WO2012124689A1 - リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板 - Google Patents

リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板 Download PDF

Info

Publication number
WO2012124689A1
WO2012124689A1 PCT/JP2012/056409 JP2012056409W WO2012124689A1 WO 2012124689 A1 WO2012124689 A1 WO 2012124689A1 JP 2012056409 W JP2012056409 W JP 2012056409W WO 2012124689 A1 WO2012124689 A1 WO 2012124689A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus atom
structural formula
atom
containing oligomer
phosphorus
Prior art date
Application number
PCT/JP2012/056409
Other languages
English (en)
French (fr)
Inventor
弘司 林
泰 佐藤
高光 中村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020127033194A priority Critical patent/KR101895780B1/ko
Priority to CN201280004030.9A priority patent/CN103249740B/zh
Priority to US13/821,449 priority patent/US9056990B2/en
Priority to JP2012538008A priority patent/JP5146793B2/ja
Priority to EP12757967.0A priority patent/EP2682398B1/en
Publication of WO2012124689A1 publication Critical patent/WO2012124689A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3272Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Definitions

  • the present invention relates to a phosphorus atom-containing oligomer composition having excellent solvent solubility and having both excellent flame retardancy and heat resistance in the cured product, and a curable resin using the oligomer composition as a curing agent for epoxy resin.
  • the present invention relates to a composition, a cured product thereof, and a printed wiring board using the curable resin composition.
  • An epoxy resin composition containing an epoxy resin and a curing agent as an essential component is excellent in various physical properties such as high heat resistance and moisture resistance, and is used for electronic components such as semiconductor encapsulants and printed circuit boards, electronic component fields, and conductive pastes. It is widely used in conductive adhesives such as, other adhesives, matrix for composite materials, paints, photoresist materials, developer materials, and the like.
  • a halogen-based flame retardant such as bromine is blended with an antimony compound in order to impart flame retardancy.
  • environmentally and flame-resistant flame retardants that do not use halogen-based flame retardants that may cause dioxins and do not use antimony compounds that are suspected of carcinogenicity.
  • the use of halogenated flame retardants is a factor that impairs reliability at high temperatures.
  • Patent Document 1 discloses 9,10-dihydro-9-oxax as a curing agent for epoxy resin.
  • Phosphorus atom-containing bisphenols obtained by reacting -10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”) with p-hydroxybenzaldehyde and then reacting this reaction product with phenol
  • HCA -10-phosphaphenanthrene-10-oxide
  • Non-Patent Document 1 discloses a technique in which an intermediate product is obtained by reacting HCA and p-hydroxybenzaldehyde, and then the intermediate product is oligomerized in THF.
  • Non-Patent Document 1 since the crystallinity of the reaction product of HCA, which is an intermediate, and p-hydroxybenzaldehyde is extremely high and poor in solvent solubility, it is described in Non-Patent Document 1. In the subsequent reaction, it is necessary to use THF with a low flash point and a high risk, which is not industrially producible, and the resulting oligomer itself has low solvent solubility, and printed wiring It was also difficult to adjust the plate material varnish.
  • Patent Document 2 discloses a technique for producing a phosphorus atom-containing phenol compound by reacting HCA with hydroxybenzaldehyde.
  • the phenolic compound described in Patent Document 2 is a monofunctional phenolic compound, which also has extremely high crystallinity and poor solvent solubility, and even when it is used as a curing agent for epoxy resins, it is sufficiently difficult. Flammability was not obtained.
  • the problem to be solved by the present invention includes a phosphorus atom-containing oligomer having excellent flame retardancy and heat resistance in a cured product and dramatically improved solubility in an organic solvent, and the oligomer. It is providing the curable resin composition which consists of these, its hardened
  • the present inventors have found that phosphorus having a specific molecular structure obtained by reacting and oligomerizing a phosphorus atom-containing compound typified by HCA and an o-hydroxybenzaldehyde compound.
  • the atom-containing oligomer composition exhibits excellent solubility in an organic solvent and is cured by using the oligomer composition as an epoxy resin curing agent, an epoxy resin raw material, an additive for a thermosetting resin, etc.
  • the present inventors have found that a cured product that exhibits excellent flame retardancy, has a high glass transition point, and can withstand the T288 test has been completed.
  • R 1 to R 5 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group, and X represents a hydrogen atom or the following structure
  • Formula (x1) wherein R 1 to R 5 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group, and X represents a hydrogen atom or the following structure
  • R 2 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or 1 to 4 carbon atoms.
  • an n is an integer of 0 or more in terms of repeating units.
  • a mixture of a phosphorus atom-containing compound in which n is 0 in the structural formula (1) and a phosphorus atom-containing oligomer in which n is 1 or more in the structural formula (1) and The present invention relates to a phosphorus atom-containing oligomer composition characterized in that the content of the phosphorus atom-containing oligomer having n or more components in the structural formula (1) is in the range of 5 to 90% on the basis of the peak area in GPC measurement.
  • the present invention further provides a curable resin composition comprising an epoxy resin and a curing agent as essential components, wherein the phosphorus atom-containing oligomer composition is used as the curing agent.
  • a curable resin composition comprising an epoxy resin and a curing agent as essential components, wherein the phosphorus atom-containing oligomer composition is used as the curing agent.
  • the present invention further relates to a cured product obtained by curing reaction of the curable resin composition.
  • the present invention further relates to a printed wiring obtained by impregnating a reinforcing base material with a resin composition obtained by further blending an organic solvent with the curable resin composition, and then laminating the copper foil and heat-pressing it. Regarding the substrate.
  • a phosphorus atom-containing oligomer composition having excellent flame retardancy and heat resistance in a cured product and dramatically improved solubility in an organic solvent, comprising the oligomer composition
  • a curable resin composition, a cured product thereof, and a printed wiring board manufactured from the composition can be provided.
  • FIG. 1 is a GPC chart of the phosphorus atom-containing oligomer composition (A-1) obtained in Example 1.
  • FIG. 2 is a 13 C-NMR chart of the phosphorus atom-containing oligomer composition (A-1) obtained in Example 1.
  • FIG. 3 is an MS spectrum of the phosphorus atom-containing oligomer composition (A-1) obtained in Example 1.
  • 4 is a GPC chart of the phosphorus atom-containing oligomer composition (A-2) obtained in Example 2.
  • FIG. FIG. 5 is a GPC chart of the phosphorus atom-containing oligomer composition (A-3) obtained in Example 3.
  • FIG. 6 is a GPC chart of the phenol compound (A-4) obtained in Comparative Example 1.
  • FIG. 7 is a GPC chart of the phenol resin (A-5) obtained in Comparative Example 2.
  • FIG. 8 is a GPC chart of the phenol compound (A-6) obtained in Comparative Example 3.
  • the phosphorus atom-containing oligomer composition of the present invention has the following structural formula (1)
  • R 1 to R 5 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group, and X represents a hydrogen atom or the following structure
  • Formula (x1) wherein R 1 to R 5 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group, and X represents a hydrogen atom or the following structure
  • R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Represents an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group. And n is an integer of 0 or more as a repeating unit. ) Is a mixture of a phosphorus atom-containing compound in which n is 0 and a phosphorus atom-containing oligomer in which n is 1 or more.
  • the phosphorus atom-containing compound and phosphorus atom-containing oligomer have the basic skeleton represented by the structural formula (1), they are excellent in flame retardancy in a cured state and have a high glass transition temperature point. Furthermore, it becomes the thing excellent in heat-resistant peelability.
  • X in the structural formula (1) is the structural formula (x1) or a hydrogen atom, and is particularly preferably the structural formula (x1) from the viewpoint of flame retardancy.
  • a mixture of a phosphorus atom-containing compound (n 0 isomer) and a phosphorus atom-containing oligomer (component where n is 1 or more) represented by formulas (1-5) to (1-8) is preferable.
  • R 1 to R 5 in the structural formula (1) and R 2 to R 5 in the structural formula (x1) are each independently a hydrogen atom or an alkyl having 1 to 4 carbon atoms, as described above.
  • Group, an alkoxy group having 1 to 4 carbon atoms, and a phenyl group examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a t-butyl group.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include Methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, t-butoxy group.
  • R 1 to R 5 in the structural formula (1) and R 2 to R 5 in the structural formula (x1) are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 1 to R 5 in the structural formula (1) and R 2 to R 5 in the structural formula (x1) are all hydrogen atoms are preferable from the viewpoint of flame retardancy.
  • the phosphorus atom-containing oligomer composition is a phosphorus atom-containing compound in which n is 0 in the above structural formula (1) (hereinafter abbreviated as “component where n is 0”).
  • N is a mixture with a phosphorus atom-containing oligomer which is a component of 1 or more, and the content of the phosphorus atom-containing oligomer in the mixture is in the range of 5 to 90% on the basis of the peak area in GPC measurement It is said. Since it has a content in such a range, the solubility of the oligomer in an organic solvent and the flame retardancy of the cured product are remarkably excellent.
  • the content of the phosphorus atom-containing oligomer whose n is 1 or more in the above structural formula (1) is in the range of 40 to 85% on the basis of the peak area in GPC measurement.
  • those having excellent solubility in organic solvents and excellent flame retardancy of the cured product are preferred.
  • the content of the phosphorus atom-containing oligomer that is, the content of the component having n of 1 or more in the structural formula (1) is less than 36.0 minutes in the GPC chart measured under the following conditions. It means the ratio of peak area.
  • GPC The measurement conditions are as follows. Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (Differential refraction diameter)
  • Data processing “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 Model II version 4.10”.
  • the solvent solubility is good, If it is less than or equal to%, the fluidity at the time of melting or the fluidity and impregnation when made into a varnish will be good.
  • the other components are components in which n is 0. Therefore, in the phosphorus atom-containing oligomer composition of the present invention, the component in which n is 0 (phosphorus atom-containing compound) is 95 to 10 on the basis of the peak area in GPC measurement. %.
  • the phosphorus atom in the composition is in the range of 40 to 75%, and the content of the phosphorus atom-containing compound (component where n is 0) is in the range of 60 to 25%. It is preferable.
  • a phosphorus atom-containing oligomer in which the content of a component in which n is 0 (phosphorus atom-containing compound) is 95 to 10% and n is 1 hereinafter abbreviated as “component in which n is 1”.
  • the content of the phosphorus atom-containing oligomer hereinafter, abbreviated as “component where n is 2 or more”) in which n is 2 or more and 3 to 50% and n is 2 or more is 2 to 45%.
  • the content of the component where n is 0 is 60 to 25%
  • the content of the component where n is 1 is 10 to 45%
  • the content of the component where n is 2 or more is 10 to It is preferable that it is 40% from the point that the balance of solvent solubility, fluidity, and heat resistance becomes remarkable.
  • the phosphorus atom-containing oligomer composition described above preferably has a phosphorus atom content in the oligomer composition in the range of 9 to 12% by mass from the viewpoint of flame retardancy.
  • the phosphorus atom content is a value measured in accordance with “JIS standard K0102 46”.
  • the phosphorus atom-containing oligomer composition described in detail above is preferable because, for example, a composition obtained by the following production method is excellent in solubility in an organic solvent, and a composition excellent in heat resistance of a cured product is obtained. .
  • R 2 to R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group
  • a1 The following structural formula (a2)
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group.
  • the compound (a2) represented by the formula (1) is blended at a molar ratio [compound (a1) / compound (a2)] of 0.01 / 1.0 to 0.99 / 1.0.
  • the reaction is carried out at 100 to 200 ° C. in the presence or in the absence of a catalyst, and then the total amount of the compound (a1) is 1.01 to 3.0 times on a molar basis with respect to the charged amount of the compound (a2).
  • the reaction is carried out at 140 to 220 ° C. to obtain the target phosphorus atom-containing oligomer composition.
  • the alkyl group having 1 to 4 carbon atoms constituting R 2 , R 3 , R 4 and R 5 in the structural formula (a1) a methyl group, an ethyl group, an n-propyl group, i -Propyl group and t-butyl group are exemplified, and examples of the alkoxy group having 1 to 4 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, and t-butoxy group.
  • the compound (a1) is preferably a compound in which all of R 2 , R 3 , R 4 and R 5 are hydrogen atoms from the viewpoint of flame retardancy.
  • R 1 in the structural formula (a2) in the compound (a2) is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group.
  • the alkyl group of 4 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a t-butyl group.
  • the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, and an n group.
  • R 1 is preferably a hydrogen atom from the viewpoint of excellent reactivity with the compound (a1) and flame retardancy of the cured product.
  • a catalyst may or may not be used in the above method, but the reaction is preferably carried out without a catalyst from the viewpoint of excellent selectivity and yield of the finally obtained compound.
  • examples of catalysts that can be used include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid, boron trifluoride, Examples include Lewis acids such as anhydrous aluminum chloride and zinc chloride. The amount used is in the range of 0.1 to 5.0% by mass with respect to the total weight of the charged raw materials from the viewpoint of preventing a decrease in the electrical insulation of the cured product.
  • the compound (a2) since the compound (a2) is in a liquid state, it can be used as an organic solvent, but other organic solvents may be used from the viewpoint of improving workability and the like.
  • the organic solvent used include non-ketone organic solvents such as alcohol-based organic solvents and hydrocarbon-based organic solvents.
  • examples of the alcohol-based organic solvent include propylene glycol monomethyl ether.
  • examples of the hydrocarbon organic solvent include toluene, xylene and the like.
  • the desired product can be obtained by drying under reduced pressure.
  • the curable resin composition of the present invention is a curable resin composition containing an epoxy resin and a curing agent as essential components, and uses the above-described phosphorus atom-containing oligomer composition of the present invention as the curing agent. It is.
  • epoxy resins can be used as the epoxy resin used here, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, etc. Biphenyl type epoxy resin; phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, epoxidized product of phenol and aromatic aldehyde having phenolic hydroxyl group, biphenyl novolak type epoxy resin, etc.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin
  • biphenyl type epoxy resin tetramethylbiphenyl type epoxy resin
  • Biphenyl type epoxy resin phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, epoxidized product of phenol and aromatic aldehyde having phenolic hydroxyl group, biphenyl novolak type epoxy resin,
  • Novolac type epoxy resin triphenylmethane type epoxy resin; tetraphenylethane type epoxy resin; dicyclopentadiene-phenol addition reaction type epoxy resin; Lukyl type epoxy resin; naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, diglycidyloxynaphthalene, 1,1-bis (2, 7-diglycidyloxy-1-naphthyl) alkane and other molecular structures such as epoxy resins having a naphthalene skeleton; phosphorus atom-containing epoxy resins and the like. Moreover, these epoxy resins may be used independently and may mix 2 or more types.
  • the phosphorus atom-containing epoxy resin is obtained by reacting 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”) with a quinone compound.
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • Epoxidized phenol resin, epoxy resin modified with phenol novolak epoxy resin with HCA, epoxy resin modified with cresol novolac epoxy resin with HCA, and bisphenol A epoxy resin reacted with HCA and quinone compound And an epoxy resin obtained by modifying an epoxy resin obtained by modification with a phenol resin obtained in this way, and a phenol resin obtained by reacting bisphenol F type epoxy resin with HCA and quinones.
  • a novolak type epoxy resin and an epoxy resin having a naphthalene skeleton are preferable in the molecular structure from the viewpoint of heat resistance, and a bisphenol type epoxy resin and a novolak type epoxy resin from the viewpoint of solvent solubility. Is preferred.
  • the blending amount of the epoxy resin and the phosphorus atom-containing oligomer in the curable resin composition of the present invention is not particularly limited, but the total of epoxy groups of the epoxy resin from the point that the obtained cured product characteristics are good.
  • the amount by which the active hydrogen in the phosphorus atom-containing oligomer is 0.7 to 1.5 equivalents relative to 1 equivalent is preferred.
  • curing agent of the said phosphorus atom containing oligomer composition as a hardening
  • curing agents include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like.
  • examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative.
  • the amide compound include dicyandiamide.
  • polyamide resins synthesized from dimer of linolenic acid and ethylenediamine examples include acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and tetrahydrophthalic anhydride.
  • phenolic compounds include phenol novolac resin, cresol novolac resin Aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), naphthol aralkyl resin, trisphenylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol Condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), Biphenyl-modified naphthol resin (polyvalent naphthol compound in which phenol nucleus is
  • those containing a large amount of an aromatic skeleton in the molecular structure are preferred from the viewpoint of excellent low thermal expansion of the cured product, and specifically, phenol novolac resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenols.
  • Resin phenol aralkyl resin, naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, alkoxy group-containing aromatic
  • a ring-modified novolak resin (a polyhydric phenol compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde) is preferable because of its low thermal expansion.
  • the aforementioned aminotriazine-modified phenol resin that is, a compound having a phenol skeleton, a triazine ring and a primary amino group in the molecular structure is a molecule obtained by condensation reaction of a triazine compound, a phenol and an aldehyde. What has a structure is preferable from the point which the flame retardance of hardened
  • the other curing agent described above may be used within a range where the phosphorus atom content in the solid content in the curable resin composition of the present invention is 1 to 9%. preferable.
  • a curing accelerator can be appropriately used in combination with the curable resin composition of the present invention.
  • Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • phosphorus compounds tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • triphenylphosphine is a phosphorus compound and 2-ethyl 4-methyl is an amine compound. Imidazole is preferred.
  • the amount of the curing accelerator used here is preferably in the range of 0.01 to 1% by mass in the curable resin composition.
  • the curable resin composition of the present invention described in detail above is characterized by exhibiting excellent solvent solubility. Therefore, the curable resin composition preferably contains an organic solvent in addition to the above components.
  • the organic solvent that can be used here include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, etc.
  • the amount used can be appropriately selected depending on the application. For example, in the case of printed circuit boards, an alcoholic organic solvent having a boiling point of 160 ° C.
  • the non-volatile content is 40 to 80% by mass.
  • organic solvents for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, It is preferable to use carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like, and the nonvolatile content is 30 to 60% by mass. It is preferable to use in proportions.
  • the curable resin composition may contain a non-halogen flame retardant in the range of, for example, the printed wiring board, as long as reliability is not lowered.
  • non-halogen flame retardants examples include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants.
  • the flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.
  • the phosphorus flame retardant either inorganic or organic can be used.
  • the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like.
  • the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide
  • a method of double coating with a resin may be used.
  • general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and
  • the blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • 0.1 to 2.0 parts by mass of red phosphorus is used as the non-halogen flame retardant.
  • an organophosphorus compound it is preferably blended in the range of 0.1 to 10.0 parts by mass, particularly in the range of 0.5 to 6.0 parts by mass. It is preferable to do.
  • the phosphorous flame retardant when using the phosphorous flame retardant, may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, guanylmelamine sulfate, melem sulfate, melam sulfate, etc.
  • examples thereof include an aminotriazine sulfate compound, aminotriazine-modified phenol resin, and aminotriazine-modified phenol resin further modified with tung oil, isomerized linseed oil, and the like.
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the compounding amount of the nitrogen-based flame retardant is appropriately selected according to the type of the nitrogen-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • an epoxy resin It is preferable to add in the range of 0.05 to 10 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 1 to 5 parts by mass.
  • a metal hydroxide, a molybdenum compound or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • an epoxy resin It is preferable to add in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives.
  • inorganic flame retardant examples include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
  • the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • the metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • boron compound examples include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO system, P—Sn—O—F system, PbO—V 2 O 5 —TeO 2 system, Al 2 O 3 —H 2 O system, lead borosilicate system, etc.
  • the glassy compound can be mentioned.
  • the amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • an epoxy resin It is preferable to add in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 5 to 15 parts by mass.
  • organometallic salt-based flame retardant examples include ferrocene, acetylacetonate metal complex, organometallic carbonyl compound, organocobalt salt compound, organosulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.
  • the amount of the organic metal salt flame retardant is appropriately selected depending on the type of the organic metal salt flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. , Preferably in the range of 0.005 to 10 parts by mass in 100 parts by mass of the curable resin composition containing all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives. .
  • an inorganic filler can be blended as necessary.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • fused silica When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica.
  • the fused silica can be used in either a crushed shape or a spherical shape.
  • the filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the curable resin composition.
  • electroconductive fillers such as silver powder and copper powder, can be used.
  • various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be added as necessary.
  • the curable resin composition of the present invention can be obtained by uniformly mixing the above-described components.
  • the curable resin composition can be easily made into a cured product by a method similar to a conventionally known method.
  • Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.
  • curable resin composition of the present invention includes printed wiring board materials, resin compositions for flexible wiring boards, interlayer insulating materials for build-up boards, semiconductor sealing materials, conductive pastes, and adhesive films for build-ups , Resin casting materials, adhesives and the like.
  • a varnish-like curable resin composition further containing an organic solvent is used.
  • a method of impregnating a reinforcing base material and stacking a copper foil to heat-press examples include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the varnish-like curable resin composition described above is first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C., so that a prepreg as a cured product is obtained. Get.
  • the mass ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60% by mass.
  • the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and heat-pressed at 170 to 250 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa, A desired printed circuit board can be obtained.
  • the phosphorus atom-containing oligomer composition, epoxy resin, and organic solvent, and if necessary, other curing agents and curing accelerators are blended, Using an applicator such as a reverse roll coater or comma coater, it is applied to the electrically insulating film. Subsequently, it is heated at 60 to 170 ° C. for 1 to 15 minutes using a heater to volatilize the solvent, and the adhesive composition is B-staged. Next, the metal foil is thermocompression bonded to the adhesive using a heating roll or the like.
  • the pressure for pressure bonding is preferably 2 to 200 N / cm, and the temperature for pressure bonding is preferably 40 to 200 ° C. If sufficient adhesion performance can be obtained, the process may be completed here. However, if complete curing is required, post-curing is preferably performed at 100 to 200 ° C. for 1 to 24 hours.
  • the thickness of the adhesive composition film after final curing is preferably in the range of 5 to 100 ⁇ m.
  • the curable resin composition of the present invention As a method for obtaining an interlayer insulating material for a build-up substrate from the curable resin composition of the present invention, for example, the curable resin composition appropriately blended with rubber, filler, etc., spray coating method on a wiring board on which a circuit is formed, After applying using a curtain coating method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness
  • the plating method electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent.
  • a build-up substrate can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern.
  • the through-hole portion is formed after the outermost resin insulating layer is formed.
  • a resin-coated copper foil obtained by semi-curing the resin composition on a copper foil is heat-pressed at 170 to 250 ° C. on a wiring board on which a circuit is formed, thereby forming a roughened surface and performing plating treatment. It is also possible to produce a build-up substrate by omitting the process.
  • the method for producing an adhesive film for buildup from the curable resin composition of the present invention is, for example, a multilayer printed wiring board in which the curable resin composition of the present invention is applied on a support film to form a resin composition layer. And an adhesive film for use.
  • the adhesive film is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and simultaneously with the lamination of the circuit board, It is important to show fluidity (resin flow) that allows resin filling in via holes or through holes present in a circuit board, and it is preferable to blend the above-described components so as to exhibit such characteristics.
  • the lamination temperature condition usually 70 ° C. to 140 ° C.
  • the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. Usually, it is preferable that the resin can be filled in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.
  • the method for producing the adhesive film described above is, after preparing the varnish-like curable resin composition of the present invention, coating the varnish-like composition on the surface of the support film, further heating, Or it can manufacture by drying an organic solvent by hot air spraying etc. and forming the layer ((alpha)) of a curable resin composition.
  • the thickness of the layer ( ⁇ ) to be formed is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
  • the said layer ((alpha)) may be protected with the protective film mentioned later.
  • a protective film By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil.
  • the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, preferably 25 to 50 ⁇ m.
  • the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the support film described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.
  • the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer ( ⁇ ) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that ⁇ ) is in direct contact with the circuit board.
  • the laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.
  • the laminating conditions are a pressure bonding temperature (lamination temperature) of preferably 70 to 140 ° C. and a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 ⁇ 10 4 to 107.9 ⁇ 10 4 N / m 2 ). Lamination is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.
  • the curable resin composition of the present invention is used as a conductive paste, for example, a method of dispersing fine conductive particles in the curable resin composition to obtain a composition for anisotropic conductive film, liquid at room temperature And a paste resin composition for circuit connection and an anisotropic conductive adhesive.
  • the phosphorus atom-containing oligomer composition, the epoxy resin, the curing accelerator, and an inorganic filler, etc. are extruded as necessary. It can be obtained by sufficiently melt-mixing until uniform using a machine, kneader, roll or the like. At that time, silica is usually used as the inorganic filler, and the filler is preferably used in the range of 30 to 95% by mass per 100 parts by mass of the curable resin composition, and particularly, flame retardant.
  • the composition is molded by casting or using a transfer molding machine, injection molding machine, etc., and further heated at 50 to 200 ° C. for 2 to 10 hours to form a semiconductor device as a molded product. The method of obtaining is mentioned.
  • the method for obtaining the cured product of the present invention may be based on a general curing method for a curable resin composition, but for example, the heating temperature condition may be appropriately selected depending on the kind of curing agent to be combined and the use. However, the composition obtained by the above method may be heated in a temperature range of about 20 to 250 ° C.
  • melt viscosity at 180 ° C. compliant with ASTM D4287
  • Softening point measurement method JIS K7234
  • Phosphorus content measurement method compliant with JIS K0102-46
  • GPC Measurement conditions are as follows.
  • Measuring device “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (Differential refraction diameter)
  • Data processing “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 model II version 4.10”.
  • NMR JEOL JNM-ECA500 nuclear magnetic resonance apparatus
  • Magnetic field strength 500 MHz
  • Pulse width 3.25 ⁇ sec Integration count: 8000 times
  • Solvent DMSO-d6 Sample concentration: 30% by mass
  • n 1 or more
  • Example 1 In a flask equipped with a thermometer, condenser, fractionator, and stirrer, 324.0 parts by mass (1.5 mol) of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 122 parts by mass (1.0 mol) of o-hydroxybenzaldehyde was charged and stirred at 40 ° C. while blowing nitrogen. The mixture was heated to 140 ° C. and stirred for 4 hours, then heated to 180 ° C. and stirred for 8 hours. Thereafter, water is removed under reduced pressure by heating, and the following structural formula
  • a phosphorus atom-containing oligomer composition (A-1) represented by The obtained phosphorus atom-containing oligomer composition has a hydroxyl group equivalent of 428 g / equivalent, a softening point of 140 ° C., a phosphorus content of 10.5%, and an abundance ratio of the phosphorus atom-containing compound in which n is 0 is 53.3. The abundance ratio of components having% and n of 1 or more was 46.7%.
  • the GPC chart of the obtained phosphorus atom-containing oligomer (A-1) is shown in FIG. 1, the 13 C-NMR chart is shown in FIG. 2, and the MS spectrum is shown in FIG.
  • Example 2 In a flask equipped with a thermometer, condenser, fractionator, and stirrer, 324.0 parts by mass (1.5 mol) of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 122 parts by mass (1.0 mol) of o-hydroxybenzaldehyde was charged and stirred at 40 ° C. while blowing nitrogen. The mixture was heated to 140 ° C. and stirred for 1 hour, then heated to 180 ° C. and stirred for 8 hours. Thereafter, water is removed under reduced pressure by heating, and the following structural formula
  • a phosphorus atom-containing oligomer composition (A-2) represented by The obtained phosphorus atom-containing oligomer composition has a hydroxyl group equivalent of 428 g / equivalent, a softening point of 120 ° C., a phosphorus content of 10.5%, and an abundance ratio of the phosphorus atom-containing compound in which n is 0 is 80.6. %, N was 19.4% or more was 19.4%.
  • the GPC chart of the resulting phosphorus atom-containing oligomer composition (A-2) is shown in FIG.
  • Example 3 In a flask equipped with a thermometer, condenser, fractionator, and stirrer, 324.0 parts by mass (1.5 mol) of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 122 parts by mass (1.0 mol) of o-hydroxybenzaldehyde was charged and stirred at 40 ° C. while blowing nitrogen. The mixture was heated to 140 ° C. and stirred for 8 hours, and then heated to 180 ° C. and stirred for 8 hours. Thereafter, water is removed under reduced pressure by heating, and the following structural formula
  • the obtained phosphorus atom-containing oligomer composition has a hydroxyl group equivalent of 428 g / equivalent, a softening point of 148 ° C., a phosphorus content of 10.5%, and an abundance ratio of the phosphorus atom-containing compound in which n is 0 is 38.6. %, The abundance ratio of components having n of 1 or more was 61.4%.
  • a GPC chart of the resulting phosphorus atom-containing oligomer composition (A-3) is shown in FIG.
  • Comparative Example 2 (compound described in Non-Patent Document 1)
  • a thermometer In a flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer, 236.6 g (0.7 mol) of the phenol compound (A-4) obtained in Comparative Example 1 and oxalic acid 3 0.08 g (0.034 mol) was added, and the mixture was heated and stirred at 180 ° C. for 3 hours. Next, water is removed under heating and reduced pressure, and the following structural formula:
  • a GPC chart of the resulting phenol resin (A-5) is shown in FIG.
  • Comparative Example 3 (compound described in Patent Document 1) In a flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer, 169 g (0.5 mol) of the phenol compound (A-4) obtained in Comparative Example 1 and 47 g (0. 5 mol), p-toluenesulfonic acid (1.25 g) was charged, heated to 180 ° C., reacted at 180 ° C. for 8 hours, filtered and dried to obtain the following structural formula
  • Examples 4 to 6 and Comparative Examples 4 to 6 Preparation of epoxy resin composition and evaluation of physical properties
  • an epoxy resin “N-690” (phenol novolac type epoxy resin, epoxy equivalent: 215 g / eq) manufactured by DIC, “FX-289BEK75” (phosphorus-containing) manufactured by Nippon Steel Chemical Co., Ltd.
  • Modified epoxy resin epoxy equivalent: 330 g / eq
  • phosphorus-containing phenol resin A-1
  • A-2 phosphorus-containing phenol resin
  • A-3 phosphorus-containing phenol resin
  • A-5 phenol novolac
  • a resin (“TD-2090” manufactured by DIC Corporation: hydroxyl group equivalent of 105 g / eq) was added, and 2-ethyl-4-methylimidazole (2E4MZ) was further added as a curing catalyst, and finally the nonvolatile content of each composition ( N.V.) was adjusted by blending methyl ethyl ketone so as to be 58% by mass.
  • Heat-resistant peelability test (T288 test): The heat-resistant peelability evaluation (with copper foil) at 288 ° C. was performed in accordance with IPC TM650.
  • N-690 Cresol novolak type epoxy resin manufactured by DIC Corporation (“Epiclon N-690”, epoxy equivalent: 215 g / equivalent)
  • FX-289BEK75 Phosphorus-modified epoxy resin (“FX-289BER75” manufactured by Tohto Kasei: obtained by reacting cresol novolac type epoxy resin with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Epoxy resin, epoxy equivalent 330 g / equivalent, phosphorus content 3.0 mass%)
  • A-1 Phosphorus atom-containing oligomer composition obtained in Example 1 (A-1)
  • A-2 Phosphorus atom-containing oligomer composition obtained in Example 2 (A-2)
  • A-3 Phosphorus atom-containing oligomer composition obtained in Example 3 (A-3)
  • A-5 Phenolic resin obtained in Comparative Example 2 (A-5)
  • A-6 Phenol compound (A-6) obtained in Comparative Example 3 TD-2090:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

硬化物における優れた難燃性と耐熱性と共に、有機溶剤への溶解性を飛躍的に改善する。下記構造式(1) (式中、R~Rは、それぞれ独立的に水素原子、炭素原子数1~4のアルキル基等を表し、Xは水素原子又は下記構造式(x1)、 で表される構造部位であり、また、該構造式(x1)中、R~Rは、それぞれ独立的に、水素原子、炭素原子数1~4のアルコキシ基等基を表す。)で表され、かつ、前記構造式(1)においてnが0のリン原子含有化合物と、前記構造式(1)においてnが1以上のリン原子含有オリゴマーとの混合物であって、かつ、前記構造式(1)においてnが1成分以上の含有率が、GPC測定におけるピーク面積基準で5~90%の範囲にあるリン原子含有オリゴマーをエポキシ樹脂用硬化剤として使用する。

Description

リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
 本発明は、溶剤溶解性に優れると共に、その硬化物において優れた難燃性と耐熱性とを兼備したリン原子含有オリゴマー組成物、該オリゴマー組成物をエポキシ樹脂用硬化剤として用いた硬化性樹脂組成物、その硬化物、及び、該硬化性樹脂組成物を用いたプリント配線基板に関する。
 エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、耐湿性等の諸物性に優れる点から半導体封止材やプリント回路基板等の電子部品、電子部品分野、導電ペースト等の導電性接着剤、その他接着剤、複合材料用マトリックス、塗料、フォトレジスト材料、顕色材料等で広く用いられている。
 近年、これら各種用途、とりわけ先端材料用途において、耐熱性、耐湿性、耐半田性に代表される性能の一層の向上が求められている。特に高い信頼性が求められる車載用の電子機器は、設置場所がキャビン内からより高温のエンジンルームへと移行することに加え、鉛フリー半田への対応によりリフロー処理温度が高温化するに至り、よって、これまでに増して高ガラス転移点であり、更に、耐熱剥離性試験(以下、「T288試験」と略記する。)に耐えることができる高耐熱性の材料が求められている。
 一方、エポキシ樹脂組成物をプリント配線板材料とする場合には、難燃性を付与するために臭素等のハロゲン系難燃剤がアンチモン化合物とともに配合されている。しかしながら、近年の環境・安全への取り組みのなかで、ダイオキシン発生が懸念されるハロゲン系難燃剤を用いず、且つ発ガン性が疑われているアンチモン化合物を用いない環境・安全対応型の難燃化方法の開発が強く要求されている。また、プリント配線板材料の分野ではハロゲン系難燃剤の使用が高温放置信頼性を損なう要因となっていることから非ハロゲン化への期待が高い。
 このような要求特性に応え、難燃性と耐熱性とを兼備したエポキシ樹脂組成物として、例えば、下記特許文献1には、エポキシ樹脂用の硬化剤として、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「HCA」と略記する。)とp-ヒドロキシベンズアルデヒドとを反応させ、次いで、この反応生成物とフェノールと反応させて得られるリン原子含有ビスフェノール類を、エポキシ樹脂原料又はエポキシ樹脂用硬化剤とする技術が開示されている。
 しかしながら、かかるリン原子含有ビスフェノール類は結晶性が極めて高く溶剤溶解性が殆ど認められない為、前記したプリント配線板材料用ワニスに調整できないものである他、これをエポキシ樹脂用硬化剤として使用した場合の硬化物の難燃性も十分なレベルに達していないものであった。また、リン原子含有ビスフェノール類の融点が200℃以上となるため、工業的に製造するのも極めて困難なものであった。
 また、下記非特許文献1には、HCAとp-ヒドロキシベンズアルデヒドとを反応させて中間生成物を得、次いで該中間生成物をTHF中でオリゴマー化する技術が開示されている。
 然し乍ら、非特許文献1に開示された技術では、中間体であるHCAとp-ヒドロキシベンズアルデヒドとの反応生成物の結晶性が極めて高く溶剤溶解性に劣る為に、該非特許文献1に記載されているようにその後の反応には、引火点が低く危険性の高いTHFを用いる必要があって、工業的に生産不可能なものである他、得られるオリゴマー自体の溶剤溶解性が低く、プリント配線板材料用ワニスを調整することも困難なものであった。
 更に、下記特許文献2には、HCAとヒドロキシベンズアルデヒドとを反応させることにより、リン原子含有フェノール化合物を製造する技術が開示されている。しかしながら、該特許文献2記載のフェノール化合物は1官能性フェノール化合物であり、やはり結晶性が極めて高く溶剤溶解性に劣る他、これをエポキシ樹脂用硬化剤として使用した場合であっても十分な難燃性が得られないものであった。
特開2004-143166号公報
特開2001-354685号公報
「Flame-retardant epoxy resins from novel phosphorus-containing novolac」polymer紙(polymer42(2001)3445-3454),Ying Ling Liu著
 従って、本発明が解決しようとする課題は、硬化物における優れた難燃性と耐熱性とを有すると共に、有機溶剤への溶解性が飛躍的に改善されたリン原子含有オリゴマー、該オリゴマーを含んでなる硬化性樹脂組成物とその硬化物、及び該組成物から製造されるプリント配線基板を提供することにある。
 本発明者らは、上記課題を解決するため、鋭意検討した結果、HCAに代表されるリン原子含有化合物とo-ヒドロキシベンズアルデヒド系化合物とを反応、オリゴマー化して得られる特定の分子構造を有するリン原子含有オリゴマー組成物が、有機溶剤に対して優れた溶解性を示すと共に、該オリゴマー組成物をエポキシ樹脂用硬化剤、エポキシ樹脂原料、熱硬化性樹脂用添加剤等として用い、硬化させた場合に、優れた難燃性を発現し、更に高ガラス転移点かつT288試験に耐え得る硬化物となることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記構造式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、それぞれ独立的に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基を表し、Xは水素原子又は下記構造式(x1)、
Figure JPOXMLDOC01-appb-C000004

で表される構造部位であり、また、該構造式(x1)中、R~Rは、それぞれ独立的に、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基で表され、かつnは繰り返し単位で0以上の整数である。)で表され、かつ、前記構造式(1)においてnが0のリン原子含有化合物と、前記構造式(1)においてnが1以上のリン原子含有オリゴマーとの混合物であって、かつ、前記構造式(1)においてnが1成分以上のリン原子含有オリゴマーの含有率が、GPC測定におけるピーク面積基準で5~90%の範囲にあることを特徴とするリン原子含有オリゴマー組成物に関する。
 本発明は、更に、エポキシ樹脂と、硬化剤とを必須成分とする硬化性樹脂組成物であって、前記硬化剤として、前記リン原子含有オリゴマー組成物を用いることを特徴とする硬化性樹脂組成物に関する。
 本発明は、更に、前記硬化性樹脂組成物を硬化反応させてなることを特徴とする硬化物に関する。
 本発明は、更に、前記硬化性樹脂組成物に、更に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板に関する。
 本発明によれば、硬化物における優れた難燃性と耐熱性とを有すると共に、有機溶剤への溶解性が飛躍的に改善されたリン原子含有オリゴマー組成物、該オリゴマー組成物を含んでなる硬化性樹脂組成物とその硬化物、及び該組成物から製造されるプリント配線基板を提供できる。
図1は実施例1で得られたリン原子含有オリゴマー組成物(A-1)のGPCチャートである。 図2は実施例1で得られたリン原子含有オリゴマー組成物(A-1)の13C-NMRチャートである。 図3は実施例1で得られたリン原子含有オリゴマー組成物(A-1)のMSスペクトルである。 図4は実施例2で得られたリン原子含有オリゴマー組成物(A-2)のGPCチャートである。 図5は実施例3で得られたリン原子含有オリゴマー組成物(A-3)のGPCチャートである。 図6は比較例1で得られたフェノール化合物(A-4)のGPCチャートである。 図7は比較例2で得られたフェノール樹脂(A-5)のGPCチャートである。 図8は比較例3で得られたフェノール化合物(A-6)のGPCチャートである。
 以下、本発明を詳細に説明する。
 本発明のリン原子含有オリゴマー組成物は、前記した通り、下記構造式(1)
Figure JPOXMLDOC01-appb-C000005

(式中、R~Rは、それぞれ独立的に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基を表し、Xは水素原子又は下記構造式(x1)、
Figure JPOXMLDOC01-appb-C000006
で表される構造部位であり、また、該構造式(x1)中、R、R、R、及びRは、それぞれ独立的に、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基を表す。)で表され、かつnは繰り返し単位で0以上の整数である。)で表される化学構造のうち、nが0であるリン原子含有化合物と、nが1以上であるリン原子含有オリゴマーとの混合物である。前記リン原子含有化合物及びリン原子含有オリゴマーは、前記構造式(1)で表される基本骨格を有することから、硬化した状態において難燃性に優れ、かつ、高ガラス転移温点を有し、更に耐熱剥離性に優れたものとなる。
 ここで、前記構造式(1)中で表される化学構造のうち、Xが水素原子であるものは、具体的には、下記構造式(1-1)~(1-4)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 他方、前記構造式(1)中で表される化学構造のうち、Xが前記構造式(x1)で表されるものは、具体的には
Figure JPOXMLDOC01-appb-C000008
 本発明では、前記構造式(1)中のXは前記構造式(x1)又は水素原子であるが、特に難燃性の点から構造式(x1)であることが好まく、よって、前記構造式(1-5)~(1-8)で表される、リン原子含有化合物(n=0体)とリン原子含有オリゴマー(nが1以上の成分)との混合物が好ましい。
 また、前記構造式(1)におけるR~Rは、及び前記構造式(x1)におけるR~Rは、前記したとおり、それぞれ独立的に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基を表す。ここで、炭素原子数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基が挙げられ、炭素原子数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、t-ブトキシ基が挙げられる。
 本発明では、前記構造式(1)におけるR~Rは、及び前記構造式(x1)におけるR~Rは、水素原子、又は、炭素原子数1~4のアルキル基であることが好ましく、特に前記構造式(1)におけるR~Rは、及び前記構造式(x1)におけるR~Rの全てが水素原子であるものが難燃性の点から好ましい
 また、前記リン原子含有オリゴマー組成物は、前記した通り、上記した構造式(1)においてnが0であるリン原子含有化合物(以下、これを「nが0の成分」と略記する。)と、nが1以上の成分であるリン原子含有オリゴマーとの混合物であり、該混合物中のリン原子含有オリゴマーの含有率が、GPC測定におけるピーク面積基準で5~90%の範囲にあることを特徴としている。このような範囲の含有率を有することから該オリゴマーの有機溶剤への溶解性、及び、硬化物の難燃性が顕著に優れたものとなる。
 ここで、前記リン原子含有オリゴマー組成物は、上記した構造式(1)においてnが1以上の成分であるリン原子含有オリゴマーの含有率が、GPC測定におけるピーク面積基準で40~85%の範囲にあるものが、とりわけ有機溶剤への溶解性に優れ、かつ、硬化物の難燃性に優れる点から好ましい。
 ここで、リン原子含有オリゴマーの含有率、即ち、前記構造式(1)におけるnが1以上の成分の含有率とは、下記の条件で測定されたGPCのチャートにおいて、36.0分未満のピーク面積の割合をいうものである。
<GPC測定条件>
4)GPC:測定条件は以下の通り。
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
検出器 : RI(示差屈折径)
データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
測定条件 : カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
 本発明では、リン原子含有オリゴマーの含有率、即ち、nが1以上の成分の含有率が、GPC測定におけるピーク面積基準で5%以上の場合、溶剤溶解性が良好なものとなり、他方、90%以下の場合には溶融時の流動性或いはワニスにした場合の流動性及び含浸性が良好なものとなる。ここで、その他の成分はnが0の成分であり、よって、本発明のリン原子含有オリゴマー組成物は、nが0の成分(リン原子含有化合物)がGPC測定におけるピーク面積基準で95~10%の割合となる。本発明では、溶剤溶解性と流動性とを保持しつつ、更に硬化物において優れた耐熱性、とりわけ高ガラス転移温点かつT288試験に優れた性能を発現する点から、組成物中のリン原子含有オリゴマー(nが1以上の成分)の含有率が、40~75%となる範囲であって、リン原子含有化合物(nが0の成分)の含有率が60~25%となる範囲であることが好ましい。
 更に、具体的には、nが0の成分(リン原子含有化合物)の含有率が95~10%、nが1のリン原子含有オリゴマー(以下、「nが1の成分」と略記する。)の含有率が3~50%、かつ、nが2以上のリン原子含有オリゴマー(以下、「nが2以上の成分」と略記する。)の含有率が2~45%であることが溶剤溶解性の点から好ましく、特に、nが0の成分の含有率が60~25%、nが1の成分の含有率が10~45%、かつ、nが2以上の成分の含有率が10~40%であることが溶剤溶解性、流動性、及び耐熱性のバランスが顕著なものとなる点から好ましい。
 また、上記したリン原子含有オリゴマー組成物は、該オリゴマー組成物中のリン原子含有率が9~12質量%の範囲であることが難燃性の点から好ましい。かかるリン原子含有率は、「JIS規格K0102 46」に準拠して測定した値である。
 以上詳述したリン原子含有オリゴマー組成物は、例えば、以下の製造方法によって得られるものが有機溶剤への溶解性に優れ、かつ、硬化物の耐熱性に優れた組成物が得られる点から好ましい。
 即ち、下記構造式(a1)
Figure JPOXMLDOC01-appb-C000009

(式中、R~Rは、それぞれ独立的に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基を表す。)で表される化合物(a1)と、
下記構造式(a2)
Figure JPOXMLDOC01-appb-C000010

(式中、Rは水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基を表す。)
で表される化合物(a2)とを、モル比[化合物(a1)/化合物(a2)]が0.01/1.0~0.99/1.0となる割合で配合し、酸触媒の存在下或いは無触媒下に、100~200℃で反応を行い、次いで、前記化合物(a2)の仕込み量に対して、モル基準で合計1.01~3.0倍量となる前記化合物(a1)を加え、140~220℃にて反応を行うことにより目的とするリン原子含有オリゴマー組成物を得ることができる。
 本発明では、かかる方法によりリン原子含有オリゴマー組成物を製造する場合、反応中間体の析出を良好に抑制でき、高分子量化し易くなる。
 ここで、前記構造式(a1)中の、R、R、R、Rを構成する炭素原子数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基が挙げられ、炭素原子数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、t-ブトキシ基が挙げられる。本発明では、前記化合物(a1)は、R、R、R、Rの全てが水素原子であるものが難燃性の点から好ましい。他方、化合物(a2)における前記構造式(a2)中のRは、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、又はフェニル基であり、炭素原子数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基が挙げられ、炭素原子数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、t-ブトキシ基が挙げられる。これらのなかでも、化合物(a1)との反応性及び硬化物の難燃性に優れる点からRは水素原子であることが好ましい。
 前記した通り、前記方法では触媒を用いても用いなくともよいが、最終的に得られる化合物の選択性及び収率に優れる点から無触媒下に反応させることが好ましい。ここで、触媒を用いる場合には、使用し得る触媒としては、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p-トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は硬化物の電気絶縁の低下を防ぐ観点から仕込み原料の総重量に対して、0.1~5.0質量%の範囲が挙げられる。
 該反応は前記化合物(a2)が液状であるため、これを有機溶媒として用い反応を行うことができるが、作業性等の向上という観点から他の有機溶媒を使用してもよい。ここで、用いる有機溶媒としては、アルコール系有機溶媒、炭化水素系有機溶媒などの非ケトン系有機溶媒が挙げられ、具体的には、前記アルコール系有機溶媒としてはプロピレングリコールモノメチルエーテル等が挙げられ、前記炭化水素系有機溶媒としてはトルエン、キシレン等が挙げられる。
 反応終了後は、減圧下で乾燥することによって目的物を得ることができる。
 本発明の硬化性樹脂組成物は、エポキシ樹脂と、硬化剤とを必須成分とする硬化性樹脂組成物であって、前記硬化剤として、前記した本発明のリン原子含有オリゴマー組成物を用いるものである。
 ここで用いるエポキシ樹脂は、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン等の分子構造中にナフタレン骨格を有するエポキシ樹脂;リン原子含有エポキシ樹脂等が挙げられる。また、これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。
 ここで、リン原子含有エポキシ樹脂としては、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「HCA」と略記する。)とキノン化合物とを反応させて得られるフェノール樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、クレゾールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、また、ビスフェノールA型エポキシ樹脂を、HCAとキノン化合物とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂、及びビスフェノールF型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂等が挙げられる。
 上記したエポキシ樹脂のなかでも、特に耐熱性の点から、分子構造中にノボラック型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂が好ましく、また、溶剤溶解性の点からビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が好ましい。
 本発明の硬化性樹脂組成物におけるエポキシ樹脂とリン原子含有オリゴマーの配合量としては、特に制限されるものではないが、得られる硬化物特性が良好である点から、エポキシ樹脂のエポキシ基の合計1当量に対して、リン原子含有オリゴマー中の活性水素が0.7~1.5当量になる量が好ましい。
 本発明の硬化性樹脂組成物では、本発明の効果を損なわない範囲で、エポキシ樹脂の硬化剤として前記リン原子含有オリゴマー組成物の他の硬化剤を併用してもよい。かかる他の硬化剤としては、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物等が挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリスフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、
ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(フェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 これらの中でも、特に芳香族骨格を分子構造内に多く含むものが硬化物の低熱膨張性に優れる点から好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)が低熱膨張性に優れることから好ましい。
 ここで、前記したアミノトリアジン変性フェノール樹脂、すなわちフェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物は、トリアジン化合物と、フェノール類と、アルデヒド類とを縮合反応させて得られる分子構造を有するものが硬化物の難燃性が良好となる点から好ましい。
 また、前記した他の硬化剤は、本発明の硬化性樹脂組成物における固形分中のリン原子含有率が1~9%となる範囲内で使用することが硬化物の難燃性の点から好ましい。
 また必要に応じて本発明の硬化性樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、アミン系化合物では2-エチル4-メチルイミダゾールが好ましい。ここで用いる硬化促進剤の使用量は、硬化性樹脂組成物中0.01~1質量%となる範囲であることが好ましい。
 以上詳述した本発明の硬化性樹脂組成物は、前記した通り、優れた溶剤溶解性を発現することを特徴としている。従って、該硬化性樹脂組成物は、上記各成分の他に有機溶剤を配合することが好ましい。ここで使用し得る前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノール等の沸点が160℃以下のアルコール系有機溶剤又はカルボニル基含有の有機溶剤であることが好ましく、また、不揮発分40~80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。
 また、上記硬化性樹脂組成物は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、非ハロゲン系難燃剤を配合してもよい。
 前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
 前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
 また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサー10-ホスファフェナントレン=10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10―(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
 それらの配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1~10.0質量部の範囲で配合することが好ましく、特に0.5~6.0質量部の範囲で配合することが好ましい。
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
 前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
 前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
 前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、特に0.1~5質量部の範囲で配合することが好ましい。
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
 前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
 前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
 前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
 前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
 前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
 前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
 前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
 前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
 前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましく、特に0.5~15質量部の範囲で配合することが好ましい。
 前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.005~10質量部の範囲で配合することが好ましい。
 本発明の硬化性樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
 本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
 本発明の硬化性樹脂組成物は、上記した各成分を均一に混合することにより得ることができる。また、該硬化性樹脂組成物は、従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
 本発明の硬化性樹脂組成物が用いられる用途としては、プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤等が挙げられる。
 また、これら各種用途のうち、プリント配線板や電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。
 これらの中でも、高難燃性、高耐熱性、及び溶剤溶解性といった特性からプリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料に用いることが好ましく、とりわけプリント回路基板として用いることが好ましい。
 ここで、本発明の硬化性樹脂組成物から本発明のプリント回路基板を製造するには、エポキシ樹脂、リン原子含有オリゴマー組成物に加え、更に有機溶剤を含むワニス状の硬化性樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~250℃で10分~3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。
 本発明の硬化性樹脂組成物からフレキシルブル配線基板を製造するには、前記リン原子含有オリゴマー組成物、エポキシ樹脂、及び有機溶剤、更に必要によりその他の硬化剤及び硬化促進剤を配合して、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60~170℃で1~15分間加熱し、溶媒を揮発させて、接着剤組成物をB-ステージ化する。次いで、加熱ロール等を用いて、接着剤に金属箔を熱圧着する。その際の圧着圧力は2~200N/cm、圧着温度は40~200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100~200℃で1~24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の接着剤組成物膜の厚みは、5~100μmの範囲が好ましい。
 本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
 本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
 本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
 ここで、多層プリント配線板のスルーホールの直径は通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
 上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(α)を形成させることにより製造することができる。
 形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。
 なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
 前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
 支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
 上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
 次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
 ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm(9.8×10~107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
 本発明の硬化性樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
 本発明の硬化性樹脂組成物から半導体封止材料を調整するには、前記リン原子含有オリゴマー組成物、前記エポキシ樹脂、硬化促進剤、及び無機充填剤等の配合剤を、必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合して得ることができる。その際、無機充填剤としては、通常シリカが用いられるが、その充填率は硬化性樹脂組成物100質量部当たり、充填剤を30~95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50~200℃で2~10時間に加熱することにより成形物である半導体装置を得る方法が挙げられる。
 本発明の硬化物を得る方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、20~250℃程度の温度範囲で加熱すればよい。
 次に本発明を実施例、比較例により具体的に説明する。尚、180℃における溶融粘度、軟化点、リン含有量、GPC測定、NMR、MSスペクトルは以下の条件にて測定した。
1)180℃における溶融粘度 : ASTM D4287に準拠
2)軟化点測定法 : JIS K7234
3)リン含有量測定法 : JIS K0102-46に準拠
4)GPC :測定条件は以下の通り。
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折径)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
5)NMR:日本電子製JNM―ECA500型核磁気共鳴装置
 磁場強度:500MHz
 パルス幅:3.25μsec
 積算回数:8000回
 溶媒:DMSO-d6
 試料濃度:30質量%
6)MS :島津バイオテック製「AXIMA―TOF2」
 測定モード:linear
 積算回数:100回
 試料組成:sample/DHBA/NaTFA/THF=10.0mg/100.0mg/5.0mg/1ml
前述した構造式1の繰り返し単位が1以上(以下、「n=1以上」と略す。)の成分比率は、GPCチャートの36.0分未満のピーク面積を基に算出した。
実施例1
 温度計、冷却管、分留管、撹拌器を取り付けたフラスコに、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドを324.0質量部(1.5モル)、o-ヒドロキシベンズアルデヒド122質量部(1.0モル)を仕込み、40℃下、窒素を吹き込みながら撹拌した。140℃に加熱し4時間撹拌後、180℃に加熱し8時間撹拌した。その後、水を加熱減圧下で除去して下記構造式
Figure JPOXMLDOC01-appb-C000011

であらわされるリン原子含有オリゴマー組成物(A-1)を410質量部得た。得られたリン原子含有オリゴマー組成物の水酸基当量は428グラム/当量、軟化点140℃、燐含有量は10.5%であり、nが0であるリン原子含有化合物の存在比率は53.3%、nが1以上の成分の存在比率は46.7%であった。得られたリン原子含有オリゴマー(A-1)のGPCチャートを図1に、13C-NMRチャートを図2に、MSスペクトルを図3に示す。
実施例2
 温度計、冷却管、分留管、撹拌器を取り付けたフラスコに、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドを324.0質量部(1.5モル)、o-ヒドロキシベンズアルデヒド122質量部(1.0モル)を仕込み、40℃下、窒素を吹き込みながら撹拌した。140℃に加熱し1時間撹拌後、180℃に加熱し8時間撹拌した。その後、水を加熱減圧下で除去して下記構造式
Figure JPOXMLDOC01-appb-C000012
 であらわされるリン原子含有オリゴマー組成物(A-2)を415重量部得た。得られたリン原子含有オリゴマー組成物の水酸基当量は428グラム/当量、軟化点120℃、リン含有量は10.5%であり、nが0であるリン原子含有化合物の存在比率は80.6%、nが1以上の成分の存在比率は19.4%であった。得られたリン原子含有オリゴマー組成物(A-2)のGPCチャートを図4に示す。
実施例3
 温度計、冷却管、分留管、撹拌器を取り付けたフラスコに、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドを324.0質量部(1.5モル)、o-ヒドロキシベンズアルデヒド122質量部(1.0モル)を仕込み、40℃下、窒素を吹き込みながら撹拌した。140℃に加熱し8時間撹拌後、180℃に加熱し8時間撹拌した。その後、水を加熱減圧下で除去して下記構造式
Figure JPOXMLDOC01-appb-C000013

であらわされるリン原子含有オリゴマー組成物(A-3)を400重量部得た。得られたリン原子含有オリゴマー組成物の水酸基当量は428グラム/当量、軟化点148℃、燐含有量は10.5%であり、nが0であるリン原子含有化合物の存在比率は38.6%、nが1以上である成分の存在比率は61.4%であった。得られたリン原子含有オリゴマー組成物(A-3)のGPCチャートを図5に示す。
比較例1(前記特許文献2記載の化合物の合成)
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、p-ヒドロキシベンズアルデヒド122g(1.0モル)と9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「HCA」と略記する。)216g(1.0モル)、2-プロパノール336gを仕込み、5時間還流させた。次いで、析出した白色固体をろ別、2-プロパノール1000mLで洗浄、乾燥を経て、下記構造式
Figure JPOXMLDOC01-appb-C000014

で表される構造を有するフェノール化合物(A-4)325g(収率96%)を得た。得られたフェノール化合物(A-4)のGPCチャートを図6に示す。
比較例2(前記非特許文献1記載の化合物)
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、比較例1で得られたフェノール化合物(A-4)236.6g(0.7モル)とシュウ酸3.08g(0.034モル)を仕込み、180℃で3時間加熱攪拌した。次いで、水を加熱減圧下に除去し、下記構造式、
Figure JPOXMLDOC01-appb-C000015

で表される構造単位を主成分とするフェノール樹脂(A-5)210gを得た。これの軟化点は84℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、水酸基当量は420g/当量、リン含有量9.4質量%であり、nが2以上の成分比率は34.0%であった。得られたフェノール樹脂(A-5)のGPCチャートを図7に示す。
比較例3(前記特許文献1記載の化合物)
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、比較例1で得られたフェノール化合物(A-4) 169g(0.5モル)とフェノール47g(0.5モル)、p-トルエンスルホン酸1.25gを仕込み、180℃まで昇温し180℃で8時間反応させた後、ろ過、乾燥を経て、下記構造式
Figure JPOXMLDOC01-appb-C000016

で表されるフェノール化合物(A-6)を199g得た。得られたフェノール化合物(A-6)の融点は286℃であった。得られたフェノール化合物(A-6)のGPCチャートを図8に示す。
 実施例4~6及び比較例4~6(エポキシ樹脂組成物の調整及び物性評価)
 下記、表1記載の配合に従い、エポキシ樹脂として、DIC製「N-690」(フェノールノボラック型エポキシ樹脂、エポキシ当量:215g/eq)、新日鐵化学株式会社製「FX-289BEK75」(燐含有変性エポキシ樹脂、エポキシ当量:330g/eq)、硬化剤としてリン含有フェノール樹脂(A-1)、(A-2)、(A-3)、(A-5)、(A-6)フェノールノボラック樹脂(DIC株式会社製「TD-2090」:水酸基当量105g/eq)を配合し、更に硬化触媒として2-エチル-4-メチルイミダゾール(2E4MZ)を加え、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して調整した。
[積層板作成条件]
 基材:100μm 日東紡績株式会社製 プリント配線基板用ガラスクロス「2116」プライ数:6
 銅箔:18μm 日鉱金属株式会社製 TCR箔
 プリプレグ化条件:160℃/2分
 硬化条件:200℃、2.9MPa、2.0時間
 成形後板厚:0.8mm、樹脂量40%
 上記条件で作成した硬化物を試験片として用い、以下の各種の評価を行った。結果を表1に示す。
[物性試験条件]
 ガラス転移点:エッチング処理を施し銅箔除去した後、試験片をTMA法(圧縮荷重法)にて測定。昇温スピード3℃/分
 耐熱剥離性試験(Time to Delamination):
 IPC TM650に準拠し、288℃における耐熱剥離性評価(銅箔付)を実施した。
 燃焼試験:試験方法はUL-94垂直試験に準拠。
耐熱剥離性試験(T288試験):IPC TM650に準拠し、288℃における耐熱剥離性評価(銅箔付)を行った。
Figure JPOXMLDOC01-appb-T000017
表1中の略号は以下の通りである。
N-690:DIC(株)製クレゾールノボラック型エポキシ樹脂(「エピクロンN-690」、エポキシ当量:215g/当量)
FX-289BEK75:リン変性エポキシ樹脂(東都化成製「FX-289BER75」:クレゾールノボラック型エポキシ樹脂に9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドを反応させて得られたエポキシ樹脂、エポキシ当量330g/当量、リン含有量3.0質量%)
A-1:実施例1で得られたリン原子含有オリゴマー組成物(A-1)
A-2:実施例2で得られたリン原子含有オリゴマー組成物(A-2)
A-3:実施例3で得られたリン原子含有オリゴマー組成物(A-3)
A-5:比較例2で得られたフェノール樹脂(A-5)
A-6:比較例3で得られたフェノール化合物(A-6)
TD-2090:フェノールノボラック型フェノール樹脂(DIC(株)製「TD-2090」、水酸基当量105g/当量)
2E4MZ:2-エチル-4-メチルイミダゾール

Claims (5)

  1. 下記構造式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、それぞれ独立的に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基を表し、Xは水素原子又は下記構造式(x1)、
    Figure JPOXMLDOC01-appb-C000002

    で表される構造部位であり、また、該構造式(x1)中、R~Rは、それぞれ独立的に、水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基で表され、かつ、nは繰り返し単位で0以上の整数である。)で表され、かつ、前記構造式(1)においてnが0のリン原子含有化合物と、前記構造式(1)においてnが1以上のリン原子含有オリゴマーとの混合物であって、かつ、前記構造式(1)においてnが1成分以上のリン原子含有オリゴマーの含有率が、GPC測定におけるピーク面積基準で5~90%の範囲にあることを特徴とするリン原子含有オリゴマー組成物。
  2. 前記リン原子含有オリゴマー組成物が、リン原子含有率9~12質量%のものである請求項1記載のリン原子含有オリゴマー組成物。
  3. エポキシ樹脂と、硬化剤とを必須成分とする硬化性樹脂組成物であって、前記硬化剤として、請求項1又は2記載のリン原子含有オリゴマー組成物を用いることを特徴とする硬化性樹脂組成物。
  4. 請求項3記載の硬化性樹脂組成物を硬化反応させてなることを特徴とする硬化物。
  5. 請求項3記載の硬化性樹脂組成物に、更に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板。
PCT/JP2012/056409 2011-03-15 2012-03-13 リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板 WO2012124689A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127033194A KR101895780B1 (ko) 2011-03-15 2012-03-13 인 원자 함유 올리고머 조성물, 경화성 수지 조성물, 그 경화물, 및 프린트 배선 기판
CN201280004030.9A CN103249740B (zh) 2011-03-15 2012-03-13 含磷原子低聚物组合物、固化性树脂组合物、其固化物及印刷电路基板
US13/821,449 US9056990B2 (en) 2011-03-15 2012-03-13 Phosphorus-atom-containing oligomer composition, curable resin composition, cured product thereof, and printed circuit board
JP2012538008A JP5146793B2 (ja) 2011-03-15 2012-03-13 リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
EP12757967.0A EP2682398B1 (en) 2011-03-15 2012-03-13 Phosphorus-atom-containing oligomer composition, curable resin composition, substance resulting from curing same, and printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011056205 2011-03-15
JP2011-056205 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124689A1 true WO2012124689A1 (ja) 2012-09-20

Family

ID=46830756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056409 WO2012124689A1 (ja) 2011-03-15 2012-03-13 リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板

Country Status (7)

Country Link
US (1) US9056990B2 (ja)
EP (1) EP2682398B1 (ja)
JP (1) JP5146793B2 (ja)
KR (1) KR101895780B1 (ja)
CN (1) CN103249740B (ja)
TW (1) TWI411629B (ja)
WO (1) WO2012124689A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023560A (ja) * 2011-07-20 2013-02-04 Dic Corp エポキシ樹脂組成物、その硬化物、及びプリント配線基板
JP2014181280A (ja) * 2013-03-19 2014-09-29 Dic Corp ポリウレタン樹脂用組成物及びこれを用いたポリウレタン樹脂発泡体
JP2015134878A (ja) * 2014-01-17 2015-07-27 Dic株式会社 難燃性樹脂組成物、難燃性マスターバッチ、成形体およびそれらの製造方法
JP2016020445A (ja) * 2014-07-15 2016-02-04 Dic株式会社 エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、及びビルドアップ基板
JP2016020444A (ja) * 2014-07-15 2016-02-04 Dic株式会社 エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、及びビルドアップ基板
JP2016094506A (ja) * 2014-11-12 2016-05-26 Dic株式会社 難燃性樹脂組成物、成形体およびそれらの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3819319A1 (en) 2019-11-06 2021-05-12 Metadynea Austria GmbH A polymeric compound comprising dopo

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354685A (ja) 2000-06-16 2001-12-25 Dainippon Ink & Chem Inc 燐原子含有フェノール化合物とその製造方法
JP2004143166A (ja) 2002-10-22 2004-05-20 Choshun Jinzo Jushisho Kofun Yugenkoshi 含リン化合物及びその製造方法
CN101717481A (zh) * 2009-10-30 2010-06-02 镇江市电子化工材料工程技术研究中心 含磷酚醛及其制备方法
WO2011102211A1 (ja) * 2010-02-18 2011-08-25 Dic株式会社 リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354685A (ja) 2000-06-16 2001-12-25 Dainippon Ink & Chem Inc 燐原子含有フェノール化合物とその製造方法
JP2004143166A (ja) 2002-10-22 2004-05-20 Choshun Jinzo Jushisho Kofun Yugenkoshi 含リン化合物及びその製造方法
CN101717481A (zh) * 2009-10-30 2010-06-02 镇江市电子化工材料工程技术研究中心 含磷酚醛及其制备方法
WO2011102211A1 (ja) * 2010-02-18 2011-08-25 Dic株式会社 リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, Y. L.: "Flame-retardant epoxy resins from novel phosphorus-containing novolac", POLYMER, vol. 42, no. 8, 2001, pages 3445 - 3454, XP004313886 *
See also references of EP2682398A4
YING LING LIU: "Flame-retardant epoxy resins from novel phosphorus-containing novolac", POLYMER, vol. 42, 2001, pages 3445 - 3454

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023560A (ja) * 2011-07-20 2013-02-04 Dic Corp エポキシ樹脂組成物、その硬化物、及びプリント配線基板
JP2014181280A (ja) * 2013-03-19 2014-09-29 Dic Corp ポリウレタン樹脂用組成物及びこれを用いたポリウレタン樹脂発泡体
JP2015134878A (ja) * 2014-01-17 2015-07-27 Dic株式会社 難燃性樹脂組成物、難燃性マスターバッチ、成形体およびそれらの製造方法
JP2016020445A (ja) * 2014-07-15 2016-02-04 Dic株式会社 エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、及びビルドアップ基板
JP2016020444A (ja) * 2014-07-15 2016-02-04 Dic株式会社 エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、及びビルドアップ基板
JP2016094506A (ja) * 2014-11-12 2016-05-26 Dic株式会社 難燃性樹脂組成物、成形体およびそれらの製造方法

Also Published As

Publication number Publication date
TWI411629B (zh) 2013-10-11
EP2682398B1 (en) 2016-05-11
JPWO2012124689A1 (ja) 2014-07-24
US20140008108A1 (en) 2014-01-09
TW201302867A (zh) 2013-01-16
CN103249740A (zh) 2013-08-14
CN103249740B (zh) 2014-10-29
KR101895780B1 (ko) 2018-09-07
KR20130139751A (ko) 2013-12-23
JP5146793B2 (ja) 2013-02-20
EP2682398A1 (en) 2014-01-08
EP2682398A4 (en) 2014-12-17
US9056990B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP4953039B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP4930656B2 (ja) フェノール樹脂組成物、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5557033B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5458916B2 (ja) リン原子含有フェノール類の製造方法、リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5146793B2 (ja) リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5747725B2 (ja) 新規リン原子含有エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、及び半導体封止材料用樹脂組成物
JP5776465B2 (ja) ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5402091B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法
WO2012017816A1 (ja) 新規フェノール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2012201798A (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、及びナフトール樹脂
JP5402761B2 (ja) 硬化性樹脂組成物、その硬化物、リン原子含有フェノール類の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5532307B2 (ja) リン原子含有多官能フェノールの製造方法、リン原子含有多官能フェノール、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物。
JP5590405B2 (ja) 新規リン原子含有エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP6257020B2 (ja) フェニルフェノール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5637367B2 (ja) 硬化性樹脂組成物、その硬化物、リン原子含有フェノール樹脂の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5713045B2 (ja) エポキシ樹脂組成物、その硬化物、及びプリント配線基板
JP6032476B2 (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2013023560A (ja) エポキシ樹脂組成物、その硬化物、及びプリント配線基板
JP6094091B2 (ja) 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP2011105910A (ja) エポキシ樹脂組成物、その硬化物、及びプリント配線基板
JP5598373B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2012167167A (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012538008

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127033194

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13821449

Country of ref document: US

Ref document number: 2012757967

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE