fiber of the present invention is preferably 0.5 to 10 dtex.
  • the average single fiber fineness is preferably 0.5 dtex or more, more preferably 1 dtex or more, and even more preferably 2 dtex or more, it is possible to maintain the spinnability of the fiber and to prevent frequent yarn breakage during spinning.
  • the average single fiber fineness is set to 10 dtex or less, more preferably 5 dtex or less, and even more preferably 4 dtex or less, it is possible to suppress the discharge amount of the molten resin per spinneret single hole and sufficiently cool the fibers. And a reduction in spinnability due to fusion between fibers can be suppressed.
  • the fabric weight per unit area when the nonwoven fabric is formed can be suppressed, and the surface quality can be improved.
  • the average single fiber fineness is preferably 10 dtex or less, more preferably 5 dtex or less, and further preferably 4 dtex or less.
  • the PPS composite fiber of the present invention can be used as a multifilament, monofilament, or short fiber, and can be used as a fiber constituting any fabric such as a woven fabric and a non-woven fabric. Especially, it is preferable to use the PPS composite fiber of this invention as a constituent fiber of a nonwoven fabric. This is because the nonwoven fabric contributes to the strength of the nonwoven fabric by thermally bonding the constituent fibers together.
  • nonwoven fabric examples include a needle punched nonwoven fabric, a wet nonwoven fabric, a spunlace nonwoven fabric, a spunbond nonwoven fabric, a melt blown nonwoven fabric, a resin bond nonwoven fabric, a chemical bond nonwoven fabric, a thermal bond nonwoven fabric, a toe-opening nonwoven fabric, and an airlaid nonwoven fabric.
  • a spunbonded nonwoven fabric excellent in productivity and mechanical strength is preferable.
  • the nonwoven fabric comprised from the PPS composite fiber of this invention can obtain high mechanical strength by heat bonding, it is preferable to integrate by heat bonding.
  • the basis weight of the nonwoven fabric of the present invention is preferably 10 to 1000 g / m 2 .
  • the basis weight of the nonwoven fabric of the present invention is preferably 10 to 1000 g / m 2 .
  • the basis weight is preferably 10 to 1000 g / m 2 or more, more preferably 100 g / m 2 or more, and even more preferably 200 g / m 2 or more, it is possible to obtain a non-woven fabric having mechanical strength that can be practically used.
  • the basis weight to 1000 g / m 2 or less, more preferably 700 g / m 2 or less, and even more preferably 500 g / m 2 or less, it has moderate air permeability and high pressure loss when used in a filter or the like. It can be suppressed.
  • the tenacity product per unit weight calculated by the following formula is 10 or more from the vertical tensile strength, vertical tensile elongation, and basis weight of the nonwoven fabric. Preferably there is.
  • the nonwoven fabric has mechanical strength that can be used even in harsh environments.
  • the upper limit is not particularly defined, but is preferably 100 or less from the viewpoint of preventing the nonwoven fabric from becoming hard and deteriorating handleability.
  • the nonwoven fabric composed of the heat-adhesive conjugate fiber of the present invention preferably has a vertical tensile strength retention of 80% or more in a heat-resistant exposure test for 1300 hours at a temperature of 180 ° C. in air. If the tensile strength retention is 80% or more, more preferably 85% or more, and still more preferably 90% or more, it can withstand the use of a heat-resistant filter or the like that is used for a long time at a high temperature.
  • the upper limit of the tensile strength retention is not particularly defined, but is preferably 150% or less.
  • Alkali sulfide, p-dihalobenzene (main component monomer), and accessory component monomer are blended in a molar ratio corresponding to the copolymerization rate as described above.
  • a method of polymerizing at a high temperature and high pressure in the presence of a polymerization aid in a polar solvent is preferable because the degree of polymerization of the resulting polymer is easily increased.
  • a monomer represented by the following formula can be used to introduce the m-phenylene sulfide unit of the above formula (1).
  • X represents an alkylene, CO, or SO 2 unit.
  • R represents an alkyl, nitro, phenylene, or alkoxy group.
  • These subcomponent monomers may be present.
  • the PPS used in the present invention can be polymerized in the same manner as the copolymerized PPS, but does not contain the subcomponent monomer or reduces the compounding.
  • a known melt spinning method can be employed.
  • the core component PPS resin and the sheath component copolymer PPS resin are melted and measured by separate extruders, supplied to the core-sheath type composite die, melt-spun, After being cooled using a conventionally known cooling device such as horizontal spraying or annular spraying, an oil agent is applied and wound around a winder as undrawn yarn through a take-up roller.
  • the wound undrawn yarn is drawn between a group of rollers having different peripheral speeds by a known drawing machine, and crimped by a push-type crimping machine or the like. Later, it may be cut to a desired length with a cutter such as an EC cutter.
  • a cutter such as an EC cutter.
  • it may be wound, and if necessary, processing such as twisting and false twisting may be performed.
  • the resin is melted and spun from the spinneret, and then the cooled and solidified yarn is pulled and stretched by an ejector and collected on a moving net to form a nonwoven web, followed by thermal bonding. It is a manufacturing method which requires the process to do.
  • the shape of the spinneret or the ejector various shapes such as a round shape and a rectangular shape can be adopted. Among these, a combination of a rectangular base and a rectangular ejector is preferable because the amount of compressed air used is relatively small and the yarns are not easily fused or scratched.
  • the spinning temperature at the time of melting and spinning is preferably 290 to 380 ° C., more preferably 295 to 360 ° C., and further preferably 300 to 340 ° C. By setting the spinning temperature within the above range, a stable molten state can be obtained, and excellent spinning stability can be obtained.
  • Component A and Component B are melted and measured by separate extruders, supplied to a composite spinneret, and spun as a composite fiber.
  • Examples of methods for cooling the spun yarn of the composite fiber include a method of forcing cold air to the yarn, a method of natural cooling at the ambient temperature around the yarn, and adjusting the distance between the spinneret and the ejector. Or a combination thereof can be employed.
  • the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
  • the cooled and solidified yarn is pulled and stretched by compressed air injected from the ejector.
  • the method and conditions for pulling and stretching by the ejector are not particularly limited, but the compressed air injected from the ejector is heated to at least 100 ° C. or higher, and the heated compressed air is used at a spinning speed of 3,000 m / min or more.
  • a method of pulling and stretching, or a distance from the lower surface of the spinneret to the compressed air outlet of the ejector is set to 450 to 650 mm, and the ejector compressed air (room temperature) is 5,000 m / min or more, 6
  • a method of pulling and stretching at a spinning speed of less than 1,000 m / min is preferable in that crystallization of PPS fibers can be efficiently promoted.
  • the nonwoven fabric can be obtained by collecting the PPS composite fibers obtained by stretching on a moving net to form a nonwoven web, and integrating the obtained nonwoven web by thermal bonding.
  • thermocompression bonding for example, a combination of a hot embossing roll engraved on a pair of upper and lower roll surfaces, a roll having a flat (smooth) one roll surface and a roll engraved on the other roll surface
  • thermocompression bonding with various rolls such as a hot embossing roll made of a combination of the above and a pair of upper and lower flat (smooth) rolls, or an air-through system that allows hot air to pass in the thickness direction of the nonwoven web.
  • thermal bonding using a hot embossing roll that can maintain appropriate air permeability while improving mechanical strength can be preferably employed.
  • a circle, an ellipse, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, a regular octagon, and the like can be used as the shape of the sculpture applied to the hot embossing roll.
  • the surface temperature of the hot embossing roll is preferably in the range of ⁇ 30 to ⁇ 5 ° C. with respect to the melting point of component B, which has a low melting point.
  • the surface temperature of the hot embossing roll is ⁇ 30 ° C. or higher, more preferably ⁇ 25 ° C. or higher, and still more preferably ⁇ 20 ° C. or higher with respect to the melting point of Component B, the heat embossing roll is sufficiently heat-bonded and the nonwoven fabric is peeled off Can be suppressed.
  • the temperature by setting the temperature to ⁇ 5 ° C. or lower, it is possible to prevent perforation from being generated in the crimping portion due to melting of the fibers.
  • the linear pressure of the hot embossing roll during heat bonding is preferably 200 to 1500 N / cm.
  • the linear pressure of the roll is preferably 200 N / cm or more, more preferably 300 N / cm or more, it is possible to sufficiently heat-bond and suppress the peeling of the sheet and the generation of fluff.
  • the linear pressure of the roll is set to 1500 N / cm or less, more preferably 1000 N / cm or less, it is possible to prevent the nonwoven fabric from being peeled off from the roll and preventing the nonwoven fabric from being broken due to the convex portions of the sculpture getting into the nonwoven fabric. Can do.
  • the adhesion area by the hot embossing roll is preferably 8 to 40%.
  • the adhesion area is 8% or more, more preferably 10% or more, and still more preferably 12% or more, it is possible to obtain strength that can be practically used as a nonwoven fabric.
  • the adhesion area is 40% or less, more preferably 30% or less, and even more preferably 20% or less, it is possible to prevent film-like and difficult to obtain the characteristics as a nonwoven fabric such as air permeability.
  • adheresive area refers to the ratio of the portion of the nonwoven fabric in which the convex portion of the upper roll and the convex portion of the lower roll overlap and contact the nonwoven web when thermally bonded by a pair of concave and convex rolls.
  • corrugation means the ratio which occupies for the whole nonwoven fabric of the part which contact
  • a non-woven web before thermal bonding can be subjected to a temporary bonding process using a calender roll at a temperature of 70 to 120 ° C. and a linear pressure of 50 to 700 N / cm.
  • a calender roll a combination of upper and lower metal rolls or a combination of a metal roll and a resin or paper roll can be used.
  • heat treatment under tension using a pin tenter or clip tenter or non-tension (free) heat treatment using a hot air dryer is performed on the non-woven web before heat bonding for the purpose of improving heat stability. It can also be implemented.
  • the heat treatment temperature is preferably not less than the crystallization temperature of the nonwoven web and not more than the melting point of the sheath component.
  • MFR Melt flow rate
  • Average single fiber fineness Ten small sample samples are taken at random from a non-woven web collected on a net, and a surface photograph of 500 to 1000 times is taken with a microscope, and the width of 100 fibers, 10 from each sample, is measured. The average value was calculated.
  • the average width of single fibers is regarded as the average diameter of fibers having a round cross-sectional shape, and the weight per 10,000 m in length is taken as the average single fiber fineness from the solid density of the resin used, rounded off to the second decimal place. And calculated.
  • the first decimal place is calculated from the following formula.
  • Non-woven fabric thermal shrinkage (%) It was measured according to JIS L1906 (2000) 5.9 “thermal shrinkage”. The temperature in the constant temperature dryer was set to 200 ° C. and heat treated for 10 minutes.
  • Example 1 (Component B) The autoclave was charged with 100 moles of sodium sulfide nonahydrate, 45 moles of sodium acetate and 25 liters of N-methylpyrrolidone (NMP) and gradually heated to a temperature of 220 ° C. with stirring. Water was removed by distillation.
  • NMP N-methylpyrrolidone
  • the small block polymer thus obtained was washed 5 times with distilled water at 90 ° C. and then dried under reduced pressure at a temperature of 120 ° C. to give a copolymer PPS having an MFR of 152 g / 10 min and a melting point of 257 ° C. A resin was obtained. This copolymerized PPS resin was dried in a nitrogen atmosphere at a temperature of 160 ° C. for 10 hours and used as Component B.
  • Component A A PPS resin was produced in the same manner as in the production of the copolymerized PPS resin except that 101 mol of p-dichlorobenzene was used as the main component monomer, and the secondary component monomer and 1,2,4 trichlorobenzene were not used.
  • the produced PPS resin had an MFR of 160 g / 10 min and a melting point of 281 ° C. This PPS resin was dried in a nitrogen atmosphere at a temperature of 160 ° C. for 10 hours and used as component A.
  • the above component B (copolymerized PPS resin) is melted with an extruder for a sheath component, and the above component A (PPS resin) is melted with an extruder for a core component, and the mass ratio of component A and component B is 80:20.
  • the core-sheath composite fiber was spun from a rectangular core-sheath type spinneret having a hole diameter of 0.30 mm at a spinning temperature of 325 ° C. and a single hole discharge rate of 1.2 g / min.
  • the spun fiber was cooled and solidified in an atmosphere at a room temperature of 20 ° C., passed through a rectangular ejector installed at a distance of 550 mm from the die, and air heated to a temperature of 200 ° C. with an air heater was ejector pressure 0.17 MPa. And then ejected from the ejector, pulled and stretched the yarn, and collected on a moving net to form a nonwoven web.
  • the average single fiber fineness of the obtained core-sheath type composite continuous fiber was 2.4 dtex, the spinning speed was 5,012 m / min, and the spinnability was as good as 0 yarn breakage during 1 hour spinning.
  • the nonwoven web was temporarily bonded at a linear pressure of 200 N / cm and a temporary bonding temperature of 90 ° C. using a pair of upper and lower metal calendar rolls installed on the inline.
  • a pair of upper and lower embossed rolls composed of a metal-made upper roll engraved with a polka dot pattern and a metal-made flat lower roll, with a linear pressure of 1000 N / cm and a thermal bonding temperature of 250 ° C.
  • the core-sheath type composite continuous fiber nonwoven fabric was obtained by heat bonding.
  • the obtained core-sheath type composite continuous fiber nonwoven fabric has a basis weight of 256 g / m 2 , a high elongation product per basis weight of 20, a thermal shrinkage rate of 0.1% in the vertical direction, and 0.1% in the transverse direction.
  • the tensile strength retention was 99%.
  • Example 2 A copolymerized PPS resin similar to that used in Example 1 was used as Component B.
  • Example 2 Temporal bonding / thermal bonding
  • the nonwoven web was temporarily bonded and thermally bonded in the same manner as in Example 1 to obtain a core-sheath type composite continuous fiber nonwoven fabric.
  • the obtained core-sheath type composite continuous fiber nonwoven fabric has a basis weight of 263 g / m 2 , a high elongation product per basis weight of 15, a thermal shrinkage of 0.1% in the vertical direction, and 0.0% in the transverse direction.
  • the tensile strength retention was 98%.
  • Example 3 (Component B) As addition amounts of monomer, 94.8 mol (94.8 mol%) of p-dichlorobenzene, 5 mol (5 mol%) of m-dichlorobenzene, and 0.2 mol (0 mol of 1,2,4-trichlorobenzene)
  • the copolymerized PPS resin was produced under the same conditions as in Example 1 to obtain a copolymerized PPS resin having an MFR of 142 g / 10 min and a melting point of 263 ° C. This copolymerized PPS resin was dried in the same manner as in Example 1 and used as Component B.
  • Component A A PPS resin similar to that used in Example 1 was used as Component A. (Spun / nonwoven web) Using the above components A and B, core-sheath type composite spinning and making a nonwoven web were performed under the same conditions as in Example 1. The average single fiber fineness of the obtained core-sheath type composite continuous fiber was 2.5 dtex, the spinning speed was 4,856 m / min, and the spinnability was as good as 0 yarn breakage during 1 hour spinning.
  • the nonwoven web was temporarily bonded and thermally bonded in the same manner as in Example 1 except that the heat bonding temperature of the embossing roll was set to 255 ° C. to obtain a core-sheath type composite long fiber nonwoven fabric.
  • the obtained core-sheath type composite continuous fiber nonwoven fabric has a basis weight of 258 g / m 2 , a high elongation product per basis weight of 11, a thermal shrinkage rate of 0.1% in the vertical direction, and 0.0% in the transverse direction.
  • the tensile strength retention was 99%.
  • Example 4 (Component B) Monomers were added in an amount of 84.8 mol (84.8 mol%) of p-dichlorobenzene, 15 mol (15 mol%) of m-dichlorobenzene, and 0.2 mol (0 mol of 1,2,4-trichlorobenzene).
  • the copolymer PPS resin was polymerized under the conditions of Example 1 to obtain a copolymer PPS resin having an MFR of 165 g / 10 min and a melting point of 239 ° C. This copolymerized PPS resin was dried in the same manner as in Example 1 and used as Component B.
  • Component A A PPS resin similar to that used in Example 1 was used as Component A. (Spun / nonwoven web) Using the above components A and B, core-sheath type composite spinning and making a nonwoven web were performed under the same conditions as in Example 1. The obtained core-sheath type composite continuous fiber had an average single fiber fineness of 2.4 dtex, a spinning speed of 5,062 m / min, and a spinning property as good as 0 yarn breakage during 1 hour spinning.
  • the nonwoven web was temporarily bonded and thermally bonded in the same manner as in Example 1 except that the heat bonding temperature of the embossing roll was 230 ° C. to obtain a core-sheath type composite long fiber nonwoven fabric.
  • the obtained core-sheath type composite continuous fiber nonwoven fabric has a basis weight of 255 g / m 2 , a high elongation product per unit weight of 19, a thermal shrinkage rate of 0.2% in the vertical direction, and 0.1% in the transverse direction.
  • the tensile strength retention was 98%.
  • the nonwoven web was temporarily bonded and thermally bonded in the same manner as in Example 1 except that the heat bonding temperature of the embossing roll was set to 260 ° C. to obtain a single-component long fiber nonwoven fabric.
  • the resulting single-component long-fiber nonwoven fabric has a basis weight of 263 g / m 2 , a high elongation product per basis weight of 4, a thermal shrinkage rate of 0.0% in the vertical direction, and 0.1% in the transverse direction.
  • the tensile strength retention was 99%.
  • the nonwoven web was temporarily bonded and thermally bonded in the same manner as in Example 1 except that the heat bonding temperature of the embossing roll was set to 260 ° C. to obtain a single-component long fiber nonwoven fabric.
  • the obtained single-component long-fiber nonwoven fabric has a basis weight of 266 g / m 2 , a high elongation product per basis weight of 3, a thermal shrinkage rate of 0.1% in the vertical direction, and 0.1% in the transverse direction.
  • the tensile strength retention was 99%.
  • the core-sheath type composite long-fiber nonwoven fabrics of Examples 1 to 4 having PPS resin mainly composed of p-phenylene sulfide as the core component and copolymer PPS resin as the sheath component are the single component type lengths of Comparative Examples 1 and 2. Compared to the fiber nonwoven fabric, the product of strong elongation per basis weight was greatly improved and the mechanical strength was excellent.
  • the nonwoven fabric composed of the heat-adhesive conjugate fiber of the present invention is excellent in mechanical strength while having the heat resistance, chemical resistance and flame retardancy characteristics of PPS resin. , Battery separators, water treatment membrane substrates, heat insulating substrates, protective clothing, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

 p-フェニレンスルフィドを主単位とするポリフェニレンスルフィドを主として含む樹脂を成分Aとし、p-フェニレンスルフィド以外に少なくとも1種以上の共重合単位を含有する共重合ポリフェニレンスルフィドを主として含む樹脂を成分Bとし、成分Aおよび成分Bを主としてなる複合繊維であって、成分Bが繊維の表面の少なくとも一部を形成してなることを特徴とするポリフェニレンスルフィド複合繊維。ポリフェニレンスルフィドを主成分とする樹脂からなり、耐熱性、難燃性および耐薬品性に優れる熱接着性複合繊維および不織布を提供する。

Description

ポリフェニレンスルフィド複合繊維および不織布
 本発明は、ポリフェニレンスルフィド(以下、「PPS」と略記することがある。)を主成分とする樹脂からなり、耐熱性や耐薬品性に優れる繊維およびその繊維から構成される不織布に関するものである。
 PPS樹脂は、耐熱性、難燃性および耐薬品性に優れた特性を有し、エンジニアプラスチック、フィルム、繊維および不織布等として好適に用いられている。特に不織布については、これらの特性を活かし、耐熱性フィルター、電気絶縁材および電池セパレーターなどの産業用途への利用が期待されている。
 これまでにPPS樹脂を用いた不織布については、様々な提案がなされている。例えば、PPS樹脂をスパンボンド法により紡糸し、布帛とし、ガラス転移点以上の温度で延伸処理し、好ましくは2軸延伸処理した後、熱接着を施した長繊維不織布が提案されている(特許文献1参照。)。また、PPS樹脂をスパンボンド法により紡糸延伸し、得られる布帛にその第1結晶化温度以下で仮接着を施し、その後、緊張下で第1結晶化温度以上で熱処理した後、熱接着を施す長繊維不織布が提案されている(特許文献2参照。)。さらには、結晶化度が25~50%のPPS繊維を30wt%以上含み、熱接着により一体化する耐熱性不織布が開示されている(特許文献3参照。)。しかしながら、いずれの提案も単一成分の繊維で不織布が構成されているため、熱接着時に繊維同士を一体化することが難しく、機械的強度の高い不織布を得ることが難しい問題があった。
 一方、従来から熱接着性を改善するには、低融点成分を含む熱接着性複合繊維とすることが知られている。これまでにPPS樹脂を用いた複合繊維から構成される不織布としては、鞘成分がPPS樹脂、芯成分がポリエチレンテレフタレート樹脂からなる芯鞘型複合繊維により構成され、熱接着してなる長繊維不織布が提案されている(特許文献4参照。)。しかしながら、鞘成分の方が芯成分よりも高融点であるため、熱接着性は単一成分の繊維と何ら変わるものではなく、さらにポリエチレンテレフタレート樹脂では難燃性や耐薬品性に劣るため、耐久性に大きな問題があった。
 このように、PPS樹脂の耐熱性や耐薬品性を活かしつつ、熱接着性に優れた繊維や機械的強度の高い不織布は得られていなかった。
特開2005-154919号公報 特開2008-223209号公報 国際公開第2008/035775号 特開2009-155764号公報
 本発明の目的は、PPS樹脂の耐熱性、難燃性および耐薬品性等を活かしつつ、かつ熱接着性に優れる繊維および機械的強度の高い不織布を提供することを目的とする。
 すなわち本発明は、p-フェニレンスルフィドを主単位とするポリフェニレンスルフィドを主として含む樹脂を成分Aとし、p-フェニレンスルフィド以外に少なくとも1種以上の共重合単位を含有する共重合ポリフェニレンスルフィドを主として含む樹脂を成分Bとし、成分Aおよび成分Bを主としてなる複合繊維であって、成分Bが繊維の表面の少なくとも一部を形成してなることを特徴とするポリフェニレンスルフィド複合繊維である。
 また本発明は、本発明のポリフェニレンスルフィド複合繊維から構成されてなることを特徴とする不織布である。
 本発明のPPS複合繊維は、PPS樹脂の耐熱性、耐薬品性および難燃性の特性を有しながら、熱接着性に優れる。また従って本発明の不織布は、PPS樹脂の耐熱性、耐薬品性および難燃性の特性を有しながら、機械的強度に優れ、様々な産業用途への利用が可能となる。
 本発明の複合繊維は、成分Aおよび成分Bを主としてなり、そのいずれもがPPSを主として含むことが重要である。そうすることにより、優れた耐熱性、難燃性および耐薬品性を得ることができる。
 また、本発明のPPS複合繊維は、p-フェニレンスルフィドを主単位とするPPSを主として含む樹脂を成分Aとしたとき、これと複合させる成分Bとして共重合PPSを主として含む樹脂を用い、成分Bが繊維の表面の少なくとも一部を形成してなることが重要である。そうすることによって、成分Bが接着成分として作用し、機械的強度に優れた不織布とすることができる。
 成分AのPPSにおけるp-フェニレンスルフィド単位の含有量としては、93モル%以上が好ましい。p-フェニレンスルフィド単位を93モル%以上、より好ましくは95モル%以上含有することで、曳糸性や機械的強度に優れた繊維とすることができる。
 成分AにおけるPPS樹脂の含有量としては、耐熱性、耐薬品性などの点から、85質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 また、成分Aには、本発明の効果を損なわない範囲でPPS樹脂以外の熱可塑性樹脂をブレンドしてもよい。PPS樹脂以外の熱可塑性樹脂としては、例えば、ポリエーテルイミド、ポリエーテルスルホン、ポリスルホン、ポリフェニレンエーテル、ポリエステル、ポリアリレート、ポリアミド、ポリアミドイミド、ポリカーボネート、ポリオレフィン、ポリエーテルエーテルケトンなどを挙げることができる。
 また、成分Aには、本発明の効果を損なわない範囲で、結晶核剤、艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤または親水剤等を添加してもよい。
 また、成分Aは、ASTM D1238-70(測定温度315.5℃、測定荷重5kg荷重)に準じて測定するメルトフローレート(以下、MFRと略記することがある。)が100~300g/10分であることが好ましい。MFRを100g/10分以上、より好ましくは140g/10分以上とすることで、適度な流動性をとり、溶融紡糸において口金の背面圧の上昇を抑え、牽引延伸する際の糸切れも抑えることができる。一方、MFRを300g/10分以下、より好ましくは225g/10分以下とすることで、重合度あるいは分子量を適度に高くとり、実用に供し得る機械的強度や耐熱性を得ることができる。
 本発明において、成分Bの共重合PPSとは、p-フェニレンスルフィドを主たる繰り返し単位として、当該単位以外に1種以上の共重合単位を共重合して構成されたものをいう。当該共重合PPS樹脂におけるp-フェニレンスルフィド単位の含有量は、全繰り返し単位に対して70~97モル%であることが好ましい。p-フェニレンスルフィド単位の含有量を70モル%以上、より好ましくは80モル%以上、さらに好ましくは85モル%以上とすることで、耐熱性の低下を抑制することができる。一方、p-フェニレンスルフィド単位の含有量を97モル%以下、より好ましくは96モル%以下、さらに好ましくは95モル%以下とすることで、熱接着性に優れる複合繊維を得ることができる。
 共重合単位としては、下記の式(1)に示すm-フェニレンスルフィド単位や、その他には式(2)~(5)に示すもの等を好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(ここでXは、アルキレン、CO、SO単位を示す。)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(ここでRはアルキル、ニトロ、フェニレン、アルコキシ基を示す。)。
 また、これらのようなp-フェニレンスルフィド以外の共重合単位が複数種存在していてもよい。なかでも、熱接着性と耐熱性とのバランスのとれた融点が得られやすく、かつ繊維の曳糸性に優れる点からm-フェニレンスルフィドが好ましい。
 共重合PPSにおける共重合量としては、5~30モル%が好ましい。5モル%以上、より好ましくは7モル%以上、さらに好ましくは9モル%以上とすることにより、熱接着性に優れた複合繊維を得ることができる。一方、30モル%以下、より好ましくは25モル%以下、さらに好ましくは20モル%以下とすることにより、耐熱性の低下を抑制することができる。
 一方、例えば下記式に代表される3官能性フェニルスルフィドは、共重合PPSの1モル%以下に抑えることが繊維の曳糸性に優れる点から好ましい
Figure JPOXMLDOC01-appb-C000006
 また共重合PPSにおける共重合の態様としては、ランダム共重合、ブロック共重合等を挙げることができる。なかでも、熱接着性と耐熱性とのバランスのとれた融点に制御しやすい点からランダム共重合が好ましい。
 成分Bにおける共重合PPSの含有量としては、耐熱性、耐薬品性などの点から、85質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 また、成分Bには、本発明の効果を損なわない範囲でPPS以外の熱可塑性樹脂をブレンドしてもよい。PPS以外の熱可塑性樹脂としては、例えば、ポリエーテルイミド、ポリエーテルスルホン、ポリスルホン、ポリフェニレンエーテル、ポリエステル、ポリアリレート、ポリアミド、ポリアミドイミド、ポリカーボネート、ポリオレフィン、ポリエーテルエーテルケトンなどの各種熱可塑性樹脂を挙げることができる。
 また、成分Bには、本発明の効果を損なわない範囲で、結晶核剤、艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤または親水剤等を添加してもよい。
 また、成分Bは、ASTM D1238-70(測定温度315.5℃、測定荷重5kg荷重)に準じて測定するMFRが100~300g/10分であることが好ましい。MFRを100g/10分以上、より好ましくは120g/10分以上とすることで、溶融紡糸において口金の背面圧の上昇を抑え、牽引延伸する際の糸切れも抑えることができる。一方、MFRを300g/10分以下、より好ましくは225g/10分以下とすることで、適度な流動性をとり、安定的に複合形成することができる。
 本発明では成分Bを熱接着成分として用いるため、成分Bの融点は、成分Aの融点よりも低いことが好ましい。
 成分Bの融点としては200~275℃が好ましい。熱接着成分の融点を200℃以上、より好ましくは230℃以上、さらに好ましくは240℃以上とすることにより、耐熱性の低下を抑制することができる。一方、熱接着成分の融点を275℃以下、より好ましくは270℃以下、さらに好ましくは265℃以下とすることにより、熱接着性に優れる複合繊維を得ることができる。成分Bの融点は、共重合成分のモル比によって適宜調製することができる。
 また成分Aの融点と成分Bの融点との融点差としては5~80℃が好ましい。融点差を5℃以上、より好ましくは10℃以上、さらに好ましくは15℃以上とすることにより、熱接着性に優れる複合繊維を得ることができる。一方、融点差を80℃以下、より好ましくは50℃以下、さらに好ましくは40℃以下とすることにより、耐熱性の低下を抑制することができる。
 本発明のPPS複合繊維における成分Bの占める割合としては、5~70質量%が好ましい。第2成分の占める割合を5質量%以上、より好ましくは10質量%、さらに好ましくは15質量%以上とすることにより、効率良く強固な熱接着を得ることができる。一方、成分Bの占める割合を70質量%以下、より好ましくは50質量%以下、さらに好ましくは30質量%以下とすることにより、機械的強度の低下を抑制することができる。
 本発明のPPS複合繊維における複合形態としては、成分Bが繊維表面の少なくとも一部を形成していることが重要である。係る複合形態としては例えば、繊維断面において円形状の成分Aが中心を同じくするドーナツ形状の成分Bに包まれる芯鞘型、成分Aの中心と成分Bの中心がずれている芯鞘偏心型、成分Aを島成分、成分Bを海成分とする海島型、両成分が並列した並列型、両成分が放射状に交互に配列された放射型、成分Bが成分Aの周囲に数個配置される多葉型等をあげることができる。なかでも、成分Bが繊維表面全体を占めかつ繊維の曳糸性に優れる芯鞘型が好ましい。
 本発明のPPS複合繊維の平均単繊維繊度としては、0.5~10dtexが好ましい。平均単繊維繊度を0.5dtex以上、より好ましくは1dtex以上、さらに好ましくは2dtex以上とすることにより、繊維の曳糸性を保ち、紡糸中に糸切れが多発するのを抑えることができる。また、平均単繊維繊度を10dtex以下、より好ましくは5dtex以下、さらに好ましくは4dtex以下とすることで、紡糸口金単孔当たりの溶融樹脂の吐出量を抑え繊維に対して十分な冷却を施すことができ、繊維間の融着による紡糸性の低下を抑えることができる。また、不織布としたときの目付ムラを抑え、表面の品位を優れたものとすることができる。また不織布をフィルター等に適用する場合のダスト捕集性能の観点からも、平均単繊維繊度は10dtex以下が好ましく、より好ましくは5dtex以下、さらに好ましくは4dtex以下である。
 本発明のPPS複合繊維は、マルチフィラメント、モノフィラメントあるいは短繊維のいずれでも使用することができ、織物や不織布等のあらゆる布帛を構成する繊維として用いることができる。中でも本発明のPPS複合繊維は、不織布の構成繊維として用いることが好ましい。不織布においては、構成繊維同士が熱接着することで不織布の強度に資するからである。
 不織布としては例えば、ニードルパンチ不織布、湿式不織布、スパンレース不織布、スパンボンド不織布、メルトブロー不織布、レジンボンド不織布、ケミカルボンド不織布、サーマルボンド不織布、トウ開繊式不織布、エアレイド不織布等を挙げることができる。中でも、生産性や機械的強度に優れるスパンボンド不織布が好ましい。
 また本発明のPPS複合繊維から構成される不織布は、熱接着することで高い機械的強度が得られることから、熱接着により一体化してなることが好ましい。
 本発明の不織布の目付としては、10~1000g/mが好ましい。目付を10g/m以上、より好ましくは100g/m以上、さらに好ましくは200g/m以上とすることにより、実用に供し得る機械的強度の不織布を得ることができる。一方、目付を1000g/m以下、より好ましくは700g/m以下、さらに好ましくは500g/m以下とすることにより、適度な通気性を有し、フィルター等で使用する場合に高圧損となることを抑制することができる。
 本発明の熱接着性複合繊維から構成される不織布においては、不織布のたて引張強力、たて引張伸度および目付から、次式にて算出される目付当たりの強伸度積が10以上であることが好ましい。
目付当たりの強伸度積=たて引張強力(N/5cm)×たて引張伸度(%)/目付(g/m
 目付当たりの強伸度積を10以上、より好ましくは13以上、さらに好ましくは15以上とすることにより、過酷な環境下でも使用できる機械的強度を有する不織布となる。また上限は特に定めるものではないが、不織布が硬くなり取り扱い性が悪化するのを防ぐ点から、100以下が好ましい。
 本発明の熱接着性複合繊維から構成される不織布は、空気中、180℃の温度で1300時間の耐熱暴露試験におけるたて引張強力保持率が80%以上であることが好ましい。たて引張強力保持率が80%以上、より好ましくは85%以上、さらに好ましくは90%以上であれば、高温下で長期間使用される耐熱性フィルター等の使用にも耐えうることができる。たて引張強力保持率の上限値は特に定めるものでは無いが、150%以下であることが好ましい。
 次に、本発明のPPS複合繊維および不織布を製造する方法について、好ましい態様を説明する。
 本発明に用いる共重合PPSの重合方法としては、種々の方法があるが、硫化アルカリとp-ジハロルベンゼン(主成分モノマ)および副成分モノマを前述のような共重合率に対応したモル比率で配合し、極性溶媒中、重合助剤の存在化下、高温、高圧で重合する方法が、得られるポリマの重合度を上昇させやすく好ましい。特に、硫化アルカリとして硫化ナトリウム、主成分モノマとしてp-ジクロベンゼン、溶媒としてN-メチルピロリドンを用いるのが好ましい。
 副成分モノマとしては、前述の式(1)のm-フェニレンスルフィド単位を導入するには次式に示すモノマを用いることができる。
Figure JPOXMLDOC01-appb-C000007
また前述の式(2)の共重合単位を導入するには次式に示すモノマを用いることができる。
Figure JPOXMLDOC01-appb-C000008
また前述の式(3)の共重合単位を導入するには次式に示すモノマを用いることができる。
Figure JPOXMLDOC01-appb-C000009
(ここでXは、アルキレン、CO、SO単位を示す。)
また前述の式(4)の共重合単位を導入するには次式に示すモノマを用いることができる。
Figure JPOXMLDOC01-appb-C000010
また前述の式(5)の共重合単位を導入するには次式に示すモノマを用いることができる。
Figure JPOXMLDOC01-appb-C000011
(ここでRは、アルキル、ニトロ、フェニレン、アルコキシ基を示す。)
が挙げられ、これらの複数の副成分モノマが存在してもかまわない。
 一方、本発明に用いるPPSについては、共重合PPSと同様な方法で重合することができるが、副成分モノマを配合しないかまたはその配合を減ずるものである。
 本発明のPPS複合繊維を製造する方法には、公知の溶融紡糸方法を採用することができる。例えば芯鞘型複合繊維の場合、芯成分用のPPS樹脂と鞘成分用の共重合PPS樹脂をそれぞれ別の押出機で溶融、計量し、芯鞘型複合口金へ供給、溶融紡糸し、糸条を従来公知の横吹き付けや環状吹き付け等の冷却装置を用いて冷却した後、油剤を付与し、引き取りローラを介して未延伸糸として巻取機に巻取る。繊維の形態として短繊維を得たい場合は、巻取った未延伸糸を、公知の延伸機にて周速の異なるローラ群間で延伸し、押し込み型の捲縮機などで捲縮を付与した後に、ECカッターなどのカッターで所望の長さに切断すればよい。繊維の形態として長繊維を得たい場合は、延伸機にて延伸後、巻取り、必要に応じて、撚糸加工、仮撚糸加工等の加工を行うとよい。
 次に、本発明の不織布の好ましい態様としてスパンボンド法による複合繊維不織布を製造する方法を、以下に説明する。
 スパンボンド法は、樹脂を溶融し、紡糸口金から紡糸した後、冷却固化した糸条に対し、エジェクターで牽引、延伸し、移動するネット上に捕集して不織ウェブ化した後、熱接着する工程を要する製造方法である。
 紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくい点から矩形口金と矩形エジェクターの組み合わせが好ましい。
 溶融し紡糸する際の紡糸温度は、290~380℃が好ましく、より好ましくは295~360℃、さらに好ましくは300~340℃である。紡糸温度を上記範囲内とすることで、安定した溶融状態とし、優れた紡糸安定性を得ることができる。
 成分Aおよび成分Bをそれぞれ別の押出機にて、溶融、計量し、複合紡糸口金へと供給し、複合繊維として紡出する。
 紡出された複合繊維の糸条を冷却する方法としては例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度にて自然冷却する方法、紡糸口金とエジェクター間の距離を調整する方法、またはこれらの組み合わせを採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度、雰囲気温度等を考慮し適宜調整し採用することができる。
 次に、冷却固化した糸条は、エジェクターから噴射する圧縮エアにて牽引、延伸される。エジェクターでの牽引、延伸の方法や条件は特に限定されるものでは無いが、エジェクターから噴射する圧縮エアを少なくとも100℃以上に加熱し、この加熱した圧縮エアによって紡糸速度3,000m/分以上で牽引、延伸する方法、または紡糸口金下面からエジェクターの圧縮エア噴出口までの距離を450~650mmとなるように配設し、エジェクターの圧縮エア(常温)にて、5,000m/分以上、6,000m/分未満の紡糸速度で牽引、延伸する方法がPPS繊維の結晶化を効率的に促進できる点で好ましい。
 続いて、延伸により得られたPPS複合繊維を移動するネット上に捕集して不織ウェブ化し、得られた不織ウェブを熱接着により一体化することにより不織布を得ることができる。
 熱接着の方法としては例えば、上下一対のロール表面にそれぞれ彫刻が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻が施されたロールとの組み合わせからなる熱エンボスロール、上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど各種ロールによる熱圧着や、不織ウェブの厚み方向に熱風を通過させるエアスルー方式を適用することが出来る。中でも、機械的強度を向上させながら適度な通気性も保持できる熱エンボスロールを用いた熱接着を好ましく採用することができる。
 熱エンボスロールに施される彫刻の形状としては、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。
 熱エンボスロールの表面温度としては、低融点である成分Bの融点に対し-30~-5℃の範囲であることが好ましい。熱エンボスロールの表面温度を成分Bの融点に対し-30℃以上、より好ましくは-25℃以上、さらに好ましくは-20℃以上とすることで、十分に熱接着させ不織布の剥離や毛羽の発生を抑えることができる。また、-5℃以下とすることにより、繊維の融解により圧着部に穴あきが発生するのを防ぐことができる。
 熱接着時の熱エンボスロールの線圧としては200~1500N/cmが好ましい。ロールの線圧を200N/cm以上、より好ましくは300N/cm以上とすることで、十分に熱接着させシートの剥離や毛羽の発生を抑えることができる。一方、ロールの線圧を1500N/cm以下、より好ましくは1000N/cm以下とすることで、彫刻の凸部が不織布にくい込んでロールから不織布が剥離しにくくなったり不織布が破断するのを防ぐことができる。
 熱エンボスロールによる接着面積としては8~40%が好ましい。接着面積を8%以上、より好ましくは10%以上、さらに好ましくは12%以上とすることで、不織布として実用に供しうる強度を得ることができる。一方、接着面積を40%以下、より好ましくは30%以下、さらに好ましくは20%以下とすることで、フィルムライクとなり通気性などの不織布としての特長が得られ難くなるのを防ぐことができる。ここでいう接着面積とは、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織ウェブに当接する部分の不織布全体に占める割合のことを言う。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織ウェブに当接する部分の不織布全体に占める割合のことを言う。
 また熱接着前の不織ウェブに対し、搬送性向上や不織布の厚みコントロールを目的とし、温度70~120℃、線圧50~700N/cmでカレンダーロールによる仮接着を行う工程を施すこともできる。カレンダーロールとしては、上下金属ロールの組み合わせや金属ロールと樹脂あるいはペーパーロールとの組み合わせのものを用いることができる。
 さらに熱接着前の不織ウェブに対し、熱に対する安定性向上を目的とし、ピンテンターやクリップテンター等を使用した緊張下での熱処理や熱風乾燥機等を使用した無緊張(フリー)での熱処理を実施することもできる。熱処理の温度としては、不織ウェブの結晶化温度以上、鞘成分の融点以下であることが好ましい。
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
[測定方法]
(1)メルトフローレート(MFR)(g/10分)
 使用した樹脂のMFRは、ASTM D1238-70に準じて測定温度315.5℃で、測定荷重5kgの条件で測定した。
(2)融点(℃)
 示差走査熱量計(TA Instruments社製Q100)を用いて、次の条件で測定し、吸熱ピーク頂点温度の平均値を算出して、測定対象の融点とした。なお、繊維形成前の樹脂において吸熱ピークが複数存在する場合は、最も高温側のピーク頂点温度とする。また、繊維を測定対象とする場合には、同様に測定し、複数の吸熱ピークから各成分の融点を推定することができる。
・測定雰囲気:窒素流(150ml/分)
・温度範囲 :30~350℃
・昇温速度 :20℃/分
・試料量  :5mg
(3)平均単繊維繊度(dtex)
 ネット上に捕集した不織ウェブからランダムに小片サンプル10個を採取し、マイクロスコープで500~1000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本の繊維の幅を測定し平均値を算出した。単繊維の幅平均値を、丸形断面形状を有する繊維の平均直径とみなし、使用する樹脂の固形密度から長さ10,000m当たりの重量を平均単繊維繊度として、小数点以下第二位を四捨五入して算出した。
(4)紡糸速度(m/分)
 繊維の平均単繊維繊度F(dtex)と各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量D(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度V(m/分)を算出した。
V=(10000×D)/F
(5)不織布の目付(g/m
 JIS L1913(2010年)6.2「単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値を1m当たりの質量(g/m)で表した。
(6)不織布の目付当たりの強伸度積
 JIS L1913(2010年)の6.3.1に準じ、サンプルサイズ5cm×30cm、つかみ間隔20cm、引張速度10cm/minの条件でたて方向3点の引張試験を行い、サンプルが破断した時の強力をたて引張強力(N/5cm)、また最大荷重時のサンプルの伸びを1mm単位まで測定し、この伸び率(元の長さに対する伸びた長さ)をたて引張伸度(%)とし、たて引張強力(N/5cm)とたて引張伸度(%)のそれぞれの平均値について小数点以下第一位を四捨五入して算出した。続いて、算出したたて引張強力(N/5cm)とたて引張伸度(%)、また(5)で求めた目付(g/m)から、以下の式より小数点以下第一位を四捨五入して目付当たりの強伸度積を算出した。
目付当たりの強伸度積=たて引張強力(N/5cm)×たて引張伸度(%)/目付(g/m)。
(7)不織布の熱収縮率(%)
 JIS L1906(2000年)5.9「熱収縮率」に準じて測定した。恒温乾燥機内の温度を200℃とし、10分間熱処理した。
(8)耐熱暴露試験とたて引張強力保持率
 熱風オーブン(エスペック製、TABAI SAFETY OVEN SHPS-222)を用い、長さ30cm、幅5cmのたて方向のサンプルを必要数投入し、熱風空気雰囲気下、180℃×1300時間、空気循環量300L/minで曝露させた。耐熱暴露試験前後のサンプルについて、上記(6)に記載の方法で引張強力を測定し、下記式を用いてたて引張強力保持率を算出した。
 たて引張強力保持率(%)=耐熱暴露試験後たて引張強力(N/5cm)/耐熱暴露試験前たて引張強力(N/5cm)×100
[実施例1]
(成分B)
 オートクレ-ブに100モルの硫化ナトリウム9水塩、45モルの酢酸ナトリウムおよび25リットルのN-メチルピロリドン(NMP)を仕込み、撹拌しながら徐々に220℃の温度まで昇温して、含有されている水分を蒸留により除去した。脱水の終了した系内に、主成分モノマとして91モル(89.8モル%)のp-ジクロベンゼン、副成分モノマとして10モル(10モル%)のm-ジクロロベンゼン、および0.2モル(0.2モル%)の1,2,4-トリクロルベンゼンを5リットルのNMPとともに添加し、170℃の温度で窒素を3kg/cmで加圧封入後、昇温し、260℃の温度にて4時間重合した。重合終了後冷却し、蒸留水中にポリマを沈殿させ、150メッシュ目開きを有する金網によって、小塊状ポリマを採取した。このようにして得られた小塊状ポリマを90℃の蒸留水により5回洗浄した後、減圧下120℃の温度にて乾燥して、MFRが152g/10分、融点が257℃の共重合PPS樹脂を得た。この共重合PPS樹脂を窒素雰囲気中で160℃の温度で10時間乾燥して、成分Bとして用いた。
(成分A)
 主成分モノマとして101モルのp-ジクロベンゼンを用い、副成分モノマおよび1,2,4トリクロルベンゼンを用いないこと以外は全て上記共重合PPS樹脂の製造と同様にしてPPS樹脂を製造した。製造したPPS樹脂のMFRは160g/10分、融点は281℃であった。このPPS樹脂を窒素雰囲気中で160℃の温度で10時間乾燥して、成分Aとして用いた。
(紡糸・不織ウェブ化)
 上記成分B(共重合PPS樹脂)を鞘成分用の押出機で、上記成分A(PPS樹脂)を芯成分用の押出機でそれぞれ溶融し、成分Aと成分Bとの質量比が80:20となるように計量し、紡糸温度325℃で、孔径φ0.30mmの矩形芯鞘型紡糸口金から単孔吐出量1.2g/分で芯鞘型複合繊維を紡出した。紡出した繊維を室温20℃の雰囲気下で冷却固化し、前記口金からの距離550mmの位置に設置した矩形エジェクターに通し、空気加熱器で200℃の温度に加熱した空気をエジェクター圧力0.17MPaでエジェクターから噴射させ、糸条を牽引、延伸し、移動するネット上に捕集して不織ウェブ化した。得られた芯鞘型複合長繊維の平均単繊維繊度は2.4dtex、紡糸速度は5,012m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
(仮接着・熱接着)
 引き続き、インライン上に設置された金属製の上下一対のカレンダーロールを用い線圧200N/cmおよび仮接着温度90℃で上記不織ウェブを仮接着した。次いで、金属製で水玉柄の彫刻がなされた上ロールおよび金属製でフラットな下ロールから構成される上下一対の接着面積12%のエンボスロールで、線圧1000N/cm、熱接着温度250℃で熱接着し、芯鞘型複合長繊維不織布を得た。得られた芯鞘型複合長繊維不織布の目付は256g/m、目付当たりの強伸度積は20、熱収縮率はたて方向で0.1%、よこ方向で0.1%、たて引張強力保持率は99%であった。
[実施例2]
(成分B)
 実施例1で用いたものと同様の共重合PPS樹脂を成分Bとして用いた。
(成分A)
 実施例1で用いたものと同様のPPS樹脂を成分Aとして用いた。
(紡糸・不織ウェブ化)
 圧縮エアの温度を常温(20℃)、エジェクター圧力を0.25MPaとしたこと以外は実施例1と同様にして、芯鞘型複合紡糸、不織ウェブ化を行った。得られた芯鞘型複合長繊維の平均単繊維繊度は2.3dtex、紡糸速度は5,250m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
(仮接着・熱接着)
 引き続き、実施例1と同様にして上記不織ウェブに仮接着および熱接着を施して芯鞘型複合長繊維不織布を得た。得られた芯鞘型複合長繊維不織布の目付は263g/m、目付当たりの強伸度積は15、熱収縮率はたて方向で0.1%、よこ方向で0.0%、たて引張強力保持率は98%であった。
[実施例3]
(成分B)
 モノマの添加量としてp-ジクロベンゼンを94.8モル(94.8モル%)、m-ジクロロベンゼンを5モル(5モル%)、1,2,4-トリクロルベンゼンを0.2モル(0.2モル%)とした他は実施例1の条件で重合し、共重合PPS樹脂を製造し、MFRが142g/10分、融点263℃の共重合PPS樹脂を得た。この共重合PPS樹脂を実施例1と同様に乾燥し、成分Bとして用いた。
(成分A)
 実施例1で用いたものと同様のPPS樹脂を成分Aとして用いた。
(紡糸・不織ウェブ化)
 上記成分A,Bを用い、実施例1と同様の条件で、芯鞘型複合紡糸、不織ウェブ化を行った。得られた芯鞘型複合長繊維の平均単繊維繊度は2.5dtex、紡糸速度は4,856m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
(仮接着・熱接着)
 引き続き、エンボスロールの熱接着温度を255℃としたこと以外は実施例1と同様にして上記不織ウェブに仮接着および熱接着を施して、芯鞘型複合長繊維不織布を得た。得られた芯鞘型複合長繊維不織布の目付は258g/m、目付当たりの強伸度積は11、熱収縮率はたて方向で0.1%、よこ方向で0.0%、たて引張強力保持率は99%であった。
[実施例4]
(成分B)
 モノマの添加量としてp-ジクロベンゼンを84.8モル(84.8モル%)、m-ジクロロベンゼンを15モル(15モル%)、1,2,4-トリクロルベンゼンを0.2モル(0.2モル%)とした他は実施例1の条件で重合し、共重合PPS樹脂を製造し、MFRが165g/10分、融点239℃の共重合PPS樹脂を得た。この共重合PPS樹脂を実施例1と同様に乾燥し、成分Bとして用いた。
(成分A)
 実施例1で用いたものと同様のPPS樹脂を成分Aとして用いた。
(紡糸・不織ウェブ化)
 上記成分A,Bを用い、実施例1と同様の条件で、芯鞘型複合紡糸、不織ウェブ化を行った。得られた芯鞘型複合長繊維の平均単繊維繊度は2.4dtex、紡糸速度は5,062m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
(仮接着・熱接着)
 引き続き、エンボスロールの熱接着温度を230℃としたこと以外は実施例1と同様にして上記不織ウェブに仮接着および熱接着を施して、芯鞘型複合長繊維不織布を得た。得られた芯鞘型複合長繊維不織布の目付は255g/m、目付当たりの強伸度積は19、熱収縮率はたて方向で0.2%、よこ方向で0.1%、たて引張強力保持率は98%であった。
[比較例1]
(成分B)
 成分Bは用いなかった。
(成分A)
 実施例1で用いたものと同様のPPS樹脂を成分Aとして用いた。
(紡糸・不織ウェブ化)
 上記成分Aを押出機で溶融、計量し、紡糸温度325℃で、孔径φ0.30mmの矩形単一成分紡糸口金から単孔吐出量1.2g/分で紡出した。以降は実施例1と同様にして、紡糸、不織ウェブ化を行った。得られた単一成分型長繊維の平均単繊維繊度は2.4dtex、紡糸速度は4,920m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
(仮接着・熱接着)
 引き続き、エンボスロールの熱接着温度を260℃としたこと以外は実施例1と同様にして上記不織ウェブに仮接着および熱接着を施して、単一成分型長繊維不織布を得た。得られた単一成分型長繊維不織布の目付は263g/m、目付当たりの強伸度積は4、熱収縮率はたて方向で0.0%、よこ方向で0.1%、たて引張強力保持率は99%であった。
[比較例2]
(成分B)
 成分Bは用いなかった。
(成分A)
 実施例1で用いたものと同様のPPS樹脂を成分Aとして用いた。
(紡糸・不織ウェブ化)
 上記成分Aを押出機で溶融、計量し、紡糸温度325℃で、孔径φ0.30mmの矩形単一成分紡糸口金から単孔吐出量1.2g/分で紡出した。以降は圧縮エアの温度を常温(20℃)、エジェクター圧力を0.25MPaとしたこと以外は実施例1と同様にして、紡糸、不織ウェブ化を行った。得られた単一成分型長繊維の平均単繊維繊度は2.0dtex、紡糸速度は5,935m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
(仮接着・熱接着)
 引き続き、エンボスロールの熱接着温度を260℃としたこと以外は実施例1と同様にして上記不織ウェブに仮接着および熱接着を施して、単一成分型長繊維不織布を得た。得られた単一成分型長繊維不織布の目付は266g/m、目付当たりの強伸度積は3、熱収縮率はたて方向で0.1%、よこ方向で0.1%、たて引張強力保持率は99%であった。
Figure JPOXMLDOC01-appb-T000012
 p-フェニレンスルフィドを主単位とするPPS樹脂を芯成分、共重合PPS樹脂を鞘成分とした実施例1~4の芯鞘型複合長繊維不織布は、比較例1,2の単一成分型長繊維不織布と比較し、目付当たりの強伸度積が大幅に向上し、機械的強度に優れるものであった。
 本発明の熱接着性複合繊維から構成される不織布は、PPS樹脂の耐熱性、耐薬品性および難燃性の特性を有しながら、機械的強度に優れるため、各種工業用フィルター、電気絶縁材、電池セパレーター、水処理用膜基材、断熱基材および防護服などに好適に利用することができる。

Claims (8)

  1.  p-フェニレンスルフィドを主単位とするポリフェニレンスルフィドを主として含む樹脂を成分Aとし、p-フェニレンスルフィド以外に少なくとも1種以上の共重合単位を含有する共重合ポリフェニレンスルフィドを主として含む樹脂を成分Bとし、成分Aおよび成分Bを主としてなる複合繊維であって、成分Bが繊維の表面の少なくとも一部を形成してなることを特徴とするポリフェニレンスルフィド複合繊維。
  2.  前記成分Aを芯成分、前記成分Bを鞘成分とする芯鞘型複合繊維である、請求項1記載のポリフェニレンスルフィド複合繊維。
  3.  前記成分Bが、くり返し単位の70~97モル%がp-フェニレンスルフィドからなり、3~30モル%がm-フェニレンスルフィドからなる共重合ポリフェニレンスルフィドを含む、請求項1または2記載のポリフェニレンスルフィド複合繊維。
  4.  前記成分Aの融点Tm(A)と前記成分Bの融点Tm(B)とが下記式を満足する、請求項1~3のいずれかに記載のポリフェニレンスルフィド複合繊維。
     5(℃)≦Tm(A)-Tm(B)≦80(℃)
  5.  請求項1~4のいずれかに記載のポリフェニレンスルフィド複合繊維から構成されてなることを特徴とする不織布。
  6.  前記不織布がスパンボンド不織布である、請求項5記載の不織布。
  7.  前記ポリフェニレンスルフィド複合繊維が熱接着により一体化されてなる、請求項5または6記載の不織布。
  8.  空気中、180℃の温度で1300時間の耐熱暴露試験におけるたて引張強力保持率が80%以上である、請求項5~7のいずれかに記載の不織布。
PCT/JP2012/054906 2011-03-22 2012-02-28 ポリフェニレンスルフィド複合繊維および不織布 WO2012127997A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/005,999 US20140017966A1 (en) 2011-03-22 2012-02-28 Polyphenylene sulfide composite fiber and nonwoven fabric
ES12760981.6T ES2572933T3 (es) 2011-03-22 2012-02-28 Fibra compuesta a base de sulfuro de polifenileno y tela no tejida
CN201280006269.XA CN103328704B (zh) 2011-03-22 2012-02-28 聚苯硫醚复合纤维及无纺布
KR1020137020879A KR20140039158A (ko) 2011-03-22 2012-02-28 폴리페닐렌술피드 복합 섬유 및 부직포
EP12760981.6A EP2690208B1 (en) 2011-03-22 2012-02-28 Polyphenylene sulfide composite fiber and nonwoven fabric
JP2012515838A JP5725426B2 (ja) 2011-03-22 2012-02-28 ポリフェニレンスルフィド複合繊維および不織布
AU2012232449A AU2012232449A1 (en) 2011-03-22 2012-02-28 Polyphenylene sulfide composite fiber and nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-062745 2011-03-22
JP2011062745 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012127997A1 true WO2012127997A1 (ja) 2012-09-27

Family

ID=46879156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054906 WO2012127997A1 (ja) 2011-03-22 2012-02-28 ポリフェニレンスルフィド複合繊維および不織布

Country Status (8)

Country Link
US (1) US20140017966A1 (ja)
EP (1) EP2690208B1 (ja)
JP (1) JP5725426B2 (ja)
KR (1) KR20140039158A (ja)
CN (1) CN103328704B (ja)
AU (1) AU2012232449A1 (ja)
ES (1) ES2572933T3 (ja)
WO (1) WO2012127997A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046120A1 (ja) * 2012-09-21 2014-03-27 東レ株式会社 ポリフェニレンスルフィド複合繊維および不織布
JP2015067903A (ja) * 2013-09-26 2015-04-13 東レ株式会社 ポリフェニレンスルフィド繊維不織布
JP2021074674A (ja) * 2019-11-08 2021-05-20 日本バイリーン株式会社 膜支持体
WO2022030212A1 (ja) * 2020-08-06 2022-02-10 株式会社クレハ ポリフェニレンスルフィド樹脂組成物およびこれを含む制振材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177471B2 (en) * 2014-11-14 2019-01-08 The Boeing Company Composite and nanowire conduit
JPWO2020022260A1 (ja) 2018-07-27 2021-08-05 東レ株式会社 スパンボンド不織布、および、スパンボンド不織布から構成されるエアフィルター
CN114293282A (zh) * 2021-12-09 2022-04-08 安徽元琛环保科技股份有限公司 一种抗氧化聚苯硫醚纤维的制备方法及制得的抗氧化聚苯硫醚纤维

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299614A (ja) * 1988-10-04 1990-04-11 Teijin Ltd 剥離性が改善された耐熱性耐薬品性複合繊維
JPH04343712A (ja) * 1991-05-13 1992-11-30 Toray Ind Inc 芯鞘型複合繊維
JP2005154919A (ja) 2003-11-21 2005-06-16 Toyobo Co Ltd ポリフェニレンスルフィド系長繊維耐熱性布帛及びその製造方法
JP2007513270A (ja) * 2003-12-04 2007-05-24 ティコナ・エルエルシー ポリアリーレンスルフィド成分を含む多成分繊維
WO2008035775A1 (fr) 2006-09-21 2008-03-27 Asahi Kasei Fibers Corporation Tissu non tissé résistant à la chaleur
JP2008223209A (ja) 2007-02-13 2008-09-25 Toyobo Co Ltd 長繊維不織布およびそれを用いた繊維資材
JP2009155764A (ja) 2007-12-27 2009-07-16 Toyobo Co Ltd 長繊維不織布とその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822962B2 (ja) * 1986-07-25 1996-03-06 東燃化学株式会社 ポリフエニレンスルフイド樹脂組成物
EP0257228A1 (en) * 1986-07-25 1988-03-02 Tohpren Co., Ltd. Polyphenylene sulfide resin composition
JPH0822961B2 (ja) * 1986-07-25 1996-03-06 東燃化学株式会社 ポリフエニレンスルフイド樹脂組成物
JP2535509B2 (ja) * 1986-07-25 1996-09-18 東燃化学株式会社 ポリフエニレンスルフイド樹脂組成物
JPH07113062B2 (ja) * 1987-11-12 1995-12-06 株式会社トープレン ポリフェニレンサルファイド共重合体の製造方法
JPH01240532A (ja) * 1988-03-22 1989-09-26 Diafoil Co Ltd ポリフェニレンスルフィドフィルムの製造方法
JP2956254B2 (ja) * 1991-04-18 1999-10-04 東レ株式会社 積層ポリフェニレンスルフィドフイルムおよびその製造方法
WO2006051658A1 (ja) * 2004-11-12 2006-05-18 Toray Industries, Inc. 二軸配向ポリアリーレンスルフィドフィルムおよびそれからなる積層ポリアリーレンスルフィドシート
US20060127641A1 (en) * 2004-12-14 2006-06-15 The Procter & Gamble Company Papermachine clothing having reduced void spaces
JP2007326362A (ja) * 2006-05-08 2007-12-20 Toray Ind Inc 積層ポリフェニレンスルフィドフィルムおよび積層ポリフェニレンスルフィドフィルムの製造方法。
CN101413149B (zh) * 2007-10-15 2011-04-13 中国纺织科学研究院 一种聚苯硫醚复合纤维及其制造方法
US7998577B2 (en) * 2007-12-13 2011-08-16 E. I. Du Pont De Nemours And Company Multicomponent fiber with polyarylene sulfide component
CN101187091B (zh) * 2007-12-18 2011-04-06 德阳科吉高新材料有限责任公司 共聚聚苯硫醚复合纤维的制造方法
JP5365055B2 (ja) * 2008-04-04 2013-12-11 東レ株式会社 成形体および成形方法
CN101402731A (zh) * 2008-11-17 2009-04-08 德阳科吉高新材料有限责任公司 含芳杂环的聚苯硫醚共聚物及其制备方法、用途和制品
US20100147555A1 (en) * 2008-12-15 2010-06-17 E. I. Du Pont De Nemours And Company Non-woven sheet containing fibers with sheath/core construction
JP2013522495A (ja) * 2010-03-22 2013-06-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 不織ウェブを作製するための方法
KR101243613B1 (ko) * 2010-07-30 2013-03-14 (주)우노 앤 컴퍼니 폴리페닐렌설파이드계 인공모발 섬유 및 그 제조 방법
CN103562446B (zh) * 2011-06-02 2015-11-25 东丽株式会社 聚苯硫醚纤维及无纺布

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299614A (ja) * 1988-10-04 1990-04-11 Teijin Ltd 剥離性が改善された耐熱性耐薬品性複合繊維
JPH04343712A (ja) * 1991-05-13 1992-11-30 Toray Ind Inc 芯鞘型複合繊維
JP2005154919A (ja) 2003-11-21 2005-06-16 Toyobo Co Ltd ポリフェニレンスルフィド系長繊維耐熱性布帛及びその製造方法
JP2007513270A (ja) * 2003-12-04 2007-05-24 ティコナ・エルエルシー ポリアリーレンスルフィド成分を含む多成分繊維
WO2008035775A1 (fr) 2006-09-21 2008-03-27 Asahi Kasei Fibers Corporation Tissu non tissé résistant à la chaleur
JP2008223209A (ja) 2007-02-13 2008-09-25 Toyobo Co Ltd 長繊維不織布およびそれを用いた繊維資材
JP2009155764A (ja) 2007-12-27 2009-07-16 Toyobo Co Ltd 長繊維不織布とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690208A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046120A1 (ja) * 2012-09-21 2014-03-27 東レ株式会社 ポリフェニレンスルフィド複合繊維および不織布
US20150240390A1 (en) * 2012-09-21 2015-08-27 Toray Industries, Inc. Polyphenylene sulfide composite fiber and nonwoven fabric
JPWO2014046120A1 (ja) * 2012-09-21 2016-08-18 東レ株式会社 ポリフェニレンスルフィド複合繊維および不織布
JP2015067903A (ja) * 2013-09-26 2015-04-13 東レ株式会社 ポリフェニレンスルフィド繊維不織布
JP2021074674A (ja) * 2019-11-08 2021-05-20 日本バイリーン株式会社 膜支持体
WO2022030212A1 (ja) * 2020-08-06 2022-02-10 株式会社クレハ ポリフェニレンスルフィド樹脂組成物およびこれを含む制振材

Also Published As

Publication number Publication date
AU2012232449A1 (en) 2013-10-03
ES2572933T3 (es) 2016-06-03
EP2690208B1 (en) 2016-05-11
EP2690208A4 (en) 2014-08-20
KR20140039158A (ko) 2014-04-01
CN103328704A (zh) 2013-09-25
US20140017966A1 (en) 2014-01-16
JP5725426B2 (ja) 2015-05-27
JPWO2012127997A1 (ja) 2014-07-24
EP2690208A1 (en) 2014-01-29
CN103328704B (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5725426B2 (ja) ポリフェニレンスルフィド複合繊維および不織布
JP6102932B2 (ja) ポリフェニレンスルフィド複合繊維および不織布
KR101100462B1 (ko) 내열성 부직포
KR101441593B1 (ko) 필터용 부직포 및 그 제조 방법
JP5263294B2 (ja) 長繊維不織布の製造方法
JP5867400B2 (ja) ポリフェニレンスルフィド繊維および不織布
JP5672009B2 (ja) 長繊維不織布の製造方法
JP5887799B2 (ja) 繊維シートの製造方法
JP6201558B2 (ja) ポリフェニレンスルフィド繊維および不織布
JP6357747B2 (ja) ポリフェニレンスルフィド繊維からなるメルトブロー不織布
JP6102141B2 (ja) ポリフェニレンスルフィド繊維不織布
JP2014167191A (ja) ポリフェニレンスルフィド複合繊維および不織布
JP2013245425A (ja) スパンボンド不織布およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012515838

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137020879

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14005999

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012232449

Country of ref document: AU

Date of ref document: 20120228

Kind code of ref document: A