WO2012121351A1 - 希土類磁石およびその製造方法 - Google Patents

希土類磁石およびその製造方法 Download PDF

Info

Publication number
WO2012121351A1
WO2012121351A1 PCT/JP2012/056017 JP2012056017W WO2012121351A1 WO 2012121351 A1 WO2012121351 A1 WO 2012121351A1 JP 2012056017 W JP2012056017 W JP 2012056017W WO 2012121351 A1 WO2012121351 A1 WO 2012121351A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
magnet
diffusion
earth magnet
magnet material
Prior art date
Application number
PCT/JP2012/056017
Other languages
English (en)
French (fr)
Inventor
金子 裕治
幸生 高田
平岡 基記
敬右 金田
Original Assignee
株式会社豊田中央研究所
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所, トヨタ自動車株式会社 filed Critical 株式会社豊田中央研究所
Priority to KR1020137023869A priority Critical patent/KR101459253B1/ko
Priority to DE112012001171.6T priority patent/DE112012001171T5/de
Priority to CN201280012714.3A priority patent/CN103443885B/zh
Priority to US14/000,537 priority patent/US8866574B2/en
Publication of WO2012121351A1 publication Critical patent/WO2012121351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • the present invention relates to a rare earth magnet capable of obtaining high magnetic properties (particularly high coercive force) while reducing the amount of a diffusion element such as dysprosium (Dy), and a method for producing the same.
  • Rare earth magnets particularly permanent magnets typified by Nd—Fe—B magnets exhibit very high magnetic properties. Use of this rare earth magnet makes it possible to reduce the size, increase the output, increase the density, and reduce the environmental load of electromagnetic devices and electric motors. Yes.
  • the excellent magnetic properties of rare earth magnets are required to be stably demonstrated over a long period even in a severe environment. Therefore, research and development have been actively conducted to increase the coercive force effective for heat resistance (deterioration resistance) while maintaining or improving the high residual magnetic flux density of rare earth magnets.
  • One of the most effective methods is to use a diffusion element such as dysprosium (Dy) or terbium (Tb), which is a rare earth element having a large anisotropic magnetic field (Ha), as a main phase crystal (for example, Nd 2 Fe 14 (B-type crystal) and the like.
  • Dy dysprosium
  • Tb terbium
  • Ha a rare earth element having a large anisotropic magnetic field
  • B-type crystal main phase crystal
  • a diffusion powder containing a diffusion element is mixed with a magnet powder made of a raw material alloy (rare earth magnet alloy), and the obtained mixture powder is sintered, and the diffusion treatment described above is performed.
  • a deposition method in which diffusion powder is applied to the surface of a magnet material and then subjected to a diffusion treatment by heat treatment.
  • vapor method vapor deposition method in which a diffusion element is vapor-deposited on a magnet material made of magnet powder and diffused inside. Proposed. This vapor deposition method is the mainstream these days, and the description relevant to this is, for example, in the following patent document.
  • each of the above patent documents are basically heated under the same conditions as the diffusion material, which is a vapor source of the diffusion element, under the same conditions, and the diffusion element is deposited and diffused on the surface of the magnet material. (See FIG. 9B). In this case, however, vapor deposition and diffusion are integrated, and the end of the vapor deposition process is the end of the diffusion process.
  • the deposited diffusing element is concentrated in the vicinity of the surface of the magnet material and does not diffuse to the inside, and rare Dy or the like is not effectively used for improving the coercive force of the rare earth magnet. It was happening.
  • an object of the present invention is to provide a rare earth magnet and a method for manufacturing the same, which can increase the coercive force more efficiently while suppressing the amount of rare diffusion elements such as Dy.
  • the present inventor has come up with the idea of evaporating from the surface a diffusing element (Dy or the like) that stays in the vicinity of the surface of the magnet material and does not diffuse to the inside.
  • the present inventors succeeded in obtaining a rare earth magnet that exhibits a coercive force equal to or higher than that of the prior art while reducing the amount of diffusing elements contained in the magnet material. By developing this result, the present invention described below has been completed.
  • a method for producing a rare earth magnet according to the present invention includes an attaching step of attaching a diffusing element capable of diffusing inside to a surface portion of a magnet material made of a molded or sintered body of rare earth alloy particles, and vacuuming the magnet material. And an evaporation step of evaporating at least a part of the diffusing element accumulated in the surface portion of the magnet material by heating in the medium.
  • surplus diffusing elements (Dy and the like) excessively concentrated in the vicinity of the surface of the magnet material in the adhesion step can be evaporated in the evaporation step.
  • concentration gradient of the diffusing element formed between the surface portion of the magnet material and the inside thereof can be relaxed or eliminated, and further, the diffusing element can be diffused further inside.
  • a rare earth magnet having high magnetic properties (particularly high coercive force) in which the diffusing element diffuses deep inside the magnet material can be obtained while reducing the amount of rare diffusing element used.
  • the diffusing element evaporated from the surface of the magnet material in the evaporation step can be captured and recovered by a cold trap provided at a vacuum exhaust port or the like and reused. Therefore, when the manufacturing method of the present invention is viewed as a whole, a rare earth magnet having high magnetic properties (coercive force) can be obtained by effectively utilizing rare diffusion elements without being wasted.
  • the processing time can be greatly shortened compared with the case of performing the conventional diffusion process. This is because it is not always necessary to slowly deposit the diffusing element on its surface over a long period of time according to the diffusion speed of the diffusing element in the magnet material as in the prior art. That is, according to the manufacturing method of the present invention, even when the diffusing element is attached to the surface of the magnet material temporarily or within a short time in the attaching step, the excess diffusing element on the surface portion in the subsequent evaporation step. This is because the diffusing element can be sufficiently diffused into the magnet material while removing and recovering.
  • the amount of diffusing elements such as Dy is 1/2 to 1/1 that of a conventional diffusion-treated rare earth magnet while exhibiting a coercive force equal to or greater than that of the conventional diffusion-treated rare earth magnet.
  • a rare earth magnet suppressed to 10 is obtained by diffusion treatment for several hours.
  • the present invention is grasped not only as the manufacturing method described above but also as a rare earth magnet obtained by the manufacturing method. Furthermore, this rare earth magnet is clearly different from conventional rare earth magnets in the correlation between the amount of diffusing elements and the coercive force. That is, the rare earth magnet according to the present invention belongs to a completely new region regarding the amount of diffusing elements and the coercive force. Therefore, the present invention can be understood as the following rare earth magnet itself regardless of the manufacturing method described above.
  • the present invention relates to a rare earth magnet comprising a magnet material formed of a compact or sintered body of rare earth alloy particles and a diffusing element diffused from the surface portion of the magnet material to the inside.
  • the amount d of the diffusing element (100% by mass), the coercive force Ht of the whole rare earth magnet (kOe 79.58 kA / m), the coercive force Hs (kOe) of the surface portion of the rare earth magnet,
  • the rare earth magnet may be characterized in that the coercive force Hi (kOe) inside the rare earth magnet satisfies the following relational expression. Ht ⁇ (2d + 11) ⁇ 3.5 (kOe) (Formula 1) And Hi / Hs ⁇ 0.8 (Formula 2)
  • the “surface portion” refers to a portion where the depth from the outermost surface (diffusion surface) of the rare earth magnet to which the diffusing element adheres corresponds to 0 to 15% of the total height (total height) of the rare earth magnet.
  • “Inside” means a portion whose depth from the outermost surface corresponds to 51 to 66% of the total height.
  • Surface coercive force Hs is obtained by slicing a thin plate-like sample (thin sample) corresponding to the above-mentioned surface portion obtained by slicing a rare earth magnet as a test material. This is a value obtained by measurement with Ei Kogyo Co., Ltd.).
  • the “inner coercive force Hi” is a value obtained by similarly measuring a thin piece sample corresponding to the above obtained by slicing a rare earth magnet.
  • fills Numerical formula 1 and Numerical formula 2 is not limited by the manufacturing method as stated above, of course, it is suitable if it is obtained by the manufacturing method mentioned above.
  • the diffusing element is representative Dy will be described as an example, and the meanings of Equation 1 and Equation 2 will be described.
  • the coercive force of rare earth magnets is generally about 11 kOe.
  • the rare earth alloy particles constituting the rare earth magnet contain Dy
  • the coercive force of the rare earth magnet generally increases by about 2 kOe per 1 mass% of Dy.
  • Formula 2 means that the rare earth magnet of the present invention has a very small coercive force difference between the surface portion (Hs) and the inside (Hi).
  • Formula 2 means that Dy does not stay excessively on the surface portion of the rare earth magnet but diffuses inside, and the Dy concentration gradient from the surface portion toward the inside is very small or gentle. is doing. As described above, almost no rare earth magnet has a small difference in coercive force between the surface portion and the inside.
  • the left side of Formula 1 can be 4 kOe or more, 4.5 kOe or more, or even 5 kOe or more. Since the larger the left side of Equation 1, the better. Naturally, it is not possible or necessary to set an upper limit value. In other words, the left side of Equation 1 may be 8 kOe or less, 7 kOe or less, or 6 kOe or less.
  • the left side of Equation 2 can be 0.82 or greater, or even 0.84 or greater. Since it is preferable that the left side of Equation 2 is larger, it is naturally unnecessary to set an upper limit. In other words, the left side of Equation 2 may be 1 or less, 0.95 or less, or 0.9 or less.
  • the rare earth magnet according to the present invention includes a rare earth magnet material, a rare earth magnet member, and the like, and the form thereof is not limited.
  • the rare earth magnet may be in a block shape, a ring shape, or a thin film shape.
  • the rare earth magnet of the present invention is preferably an anisotropic rare earth magnet having high magnetic properties, but may be an isotropic rare earth magnet.
  • the magnet material is a material to be treated for diffusion treatment, and may be a molded body made of rare earth alloy particles or a sintered body obtained by sintering the molded body.
  • the magnet material may be a final product, an intermediate material, or a bulk material.
  • the diffusion of the diffusing element in the present specification mainly refers to the diffusion of the rare earth alloy particles (magnet powder particles) or the crystals (main phase) constituting them to the surfaces and grain boundaries (surface diffusion and grain boundary diffusion).
  • diffusion into the crystal grains body diffusion
  • the term “grain boundary” or “interface” includes not only rare earth alloy particles but also “grain boundaries” and “interfaces” of crystal grains constituting the rare earth alloy particles.
  • the rare earth element (R) referred to in this specification includes scandium (Sc), yttrium (Y), and lanthanoid.
  • Lanthanoids include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu).
  • a “rare earth alloy” as used herein refers to a main rare earth element (hereinafter referred to as “Rm”) that is one or more of rare earth elements, boron (B), and a transition metal element (TM: mainly). Fe) and inevitable impurities and / or modifying elements.
  • Rm a main rare earth element that is one or more of rare earth elements, boron (B), and a transition metal element (TM: mainly). Fe) and inevitable impurities and / or modifying elements.
  • This Rm is composed of one or more of the above-mentioned Rs, and among them, Nd and / or Pr are typical.
  • the modifying elements are cobalt (Co), lanthanum (La), and gallium (Ga), niobium (Nb), aluminum (Al), silicon, which are effective in improving magnetic properties such as coercive force, which improve the heat resistance of rare earth magnets.
  • Si titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), germanium (Ge), zirconium (Zr), molybdenum (Mo), indium
  • the combination of the modifying elements is arbitrary.
  • the modifying element may be introduced from the outside by diffusion treatment or the like.
  • Inevitable impurities are impurities originally contained in the rare earth alloy, impurities mixed in at each step, and the like, and are elements that are difficult to remove due to cost or technical reasons.
  • Examples of such inevitable impurities include oxygen (O), nitrogen (N), carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), and argon (Ar). is there.
  • the diffusing material contains a diffusing element (coercive force improving element), its composition, type, form, etc. are not limited.
  • the diffusing element include diffusing rare earth elements (Rd) such as Dy, Tb, and Ho.
  • the diffusing material is preferably made of a simple substance or an alloy thereof. Further, the diffusing material used in the attaching step may be a single type or a plurality of types. Note that the contents relating to the above-described modifying elements and inevitable impurities may also apply to the diffusing material.
  • x to y in this specification includes the lower limit value x and the upper limit value y.
  • various lower limit values or upper limit values described in the present specification can be arbitrarily combined to constitute a range such as “ab”.
  • any numerical value included in the range described in this specification can be used as an upper limit value or a lower limit value for setting a new numerical value range.
  • distribution figure which shows the relationship between the presence or absence of an evaporation process, and the change of the coercive force ranging from the surface part of a rare earth magnet to an inside. It is a schematic diagram which shows the sample which measured the coercive force ranging from a surface part to an inside. It is explanatory drawing which shows the heat pattern 2 which shows the temperature change at the time of a spreading
  • a configuration related to a manufacturing method can be a configuration related to a rare earth magnet if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.
  • the method for producing a rare earth magnet of the present invention mainly comprises an adhesion step and an evaporation step, and diffusion treatment is performed by these steps. Hereinafter, each step will be described.
  • a diffusing element capable of diffusing from the surface portion to the inside is included in the surface portion (including only the surface) of the magnet material formed of a compact or sintered body of rare earth alloy particles obtained by pulverizing the raw material alloy. It is the process of making it adhere.
  • a method of attaching the diffusing element to the surface of the magnet material a coating method in which a diffusing material containing the diffusing element is applied to the surface of the magnet material, the diffusing element is exposed to the vapor of the diffusing material, and the diffusing element is applied to the surface of the magnet material. There is a vapor deposition method for vapor-depositing.
  • the vapor deposition method only a diffusing element such as Dy can be efficiently deposited in the magnet material. Therefore, in the adhesion process, the heated magnet material and the diffusing material containing the heated diffusing element are brought close to each other in a vacuum, and the diffusing element is deposited on the surface of the magnet material by exposing the magnet material to the vapor of the diffusing element evaporated from the diffusing material. It is preferable that the vapor deposition step is performed.
  • the magnet material and the diffusion material can be heated independently, and the magnet material temperature (Tm), which is the heating temperature of the magnet material, and the diffusion material temperature (Td), which is the heating temperature of the diffusion material, Can be individually adjusted to a preferred temperature for the diffusion treatment.
  • Tm magnet material temperature
  • Td diffusion material temperature
  • the diffusing material provides a vapor of the desired diffusing element. Heat to temperature.
  • the vapor deposition step preferably has a heating temperature (Tm) of the magnet material higher than a heating temperature (Td) of the diffusion material.
  • the evaporation step is a step of evaporating at least a part of the diffusing element remaining on the surface of the magnet material by heating the magnet material after the adhesion step in vacuum.
  • the heating temperature and atmosphere of the magnet material during the evaporation process are appropriately adjusted.
  • the heating temperature is preferably a temperature at which the diffusion element not only evaporates from the surface of the magnet material but also promotes diffusion into the magnet material.
  • the adhesion process is a vapor deposition process
  • the heating temperature in the evaporation process is preferably higher than the heating temperature (diffusion material temperature) of the diffusion material during the vapor deposition process, for example.
  • the heating temperature during the evaporation step is preferably intermediate between the magnet material temperature and the diffusion material temperature during the vapor deposition step, for example.
  • the evaporation process is preferably a process of heating the magnet material in vacuum following the vapor deposition process. Even if the magnet material after the vapor deposition step is once cooled to room temperature and then re-heated, the diffusing element hardly evaporates from the surface portion of the magnet material. Although this reason is not certain, it is considered that once the magnet material is cooled after the vapor deposition step, the diffusing element is taken into the main phase and becomes stable.
  • the evaporation process is performed in a vacuum heating atmosphere created in the vapor deposition process.
  • the evaporation process only needs to cool the diffusion material heated in the vapor deposition process or isolate it from the magnet material.
  • the magnet material may be prevented from being exposed to the vapor of the diffusing element. Therefore, the evaporation step can be a temperature lowering step for lowering the temperature of the diffusion material or a separation step for separating the diffusion material from the magnet material.
  • the adhering step and the evaporating step may be combined with at least a part of the sintering step of sintering the compact made of rare earth alloy particles.
  • the adhering step when the adhering step is performed in a temperature range in which a liquid phase is generated in the molded body, the diffusion rate of the diffusing element is increased, and an efficient diffusion treatment can be performed in a short time.
  • R 2 TM 14 B 1 type crystal the temperature at which the liquid phase occurs between the main phase and the B-rich phase and R-phase composed of (TM transition metal element) Is around 600-700 ° C.
  • TM transition metal element TM transition metal element
  • a liquid phase starts to be generated at 800 ° C. Therefore, it is preferable to heat the magnet material at a temperature higher than the temperature at which such a liquid phase starts to occur, and perform the adhesion process and the evaporation process.
  • Such a liquid phase can also occur when a diffusion element and an element in a rare earth alloy particle form a eutectic.
  • Dy which is a diffusing element
  • Fe in rare earth alloy particles begin to form a liquid phase at 890 ° C. or higher, which is the eutectic point.
  • the amount of liquid phase in the molded body is increased, and the diffusion rate of the diffusing element in the molded body is further increased.
  • the magnet material temperature (Tm) is 700 to 1100 ° C.
  • the diffusing material temperature ( Td) is preferably 600 to 1000 ° C.
  • the gas pressure or the degree of vacuum in the vapor deposition process or the evaporation process is appropriately adjusted.
  • the gas pressure (degree of vacuum) in the processing furnace is 1 Pa or less, 10 ⁇ 1 Pa or less, 10 ⁇ 2 Pa or less. In the following, it is more preferably 10 ⁇ 3 Pa or less.
  • the processing time of the vapor deposition step or the evaporation step is also appropriately adjusted according to the amount of diffusion element to be vapor deposited or evaporated, but can be significantly shortened compared to the conventional diffusion processing time. Therefore, for example, the vapor deposition step or the evaporation step is preferably 0.5 to 10 hours, and more preferably 1 to 5 hours.
  • the adhesion process (particularly the vapor deposition process) and the evaporation process may be performed only once, but may be repeated in the same order. By repeating each step, the amount of the diffusing element can be effectively increased and the coercive force can be increased efficiently.
  • the magnet material is formed of a compact or sintered body of rare earth alloy particles.
  • the rare earth alloy particles are obtained by pulverizing a rare earth alloy composed of Rm and B, which are one or more rare earth elements, and the balance of transition metal (TM: mainly Fe) and inevitable impurities and / or modifying elements.
  • the rare earth alloy is preferably a composition that forms an Rm-rich phase effective in improving the coercive force and sinterability of the magnet material, rather than the theoretical composition based on Rm 2 TM 14 B.
  • the rare earth alloy is an Rm-TM-B alloy composed of 10 to 30 atomic% Rm, 1 to 20 atomic% B, and the balance TM when the total is 100 atomic%. Is preferable.
  • TM is basically the main balance, it is good to say that TM is 72 to 83 atomic%.
  • Carbon (C) can be used as an alternative to B, and at this time, B + C is preferably adjusted to 5 to 12 atomic%.
  • the cast rare earth alloy having a desired composition may be mechanically pulverized, hydrogen pulverized, or a thin plate-like slab that has been rapidly solidified by strip casting or the like, and HDDR (hydrogen It may be manufactured through hydrogen treatment such as (chemical decomposition-decomposition / dehydrogenation-recombination method), may be ribbon particles that have been quenched rapidly, or may be formed by sputtering or the like. Furthermore, the rare earth alloy particles may be amorphous.
  • the particle diameter of the rare earth alloy particles is not limited, but the average particle diameter (particle diameter or median diameter when the cumulative mass is 50%) is preferably about 1 to 20 ⁇ m, more preferably about 3 to 10 ⁇ m. If the average particle size is too small, the cost is high, and if the average particle size is too large, the diffusibility of the diffusing element into the inside is excellent, but the density and magnetic properties of the rare earth magnet may be lowered.
  • the rare earth alloy particles may be a mixture of a plurality of types having different compositions and forms (grain shape, particle size, etc.).
  • the rare earth magnet of the present invention may be a final product, an intermediate product or a material, and its use and form are not limited.
  • the rare earth magnet of the present invention is used, for example, in various electromagnetic devices such as a rotor or a stator of an electric motor, a magnetic recording medium such as a magnetic disk, a linear actuator, a linear motor, a servo motor, a speaker, and a generator.
  • FIG. 1 A schematic diagram of a diffusion treatment apparatus (rare earth magnet production apparatus) 1 used for the diffusion treatment according to the present invention is shown in FIG.
  • the diffusion processing apparatus 1 is provided in the processing chamber 10, a preparation chamber 20 that communicates with the processing chamber 10, an openable gate (shielding means) 30 that can freely switch between the two, and the processing chamber 10.
  • a heating pack 13 which is an enclosure.
  • Each of the six surfaces of the heating pack 13 includes a reflector and an electric resistance heating heater (hereinafter simply referred to as “heater”) attached to the reflector.
  • the bottom surface 13a of the heating pack 13 can be opened and closed by sliding or rotating.
  • the bottom surface 13 a opens when the diffusion material D rising from the preparation chamber 20 approaches the magnet material M.
  • the side surface 13b of the heating pack 13 can also be opened and closed by sliding or rotating. When the side surface 13 b is opened, the inside of the heating pack 13 surrounding the magnet material M becomes the same vacuum atmosphere as the processing chamber 10.
  • the processing chamber 10 and the vapor deposition source chamber 20 can be adjusted to an independent atmosphere by the gate 30. Further, the magnet material M can be heated to different temperatures (magnet material temperature and diffusion material temperature) by the heating pack 13 and the diffusion material D can be independently heated by the flat heater 22.
  • a vacuum pump is connected to the processing chamber 10, and the degree of vacuum of the processing chamber 10, the temperature of the magnet material, the temperature of the diffusion material, the elevation of the elevator 21, etc. are integrated by a separately provided control means. Controlled.
  • a cold trap for recovering Dy (diffusion element) evaporated from the magnet material M is provided at the vacuum exhaust port of the processing chamber 10. Further, the cooling of the magnet material M is performed by introducing an inert gas (Ar) into the processing chamber 10 when the side surface 13b of the heating pack 13 is in a released state.
  • Example 1 Provide of sample> A rare earth anisotropic sintered magnet (sample) in which a magnet material was subjected to diffusion treatment was manufactured as follows.
  • This magnet powder (aggregate of rare earth alloy particles) was put into a cavity of a molding die and molded in a magnetic field to obtain a 40 ⁇ 20 ⁇ 15 mm rectangular shaped compact (molding step). At this time, a 2T magnetic field was applied.
  • This molded body was heated at 1050 ° C. ⁇ 4 Hr in a vacuum atmosphere of 10 ⁇ 3 Pa or less to obtain a sintered body (sintering step).
  • a 6.5 mm square magnet material (sample) obtained by polishing the surface of the sintered body was subjected to the following diffusion treatment. The magnetic characteristics of the magnet material before the diffusion treatment are shown in Sample No. 1 in Table 1. Shown in C13.
  • the gate 30 was opened, the diffusion material in the preparation chamber 20 was moved to the processing chamber 10, and the diffusion material was placed close to the magnet material (arrangement process). At this time, the distance between the magnet material and the diffusing material was about 10 mm.
  • the atmospheres in the processing chamber 10 and the preparation chamber 20 were both controlled to 10 ⁇ 4 Pa. In this state, the magnet material and the diffusion material were heated for 2 hours (attachment process, vapor deposition process).
  • the temperature history (heat pattern 1) of the magnet material and the diffusing material in this example is shown in FIG.
  • the coercive force was measured using a pulse excitation type magnetic property measuring apparatus (manufactured by Toei Kogyo Co., Ltd.) for the sample that had been subjected to only the above-described vapor deposition step and the sample that had been subjected to the evaporation step.
  • the amount of Dy diffused in each sample was measured by an electron beam microanalyzer (EPMA) and high frequency inductively coupled plasma mass spectrometry (ICP).
  • the coercive force efficiency ( ⁇ Ht / d: kOe / mass%), which is the value obtained by dividing the difference in coercivity before and after the sample diffusion treatment ( ⁇ Ht: kOe) by the amount of Dy in the sample (d: mass%), is calculated. did.
  • the amount of increase in coercivity relative to the sample before diffusion treatment (sample No. C13) is shown in FIG. 3A
  • the amount of Dy diffusion introduced by the diffusion treatment is shown in FIG. 3B
  • the coercivity efficiency is shown in FIG. Indicated.
  • the coercive force was measured by the method described above for each of the six thin slice samples obtained by sequentially slicing each 6.5 mm square sample into a 1 mm thickness with a cutting margin of 0.1 mm. Based on the coercive force of each thin sample, the distribution of the coercive force from the surface part to the inside of the sample is shown in FIG. 5A. In FIG. 5A, the coercive force at the central position of the thickness of each thin sample was plotted.
  • the rare earth magnet exhibiting a coercive force equal to or higher than that of the conventional one can be obtained by carrying out the evaporation step while greatly reducing the amount of rare Dy used.
  • Example 2 (1) Using the magnet material described above, diffusion treatment was performed along the heat pattern 2 shown in FIG. 6A and the heat pattern C2 shown in FIG. 6B.
  • the heat pattern 2 after performing a vapor deposition step of magnet material temperature (Tm): 1000 ° C. and diffusion material temperature (Td): 830 ° C. ( ⁇ Tm) for 2 hours, the diffusion material is separated from the magnet material, This is a pattern in which an evaporation process of heating at 800 to 900 ° C. is performed.
  • the heat pattern C2 is a pattern in which, after performing the same vapor deposition process, the magnet material is once cooled to room temperature, and then only the magnet material is reheated at 800 to 900 ° C.
  • FIG. 7A The Dy diffusion amount and coercivity of the sample obtained by heat pattern 2 are shown in FIG. 7A, and the Dy diffusion amount and coercivity of the sample obtained by heat pattern C2 are shown in FIG. 7B.
  • FIG. 7A in the case of the sample subjected to the evaporation process, the coercive force hardly changed, and the Dy diffusion amount greatly decreased as the temperature (magnet material temperature) increased during the evaporation process.
  • FIG. 7B in the case of the sample in which the magnet material was cooled to the room temperature in the middle, not only the coercive force but also the Dy diffusion amount hardly changed.
  • Example 3 (1) Using the magnet material described above, a diffusion treatment was performed along the heat pattern 3 shown in FIG. 8A.
  • the diffusion material temperature (Td): 770 ° C. ( ⁇ Tm) after performing the deposition process I for 2 hours,
  • the first diffusion process for performing the evaporation process I in which the material is continuously heated at 900 ° C. ( Tm)
  • the second diffusion process for repeatedly performing the evaporation process II similar to the evaporation process I and the evaporation process II similar to the evaporation process I.
  • This pattern consists of processing.
  • stage S1 is the time when vapor deposition process I is completed
  • stage S2 is the time when evaporation process I is completed
  • stage S3 is the time when vapor deposition process II is completed
  • stage S4 is the time when vaporization process II is completed. Show.
  • the amount of Dy diffused in the sample is reduced by the evaporation step I or the evaporation step II than after the evaporation step I or after the evaporation step II, respectively.
  • the amount of Dy diffusion in the sample is greatly increased by repeating the vapor deposition step and the evaporation step.
  • the coercive force does not decrease but rather increases. Further, when the amount of Dy diffusion due to repetition of the vapor deposition process and the evaporation process increases, the coercive force also increases accordingly. Therefore, it was found from this example that the coercive force can be further increased while suppressing the amount of Dy used by repeating the diffusion process consisting of the vapor deposition process and the evaporation process.
  • Example 4 Samples subjected to diffusion treatment with various heat patterns as shown in Table 1 were prepared (Sample Nos. 1 to 4 and Sample Nos. C1 to C10). Sample No. C1 to C10 were subjected to diffusion treatment with a heat pattern C0 shown in FIG. 9B or a heat pattern C3 as shown in FIG. 9C.
  • the heat pattern C0 is a conventional heat pattern in which the magnet material and the diffusing material are heated under the same conditions. Sample No. C10 is obtained by diffusing 0.6% by mass of Dy by a diffusion treatment into a magnet material made of rare earth alloy particles containing 3.5% by mass of Dy in advance by a melting method.
  • samples made of rare earth alloy particles containing Dy by a melting method and not subjected to diffusion treatment were also prepared (Sample No. C11 and Sample No. C12).
  • Sample No. C13 is the magnet material before the diffusion treatment described above.
  • the magnetic properties (coercive force) of these samples were determined in the same manner as in each of the samples described above and listed in Table 1.
  • FIG. 11 shows the correlation between Ht ⁇ (2d + 11) and Hi / Hs for these samples.
  • Hi (kOe) corresponds to 51 to 66% of the third thin piece sample cut from a 6.5 mm square sample (position from the surface: 3.3 to 4.3 mm / total height (6.5 mm)).
  • Hs (kOe) is the coercive force of the first thin piece sample cut from a 6.5 mm square sample (position from the surface: 0 to 1 mm / equivalent to 0 to 15% of the total height).
  • the sample subjected to the evaporation step in addition to the vapor deposition step as in the present invention has a coercive force Ht higher by 3.5 kOe or more than on the straight line. In other words, it can be seen that it exists in the region of Ht ⁇ (2d + 11) ⁇ 3.5.
  • the sample subjected to the evaporation step in addition to the vapor deposition step has not only Ht ⁇ (2d + 11) of 3.5 or more, but also has an inner surface ratio Hi / Hs of the coercive force. It is 0.8 or more.
  • sample no. 1 to 4 fall within the region surrounded by 4 ⁇ Ht ⁇ (2d + 11) ⁇ 5.5 and 0.8 ⁇ Hi / Hs ⁇ 0.9.
  • this area is sample No. This is a region that could not be reached by C1 to C10 and the conventional rare earth magnet, and was first developed by the rare earth magnet according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

 Dy等の拡散元素を表面部から内部まで効率的に拡散させることができる希土類磁石の製造方法を提供する。本発明の希土類磁石の製造方法は、希土類合金粒子の成形体または焼結体からなる磁石材の表面部に内部へ拡散し得る拡散元素を付着させる付着工程と、磁石材を真空中で加熱して磁石材の表面部に滞留した拡散元素の少なくとも一部を蒸発させる蒸発工程と、を備えることを特徴とする。付着工程は蒸着工程であり、蒸発工程は蒸着工程に続けて磁石材だけを真空中で加熱する加熱工程であると好ましい。この製造方法によれば、稀少なDy等の使用量を抑制しつつ、希土類磁石の保磁力の向上を図ることができる。換言すると、本発明により保磁力効率が著しく大きい希土類磁石が得られる。

Description

希土類磁石およびその製造方法
 本発明は、ジスプロシウム(Dy)等の拡散元素の使用量を低減しつつ高磁気特性(特に高保磁力)が得られる希土類磁石およびその製造方法に関する。
 Nd-Fe-B系磁石を代表とする希土類磁石(特に永久磁石)は、非常に高い磁気特性を示す。この希土類磁石を用いると、電磁機器や電動機の小型化、高出力化、高密度化さらには環境負荷の低減化等を図ることが可能となるため、幅広い分野で希土類磁石の利用が検討されている。
 もっともそのためには、希土類磁石の優れた磁気特性が厳しい環境下でも長期的に安定して発揮されることが求められる。そこで希土類磁石の高い残留磁束密度を維持または向上させつつ、耐熱性(耐減性)等に有効な保磁力を高める研究開発が盛んに行われている。その最も有効な方法の一つは、異方性磁界(Ha)の大きな希土類元素であるジスプロシウム(Dy)やテルビウム(Tb)などの拡散元素を、主相となる結晶(例えば、NdFe14B型結晶)の粒界などへ拡散させることである。これにより、その結晶粒内におけるDy等の置換を抑制しつつ、結晶磁気異方性の向上と逆磁区の核生成の抑制を図れ、残留磁束密度の低下を抑制しつつ保磁力の向上を図れる。
 ところで、そのような拡散方法にも種々ある。例えば、原料合金(希土類磁石合金)からなる磁石粉末に拡散元素を含む拡散粉末を混合し、得られた混合粉末の成形体を焼結等させて、上述した拡散処理を行う粉末混合法がある。また、拡散粉末等を磁石材の表面に被着させた後、熱処理して拡散処理を行う被着法がある。さらに、稀少元素であるDy等の使用量を抑制しつつ保磁力を効果的に向上させるために、磁石粉末からなる磁石材へ拡散元素を蒸着させて内部へ拡散させる蒸着法(蒸気法)が提案されている。この蒸着法が最近の主流であり、これに関連する記載が、例えば下記の特許文献にある。
国際公開公報WO2006/100968 国際公開公報WO2007/102391(特開2008-263223号公報、特開2009-124150号公報) 特開2008-177332号公報 特開2009-43776号公報 特開2009-200179号公報
 上記の各特許文献に記載されている内容はいずれも、基本的に、拡散元素の蒸気源である拡散材を磁石材と共に同条件下で加熱して、磁石材表面へ拡散元素を蒸着、拡散させるものである(図9B参照)。もっともこの場合、蒸着と拡散は一体的であり、蒸着処理の終了が拡散処理の終了となっていた。
 ところが、このような方法では、蒸着した拡散元素が磁石材の表面近傍に濃厚に滞留して内部まで拡散せずに終わり、稀少なDy等が希土類磁石の保磁力向上に有効に利用されない状況が生じていた。
 本発明はこのような事情に鑑みて為されたものである。すなわち、稀少なDy等の拡散元素の使用量を抑制しつつ、保磁力をより効率的に高めることができる希土類磁石とその製造方法とを提供することを目的とする。
 本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、磁石材の表面近傍に滞留し内部まで拡散しない拡散元素(Dy等)を、その表面から蒸発させることを思いついた。そして実際に、磁石材に含まれる拡散元素量を低減しつつ、従来と同等以上の保磁力を発現する希土類磁石を得ることに成功した。この成果を発展させることにより、以降に述べるような本発明が完成するに至った。
《希土類磁石の製造方法》
(1)本発明の希土類磁石の製造方法は、希土類合金粒子の成形体または焼結体からなる磁石材の表面部に内部へ拡散し得る拡散元素を付着させる付着工程と、該磁石材を真空中で加熱して該磁石材の表面部に滞留した該拡散元素の少なくとも一部を蒸発させる蒸発工程と、を備えることを特徴とする。
(2)本発明の製造方法によれば、付着工程で磁石材の表面近傍に過度に濃化した余剰の拡散元素(Dy等)を、蒸発工程で蒸発させることができる。これにより、磁石材の表面部とその内部との間にできる拡散元素の濃度勾配を緩和または解消でき、さらには、拡散元素をより内部へ拡散させることが可能となる。こうして拡散元素が磁石材の内部深くまで拡散した高磁気特性(特に高保磁力)の希土類磁石が、稀少な拡散元素の使用量の低減を図りつつ得られる。
 ちなみに、蒸発工程で磁石材の表面から蒸発させた拡散元素は、真空排気口等に設けたコールドトラップなどにより捕捉、回収して再利用可能である。従って本発明の製造方法を全体的にみると、稀少な拡散元素が何ら無駄にされることなく効率的に有効活用されて、高磁気特性(保磁力)の希土類磁石が得られる。
 また本発明のような付着工程と蒸発工程からなる拡散処理によれば、従来の拡散処理を行う場合よりも、処理時間を大幅に短縮できる。なぜなら、従来のように、磁石材内における拡散元素の拡散速度に応じて、拡散元素をその表面へ長時間をかけてゆっくりと蒸着等させる必要が必ずしもないからである。つまり本発明の製造方法によれば、付着工程で、拡散元素を磁石材の表面へ一時的にまたは短時間内に付着させた場合でも、その後の蒸発工程で、表面部にある余剰な拡散元素を除去、回収しつつ、拡散元素を磁石材の内部へ十分に拡散させることができるからである。
 具体的に説明すると、本発明の製造方法によれば、例えば、従来の拡散処理した希土類磁石と同等以上の保磁力を発現しつつ、Dy等の拡散元素量が従来の1/2~1/10に抑制された希土類磁石が、数時間の拡散処理により得られる。
《希土類磁石》
(1)本発明は、上述した製造方法としてのみならず、その製造方法により得られた希土類磁石としても把握される。さらにこの希土類磁石は、拡散元素量と保磁力との相関において、従来の希土類磁石とは明らかにことなる。つまり、本発明に係る希土類磁石は、拡散元素量と保磁力に関して全く新規な領域に属する。そこで本発明は、上述した製造方法とは関係なく、次のような希土類磁石自体としても把握される。
(2)すなわち本発明は、希土類合金粒子の成形体または焼結体からなる磁石材と該磁石材の表面部から内部へ拡散した拡散元素とからなる希土類磁石であって、該希土類磁石全体を100質量%としたときの該拡散元素量d(質量%)、該希土類磁石全体の保磁力Ht(kOe=79.58kA/m)、該希土類磁石の表面部の保磁力Hs(kOe)、該希土類磁石の内部の保磁力Hi(kOe)が次の関係式を満たすことを特徴とする希土類磁石でもよい。
      Ht-(2d+11)≧3.5(kOe)  (数式1)
  かつ  Hi/Hs ≧0.8           (数式2)
 ここでいう「表面部」は、拡散元素が付着する希土類磁石の最表面(拡散面)からの深さが、希土類磁石全体の高さ(全高)の0~15%に相当する部分をいう。また「内部」は、その最表面からの深さが全高の51~66%に相当する部分をいう。「表面部の保磁力Hs」は、供試材である希土類磁石をスライスして得られた上記の表面部に相当する薄板状の試料(薄片試料)を、パルス励磁型磁気特性測定装置(東英工業株式会社製)で測定して得られた値である。また「内部の保磁力Hi」は、希土類磁石をスライスして得られた上記の内部に相当する薄片試料を同様に測定して得られた値である。
 なお、数式1および数式2を満たす希土類磁石は既述の製造方法による限定を受けないが、勿論、上述した製造方法により得られたものであると好適である。以下、拡散元素が代表的なDyである場合を例にとり、数式1および数式2の意味を説明する。
 拡散処理を行わない希土類磁石(特にNdFeB系焼結磁石)の保磁力は一般的に約11kOeである。その希土類磁石を構成する希土類合金粒子がDyを含有している場合、Dy1質量%あたり希土類磁石の保磁力は一般的に約2kOe上昇することが知られている。従って数式1の左辺:Ht-(2d+11)=0で示される直線が、希土類磁石の保磁力の上昇度合を検討する際のベースラインとなる。従って数式1は、本発明の希土類磁石の保磁力が、そのベースラインよりも3.5kOe以上高いことを意味する。このようにDy量との相関で保磁力が格段に高くなる希土類磁石は従来ほとんど存在し無かった。
 数式2は、本発明の希土類磁石が表面部(Hs)と内部(Hi)で保磁力差が非常に小さいことを意味する。つまり数式2は、Dyが希土類磁石の表面部に過剰に滞留しておらず内部にも拡散しており、表面部から内部に向かうDy濃度勾配が非常に小さいか、または緩やかであることを意味している。このように表面部と内部との保磁力差が小さい希土類磁石も従来ほとんど存在し無かった。
 そして磁石材の表面から拡散元素を拡散させた希土類磁石に限っていうなら、数式1および数式2を共に満たすような希土類磁石は、これまで全く存在していなかった。従って、両数式により画定される領域に属する希土類磁石は、本発明により初めて提供される。
 本発明の場合、数式1の左辺は、4kOe以上、4.5kOe以上さらには5kOe以上にもなり得る。この数式1の左辺は大きいほど好ましいので、当然、その上限値を設けることはできないし、その必要もない。敢えていうなら、数式1の左辺は8kOe以下、7kOe以下さらには6kOe以下としてもよい。数式2の左辺は、0.82以上さらには0.84以上にもなり得る。この数式2の左辺も大きいほど好ましいので、当然、上限値を設ける必要はない。敢えていうなら、数式2の左辺は、1以下、0.95以下さらには0.9以下としてもよい。
(3)本発明に係る希土類磁石は、希土類磁石素材や希土類磁石部材などを含み、その形態も問わない。例えば、希土類磁石はブロック状でも、環状でも、薄膜状でもよい。本発明の希土類磁石は、高磁気特性の異方性希土類磁石であると好ましいが、等方性希土類磁石でもよい。
 ちなみに磁石材は、拡散処理に供される被処理材であり、希土類合金粒子からなる成形体でも、その成形体を焼結させた焼結体でもよい。また磁石材は、最終的製品でも、中間材でも、バルク材でもよい。
 また本明細書でいう拡散元素の拡散は、主に、希土類合金粒子(磁石粉末粒子)またはそれを構成する結晶(主相)の表面や粒界への拡散(表面拡散や粒界拡散)をいう。但し、結晶粒内への拡散(体拡散)を含めてもよい。なお、本明細書で単に「粒界」や「界面」というときは、希土類合金粒子のみならずそれを構成する結晶粒の「粒界」や「界面」も含む。
《その他》
(1)本明細書でいう希土類元素(R)には、スカンジウム(Sc)、イットリウム(Y)、ランタノイドを含む。ランタノイドは、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)などがある。
(2)本明細書でいう「希土類合金」は、希土類元素の一種以上である主希土類元素(以下「Rm」と表す。)とホウ素(B)と残部である遷移金属元素(TM:主にFe)と不可避不純物および/または改質元素とからなる。このRmは上述したRの一種以上からなるが、なかでも、Ndおよび/またはPrが代表的である。
 改質元素は、希土類磁石の耐熱性を向上させるコバルト(Co)、ランタン(La)、保磁力などの磁気特性の向上に有効なガリウム(Ga)、ニオブ(Nb)、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ゲルマニウム(Ge)、ジルコニウム(Zr)、モリブデン(Mo)、インジウム(In)、スズ(Sn)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)または鉛(Pb)の少なくとも1種以上がある。改質元素の組合せは任意である。
 これらの含有量は通常微量であり、例えば、希土類合金全体を100質量%として、0.01~10質量%程度である。なお、改質元素は、希土類合金粒子内に元々含有されている場合の他、拡散処理等により外部から導入されたものでもよい。
 不可避不純物は、希土類合金にもともと含まれる不純物や各工程時に混入等する不純物などであって、コスト的または技術的な理由等により除去することが困難な元素である。このような不可避不純物として、例えば、酸素(O)、窒素(N)、炭素(C)、水素(H)、カルシウム(Ca)、ナトリウム(Na)、カリウム(K)、アルゴン(Ar)等がある。
(3)拡散材は、拡散元素(保磁力向上元素)を含む限り、その組成、種類、形態等を問わない。拡散元素には、Dy、Tb、Ho等の拡散希土類元素(Rd)がある。拡散材はそれらの単体または合金からなると好ましい。また、付着工程に用いる拡散材は単種のみからなっても複数種でもよい。なお、拡散材にも上述した改質元素や不可避不純物に関する内容が該当し得る。
(4)特に断らない限り、本明細書でいう「x~y」は、下限値xおよび上限値yを含む。また、本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a~b」のような範囲を構成し得る。さらに、本明細書に記載した範囲内に含まれる任意の数値を、新たな数値範囲を設定するための上限値または下限値とし得る。
拡散処理装置の概要図である。 拡散処理時の温度変化を示すヒートパターン1を示す説明図である。 蒸発工程の有無と保磁力増加量との関係を示す棒グラフである。 蒸発工程の有無とDy拡散量との関係を示す棒グラフである。 蒸発工程の有無と保磁力効率との関係を示す棒グラフである。 蒸発工程を施さない希土類磁石を表面部から内部に向かって観察したEPMA像である。 蒸発工程を施した希土類磁石を表面部から内部に向かって観察したEPMA像である。 蒸発工程の有無と希土類磁石の表面部から内部にわたる保磁力の変化との関係を示す分散図である。 表面部から内部にわたる保磁力を測定した試料を示す概要図である。 拡散処理時の温度変化を示すヒートパターン2を示す説明図である。 別のヒートパターンC2を示す説明図である。 ヒートパターン2に係る蒸発工程時の温度とDy拡散量および保磁力との関係を示す分散図である。 ヒートパターンC2に係る蒸発工程時の温度とDy拡散量および保磁力との関係を示す図である。 拡散処理時の温度変化を示すヒートパターン3を示す説明図である。 ヒートパターン3の各時点におけるDy拡散量を示す棒グラフである。 ヒートパターン3の各時点における保磁力増加量を示す棒グラフである。 種々の希土類磁石の表面部から内部にわたる保磁力の変化を示す分散図である。 従来型のヒートパターンC0を示す説明図である。 別のヒートパターンC3を示す説明図である。 種々の希土類磁石について調べたDy量(d:質量%)と保磁力(Ht:kOe)との関係を示す分散図である。 それら希土類磁石の保磁力に関する特性を示す分散図である。
 発明の実施形態を挙げて本発明をより詳しく説明する。以下の実施形態を含めて本明細書で説明する内容は、本発明の製造方法のみならず希土類磁石にも適宜適用される。本明細書中から任意に選択した一つまたは二つ以上の構成を上述した本発明の構成に付加し得る。製造方法に関する構成は、プロダクトバイプロセスとして理解すれば希土類磁石に関する構成となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《製造方法》
 本発明の希土類磁石の製造方法は主に付着工程と蒸発工程からなり、これら工程により拡散処理がなされる。以下、各工程について説明する。
(1)付着工程は、原料合金を粉砕等した希土類合金粒子の成形体または焼結体からなる磁石材の表面部(表面のみを含む)へ、その表面部から内部へ拡散し得る拡散元素を付着させる工程である。拡散元素を磁石材の表面部へ付着させる方法として、拡散元素を含む拡散材を磁石材の表面部に塗布する塗布法、拡散材の蒸気に磁石材を曝して磁石材の表面部に拡散元素を蒸着させる蒸着法などがある。
 もっとも、蒸着法によれば、Dy等の拡散元素のみを効率的に磁石材内へ付着させ得る。従って付着工程は、加熱した磁石材と加熱した拡散元素を含む拡散材とを真空中で近接させ、拡散材から蒸発した拡散元素の蒸気に磁石材を曝して磁石材の表面へ拡散元素を蒸着させる蒸着工程であると好適である。
 付着工程が蒸着工程である場合、磁石材と拡散材とを独立して加熱でき、磁石材の加熱温度である磁石材温度(Tm)と拡散材の加熱温度である拡散材温度(Td)とを個別に、拡散処理に好ましい温度に調整できる。例えば、希土類合金粒子またはその結晶の界面または粒界に、液相が生じて拡散元素が粒界拡散し易くなる温度に磁石材を加熱する一方、拡散材は所望の拡散元素の蒸気が得られる温度に加熱する。こうすれば、蒸着工程で、拡散元素が磁石材の表面に単に付着するのみならず、並行して磁石材の内部へ拡散するようになる。この一例として、蒸着工程は、磁石材の加熱温度(Tm)を拡散材の加熱温度(Td)よりも高くすると好適であると好ましい。
(2)蒸発工程は、付着工程後の磁石材を真空中で加熱して磁石材の表面部に滞留した拡散元素の少なくとも一部を蒸発させる工程である。蒸発工程中の磁石材の加熱温度や雰囲気は適宜調整される。例えば、その加熱温度(磁石材温度)は、拡散元素が単に磁石材表面から蒸発するのみならず、磁石材の内部への拡散も促進される温度であると好ましい。付着工程が蒸着工程である場合を考えると、蒸発工程の加熱温度は、例えば、蒸着工程時の拡散材の加熱温度(拡散材温度)よりも高い方が好ましい。もっとも、蒸発工程の加熱温度が過大になると、結晶粒内への拡散(体拡散)が促進され、磁石材の内部への拡散が阻害されるので好ましくない。そこで蒸発工程時の加熱温度は、例えば、蒸着工程時の磁石材温度と拡散材温度の中間であるとよい。
 また付着工程が蒸着工程である場合、蒸発工程は、蒸着工程に続けて磁石材を真空中で加熱する工程であると好ましい。蒸着工程後の磁石材を室温域まで一旦冷却した後に再加熱しても、磁石材の表面部から拡散元素が蒸発し難い。この理由は定かではないが、蒸着工程後に磁石材を一旦冷却すると、拡散元素が主相内に取り込まれて安定状態になるためと考えられる。
 また蒸発工程が蒸着工程で作出された真空加熱雰囲気中でなされると効率的である。この場合、蒸発工程は、蒸着工程で加熱されていた拡散材を降温させるか、磁石材から隔離するだけでよい。つまり、拡散元素の蒸気に磁石材が曝されないようにすればよい。従って蒸発工程は、拡散材の温度を降下させる降温工程または拡散材を磁石材から離隔する離隔工程ともできる。
(3)付着工程や蒸発工程は、希土類合金粒子からなる成形体を焼結させる焼結工程の少なくとも一部と兼用でもよい。この場合、成形体中に液相を生じる温度域で付着工程を行うと、拡散元素の拡散速度が高くなり、短時間で効率的な拡散処理が可能となる。
 ここで希土類合金粒子からなる成形体を焼結させる場合、RTM14型結晶(TM:遷移金属元素)からなる主相とBリッチ相とR相との間で液相が生じる温度は600~700℃前後である。例えば、Nd-Fe-B系希土類磁石の場合なら、665℃で液相を生じ始める。もっとも成形体が水素化処理された希土類合金粒子からなる場合、それよりも高い750~850℃程度でRH →R+H が生じてから液相が生じ始める。例えば、水素化処理したNd-Fe-B系希土類合金粒子からなる成形体の場合なら、800℃から液相を生じ始める。従ってこのような液相を生じ始める温度以上に磁石材を加熱して、付着工程や蒸発工程を行うとよい。
 なお、そのような液相は、拡散元素と希土類合金粒子中の元素が共晶を生成する場合も生じ得る。例えば、拡散元素であるDyと希土類合金粒子内のFeは、共晶点である890℃以上で液相を生成し始める。これにより成形体中の液相量は増加し、成形体内における拡散元素の拡散速度はより高まる。以上を踏まえて、例えば、磁石材がR-TM-B系希土類合金からなり、拡散元素が希土類元素の一種以上からなる場合なら、磁石材温度(Tm)を700~1100℃、拡散材温度(Td)を600~1000℃とするとよい。
(4)蒸着工程または蒸発工程におけるガス圧または真空度は適宜調整される。例えば、Rm-TM-B系希土類合金からなる磁石材へ拡散希土類元素(Rd)を拡散させる場合、処理炉内のガス圧(真空度)は1Pa以下、10-1Pa以下、10-2Pa以下さらには10-3Pa以下が好ましい。この真空度を調整することにより、拡散材から生じる拡散元素の蒸気量ひいては磁石材への蒸着量、磁石材から蒸発する拡散元素の蒸気量を制御できる。
(5)蒸着工程または蒸発工程の処理時間も、蒸着または蒸発させる拡散元素量に応じて適宜調整されるが、従来の拡散処理時間よりも大幅に短縮可能である。そこで例えば、蒸着工程または蒸発工程は、それぞれ0.5~10時間さらには1~5時間であるとよい。
 さらに付着工程(特に蒸着工程)および蒸発工程は、それぞれ一回だけでもよいが、同順で繰り返しなされてもよい。各工程を繰り返すことにより、拡散元素を有効に増量させて保磁力を効率的に高めることができる。
《磁石材》
 磁石材は希土類合金粒子の成形体または焼結体からなる。希土類合金粒子は、希土類元素の一種以上であるRmとBと残部が遷移金属(TM:主にFe)および不可避不純物および/または改質元素とからなる希土類合金を粉砕等して得られる。
 希土類合金は、RmTM14Bに基づく理論組成よりも、磁石材の保磁力や焼結性の向上に有効なRmリッチ相が形成される組成であると好ましい。具体的にいうと希土類合金は、全体を100原子%としたときに10~30原子%のRmと、1~20原子%のBと、残部であるTMとからなるRm-TM-B系合金であると好ましい。
 特にRmは12~16原子%、Bは5~12原子%であると磁気特性に優れる高密度な希土類磁石が得られ易い。TMは基本的に主たる残部であるが、あえていうとTMは72~83原子%であるとよい。なお、Bの代替として炭素(C)を用いることができ、このときB+C:5~12原子%となるように調製するとよい。
 希土類合金粒子は、その製造方法や形態を問わず、所望組成の鋳造希土類合金を機械粉砕したものでも水素粉砕したものでも、ストリップキャスト等により急冷凝固させた薄板状の鋳片でも、HDDR(水素化-分解・脱水素-再結合法)のような水素処理を経て製造したものでも、超急冷されたリボン粒でも、スパッタ等により成膜したものでもよい。さらに希土類合金粒子はアモルファス状でもよい。
 希土類合金粒子の粒径も問わないが、平均粒径(累積質量が50%となるときの粒子径またはメジアン径)が1~20μmさらには3~10μm程度であると好ましい。その平均粒径が過小ではコスト高となり、平均粒径が過大では拡散元素の内部への拡散性には優れるが、希土類磁石の密度や磁気特性の低下を招き得る。なお希土類合金粒子は、組成や形態(粒形、粒径など)等が異なる複数種の混合物でもよい。
《希土類磁石の用途》
 本発明の希土類磁石は、最終製品、中間品または素材でもよく、その用途や形態は問わない。本発明の希土類磁石は、例えば、電動機のロータまたはステータなどの各種電磁機器、磁気ディスクなどの磁気記録媒体、リニアアクチュエータ、リニアモータ、サーボモータ、スピーカー、発電機等に用いられる。
 実施例を挙げて本発明をより具体的に説明する。
《拡散処理装置》
 本発明に係る拡散処理に用いた拡散処理装置(希土類磁石の製造装置)1の概要図を図1に示した。
 拡散処理装置1は、処理室10と、この処理室10に連通する準備室20と、両者の連通を自在に切り換えられる開閉式のゲート(遮蔽手段)30と、処理室10内に設けられて磁石材Mを載置する載置台(配置手段)11と、処理室10と準備室20との間で拡散材Dを移動させるエレベータ(移動手段)21と、エレベータ21に取り付けられ拡散材Dを加熱するフラットヒータ(拡散材加熱手段)22と、磁石材Mを加熱すると共に近接配置した磁石材Mおよび拡散材Dを囲繞して拡散材Dから生じた蒸気に磁石材Mを効率的に曝す囲いである加熱パック13とを備える。
 加熱パック13の6面はそれぞれ、リフレクターと、リフレクターに取付けられた電気抵抗加熱式ヒータ(以下単に「ヒータ」という。)とからなる。加熱パック13の底面13aは、スライドまたは回動して開閉可能である。この底面13aは、準備室20から上昇してくる拡散材Dが磁石材Mへ近接する際に開く。加熱パック13の側面13bもスライドまたは回動して開閉可能である。この側面13bを開くと、磁石材Mを包囲する加熱パック13内が処理室10と同じ真空雰囲気になる。
 ゲート30により、処理室10と蒸着源室20とは独立した雰囲気に調整され得る。また磁石材Mは加熱パック13により、拡散材Dはフラットヒータ22により、それぞれ独立して異なる温度(磁石材温度および拡散材温度)に加熱され得る。
 なお図示していないが、処理室10には真空ポンプが接続されており、別途設けた制御手段により、処理室10の真空度、磁石材温度、拡散材温度、エレベータ21の昇降等が統合的に制御される。
 さらに処理室10の真空排気口には、磁石材Mから蒸発させたDy(拡散元素)を回収するコールドトラップが設けられている。また磁石材Mの冷却は、加熱パック13の側面13bが解放状態となり、処理室10内へ不活性ガス(Ar)を導入してなされる。
《実施例1》
〈試料の製造〉
 磁石材に拡散処理を施した希土類異方性焼結磁石(試料)を次のようにして製造した。
(1)磁石材
 先ず磁石材(焼結体)を次のようにして製造した。Fe-31.5%Nd-1%B-1%Co-0.2%Cu(単位:質量%)の希土類合金を鋳造した。この希土類合金を水素粉砕した後、さらにジェットミルで粉砕して、平均粒径D50(メジアン径)=6μmの磁石粉末を得た。ジェットミルによる粉砕は窒素雰囲気で行った。
 この磁石粉末(希土類合金粒子の集合体)を成形型のキャビティに入れて磁場中成形し、40×20×15mmの直方体状の成形体を得た(成形工程)。この際、2Tの磁場を印加した。この成形体を10-3Pa以下の真空雰囲気中で1050℃×4Hr加熱して焼結体を得た(焼結工程)。この焼結体の表面を研磨して得た6.5mm角の磁石材(試料)を次の拡散処理に供した。なお、拡散処理前の磁石材の磁気特性を表1の試料No.C13に示した。
(2)拡散処理
 上述した拡散処理装置1を用いて、試料である磁石材へ次のような拡散処理を施した。先ず、拡散処理装置1の処理室10内に配置した磁石材を、その温度(磁石材温度:Tm)が900℃になるまで加熱した。これに併行して、準備室20内に配置した拡散材を、その拡散材温度(Td)が770℃になるまで加熱した。この際、処理室内および準備室20内は10-4Paの真空雰囲気とした。なお、拡散元素の蒸気源となる拡散材にはDy単体(金属Dy)を用いた。
 次に、ゲート30を開けて準備室20にある拡散材を処理室10へ移動させ、拡散材を磁石材へ近接配置した(配置工程)。このとき磁石材と拡散材との間は約10mmとした。処理室10内および準備室20内の雰囲気は共に10-4Paに制御した。この状態で磁石材および拡散材を2時間加熱した(付着工程、蒸着工程)。
 その後、拡散材だけ加熱を中止し、加熱パック13の側面13bを開いて処理室10内を10-4Paの真空雰囲気とした。磁石材は900℃のまま加熱し続けた(蒸発工程)。このとき、拡散材を準備室20に移してゲート30を閉じてもよい。本実施例における磁石材および拡散材の温度履歴(ヒートパターン1)を図2に示した。
〈試料の測定〉
 上記の蒸着工程のみを行った試料と、さらに蒸発工程まで行った試料について、パルス励磁型磁気特性測定装置(東英工業株式会社製)を用いて保磁力を測定した。また、各試料中に拡散したDy量(Dy拡散量)を電子線マイクロアナライザー(EPMA)および高周波誘導結合プラズマ質量分析(ICP)により測定した。
 また試料の拡散処理前後の保磁力差(ΔHt:kOe)を、試料中のDy量で(d:質量%)で除した値である保磁力効率(ΔHt/d:kOe/質量%)を算出した。両試料について、拡散処理前の試料(試料No.C13)に対する保磁力増加量を図3Aに、拡散処理により導入されたDy拡散量を図3Bに、保磁力効率を図3Cに、それぞれ棒グラフで示した。
 また、蒸着工程のみ行った試料とさらに蒸発工程を行った試料とについて、Dyを蒸着させた表面部からその内部に向かって観察したEPMA像(Dy像)を、それぞれ図4Aおよび図4Bに示した。
 さらに、図5Bに示すように、6.5mm角の各試料を0.1mmの切り代で1mm厚に順次スライスした6枚の薄片試料それぞれについて、上述した方法により保磁力を測定した。各薄片試料の保磁力に基づいて、試料の表面部から内部に向かう保磁力の分布を図5Aに示した。なお、図5Aには、各薄片試料の厚さ中央位置における保磁力としてプロットした。
〈試料の評価〉
 図3Aおよび図3Bから明らかなように、蒸発工程を行うことにより試料中のDy量が大幅に減少するが、保磁力の減少は僅かであり大きく変化しない。従って、図3Cに示すように、蒸発工程を行った試料は、蒸着工程のみの試料に対して、保磁力効率が約2倍にまで大幅に向上した。
 図4Aから明らかなように、蒸着工程のみを施した試料では、表面部にDyが過剰に滞留しており、表面部と内部におけるDy濃度差が大きくなっている。一方、図4Bから明らかなように、蒸着工程後に蒸発工程を施した試料では、表面部にDyの過剰な集中は観られず、Dy濃度差が緩和されて、Dyの粒界拡散がより内部深くまで進行していることがわかる。
 これらは図5Aからも明らかである。すなわち、蒸発工程によりDy量が減少しても、保磁力の実質的な低下は観られず、むしろ、蒸発工程を行った試料の方が、6.5mm角試料の中心部(表面からの位置で2.7~3.8mmの位置)において保磁力が向上している。
 本実施例から、蒸発工程を施すことによって稀少なDyの使用量が大幅に抑制されると共に、従来と同等以上の保磁力を発現する希土類磁石が得られることがわかった。
《実施例2》
(1)前述した磁石材を用いて、図6Aに示すヒートパターン2および図6Bに示すヒートパターンC2に沿って拡散処理を行った。ヒートパターン2は、磁石材温度(Tm):1000℃、拡散材温度(Td):830℃(<Tm)の蒸着工程を2時間行った後、拡散材を磁石材から離隔し、磁石材を続けて800~900℃で加熱する蒸発工程を行うパターンである。ヒートパターンC2は、同じ蒸着工程を行った後、磁石材を一旦室温まで冷却し、その後、磁石材のみを800~900℃で再加熱するパターンである。
(2)ヒートパターン2により得られた試料のDy拡散量と保磁力を図7Aに、ヒートパターンC2により得られた試料のDy拡散量と保磁力を図7Bにそれぞれ示した。図7Aから明らかなように、蒸発工程を施した試料の場合、保磁力は殆ど変化せず、蒸発工程時の温度(磁石材温度)の上昇と共にDy拡散量が大きく低下した。一方、図7Bから明らかなように、磁石材を途中で室温域まで冷却した試料の場合、保磁力のみならずDy拡散量も殆ど変化しなかった。これは、蒸着工程後に室温域まで冷却すると、磁石材の少なくとも表面部にあったDyが、希土類磁石の主相粒内に取り込まれ、その後に再加熱して蒸発し難い程度に安定状態になったためと考えられる。いずれにしろ、Dyの使用量を抑制して高保磁力を得るには、蒸着工程に続けて(磁石材の真空中で加熱したまま)、蒸発工程を行うことが好ましいことが本実施例からわかった。
《実施例3》
(1)前述した磁石材を用いて、図8Aに示すヒートパターン3に沿って拡散処理を行った。ヒートパターン3は、磁石材温度(Tm):950℃、拡散材温度(Td):770℃(<Tm)の蒸着工程Iを2時間行った後、拡散材を室温域まで降温しつつ、磁石材を続けて900℃(=Tm)で加熱する蒸発工程Iを行う第1拡散処理と、その蒸着工程Iと同様な蒸着工程IIおよび蒸発工程Iと同様な蒸発工程IIを繰り返し行う第2拡散処理とからなるパターンである。
(2)試料中のDy拡散量を図8Bに、拡散処理前の試料に対する保磁力の増加量を図8Cに、ヒートパターン3の各ステージ毎にそれぞれ示した。なお、ステージS1は蒸着工程Iが終了した時点を、ステージS2は蒸発工程Iが終了した時点を、ステージS3は蒸着工程IIが終了した時点を、ステージS4は蒸発工程IIが終了した時点をそれぞれ示す。
 先ず図8Bから明らかなように、蒸発工程Iまたは蒸発工程IIによって、それぞれ蒸着工程I後または蒸着工程II後よりも試料中のDy拡散量が低減している。但し、蒸着工程および蒸発工程が繰り返されることにより、試料中のDy拡散量は大きく増加している。
 次に、図8Cから明らかなように、蒸発工程Iまたは蒸発工程IIによりDy拡散量が減少しても、保磁力は低下せずむしろ上昇する。また蒸着工程および蒸発工程の繰り返しによるDy拡散量が増加すると、その分、保磁力も増加する。従って、蒸着工程および蒸発工程からなる拡散処理を繰り返すことにより、Dyの使用量を抑制しつつ、保磁力をさらに高めることが可能であることが本実施例からわかった。
《実施例4》
(1)表1に示すように種々のヒートパターンで拡散処理した試料を用意した(試料No.1~4および試料No.C1~C10)。なお、試料No.C1~C10は、図9Bに示すヒートパターンC0または図9Cに示すようなヒートパターンC3により拡散処理した。なお、ヒートパターンC0は磁石材と拡散材を同条件で加熱する従来型のヒートパターンである。また試料No.C10は、溶解法によりDyを予め3.5質量%含有した希土類合金粒子からなる磁石材へ、拡散処理によりDyを0.6質量%拡散させたものである。
 さらに溶解法によりDyを含有させた希土類合金粒子からなり、拡散処理をしない試料も用意した(試料No.C11および試料No.C12)。試料No.C13は、前述した拡散処理前の磁石材である。これらの試料の磁気特性(保磁力)を既述した各試料と同様に求め、表1に合わせて記載した。
(2)ヒートパターン3により得られた試料No.3と、ヒートパターンC0により得られた試料No.C7~C9とについて、表面部から内部に向かう保磁力の分布を図9Aに示した。なお、各位置における保磁力の測定および表示は、図5Aおよび図5Bに示した場合と同様である。
 図9Aから明らかなように、蒸着工程のみならず蒸発工程を行い、それらを繰り返すことにより、Dy拡散量が1.2質量%程度であっても、表面部のみならず内部において保磁力が大幅に増加することがわかる。
(3)表1に示した各試料に関する、Dy拡散量(d:質量%)と希土類磁石全体の保磁力(Ht:kOe)との相関を図10に示した。またそれらの試料に関する、Ht-(2d+11)とHi/Hsの相関を図11に示した。なお、Hi(kOe)は、6.5mm角の試料から切り出した3枚目の薄片試料(表面からの位置:3.3~4.3mm/全高(6.5mm)の51~66%に相当)の保磁力である。またHs(kOe)は、6.5mm角の試料から切り出した1枚目の薄片試料(表面からの位置:0~1mm/全高の0~15%に相当)の保磁力である。
 先ず、図10から明らかなように、Dyを溶解法により原料(希土類合金粒子)に含有させた試料は、Ht-(2d+11)=0の直線上にほぼ存在する。一方、本発明のように蒸着工程に加えて蒸発工程を行った試料は、保磁力Htがその直線上よりもさらに3.5kOe以上高くなっている。換言するなら、Ht-(2d+11)≧3.5の領域に存在していることがわかる。
 次に、図11から明らかなように、蒸着工程に加えて蒸発工程を行った試料は、Ht-(2d+11)が3.5以上であるのみならず、保磁力の内表比Hi/Hsが0.8以上となっている。特に試料No.1~4は、4≦Ht-(2d+11)≦5.5かつ0.8≦Hi/Hs≦0.9により包囲される領域内に収まっている。ちなみにこの領域は、試料No.C1~C10や従来の希土類磁石では到達し得なかった領域であり、本発明に係る希土類磁石により初めて開拓された領域である。
Figure JPOXMLDOC01-appb-T000001
   1  拡散処理装置(希土類磁石の製造装置)
   10 処理室
   20 準備室
   M  磁石材
   D  拡散材

Claims (10)

  1.  希土類合金粒子の成形体または焼結体からなる磁石材の表面部に内部へ拡散し得る拡散元素を付着させる付着工程と、
     該磁石材を真空中で加熱して該磁石材の表面部に滞留した該拡散元素の少なくとも一部を蒸発させる蒸発工程と、
     を備えることを特徴とする希土類磁石の製造方法。
  2.  前記付着工程は、加熱した前記磁石材と加熱した前記拡散元素を含む拡散材とを真空中で近接させ、該拡散材から蒸発した該拡散元素の蒸気に該磁石材を曝して該磁石材の表面へ該拡散元素を蒸着させる蒸着工程であり、
     前記蒸発工程は、前記蒸着工程に続けて前記磁石材を真空中で加熱する工程である請求項1に記載の希土類磁石の製造方法。
  3.  前記蒸発工程は、該拡散材の温度を降下させる降温工程または該拡散材を該磁石材から離隔する離隔工程である請求項2に記載の希土類磁石の製造方法。
  4.  前記付着工程は、前記磁石材の加熱温度(Tm)を前記拡散材の加熱温度(Td)よりも高くする工程である請求項2に記載の希土類磁石の製造方法。
  5.  前記付着工程および前記蒸発工程は、同順で繰り返しなされる工程である請求項1に記載の希土類磁石の製造方法。
  6.  前記拡散元素は、ジスプロシウム(Dy)、テルビウム(Tb)またはホルミウム(Ho)の一種以上である請求項1に記載の希土類磁石の製造方法。
  7.  請求項1に記載した製造方法により得られたことを特徴とする希土類磁石。
  8.  希土類合金粒子の成形体または焼結体からなる磁石材と該磁石材の表面部から内部へ拡散した拡散元素とからなる希土類磁石であって、
     該希土類磁石全体を100質量%としたときの該拡散元素量d(質量%)、
     該希土類磁石全体の保磁力Ht(kOe)、
     該希土類磁石の表面部の保磁力Hs(kOe)、
     該希土類磁石の内部の保磁力Hi(kOe)が次の関係式を満たすことを特徴とする希土類磁石。
          Ht-(2d+11)≧3.5 (kOe)
       かつ  Hi/Hs    ≧0.8
  9.  前記拡散元素は、Dyである請求項1に記載の希土類磁石。
  10.  請求項1に記載の製造方法により得られたことを特徴とする請求項8に記載の希土類磁石。
PCT/JP2012/056017 2011-03-10 2012-03-08 希土類磁石およびその製造方法 WO2012121351A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137023869A KR101459253B1 (ko) 2011-03-10 2012-03-08 희토류 자석 및 그 제조 방법
DE112012001171.6T DE112012001171T5 (de) 2011-03-10 2012-03-08 Seltenerdmagnet und Verfahren zum Herstellen desselben
CN201280012714.3A CN103443885B (zh) 2011-03-10 2012-03-08 稀土磁体及其制造方法
US14/000,537 US8866574B2 (en) 2011-03-10 2012-03-08 Rare earth magnet and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-052376 2011-03-10
JP2011052376A JP5284394B2 (ja) 2011-03-10 2011-03-10 希土類磁石およびその製造方法

Publications (1)

Publication Number Publication Date
WO2012121351A1 true WO2012121351A1 (ja) 2012-09-13

Family

ID=46798304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056017 WO2012121351A1 (ja) 2011-03-10 2012-03-08 希土類磁石およびその製造方法

Country Status (6)

Country Link
US (1) US8866574B2 (ja)
JP (1) JP5284394B2 (ja)
KR (1) KR101459253B1 (ja)
CN (1) CN103443885B (ja)
DE (1) DE112012001171T5 (ja)
WO (1) WO2012121351A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101543111B1 (ko) 2013-12-17 2015-08-10 현대자동차주식회사 NdFeB 영구자석 및 그 제조방법
JP2015228431A (ja) * 2014-06-02 2015-12-17 インターメタリックス株式会社 RFeB系磁石及びRFeB系磁石の製造方法
KR102283172B1 (ko) * 2015-02-03 2021-07-29 엘지이노텍 주식회사 희토류 자석 및 이를 포함하는 전동기
CN105761861B (zh) * 2016-05-10 2019-03-12 江西金力永磁科技股份有限公司 一种钕铁硼磁体及其制备方法
WO2018113990A1 (en) * 2016-12-23 2018-06-28 Abb Schweiz Ag Sintered magnet, electrical machine, use of the sintered magnet for an electrical machine and manufacturing method of a sintered magnet
WO2018138841A1 (ja) * 2017-01-26 2018-08-02 日産自動車株式会社 焼結磁石の製造方法
CN107876791A (zh) * 2017-10-27 2018-04-06 内蒙古盛本荣科技有限公司 生产粉体的装置及其方法
CN108281270A (zh) * 2018-01-05 2018-07-13 宁波招宝磁业有限公司 金属蒸气热处理制备高性能钕铁硼磁体的方法
CN111430142B (zh) * 2019-01-10 2021-12-07 中国科学院宁波材料技术与工程研究所 晶界扩散制备钕铁硼磁体的方法
CN110853909B (zh) * 2019-11-20 2022-04-05 杭州朗旭新材料科技有限公司 一种提高磁体矫顽力的方法和器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100968A1 (ja) * 2005-03-18 2006-09-28 Ulvac, Inc. 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法
WO2006112403A1 (ja) * 2005-04-15 2006-10-26 Hitachi Metals, Ltd. 希土類焼結磁石とその製造方法
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2009043776A (ja) * 2007-08-06 2009-02-26 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
JP2009135393A (ja) * 2007-10-31 2009-06-18 Ulvac Japan Ltd 永久磁石の製造方法
JP2009200179A (ja) * 2008-02-20 2009-09-03 Ulvac Japan Ltd 焼結体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68927460T2 (de) * 1988-06-03 1997-04-10 Mitsubishi Materials Corp Gesinterter seltenerdelement-b-fe-magnet und verfahren zur herstellung
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
JP4643352B2 (ja) * 2005-04-28 2011-03-02 東海染工株式会社 真珠の染色方法
CN101331566B (zh) * 2006-03-03 2013-12-25 日立金属株式会社 R-Fe-B系稀土类烧结磁铁及其制造方法
JP4860493B2 (ja) 2007-01-18 2012-01-25 株式会社アルバック 永久磁石の製造方法及び永久磁石の製造装置
CN103329220B (zh) * 2011-01-19 2016-08-24 日立金属株式会社 R-t-b系烧结磁体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100968A1 (ja) * 2005-03-18 2006-09-28 Ulvac, Inc. 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法
WO2006112403A1 (ja) * 2005-04-15 2006-10-26 Hitachi Metals, Ltd. 希土類焼結磁石とその製造方法
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2009043776A (ja) * 2007-08-06 2009-02-26 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
JP2009135393A (ja) * 2007-10-31 2009-06-18 Ulvac Japan Ltd 永久磁石の製造方法
JP2009200179A (ja) * 2008-02-20 2009-09-03 Ulvac Japan Ltd 焼結体の製造方法

Also Published As

Publication number Publication date
KR101459253B1 (ko) 2014-11-07
JP2012190949A (ja) 2012-10-04
US20130335180A1 (en) 2013-12-19
DE112012001171T5 (de) 2014-02-20
KR20130132981A (ko) 2013-12-05
CN103443885A (zh) 2013-12-11
JP5284394B2 (ja) 2013-09-11
CN103443885B (zh) 2016-07-06
US8866574B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
JP5284394B2 (ja) 希土類磁石およびその製造方法
TWI464757B (zh) Manufacture of rare earth magnets
JP6905102B2 (ja) 焼結体、焼結永久磁石およびそれらの製造方法
KR101474946B1 (ko) R-Fe-B계 희토류 소결 자석
TWI509642B (zh) Rare earth permanent magnet and its manufacturing method
JP5201144B2 (ja) R−Fe−B系異方性焼結磁石
KR20160117363A (ko) R―Fe―B계 소결 자석 및 그의 제조 방법
JP5348124B2 (ja) R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
EP2979279B1 (en) Permanent magnet, and motor and generator using the same
WO2007102391A1 (ja) R-Fe-B系希土類焼結磁石およびその製造方法
WO2006112403A1 (ja) 希土類焼結磁石とその製造方法
US10366814B2 (en) Permanent magnet
JP5146552B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP6506182B2 (ja) 希土類含有合金鋳片、その製造法及び焼結磁石
JP2020188140A (ja) 希土類コバルト永久磁石及びその製造方法、並びにデバイス
JP5732877B2 (ja) 磁性体およびその製造方法
JP2024020341A (ja) 異方性希土類焼結磁石及びその製造方法
JP5373834B2 (ja) 希土類磁石およびその製造方法
JP2011060965A (ja) R2Fe14B希土類焼結磁石の製造方法及び製造装置
JP2020150219A (ja) 希土類磁石用合金粉末およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000537

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137023869

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120011716

Country of ref document: DE

Ref document number: 112012001171

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754604

Country of ref document: EP

Kind code of ref document: A1