WO2012124388A1 - 遠心圧縮機のスクロール構造 - Google Patents

遠心圧縮機のスクロール構造 Download PDF

Info

Publication number
WO2012124388A1
WO2012124388A1 PCT/JP2012/051891 JP2012051891W WO2012124388A1 WO 2012124388 A1 WO2012124388 A1 WO 2012124388A1 JP 2012051891 W JP2012051891 W JP 2012051891W WO 2012124388 A1 WO2012124388 A1 WO 2012124388A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
flow
chamber
shape
diffuser
Prior art date
Application number
PCT/JP2012/051891
Other languages
English (en)
French (fr)
Inventor
健一郎 岩切
勲 冨田
白石 隆
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/981,042 priority Critical patent/US9562541B2/en
Priority to CN201280012280.7A priority patent/CN103415707B/zh
Priority to EP12757491.1A priority patent/EP2687730B1/en
Publication of WO2012124388A1 publication Critical patent/WO2012124388A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a scroll structure (swirl chamber structure) of a centrifugal compressor used for vehicles, marine turbochargers and the like.
  • Centrifugal compressors used in compressors for vehicular and marine turbochargers give kinetic energy to the fluid through rotation of the impeller and discharge the fluid radially outward to obtain a pressure increase due to centrifugal force Is.
  • This centrifugal compressor is required to have a high pressure ratio and high efficiency in a wide operating range, and various devices have been devised for the scroll structure.
  • Patent Document 1 Japanese Patent No. 4492045 discloses a centrifugal compressor including a casing provided with a scroll channel formed in a spiral shape, and the axial direction of the scroll channel is A technique is shown in which the channel width gradually increases from the radially inner side to the outer side and is maximized radially outside the midpoint of the radial channel width. Yes.
  • Patent Document 2 Japanese Patent Publication No. 2010-529358 relates to a centrifugal compressor for a turbocharger, which includes a spiral housing and a diffuser, and the diffuser has a transition region or a position of a tongue portion of the spiral housing. It is shown that the diameter is expanded so that the negative pressure region in the region to be reduced is reduced.
  • FIGS. 12 and 13 Improvements in the cross-sectional shape of the scroll channel as shown in Patent Document 1 and improvements in the diffuser part as shown in Patent Document 2 have been made, but further improvements are necessary to improve the efficiency of the compressor. is there.
  • a diffuser 02 is formed on the outer peripheral side of the compressor impeller 01, and a scroll channel 03 is provided on the outer peripheral side.
  • the cross-sectional shape of the scroll channel 03 is generally The flow path connecting portion 04 at the beginning and end of winding of the scroll flow path 03 is connected at the tongue portion 05 portion. Further, after the end of winding, the liquid is discharged through the outlet channel 06.
  • FIG. 13 shows the scroll cross-sectional shapes at ⁇ 1, ⁇ 2,... Superimposed at predetermined angles ⁇ from the tongue portion 05 in the clockwise direction.
  • the tongue portion 05 has a shape in which the flow path connection portion 04 is connected to the circular portion 09 and the outlet portion 011 of the diffuser 02 so as to contact the circular portion 09 as indicated by the oblique lines in FIG.
  • FIG. 9B is a cross-sectional view taken along the line CC of FIG. 12, and the exit channel 06 having a circular cross section and the scroll channel 03 having a circular cross section intersect each other at the intersection near the tongue 05.
  • a ridge line P is generated.
  • the diffuser outlet flow A has an upward velocity component in the vicinity of the tongue portion 05 and interferes with the swirl flow B in the scroll flow path.
  • the interference causes a flow separation in the vicinity of the tongue portion 05, which causes a flow loss.
  • An object of the present invention is to provide a scroll structure for a centrifugal compressor that improves the loss reduction effect in a wide range of operation during operation.
  • the present invention provides a centrifugal compressor including a diffuser provided on the outer peripheral side of an impeller and a scroll passage formed in a spiral shape connected to the outer periphery of the diffuser.
  • the axial cross-sectional shape of the scroll flow path is a substantially circular shape, and a position where the diffuser outlet connected to the substantially circular shape is closer to the circular center than the tangential position to the circular shape and does not reach the circular center
  • the substantially circular shape is constituted by a scroll chamber that protrudes greatly in the axial direction with respect to the diffuser outlet position, and a shift chamber in which the remaining portion of the substantially circular shape is formed in the opposite direction to the scroll chamber.
  • the shift chamber is formed at least in the scroll flow path at the end of winding in the circumferential direction of the spiral.
  • the axial cross-sectional shape of the scroll channel is substantially circular, and the diffuser outlet connected to the substantially circular shape is circular.
  • the scroll chamber is formed at a position shifted from the tangential position to the center side of the circle, and the substantially circular shape largely protrudes in the axial direction with respect to the diffuser outlet position, and the remaining of the substantially circular shape is opposite to the scroll chamber.
  • the diffuser outlet flow A is directed downward in the compressor rotation axis direction along the scroll channel wall surface (downward in FIG. 9 (a)). With a velocity component of For this reason, as shown in FIG.
  • the direction of the diffuser outlet flow A can be adapted to the flow of the swirl flow B in the scroll flow path, and interference between the diffuser outlet flow A and the swirl flow B in the scroll flow path is prevented.
  • the occurrence of peeling near the tongue caused by the interference is suppressed.
  • the circular cross-sectional shape and the circular cross-sectional shape are shifted to intersect with each other, so that the intersecting portion is raised in a mountain shape and a portion of the ridge line P is generated.
  • the circular shape and the circular shape intersect with each other by shifting the connecting position of the diffuser outlet from the tangential position to the circular shape to the circular center side.
  • it becomes difficult to generate a ridge line at the intersection and the generation of the ridge line P in the vicinity of the tongue can be suppressed, and the distance between the ridge lines can be shortened.
  • interference between the diffuser outlet flow A generated in the ridge line portion and the swirl flow B in the scroll flow path is suppressed, occurrence of separation caused by the interference is suppressed, and flow loss can be reduced.
  • the direction of the diffuser outlet flow A is adapted to the flow of the swirl flow B in the scroll flow path, and the generation of ridge lines in the vicinity of the tongue is suppressed, thereby shortening the ridge line distance.
  • the interference between the diffuser outlet flow A and the in-scroll swirl flow B is prevented, the occurrence of separation near the tongue caused by the interference is suppressed, and the flow loss is suppressed.
  • the shift chamber starts shifting from a position approximately 180 degrees in the circumferential direction from the end portion of winding and increases so as to become a maximum at a position of approximately 360 degrees. It is preferable to increase the shift amount linearly or parabolically with increasing.
  • the shift amount is gradually increased over a range of about 180 degrees in the circumferential direction, thereby smoothly changing the circumferential shape of the shift chamber and suppressing the loss of the scroll flow path with respect to the circumferential flow.
  • the shift chamber is also formed in a scroll flow path at a winding start portion.
  • the interference between the scroll flow swirl flow B flowing in the arrow Y direction (FIG. 11B) with the scroll flow swirl flow B and the diffuser outlet flow A is As described above, the direction of the diffuser outlet flow A is prevented from being adapted to the flow of the swirl flow B in the scroll flow path, and by reducing the ridge line distance by suppressing the generation of ridge lines in the vicinity of the tongue, Occurrence of separation near the tongue caused by interference is suppressed, and flow loss is suppressed.
  • the shape of the connection opening to the winding end portion of the scroll flow path at the winding start portion is formed in a flat shape having the same height as the width of the diffuser outlet, and one of the flat shapes is formed.
  • the shift chamber may be provided in the direction, and the height of the shift chamber may vary along the circumferential direction.
  • forming the shift chamber at the winding start portion is effective in reducing the flow loss that occurs in the flow from the vicinity of the tongue portion toward the outlet flow channel at the time of high flow operation, in addition to this effect,
  • the shape of the connection opening to the winding end portion of the scroll flow path at the winding start portion is formed in a flat shape having the same height as the width of the diffuser outlet, thereby allowing circulation compared to the connecting portion having a circular cross section.
  • the area can be reduced, and the inflow of the recirculation flow (arrow Z in FIG. 11A) from the outlet channel (the end of the scroll channel) to the vicinity of the tongue can be suppressed.
  • the opening of the winding start part is formed in a flat shape having the same height as the width of the diffuser outlet, the outlet channel (the end of winding of the scroll channel) Of the scroll flow in the scroll flow path B is prevented from flowing in as the scroll flow inflow E in the scroll flow path, so that, as shown in FIG. This can reduce the flow loss due to peeling.
  • the shift chamber is formed in the scroll channel over the entire circumferential direction. Since the shift chamber is formed over the entire circumference in this way, the shift chamber is made part of the circumferential direction while obtaining the effects obtained by forming the shift chamber at the winding start portion and the winding end portion. Manufacturing is facilitated rather than forming, and moreover, loss of the scroll flow path in the circumferential direction can be suppressed as compared to forming the shift chamber in a part in the circumferential direction.
  • the axial cross-sectional shape of the scroll flow path is formed in a substantially circular shape, and the diffuser outlet connected to the substantially circular shape is formed at a position shifted from the tangential position to the circular shape toward the circular center side,
  • the substantially circular shape is constituted by a scroll chamber that protrudes greatly in the axial direction with respect to the diffuser outlet position, and a shift chamber in which the remaining portion of the substantially circular shape is formed in a direction opposite to the scroll chamber.
  • the outlet flow A has an axially downward velocity component along the scroll channel wall surface. For this reason, as shown in FIG.
  • the direction of the diffuser outlet flow A can be adapted to the flow of the swirl flow B in the scroll flow path, and interference between the diffuser outlet flow A and the swirl flow B in the scroll flow path is prevented. Further, the occurrence of separation near the tongue caused by the interference is suppressed, and the loss reduction effect can be improved.
  • the circular cross-sectional shape and the circular cross-sectional shape are shifted to intersect with each other, so that the intersecting portion is raised in a mountain shape and a portion of the ridge line P is generated.
  • the circular shape and the circular shape intersect with each other by shifting the connecting position of the diffuser outlet from the tangential position to the circular shape to the circular center side.
  • it becomes difficult to generate a ridge line at the intersection and the generation of the ridge line P in the vicinity of the tongue can be suppressed, and the distance between the ridge lines can be shortened.
  • interference between the diffuser outlet flow A generated in the ridge line portion and the swirl flow B in the scroll flow path is suppressed, occurrence of separation caused by the interference is suppressed, and flow loss can be reduced.
  • FIG. 1 is explanatory drawing which shows 1st Embodiment of scroll cross-sectional shape.
  • B is the example which provided the inclination-angle (alpha) in the compressor housing.
  • C is an example in which an inclination angle ⁇ is provided on the bearing housing side. It is explanatory drawing which shows 2nd Embodiment of scroll cross-sectional shape. It is explanatory drawing which shows 3rd Embodiment of scroll cross-sectional shape. It is explanatory drawing which shows 4th Embodiment of scroll cross-sectional shape.
  • FIG. 2B shows the prior art and shows a sectional view taken along the line CC of FIG.
  • FIG. 3 is a cross-sectional view taken along the line DD of FIG. 2, in which (a) shows the first to third embodiments, and (b) shows the fourth embodiment.
  • It is explanatory drawing of the flow field in the vicinity of a tongue part (a) shows the flow near the tongue part at the time of a low flow rate, (b) shows the flow at the time of a high flow rate. It is explanatory drawing of a prior art. It is explanatory drawing of a prior art.
  • FIG. 1 shows a schematic diagram of an axial cross section of a centrifugal compressor 1 of the present invention.
  • the present embodiment shows a centrifugal compressor 1 applied to a turbocharger, and a plurality of compressor blades 7 are erected on the surface of a hub 5 fixed to a rotary shaft 3 driven by a turbine (not shown).
  • a compressor housing 9 covers the outside of the compressor blade 7.
  • a diffuser 11 is formed on the outer peripheral side of the compressor blade 7, and a scroll flow path 13 is formed and connected around the diffuser 11.
  • the compressor housing 9 includes a scroll flow path 13 and a linear outlet flow path 15 communicating with the scroll flow path 13, and the scroll flow path 13 is clockwise from the winding start portion 17 as shown in FIG.
  • the cross-sectional shape of the scroll channel 13 will be described.
  • the cross-sectional shape of the flow path connecting portion 23 where the winding start portion 17 and the winding end portion 19 intersect in the scroll flow path 13 is connected to a substantially circular shape at the winding start portion 17.
  • the cross-sectional shape of the scroll flow path 13 is the same as the outlet portion 11a of the diffuser 11.
  • the tangential position of the circular shape shifts to a position that is on the circular center side and does not reach the circular center, and the substantially circular shape is in the axial direction (upward in FIG. 3) with respect to the position of the outlet portion 11a of the diffuser 11.
  • the scroll chamber 30 is formed so as to extend greatly, and the shift chamber 32 is formed with a remaining portion having a substantially circular shape in a direction opposite to the scroll chamber 30 (downward in FIG. 3).
  • the scroll channel cross-sectional shape of the scroll chamber 30 and the shift chamber 32 is a substantially circular shape as a whole, but also includes an oval shape or an elliptical shape that is close to a circle.
  • the cross-sectional shape of the scroll flow path 13 at the winding end portion 19 is the shift amount ⁇ from the bottom surface 11b of the outlet portion 11a of the diffuser 11, as illustrated by the shape at the positions of ⁇ n and ⁇ n ⁇ 1 in FIG. It is shifted downward.
  • the lower surface of the shift chamber 32 may be formed with an inclined surface with an inclination angle ⁇ from the end of the bottom surface 11 b of the diffuser 11 instead of the arc surface.
  • the arc surface or the inclined surface provided on the lower surface of the shift chamber 32 may be provided on the bearing housing 50 as shown in FIG. 3C instead of being provided on the compressor housing 9 as shown in FIG. .
  • the diffuser outlet flow does not flow along the inclined surface and may cause separation.
  • the preferable range of the inclination angle ⁇ is about 3 to 25 degrees.
  • a more preferable range is 3 to 15 degrees, and an optimal range is 3 to 8 degrees.
  • the optimum range of the shift amount ⁇ is also the case where the inclination angle ⁇ is included in the above range.
  • the inclined surface does not need to be a straight line, and in this case, the angle formed by connecting the lower surface of the diffuser outlet to the lower surface of the shift chamber may be considered as the inclined angle ⁇ .
  • the diffuser outlet flow is diverted along the wall surface into the axially downward velocity component as shown in FIG. 10 (a). .
  • the directions of the diffuser outlet flow A and the swirl flow B in the scroll flow path coincide with each other, the collision between the swirl flow B in the scroll flow path and the diffuser outlet flow A is avoided, and loss occurs.
  • the occurrence of peeling near the tongue is suppressed.
  • the diffuser outlet is brought to the circular center position.
  • the diffuser outlet flow A is in a state of being divided equally in the vertical direction in the scroll flow path 13, so that the swirl direction of the swirl flow B in the scroll flow path is not fixed, and these flows The flow loss is caused by the interference.
  • the exit part 11a of the diffuser 11 is shifted to the position which does not reach this circular center side from the tangent position to circular shape on the circular center side.
  • the shift chamber 32 is formed in the scroll flow path 13 of the winding end portion 19 in the circumferential direction of the spiral, the tongue that is a connection portion between the winding end portion 19 and the winding start portion 17 is used.
  • the portion 25 In the vicinity of the portion 25, interference between the diffuser outlet flow A and the swirl flow B in the scroll flow path is prevented, and the occurrence of separation in the vicinity of the tongue caused by the interference is suppressed, thereby suppressing the generation of flow loss. it can.
  • the axial cross-sectional shape of the scroll passage 13 is substantially circular, and the outlet portion 11a of the diffuser 11 connected to the substantially circular shape is provided.
  • the scroll chamber 30 is formed at a position shifted from the tangential position to the circular shape toward the center of the circle, and the substantially circular shape protrudes greatly in the axial direction with respect to the position of the outlet portion 11a of the diffuser 11, and the scroll chamber 30 Is formed by the shift chamber 32 in which the remaining part of the substantially circular shape is formed in the opposite direction, so that the diffuser outlet flow A is directed downward in the axial direction along the scroll channel wall surface as shown in FIG.
  • the direction of the diffuser outlet flow A can be adapted to the flow of the swirl flow B in the scroll flow path, and interference between the diffuser outlet flow A and the swirl flow B in the scroll flow path is prevented.
  • the occurrence of peeling near the tongue caused by the interference is suppressed.
  • the circular cross-sectional shape and the circular cross-sectional shape are shifted to intersect with each other so that the intersecting portion is raised in a mountain shape, and a portion of the ridge line P is generated.
  • FIG. 9 (a) by shifting the connection position of the outlet portion 11a of the diffuser to a position that is closer to the circular center side than the tangential position to the circular shape and does not reach the circular center, the circular shape and the circular shape are changed. Even if the shape deviates and intersects, a ridge line is hardly generated at the intersection, and the generation of the ridge line P in the vicinity of the tongue can be suppressed, and the distance between the ridge lines can be shortened. As a result, interference between the diffuser outlet flow A generated in the ridge line portion and the swirl flow B in the scroll flow path is suppressed, occurrence of separation caused by the interference is suppressed, and flow loss can be reduced.
  • the direction of the diffuser outlet flow A is adapted to the flow of the swirl flow B in the scroll flow path, and the generation of the ridge line P in the vicinity of the tongue portion 25 is suppressed, and the ridge line distance is reduced.
  • interference between the diffuser outlet flow A and the scroll flow B swirl flow B is prevented, and the occurrence of separation in the vicinity of the tongue caused by the interference is suppressed. Loss is suppressed.
  • the shift chamber 32 starts shifting from a position approximately 180 degrees in the circumferential direction from the winding end portion 19 and increases so as to become a maximum at a position of approximately 360 degrees.
  • the shift amount ⁇ is gradually increased over a range of 180 degrees substantially in the circumferential direction, so that the circumferential shape of the shift chamber 32 is changed smoothly and the loss of the scroll flow passage 13 with respect to the circumferential flow is reduced. Can be suppressed.
  • a shift chamber 34 is further formed in the scroll flow path 13 of the winding start portion 17.
  • a shift chamber 34 similar to the shift chamber 32 described in the first embodiment is formed in the winding start portion 17 where the winding angle ⁇ is in the range of ⁇ 1 , ⁇ 2 , and ⁇ 3 .
  • the lower surface of the shift chamber 34 may be formed with an inclined surface with an inclination angle ⁇ from the end of the bottom surface 11 b of the diffuser 11 instead of the arc surface.
  • the pressure increases from the vicinity of the tongue portion 25 of the scroll flow path 13 toward the outlet flow path 15, so that the outlet flow path 15 (the winding end portion 19) is near the tongue portion 25.
  • From the high pressure side toward the low pressure side (winding start portion 17) (arrow Z in FIG. 11A) is generated. It flows in the direction of arrow Z while swirling with the swirl flow B in the scroll channel.
  • the pressure decreases from the vicinity of the tongue portion 25 of the scroll flow path 13 toward the outlet flow path 15.
  • a flow toward the direction (arrow Z in FIG. 11A) is generated. It flows in the arrow Y direction while swirling with the swirl flow B in the scroll flow path.
  • the scroll flowing in the arrow Y direction (FIG. 11 (b)) with the swirl flow B in the scroll flow path during high flow rate operation.
  • the interference between the swirl flow B in the flow path and the diffuser outlet flow A is adapted to adapt the direction of the diffuser outlet flow A to the flow of the swirl flow B in the scroll flow path, and the vicinity of the tongue, as in the first embodiment. Is prevented by shortening the ridge line distance by suppressing the generation of the ridge line, and the occurrence of separation in the vicinity of the tongue caused by the interference is suppressed, so that the flow loss can be reduced.
  • the shift chamber 32 is formed at the winding end portion 19, but in the configuration in which the shift chamber 32 is provided only at the winding end portion 19, at the time of high flow rate operation. Interference between the swirl flow B in the scroll passage and the diffuser outlet flow A in the scroll passage 13 (winding end portion 19) from the winding start portion 17 toward the outlet passage 15 (winding end portion 19) (in the arrow Y direction). It was difficult to prevent.
  • the shift chamber 34 is formed in the scroll passage 13 of the winding start portion 17 to reduce the loss in the scroll passage 13 caused by the flow from the vicinity of the tongue portion 25 toward the outlet passage 15. In addition, it is possible to reduce the flow loss caused by the flow from the vicinity of the tongue portion 25 toward the outlet channel 15 during the high flow rate operation.
  • the third embodiment is characterized in that, in addition to the first and second embodiments, the shift chamber 36 is formed in the scroll channel 13 over the entire circumferential direction.
  • the shift chamber 36 is formed in the entire circumferential range where the winding angle ⁇ is ⁇ 1 to ⁇ n .
  • the shift amount ⁇ of the shift chamber 36 is kept constant as indicated by the one-dot chain line L3 in FIG. 8, but the shift amount ⁇ of the shift chamber 36 does not necessarily have to be constant over the entire circumference in the circumferential direction.
  • the shift end ⁇ may be set differently at the winding end portion 19, the winding start portion 17, and other portions, and may be set optimally.
  • the lower surface of the shift chamber 36 may be formed with an inclined surface having an inclination angle ⁇ from the end of the bottom surface of the diffuser 11 at the outlet of the diffuser 11 instead of the arc surface. This is the same as in the first and second embodiments.
  • the shift chamber 36 is formed over the entire circumference, the shift chamber is further obtained while obtaining the effect of the shift chamber in the winding start portion 17 and the winding end portion 19 according to the first embodiment and the second embodiment. Manufacturing is facilitated compared to the case where the shift chamber is formed in a part in the circumferential direction, and the loss of the scroll passage 13 with respect to the flow in the circumferential direction can be suppressed as compared with the case where the shift chamber is formed in a part in the circumferential direction. Further, as shown in FIG. 3C, when the inclined surface is formed by the bearing housing 50, the bearing housing 50 can be uniformly cut in the circumferential direction, and there is an advantage that the manufacturing becomes particularly easy.
  • the core installation error at the time of casting manufacture can be absorbed. That is, when the scroll is manufactured by casting, the core is installed in the portion corresponding to the scroll flow path. However, since the core is only placed in the mold, its posture is very unstable. For this reason, in the casting scroll, a sudden expansion of the flow path or a step may occur due to a mismatch with the lower surface of the diffuser.
  • the scroll lower surface is positioned below the lower surface of the diffuser by a shift amount ⁇ over the entire scroll cross section, so even if the core shifts during casting, As long as the shift amount is equal to or less than the shift amount ⁇ of the scroll cross section, stable production can be achieved against the shift of the core during casting without causing any inconvenience.
  • the opening 39 where the winding start portion 17 is connected to the winding end portion 19 of the scroll flow path 13 is formed in a flat shape having the same height as the width of the outlet portion 11a of the diffuser 11.
  • a shift chamber is provided on one surface of the flat shape, and the height of the shift chamber changes along the circumferential direction.
  • the opening 39 is formed in a flat shape in which the cross-sectional shape of the scroll flow path 13 is the same height as the width W of the outlet portion 11 a of the diffuser 11.
  • a shift chamber 38a is provided on the bottom surface 11b). This shift chamber 38a is provided in the scroll flow path 13 at the winding end portion 19 as in the first embodiment.
  • the cross-sectional shape is shifted downward by a shift amount ⁇ from the bottom surface 11b of the outlet portion 11a of the diffuser 11, as illustrated by the shape at the positions of ⁇ n and ⁇ n ⁇ 1 in FIG.
  • the lower surface of the shift chamber 38a may be formed with an inclined surface with an inclination angle ⁇ from the end of the bottom surface 11b of the diffuser 11 instead of an arc surface.
  • the shift amount ⁇ and the shift position are the same as those described in the first embodiment.
  • the effect of providing the shift chamber 38a in the scroll flow path 13 at the winding end portion 19 is the same as in the first embodiment, and the direction of the diffuser outlet flow A can be adapted to the flow of the swirl flow B in the scroll flow path.
  • the interference between the diffuser outlet flow A and the scroll flow swirl flow B is prevented, and the occurrence of separation in the vicinity of the tongue 25 caused by the interference is suppressed.
  • the shape of the opening 39 is formed in a flat shape having the same height as the width of the outlet portion 11a of the diffuser 11, so that the connection portion having a circular cross section is formed.
  • the flow area can be reduced, and the recirculation flow (arrow Z in FIG. 11 (a)) from the outlet flow path (winding end portion 19 of the scroll flow path 13) generated in the low flow rate operation toward the vicinity of the tongue 25. ) Can be suppressed.
  • the opening 39 of the winding start portion 17 is formed in a flat shape having the same height as the width of the outlet portion 11a of the diffuser 11.
  • the swirl flow B in the scroll flow path at the winding end portion 19) of the flow path is prevented from flowing in as the inflow flow E into the scroll flow path 13 of the winding start portion 17, thereby FIG. 10 (a).
  • the opening 39 is formed in a flat shape in which the cross-sectional shape of the scroll channel 13 has the same height as the width W of the outlet portion 11a of the diffuser 11, and
  • a shift chamber 38b is also provided at the winding start portion 17.
  • the opening 39 is formed in a flat shape in which the cross-sectional shape of the scroll channel 13 has the same height as the width W of the outlet portion 11a of the diffuser 11, and A shift chamber 38c is provided over the entire direction.
  • the fifth embodiment is a modification of the fourth embodiment, and the shape of the opening 39 where the winding start portion 17 is connected to the winding end portion 19 of the scroll flow path 13 is different from the width of the outlet portion 11a of the diffuser 11.
  • the fourth embodiment is the same as the fourth embodiment in that it is formed in a flat shape having the same height, the shift chamber 40 is provided on one surface of the flat shape, and the height of the shift chamber 40 changes along the circumferential direction. It is the same.
  • one flat surface of the opening 39 having the same height as the height of the diffuser 11 is defined as one surface in the height direction of the diffuser 11. While matching, the surface of the diffuser 11 facing the outlet portion 11a is formed in an arc shape, and the arc-shaped surface gradually changes so as to return to a circular shape.
  • the shift chamber 40 is formed on one surface of the opening 39, and the arc center of the arc shape is located at the end T of the outlet portion 11a of the height surface of the diffuser 11, and the arc shape of the radius R1 Further, when ⁇ 2 changes by a constant angle ⁇ , the arc shape has a radius R2, and when ⁇ 3 changes by a certain angle ⁇ , the arc shape changes by a radius R3.
  • the flow discharged from the diffuser 11 is swirling while the deviation toward the scroll outer periphery proceeds, so that the arc shape is sequentially enlarged to a circular shape so as to match the flow.
  • the flow in the scroll channel 13 can be smoothed by an efficient cross-sectional shape, and the cross-sectional shape is made compact and compact because there is no extra shape for the swirling flow. This contributes to reducing the overall size and weight of the compressor.
  • the combination of the flat opening 39 and the shift chambers 38 and 40 makes it possible to reduce flow loss in a wide operation region from low flow to high flow, and centrifugal compression.
  • the machine performance can be expected to improve.
  • the cross-sectional shape of the scroll including the connecting portion with the diffuser outlet is reviewed, and a wide range of operations during high flow operation and low flow operation are performed. Therefore, it is suitable for use in scrolling of a centrifugal compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

スクロール流路13の軸方向断面形状は略円形形状からなり、該略円形形状へ接続するディフューザ出口を円形形状への接線位置より円形中心側であって該円形中心に達しない位置にシフトし、円形形状はディフューザ出口11a位置に対して軸方向に大きく張り出したスクロール室30と、該スクロール室30とは反対方向に略円形形状の残りの部分を形成したシフト室32とによって構成され、シフト室32は少なくとも渦巻きの周方向における巻き終わり部19のスクロール流路13に形成されることを特徴とする。

Description

遠心圧縮機のスクロール構造
 本発明は、車両用、舶用ターボチャージャ等に用いられる遠心圧縮機のスクロール構造(渦巻室構造)に関するものである。
 車両用、舶用ターボチャージャのコンプレッサ部等に用いられる遠心圧縮機は、羽根車の回転を介して流体に運動エネルギーを与えるとともに、径方向外側に流体を吐出することで遠心力による圧力上昇を得るものである。
 この遠心圧縮機は広い運転範囲において高圧力比と高効率化が要求され、スクロール構造について種々の工夫がされている。
 従来技術として、例えば、特許文献1(特許4492045号公報)には、渦巻状に形成されたスクロール流路が設けられたケーシングを備えた遠心圧縮機であって、そのスクロール流路の軸方向の流路幅が、径方向内方から外方へかけて徐々に拡大していき、径方向の流路幅の中間点よりも径方向外側で最大となるように形成される技術が示されている。
 また、特許文献2(特公表2010-529358号公報)には、ターボチャージャ用の遠心圧縮機に関して、螺旋型のハウジングとディフューザとを備え、ディフューザが、螺旋形ハウジングの移行領域若しくは舌部の位置する領域における負圧域が低減されるように、その径を拡張されて形成されることが示されている。
特許4492045号公報 特表2010-529358号公報
 前記特許文献1に示されるようなスクロール流路の断面形状の改良や、特許文献2に示されるようなディフューザ部分の改良が行われているが、コンプレッサの効率向上のためにさらなる改良が必要である。
 図12、13に示すようにコンプレッサの羽根車01の外周側にディフューザ02が形成され、その外周側にスクロール流路03が設けられており、そのスクロール流路03の断面形状は一般的には、円形形状に形成され、スクロール流路03の巻き始めと巻き終わりの流路接続部04は、舌部05の部分で接続される。また巻き終わり以降は出口流路06を通って吐出されるようになっている。
 舌部05から時計方向に所定角度Δθ毎にθ1、θ2、…におけるスクロール断面形状を重ねて表したものを図13に示す。
 舌部05においては、流路接続部04が図13の斜線で示すように円形部09と該円形部09に接するようにディフューザ02の出口部011が接続した形状となっている。
そして、舌部05の近傍においては、ディフューザ出口流れAとスクロール流路内旋回流れBとが干渉し、該干渉に起因してはく離流が発生し、流れ損失を発生する問題が生じる。図9(b)を参照して、このディフューザ出口流れAとスクロール流路内旋回流れBとの干渉について説明する。図9(b)は、図12のC-C線断面図を示し、円形断面形状の出口流路06と円形断面形状のスクロール流路03とが交差することで舌部05近傍の交差部に稜線Pが生じる。このため、ディフューザ出口流れAは舌部05近傍では、上向き速度成分を持ち、スクロール流路内旋回流れBと干渉する。その干渉によって舌部05近傍に流れのはく離が生じ、流れ損失の原因となっている。
 そこで、本発明は、これら知見に基づいて、スクロール流路の舌部近傍において、さらにスクロール全周において、ディフューザ出口との接続部も含めたスクロール断面形状を見直して、高流量運転時および低流量運転時の広範囲の運転における損失低減効果を向上する遠心圧縮機のスクロール構造を提供することを目的とする。
 上記の課題を解決するために、本発明は、羽根車の外周側に設けられたディフューザと、該ディフューザの外周と接続して渦巻き状に形成されたスクロール流路とを備えた遠心圧縮機のスクロール構造において、前記スクロール流路の軸方向断面形状は略円形形状からなり、該略円形形状へ接続するディフューザ出口を円形形状への接線位置より円形中心側であって該円形中心に達しない位置にシフトし、前記略円形形状はディフューザ出口位置に対して軸方向に大きく張り出したスクロール室と、該スクロール室とは反対方向に前記略円形形状の残りの部分を形成したシフト室とによって構成され、前記シフト室は少なくとも渦巻きの周方向における巻き終わり部分のスクロール流路に形成されることを特徴とする。
 かかる発明によれば、周方向の巻き終わり部分のスクロール流路の断面形状において、スクロール流路の軸方向断面形状はほぼ円形形状からなるとともに、該略円形形状へ接続するディフューザ出口を円形形状への接線位置より円形中心側にシフトした位置に形成し、前記略円形形状はディフューザ出口位置に対して軸方向に大きく張り出したスクロール室と、該スクロール室とは反対方向に前記略円形形状の残りの部分を形成したシフト室とによって構成することによって、ディフューザ出口流れAは図9(a)に示すように、スクロール流路壁面に沿ってコンプレッサ回転軸方向下向き(図9(a)における下向き)の速度成分を持つ。
 このため、図9(a)に示すようにディフューザ出口流れAの向きを、スクロール流路内旋回流れBの流れに適合でき、ディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が防止され、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制される。
 また、本発明によれば、従来技術(図9(b))においては、円形断面形状と円形断面形状とがずれて交差することで交差部が山形に隆起して稜線Pの部分が生じるが、本発明においては、図9(a)に示すように、ディフューザ出口の接続位置を円形形状への接線位置より円形中心側にシフトすることによって、円形形状と円形形状とがずれて交差してもその交差部分に稜線が生じ難くなり、舌部近傍における稜線Pの発生を抑え稜線部分の距離を短縮できる。その結果、稜線部分において生じるディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が抑制され、該干渉に起因して生じるはく離の発生が抑制され、流れ損失を低減できる。
 以上のように、本発明によれば、ディフューザ出口流れAの向きを、スクロール流路内旋回流れBの流れに適合させること、及び舌部近傍における稜線の発生を抑えて、稜線距離を短縮することが相俟って、ディフューザ出口流れAとスクロール内旋回流れBとの干渉が防止されて、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制され、流れ損失が抑えられる。
 また、本発明において好ましくは、前記シフト室は、前記巻き終わり部分から周方向に略180度前の位置からシフトを開始し、略360度位置で最大となるように増大し、周方向角度の増大に従って線形または放物線状にシフト量を増大するとよい。
 このように、シフト量を、ほぼ周方向に180度の範囲にわたって徐々に増大させることで、シフト室の周方向形状を滑らかに変化させてスクロール流路の周方向流れに対する損失を抑える。
 また、本発明において好ましくは、前記シフト室は、さらに巻き始め部分のスクロール流路にも形成されるとよい。
 低流量運転時の流れ場では、スクロール流路の舌部近傍から出口流路に向かって圧力が上昇するため、舌部近傍においては、出口流路(スクロール流路の巻き終わり部分)の高圧力側から低圧力側(スクロール流路の巻き始め部分)に向かう再循環流れが発生する(図11(a)の矢印Z、スクロール流路内旋回流れBを伴って旋回しながら矢印Z方向に流れる)。
 一方、高流量運転時の流れ場では、逆に、スクロール流路の舌部近傍から出口流路に向かって圧力が低下するため、舌部近傍においては、出口流路に向かう流れが生じる(図11(b)の矢印Y、スクロール流路内旋回流れBを伴って旋回しながら矢印Y方向に流れる)。
 従って、高流量運転時においては、スクロール流路内旋回流れBを伴って矢印Y方向(図11(b))に流れる該スクロール流路内旋回流れBと、ディフューザ出口流れAとの干渉が、前述したように、ディフューザ出口流れAの向きがスクロール流路内旋回流れBの流れに適合されること、および舌部近傍における稜線の発生を抑えて稜線距離が短縮されることによって防止され、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制され、流れ損失が抑えられる。
 また、本発明において好ましくは、前記巻き始め部分のスクロール流路の巻き終わり部分への接続開口の形状が、ディフューザ出口の幅と同一高さを有した扁平形状に形成され、該扁平形状の一方面に前記シフト室が設けられ、該シフト室の高さが周方向に沿って変化するとよい。
 前記したように巻き始め部分にシフト室を形成することは、高流量運転時において舌部近傍から出口流路側に向う流れに生じる流れ損失の低減に効果を発揮するが、この効果に加えて、巻き始め部分のスクロール流路の巻き終わり部分への接続開口の形状が、ディフューザ出口の幅と同一高さを有した扁平形状に形成されることによって、断面円形形状による接続部に比べて、流通面積を小さくすることができ、低流量運転時に生じる出口流路(スクロール流路の巻き終わり部分)から舌部近傍に向かう再循環流れ(図11(a)の矢印Z)の流入を抑制できる。
 さらに、図10(b)に示すように、巻き始め部分の開口部がディフューザ出口の幅と同一高さを有した扁平形状で形成されるため、出口流路(スクロール流路の巻き終わり部分)のスクロール流路内旋回流れBが、巻き始め部分のスクロール流路内流入流れEとして流入することが防止され、それによって、図10(a)に示すような、巻き始め部分の円弧形状断面内でのはく離による流れ損失を低減できる。
 また、本発明において好ましくは、前記シフト室は、周方向全体にわたってスクロール流路に形成されるとよい。
 このようにシフト室が全周にわたって形成されるため、前記巻き始め部分や、巻き終わり部分にシフト室を形成することによって得られる作用効果を得つつ、さらに、シフト室を周方向の一部に形成するよりも、製造が容易化され、さらに、シフト室を周方向の一部に形成するよりもスクロール流路の周方向流れに対する損失を抑えることができる。
 本発明によれば、スクロール流路の軸方向断面形状はほぼ円形形状からなるとともに、該略円形形状へ接続するディフューザ出口を円形形状への接線位置より円形中心側にシフトした位置に形成し、前記略円形形状はディフューザ出口位置に対して軸方向に大きく張り出したスクロール室と、該スクロール室とは反対方向に前記略円形形状の残りの部分を形成したシフト室とによって構成することによって、ディフューザ出口流れAは図9(a)に示すように、スクロール流路壁面に沿って軸方向下向きの速度成分を持つ。
 このため、図9(a)に示すようにディフューザ出口流れAの向きを、スクロール流路内旋回流れBの流れに適合でき、ディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が防止され、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制され損失低減効果を向上できる。
 また、本発明によれば、従来技術(図9(b))においては、円形断面形状と円形断面形状とがずれて交差することで交差部が山形に隆起して稜線Pの部分が生じるが、本発明においては、図9(a)に示すように、ディフューザ出口の接続位置を円形形状への接線位置より円形中心側にシフトすることによって、円形形状と円形形状とがずれて交差してもその交差部分に稜線が生じ難くなり、舌部近傍における稜線Pの発生を抑え稜線部分の距離を短縮できる。その結果、稜線部分において生じるディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が抑制され、該干渉に起因して生じるはく離の発生が抑制され、流れ損失を低減できる。
本発明にかかる遠心圧縮機のスクロール構造を示す軸方向断面概要図である。 本発明にかかる遠心圧縮機のスクロール構造を示す全体断面図である。 (a)はスクロール断面形状の第1実施形態を示す説明図である。(b)はコンプレッサハウジングに傾斜角αを設けた例である。(c)はベアリングハウジング側に傾斜角αを設けた例である。 スクロール断面形状の第2実施形態を示す説明図である。 スクロール断面形状の第3実施形態を示す説明図である。 スクロール断面形状の第4実施形態を示す説明図である。(a)は第1実施形態に対応しシフト室が巻き終わり部に設けられ、(b)は第2実施形態に対応しシフト室が巻き終わり部と巻き始め部に設けられ、(c)は第3実施形態に対応しシフト室が周方向の全範囲に設けられる場合を示す。 スクロール断面形状の第5実施形態を示す説明図である。 シフト室のシフト量の周方向角度に対する変化を示す説明図である。 スクロール流路の、巻き始め部と巻き終わり部との交差部の断面図である。(a)は本発明を示し図2のD-D線断面図を示し、(b)は従来技術を示し図12のC-C線断面図を示す。 図2のD-D線断面図であり、(a)は第1~3実施形態を示し、(b)は第4実施形態を示す。 舌部近傍の流れ場の説明図であり、(a)は低流量時の舌部近傍の流れ、(b)は高流量時の流れを示す。 従来技術の説明図である。 従来技術の説明図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。
 但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
(第1実施形態)
 図1は本発明の遠心圧縮機1の軸方向断面の概要図を示す。本実施形態はターボチャージャに適用される遠心圧縮機1を示すものであり、図示しないタービンに駆動された回転軸3に固定されたハブ5の表面に複数のコンプレッサ翼7が立設され、そのコンプレッサ翼7の外側をコンプレッサハウジング9が覆っている。また、コンプレッサ翼7の外周側にディフューザ11が形成され、さらに、このディフューザ11の周囲にはスクロール流路13が形成されて接続されている。
 スクロール流路13の全体断面図を図2に示す。コンプレッサハウジン9は、スクロール流路13と、該スクロール流路13に連通する直線状の出口流路15とを備えており、スクロール流路13は、その巻き始め部17から図2に示す右回りに巻き角度θが大きくなるに従い、その流路断面積が増加し、巻き角度θが約360°=0°を超え、さらに進むと巻き終わり部19に達する。
 また、スクロール流路13は、スクロール流路13の回転軸3の軸方向の断面形状が略円形形状からなっている。また、本実施形態では、巻き角度θは、図2のように水平位置をθ=0°として、スクロール流路13の巻き始めと巻き終わりとが交差する流路接続部23の舌部25の位置とコンプレッサホイール8の回転軸中心Xとを結ぶ線が略θ=60°に設定されている。
 次にスクロール流路13の断面形状について説明する。
 図3(a)に示すように、スクロール流路13における巻き始め部17と巻き終わり部19とが交差する流路接続部23の断面形状は、巻き始め部17においては、略円形形状へ接続するディフューザ11の出口部11aを円形形状の接線位置に接続しており、その円形形状への接線状態による接続関係は巻き角度θが約360°=0°まで続く。
 その後、巻き角度θが約360°=0°を超えて、舌部25の略60°までの巻き終わり部19の領域においては、スクロール流路13の断面形状は、ディフューザ11の出口部11aを円形形状の接線位置により円形中心側であって該円形中心に達しない位置にシフトし、略円形形状はディフューザ11の出口部11aの位置に対して、軸方向(図3においては上方向)に大きく張り出したスクロール室30と、該スクロール室30とは反対方向(図3においては下方向)に略円形形状の残りの部分を形成したシフト室32とによって構成される。すなわち、シフト室32は円形形状の底面部分を形成している。
 なお、スクロール室30とシフト室32とを合わせたスクロール流路断面形状は全体として略円形形状であるが、円形に近い長円形状や楕円形状等も含むものである。
 この巻き終わり部19におけるスクロール流路13の断面形状は、図3のθ、θn-1の位置の形状で例示すように、ディフューザ11の出口部11aの底面11bより、シフト量δだけ下方にシフトされている。
 また、シフト室32の下面は、円弧面ではなく、ディフューザ11の底面11bの端部より傾斜角αの傾斜面で形成されていてもよい。
 なお、上記シフト室32下面に設けられる円弧面または傾斜面は、図3(b)のようにコンプレッサハウジング9に設けず、図3(c)のようにベアリングハウジング50に設けられていてもよい。
 ここで、傾斜角が特に大きい場合、ディフューザ出口流れは傾斜面に沿って流れず、はく離を生じる場合がある。これを考慮すると、傾斜角αの好ましい範囲は、3~25度程度である。より好ましい範囲として3~15度、最適な範囲としては3~8度とすると良い。シフト量δの最適な範囲もまた、傾斜角αが上記の範囲に含まれる場合である。ただし、傾斜面は直線である必要はなく、この場合ディフューザ出口下面からシフト室下面を結ぶことで形成される角度を傾斜角αと考えて良い。
 このようなシフト室32を出口部11aの底面11bより下方に形成することで、ディフューザ出口流れは図10(a)に示すように、壁面に沿って軸方向下向きの速度成分へと転向される。このため、図10(a)で示すようにディフューザ出口流れAとスクロール流路内旋回流れBの方向が一致し、スクロール流路内旋回流れBとディフューザ出口流れAとの衝突が回避され損失が抑制されるとともに、舌部近傍におけるはく離の発生が抑制される。
 なお、スクロール流路13の円形の断面形状に対してディフューザ出口を円形中心側に持ってくるには、ディフューザ出口を円形中心位置に持ってくる形状とすることも考えられるが、このような形状とした場合には、ディフューザ出口流れAは、スクロール流路13内で上下方向に均等に分かれて流れる状態となるため、スクロール流路内旋回流れBの旋回方向が一定に定まらず、これらの流れの干渉により流れ損失を生じる。
 このため、図9(a)に示すように、ディフューザ11の出口部11aを円形形状への接線位置より円形中心側であって該円形中心に達しない位置にシフトさせている。
 従って、本実施形態によれば、前記シフト室32は、渦巻きの周方向における巻き終わり部19のスクロール流路13に形成されるため、巻き終わり部19と巻き始め部17の接続部である舌部25近傍において、ディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が防止され、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制され、流れ損失の生成を抑えることができる。
 すなわち、周方向の巻き終わり部19のスクロール流路13の断面形状において、スクロール流路13の軸方向断面形状はほぼ円形形状からなるとともに、該略円形形状へ接続するディフューザ11の出口部11aを円形形状への接線位置より円形中心側にシフトした位置に形成し、前記略円形形状はディフューザ11の出口部11aの位置に対して軸方向に大きく張り出したスクロール室30と、該スクロール室30とは反対方向に前記略円形形状の残りの部分を形成したシフト室32とによって構成することによって、ディフューザ出口流れAは図9(a)に示すように、スクロール流路壁面に沿って軸方向下向きの速度成分を持つ。
 このため、図9(a)に示すようにディフューザ出口流れAの向きを、スクロール流路内旋回流れBの流れに適合でき、ディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が防止され、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制される。
 さらに、従来技術(図9(b))においては、円形断面形状と円形断面形状とがずれて交差することで交差部が山形に隆起して稜線Pの部分が生じるが、本実施形態においては、図9(a)に示すように、ディフューザの出口部11aの接続位置を円形形状への接線位置より円形中心側であって該円形中心に達しない位置にシフトすることによって、円形形状と円形形状とがずれて交差してもその交差部分に稜線が生じ難くなり、舌部近傍における稜線Pの発生を抑え稜線部分の距離を短縮できる。
 その結果、稜線部分において生じるディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が抑制され、該干渉に起因して生じるはく離の発生が抑制され、流れ損失を低減できる。
 以上のように、本実施形態によれば、ディフューザ出口流れAの向きを、スクロール流路内旋回流れBの流れに適合させること、及び舌部25近傍における稜線Pの発生を抑えて、稜線距離さを短縮することが相俟って、ディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が防止されて、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制され、流れ損失が抑えられる。
 また、前記シフト室32は、前記巻き終わり部19から周方向に略180度前の位置からシフトを開始し、略360度位置で最大となるように増大し、周方向角度の増大に従って線形または放物線状にシフト量δが増大するようになっている。
 具体的には図8のL1の点線に示すように、巻き角度θが約180°の位置からシフトを開始して、約360°=0°の位置で所定のシフト量δに達して、その後巻き終わり部19ではその所定のシフト量δが保持される。
 このように、シフト量δを、ほぼ周方向に180度の範囲にわたって徐々に増大させることで、シフト室32の周方向形状を滑らかに変化するようにしてスクロール流路13の周方向流れに対する損失を抑えることができる。
(第2実施形態)
 次に、図4を参照して、第2実施形態について説明する。
 第2実施形態は、第1実施形態のシフト室32に加えてシフト室34を、さらに巻き始め部17のスクロール流路13に形成することを特徴とする。
 図4に示すように、巻き角度θがθ、θ、θの範囲である巻き始め部17において、第1実施形態で説明したシフト室32と同様のシフト室34が形成される。またシフト室34の下面は、円弧面ではなく、ディフューザ11の底面11bの端部より傾斜角αの傾斜面で形成されもよい。
 前記シフト室32およびシフト室34のシフト量δは、図8のL2の実線で示すように、シフト室34は、巻き始めの巻き角度θ=60°(舌部25の位置)においてシフト量δであり、その後低下してθ=180°でゼロとなり、その後、シフト室32のシフト量が増大してθ=360°で所定のシフト量δとなり、巻き終わり部19でそのシフト量δが保持される。周方向角度の増大に従って線形または放物線状にシフト量δが増大または減少する。
 シフト量δは、上記記載ではθ=180°でゼロとしたが、これは、一例を示すものでθは設計条件にて変わりうるものである。
 低流量運転時の流れ場は、スクロール流路13の舌部25の近傍から出口流路15に向かって圧力が上昇するため、舌部25の近傍においては、出口流路15(巻き終わり部19)の高圧力側から低圧力側(巻き始め部17)に向かう再循環流れ(図11(a)の矢印Z)が発生する。スクロール流路内旋回流れBを伴って旋回しながら矢印Z方向に流れる。
 一方、高流量運転時の流れ場では、逆に、スクロール流路13の舌部25の近傍から出口流路15に向かって圧力が低下するため、舌部25の近傍においては、出口流路15に向かう流れ(図11(a)の矢印Z)が生じる。スクロール流路内旋回流れBを伴って旋回しながら矢印Y方向に流れる。
 従って、巻き始め部17のスクロール流路にシフト室34を形成することによって、高流量運転時において、スクロール流路内旋回流れBを伴って矢印Y方向(図11(b))に流れる該スクロール流路内旋回流れBとディフューザ出口流れAとの干渉が、前記第1実施形態と同様に、ディフューザ出口流れAの向きをスクロール流路内旋回流れBの流れに適合させること、および舌部近傍における稜線の発生を抑えて稜線距離を短縮することによって防止されて、該干渉に起因して生じる舌部近傍におけるはく離の発生が抑制され、流れ損失を低減できる。
 以上のように、前述の第1実施形態では巻き終わり部19にシフト室32を形成するものであったが、この巻き終わり部19だけにシフト室32を設けた構成では、高流量運転時における巻き始め部17から出口流路15(巻き終わり部19)に向かう(矢印Y方向)スクロール流路13(巻き終わり部19)内でのスクロール流路内旋回流れBとディフューザ出口流れAとの干渉を防止し難かった。しかし、第2実施形態では、巻き始め部17のスクロール流路13にシフト室34を形成することによって、舌部25近傍から出口流路15に向う流れによって生じるスクロール流路13内の損失を低減でき、高流量運転時においての舌部25近傍から出口流路15に向う流れによって生じる流れ損失を低減できる。
(第3実施形態)
 次に、図5を参照して、第3実施形態について説明する。
 第3実施形態は、第1および第2実施形態に加えてシフト室36を、周方向全体にわたってスクロール流路13に形成することを特徴とする。
 図5に示すように、巻き角度θがθ~θの周方向の全範囲において、シフト室36を形成する。または、シフト室36のシフト量δは、図8の一点鎖線L3で示すように一定に保持されるが、シフト室36のシフト量δは、必ずしも周方向に全周に一定ではなくてもよく、巻き終わり部19と巻き始め部17とその他の部分とにおいて、シフト量δをそれぞれ異ならせて最適に設定してもよい。
 また、シフト室36の下面は、円弧面ではなく、ディフューザ11の出口で11aの底面の端部より傾斜角αの傾斜面で形成されていてもよい。この点は第1、2実施形態と同様である。
 また、シフト室36が全周にわたって形成されるため、前記第1実施形態、第2実施形態による巻き始め部17や、巻き終わり部19にシフト室の作用効果を得つつ、さらに、シフト室を周方向の一部に形成するよりも、製造が容易化され、さらに、シフト室を周方向の一部に形成するよりもスクロール流路13の周方向流れに対する損失を抑えることができる。
 また、図3(c)の如く、ベアリングハウジング50で傾斜面を形成する場合、ベアリングハウジング50を周方向に均一に切削加工することができ、製造が特に容易となるメリットがある。
 さらに、鋳造製造時の中子設置誤差を吸収することができる。
 すなわち、スクロールを鋳造で製作する場合、スクロール流路相当部に中子が設置されるが、中子は鋳型の中に置くだけであるため、その姿勢は非常に不安定である。このため、鋳造スクロールでは、ディフューザ低面との不一致により、流路の急拡大や段差を生じることがある。
 中子はスクロール出口部でのみ支持されるため、特にスクロール出口から遠い、巻き角度θが180~270°位置断面ではこのような傾向が顕著である。しかし、本実施形態のように、スクロール断面全周にわたってシフト量δだけ、スクロール低面がディフューザの低面より下に位置されるため、仮に、鋳造時の中子のずれが生じても、そのずれ量がスクロール断面のシフト量δ以下である限り、不都合が生じることなく鋳造時の中子のずれに対して安定した製造が可能になる。
(第4実施形態)
 次に、図6を参照して、第4実施形態について説明する。
 この第4実施形態は、巻き始め部17がスクロール流路13の巻き終わり部19へ接続する開口部39の形状が、ディフューザ11の出口部11aの幅と同一高さを有した扁平形状に形成され、該扁平形状の一方面にシフト室が設けられ、該シフト室の高さが周方向に沿って変化することを特徴とする。
 そして、シフト室を、巻き終わり部に設ける場合と、巻き終わり部と巻き始め部との両方に設ける場合と、周方向全体に設ける場合の3つの例について次に説明する。なお、この3例は、それぞれ前述した第1~3実施形態に対応するものである。
 図6(a)に示す第1例は、開口部39が、スクロール流路13の断面形状はディフューザ11の出口部11aの幅Wと同一高さを有した扁平形状に形成され、一方面(底面11b)にシフト室38aが設けられる構造である。
 このシフト室38aは、第1実施形態と同様に巻き終わり部19におけるスクロール流路13に設けられている。断面形状は、図3のθ、θn-1の位置の形状で例示すように、ディフューザ11の出口部11aの底面11bより、シフト量δだけ下方にシフトされている。
 また、シフト室38aの下面は、円弧面ではなく、ディフューザ11の底面11bの端部より傾斜角αの傾斜面で形成されていてもよい。シフト量δやシフト位置については第1実施形態の説明と同様である。
 巻き終わり部19におけるスクロール流路13にシフト室38aが設けられることによる効果は、第1実施形態と同一であり、ディフューザ出口流れAの向きを、スクロール流路内旋回流れBの流れに適合でき、ディフューザ出口流れAとスクロール流路内旋回流れBとの干渉が防止され、該干渉に起因して生じる舌部25近傍におけるはく離の発生が抑制される。
 そして、このはく離発生を防止する効果に加えて、開口部39の形状が、ディフューザ11の出口部11aの幅と同一高さを有した扁平形状に形成されるので、断面円形形状による接続部に比べて、流通面積を小さくすることができ、低流量運転時に生じる出口流路(スクロール流路13の巻き終わり部19)から舌部25近傍に向かう再循環流れ(図11(a)の矢印Z)の流入を抑制できる。
 また、図10(b)に示すように、巻き始め部17の開口部39がディフューザ11の出口部11aの幅と同一高さを有した扁平形状で形成されるため、出口流路15(スクロール流路の巻き終わり部19)でのスクロール流路内旋回流れBが、巻き始め部17のスクロール流路13内への流入流れEとして流入することが防止され、それによって、図10(a)に示すような、巻き始め部分の円弧形状断面内でのはく離による流れ損失を低減できる。
 図6(b)に示す第2例は、開口部39が、スクロール流路13の断面形状はディフューザ11の出口部11aの幅Wと同一高さを有した扁平形状に形成されるとともに、巻き終わり部17に設けられたシフト室38aに加えて、巻き始め部17にもシフト室38bが設けられるものである。このように構成することで、図6(a)に示す第1例の作用効果に加えて、前述した第2実施形態と同様の作用効果を有する。
 図6(c)に示す第3例は、開口部39が、スクロール流路13の断面形状はディフューザ11の出口部11aの幅Wと同一高さを有した扁平形状に形成されるとともに、周方向全体にわたってシフト室38cが設けられるものである。このように構成することで、図6(a)に示す第1例の作用効果に加えて、前述した第3実施形態と同様の作用効果を有する。
(第5実施形態)
 次に、図7を参照して、第5実施形態について説明する。
 この第5実施形態は、第4実施形態の変形例であり、巻き始め部17がスクロール流路13の巻き終わり部19へ接続する開口部39の形状が、ディフューザ11の出口部11aの幅と同一高さを有した扁平形状に形成され、該扁平形状の一方面にシフト室40が設けられ、該シフト室40の高さが周方向に沿って変化する点については、第4実施形態と同様である。
 しかし、θ、θにおいての扁平形状から円形形状への変化において、ディフューザ11の高さと同一の高さを有した開口部39の一方の扁平面をディフューザ11の高さ方向の一方面と一致させつつ、ディフューザ11の出口部11aに対向する面を円弧形状に形成し、該円弧形状の面が徐々に広がって円形形状に戻るように変化させる点が特徴である。
 具体的には、図7のように舌部25位置の巻き角度θ=60°において扁平接続部Aの形状となっており、この角度θ0から一定角度Δθ変化したθ1においては、扁平形状の開口部39の一方面にシフト室40が形成された形状からなっており、円弧形状の円弧中心をディフューザ11の高さ面の出口部11aの端部Tに位置し、半径R1の円弧形状となっており、さらに、一定角度Δθ変化したθ2においては、半径R2の円弧形状となっていて、さらに、一定角度Δθ変化したθ3においては、半径R3の円弧形状となるように変化する。
 このように構成することによって、ディフューザ11から吐出た流れは、スクロール外周側への偏りが進みながら旋回流が進むため、その流れに合わせるようにして、円弧形状を順次拡大して円形形状とすることで、ディフューザ11から吐出た流れに沿った形状変化とすることができるので、無駄な断面変化形状とすることがなく、より円滑に効率的に円形形状に戻すことができる。
 さらに、第5実施形態においては、スクロール流路13内の流れを効率的な断面形状によって円滑にすることができ、また、旋回流に対して余分な形状がないため断面形状を小型コンパクトに形成でき、圧縮機全体の小型軽量化に寄与する。
 また、前記第4、5実施形態のように、扁平形状の開口部39とシフト室38、40との組み合わせによって、低流量から高流量の広い運転領域で流れ損失を低減できるようになり遠心圧縮機の性能向上が期待できる。
 本発明によれば、スクロール流路の舌部近傍において、さらにスクロール全周において、ディフューザ出口との接続部も含めたスクロール断面形状を見直して、高流量運転時および低流量運転時の広範囲の運転にける損失低減効果を向上できるので、遠心圧縮機のスクロールに用いるのに適している。

Claims (5)

  1.  羽根車の外周側に設けられたディフューザと、該ディフューザの外周と接続して渦巻き状に形成されたスクロール流路とを備えた遠心圧縮機のスクロール構造において、前記スクロール流路の軸方向断面形状は略円形形状からなり、該略円形形状へ接続するディフューザ出口を円形形状への接線位置より円形中心側であって該円形中心に達しない位置にシフトし、前記略円形形状はディフューザ出口位置に対して軸方向に大きく張り出したスクロール室と、該スクロール室とは反対方向に前記略円形形状の残りの部分を形成したシフト室とによって構成され、前記シフト室は少なくとも渦巻きの周方向における巻き終わり部分のスクロール流路に形成されることを特徴とする遠心圧縮機のスクロール構造。
  2.  前記シフト室は、前記巻き終わり部分から周方向に略180度前の位置からシフトを開始し、略360度位置で最大となるように増大し、周方向角度の増大に従って線形または放物線状にシフト量を増大することを特徴とする請求項1記載の遠心圧縮機のスクロール構造。
  3.  前記シフト室は、さらに巻き始め部分のスクロール流路に形成されることを特徴とする請求項1または2記載の遠心圧縮機のスクロール構造。
  4.  前記巻き始め部分のスクロール流路の巻き終わり部分への接続開口の形状が、ディフューザ出口の幅と同一高さを有した扁平形状に形成され、該扁平形状の一方面に前記シフト室が設けられ、該シフト室の高さが周方向に沿って変化することを特徴とする請求項3記載の遠心圧縮機のスクロール構造。
  5.  前記シフト室は、周方向全体にわたってスクロール流路に形成されることを特徴とする請求項1記載の遠心圧縮機のスクロール構造。
PCT/JP2012/051891 2011-03-17 2012-01-27 遠心圧縮機のスクロール構造 WO2012124388A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/981,042 US9562541B2 (en) 2011-03-17 2012-01-27 Scroll structure of centrifugal compressor
CN201280012280.7A CN103415707B (zh) 2011-03-17 2012-01-27 离心压缩机的涡旋结构
EP12757491.1A EP2687730B1 (en) 2011-03-17 2012-01-27 Centrifugal compressor comprising a scroll structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-059935 2011-03-17
JP2011059935A JP5517981B2 (ja) 2011-03-17 2011-03-17 遠心圧縮機のスクロール構造

Publications (1)

Publication Number Publication Date
WO2012124388A1 true WO2012124388A1 (ja) 2012-09-20

Family

ID=46830469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051891 WO2012124388A1 (ja) 2011-03-17 2012-01-27 遠心圧縮機のスクロール構造

Country Status (5)

Country Link
US (1) US9562541B2 (ja)
EP (1) EP2687730B1 (ja)
JP (1) JP5517981B2 (ja)
CN (1) CN103415707B (ja)
WO (1) WO2012124388A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242173A (zh) * 2013-05-21 2013-08-14 苏州科捷生物医药有限公司 2-氟-3-碘苯胺的制备方法
WO2020245934A1 (ja) * 2019-06-05 2020-12-10 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機のスクロール構造及び遠心圧縮機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517914B2 (ja) * 2010-12-27 2014-06-11 三菱重工業株式会社 遠心圧縮機のスクロール構造
KR102126865B1 (ko) * 2013-09-04 2020-06-25 한화파워시스템 주식회사 스크롤 텅 및 이를 구비한 회전 기계
JP6638159B2 (ja) * 2016-03-30 2020-01-29 三菱重工エンジン&ターボチャージャ株式会社 圧縮機スクロール、および、遠心圧縮機
JP6294391B2 (ja) * 2016-06-28 2018-03-14 本田技研工業株式会社 コンプレッサ及び内燃機関の過給システム
DE112017003318T5 (de) 2016-07-01 2019-03-21 Ihi Corporation Radialverdichter
US11339797B2 (en) * 2017-03-28 2022-05-24 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Compressor scroll shape and supercharger
EP3708848A4 (en) 2017-11-06 2021-07-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. CENTRIFUGAL COMPRESSOR AND TURBOCHARGER INCLUDING LEDIT CENTRIFUGAL COMPRESSOR
JP7013316B2 (ja) * 2018-04-26 2022-01-31 三菱重工コンプレッサ株式会社 遠心圧縮機
CN111120405B (zh) * 2019-12-12 2021-05-25 中国科学院工程热物理研究所 一种轴向偏置的非对称蜗壳及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892423U (ja) * 1981-12-18 1983-06-22 本田技研工業株式会社 コンプレツサハウジング装置
JPH10252696A (ja) * 1997-03-17 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
JPH11303796A (ja) * 1998-04-24 1999-11-02 Kubota Corp 遠心ポンプや遠心送風機などの流体機械のケーシング
JP2000064994A (ja) * 1998-08-21 2000-03-03 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
JP4492045B2 (ja) 2003-06-13 2010-06-30 株式会社Ihi 遠心圧縮機
JP2010529358A (ja) 2007-07-23 2010-08-26 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング ターボチャージャに用いるためのディフューザを備えた遠心圧縮機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US494890A (en) 1893-04-04 eateatj
JPH03217699A (ja) 1990-01-23 1991-09-25 Nissan Motor Co Ltd 圧縮機のスクロール構造
JPH0542699U (ja) 1991-11-07 1993-06-11 日産自動車株式会社 車両用送風装置
DE4331606C1 (de) 1993-09-17 1994-10-06 Gutehoffnungshuette Man Spiralgehäuse für Turbomaschinen
DE10245798B4 (de) 2002-10-01 2004-08-19 Robert Bosch Gmbh Elektrisch betriebener Ladeluftverdichter mit integrierter Luftkühlung
JP2007211717A (ja) 2006-02-10 2007-08-23 Toyota Motor Corp 遠心圧縮機
JP2009024582A (ja) 2007-07-19 2009-02-05 Ihi Corp ガス圧縮装置及びガス圧縮装置の制御方法
JP5305139B2 (ja) 2008-09-24 2013-10-02 株式会社Ihi 酸素圧縮機用部品における難燃性被膜の形成方法及び酸素圧縮機
US8602728B2 (en) * 2010-02-05 2013-12-10 Cameron International Corporation Centrifugal compressor diffuser vanelet
JP5892423B2 (ja) * 2012-03-08 2016-03-23 三菱マテリアル株式会社 靭性にすぐれたcBN焼結体切削工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892423U (ja) * 1981-12-18 1983-06-22 本田技研工業株式会社 コンプレツサハウジング装置
JPH10252696A (ja) * 1997-03-17 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
JPH11303796A (ja) * 1998-04-24 1999-11-02 Kubota Corp 遠心ポンプや遠心送風機などの流体機械のケーシング
JP2000064994A (ja) * 1998-08-21 2000-03-03 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
JP4492045B2 (ja) 2003-06-13 2010-06-30 株式会社Ihi 遠心圧縮機
JP2010529358A (ja) 2007-07-23 2010-08-26 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング ターボチャージャに用いるためのディフューザを備えた遠心圧縮機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242173A (zh) * 2013-05-21 2013-08-14 苏州科捷生物医药有限公司 2-氟-3-碘苯胺的制备方法
WO2020245934A1 (ja) * 2019-06-05 2020-12-10 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機のスクロール構造及び遠心圧縮機
JPWO2020245934A1 (ja) * 2019-06-05 2020-12-10
JP7134348B2 (ja) 2019-06-05 2022-09-09 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機のスクロール構造及び遠心圧縮機

Also Published As

Publication number Publication date
CN103415707A (zh) 2013-11-27
US9562541B2 (en) 2017-02-07
JP5517981B2 (ja) 2014-06-11
CN103415707B (zh) 2016-08-10
US20130343885A1 (en) 2013-12-26
EP2687730A4 (en) 2014-12-17
JP2012193716A (ja) 2012-10-11
EP2687730B1 (en) 2018-11-07
EP2687730A1 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5517981B2 (ja) 遠心圧縮機のスクロール構造
JP2012193716A5 (ja)
JP5479316B2 (ja) 遠心圧縮機のスクロール構造
KR100530824B1 (ko) 혼류 터빈 및 혼류 터빈 회전 블레이드
EP2960528B1 (en) Centrifugal compressor
CN110234887B (zh) 离心压缩机及涡轮增压器
WO2011007467A1 (ja) インペラおよび回転機械
JP5047364B2 (ja) ラジアルタービンのスクロール構造
WO2011013258A1 (ja) 遠心圧縮機のインペラ
EP2236754A2 (en) Steam turbine rotor blade and corresponding steam turbine
JP5029024B2 (ja) 遠心圧縮機
WO2013128539A1 (ja) 回転機械
WO2015053051A1 (ja) インペラ及びこれを備える回転機械
WO2011007466A1 (ja) インペラおよび回転機械
EP3299635B1 (en) Scroll casing and centrifugal compressor
JP5832106B2 (ja) 回転機械
JP5398515B2 (ja) ラジアルタービンの動翼
JP2009133267A (ja) 圧縮機のインペラ
JP4882939B2 (ja) 可動翼軸流ポンプ
EP3299634B1 (en) Scroll casing and centrifugal compressor
WO2019087385A1 (ja) 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
US20120121404A1 (en) Exhaust Hood Diffuser
EP3406913B1 (en) Compressor scroll and centrifugal compressor
JP4811438B2 (ja) 可変容量ターボチャージャ
JP4489394B2 (ja) 渦流ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012757491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE