WO2011007466A1 - インペラおよび回転機械 - Google Patents

インペラおよび回転機械 Download PDF

Info

Publication number
WO2011007466A1
WO2011007466A1 PCT/JP2010/001050 JP2010001050W WO2011007466A1 WO 2011007466 A1 WO2011007466 A1 WO 2011007466A1 JP 2010001050 W JP2010001050 W JP 2010001050W WO 2011007466 A1 WO2011007466 A1 WO 2011007466A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
blade
hub
inlet
bulging portion
Prior art date
Application number
PCT/JP2010/001050
Other languages
English (en)
French (fr)
Inventor
枡谷穣
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201080015580.1A priority Critical patent/CN102365464B/zh
Priority to EP10799530.0A priority patent/EP2410186B1/en
Priority to US13/262,929 priority patent/US9404506B2/en
Publication of WO2011007466A1 publication Critical patent/WO2011007466A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors

Definitions

  • the present invention relates to an impeller and a rotary machine, and particularly relates to a flow path shape thereof.
  • Impeller performance needs to be improved. Therefore, in recent years, in order to improve the performance of the impeller, an impeller has been proposed in which a concave portion is provided at the front edge between the blade tip and the hub to effectively suppress the secondary flow and separation (for example, refer to Patent Document 1). .
  • a plurality of grooves are formed in the hub surface between the blades so that the boundary layer of the flow along the hub surface does not expand so that the flow along the hub surface.
  • FIG. 9 shows the vicinity of the blade leading edge of a conventional impeller.
  • the blade angle of the blade 203 on the inlet 206 side is set to the inlet 206 at the design point flow rate. Since the design is such that the angle in the impeller radial direction is greater than the angle at which fluid flows into the inlet (inlet flow angle), the fluid inlet flow angle (hereinafter referred to as the incident angle ⁇ ) with respect to the blade angle becomes large.
  • the boundary layer enlarges due to the decrease in the inflow rate, particularly on the hub surface on the suction surface n side of the blade where the flow rate is the smallest in the vicinity of the inlet 206. Therefore, there is a problem that the efficiency is lowered or the vehicle is stalled.
  • the present invention has been made in view of the above circumstances, and suppresses reduction in efficiency or stall due to expansion of the boundary layer on the hub surface on the suction surface side of the inlet when the inflow flow rate is reduced. It is an object of the present invention to provide an impeller and a rotating machine that can be used.
  • the present invention adopts the following configuration in order to solve the above-described problems and achieve the object.
  • the impeller according to the present invention (for example, the impeller 1 in the embodiment) has a flow direction from the axial direction to the radial direction as it goes from the radially inner side to the radially outer side of the fluid channel (for example, the impeller channel 10 in the embodiment).
  • An impeller of a rotating machine that gradually changes as follows: a hub surface that forms at least a part of the fluid flow path (for example, the hub surface 4 in the embodiment), and a blade surface that forms at least a part of the fluid flow path Among the corners (for example, the corner 12 in the embodiment) where the pressure surface of the blade surface and the hub surface contact (for example, the corner 12 in the embodiment) (for example, the pressure surface p and the negative pressure surface n in the embodiment).
  • the inlet 6 in the embodiment includes a bulging portion (for example, a bulging portion b in the embodiment) that bulges toward the inside of the fluid flow path at a corner near the inlet.
  • the blade leading edge on the hub surface side is formed thick by providing the bulging portion at the corner where the hub surface and the pressure surface in the vicinity of the inlet are in contact with each other.
  • the radius of the rounded portion due to the bulging portion of the leading edge is increased.
  • the flow slowly flows through the rounded portion of the bulging portion of the blade leading edge whose radius is increased. Since it wraps around, the enlargement of the boundary layer on the suction surface side of the leading edge is suppressed, and the development of the boundary layer on the suction surface side of the hub surface can be suppressed.
  • the amount of decrease in the throat area can be minimized.
  • the strength of the portion where the blade contacts the hub that receives force from the fluid and also generates centrifugal stress due to rotation of the impeller can be increased.
  • an increase in the number of parts can be suppressed.
  • a corner formed by the suction surface of the blade surface and the hub surface bulges toward the inside of the fluid flow path at a corner near the fluid flow inlet.
  • the second bulging portion is provided at the corner formed by the negative pressure surface of the blade and the hub surface. Since the thickness dimension of the blade leading edge on the hub surface side can be further increased, the expansion of the boundary layer due to a decrease in the flow rate can be further suppressed, and the portion of the entrance where the blade and the hub are in contact with each other can be further suppressed. The strength can be further increased.
  • the impeller of the rotating machine even when the fluid incident angle is increased with respect to the inlet blade angle when the flow rate is reduced, the inlet leading edge radius is increased by the bulging portion.
  • the expansion of the boundary layer generated on the hub surface on the suction surface side can be suppressed and the efficiency can be prevented from decreasing or stalling on the small flow rate side.
  • FIG. 1 is a cross-sectional view of a centrifugal compressor according to an embodiment of the present invention.
  • FIG. 2 is an enlarged front view showing a main part of the impeller in the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • FIG. 5 is an enlarged cross-sectional view of the blade leading edge in the embodiment of the present invention.
  • FIG. 6 is a graph showing efficiency characteristics with respect to the flow rate of the impeller in the embodiment of the present invention.
  • FIG. 7 is a graph showing the head characteristics with respect to the flow rate of the impeller in the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view corresponding to FIG. 4 in another example of the embodiment of the present invention.
  • FIG. 9 is a front view of the vicinity of the leading edge of a blade in a conventional impeller.
  • the impeller of this embodiment will be described by taking as an example an impeller of a centrifugal compressor that is a rotating machine.
  • a centrifugal compressor 100 that is a rotating machine according to the present embodiment mainly includes a shaft 102 that is rotated around an axis O, and a process that uses centrifugal force attached to the shaft 102.
  • the impeller 1 that compresses the gas (gas) G
  • the casing 105 that supports the shaft 102 rotatably and has a flow path 104 that allows the process gas G to flow from the upstream side to the downstream side are formed.
  • the casing 105 is formed so as to form a substantially cylindrical outline, and the shaft 102 is disposed so as to penetrate the center.
  • Journal bearings 105a are provided at both ends of the shaft 102 in the axial direction, and thrust bearings 105b are provided at one end.
  • the journal bearing 105a and the thrust bearing 105b support the shaft 102 in a rotatable manner. That is, the shaft 102 is supported by the casing 105 via the journal bearing 105a and the thrust bearing 105b.
  • a suction port 105c through which the process gas G flows from the outside is provided at one end side in the axial direction of the casing 105, and a discharge port 105d through which the process gas G flows out to the outside is provided at the other end side.
  • an internal space that communicates with the suction port 105c and the discharge port 105d, respectively, and repeats the diameter reduction and the diameter expansion is provided.
  • This internal space functions as a space for accommodating the impeller 1 and also functions as the flow path 104. That is, the suction port 105 c and the discharge port 105 d communicate with each other via the impeller 1 and the flow path 104.
  • a plurality of impellers 1 are arranged at intervals in the axial direction of the shaft 102. In the illustrated example, six impellers 1 are provided, but it is sufficient that at least one impeller 1 is provided.
  • the hub 2 to 3 show the impeller 1 of the centrifugal compressor 100, and the impeller 1 includes a hub 2 and a plurality of blades 3.
  • the hub 2 is formed in a substantially circular shape when viewed from the front, and is rotatable around the axis about the axis O described above.
  • a hub surface 4 is curvedly formed on the hub 2 from a predetermined position S on the radially inner side that is slightly spaced radially outward from the axis O toward the radially outer side.
  • the curved hub surface 4 is formed such that a surface positioned radially inward is formed along the axis O and gradually along the radial direction toward the radially outer side.
  • the hub 2 has an axial thickness dimension that decreases from one of the axial end faces (upstream side) from the radially inner position S slightly spaced from the axis O toward the radially outer side. The size is larger toward the inner side and smaller toward the outer side.
  • the radial direction of the hub 2 is indicated by an arrow.
  • the plurality of blades 3 are arranged substantially radially on the hub surface 4 described above, and are erected substantially vertically (normal direction) to the hub surface 4 as shown in FIG. 4. Yes.
  • the blade 3 is formed to have a substantially uniform thickness from the hub end h to the tip end t, and in the direction of rotation of the hub 2 (indicated by an arrow in FIG. 2) from the hub end h (see FIG. 3) to the tip end t. It has a curved shape with a slightly convex surface.
  • the blade surface on the convex side of the concave blade side and the convex blade surface of the curved blade 3 becomes the pressure surface p, while the blade surface on the concave surface on the back side of the convex surface is negative. It becomes the pressure surface n.
  • the tip end t of the blade 3 is curved from the radially inner side to the radially outer side of the hub 2. More specifically, like the hub surface 4 described above, it is formed in a concave shape along the axis O toward the radially inner side and gradually along the radial direction toward the radially outer side.
  • the blade 3 is formed such that its height dimension is higher on the inner side in the radial direction of the hub 2 and lower on the outer side in the radial direction with respect to the hub surface 4.
  • the tip end t side of the blade 3 is covered with a casing 105 (see FIG. 1), and the shroud surface 5 constituted by the casing 105 and the pressure surface p and negative pressure of the adjacent blade 3 described above.
  • the impeller channel 10 of the impeller 1 is configured by the pressure surface n and the hub surface 4 between the pressure surface p and the negative pressure surface n. Then, as the impeller 1 rotates, fluid flows in the axial direction from the inlet 6 of the impeller flow path 10 located on the radially inner side of the hub 2, and from the outlet 7 located on the radially outer side by centrifugal force. The fluid flows outward along the radial direction.
  • the impeller channel 10 having the above-described configuration has its flow direction gradually changed from the axial direction to the radial direction from the radially inner side to the radially outer side of the hub 2. Curved formation.
  • a bulge b that bulges toward the inside of the impeller channel 10 is formed at the corner 12 near the inlet 6.
  • the bulging portion b is formed integrally with the hub surface 4 and the pressure surface p (see FIGS. 2 to 4).
  • the front edge 20 of the blade 3 has a substantially semicircular cross section (see FIG. 5), and the bulging portion b is formed on the corner 12 near the inlet 6 in the corner 12 described above, that is, on the front edge 20. It is formed in a corner 12 of a part of the adjacent range.
  • the bulging portion b has a maximum width set to about 20% of the width of the impeller flow path 10 and about 20% of the blade height, and is a curved surface convex toward the inside of the impeller flow path 10 and in the vicinity of the inlet 6. It rises smoothly toward the downstream side in the flow direction, and immediately reaches the maximum width and height. And the bulging part b falls gradually from the position where it became the maximum width and the maximum height by a curved surface similar to the rising, and is about 10% of the channel length from the inlet 6 to the outlet 7 of the impeller channel 10. Is smoothly connected to the hub surface 4 and the pressure surface p.
  • the thickness dimension of the leading edge 20 of the blade 3 on the hub surface 4 side increases, and the blade leading edge radius of the leading edge 20 is substantially increased as shown in FIG. r1 increases to the blade leading edge radius r2.
  • FIG. 6 is a graph showing the efficiency characteristics of a rotating machine using the impeller 1 and a conventional impeller.
  • the vertical axis represents the efficiency ⁇ and the horizontal axis represents the flow rate Q.
  • the efficiency of the rotary machine provided with the impeller which is not provided with the bulging part b is shown by a solid line
  • the efficiency of the rotary machine provided with the impeller 1 provided with the bulge part b is shown by a broken line.
  • FIG. 6 it can be seen that the efficiency when the bulging portion b is provided at the same flow rate Q is improved as compared with the case where the bulging portion b is not provided.
  • the efficiency on the small flow rate side is greatly improved.
  • FIG. 7 is a graph showing the head (work) characteristics of the rotating machine using the impeller 1 and the conventional impeller, where the vertical axis represents the head (work) and the horizontal axis represents the flow rate Q.
  • the head of the rotary machine provided with the impeller which is not provided with the bulging part b is shown by a solid line
  • the head of the rotary machine provided with the impeller 1 provided with the bulge part b is shown by a broken line.
  • the above-described impeller 1 provided with the bulging portion b is more than the surge point (indicated by a solid circle in the drawing) of the rotating machine provided with the impeller not provided with the bulging portion b. It can be seen that the surge point (indicated by a white circle in the figure) of the rotating machine provided is displaced to the lower flow rate side and the surge margin is expanded.
  • the characteristics of the impeller 1 are improved as compared with the impeller without the bulging portion b, and the reason that the surge point is displaced to the low flow rate side is that the flow rate is reduced. This is because, when the incident angle of the fluid shown in FIG. 2 is enlarged, the boundary layer becomes difficult to develop on the suction surface n side due to a partial increase in the blade leading edge radius of the inlet 6.
  • the surge point is a minimum flow rate necessary for the rotating machine to operate normally without surging.
  • the bulging portion b is provided at the corner portion 12 where the hub surface 4 in the vicinity of the inlet 6 and the pressure surface p are in contact with each other. 3 is partially increased, the blade leading edge radius r1 on the hub surface 4 side is substantially increased to the blade leading edge radius r2. The development of the boundary layer can be suppressed.
  • the leading edge 20 of the blade 3 on the hub surface 4 side is formed thick by the bulging portion b and the blade leading edge radius r1 substantially increases to the blade leading edge radius r2, the blade angle (see FIG. 2). Even when the angle of incidence of the fluid on the surface increases, the boundary layer develops on the negative pressure surface n side of the hub surface 4 to suppress the decrease in efficiency and prevent stall on the small flow rate side.
  • the margin can be expanded.
  • the corner portion 12 on the hub surface 4 side that is, the bulging portion b limited to the local area
  • the amount of decrease in the throat area on the inlet 6 side of the impeller channel 10 can be minimized.
  • a portion of the contact portion between the blade 3 and the hub 2 that receives a force from the fluid and also generates centrifugal stress due to the impeller 1 rotating at a high speed. Strength can be increased.
  • the blade 3 and the hub 2 are formed integrally, an increase in the number of parts can be suppressed.
  • the bulging portion b is provided in the corner portion 12 located in the vicinity of the inlet 6 of the impeller passage 10 among the corner portions 12 in contact with the pressure surface p and the hub surface 4 .
  • a bulging portion b ′ may be provided at the corner 22 where the negative pressure surface n and the hub surface 4 are in contact with each other near the inlet 6 of the impeller flow path 10.
  • the impeller of the centrifugal rotary machine has been described as an example.
  • the impeller is not limited to this, and may be an impeller of a mixed flow type rotary machine.
  • it is not restricted to a compressor, You may apply to impellers, such as an air blower and a turbine.
  • a so-called open type impeller in which the opposite side of the hub surface 4 is covered by the shroud surface 5 has been described as an example.
  • a closed type including a wall that covers the tip end t side integrally formed with the blade 3 is provided. It may be applied to the impeller.
  • the shroud surface 5 of the above-described embodiment may be read as the inner surface of the wall covering the tip end t.
  • the fillet R due to the roundness of the tip of the cutting cutter tool is slightly attached to the boundary portion between the hub surface 4 and the blade surface (negative pressure surface n, pressure surface p) other than the bulging portion b as usual.
  • the impeller of the rotating machine even when the fluid incident angle is increased with respect to the inlet blade angle when the flow rate is reduced, the inlet leading edge radius is increased by the bulging portion.
  • the expansion of the boundary layer generated on the hub surface on the suction surface side can be suppressed, and the efficiency can be prevented from decreasing or stalling on the small flow rate side.

Abstract

 流体流路の径方向内側から径方向外側へ向かうに従い流れ方向が軸方向から径方向へと変化する回転機械のインペラであって、前記流体流路の少なくとも一部を構成するハブ面と、前記流体流路の少なくとも一部を構成する羽根面と、前記羽根面を構成する圧力面と前記ハブ面とが接する隅部のうち前記流体流路の入口近傍の隅部に前記流体流路の内側へ向かって膨出する膨出部とを備える。

Description

インペラおよび回転機械
 この発明は、インペラおよび回転機械に関するものであり、特にその流路形状に係るものである。
 本願は、2009年7月13日に日本出願された特願2009-164782に基づいて優先権を主張し、その内容をここに援用する。
 産業用圧縮機やターボ冷凍機、小型ガスタービンなどの回転機械に用いられる遠心型や斜流型の圧縮機にあっては性能向上が求められており、特に、これら圧縮機のキーコンポーネントであるインペラの性能向上が必要となっている。そこで近年、インペラの性能向上を図るために羽根のチップ-ハブ間の前縁に凹部を設けて2次流れや剥離を効果的に抑制するインペラが提案されている(例えば、特許文献1参照)。
 また、遠心型や斜流型のインペラの性能向上を図るために、ハブ面に沿う流れの境界層が拡大しないよう羽根間のハブ面に複数本の溝を形成してハブ面に沿う流れに乱れを生じさせるものや、境界層の局部集中を防止するために羽根間に複数の小翼を設けたものがある(例えば、特許文献2,3参照)。
特開2006-2689号公報 特開2005-163640号公報 特開2005-180372号公報
 図9は、従来のインペラの羽根前縁近傍を示したものである。この図9に示すように従来のインペラの入口ハブ面においては、インペラ流路210の入口206側のスロート面積を確保するために、入口206側の羽根203の羽根角度を設計点流量における入口206へ流体が流入する角度(入口流れ角)よりもインペラ径方向に立てた設計をしているため、羽根角度に対する流体の入口流れ角(以下、入射角θという)が大きくなってしまう。そして流体の入射角θは流入流量の減少により大きくなる傾向があるので、とりわけ入口206近傍で最も流量が少なくなる羽根の負圧面n側のハブ面において流入流量の減少による境界層の拡大が顕著になり、効率が低下したり失速したりしてしまうという課題がある。
 この発明は、上記事情に鑑みてなされたものであり、流入流量が減少した場合に入口の負圧面側のハブ面で境界層が拡大して効率低下したり失速したりするのを抑制することができるインペラおよび回転機械を提供するものである。
 本発明は、上記課題を解決して係る目的を達成するために以下の構成を採用する。
 本発明に係るインペラ(例えば、実施形態におけるインペラ1)は、流体流路(例えば、実施形態におけるインペラ流路10)の径方向内側から径方向外側へ向かうに従い流れ方向が軸方向から径方向へと漸次変化する回転機械のインペラであって、前記流体流路の少なくとも一部を構成するハブ面(例えば、実施形態におけるハブ面4)と、前記流体流路の少なくとも一部を構成する羽根面(例えば、実施形態における圧力面p、負圧面n)と、前記羽根面の圧力面と前記ハブ面とが接する隅部(例えば、実施形態における隅部12)のうち、前記流体流路の入口(例えば、実施形態における入口6)近傍の隅部に前記流体流路の内側へ向かって膨出する膨出部(例えば、実施形態における膨出部b)とを備える。
 この発明に係る回転機械のインペラによれば、入口近傍のハブ面と圧力面とが接する隅部に膨出部が設けられることでハブ面側の羽根前縁が厚く形成されて実質的に羽根前縁の膨出部による丸み部の半径が増加される。これにより、ハブ面側の流入速度が小さいことにより羽根角度に対する流体の入射角が大きくなった場合であっても、半径が増加された羽根前縁の膨出部による丸み部を流れがゆっくりと回り込むため、前縁負圧面側での境界層の肥大が抑制され、ハブ面の負圧面側で境界層が発達するのを抑制することができる。さらに、ハブ面側の隅部すなわち局所に限定した膨出部が設けられることで、スロート面積の低下量を最小限に抑えることができる。
 そして、入口近傍の隅部に膨出部を設けることで、流体から力を受け、かつ、インペラが回転することにより遠心応力も発生する羽根とハブとの接する部分の強度を増加させることができる。さらに、羽根およびハブと一体的に形成した場合には部品点数の増加を抑制することができる。
 上記本発明の回転機械のインペラにおいて、前記羽根面の負圧面と前記ハブ面とで形成される隅部のうち前記流体流の入口近傍の隅部に前記流体流路の内側へ向かって膨出する第2膨出部をさらに備えてもよい。
 この場合、羽根の圧力面とハブ面との隅部に配置される膨出部に加えて、羽根の負圧面とハブ面とで形成される隅部に第2膨出部が設けられるので、ハブ面側の羽根前縁の厚さ寸法をさらに拡大することができるため、流量の低下による境界層の拡大をさらに抑制することができ、また入口の隅部における羽根とハブとの接する部分の強度をさらに増加させることができる。
 本発明に係る回転機械のインペラによれば、流量が低下した場合に入口側の羽根角度に対する流体の入射角が拡大しても、膨出部により羽根前縁半径が増加した分だけ、入口のとりわけ負圧面側のハブ面に生じる境界層の拡大を抑制して小流量側で効率が低下したり失速するのを抑制することができる効果がある。
図1は、本発明の実施形態における遠心圧縮機の横断面図である。 図2は、本発明の実施形態におけるインペラの要部を示す拡大正面図である。 図3は、図2のA-A線に沿う断面図である。 図4は、図3のB-B線に沿う断面図である。 図5は、本発明の実施形態における羽根前縁の拡大断面図である。 図6は、本発明の実施形態におけるインペラの流量に対する効率特性を示すグラフである。 図7は、本発明の実施形態におけるインペラの流量に対するヘッド特性を示すグラフである。 図8は、本発明の実施形態の他の実施例における図4に相当する断面図である。 図9は、従来のインペラにおける羽根の前縁付近の正面図である。
 次に、この発明の実施形態におけるインペラおよび回転機械について図面を参照しながら説明する。この実施形態のインペラは、回転機械である遠心型圧縮機のインペラを一例に説明する。
 本実施形態の回転機械である遠心圧縮機100は、一例として、図1に示すように、主として、軸線O周りに回転させられるシャフト102と、シャフト102に取り付けられて遠心力を利用してプロセスガス(気体)Gを圧縮するインペラ1と、シャフト102を回転可能に支持すると共にプロセスガスGを上流側から下流側に流す流路104が形成されたケーシング105と、によって構成されている。
 ケーシング105は、略円柱状の外郭をなすように形成され、中心を貫くようにシャフト102が配置されている。シャフト102の軸方向の両端には、ジャーナル軸受105aが設けられ、一端には、スラスト軸受105bが設けられている。これらジャーナル軸受105a及びスラスト軸受105bはシャフト102を回転可能に支持している。即ち、シャフト102は、ジャーナル軸受105a及びスラスト軸受105bを介してケーシング105に支持されている。
 また、ケーシング105の軸方向の一端側にはプロセスガスGを外部から流入させる吸込口105cが設けられ、他端側にはプロセスガスGが外部に流出する排出口105dが設けられている。ケーシング105内には、これら吸込口105c及び排出口105dにそれぞれ連通し、縮径及び拡径を繰り返す内部空間が設けられている。この内部空間は、インペラ1を収容する空間として機能すると共に上記流路104としても機能する。
即ち、吸込口105cと排出口105dとは、インペラ1及び流路104を介して連通している。
 インペラ1は、シャフト102の軸方向に間隔を空けて複数配列されている。なお、図示例において、インペラ1は6つ設けられているが少なくとも1つ以上設けられていればよい。
 図2~図3は遠心型圧縮機100のインペラ1を示しており、このインペラ1は、ハブ2と複数の羽根3とを備えて構成される。
 ハブ2は、正面視で略円形に形成され、上述した軸線Oを中心として軸周りに回転可能になっている。ハブ2には、図3に示すように、軸線Oから径方向外側にやや離間した径方向内側の所定の位置Sから径方向外側に向かってハブ面4が湾曲形成されている。この湾曲形成されたハブ面4は、径方向内側に位置する面が軸線Oに沿って形成されるとともに、径方向外側に向かうにつれて徐々に径方向に沿うように形成される。つまり、ハブ2は、その軸線Oからやや離間した径方向内側の位置Sから径方向外側に向かうほどその軸方向厚さ寸法が軸方向端面の一方(上流側)から減少し、この軸方向厚さ寸法が内側ほど大きく外側ほど小さくなる。なお、図3において、ハブ2の径方向を矢印で示している。
 上述したハブ面4には、図2に示すように、複数の羽根3が略放射状に配置され、図4に示すようにハブ面4に対して略垂直(法線方向)に立設されている。この羽根3は、ハブ端hからチップ端tまで厚さが略一様に形成され、ハブ端h(図3参照)からチップ端tまでハブ2の回転方向(図2中矢印で示す)に向かって若干凸面となる湾曲した形状を呈している。インペラ1が回転することで、湾曲形状の羽根3の凹面側および凸面側の各羽根面のうち凸面側の羽根面が圧力面pとなる一方、凸面の裏側である凹面側の羽根面が負圧面nとなる。
 また図3に示すように、羽根3のチップ端tはハブ2の径方向内側から径方向外側に亘って湾曲形成されている。より具体的には、上述したハブ面4と同様に、径方向内側ほど軸線Oに沿い、径方向外側に向かうにつれて徐々に径方向に沿う凹型に形成されている。
 そして、羽根3は、ハブ面4を基準にするとその高さ寸法が、ハブ2の径方向内側ほど高く、径方向外側ほど低く形成される。
 上述したインペラ1は、羽根3のチップ端t側がケーシング105(図1参照)で覆われており、このケーシング105により構成されるシュラウド面5と、上述した隣り合う羽根3の圧力面pおよび負圧面nと、これら圧力面pと負圧面nとの間のハブ面4とによってインペラ1のインペラ流路10が構成される。そして、インペラ1が回転することにより、ハブ2の径方向内側に位置するインペラ流路10の入口6から軸方向に沿って流体が流入して、遠心力によって径方向外側に位置する出口7から径方向に沿って流体が外方へ流出する。
 上述した構成のインペラ流路10は、ハブ2の径方向内側から径方向外側へ向かうに従いその流れ方向が軸方向から径方向へと漸次変化しており、上述した入口6から出口7へ向かって湾曲形成される。
 ハブ面4と羽根3の圧力面pとが接する隅部12のうち入口6近傍の隅部12には、インペラ流路10の内側へ向かって膨出する膨出部bが形成されている。この膨出部bはハブ面4および圧力面pと一体的に形成されている(図2~図4参照)。また、羽根3の前縁20は断面略半円形状を呈しており(図5参照)、膨出部bは、上述した隅部12のうち入口6近傍の隅部12すなわち、前縁20に隣接する一部の範囲の隅部12に形成されている。
 膨出部bは、その最大幅がインペラ流路10の幅の20%程度、羽根高さの20%程度に設定され、インペラ流路10の内側に向かって凸状となる曲面で入口6近傍から流れ方向の下流側へ向かって滑らかに立ち上がり、すぐに最大幅、最大高さとなる。そして、膨出部bは、最大幅、最大高さとなった位置から、立ち上がりと同様の曲面により徐々に立下り、インペラ流路10の入口6から出口7までの流路長さの10%程度の位置でハブ面4および圧力面pへ滑らかに繋がる。このように膨出部bを形成することで、羽根3の前縁20のハブ面4側の厚さ寸法が増加し、図5に示すように、実質的に前縁20の羽根前縁半径r1が羽根前縁半径r2へ増加する。
 図6は、インペラ1および従来のインペラを用いた回転機械の効率特性を示すグラフであり、縦軸を効率η、横軸を流量Qとしている。なお、図6中、膨出部bを設けていないインペラを備える回転機械の効率を実線で示し、膨出部bを設けている上述のインペラ1を備える回転機械の効率を破線で示している。
 図6に示すように、同一の流量Qで膨出部bを設けた場合の方が膨出部bを設けない場合と比較して効率が向上していることが分かる。特に、小流量側での効率が大きく向上していることが分かる。
 また図7は、インペラ1および従来のインペラを用いた回転機械のヘッド(仕事)特性を示すグラフであり、縦軸をヘッド(仕事)、横軸を流量Qとしている。なお、図7中、膨出部bを設けていないインペラを備える回転機械のヘッドを実線で示し、膨出部bを設けている上述のインペラ1を備える回転機械のヘッドを破線で示している。
 図7に示すように、膨出部bを設けていないインペラを備える回転機械のサージ点(図中、塗りつぶしの丸で示す。)よりも、膨出部bを設けている上述のインペラ1を備える回転機械のサージ点(図中、白抜きの丸で示す。)の方が、より低流量側に変位してそのサージ余裕が拡大したことが分かる。
 これら図6、図7に示すように、インペラ1の特性が膨出部bを設けていないインペラと比較して効率が向上すると共にサージ点が低流量側に変位した理由は、流量が減少して図2に示す流体の入射角度が拡大した場合に、入口6の羽根前縁半径の部分的な増加によって負圧面n側で境界層が発達し難くなったためである。なお、サージ点とは、回転機械がサージングせずに正常動作するのに最低限必要な流量である。
 したがって、上述した実施形態の回転機械のインペラ1によれば、入口6近傍のハブ面4と圧力面pとが接する隅部12に膨出部bが設けられることで、ハブ面4側の羽根3の前縁20の厚さ寸法が部分的に増加するため、実質的にハブ面4側の羽根前縁半径r1が羽根前縁半径r2へと増加して、設計点流量でもハブ負圧面の境界層の発達を抑制することができる。
 また、膨出部bによってハブ面4側の羽根3の前縁20が厚く形成されて実質的に羽根前縁半径r1が羽根前縁半径r2へと増加するため、羽根角度(図2参照)に対する流体の入射角が大きくなった場合であっても、ハブ面4の負圧面n側で境界層が発達するのを抑制して、小流量側での効率低下抑制や失速防止を図り、サージ余裕を拡大することができる。
 さらに、ハブ面4側の隅部12すなわち局所に限定した膨出部bが設けられるので、インペラ流路10の入口6側のスロート面積の低下量を最小限に抑えることができる。
 また、入口6近傍の隅部12に膨出部bを設けることで、流体から力を受け、かつ、インペラ1が高速回転することによって遠心応力も発生する羽根3とハブ2との接する部分の強度を増加させることができる。さらに、羽根3およびハブ2と一体的に形成した場合には部品点数の増加を抑制することができる。
 なお、上述した実施形態のインペラ1では、圧力面pおよびハブ面4の接する隅部12のうちインペラ流路10の入口6近傍に位置する隅部12に膨出部bを設ける場合について説明したが、この構成に限られるものではない。例えば他の実施例として図8に示すように、インペラ流路10の入口6近傍の負圧面nおよびハブ面4の接する隅部22に膨出部b’を設けるようにしてもよい。このように隅部22に膨出部b’を設けた場合、ハブ面4側の羽根3の前縁20の厚さ寸法が増加して羽根前縁半径をさらに拡大することができるため、流量の低下による境界層の拡大をさらに抑制することができる。さらに、入口6の隅部12における羽根3とハブ2との接する部分の強度の更なる増加を図ることができる。
 また、上述した実施形態の膨出部bの形状および位置は一例であって、これに限られるものではない。
 また、上記実施形態では遠心型の回転機械のインペラを一例に説明したが、これに限られるものではなく、斜流型の回転機械のインペラであってもよい。また圧縮機に限られるものではなく、送風機やタービン等のインペラに適用してもよい。また、上述した実施形態では、ハブ面4の対面側がシュラウド面5により覆われるいわゆるオープン型のインペラを一例に説明したが、羽根3に一体形成されたチップ端t側を覆う壁を備えるクローズ型のインペラに適用してもよい。このクローズ型のインペラの場合は上述した実施形態のシュラウド面5を、チップ端tを覆う壁の内面に読み替えればよい。なお、膨出部b以外のハブ面4と翼面(負圧面n、圧力面p)の境界部は、従来通り切削カッター工具の先端丸みによる隅肉Rが若干ついている。
 本発明に係る回転機械のインペラによれば、流量が低下した場合に入口側の羽根角度に対する流体の入射角が拡大しても、膨出部により羽根前縁半径が増加した分だけ、入口のとりわけ負圧面側のハブ面に生じる境界層の拡大を抑制して小流量側で効率が低下したり失速したりするのを抑制することができる。
 1 インペラ
 4 ハブ面
 6 入口
 7 出口
 10 インペラ流路(流体流路)
 12 隅部
 22 隅部
 100 遠心圧縮機
 p 圧力面(羽根面)
 n 負圧面(羽根面)
 b 膨出部
 b’ 膨出部(第2膨出部)

Claims (3)

  1.  流体流路の径方向内側から径方向外側へ向かうに従い流れ方向が軸方向から径方向へと変化する回転機械のインペラであって、
     前記流体流路の少なくとも一部を構成するハブ面と、
     前記流体流路の少なくとも一部を構成する羽根面と、
     前記羽根面を構成する圧力面と前記ハブ面とが接する隅部のうち前記流体流路の入口近傍の隅部に前記流体流路の内側へ向かって膨出する膨出部とを備えるインペラ。
  2.  前記羽根の負圧面と前記ハブ面とで形成される隅部のうち前記流体流の入口近傍の隅部に前記流体流路の内側へ向かって膨出する第2膨出部をさらに備える請求項1に記載のインペラ。
  3.  請求項1又は2に記載のインペラを備える回転機械。
PCT/JP2010/001050 2009-07-13 2010-02-18 インペラおよび回転機械 WO2011007466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080015580.1A CN102365464B (zh) 2009-07-13 2010-02-18 叶轮和旋转机械
EP10799530.0A EP2410186B1 (en) 2009-07-13 2010-02-18 Impeller and rotary machine
US13/262,929 US9404506B2 (en) 2009-07-13 2010-02-18 Impeller and rotary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-164782 2009-07-13
JP2009164782A JP2011021492A (ja) 2009-07-13 2009-07-13 インペラおよび回転機械

Publications (1)

Publication Number Publication Date
WO2011007466A1 true WO2011007466A1 (ja) 2011-01-20

Family

ID=43449079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001050 WO2011007466A1 (ja) 2009-07-13 2010-02-18 インペラおよび回転機械

Country Status (5)

Country Link
US (1) US9404506B2 (ja)
EP (1) EP2410186B1 (ja)
JP (1) JP2011021492A (ja)
CN (1) CN102365464B (ja)
WO (1) WO2011007466A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCO20130024A1 (it) * 2013-06-13 2014-12-14 Nuovo Pignone Srl Giranti di compressore
ITCO20130037A1 (it) * 2013-09-12 2015-03-13 Internat Consortium For Advanc Ed Design Girante resistente al liquido per compressori centrifughi/liquid tolerant impeller for centrifugal compressors
DE102015214854A1 (de) * 2015-08-04 2017-02-09 Bosch Mahle Turbo Systems Gmbh & Co. Kg Verdichterrad für einen Abgasturbolader
FI3440360T3 (fi) 2016-04-06 2023-09-26 Smidth As F L Alhaisen tulopyörrevoimakkuuden juoksupyörä, jolla on parannellut hydrodynaamiset kulumisominaisuudet
CN105822589B (zh) * 2016-04-29 2019-04-23 合肥中科根云设备管理有限公司 一种工作效率高的离心泵叶轮
KR102634097B1 (ko) * 2017-01-06 2024-02-05 한화파워시스템 주식회사 와류 발생 장치를 구비한 임펠러
FR3077803B1 (fr) 2018-02-15 2020-07-31 Airbus Helicopters Methode d'amelioration d'une pale afin d'augmenter son incidence negative de decrochage
FR3077802B1 (fr) * 2018-02-15 2020-09-11 Airbus Helicopters Methode de determination d'un cercle initial de bord d'attaque des profils aerodynamiques d'une pale et d'amelioration de la pale afin d'augmenter son incidence negative de decrochage
US10962021B2 (en) * 2018-08-17 2021-03-30 Rolls-Royce Corporation Non-axisymmetric impeller hub flowpath
JP7438240B2 (ja) * 2019-12-09 2024-02-26 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機の羽根車、遠心圧縮機及びターボチャージャ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233499A (ja) * 1988-07-22 1990-02-02 Nissan Motor Co Ltd 圧縮機
JPH05312187A (ja) * 1992-05-07 1993-11-22 Matsushita Electric Ind Co Ltd 渦巻ポンプ
JP2005163640A (ja) 2003-12-03 2005-06-23 Mitsubishi Heavy Ind Ltd 圧縮機のインペラ
JP2005180372A (ja) 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd 圧縮機のインペラ
JP2006002689A (ja) 2004-06-18 2006-01-05 Hitachi Home & Life Solutions Inc 送風機
JP2009164782A (ja) 2007-12-28 2009-07-23 Pioneer Electronic Corp 電話機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1959710A (en) * 1931-09-21 1934-05-22 Chicago Pump Co Pump
US2918254A (en) * 1954-05-10 1959-12-22 Hausammann Werner Turborunner
JPS58119998A (ja) * 1982-01-12 1983-07-16 Mitsubishi Heavy Ind Ltd コンプレツサ翼車とその製造方法
US5215439A (en) * 1991-01-15 1993-06-01 Northern Research & Engineering Corp. Arbitrary hub for centrifugal impellers
JP2000136797A (ja) * 1998-11-04 2000-05-16 Matsushita Seiko Co Ltd 送風羽根車
JP2001263295A (ja) * 2000-03-17 2001-09-26 Sanyo Electric Co Ltd 遠心送風機
ATE447629T1 (de) * 2000-04-28 2009-11-15 Elliott Co Schweissverfahren, metallzusammensetzung und daraus hergestellter gegenstand
JP2003013895A (ja) 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機
KR100429997B1 (ko) * 2001-10-25 2004-05-03 엘지전자 주식회사 터보팬
JP2003336599A (ja) * 2002-05-17 2003-11-28 Calsonic Kansei Corp シロッコファン
US7112043B2 (en) * 2003-08-29 2006-09-26 General Motors Corporation Compressor impeller thickness profile with localized thick spot
CN100406746C (zh) * 2004-03-23 2008-07-30 三菱重工业株式会社 离心压缩机及叶轮的制造方法
JP2007247494A (ja) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd 斜流送風機羽根車
JP4691002B2 (ja) * 2006-11-20 2011-06-01 三菱重工業株式会社 斜流タービンまたはラジアルタービン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233499A (ja) * 1988-07-22 1990-02-02 Nissan Motor Co Ltd 圧縮機
JPH05312187A (ja) * 1992-05-07 1993-11-22 Matsushita Electric Ind Co Ltd 渦巻ポンプ
JP2005163640A (ja) 2003-12-03 2005-06-23 Mitsubishi Heavy Ind Ltd 圧縮機のインペラ
JP2005180372A (ja) 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd 圧縮機のインペラ
JP2006002689A (ja) 2004-06-18 2006-01-05 Hitachi Home & Life Solutions Inc 送風機
JP2009164782A (ja) 2007-12-28 2009-07-23 Pioneer Electronic Corp 電話機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2410186A4

Also Published As

Publication number Publication date
US20120027599A1 (en) 2012-02-02
US9404506B2 (en) 2016-08-02
CN102365464B (zh) 2014-10-29
CN102365464A (zh) 2012-02-29
EP2410186B1 (en) 2017-07-05
EP2410186A1 (en) 2012-01-25
EP2410186A4 (en) 2015-05-06
JP2011021492A (ja) 2011-02-03

Similar Documents

Publication Publication Date Title
WO2011007466A1 (ja) インペラおよび回転機械
WO2011007467A1 (ja) インペラおよび回転機械
JP5221985B2 (ja) 遠心圧縮機
JP5316365B2 (ja) ターボ型流体機械
JP5005181B2 (ja) 遠心ファン
JP5047364B2 (ja) ラジアルタービンのスクロール構造
CN110234887B (zh) 离心压缩机及涡轮增压器
JP5029024B2 (ja) 遠心圧縮機
JP5766595B2 (ja) 遠心ターボ機械
WO2018147128A1 (ja) 遠心圧縮機、ターボチャージャ
JP2008151022A (ja) 軸流圧縮機の翼列
JP2009133267A (ja) 圧縮機のインペラ
JP2010124534A (ja) 電動機用斜流ファンと該斜流ファンを備えた電動機
JP5398515B2 (ja) ラジアルタービンの動翼
JP2019007425A (ja) 遠心圧縮機、ターボチャージャ
WO2019172422A1 (ja) ディフューザベーン及び遠心圧縮機
WO2018155458A1 (ja) 遠心回転機械
JP6763804B2 (ja) 遠心圧縮機
JP2008208753A (ja) 遠心圧縮機
JP4707969B2 (ja) 多段流体機械
CN110234888B (zh) 压缩机的涡旋形状以及增压器
JP3902193B2 (ja) 多翼遠心送風機
JP2010229842A (ja) コンプレッサ
JP6234343B2 (ja) 回転機械
WO2023187913A1 (ja) 斜流タービン及びターボチャージャ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015580.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13262929

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010799530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010799530

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE