WO2012127947A1 - 中空エンジンバルブの製造方法 - Google Patents

中空エンジンバルブの製造方法 Download PDF

Info

Publication number
WO2012127947A1
WO2012127947A1 PCT/JP2012/053751 JP2012053751W WO2012127947A1 WO 2012127947 A1 WO2012127947 A1 WO 2012127947A1 JP 2012053751 W JP2012053751 W JP 2012053751W WO 2012127947 A1 WO2012127947 A1 WO 2012127947A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine valve
hollow engine
valve body
shaft portion
shaft
Prior art date
Application number
PCT/JP2012/053751
Other languages
English (en)
French (fr)
Inventor
宏和 森井
健一郎 平尾
豹治 吉村
Original Assignee
三菱重工業株式会社
株式会社 吉村カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 株式会社 吉村カンパニー filed Critical 三菱重工業株式会社
Priority to EP12760300.9A priority Critical patent/EP2690262B1/en
Priority to CN201280009242.6A priority patent/CN103403305B/zh
Priority to US14/001,994 priority patent/US9302317B2/en
Priority to KR1020137022997A priority patent/KR101512919B1/ko
Publication of WO2012127947A1 publication Critical patent/WO2012127947A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/24Safety means or accessories, not provided for in preceding sub- groups of this group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/24Making machine elements valve parts valve bodies; valve seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • B23P15/002Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making

Definitions

  • the present invention relates to a method for manufacturing a hollow engine valve in which a hollow portion is formed from a shaft portion (body portion) to an enlarged diameter portion of a valve head portion.
  • Patent Document 1 discloses a method for manufacturing a valve head portion of a hollow engine valve and a hollow engine valve.
  • a cup-shaped intermediate member is formed by punching a cylindrical hole with a punch on the upper surface of a solid round bar (cylindrical billet material) by hot forging, and forging the lower part.
  • the diameter of the valve head part is formed by expanding the diameter of the head part, and necking is performed several times on the part to gradually squeeze the upper part of the part of the head part of the valve head part so that the valve head part and the hollow shaft part connected thereto are formed. Molded to obtain a hollow engine valve body.
  • Japanese Patent No. 430291 for example, see [Example 1], [FIG. 1] to [FIG. 4], etc.
  • a valve body semi-finished product of a hollow engine valve is molded to obtain a valve body.
  • a semifinished valve body 100 of a hollow engine valve having a shaft portion (body portion) 101 having a wall thickness t 0 and a valve head portion forming portion 102 connected thereto is prepared.
  • a hole portion 103 having a diameter d 0 is formed from the shaft portion 101 to the enlarged diameter portion of the valve head portion forming portion 102.
  • the shaft portion 104 has a wall thickness t 1 (> t 0 ) and the hole portion 105 has a diameter d 1 ( ⁇ d 0 ). It becomes.
  • the shaft portion 106 has a thickness t 2 (> t 1 ) and the hole portion 107 has a diameter d 2 ( ⁇ d 1 ). It becomes.
  • the shaft portion 108 has a wall thickness t n (> t (n ⁇ 1) ),
  • the hole 109 has a diameter d n ( ⁇ d (n ⁇ 1) ).
  • the thickness of the shaft portion of the valve body of the hollow engine valve is restricted by the thickness of the shaft portion of the semifinished product of the hollow engine valve and the number of times of necking. Further, the thickness of the shaft portion of the semifinished hollow valve body of the hollow engine valve has to be a predetermined size or more so that the shaft portion is not buckled and deformed. Thus, it has been difficult to obtain a hollow engine valve having a shaft portion having a desired thickness by the above-described method for manufacturing a hollow engine valve.
  • the present invention has been made to solve the above-described problems, and it is possible to manufacture a hollow engine valve having a shaft portion having a desired thickness relatively easily. It aims to provide a method.
  • a method for manufacturing a hollow engine valve according to a first invention for solving the above-described problem is as follows.
  • a method of manufacturing a hollow engine valve in which a hollow portion is formed from a shaft portion to a diameter-enlarged portion of a valve head portion A valve body of a hollow engine valve comprising a shaft portion and a valve head portion forming portion connected to the shaft portion, and having a cylindrical hole formed from the shaft portion to the enlarged diameter portion of the valve head portion forming portion.
  • a first rotational plastic working step for reducing the diameter of the shaft portion by performing rotational plastic working on the semi-finished product Continuing from this step, for the semifinished product of the hollow engine valve body, a die hole for pressing the enlarged portion and the shaft portion of the valve head portion forming portion of the semifinished product of the hollow engine valve. Necking that reduces the outer diameter and inner diameter of the shaft portion by performing necking that gradually reduces the inner diameter of the shaft by using the number of dies that have been gradually reduced as the stage proceeds. Processing steps, Subsequent to this step, a sealing step of obtaining a hollow engine valve by sealing the tip of the shaft portion is provided.
  • a method for manufacturing a hollow engine valve according to a second invention for solving the above-described problem is as follows.
  • a method for manufacturing a hollow engine valve according to a first invention The rotary plastic working is performed by inserting a core into the hole of the semifinished hollow engine valve body and rotating the shaft of the semifinished hollow engine valve body and the core together.
  • Rotary swaging that strikes the outer periphery of the shaft with a swaging die, or inserts a core into the hole of the semifinished hollow engine valve body, and the hollow engine valve body half It is a spinning process in which a spinning die is pressed against the outer peripheral part of the shaft part while rotating the finished product and the core together.
  • a method for manufacturing a hollow engine valve according to a third invention for solving the above-described problem is as follows.
  • the rotary plastic working is a rotary swaging process in which a semi-finished product of the valve body of the hollow engine valve is rotated while the outer periphery of the shaft part is hit by a swaging die, or the hollow engine valve Spinning processing that rotates a semifinished product of the valve body while pressing a spinning die on the outer periphery of the shaft portion; Subsequent to this processing, a core is inserted into the hole of the semifinished hollow engine valve body, and the shaft of the semifinished hollow engine valve body and the core is rotated together.
  • Rotary swaging that gives a blow with a swaging die to the outer periphery of the part, or insert a core into the hole of the semi-finished product of the hollow engine valve body, semi-finished of the hollow engine valve body It is a combination with spinning processing in which a spinning die is pressed against the outer peripheral portion of the shaft portion while rotating the product and the core together.
  • a method for manufacturing a hollow engine valve according to a fourth invention for solving the above-described problem is as follows.
  • a method for manufacturing a hollow engine valve according to a first invention After performing the necking process on the valve body semi-finished product of the hollow engine valve, a rotary plastic process is performed to reduce the outer diameter while maintaining the inner diameter of the shaft part. It further comprises a rotational plastic working process.
  • a method for manufacturing a hollow engine valve according to a fifth invention for solving the above-described problem is as follows.
  • a method for manufacturing a hollow engine valve according to a fourth invention In the second rotational plastic working step, the rotational plastic working inserts a core into the hole of the semifinished hollow engine valve body, and the semifinished hollow engine valve body and the core.
  • Rotating the shaft together rotary swaging processing that gives a blow with a swaging die to the outer periphery of the shaft portion, or inserting a core into the hole of the semi-finished valve body of the hollow engine valve
  • a spinning process in which a spinning die is pressed against the outer peripheral portion of the shaft portion while rotating the valve body semi-finished product of the hollow engine valve and the core together.
  • a method for manufacturing a hollow engine valve according to a sixth invention for solving the above-described problem is as follows.
  • a method for manufacturing a hollow engine valve according to a fourth invention The rotational plastic working of the second rotational plastic working step is performed only on a portion other than the upper portion of the shaft portion, and the outer diameter is maintained while maintaining the size of the inner diameter outside the upper portion of the shaft portion. While reducing the diameter, the outer diameter at the upper part of the shaft part is a large diameter part while maintaining the size before processing,
  • the sealing step the hollow engine valve is obtained by pressing the large-diameter portion and sealing the tip of the shaft portion.
  • a method for manufacturing a hollow engine valve according to a seventh invention for solving the above-described problem is as follows.
  • a method of manufacturing a hollow engine valve in which a hollow portion is formed from a shaft portion to a diameter-enlarged portion of a valve head portion A valve body of a hollow engine valve comprising a shaft portion and a valve head portion forming portion connected to the shaft portion, and having a cylindrical hole formed from the shaft portion to the enlarged diameter portion of the valve head portion forming portion.
  • the diameter of the enlarged portion of the valve head portion forming portion of the semifinished hollow engine valve body and the inner diameter of the die hole of the die that presses the shaft portion are gradually reduced as the stages progress.
  • a method for manufacturing a hollow engine valve according to an eighth invention for solving the above-described problem is as follows.
  • a method for manufacturing a hollow engine valve according to a seventh invention The rotary plastic working is performed by inserting a core into the hole of the semifinished hollow engine valve body and rotating the shaft of the semifinished hollow engine valve body and the core together.
  • Rotary swaging that strikes the outer periphery of the shaft with a swaging die, or inserts a core into the hole of the semifinished hollow engine valve body, and the hollow engine valve body half It is a spinning process in which a spinning die is pressed against the outer peripheral part of the shaft part while rotating the finished product and the core together.
  • a method for manufacturing a hollow engine valve according to a ninth invention for solving the above-described problem is as follows.
  • a method for manufacturing a hollow engine valve according to a seventh invention A die that presses the diameter-enlarged portion and the shaft portion of the valve head portion forming portion of the valve body semi-finished product of the hollow engine valve after performing the rotational plastic working on the valve engine semi-finished product of the hollow engine valve.
  • the outer diameter and the inner diameter of the shaft portion are reduced by performing necking processing in which the inner diameter of the die hole is gradually reduced by the number of the drawing-up steps, each time the die is gradually reduced. It is further characterized by further comprising a second necking step for diameter.
  • a method for manufacturing a hollow engine valve according to a tenth aspect of the invention for solving the above-described problem is as follows.
  • a method for manufacturing a hollow engine valve according to a seventh invention The rotational plastic working is performed only on a portion other than the upper portion of the shaft portion, and the outer diameter is reduced while maintaining the size of the inner diameter outside the upper portion of the shaft portion.
  • the outer diameter at the upper part is the large diameter part while maintaining the size before processing,
  • the hollow engine valve is obtained by pressing the large-diameter portion and sealing the tip of the shaft portion.
  • the thickness of the shaft portion is made uniform in the circumferential direction and the axial direction by performing the rotational plastic processing before performing the necking processing. It is possible to improve the yield in the next necking process. Further, only the necking is performed after the rotational plastic working, and a hollow engine valve having a shaft portion with a desired thickness can be manufactured relatively easily.
  • the same effects as the method for manufacturing the hollow engine valve according to the first aspect of the invention can be achieved, and a rotary swaging process or spinning process using a core.
  • a rotary swaging process or spinning process using a core By performing the rotary swaging process or the spinning process without using the core, the outer diameter and thickness of the shaft portion of the semifinished hollow engine valve body can be adjusted.
  • the same effect as the method for manufacturing the hollow engine valve according to the first invention is achieved, and the rotational plastic processing is performed after the necking processing. Accordingly, the outer diameter of the shaft portion of the semifinished hollow engine valve body can be adjusted to a desired size. Further, the machining accuracy of the inner diameter of the shaft portion of the hollow engine valve can be improved as compared with the method of manufacturing the hollow engine valve that performs necking at the end.
  • the same effect as the method for manufacturing the hollow engine valve according to the fourth aspect of the invention can be obtained.
  • the outer diameter of the shaft portion of the hollow engine valve can be adjusted to a desired size.
  • the machining accuracy of the inner diameter of the shaft portion of the hollow engine valve can be improved as compared with the method of manufacturing the hollow engine valve that performs necking at the end.
  • the shaft of the hollow engine valve is obtained by performing rotational plastic working after making the inner diameter of the shaft portion a desired size by performing necking.
  • the outer diameter of the part can be adjusted to a desired size. Further, the machining accuracy of the inner diameter of the shaft portion of the hollow engine valve can be improved as compared with the method of manufacturing the hollow engine valve that performs necking at the end.
  • the rotational plastic working is performed after the necking process, and the necking process is performed after the necking process.
  • a core having a large diameter can be used in the rotational plastic working, and the complication of the manufacturing operation can be suppressed.
  • the end portion of the shaft portion can be closed by a series of processing operations, and there is no need to separately prepare a member for closing the end portion of the shaft portion. Therefore, the manufacturing process can be simplified.
  • FIG. 1A shows the perspective view of the valve body semi-finished product of the hollow engine valve before a process
  • FIG. 1C shows a state during the first necking
  • FIG. 1D shows a state during the n-th necking
  • FIG. 1E shows a perspective view of the finished product of the hollow engine valve.
  • FIG. 3A A top is shown to FIG. 3A, and a perspective view is shown to FIG. 3B.
  • FIG. 4A The cross section of the hollow engine valve before edge part processing is shown to FIG. 4A
  • FIG. 2 shows a cross section of a hollow engine valve.
  • FIG. 5A The perspective view of the valve body semi-finished product of the hollow engine valve before a process is shown to FIG. 5A, FIG. FIG.
  • FIG. 5C shows the state during the first necking
  • FIG. 5D shows the state during the n-th necking
  • FIG. 5E shows a perspective view of the finished product of the hollow engine valve. It is a figure for demonstrating the manufacturing method of the conventional hollow engine valve, Comprising: The cross section of the valve body semi-finished product of the hollow engine valve before a process is shown to FIG. 6A, The cross section after the 1st necking process to FIG. 6B 6C shows a cross section after the second necking process, and FIG. 6D shows a cross section after the nth necking process.
  • FIG. 2 A method for manufacturing a hollow engine valve according to the first embodiment of the present invention will be described with reference to FIGS.
  • the horizontal axis indicates the process
  • the vertical axis indicates the inner diameter and the outer diameter of the shaft portion of the valve body semifinished product of the hollow engine valve and the valve body after each process.
  • the cross mark indicates the valve body semi-finished product of the hollow engine valve and the valve body according to the first embodiment
  • the triangle mark indicates the hollow engine valve semi-finished product and the valve body.
  • size of the internal diameter of a axial part is shown, and a continuous line shows the case of Example 1.
  • FIG. In addition, in the process S0 (initial state), the size of the inner diameter and the outer diameter of the shaft portion in the semifinished product of the hollow engine valve body are shown.
  • necking is performed after the rotary swaging (rotational plastic processing) is performed on the semifinished hollow engine valve body. Specifically, as shown in FIG. 2, rotary swaging is performed on the semifinished hollow engine valve body in the first step S1 to the second step S2 (first rotational plastic working step). Subsequently, necking is performed in a process (necking process) from the third process S3 to the eighth process S8.
  • the hollow engine valve valve body semi-finished product 10 includes a shaft portion (body portion) 11 and a valve head portion forming portion 12 a connected to the lower end portion of the shaft portion 11.
  • a cylindrical hole portion 13 is formed from the shaft portion 11 to the enlarged diameter portion of the valve head portion forming portion 12a.
  • rotary swaging is performed on the shaft of the semifinished hollow engine valve body.
  • a core 52 is placed in the shaft portion 11 of the semifinished hollow engine valve body 10, and the direction R about the axis of the semifinished hollow engine valve body 10 is centered.
  • the outer peripheral portion 11a of the shaft portion 11 is hit by a die (swaging die) 51.
  • a die swaging die
  • the outer diameter of the shaft portion 11 is reduced.
  • two dies 51 are used as one set, and four dies 51 are used.
  • a pair of dies 51, 51 are opposed to each other with the shaft portion 11 as the center.
  • the tip portion 51 a of the die 51 is formed in a curved shape along the shaft portion 11. This processing is performed until the outer diameter of the shaft portion of the semifinished hollow engine valve body becomes a predetermined size.
  • rotary swaging using a core is performed from the first step S1 to the second step S2. Thereby, it has the shaft part 14 and the valve head part formation part 12b connected to the lower end part of the shaft part 14, and the hole part 15 is formed ranging from the shaft part 14 to the enlarged diameter part of the valve head part formation part 12b.
  • Semi-finished product of hollow engine valve body is obtained.
  • the outer diameter of the shaft portion 14 of the semifinished hollow engine valve body is formed to a predetermined size (> d1).
  • necking is performed on the semi-finished product of the hollow engine valve body obtained by the rotary swaging process described above. That is, with respect to the semifinished hollow engine valve body, the inner diameter of the die diameter hole of the die that presses the shaft portion and the enlarged diameter portion of the valve head portion forming portion of the semifinished hollow engine valve body Each time the stages progress, necking is performed in which the diameter is gradually reduced by using the number of dies that are gradually reduced in diameter for the number of the drawing-up steps. For example, in the first drawing process, necking is performed using a die 61 as shown in FIG. 1C. First, the die 61 is disposed above the semi-finished valve body of the hollow engine valve.
  • the die 61 has a cylindrical shape, and a die hole 62 is formed from the lower surface portion 61a to the upper surface portion 61b.
  • the die hole 62 is opened to the lower surface portion 61a and has a reduced diameter portion 63 that is reduced in diameter as it goes upward, and a same diameter portion 64 that is connected to the reduced diameter portion 63 and extends from the lower portion to the upper portion with the same diameter.
  • the shaft part 14 of the semifinished hollow engine valve body and the shaft center of the die hole 62 of the die 61 are aligned and pressed against the semifinished hollow engine valve body.
  • the shaft portion 14 of the semifinished hollow engine valve body is squeezed out by the die 61.
  • the axial part 14 is extended in an axial direction.
  • the shaft portion 14 is thicker than before the necking process.
  • the inner diameter and outer diameter of the hole 15 in the shaft portion 14 are smaller than those before necking.
  • the die is changed to a die corresponding to the size of the outer diameter of the shaft portion, and the shaft portion is squeezed out using this die.
  • necking is performed using a die 65 as shown in FIG. 1D.
  • n is a positive number of 2 or more.
  • the die 65 is disposed above the semifinished product of the hollow engine valve obtained in the (n-1) th throttling step.
  • the die 65 has a cylindrical shape like the die 61, and a die hole 66 is formed from the lower surface portion 65a to the upper surface portion 65b.
  • the die hole 66 is open to the lower surface portion 65a and has a reduced diameter portion 67 that is reduced in diameter as it goes upward, and a same diameter portion 68 that is connected to the reduced diameter portion 67 and extends from the lower portion to the upper portion with the same diameter.
  • the die hole 66 has a smaller diameter than the die hole 62, and the same diameter portion 68 is formed to have a smaller diameter than the same diameter portion 64.
  • the shaft portion 16 of the semifinished hollow engine valve body and the shaft center of the die hole 66 of the die 65 are aligned and pressed against the semifinished hollow engine valve body.
  • the shaft portion 16 of the semifinished hollow engine valve body is squeezed out by the die 65. Thereby, the axial part 16 is extended in an axial direction. Further, the shaft portion 16 is thicker than before necking.
  • the inner diameter and outer diameter of the hole 17 in the shaft portion 16 are smaller than before the necking process.
  • the necking process described above is performed using a die having a die hole formed in accordance with the outer diameter of the shaft part of the semifinished hollow engine valve body, and the shaft part has a predetermined outer diameter.
  • the process is performed until the size becomes d1 and the inner diameter of the shaft portion reaches a predetermined size d2 ( ⁇ d1).
  • d1 the inner diameter of the shaft portion reaches a predetermined size d2 ( ⁇ d1).
  • d1 the outer diameter of the shaft portion 18
  • the diameter of the hole portion 19 of the shaft portion 18 is the valve body of the hollow engine valve.
  • necking is performed from the third step S3 to the eighth step S8.
  • a hollow engine valve is obtained by sealing the front-end
  • a hollow engine valve (finished product) is obtained by welding a cylindrical sealing member 31 to the tip of the shaft 18 and sealing the tip of the shaft. Can do.
  • the thickness of the shaft portion is made uniform in the circumferential direction and the axial direction by performing the rotary swaging process before performing the necking process. It is possible to improve the yield in the necking process of the next process. Further, only the necking process is performed after the rotary swaging process, and a hollow engine valve having a shaft portion having a desired thickness can be manufactured relatively easily.
  • FIG. 2 A method for manufacturing a hollow engine valve according to a second embodiment of the present invention will be specifically described with reference to FIG.
  • the cross mark indicates the semifinished product of the hollow engine valve according to the second embodiment and the outer diameter of the shaft portion of the valve body
  • the triangle mark indicates the semifinished product of the hollow engine valve body.
  • size of the internal diameter of the axial part in a valve main body is shown, and the dashed-two dotted line shows the case of Example 2.
  • the rotary swaging process in the method for manufacturing the hollow engine valve according to the first embodiment described above is performed in two steps.
  • a rotary swaging process is performed without using a core, and then a rotary swaging process is performed by inserting the core into a shaft part of a semifinished hollow engine valve body.
  • the core is not used in the first to third steps S3 (first rotational plastic working step) for the semifinished hollow engine valve body.
  • rotary swaging is performed, followed by rotary swaging using a core in the fourth step S4 and fifth step S5 (second rotational plastic working step), Necking is performed in steps S6 to S8 (necking step).
  • rotary swaging is performed on the shaft of the semifinished hollow engine valve body without using a core.
  • the inner diameter and outer diameter of the shaft portion of the semifinished product of the hollow engine valve are reduced. This is because there is no core in the shaft part of the semifinished hollow engine valve body, and there is no member that receives this force inside the shaft part when the die strikes the outer peripheral part of the shaft part.
  • This process is performed until the inner diameter and outer diameter of the shaft portion of the semifinished hollow engine valve body become a predetermined size.
  • the rotary swaging process is performed from the first step S1 to the third step S3 without using the core.
  • the core is placed in the shaft portion of the semifinished hollow engine valve body obtained by the above-described rotary swaging process without using the core, and the rotary swaging process is performed.
  • the outer diameter is reduced while maintaining the inner diameter of the shaft portion.
  • the rotary swaging process using the core is performed until the outer diameter of the shaft portion of the semifinished hollow engine valve body becomes a predetermined size.
  • rotary swaging using a core is performed from the fourth step S4 to the fifth step S5.
  • the valve engine semi-finished product of the hollow engine valve obtained by the rotary swaging process using the above-described core is necked in the same manner as the hollow engine valve manufacturing method according to the first embodiment described above. Processing. That is, for the semifinished product of the hollow engine valve body, each time the step proceeds, the die hole for pressing the valve head part and the shaft part of the semifinished product of the hollow engine valve body Necking is performed by gradually reducing the diameter of the dies, which are gradually reduced, by the number of squeezing steps. This processing is performed until the outer diameter of the shaft portion of the semifinished hollow engine valve body reaches a predetermined size d1 and the inner diameter of the shaft portion reaches a predetermined size d2 ( ⁇ d1). Thereby, the outer diameter of the shaft portion 18 is d1, and the diameter of the hole portion 19 of the shaft portion 18 is the valve body of the hollow engine valve. In this embodiment, necking is performed from the sixth step S6 to the eighth step S8.
  • the length of the shaft portion of the valve body of the hollow engine valve obtained by the necking process described above is adjusted as necessary, and in the same manner as the method for manufacturing the hollow engine valve according to the first embodiment described above, By sealing the tip (upper end) of the shaft portion of the valve body of the hollow engine valve, a hollow engine valve (finished product) can be obtained.
  • the same effects as the method for manufacturing the hollow engine valve according to the first embodiment described above can be obtained, and rotary swaging can be performed using a core.
  • rotary swaging can be performed using a core.
  • FIG. 2 A method for manufacturing a hollow engine valve according to a third embodiment of the present invention will be specifically described with reference to FIG.
  • the cross mark indicates the semifinished product of the hollow engine valve according to the third embodiment and the outer diameter of the shaft portion of the valve body
  • the triangle mark indicates the semifinished product of the hollow engine valve body.
  • size of the internal diameter of the axial part in a valve main body is shown, and a dotted line shows the case of Example 3.
  • rotary swaging processing rotating plastic processing
  • necking processing necking processing
  • rotary swaging processing rotational plastic processing
  • a core is used as in the first step S1 to the second step S2 in the method for manufacturing the hollow engine valve according to the first embodiment described above.
  • Rotary swaging is performed, and in the second step S2 to the seventh step S7, as in the third step S3 to the eighth step S8 in the first embodiment described above, necking is performed. The description is omitted.
  • necking is performed on the semifinished hollow engine valve body, and the inner diameter of the shaft of the semifinished hollow engine valve body is in the vicinity of a predetermined size d2 ( ⁇ d2).
  • a predetermined size > d1
  • the core is inserted into the shaft portion and rotary swaging is performed.
  • a core corresponding to the size of the inner diameter of the shaft portion of the semifinished hollow engine valve body adjusted by necking is used.
  • the rotary swaging process using the core is performed until the outer diameter of the shaft portion of the semifinished hollow engine valve body reaches a predetermined size d1. Thereby, it becomes a valve body of a hollow engine valve.
  • rotary swaging using a core is performed in the eighth step S8.
  • a hollow engine valve (finished product) can be obtained by sealing the tip (upper part) of the shaft portion of the valve body of the hollow engine valve.
  • the same effects as the method for manufacturing the hollow engine valve according to the first embodiment described above can be obtained, and in addition, the rotary engine valve can be rotated after necking.
  • the outer diameter of the shaft portion of the semifinished hollow engine valve body can be adjusted to a desired size. Further, the machining accuracy of the inner diameter of the shaft portion of the hollow engine valve can be improved as compared with the method of manufacturing the hollow engine valve that performs necking at the end.
  • FIG. 2 A method for manufacturing a hollow engine valve according to a fourth embodiment of the present invention will be described with reference to FIGS.
  • the cross marks indicate the valve body semi-finished product of the hollow engine valve according to Example 4 and the outer diameter of the shaft portion of the valve body
  • the triangle marks indicate the semi-finished product of the hollow engine valve valve body.
  • size of the internal diameter of the axial part in a valve main body is shown, and the dashed-dotted line shows the case of Example 4.
  • the rotary swaging process (rotational plastic processing) is performed after the necking process is performed on the semifinished product of the hollow engine valve. Specifically, as shown in FIG. 2, the semifinished hollow engine valve body is subjected to necking in the first step S1 to the sixth step S6 (first necking step), followed by Thus, rotary swaging using a core is performed in the seventh step S7 to the eighth step S8 (rotational plastic working step).
  • a semifinished product of the hollow engine valve body is prepared.
  • the semifinished product 10 of the hollow engine valve has a shaft portion (body portion) 11 and a valve head portion forming portion 12 a connected to the lower end portion of the shaft portion 11.
  • a cylindrical hole 13 is formed from 11 to the enlarged diameter portion of the valve head portion 12a.
  • necking is performed on the semifinished hollow engine valve body in the same manner as the hollow engine valve manufacturing method according to the first embodiment described above. That is, for the semifinished product of the hollow engine valve body, each time the step proceeds, the die hole for pressing the valve head part and the shaft part of the semifinished product of the hollow engine valve body Necking is performed by gradually reducing the diameter of the dies, which are gradually reduced, by the number of squeezing steps.
  • the dice for example, dice 61 and 65 shown in FIGS. 1C and 1D are used. This processing is performed until the inner diameter of the shaft part of the semifinished hollow engine valve body becomes a predetermined size d2 ( ⁇ d2) and the outer diameter reaches a predetermined size (> d1). .
  • necking is performed from the first step S1 to the sixth step S6.
  • a semi-finished product of the hollow engine valve body obtained by the necking process described above is inserted into the shaft part and subjected to rotary swaging.
  • a core corresponding to the size of the inner diameter of the shaft portion of the semifinished hollow engine valve body adjusted by necking is used. This reduces the outer diameter of the hollow engine valve while maintaining the inner diameter of the shaft portion of the semifinished product of the valve body.
  • the rotary swaging process using the core is performed until the outer diameter of the shaft portion of the semifinished hollow engine valve body described above reaches a predetermined size d1 (> d2). Thereby, it becomes a valve body of a hollow engine valve.
  • the rotary swaging process is performed on the core from the seventh step S7 to the eighth step S8.
  • a hollow engine valve (finished product) can be obtained by sealing at the tip (upper end) of the shaft portion of the valve body of the hollow engine valve.
  • the shaft portion of the hollow engine valve is obtained by performing rotary swaging after making the inner diameter of the shaft portion a desired size by performing necking. Can be adjusted to a desired size. Further, the machining accuracy of the inner diameter of the shaft portion of the hollow engine valve can be improved as compared with the method of manufacturing the hollow engine valve that performs necking at the end.
  • FIG. 2 A hollow engine valve manufacturing method according to a fifth embodiment of the present invention will be described with reference to FIG.
  • the cross mark indicates the semifinished product of the hollow engine valve body according to the fifth embodiment and the outer diameter of the shaft portion of the valve body
  • the triangle mark indicates the semifinished product of the hollow engine valve body.
  • size of the internal diameter of the axial part in a valve main body is shown, and the dashed-two dotted line shows the case of Example 5.
  • necking, rotary swaging using a core are performed in the order described. Specifically, as shown in FIG. 2, necking is performed on the semifinished hollow engine valve body from the first step S1 to the third step S3 (first necking step), and then Then, in the fourth step S4 to the fifth step S5 (rotational plastic working step), rotary swaging using a core having a predetermined diameter (> d2) is performed, and then from the sixth step S6. Necking is performed in the eighth step S8 (second necking step).
  • the first step S1 to the third step S3 are the same as the first step S1 to the sixth step S6 in the method for manufacturing the hollow engine valve according to the fourth embodiment described above.
  • the fourth step S4 to the fifth step S5 as in the seventh step S7 to the eighth step S8 in the fourth embodiment described above, the rotary machine using the core is performed. Aging processing is performed, and the description thereof is omitted.
  • the semi-finished hollow engine valve body is subjected to rotary swaging after the necking, and the inner diameter of the shaft of the hollow engine valve semi-finished body is a predetermined size (> d2).
  • the outer diameter reaches a predetermined size (> d1)
  • the hollow engine valve semi-finished product of the hollow engine valve obtained by the rotary swaging process is hollowed according to the first embodiment described above.
  • Necking is performed in the same manner as the engine valve manufacturing method.
  • the die hole for pressing the valve head part and the shaft part of the semifinished product of the hollow engine valve body Necking is performed by gradually reducing the diameter of the dies, which are gradually reduced, by the number of squeezing steps. This processing is performed until the outer diameter of the shaft portion of the semifinished hollow engine valve body reaches a predetermined size d1 and the inner diameter of the shaft portion reaches a predetermined size d2 ( ⁇ d1). Thereby, it becomes a valve body of a hollow engine valve.
  • necking is performed from the sixth step S6 to the eighth step S8.
  • a hollow engine valve (finished product) can be obtained by sealing at the tip (upper end) of the shaft portion of the valve body of the hollow engine valve.
  • the rotary swaging process is performed after the necking process, and the necking process is further performed subsequently to this process.
  • the shaft portion of the hollow engine valve is formed by performing aging processing, a core having a large diameter can be used in the rotary swaging processing, and the complication of the manufacturing operation can be suppressed.
  • FIGS. 1-10 A method for manufacturing a hollow engine valve according to a sixth embodiment of the present invention will be described with reference to FIGS.
  • the rotary swaging process after the necking process in the method for manufacturing the hollow engine valve in the third or fourth embodiment described above is performed, and the shaft of the semifinished product of the valve body of the hollow engine valve is used. This is performed not on the entire part but only on the part other than the upper part. Following this processing, the upper part of the shaft part is pressed to seal the tip of the shaft part.
  • necking is performed on the semifinished hollow engine valve body, and the inner diameter of the shaft of the semifinished hollow engine valve body is in the vicinity of a predetermined size d2 ( ⁇ d2).
  • a core is inserted into the shaft portion and rotary swaging is performed.
  • a core 56 is placed in the hole 23 of the shaft portion 21 of the valve body semi-finished product of the hollow engine valve after necking, and the hollow body is hollow. While rotating in the direction R about the shaft center of the semifinished engine valve body, only a portion other than the upper portion of the shaft portion 21 is hit by a die (swaging die) 55.
  • the outer diameter is reduced while maintaining the size of the inner diameter other than the upper portion of the shaft portion 21.
  • the outer diameter of the upper portion of the shaft portion 21 is the large diameter portion 22 while maintaining the size before processing. Note that the inner diameter of the upper portion of the shaft portion 21 is also maintained at the size before processing.
  • the same effect as the method for manufacturing the hollow engine valve according to the third embodiment and the fourth embodiment can be obtained, and a series of processing operations can be performed. Since the end of the shaft portion 21 can be closed and there is no need to separately prepare a member for closing the end portion of the shaft portion 21, the manufacturing process can be simplified.
  • the rotational plastic processing is rotary swaging processing
  • spinning processing is used as the rotary plastic processing, or rotary swaging processing and spinning processing are used in combination. It is also possible to do.
  • a spinning process can be performed instead of the rotary swaging process in the rotational plastic working process of the method for manufacturing the hollow engine valve according to the first embodiment described above.
  • a core 54 is inserted into the hole 13 of the semifinished hollow engine valve body 10, and the axial center of the semifinished hollow engine valve body 10 is centered.
  • the die (spinning die) 53 is pressed against the outer peripheral portion 11a of the shaft portion 11 while rotating the valve body semifinished product 10 of the hollow engine valve 10 and the core 54 together in the direction R. Thereby, the outer diameter can be reduced while maintaining the size of the inner diameter of the shaft portion of the semifinished hollow engine valve body.
  • a hollow engine valve having a shaft portion having a desired thickness can be manufactured relatively easily, and thus can be beneficially used in the automobile industry and the like.
  • Valve head portion forming portion 12d Valve head portion 13 Hole portions 14, 16, 18 Shaft portions 15, 17, 19 Hole portion 21 Shaft portion 22 Shaft portion 22 Large diameter portion 23 Hole 24 End sealing part 31 Sealing member 51 Die 52 Core (mandrel) 55 Dice 56 Core (Mandrel) 61, 65 Dies 62, 66 Holes 63, 67 Reduced diameter parts 64, 68 Same diameter parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Forging (AREA)

Abstract

 所望の肉厚の軸部を有する中空エンジンバルブを比較的容易に製造することができる中空エンジンバルブの製造方法を提供することにある。軸部から弁傘部の拡径部に亘って形成された中空部を有する中空エンジンバルブの製造方法であって、軸部(11)と軸部に接続する弁傘部形成部分(12)からなり、軸部から弁傘部形成部分の拡径部に亘って円柱体形状の穴部(13)が形成された中空エンジンバルブの弁本体半完成品(10)に対し、回転塑性加工を行うことで、軸部を縮径する回転塑性加工工程と、この工程に引き続き、前記中空エンジンバルブの弁本体半完成品に対しネッキング加工を行うことで、軸部の外径および内径を縮径するネッキング加工工程と、この工程に引き続いて、軸部の先端を封止することにより、中空エンジンバルブを得る封止工程を備えるようにした。

Description

中空エンジンバルブの製造方法
 本発明は、軸部(胴部)から弁傘部の拡径部に亘って中空部が形成された中空エンジンバルブの製造方法に関する。
 中空エンジンバルブ(弁)の製造方法が種々開発され、中空エンジンバルブを鍛造で成形する方法がある。例えば、特許文献1には、中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブが開示されている。
 特許文献1に記載の製造方法では、熱間鍛造にて中実丸棒(円柱状のビレット材)の上面にパンチで円柱形の穴を明けてコップ状中間部材を成形し、この下部を鍛造により拡径して弁傘部形成部分を成形し、これに対しネッキング加工を複数回行うことで弁傘部形成部分の上部を徐々に絞り上げて弁傘部およびこれに接続する中空軸部を成形して中空エンジンバルブの弁本体を得ている。
特許第430291号(例えば、[実施例1]、[図1]~[図4]など参照)
 上述した中空エンジンバルブの製造方法では、図6に示すように、中空エンジンバルブの弁本体半完成品を成形して弁本体を得ている。まず、図6Aに示すように、肉厚t0である軸部(胴部)101とこれに接続する弁傘部形成部分102とを有する中空エンジンバルブの弁本体半完成品100を用意する。中空エンジンバルブの弁本体半完成品100においては、軸部101から弁傘部形成部分102の拡径部に亘って、直径d0の穴部103が形成されている。続いて、第1回目のネッキング加工を行うことにより、図6Bに示すように、軸部104が肉厚t1(>t0)となると共に、穴部105が直径d1(<d0)となる。続いて、第2回目のネッキング加工を行うことにより、図6Cに示すように、軸部106が肉厚t2(>t1)となると共に、穴部107が直径d2(<d1)となる。このようにネッキング加工を複数回繰り返し行い、第n回目のネッキング加工を行うことにより、図6Dに示すように、軸部108が肉厚tn(>t(n-1))となると共に、穴部109が直径dn(<d(n-1))となる。
 上述したネッキング加工では、中空エンジンバルブの弁本体半完成品の穴部内にマンドレル(中子)を入れることができない。そのため、ネッキング加工により軸部を絞り上げると、この加工の回数に応じて、軸部の肉厚が厚くなっていく。よって、中空エンジンバルブの弁本体半完成品の軸部の肉厚およびネッキング加工の回数により、中空エンジンバルブの弁本体の軸部の肉厚が制約されてしまう。また、軸部が折れる座屈変形などが生じないように、中空エンジンバルブの弁本体半完成品の軸部の肉厚を所定の大きさ以上にする必要があった。このように、上述した中空エンジンバルブの製造方法では、所望の肉厚の軸部を有する中空エンジンバルブを得ることは難しかった。
 以上のことから、本発明は、前述した課題を解決するために為されたもので、所望の肉厚の軸部を有する中空エンジンバルブを比較的容易に製造することができる中空エンジンバルブの製造方法を提供することを目的としている。
 上述した課題を解決する第1の発明に係る中空エンジンバルブの製造方法は、
 軸部から弁傘部の拡径部に亘って中空部が形成された中空エンジンバルブを製造する方法であって、
 軸部と前記軸部に接続する弁傘部形成部分からなり、前記軸部から前記弁傘部形成部分の拡径部に亘って円柱体形状の穴部が形成された中空エンジンバルブの弁本体半完成品に対し、回転塑性加工を行うことで、前記軸部を縮径する第1の回転塑性加工工程と、
 この工程に引き続き、前記中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分の拡径部および前記軸部を押圧するダイスのダイス孔の内径が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行うことで、前記軸部の外径および内径を縮径するネッキング加工工程と、
 この工程に引き続いて、前記軸部の先端を封止することにより、中空エンジンバルブを得る封止工程とを備える
ことを特徴とする。
 上述した課題を解決する第2の発明に係る中空エンジンバルブの製造方法は、
 第1の発明に係る中空エンジンバルブの製造方法であって、
 前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工である
ことを特徴とする。
 上述した課題を解決する第3の発明に係る中空エンジンバルブの製造方法は、
 第1の発明に係る中空エンジンバルブの製造方法であって、
 前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品を軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または、前記中空エンジンバルブの弁本体半完成品を軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工と、
 この加工に引き続き、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工との組み合わせである
ことを特徴とする。
 上述した課題を解決する第4の発明に係る中空エンジンバルブの製造方法は、
 第1の発明に係る中空エンジンバルブの製造方法であって、
 前記中空エンジンバルブの弁本体半完成品に対し前記ネッキング加工を行った後に、回転塑性加工を行うことで、前記軸部の内径の大きさを保持しつつその外径を縮径する第2の回転塑性加工工程をさらに備える
ことを特徴とする。
 上述した課題を解決する第5の発明に係る中空エンジンバルブの製造方法は、
 第4の発明に係る中空エンジンバルブの製造方法であって、
 前記第2の回転塑性加工工程における前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工である
ことを特徴とする。
 上述した課題を解決する第6の発明に係る中空エンジンバルブの製造方法は、
 第4の発明に係る中空エンジンバルブの製造方法であって、
 前記第2の回転塑性加工工程の前記回転塑性加工を、前記軸部の上部以外の部分に対してのみ行って、前記軸部の上部以外にて内径の大きさを保持しつつその外径を縮径する一方、前記軸部の上部における外径を加工前の大きさを保持して大径部とし、
 前記封止工程にて、前記大径部をプレスして、前記軸部の先端を封止することにより、前記中空エンジンバルブを得る
ことを特徴とする。
 上述した課題を解決する第7の発明に係る中空エンジンバルブの製造方法は、
 軸部から弁傘部の拡径部に亘って中空部が形成された中空エンジンバルブを製造する方法であって、
 軸部と前記軸部に接続する弁傘部形成部分からなり、前記軸部から前記弁傘部形成部分の拡径部に亘って円柱体形状の穴部が形成された中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分の拡径部および前記軸部を押圧するダイスのダイス孔の内径が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行うことで、前記軸部の外径および内径を縮径する第1のネッキング加工工程と、
 この工程に引き続き、前記中空エンジンバルブの弁本体半完成品に対し回転塑性加工を行うことで、前記軸部を縮径する回転塑性加工工程と、
 この工程に引き続いて、前記軸部の先端を封止することにより、中空エンジンバルブを得る封止工程とを備える
ことを特徴とする。
 上述した課題を解決する第8の発明に係る中空エンジンバルブの製造方法は、
 第7の発明に係る中空エンジンバルブの製造方法であって、
 前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工である
ことを特徴とする。
 上述した課題を解決する第9の発明に係る中空エンジンバルブの製造方法は、
 第7の発明に係る中空エンジンバルブの製造方法であって、
 前記中空エンジンバルブの弁本体半完成品に対し前記回転塑性加工を行った後に、前記中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分の拡径部および前記軸部を押圧するダイスのダイス孔の内径が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行うことで、前記軸部の外径および内径を縮径する第2のネッキング加工工程をさらに備える
ことを特徴とする。
 上述した課題を解決する第10の発明に係る中空エンジンバルブの製造方法は、
 第7の発明に係る中空エンジンバルブの製造方法であって、
 前記回転塑性加工を、前記軸部の上部以外の部分に対してのみ行って、前記軸部の上部以外にて内径の大きさを保持しつつその外径を縮径する一方、前記軸部の上部における外径を加工前の大きさを保持して大径部とし、
 前記封止工程にて、前記大径部をプレスして、前記軸部の先端を封止することにより、前記中空エンジンバルブを得る
ことを特徴とする。
 第1または第2の発明に係る中空エンジンバルブの製造方法によれば、ネッキング加工を行う前に、回転塑性加工を行うことで、軸部の肉厚を周方向および軸方向に亘って均一化することができ、次工程のネッキング加工での歩留まりを向上させることができる。また、回転塑性加工を行った後にネッキング加工を行うだけであり、所望の肉厚の軸部を有する中空エンジンバルブを比較的容易に製造することができる。
 第3の発明に係る中空エンジンバルブの製造方法によれば、第1の発明に係る中空エンジンバルブの製造方法と同様の作用効果を奏する上に、中子を用いてロータリースエージング加工またはスピニング加工を行う前に、中子を用いずにロータリースエージング加工またはスピニング加工を行うことにより、中空エンジンバルブの弁本体半完成品の軸部の外径及び肉厚を調整することができる。
 第4の発明に係る中空エンジンバルブの製造方法によれば、第1の発明に係る中空エンジンバルブの製造方法と同様の作用効果を奏する上に、ネッキング加工を行った後に回転塑性加工を行うことにより、中空エンジンバルブの弁本体半完成品の軸部の外径を所望の大きさに調整することができる。また、最後にネッキング加工を行う中空エンジンバルブの製造方法と比べて、中空エンジンバルブの軸部における内径の加工精度を向上させることができる。
 第5の発明に係る中空エンジンバルブの製造方法によれば、第4の発明に係る中空エンジンバルブの製造方法と同様の作用効果を奏する上に、ネッキング加工を行った後に中子を用いてロータリースエージング加工またはスピニング加工を行うことにより、中空エンジンバルブの軸部の外径を所望の大きさに調整することができる。また、最後にネッキング加工を行う中空エンジンバルブの製造方法と比べて、中空エンジンバルブの軸部における内径の加工精度を向上させることができる。
 第7または第8の発明に係る中空エンジンバルブの製造方法によれば、ネッキング加工を行うことにより軸部の内径を所望の大きさにした後に回転塑性加工を行うことにより、中空エンジンバルブの軸部の外径を所望の大きさに調整することができる。また、最後にネッキング加工を行う中空エンジンバルブの製造方法と比べて、中空エンジンバルブの軸部における内径の加工精度を向上させることができる。
 第9の発明に係る中空エンジンバルブの製造方法によれば、ネッキング加工を行った後に回転塑性加工を行い、この加工に引き続いてさらにネッキング加工を行うため、ネッキング加工を行った後に回転塑性加工を行って中空エンジンバルブの軸部を成形する場合と比べて、回転塑性加工にて直径の大きい中子を用いることができ、製造作業の煩雑化を抑制できる。
 第6または第10の発明に係る中空エンジンバルブの製造方法によれば、一連の加工作業にて軸部の端部を閉塞でき、軸部の端部を閉塞する部材を別途用意する必要が無いため、製造工程を簡略化できる。
本発明の第1の実施例に係る中空エンジンバルブの製造方法を説明するための図であって、図1Aに加工前の中空エンジンバルブの弁本体半完成品の斜視を示し、図1Bにロータリースエージング加工時の状態を示し、図1Cに第1回目のネッキング加工時の状態を示し、図1Dに第n回目のネッキング加工時の状態を示し、図1Eに中空エンジンバルブの完成品の斜視を示す。 本発明に係る中空エンジンバルブの製造方法による工程と軸部の内径および外径の大きさとの関係を示すグラフである。 本発明の第6の実施例に係る中空エンジンバルブの製造方法を説明するための図であって、図3Aに平面を示し、図3Bに斜視を示す。 本発明の第6の実施例に係る中空エンジンバルブの製造方法を説明するための図であって、図4Aに端部加工前の中空エンジンバルブの断面を示し、図4Bに端部加工後の中空エンジンバルブの断面を示す。 本発明に係る中空エンジンバルブの製造方法の他例を説明するための図であって、図5Aに加工前の中空エンジンバルブの弁本体半完成品の斜視を示し、図5Bにスピング加工時の状態を示し、図5Cに第1回目のネッキング加工時の状態を示し、図5Dに第n回目のネッキング加工時の状態を示し、図5Eに中空エンジンバルブの完成品の斜視を示す。 従来の中空エンジンバルブの製造方法を説明するための図であって、図6Aに加工前の中空エンジンバルブの弁本体半完成品の断面を示し、図6Bに第1回目のネッキング加工後の断面を示し、図6Cに第2回目のネッキング加工後の断面を示し、図6Dに第n回目のネッキング加工後の断面を示す。
 本発明に係る中空エンジンバルブの製造方法について、各実施例にて具体的に説明する。
 本発明の第1の実施例に係る中空エンジンバルブの製造方法について、図1および図2を参照して説明する。図2にて、横軸が工程を示し、縦軸が各工程の処理後における中空エンジンバルブの弁本体半完成品および弁本体における軸部の内径および外径の大きさを示す。また、バツ印が実施例1に係る中空エンジンバルブの弁本体半完成品および弁本体における軸部の外径の大きさを示し、三角印が中空エンジンバルブの弁本体半完成品および弁本体における軸部の内径の大きさを示し、実線が実施例1の場合を示す。なお、工程S0(初期状態)にて、中空エンジンバルブの弁本体半完成品における軸部の内径の大きさおよび外径の大きさを示す。
 本実施例では、中空エンジンバルブの弁本体半完成品に対しロータリースエージング加工(回転塑性加工)を行った後に、ネッキング加工を行っている。具体的には、図2に示すように、中空エンジンバルブの弁本体半完成品に対し第1の工程S1から第2の工程S2(第1の回転塑性加工工程)にてロータリースエージング加工を行い、続いて、第3の工程S3から第8の工程S8の工程(ネッキング加工工程)にてネッキング加工を行っている。
 中空エンジンバルブの弁本体半完成品を用意する。中空エンジンバルブの弁本体半完成品10は、図1Aに示すように、軸部(胴部)11と、軸部11の下端部に接続する弁傘部形成部分12aとを有する。軸部11から弁傘部形成部分12aの拡径部に亘って円柱体状の穴部13が形成されている。
 最初に、中空エンジンバルブの弁本体半完成品の軸部に対しロータリースエージング加工を行う。例えば、図1Bに示すように、中空エンジンバルブの弁本体半完成品10の軸部11に中子52を入れておき、中空エンジンバルブの弁本体半完成品10の軸心を中心として方向Rに中空エンジンバルブの弁本体半完成品10と中子52を一緒に回転しつつ、この軸部11の外周部11aにダイス(スエージング加工用ダイス)51による打撃を与える。これにより、軸部11の外径が縮径する。ここでは、2つのダイス51を1組として4つのダイス51を用いている。1組のダイス51,51は軸部11を中心として対向配置される。ダイス51の先端部51aは、軸部11に沿う曲面状に形成されている。この加工を、中空エンジンバルブの弁本体半完成品の軸部の外径が所定の大きさになるまで行う。本実施例では、第1の工程S1から第2の工程S2まで、中子を用いたロータリースエージング加工を行う。これにより、軸部14と軸部14の下端部に接続する弁傘部形成部分12bとを有し、軸部14から弁傘部形成部分12bの拡径部に亘って穴部15が形成された中空エンジンバルブの弁本体半完成品が得られる。この中空エンジンバルブの弁本体半完成品の軸部14の外径は所定の大きさ(>d1)に形成される。
 続いて、上述したロータリースエージング加工により得られた中空エンジンバルブの弁本体半完成品に対しネッキング加工を行う。すなわち、前記中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分の拡径部および前記軸部を押圧するダイスのダイス孔の内径が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行う。例えば、第1回目の絞り上げ工程にて、図1Cに示すように、ダイス61を用いてネッキング加工を行う。まず、中空エンジンバルブの弁本体半完成品の上方にダイス61を配置する。ダイス61は、円柱体状であって、下面部61aから上面部61bに亘ってダイス孔62が形成されている。ダイス孔62は、下面部61aに開口し、上方に向かうに従い縮径する縮径部63と、縮径部63に接続し、下部から上部に亘って同径で延在する同径部64とを有する。ダイス61の下面部61aに開口して縮径部63を形成したことにより、中空エンジンバルブの弁本体半完成品の軸部14をダイス61の同径部64に円滑に案内することができる。続いて、中空エンジンバルブの弁本体半完成品の軸部14とダイス61のダイス孔62の軸心を一致して配置し、ダイス61を中空エンジンバルブの弁本体半完成品に対し押圧して、ダイス61により中空エンジンバルブの弁本体半完成品の軸部14を絞り上げる。これにより、軸部14は、軸方向に延びる。また、軸部14は、ネッキング加工前と比べて肉厚となる。軸部14における穴部15の内径および外径は、ネッキング加工前と比べて小さくなる。
 そして、軸部の外径が小さくなると、この軸部の外径の大きさに応じたダイスに交換し、このダイスを用いて軸部を絞り上げる。例えば、第n回目の絞り上げ工程にて、図1Dに示すように、ダイス65を用いてネッキングを行う。ただし、nは2以上の正数とする。まず、第(n-1)回目の絞り上げ工程で得られた中空エンジンバルブの弁本体半完成品の上方にダイス65を配置する。ダイス65は、ダイス61と同様、円柱体状であって、下面部65aから上面部65bに亘ってダイス孔66が形成されている。ダイス孔66は、下面部65aに開口し、上方に向かうに従い縮径する縮径部67と、縮径部67に接続し、下部から上部に亘って同径で延在する同径部68とを有する。ダイス孔66はダイス孔62よりも小径であって、同径部68は、同径部64よりも小径に形成されている。続いて、中空エンジンバルブの弁本体半完成品の軸部16とダイス65のダイス孔66の軸心を一致して配置し、ダイス65を中空エンジンバルブの弁本体半完成品に対し押圧して、ダイス65により中空エンジンバルブの弁本体半完成品の軸部16を絞り上げる。これにより、軸部16は、軸方向に延びる。また、軸部16は、ネッキング加工前と比べて肉厚となる。軸部16における穴部17の内径および外径は、ネッキング加工前と比べて小さくなる。
 言い換えると、上述したネッキング加工を、上述した中空エンジンバルブの弁本体半完成品の軸部の外径の大きさに応じてダイス孔が形成されたダイスを用い、軸部の外径が所定の大きさd1になると共に、軸部の内径が所定の大きさd2(<d1)になるまで行う。これにより、軸部18の外径がd1であり、軸部18の穴部19の直径がd2の中空エンジンバルブの弁本体となる。本実施例では、第3の工程S3から第8の工程S8まで、ネッキング加工を行う。
 続いて、上述したネッキング加工により得られた中空エンジンバルブの弁本体に対し、必要に応じて軸部を所定の長さに加工する。そして、封止工程にて、軸部の先端(上端)を封止することにより、中空エンジンバルブを得る。例えば、図1Eに示すように、軸部18の先端部に円柱体状の封止部材31を溶接して、軸部の先端を封止することにより、中空エンジンバルブ(完成品)を得ることができる。
 したがって、本実施例に係る中空エンジンバルブの製造方法によれば、ネッキング加工を行う前に、ロータリースエージング加工を行うことで、軸部の肉厚を周方向および軸方向に亘って均一化することができ、次工程のネッキング加工での歩留まりを向上させることができる。また、ロータリースエージング加工を行った後にネッキング加工を行うだけであり、所望の肉厚の軸部を有する中空エンジンバルブを比較的容易に製造することができる。
 本発明の第2の実施例に係る中空エンジンバルブの製造方法について、図2を参照して具体的に説明する。図2にて、バツ印が実施例2に係る中空エンジンバルブの弁本体半完成品および弁本体における軸部の外径の大きさを示し、三角印が中空エンジンバルブの弁本体半完成品および弁本体における軸部の内径の大きさを示し、2点鎖線が実施例2の場合を示す。
 本実施例では、上述した第1の実施例に係る中空エンジンバルブの製造方法におけるロータリースエージング加工(回転塑性加工)を2つの工程に分けて行っている。まず、中子を用いずにロータリースエージング加工を行い、続いて、中空エンジンバルブの弁本体半完成品の軸部に中子を入れてロータリースエージング加工を行っている。具体的には、図2に示すように、中空エンジンバルブの弁本体半完成品に対し第1の工程S1から第3の工程S3(第1の回転塑性加工工程)にて中子を用いずにロータリースエージング加工を行い、続いて、第4の工程S4および第5の工程S5(第2の回転塑性加工工程)にて中子を用いたロータリースエージング加工を行い、続いて、第6の工程S6から第8の工程S8(ネッキング加工工程)にてネッキング加工を行っている。
 最初に、中空エンジンバルブの弁本体半完成品の軸部に対し中子を用いずにロータリースエージング加工を行う。これにより、中空エンジンバルブの弁本体半完成品の軸部の内径および外径が縮径する。これは、中空エンジンバルブの弁本体半完成品の軸部内に中子が無く、ダイスが軸部の外周部を叩いたときにこの力を軸部の内側で受ける部材が無いためである。この加工を、中空エンジンバルブの弁本体半完成品の軸部の内径および外径が所定の大きさになるまで行う。本実施例では、第1の工程S1から第3の工程S3まで、中子を用いずにロータリースエージング加工を行う。続いて、前述した中子を用いないロータリースエージング加工で得られた中空エンジンバルブの弁本体半完成品の軸部内に中子を入れ、ロータリースエージング加工を行う。これにより、軸部の内径の大きさを保持しつつ、外径が縮径する。中子を用いたロータリースエージング加工を、中空エンジンバルブの弁本体半完成品の軸部の外径が所定の大きさになるまで行う。本実施例では、第4の工程S4から第5の工程S5まで、中子を用いたロータリースエージング加工を行う。
 続いて、上述した中子を用いたロータリースエージング加工で得られた中空エンジンバルブの弁本体半完成品に対し、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様に、ネッキング加工を行う。すなわち、前記中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分および前記軸部を押圧するダイスのダイス孔が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行う。この加工は、中空エンジンバルブの弁本体半完成品の軸部の外径が所定の大きさd1になると共に、軸部の内径が所定の大きさd2(<d1)になるまで行われる。これにより、軸部18の外径がd1であり、軸部18の穴部19の直径がd2の中空エンジンバルブの弁本体となる。本実施例では、第6の工程S6から第8の工程S8まで、ネッキング加工を行う。
 続いて、上述したネッキング加工により得られた中空エンジンバルブの弁本体の軸部の長さを必要に応じて調整し、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様に、中空エンジンバルブの弁本体の軸部の先端(上端)を封止することにより、中空エンジンバルブ(完成品)を得ることができる。
 したがって、本実施例に係る中空エンジンバルブの製造方法によれば、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様の作用効果を奏する上に、中子を用いてロータリースエージング加工を行う前に、中子を用いずにロータリースエージング加工を行うことにより、中空エンジンバルブの弁本体半完成品の軸部の外径および肉厚を調整することができる。
 本発明の第3の実施例に係る中空エンジンバルブの製造方法について、図2を参照して具体的に説明する。図2にて、バツ印が実施例3に係る中空エンジンバルブの弁本体半完成品および弁本体における軸部の外径の大きさを示し、三角印が中空エンジンバルブの弁本体半完成品および弁本体における軸部の内径の大きさを示し、点線が実施例3の場合を示す。
 本実施例では、中子を用いたロータリースエージング加工(回転塑性加工)、ネッキング加工、中子を用いたロータリースエージング加工(回転塑性加工)を記載順に行っている。具体的には、図2に示すように、中空エンジンバルブの弁本体半完成品に対し第1の工程S1(第1の回転塑性加工工程)にて中子を用いたロータリースエージング加工を行い、続いて、第2の工程S2から第7の工程S7(ネッキング加工工程)にてネッキング加工を行い、続いて、第8の工程S8(第2の回転塑性加工工程)にて中子を用いたロータリースエージング加工を行っている。すなわち、本実施例では、第1の工程S1では、上述した第1の実施例に係る中空エンジンバルブの製造方法における第1の工程S1から第2の工程S2と同様に、中子を用いたロータリースエージング加工を行い、第2の工程S2から第7の工程S7では、上述した第1の実施例における第3の工程S3から第8の工程S8と同様に、ネッキング加工を行っており、その説明を省略する。
 本実施例では、中空エンジンバルブの弁本体半完成品に対しネッキング加工を行い、中空エンジンバルブの弁本体半完成品の軸部の内径が所定の大きさd2付近(≧d2)になる一方、その外径が所定の大きさ付近(>d1)になると、軸部に中子を入れ、ロータリースエージング加工を行う。この加工では、ネッキング加工により調整された中空エンジンバルブの弁本体半完成品の軸部の内径の大きさに応じた中子を用いる。これにより、軸部の内径の大きさを保持しつつ、外径が縮径する。中子を用いたロータリースエージング加工を、中空エンジンバルブの弁本体半完成品の軸部の外径が所定の大きさd1になるまで行う。これにより、中空エンジンバルブの弁本体となる。本実施例では、第8の工程S8にて、中子を用いたロータリースエージング加工を行う。
 続いて、上述したロータリースエージング加工で得られた中空エンジンバルブの弁本体の軸部の長さを必要に応じて調整し、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様に、中空エンジンバルブの弁本体の軸部の先端(上部)を封止することにより、中空エンジンバルブ(完成品)を得ることができる。
 したがって、本実施例に係る中空エンジンバルブの製造方法によれば、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様の作用効果を奏する上に、ネッキング加工を行った後にロータリースエージング加工を行うことにより、中空エンジンバルブの弁本体半完成品の軸部の外径を所望の大きさに調整することができる。また、最後にネッキング加工を行う中空エンジンバルブの製造方法と比べて、中空エンジンバルブの軸部における内径の加工精度を向上させることができる。
 本発明の第4の実施例に係る中空エンジンバルブの製造方法について、図1および図2を参照して説明する。図2にて、バツ印が実施例4に係る中空エンジンバルブの弁本体半完成品および弁本体における軸部の外径の大きさを示し、三角印が中空エンジンバルブの弁本体半完成品および弁本体における軸部の内径の大きさを示し、1点鎖線が実施例4の場合を示す。
 本実施例では、中空エンジンバルブの弁本体半完成品に対しネッキング加工を行った後に、ロータリースエージング加工(回転塑性加工)を行っている。具体的には、図2に示すように、中空エンジンバルブの弁本体半完成品に対し第1の工程S1から第6の工程S6(第1のネッキング加工工程)にてネッキング加工を行い、続いて、第7の工程S7から第8の工程S8(回転塑性加工工程)にて中子を用いたロータリースエージング加工を行っている。
 上述した第1の実施例に係る中空エンジンバルブの製造方法の場合と同様、中空エンジンバルブの弁本体半完成品を用意する。中空エンジンバルブの弁本体半完成品10は、図1Aに示すように、軸部(胴部)11と、軸部11の下端部に接続する弁傘部形成部分12aとを有し、軸部11から弁傘部形成部分12aの拡径部に亘って円柱体状の穴部13が形成されている。
 最初に、中空エンジンバルブの弁本体半完成品に対し、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様に、ネッキング加工を行う。すなわち、前記中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分および前記軸部を押圧するダイスのダイス孔が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行う。ダイスとして、例えば、図1Cおよび図1Dに示すダイス61,65などが用いられる。この加工は、中空エンジンバルブの弁本体半完成品の軸部の内径が所定の大きさd2付近(≧d2)になると共に、その外径が所定の大きさ(>d1)になるまで行われる。本実施例では、第1の工程S1から第6の工程S6まで、ネッキング加工を行う。
 続いて、上述したネッキング加工により得られた中空エンジンバルブの弁本体半完成品に対し、軸部に中子を入れ、ロータリースエージング加工を行う。この加工では、ネッキング加工により調整された中空エンジンバルブの弁本体半完成品の軸部の内径の大きさに応じた中子を用いる。これにより、中空エンジンバルブの弁本体半完成品の軸部の内径の大きさを保持しつつその外径が縮径する。中子を用いたロータリースエージング加工を、上述した中空エンジンバルブの弁本体半完成品の軸部の外径が所定の大きさd1(>d2)になるまで行う。これにより、中空エンジンバルブの弁本体となる。本実施例では、第7の工程S7から第8の工程S8まで、中子をロータリースエージング加工を行う。
 続いて、上述したロータリースエージング加工で得られた中空エンジンバルブの弁本体の軸部の長さを必要に応じて調整し、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様に、中空エンジンバルブの弁本体の軸部の先端(上端)に封止することにより中空エンジンバルブ(完成品)を得ることができる。
 したがって、本実施例に係る中空エンジンバルブの製造方法によれば、ネッキング加工を行うことにより軸部の内径を所望の大きさにした後にロータリースエージング加工を行うことにより、中空エンジンバルブの軸部の外径を所望の大きさに調整することができる。また、最後にネッキング加工を行う中空エンジンバルブの製造方法と比べて、中空エンジンバルブの軸部における内径の加工精度を向上させることができる。
 本発明の第5の実施例に係る中空エンジンバルブの製造方法について、図2を参照して説明する。図2にて、バツ印が実施例5に係る中空エンジンバルブの弁本体半完成品および弁本体における軸部の外径の大きさを示し、三角印が中空エンジンバルブの弁本体半完成品および弁本体における軸部の内径の大きさを示し、2点鎖線が実施例5の場合を示す。
 本実施例では、ネッキング加工、中子を用いたロータリースエージング加工(回転塑性加工)、ネッキング加工を記載順に行っている。具体的には、図2に示すように、中空エンジンバルブの弁本体半完成品に対し第1の工程S1から第3の工程S3(第1のネッキング加工工程)にてネッキング加工を行い、続いて、第4の工程S4から第5の工程S5(回転塑性加工工程)にて所定の直径(>d2)の中子を用いたロータリースエージング加工を行い、続いて、第6の工程S6から第8の工程S8(第2のネッキング加工工程)にてネッキング加工を行っている。すなわち、本実施例では、第1の工程S1から第3の工程S3までは、上述した第4の実施例に係る中空エンジンバルブの製造方法における第1の工程S1から第6の工程S6と同様に、ネッキング加工を行い、第4の工程S4から第5の工程S5では、上述した第4の実施例における第7の工程S7から第8の工程S8と同様に、中子を用いたロータリースエージング加工を行っており、その説明を省略する。
 本実施例では、中空エンジンバルブの弁本体半完成品に対しネッキング加工に引き続いてロータリースエージング加工を行い、中空エンジンバルブの弁本体半完成品の軸部の内径が所定の大きさ(>d2)になると共に、その外径が所定の大きさ(>d1)になると、ロータリースエージング加工で得られた中空エンジンバルブの弁本体半完成品に対し、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様に、ネッキング加工を行う。すなわち、前記中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分および前記軸部を押圧するダイスのダイス孔が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行う。この加工は、中空エンジンバルブの弁本体半完成品の軸部の外径が所定の大きさd1になると共に、軸部の内径が所定の大きさd2(<d1)になるまで行われる。これにより、中空エンジンバルブの弁本体となる。本実施例では、第6の工程S6から第8の工程S8まで、ネッキング加工を行う。
 続いて、上述したネッキング加工で得られた中空エンジンバルブの弁本体の軸部の長さを必要に応じて調整し、上述した第1の実施例に係る中空エンジンバルブの製造方法と同様に、中空エンジンバルブの弁本体の軸部の先端(上端)に封止することにより中空エンジンバルブ(完成品)を得ることができる。
 したがって、本実施例に係る中空エンジンバルブの製造方法によれば、ネッキング加工を行った後にロータリースエージング加工を行い、この加工に引き続いてさらにネッキング加工を行うため、ネッキング加工を行った後にロータリースエージング加工を行って中空エンジンバルブの軸部を成形する場合と比べて、ロータリースエージング加工にて直径の大きい中子を用いることができ、製造作業の煩雑化を抑制できる。
 本発明の第6の実施例に係る中空エンジンバルブの製造方法について、図3および図4を参照して説明する。
 本実施例では、上述した第3の実施例または第4の実施例に中空エンジンバルブの製造方法におけるネッキング加工を行った後のロータリースエージング加工を、中空エンジンバルブの弁本体半完成品の軸部の全体ではなく、上部以外の部分に対してのみ行い、この加工に引き続いて、軸部の上部をプレスして軸部の先端を封止している。
 本実施例では、中空エンジンバルブの弁本体半完成品に対しネッキング加工を行い、中空エンジンバルブの弁本体半完成品の軸部の内径が所定の大きさd2付近(≧d2)になる一方、その外径が所定の大きさ(>d1)になると、軸部に中子を入れ、ロータリースエージング加工を行う。具体的には、図3Aおよび図3Bに示すように、ネッキング加工を行った後の中空エンジンバルブの弁本体半完成品の軸部21の穴部23内に中子56を入れておき、中空エンジンバルブの弁本体半完成品の軸心を中心として方向Rに回転しつつ、この軸部21の上部以外の部分に対してのみダイス(スエージング加工用ダイス)55による打撃を与える。これにより、軸部21の上部以外の内径の大きさを保持しつつ、その外径が縮径する。他方、軸部21の上部における外径にあっては、加工前の大きさを保持して大径部22となる。なお、軸部21の上部における内径も加工前の大きさが保持される。
 続いて、中空エンジンバルブの弁本体半完成品の軸部21の上部以外の部分の外径が所定の大きさd1になると、封止工程にて、図4Aに示すように、軸部21の大径部22に対し、軸部21の軸心に向けて矢印Yの方向にプレスする。これにより、図4Bに示すように、大径部22がプレスされて軸部21の先端を封止する端部封止部24となる。
 したがって、本実施例に係る中空エンジンバルブの製造方法によれば、第3の実施例および第4の実施例に係る中空エンジンバルブの製造方法と同様の作用効果を奏する上に、一連の加工作業にて軸部21の端部を閉塞でき、軸部21の端部を閉塞する部材を別途用意する必要が無いため、製造工程を簡略化できる。
 なお、上述した第1~第6の実施例では、回転塑性加工がロータリースエージング加工である場合について説明したが、回転塑性加工としてスピニング加工を用いたり、ロータリースエージング加工とスピニング加工を併用したりすることも可能である。このような場合であって、上述した中空エンジンバルブの製造方法と同様な作用効果を奏する。例えば、上述した第1の実施例に係る中空エンジンバルブの製造方法の回転塑性加工工程にて、図5に示すように、ロータリースエージング加工の代わりにスピニング加工を行うことも可能である。具体的には、図5Bに示すように、中空エンジンバルブの弁本体半完成品10の穴部13内に中子54を挿入し、中空エンジンバルブの弁本体半完成品10の軸心を中心として方向Rに中空エンジンバルブの弁本体半完成品10と中子54を一緒に回転しつつ、この軸部11の外周部11aにダイス(スピニング加工用ダイス)53を押し付ける。これにより、中空エンジンバルブの弁本体半完成品の軸部の内径の大きさを保持しつつその外径を縮径することができる。
 本発明に係る中空エンジンバルブの製造方法によれば、所望の肉厚の軸部を有する中空エンジンバルブを比較的容易に製造することができるため、自動車産業などで有益に利用することができる。
10       中空エンジンバルブの弁本体半完成品
11       軸部
12a~12c  弁傘部形成部分
12d      弁傘部
13       穴部
14,16、18 軸部
15,17,19 穴部
21       軸部
22       大径部
23       穴部
24       端部封止部
31       封止部材
51       ダイス
52       中子(マンドレル)
55       ダイス
56       中子(マンドレル)
61,65    ダイス
62,66    穴部
63,67    縮径部
64,68    同径部

Claims (10)

  1.  軸部から弁傘部の拡径部に亘って中空部が形成された中空エンジンバルブを製造する方法であって、
     軸部と前記軸部に接続する弁傘部形成部分からなり、前記軸部から前記弁傘部形成部分の拡径部に亘って円柱体形状の穴部が形成された中空エンジンバルブの弁本体半完成品に対し、回転塑性加工を行うことで、前記軸部を縮径する第1の回転塑性加工工程と、
     この工程に引き続き、前記中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分の拡径部および前記軸部を押圧するダイスのダイス孔の内径が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行うことで、前記軸部の外径および内径を縮径するネッキング加工工程と、
     この工程に引き続いて、前記軸部の先端を封止することにより、中空エンジンバルブを得る封止工程とを備える
    ことを特徴とする中空エンジンバルブの製造方法。
  2.  請求項1に記載の中空エンジンバルブの製造方法であって、
     前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工である
    ことを特徴とする中空エンジンバルブの製造方法。
  3.  請求項1に記載の中空エンジンバルブの製造方法であって、
     前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品を軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または、前記中空エンジンバルブの弁本体半完成品を軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工と、
     この加工に引き続き、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工との組み合わせである
    ことを特徴とする中空エンジンバルブの製造方法。
  4.  請求項1に記載の中空エンジンバルブの製造方法であって、
     前記中空エンジンバルブの弁本体半完成品に対し前記ネッキング加工を行った後に、回転塑性加工を行うことで、前記軸部の内径の大きさを保持しつつその外径を縮径する第2の回転塑性加工工程をさらに備える
    ことを特徴とする中空エンジンバルブの製造方法。
  5.  請求項4に記載の中空エンジンバルブの製造方法であって、
     前記第2の回転塑性加工工程における前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工である
    ことを特徴とする中空エンジンバルブの製造方法。
  6.  請求項4に記載の中空エンジンバルブの製造方法であって、
     前記第2の回転塑性加工工程の前記回転塑性加工を、前記軸部の上部以外の部分に対してのみ行って、前記軸部の上部以外にて内径の大きさを保持しつつその外径を縮径する一方、前記軸部の上部における外径を加工前の大きさを保持して大径部とし、
     前記封止工程にて、前記大径部をプレスして、前記軸部の先端を封止することにより、前記中空エンジンバルブを得る
    ことを特徴とする中空エンジンバルブの製造方法。
  7.  軸部から弁傘部の拡径部に亘って中空部が形成された中空エンジンバルブを製造する方法であって、
     軸部と前記軸部に接続する弁傘部形成部分からなり、前記軸部から前記弁傘部形成部分の拡径部に亘って円柱体形状の穴部が形成された中空エンジンバルブの弁本体半完成品に対し、当該中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分の拡径部および前記軸部を押圧するダイスのダイス孔の内径が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行うことで、前記軸部の外径および内径を縮径する第1のネッキング加工工程と、
     この工程に引き続き、前記中空エンジンバルブの弁本体半完成品に対し回転塑性加工を行うことで、前記軸部を縮径する回転塑性加工工程と、
     この工程に引き続いて、前記軸部の先端を封止することにより、中空エンジンバルブを得る封止工程とを備える
    ことを特徴とする中空エンジンバルブの製造方法。
  8.  請求項7に記載の中空エンジンバルブの製造方法であって、
     前記回転塑性加工が、前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスエージング加工用ダイスによる打撃を与えるロータリースエージング加工、または前記中空エンジンバルブの弁本体半完成品の前記穴部内に中子を挿入し、前記中空エンジンバルブの弁本体半完成品と前記中子を一緒に軸回転しつつ、前記軸部の外周部にスピニング加工用ダイスを押し付けるスピニング加工である
    ことを特徴とする中空エンジンバルブの製造方法。
  9.  請求項7に記載の中空エンジンバルブの製造方法であって、
     前記中空エンジンバルブの弁本体半完成品に対し前記回転塑性加工を行った後に、前記中空エンジンバルブの弁本体半完成品の前記弁傘部形成部分の拡径部および前記軸部を押圧するダイスのダイス孔の内径が、段階が進むごとに少しずつ縮径されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げるネッキング加工を行うことで、前記軸部の外径および内径を縮径する第2のネッキング加工工程をさらに備える
    ことを特徴とする中空エンジンバルブの製造方法。
  10.  請求項7に記載された中空エンジンバルブの製造方法であって、
     前記回転塑性加工を、前記軸部の上部以外の部分に対してのみ行って、前記軸部の上部以外にて内径の大きさを保持しつつその外径を縮径する一方、前記軸部の上部における外径を加工前の大きさを保持して大径部とし、
     前記封止工程にて、前記大径部をプレスして、前記軸部の先端を封止することにより、前記中空エンジンバルブを得る
    ことを特徴とする中空エンジンバルブの製造方法。
PCT/JP2012/053751 2011-03-22 2012-02-17 中空エンジンバルブの製造方法 WO2012127947A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12760300.9A EP2690262B1 (en) 2011-03-22 2012-02-17 Method for manufacturing hollow engine valve
CN201280009242.6A CN103403305B (zh) 2011-03-22 2012-02-17 中空发动机气门的制造方法
US14/001,994 US9302317B2 (en) 2011-03-22 2012-02-17 Method for manufacturing hollow engine valve
KR1020137022997A KR101512919B1 (ko) 2011-03-22 2012-02-17 중공 엔진 밸브의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011062198A JP4929408B1 (ja) 2011-03-22 2011-03-22 中空エンジンバルブの製造方法
JP2011-062198 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012127947A1 true WO2012127947A1 (ja) 2012-09-27

Family

ID=46261531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053751 WO2012127947A1 (ja) 2011-03-22 2012-02-17 中空エンジンバルブの製造方法

Country Status (6)

Country Link
US (1) US9302317B2 (ja)
EP (1) EP2690262B1 (ja)
JP (1) JP4929408B1 (ja)
KR (1) KR101512919B1 (ja)
CN (1) CN103403305B (ja)
WO (1) WO2012127947A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129525A4 (en) * 2020-03-30 2023-06-14 Nittan Corporation METHOD OF MANUFACTURING AN ENGINE POPPET VALVE

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390291B1 (ja) * 2008-09-18 2009-12-24 株式会社 吉村カンパニー 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブ
JP6186179B2 (ja) * 2013-05-31 2017-08-23 株式会社堀場エステック 攪拌器及び攪拌器の製造方法
KR101458189B1 (ko) * 2014-01-02 2014-11-05 문명성 중공밸브 제조방법
CN103704054B (zh) * 2014-01-10 2017-02-01 江苏恒源园艺用品有限公司 便于植物生长的园艺用支柱及其生产方法
JP6215156B2 (ja) * 2014-08-27 2017-10-18 フジホローバルブ株式会社 中空エンジンバルブ及びその製造方法
CN104942536B (zh) * 2015-05-11 2017-10-17 怀集登云汽配股份有限公司 发动机空心气门毛坯精密成形方法
DE102017103042A1 (de) * 2017-02-15 2018-08-16 Federal-Mogul Valvetrain Gmbh Verfahren zum Querkeilwalzen von Tellerventilen
DE102017114524A1 (de) * 2017-06-29 2019-01-03 Federal-Mogul Valvetrain Gmbh Verfahren zur Herstellung von Hohlraumventilen
DE102017114509A1 (de) * 2017-06-29 2019-01-03 Federal-Mogul Valvetrain Gmbh Hohlraumventil mit optimierter Schaftinnengeometrie und Verfahren zu dessen Herstellung
DE102018100413B3 (de) 2018-01-10 2019-07-11 Federal-Mogul Valvetrain Gmbh Verfahren und Vorrichtung zum Herstellen von hohlen, innengekühlten Ventilen
CN110914520B (zh) 2018-03-20 2021-11-16 日锻汽门株式会社 排气用中空提升阀
DE102018112295A1 (de) * 2018-05-23 2019-11-28 Federal-Mogul Valvetrain Gmbh Verfahren zur herstellung eines hohlventils mit optimierter schaftinnengeometrie für verbrennungsmotoren
DE102018112291A1 (de) 2018-05-23 2019-11-28 Federal-Mogul Valvetrain Gmbh Verfahren zur herstellung eines hohlventils für verbrennungsmotoren
AR115596A1 (es) * 2018-06-28 2021-02-03 Toa Forging Co Ltd Método de fabricación para una válvula de motor hueco
KR102638971B1 (ko) * 2018-11-12 2024-02-22 가부시키가이샤 니탄 엔진의 포핏 밸브의 제조 방법
DE102019106209A1 (de) * 2019-03-12 2020-09-17 Federal-Mogul Valvetrain Gmbh Verfahren zur Herstellung eines Hohlventils für Verbrennungsmotoren
DE102019106214A1 (de) * 2019-03-12 2020-09-17 Federal-Mogul Valvetrain Gmbh Verfahren zur Herstellung eines Hohlventils für Verbrennungsmotoren
DE102019132085A1 (de) * 2019-11-27 2021-05-27 Federal-Mogul Valvetrain Gmbh Verfahren und Vorrichtung zum Herstellen von hohlen, innengekühlten Ventilen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210112A (ja) * 1994-10-31 1996-08-20 Eaton Corp 超軽量ポペット弁
JPH10166098A (ja) * 1996-12-09 1998-06-23 Daido Steel Co Ltd 耐熱バルブ用鋼材の製造方法
JP2009185655A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 吸排気バルブの製造方法
JP4390291B1 (ja) * 2008-09-18 2009-12-24 株式会社 吉村カンパニー 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984751A (en) * 1932-11-28 1934-12-18 Thompson Prod Inc Method of making hollow valves
US1992245A (en) * 1933-12-06 1935-02-26 Scrimgeour William Method of forming hollow forged valves
US2029508A (en) * 1935-03-27 1936-02-04 Scrimgeour William Method of making hollow articles
US2411734A (en) * 1942-03-11 1946-11-26 Thompson Prod Inc Cold worked hollow stem valve
JPH0656088B2 (ja) * 1986-10-28 1994-07-27 富士バルブ株式会社 軽量エンジンバルブ及びその製造方法
US5413073A (en) 1993-04-01 1995-05-09 Eaton Corporation Ultra light engine valve
JPH07102917A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd Na封入中空エンジンバルブの製造方法
DE19746235A1 (de) * 1996-11-02 1998-05-07 Volkswagen Ag Verfahren zur Herstellung eines Tellerventiles
JP2003136131A (ja) 2001-10-26 2003-05-14 Sumitomo Metal Ind Ltd 一端側に中実部を備える中空部材の製造方法
WO2011104903A1 (ja) * 2010-02-25 2011-09-01 三菱重工業株式会社 中空エンジンバルブの製造方法及び中空エンジンバルブ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210112A (ja) * 1994-10-31 1996-08-20 Eaton Corp 超軽量ポペット弁
JPH10166098A (ja) * 1996-12-09 1998-06-23 Daido Steel Co Ltd 耐熱バルブ用鋼材の製造方法
JP2009185655A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 吸排気バルブの製造方法
JP4390291B1 (ja) * 2008-09-18 2009-12-24 株式会社 吉村カンパニー 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690262A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129525A4 (en) * 2020-03-30 2023-06-14 Nittan Corporation METHOD OF MANUFACTURING AN ENGINE POPPET VALVE

Also Published As

Publication number Publication date
KR20130116943A (ko) 2013-10-24
EP2690262A4 (en) 2015-02-18
JP4929408B1 (ja) 2012-05-09
KR101512919B1 (ko) 2015-04-16
EP2690262B1 (en) 2016-04-20
US9302317B2 (en) 2016-04-05
US20140033533A1 (en) 2014-02-06
EP2690262A1 (en) 2014-01-29
CN103403305A (zh) 2013-11-20
JP2012197718A (ja) 2012-10-18
CN103403305B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
JP4929408B1 (ja) 中空エンジンバルブの製造方法
CN101479058B (zh) 制造容器的方法
RU2323058C1 (ru) Способ формирования наружной резьбы на концевом участке трубной заготовки
JP2008520440A (ja) 1加工処理でアンダカットを有する管シャフトを製作するために段付き心棒に沿って管を縮小する方法
EP2811126A1 (en) Method for producing a hollow engine valve
JP7051904B2 (ja) 中空バルブの製造方法
JP2005040842A (ja) 中空段付軸の成形方法
JP4217992B2 (ja) 変形容器の製造方法
KR20180066086A (ko) 링 형상의 성형된 부품을 제조하는 방법 및 장치
JP5151315B2 (ja) 中空成形体の製造方法
US20210370376A1 (en) Method for producing a hollow valve for internal combustion engines
JP5099877B2 (ja) 鍛造製品の成形方法
JP6665643B2 (ja) 拡径管部品の製造方法および製造装置
JP2006000884A (ja) 両端にフランジ部を有する鍛造品を製造する方法および装置
JP4653196B2 (ja) 変形容器の製造方法
JP2005279666A (ja) 筒状物の製造方法
JP3657483B2 (ja) コンロッド用プリフォームの製造方法
JPH0243566B2 (ja)
US11732622B2 (en) Method for producing a hollow valve with an optimised interior stem geometry for internal combustion engines
JP3992411B2 (ja) コンロッド用プリフォームの製造装置
JPH0312979B2 (ja)
RU2240202C2 (ru) Способ изготовления полых деталей
JP2017217700A (ja) 缶の製造方法
RU2191088C2 (ru) Способ изготовления втулки с наружным кольцевым элементом
RU2304032C2 (ru) Способ формообразования равнопроходного патрубка в тонкостенной трубной заготовке

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012760300

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137022997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001994

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1301004777

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE