WO2012121320A1 - バンドル構造の製造方法、ファイバ接続方法、バンドル端末構造、ファイバの接続構造 - Google Patents

バンドル構造の製造方法、ファイバ接続方法、バンドル端末構造、ファイバの接続構造 Download PDF

Info

Publication number
WO2012121320A1
WO2012121320A1 PCT/JP2012/055931 JP2012055931W WO2012121320A1 WO 2012121320 A1 WO2012121320 A1 WO 2012121320A1 JP 2012055931 W JP2012055931 W JP 2012055931W WO 2012121320 A1 WO2012121320 A1 WO 2012121320A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
capillary
adhesive
cores
Prior art date
Application number
PCT/JP2012/055931
Other languages
English (en)
French (fr)
Inventor
齋藤 恒聡
健吾 渡辺
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201280011793.6A priority Critical patent/CN103403589B/zh
Priority to JP2013503593A priority patent/JP6034284B2/ja
Priority to EP12754906.1A priority patent/EP2685296B1/en
Publication of WO2012121320A1 publication Critical patent/WO2012121320A1/ja
Priority to US14/021,680 priority patent/US9158064B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • G02B6/403Mechanical coupling means having fibre bundle mating means of the ferrule type, connecting a pair of ferrules

Definitions

  • the present invention relates to a manufacturing method of a bundle structure in which a multi-core fiber having a plurality of cores and a plurality of optical fiber cores are bundled.
  • a multi-core fiber for example, there is a fiber in which a plurality of core portions are provided inside a cladding portion, and a flat portion perpendicular to the longitudinal direction is formed on a part of the outer periphery of the cladding portion (Patent Document 1). ).
  • each core part of this multi-core fiber must be connected to the corresponding core part of another multi-core fiber, or another optical fiber or optical element, etc., to send and receive transmission signals.
  • a multi-core fiber is connected to a bundle fiber in which single-core optical fibers are arranged at positions corresponding to the core portion of the multi-core fiber, and a transmission signal is transmitted.
  • a method of transmitting and receiving has been proposed (Patent Document 2).
  • Patent Document 3 As a method for producing such a bundle optical fiber, a method of bundling a plurality of single-core fibers at a predetermined interval by bundling or the like has been proposed (Patent Document 3).
  • the core parts are optically precisely connected to each other at the end face of the multi-core fiber and each optical fiber core.
  • the interval between the core portions of the multi-core fiber is usually narrow (for example, 40 to 50 ⁇ m), and a normal optical fiber core wire (outer diameter 125 ⁇ m) cannot be used. That is, it is necessary to use an optical fiber core wire having an outer diameter equal to or less than the core portion interval of the multicore fiber.
  • the present invention has been made in view of such problems, and is capable of precisely aligning even a multi-core fiber having a narrow-pitch core portion, so that optical fiber bundles can be reliably connected.
  • An object of the present invention is to provide a manufacturing method and a connection method thereof.
  • a first invention is a method of manufacturing a bundle structure composed of a plurality of optical fiber cores that can be connected to a multi-core fiber having a plurality of cores.
  • the capillaries are inserted into the capillary in a substantially close-packed arrangement, the tips of the plurality of optical fiber cores protrude from the end face of the capillary by the same length, and the tips of the plurality of optical fiber cores are brought into contact with the first adhesive.
  • the plurality of optical fiber cores are brought into close contact with each other by the surface tension of the first adhesive, and after the first adhesive is cured, the capillary and the plurality of optical fiber cores are bonded.
  • the bundle structure manufacturing method is characterized in that the optical fiber core wires arranged in a close-packed state are obtained by fixing with a second adhesive and polishing the end face of the capillary.
  • a method for manufacturing a bundle structure composed of a plurality of optical fiber cores that can be connected to a multi-core fiber having a plurality of cores, the plurality of optical fiber cores being inserted into the temporary array member in a substantially closest arrangement By projecting the tips of the plurality of optical fiber core wires by the same length from the end face of the temporary array member, the tips of the plurality of optical fiber core wires are brought into contact with a first adhesive, thereby causing the first adhesion.
  • the plurality of optical fiber cores are brought into close contact with each other by the surface tension of the agent to form an optical fiber bundle, and after the first adhesive is cured, the optical fiber bundle is removed from the temporary array member, and the light
  • a method for manufacturing a bundle structure characterized in that an end face of a fiber bundle is polished to obtain a close-packed optical fiber bundle.
  • the optical fiber bundle is inserted into a capillary, the optical fiber bundle and the capillary are fixed with a second adhesive, and together with the capillary, the optical fiber bundle The end face may be polished.
  • the refractive index of the first or second adhesive is preferably smaller than the refractive index of the clad constituting the optical fiber core wire.
  • the first adhesive may be a solution-based adhesive, and the concentration of the adhesive main component with respect to the solution may be 50% or less.
  • the curing shrinkage rate of the first adhesive may be 10% or more.
  • the viscosity of the first adhesive may be 100 cps or less.
  • the second adhesive may have a hardness after curing of Shore D60 or higher.
  • the curing shrinkage ratio being 10% or more means that the volume is reduced by 10% or more before and after curing when the volume of the adhesive after curing is compared with the original volume of the adhesive before curing. .
  • a hexagonal hole corresponding to the closest arrangement of the optical fiber cores is formed in the capillary through which the optical fiber cores are inserted, and the optical fiber cores are inserted through the hexagonal holes and fixed. May be.
  • a protrusion may be formed on the inner surface of the capillary through which the optical fiber core wire is inserted.
  • the distance between the optical fiber cores is constant. For this reason, a position can be reliably matched with respect to each core part of the multi-core fiber arrange
  • the optical fiber cores can be easily and accurately bonded in a close-packed state, and the optical fiber cores can be fixed at predetermined intervals.
  • the first adhesive is a solution-based adhesive having a low viscosity
  • the optical fiber cores can be reliably brought into close contact with each other by the surface tension, and the volume after curing is reduced, whereby the adhesive layer Can be formed thinly.
  • the optical fiber core wire is not damaged during subsequent polishing.
  • each optical fiber core is fixed with an adhesive and the refractive index of the adhesive that bonds the optical fiber cores is smaller than the refractive index of the clad constituting the optical fiber core, each optical fiber core The leakage of light can be suppressed.
  • a hexagonal hole corresponding to the closest arrangement of the optical fiber cores is formed in the capillary through which the optical fiber cores are inserted, and the optical fiber cores are inserted into the hexagonal holes and fixed.
  • the arrangement of the optical fiber core wire with respect to the capillary can be adjusted in a certain direction.
  • 2nd invention manufactures a bundle structure by the manufacturing method of bundle structure concerning 1st invention, and joins the multi-core fiber penetrated by the capillary and the said bundle structure with each capillary. This is a fiber connection method.
  • the refractive index of the third adhesive that bonds the multicore fiber and the capillary is preferably smaller than the refractive index of the clad of the multicore fiber.
  • the plurality of optical fiber core wires and the multi-core fiber are inserted into the capillary and fixed, so that the connection portion can be easily handled.
  • the multi-core fiber and the capillary are fixed with an adhesive, and if the refractive index of the adhesive that bonds the multi-core fiber and the capillary is smaller than the refractive index of the cladding of the multi-core fiber, the light from the multi-core fiber in the capillary Leakage can be suppressed.
  • a bundle structure is manufactured by the method for manufacturing a bundle structure according to the first aspect of the present invention, and a center core of the multi-core fiber and an active alignment of the corresponding core of the bundle structure are performed.
  • active alignment is performed between one or two cores around the core and a corresponding core of the bundle structure, and the multi-core fiber and the bundle structure are bonded.
  • a bundle structure may be formed by bonding the capillary with a heat-resistant adhesive and polishing the end face of the capillary, and the bundle structure and the multi-core fiber inserted into the capillary may be fused and connected.
  • a method for connecting a multi-core fiber having a plurality of cores and a bundle structure comprising a plurality of optical fiber cores wherein the plurality of optical fiber core wires are heated in a state of being inserted in a capillary with a substantially close arrangement, and the optical fiber A bundle structure may be formed by fusing the core wire and the capillary and polishing the end face of the capillary, and the bundle structure and the multi-core fiber inserted into the capillary may be further fused and connected.
  • a capillary structure is bonded with water glass or glass powder, and the end face of the capillary is polished to form a bundle structure, and the bundle structure and a multi-core fiber inserted into another capillary may be fused and connected. Good.
  • the core of the multi-core fiber and the corresponding cores of the optical fiber bundle can be reliably optically connected.
  • a fourth invention includes a substantially cylindrical capillary and a plurality of optical fiber cores, and the optical fiber core wires are inserted through the capillaries and arranged in a close-packed cross section inside the capillary.
  • the adjacent optical fiber cores are bonded in contact with each other, and a gap is formed between the inner surface of the capillary and the bundle structure of the optical fiber cores that are closely bonded to each other.
  • the bundle terminal structure is characterized by the above.
  • a glass powder is filled between the bundle terminal structure according to the fourth aspect of the invention, the optical fiber core wire arranged in a close-packed manner, and the capillary, and the capillary and the multi-core fiber
  • the fiber connection structure is characterized in that the end of the fiber is joined by fusion bonding.
  • the fourth and fifth inventions it is possible to obtain a bundle structure that can be easily connected to the multi-core fiber, and a connection structure between the bundle structure and the multi-core fiber.
  • the present invention it is possible to provide a method for manufacturing a bundle structure of an optical fiber core wire that can surely optically connect even a multi-core fiber having a core portion with a narrow pitch.
  • FIG. 4 is a view showing the arrangement of electrodes in a cross section of a joint portion. It is a figure which shows the fiber connection structure 1a, (a) is a front view, (b) is CC sectional view taken on the line of (a). (A) is a figure which shows bundle structure 5a, DD sectional view taken on the line of FIG. 2 (a), (b) is a figure which shows bundle structure 5b, (c) is a figure which shows bundle structure 5c.
  • (A) is a figure which shows the fiber connection structure 1c
  • (b) is a figure which shows the fiber connection structure 1d.
  • (A) is a figure which shows the capilla 21c
  • (b) is a figure which shows the capillary 21d.
  • (A) is a figure which shows the optical fiber 7a
  • (b) is a figure which shows the state which inserted the optical fiber 7a in the capillary 21c.
  • FIG. 1 The figure which shows the alignment method of the multi-core fiber 3 and the bundle structure 5a.
  • FIG. The figure which shows the multi-core fiber 90 and the bundle structure 91.
  • FIG. 1A is a front view of the fiber connection structure 1
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A
  • FIG. 1C is a cross-sectional view taken along line BB in FIG. FIG.
  • the fiber connection structure 1 is a connection structure of a multi-core fiber 3 and a bundle structure 5 in which a plurality of optical fiber core wires 7 are bundled.
  • the multi-core fiber 3 is a fiber in which a plurality of cores 11 are arranged at predetermined intervals and the periphery is covered with a clad 13.
  • a total of seven cores 11 are arranged at the apexes of the regular hexagon around the center of the multi-core fiber 3 and the periphery thereof. That is, the central core 11 and the surrounding six cores 11 are all at a constant interval.
  • the intervals between the adjacent cores 11 are also the same.
  • the pitch of the core 11 is, for example, about 40 to 50 ⁇ m.
  • the bundle structure 5 seven optical fiber cores having the same diameter are joined in a close-packed arrangement. That is, one optical fiber core wire 7 is arranged at the center, and six optical fiber core wires 7 are arranged around it. Accordingly, the cores 15 of the respective optical fiber core wires 7 are all arranged at equal intervals.
  • the optical fiber core wires 7 are bonded to each other with an adhesive 19a. Therefore, the clads 17 of the adjacent optical fiber core wires 7 are all in contact with each other directly or through the adhesive 19a. Further, the adhesive 19a is also filled in the gap between the optical fiber core wires 7.
  • the multi-core fiber 3 and the optical fiber core wire 7 are made of, for example, quartz glass. Further, in this embodiment, an example of a close-packed arrangement composed of all seven cores having six cores on the outer periphery of the central core will be described. You can also That is, in the present invention, the number of cores is not limited as long as the cores are arranged in a close-packed manner.
  • the present invention is intended to align the fibers in a close-packed manner in a self-aligned manner based on the balance of surface tension of adhesive or the like that has entered between the fibers, a bundle structure composed of seven fibers has the highest accuracy. Then, a bundle structure in which 12 cores are further provided on the outer periphery can be formed with high accuracy.
  • the present application can be applied to a bundle structure including more than that, the accuracy of the core misalignment (particularly the outer peripheral side) is deteriorated.
  • the number for example, a bundle structure consisting of seven fibers is first formed, and after the bonding, 12 fibers are bonded to the outer periphery by surface tension. By forming the structure, it is possible to reduce deterioration of the misalignment accuracy of the core.
  • the end face of the multi-core fiber 3 and the end face of the bundle structure 5 are polished and arranged to face each other.
  • the cores 11 and 15 face each other at a position where they are optically connected. That is, the pitch of the core 11 and the outer diameter of the optical fiber core wire 7 (the diameter of the clad 17) substantially coincide with each other.
  • the outer diameter of the optical fiber core wire 7 (cladding 17) is set to be larger than the pitch of the cores 11 of the multicore fiber 3 in consideration of the formation of an adhesive layer made of the adhesive 19a in the gap between the optical fiber core wires 7. It may be set as small as about 0.1 to 3 ⁇ m. Even in this case, in the bundle structure in which the optical fiber core wires 7 are bonded to each other, the interval between the individual cores 15 coincides with the pitch of the cores 11.
  • the end face of the multi-core fiber 3 and the end face of the bundle structure 5 are arranged to face each other, and are fixed to each other by an adhesive 9 at a position where the core 11 and the core 15 are optically connected.
  • Adjust the position of the bundle fiber bundle (or multi-core fiber) by inputting the signal light from the opposite end of the opposed end face to the core and receiving the signal light output from the opposite side of the opposed end face of the bundle fiber.
  • the rotation is adjusted, the jig is fixed at the position where the optical signal output is maximized, and both fibers are bonded (or fused) and connected.
  • the electrode 12 when performing fusion, the electrode 12 is arrange
  • the optical fiber cores 7 are bonded in advance with a heat-resistant (for example, about 1000 ° C.) adhesive (including a metal-based adhesive), water glass, or glass powder. It is desirable to keep it.
  • the bundle fiber of the close-packed structure of the present application has very high core positional accuracy
  • adjustment may be made with respect to at least two cores. It should be noted that first, alignment is performed with respect to the central core, and alignment is performed with respect to one or two surrounding cores, so that the accuracy is simple and high. Of course, in order to perform alignment with higher accuracy, it is possible to measure the axial deviation of all the cores and perform alignment at the optimum position.
  • each core 11 of the multi-core fiber 3 and each core 15 of the optical fiber core wire 7 are optically connected.
  • the optical fiber core wires 7 are bundled in a state where the optical fiber core wires 7 are arranged in a close-packed manner, so that the interval between the cores 15 can be kept constant with high accuracy.
  • FIG. 2 (a) is a front view of the fiber connection structure 1a
  • FIG. 2 (b) is a cross-sectional view taken along the line CC of FIG. 2 (a)
  • FIG. 3 (a) is a cross-sectional view taken along the line DD of FIG. FIG.
  • the fiber connection structure 1a differs from the fiber connection structure 1 in that the multi-core fiber 3 and the optical fiber core wire 7 are inserted into the capillaries 21a and 21b, respectively, and the capillaries 21a and 21b are joined to each other.
  • the capillary 21a is a cylindrical member having a hole inside.
  • the hole of the capillary 21 a is slightly larger than the outer diameter of the multi-core fiber 3.
  • the multi-core fiber 3 and the capillary 21a are bonded with, for example, an adhesive.
  • it is desirable that the refractive index of the adhesive is smaller than the refractive index of the clad 13 of the multicore fiber 3. By doing so, light leakage from the clad can be prevented.
  • the bundle structure 5a is inserted into the capillary 21b in a state where the optical fiber core wires 7 are arranged in a close-packed manner.
  • the capillary 21b is a cylindrical member having a hole therein, and the hole of the capillary 21b has a circular cross-sectional shape that is slightly larger than the outer diameter of the circumscribed circle in a state where the optical fiber core wires 7 are arranged in the closest packing.
  • the inner surface of the capillary 21b and the circumscribed circle of the closest structure of the optical fiber core wire 7 are formed.
  • a gap of about 1 ⁇ m is formed between them. That is, when the optical fiber core wire 7 having the outer diameter D ( ⁇ m) is seven to form a close-packed structure, the inner diameter of the capillary 21b is set to 3 ⁇ D + 1 ⁇ m.
  • the optical fiber core wire 7 and the capillary 21b are bonded with an adhesive 19b.
  • the refractive index of the adhesive 19 b is smaller than the refractive index of the clad 17 of the optical fiber core wire 7. By doing so, light leakage from the clad can be prevented.
  • the adhesive 19b may be the same as the adhesive 19a. That is, it is sufficient that the gap is filled with an adhesive in a state where the optical fiber core wire 7 is inserted into the capillary 21b.
  • the end faces of the capillaries 21a and 21b are arranged to face each other, and are fixed to each other by an adhesive or the like at a position where the cores 11 and 15 are optically connected to each other.
  • the connection structure where each core 11 of the multi-core fiber 3 and each core 15 of the optical fiber core wire 7 are optically connected can be obtained.
  • the end portions of the multi-core fiber 3 and the bundle structure 5a are accommodated in the capillaries 21a and 21b, respectively, so that handling is easy.
  • the surfaces of the capillaries are joined to each other, the joining surfaces are wide and can be joined to each other reliably.
  • active alignment is performed in the same manner as in the above-described embodiment, and positional deviation due to the gap between the bundle fiber bundle and the capillary can be prevented.
  • the average of 7 cores is 1 dB compared to the conventional 7-core bundle structure and 7-core multi-core fiber connection structure. An improvement in loss was observed.
  • the bundle structure in which the optical fiber core wire 7 is inserted into the capillary 21b may be a bundle structure 5b shown in FIG.
  • the hole inside the capillary 21b is not a circle but a substantially regular hexagon. That is, it is a substantially regular hexagon circumscribing the close-packed arrangement state of the optical fiber core wires 7, and the optical fiber core wires 7 are respectively disposed at the apexes of the holes. Therefore, the arrangement of the optical fiber core wire 7 is restricted, and the optical fiber core wire 7 can always be in a constant arrangement with respect to the capillary 21b.
  • the hexagonal apex may have an R shape that is equal to or less than the radius of the fiber.
  • a bundle structure 5c may be used.
  • a protrusion 23 is provided on at least a part of the inner surface of the substantially circular hole inside the capillary 21b. That is, the inner surface of the circumscribed circle circumscribing the close-packed arrangement state of the optical fiber core wire 7 is projected so as to fit into the recess formed in the gap between the optical fiber core wires 7 in the close-packed arrangement state of the optical fiber core wire 7. 23 is formed. Therefore, the arrangement of the optical fiber core wire 7 is restricted, and the optical fiber core wire 7 can always be in a constant arrangement with respect to the capillary 21b. Note that only one protrusion 23 or a plurality of protrusions 23 may be formed.
  • FIG. 4 is a diagram showing a further different embodiment.
  • FIG. 4 (a) is a diagram showing a fiber connection structure 1c.
  • the bundle structure 5 may be directly connected to the multicore fiber 3. That is, the multi-core fiber 3 may not be inserted into the capillary 21a.
  • the multi-core fiber 3 and the bundle structure 5 may be connected by adhesion or fusion.
  • FIG. 4B is a diagram showing the fiber connection structure 1d.
  • the bundle structure 5 a may be directly connected to the multicore fiber 3. That is, the multi-core fiber 3 may not be inserted into the capillary 21a.
  • the multi-core fiber 3 and the bundle structure 5 may be connected by adhesion or fusion. In this case, it is desirable that the capillaries 21b and the multi-core fiber 3 have substantially the same outer diameter. By doing so, a more stable connection is possible.
  • connection structure shown in FIG. 2 may be fused in place of adhesion as in the connection structure shown in FIG.
  • the heat-resistant adhesive, water glass, or glass powder described above may be used as the adhesives 19a and 19b.
  • the capillary 21b and the optical fiber core wire 7 may be joined by fusion.
  • the outer surface of the optical fiber core wire 7 is fused to the inner surface of the capillary 21b by heating the optical fiber core wire 7 arranged closest to the capillary 21b.
  • the subsequent capillaries 21a and 21b can be easily fused.
  • the capillaries 21a and 21b are preferably glass capillaries. If it is a glass capillary, there will be little deformation
  • the capillary 21b can be made of a heat shrink material. In this case, what is necessary is just to heat the front-end
  • a method for manufacturing a bundle structure in which the optical fiber core wires 7 are closely bonded will be described, particularly for the bundle structures 5a to 5c.
  • a predetermined number of the optical fiber core wires 7 are removed and inserted into the capillary 21b.
  • the optical fiber core wire 7 is inserted into the capillary 21b so that the tip of the optical fiber core wire 7 protrudes from the end of the capillary 21b by the same length (for example, about 10 mm).
  • the capillary 21b is temporarily fixed to the optical fiber core wire 7, for example.
  • the tip of the optical fiber core 7 protruding from the end of the capillary 21b is immersed in the adhesive 25 stored in the container in advance.
  • the adhesive 25 is, for example, a solution-based adhesive, and is a liquid in which a polymer solid such as a synthetic resin is dissolved in a solvent such as water, alcohol, or an organic solvent. In such a solution-based adhesive, the solute remaining after the solvent is vaporized is bonded by being cured.
  • the adhesive 25 is preferably further diluted than the normally used solute concentration. By doing in this way, the viscosity of an adhesive agent can be lowered
  • the gap between the optical fiber cores after bonding can be 1 ⁇ m or less.
  • the adhesive contracts at the time of curing, so that an effect of drawing the optical fiber closer can be obtained.
  • a material having a lower refractive index than the clad of the optical fiber core wire is desirable.
  • an extremely low viscosity (100 cps or less) adhesive the same effect can be obtained without dilution.
  • an adhesive for example, as a solution system, “Cemedine C” (trade name) manufactured by Cemedine Co., Ltd. is diluted with a dilute solution (it is desirable to add fluorine for adjusting the refractive index),
  • An extremely low viscosity adhesive (acrylate) is a refractive index control resin (UV curing) manufactured by NTT-AT, and an extremely low viscosity adhesive (epoxy) is heat cured by Epo-Tek.
  • a mold adhesive can be used. Moreover, since a viscosity can be lowered
  • the optical fiber core wire 7 is inserted in a state close to the closest density, but in a state before the tip of the optical fiber core wire 7 is immersed in the adhesive 25, a part of each other is mutually. It is difficult to achieve a complete close-packed arrangement (a constant core interval), such as a gap formed between them or in close contact with each other.
  • FIG. 6 is a conceptual diagram showing the bonding state of the optical fiber cores 7 due to the surface tension of the adhesive 25.
  • FIG. 6A is a front view (for simplicity, only two optical fiber cores 7 are shown).
  • 6 (b) is a sectional view.
  • a gap may be formed between the optical fiber cores 7, but the viscosity of the adhesive 25 is low, and the adhesive 25 is separated between the optical fiber cores 7 by surface tension (capillary phenomenon). Sucked into the gap. At this time, the optical fiber core wires 7 are brought into close contact with each other by the surface tension (in the direction of arrow E in the figure).
  • the suction height of the adhesive 25 is too high (if the suction amount of the adhesive 25 is too large), the amount of the adhesive 25 between the ends of the optical fiber core wire 7 increases. For this reason, there exists a possibility that the clearance gap between the optical fiber core wires 7 may become large. For this reason, it is desirable that the amount of the adhesive 25 sucked up by the surface tension is equal to or less than the amount that fills the gap between the optical fiber core wires 7 inside the capillary 21b. That is, in FIG. 4, it is desirable to adjust the suction height of the adhesive 25 to be lower (I in the drawing) than the upper end of the capillary 21b and to be higher than the polishing portion described later.
  • the amount of the adhesive 25 is set to a minimum amount in advance or the adhesive 25 has been raised to a predetermined height, so that the tip of the optical fiber core wire 7 is removed from the adhesive 25. Just pull it up.
  • the amount of the adhesive 25 sucked up by the optical fiber core wire 7 is (3 ⁇ () when the radius of the optical fiber core wire 7 is r and the length of the capillary 21b is L. 0.5) ⁇ r 2 ⁇ 0.5 ⁇ r 2 ) ⁇ L or less.
  • the adhesive 25 is a diluted solution type adhesive, a gap is formed by contraction of the adhesive at a portion where the fibers between the fibers of the cured fiber bundle are not in close contact with each other.
  • the part is bonded to the capillary 21b.
  • the adhesive adhesive 19a
  • a thermosetting epoxy adhesive or a UV curable acrylate adhesive may be used as the adhesive (adhesive 19a).
  • the adhesive 19a fills the gap between the capillary 21b and the fiber bundle and the gap between the fiber cores (adhesives 25) to bond the fiber bundle and the capillary.
  • the capillary and the optical fiber bundle are bonded here, the capillary may be detached and connected to the multi-core fiber using only the optical fiber bundle.
  • the adhesive between the optical fiber cores 7 is performed with the adhesive 19a, and further between the optical fiber core 7 and the capillary 21b. Adhesion may be performed with the adhesive 19b. Further, instead of the adhesive 25, the optical fiber core wires 7 may be bonded to each other by the surface tension of the adhesive 19a, and then bonded to the capillary 21b by the adhesive 19b.
  • the optical fiber core 7 protruding from the capillary 21 b and a part of the capillary 21 b are polished by the polishing surface 27.
  • the bundle structure 5a is formed.
  • a uniform surface may be obtained by cutting with a dicing saw or the like.
  • the adhesive 19a (19b) preferably has a low viscosity, but may have a higher viscosity than the adhesive 25 (for example, 5000 cps or less). Further, it is desirable that the shrinkage rate during curing is low and the hardness is high (Shore D is 60 or more).
  • the adhesive 25 should also have a high hardness after curing, but since the adhesive layer after curing becomes considerably thin, the hardness has little influence on the characteristics during polishing.
  • Examples of such an adhesive include, for example, “Epo-tek 353-ND” (trade name) manufactured by EPOXY TECHNOLOGY, which is an epoxy thermosetting adhesive, and Dainippon Ink, which is an acrylate UV curing adhesive. “OP-40Z” (trade name) manufactured by KK and a refractive index control resin (UV curing) manufactured by NTT-AT can be used.
  • a heat-resistant adhesive may be used as the adhesive.
  • glass powder may be mixed with a solvent, and the fiber core wires may be brought into close contact with each other by the capillary phenomenon as described above, and then the solvent may be volatilized to leave only the glass powder. That is, the optical fiber core wire 7 and the capillary 21b are filled with a glass powder between the optical fiber core wire 7 and the capillary 21b, which are arranged in a close-packed state, and the capillary 21 in this state is fixed. (Bundle structure 5a) and the end of multi-core fiber 3 may be joined by direct fusion. Further, instead of the adhesive, water glass (liquid glass / sol / gel glass) may be used.
  • the procedure for inserting the plurality of optical fiber core wires 7 into the capillary 21b first is described above.
  • the present invention is not limited to this procedure.
  • a plurality of optical fibers can be formed by the same method as in this embodiment.
  • the core wire 7 may be fixed in close contact, and then inserted into the capillary 21b and fixed with the second adhesive.
  • the plurality of optical fiber core wires 7 can be surely fixed to a fine structure by being immersed in the first adhesive 25 in a state of being inserted into the cylindrical temporary array member.
  • the optical fiber core wire 7 can be easily inserted into the capillary 21b, the inner diameter clearance of the capillary 21b can be reduced.
  • the adhesive 19a is an adhesive different from the adhesive 25.
  • the adhesive 25 can also serve as the adhesive 19a. That is, it is also possible to use an adhesive that has a small shrinkage at the time of curing so that there is no gap between the fibers when the fibers are tightly fixed using the adhesive 25. Even in this case, the fibers can be closely fixed using the surface tension of the adhesive 25. In this case, it is desirable that the adhesive 25 has a high hardness (60 or more on Shore D).
  • the adhesive 25 preferably has a low refractive index, but this is for enhancing the light confinement effect. If an optical fiber core having a sufficient light confinement effect is used, the adhesive 25 is bonded.
  • the agent 25 having a high refractive index can also be used.
  • the wettability of the surface of the optical fiber core wire 7 may be improved.
  • a method of applying and drying a surface treatment agent called a primer, and a method of plasma discharge treatment are known.
  • a primer a surface treatment agent called a primer
  • a method of plasma discharge treatment are known.
  • FIG. 8 is a diagram showing another embodiment of the capillary.
  • a capillary 21c can be used instead of the capillary 21b.
  • the capillary 21c is formed with a predetermined length so as to completely cover the optical fiber core wire 7 from which the covering portion has been removed. That is, the upper edge portion of the capillary 21 c is disposed at the position of the covering portion of the optical fiber core wire 7.
  • a tapered portion 22 is formed on the upper surface of the inner surface of the capillary 21c. That is, the hole diameter of the capillary 21c increases as it goes to the upper end of the capillary 21c.
  • a chamfered portion 24 having an arcuate cross section is formed at the boundary between the tapered portion 22 and the straight portion.
  • the bare core wire from which the coating has been removed can be reliably protected by the capillary 21c.
  • the taper portion 22 is excellent in the insertion workability of the optical fiber core wire 7. Further, since the boundary between the tapered portion 22 and the straight portion is a chamfered portion, the force does not concentrate on a part of the optical fiber core wire 7. In addition, an increase in transmission loss due to bending of the optical fiber can be prevented.
  • a capillary 21d as shown in FIG. 8B can also be used as the capillary having the tapered portion 22.
  • the capillary 21d has substantially the same configuration as the capillary 21c, but differs in that a step 26 is formed at the upper end.
  • the step 26 corresponds to the covering portion of the optical fiber core wire 7. That is, when the capillary 21 d is used, the covering portion of the optical fiber core wire 7 is positioned at the level of the step 26, and the bare optical fiber core wire 7 is positioned below the taper portion 22.
  • the same effect as the capillary 21c can be obtained by the capillary 21d.
  • FIG. 9 is a diagram showing an example in which an optical fiber core wire 7 a is used instead of the optical fiber core wire 7.
  • the optical fiber core wire 7a is the same as the optical fiber core wire 7, but the base portion of the fiber exposed from the covering portion is thick and the tip side is thin.
  • the length of about 5 mm exposed from the covering portion is 125 ⁇ m ⁇ , but the tip side is about 45 ⁇ m, for example.
  • Such an optical fiber core wire 7a is manufactured as follows. First, the coating layer at the tip of the optical fiber core wire 7 is removed by a predetermined length. Next, the exposed tip portion of the optical fiber core wire 7 is immersed in the hydrofluoric acid aqueous solution leaving about 5 mm from the covering portion. The optical fiber core wire at the immersed portion is reduced in diameter by etching. The etching is finished after the diameter of the tip portion is about 45 ⁇ m. As described above, it is possible to obtain the optical fiber core wire 7a in which a part of the clad portion of the optical fiber is etched to reduce the diameter.
  • a 45 ⁇ m optical fiber may be bonded to the tip of a 125 ⁇ m diameter optical fiber by fusion or the like.
  • the above-described etching method is more preferable.
  • FIG. 9B is a diagram showing a state where the optical fiber core wire 7a is inserted into the capillary 21c. In this case, up to the covering portion of the optical fiber core wire 7 a is held in the capillary 21 c, and the optical fiber core wire 7 a having a reduced diameter is close-packed inside the capillary 21. Note that any capillary such as other capillaries 21b and 21d can be applied to the optical fiber core wire 7a. Further, in other embodiments other than the low profile deformation shown in FIG. 9B, the optical fiber core wire 7 a can be used instead of the optical fiber core wire 7.
  • FIG. 10 is a diagram showing a bundle structure 5d which is still another embodiment.
  • the bundle structure 5d is formed as follows. First, the dummy fiber 31 and the optical fiber core wire 7 are arranged on the holding member 29a having the V groove 28 on the upper surface. Any dummy fiber 31 can be used as long as it has the same diameter as the optical fiber core wire 7. The angle at the bottom of the V-groove 28 is approximately 60 degrees.
  • the dummy fibers 31 are provided at the deepest portion and the uppermost end portions of the V-groove 28, respectively. That is, the dummy fiber 31 and the optical fiber core wire 7 are arranged in a substantially equilateral triangle shape having the dummy fiber 31 as a vertex. Therefore, the optical fiber core wires 7 excluding the dummy fibers 31 are surely arranged in a hexagonal close-packed state.
  • the plate-like holding member 29b is pressed from above and the holding members 29a and 29b, the optical fiber core wire 7, and the dummy fiber 31 are bonded to each other by the adhesive 19a.
  • the end surface is polished to form the bundle structure 5d.
  • the holding members 29a and 29b function similarly to the capillary 21b and are joined to the capillary 21a on the multi-core fiber side.
  • FIG. 11 is a diagram showing a bundle structure 5f which is still another embodiment.
  • the bundle structure 5f is formed as follows. First, the optical fiber core wire 7 is disposed on the holding member 29c having the groove 30 on the upper surface.
  • channel 30 is a shape (partial shape of a regular hexagon) corresponding to the external shape in which the optical fiber core wire 7 is closely packed.
  • the optical fiber core wire 7 is arranged in a close-packed manner. Furthermore, the holding member 29d is covered so as to cover the groove 30 and the optical fiber core wire 7. The holding member 29d and the groove 30 form a substantially hexagonal sectional space. Therefore, the optical fiber core wire 7 is held in a close-packed state in the space.
  • the holding member 29d is desirably made of a material having low hardness and easily deformable. For example, it is comprised with resin which does not contain a filler. By configuring the holding member 29d with such a material, the optical fiber core wire 7 is surely pressed by the holding member 29d, and the optical fiber core wire 7 is more reliably held in the closest state.
  • the bundle structure 5f projects the optical fiber core wire 7 from the end portion in the same manner as shown in FIGS. 5 to 7 (using the holding members 29c and 29d instead of the capillary 21b).
  • the optical fiber core wires 7 may be bonded to each other. Further, the adhesive may be applied by other methods or may be fused.
  • FIG. 12 is a view showing a bundle structure 5e which is still another embodiment.
  • the bundle structure 5 e is provided with a coating agent 33 on the outer periphery of the optical fiber core wire 7.
  • As the coating agent 33 low melting glass or metal is applicable.
  • the optical fiber core wire 7 is made of quartz glass or the like. For this reason, the melting point of the optical fiber core wire 7 is extremely high.
  • low melting glass or metal (aluminum or the like) has a melting point lower than that of the optical fiber core wire 7. For this reason, it can fuse
  • the coating agent 33 may be formed on the surface of the optical fiber core wire 7 by any method such as vapor deposition, sputtering, or plating. Further, as a method of arranging the optical fiber core wires themselves in a close-packed manner before heating, for example, a holding member as shown in FIG. 10 may be used.
  • FIG. 13 is a diagram showing a method of aligning the bundle structure 5a and the multi-core fiber 3, wherein the multi-core fiber 3 is indicated by a dotted line (the core portion is black), and the bundle structure 5a side is indicated by a solid line (the core portion is white). Show.
  • the bundle structure 5a will be described, but the same can be applied to the bundle structures of other embodiments.
  • the positions of the cores 11a and 15a at the centers are aligned in a state where the multi-core fiber 3 and the bundle structure 5a are opposed to each other (the distance between the end faces is 5 ⁇ m, for example).
  • the multicore fiber 3 side (capillary 21a) is in the X direction with respect to the bundle structure 5a side (capillary 21b) and the Y direction (F direction in the figure and G direction).
  • the light intensity detected by, for example, a photodetector connected to the core 15a is maximized.
  • the light may be incident on the core 15a side and detected on the core 11a side.
  • the multi-core fiber 3 side (capillary 21a) is rotated with respect to the capillary 21b about the center of the cross section of the capillary 21a (in the direction of arrow H in the figure).
  • light is incident from one core 11 side, and the other core 15 detects the light.
  • the light intensity detected by, for example, a photodetector connected to the core 15 becomes maximum.
  • the light may be incident on the core 15 side and detected on the core 11 side.
  • the five-point alignment (current position, ⁇ X direction, ⁇ Y direction, the total detected light intensity at five points, the current axis misalignment state is calculated and the optimum direction is obtained. It is also possible to use a centering method that moves an appropriate amount). What is necessary is just to join and fix with an adhesive agent etc. in the state after centering completion.
  • the method is as follows. First, two cores positioned at both ends on the X axis with the center fiber interposed therebetween are aligned by adjusting XY and rotation. Further, from this state, an alignment method is performed in which the state of the axial misalignment state (X, Y axial misalignment) of all the core wires is measured and the optimum amount is moved in the optimum direction.
  • the optimal direction and optimal amount here means that the amount of axial misalignment of the core that maximizes the axial misalignment is made as small as possible.
  • the optical fiber core wires 7 are integrated in a close-packed state, the distance between the optical fiber core wires 7 can be easily made constant. Therefore, each core 11 of the multi-core fiber 3 and each core 15 of the optical fiber core wire 7 can be reliably optically connected.
  • the optical fiber core wire 7 is bonded in a close-packed state and is held by a capillary or a holding member, the connection work is easy.
  • the direction of the closest arrangement of the optical fiber core wire 7 with respect to the capillary 21b can be regulated by making the hole of the capillary 21b hexagonal or forming the protrusion 23 on the inner surface. For this reason, if the mark which can recognize arrangement
  • the optical fiber core wires 7 can be easily and surely arranged in the closest manner and bonded.
  • the close-packed optical fiber core 7 is bonded to the capillary 21b with an adhesive having a higher viscosity and hardness, and the end face is polished, so that the capillary 21b and the optical fiber core 7 are securely bonded.
  • the tip of the optical fiber core wire 7 is not damaged during polishing.
  • the close-packed arrangement can be surely performed using the simple V-groove 28.
  • FIG. 14A shows a bundle structure 5g.
  • the MT structure 35 is used for the bundle structure 5g.
  • a hole 37 is provided in the MT connector 35.
  • the hole 37 is substantially hexagonal.
  • the hole 37 becomes a capillary through which the optical fiber core wire 7 is inserted. That is, in the bundle structure 5g, the plurality of optical fiber core wires 7 are arranged in a close-packed manner in the MT connector 35 having a capillary (hole 37).
  • the bundle structure 5g can be manufactured, for example, by the method shown in FIGS.
  • a pair of guide holes 39 are formed on both sides of the hole 37.
  • the guide hole 39 is a part into which a guide pin is inserted when connecting to another connector. The position of the optical fiber core wire can be adjusted by the guide pin.
  • FIG. 14 (b) is a diagram showing a bundle structure 5h.
  • the bundle structure 5h has substantially the same configuration as the bundle structure 5g, but the direction of the hexagon of the hole 37 is different.
  • the direction of the hole 37 may be any direction.
  • the hole 37 is configured to be slightly larger than the outer shape in which the optical fiber core wires 7 are arranged in a close-packed manner. Therefore, in order to more securely arrange the optical fiber core wire 7 without gaps, it is desirable to press the fiber core wire 7 in the direction of any corner of the hexagonal hole 37.
  • the multi-core fiber 3 may be fixed to the MT connector 35 as shown in FIG. 14 (c). By comprising in this way, bundle structure 5g, 5h and the multi-core fiber 3 can be connected easily.
  • the present invention is not limited to this.
  • the present invention can be applied to a multi-core fiber having 19 cores with one more core layer. In this case, it is possible to obtain the same effect as that of the above embodiment by producing a bundle structure of 19 optical fibers by the same method.
  • FIG. 15A is a view showing a jig 83 for manufacturing a 19-core bundle structure.
  • the jig 83 is formed with a hole 85 in the center, and around the hole 85, 12 holes 87 are formed on a substantially hexagonal line.
  • the optical fiber core wire 7 bundled in advance is inserted into the hole 85. That is, seven optical fiber core wires 7 that are previously (temporarily) bonded in a cross-section in a close-packed arrangement are inserted into the holes 85.
  • the optical fiber core wires 7 are inserted through the holes 87, respectively.
  • FIG. 16A is a cross-sectional view taken along the line KK of FIG.
  • the bundled central seven optical fiber cores 7 are immersed in the adhesive 25 so that the peripheral optical fiber cores 7 are in contact with each other at the tip. By doing so, the optical fiber cores 7 are brought into close contact with each other by the surface tension of the 12 optical fiber cores 7 on the outer periphery of the seven closest-packed optical fiber cores 7.
  • the hole 87 may be formed obliquely toward the insertion direction of the optical fiber core wire 7. Further, the arrangement and size of the holes 85 and 87 of the jig 83 can be appropriately set according to the number of optical fiber cores to be bundled.
  • the core interval of the multi-core fiber is not necessarily uniform.
  • the outer diameters of the bundled fibers may be appropriately selected according to the core pitch of the multi-core fiber.
  • the thick optical fiber core 7 at the center may be inserted into the hole 85, and the peripheral thin optical fiber core 7 may be inserted into the hole 87.
  • these tips by dipping these tips in an adhesive or the like, a bundle structure in close contact with each other can be obtained.
  • FIG. 17 (a) is a diagram showing a 10-core multi-core fiber 90
  • FIG. 17 (b) is a diagram showing a bundle structure 91 manufactured by the method of FIG. 15 (b).
  • FIG. 17A in the multi-core fiber 90, ten cores 11 are arranged in the clad 13. That is, nine cores 11 are arranged around the central core 11 at an interval of 40 °.
  • each optical fiber core wire 7 is arranged so as to be connectable to such a multi-core fiber 90.
  • the optical fiber cores 7 are fixed in close contact with each other, and can be connected to the multi-core fiber 90.
  • the radius of the clad 17 of the central optical fiber 7 is R.
  • r is the radius of the optical fiber core 7 disposed around, the following equation is given.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 マルチコアファイバ3は、複数のコア11が所定の間隔で配置され、周囲をクラッド13で覆われたファイバである。バンドル構造5は、光ファイバ心線7が最密配置で接合される。すなわち、中央に1本の光ファイバ心線7が配置され、その周囲に6本の光ファイバ心線7が配置される。したがって、それぞれの光ファイバ心線7のコア15は全て等間隔で配置される。また、光ファイバ心線7同士は接着剤19aによって接着される。したがって、隣り合う光ファイバ心線7のクラッド17同士は直接または接着剤19aを介して互いに全て接触する。また、光ファイバ心線7同士の隙間にも接着剤19aが充填される。

Description

バンドル構造の製造方法、ファイバ接続方法、バンドル端末構造、ファイバの接続構造
 本発明は、複数のコアを有するマルチコアファイバと、複数の光ファイバ心線がバンドルされたバンドル構造の製造方法等に関するものである。
 近年の光通信におけるトラフィックの急増により、現状で用いられているシングルコアの光ファイバにおいて伝送容量の限界が近づいている。そこで、さらに通信容量を拡大する手段として、一つのファイバに複数のコアが形成されたマルチコアファイバが提案されている。
 このようなマルチコアファイバとしては、例えば、複数のコア部がクラッド部の内部に設けられ、クラッド部の外周の一部に、長手方向に垂直な平坦部が形成されたものがある(特許文献1)。
 マルチコアファイバが伝送路として用いられた場合、このマルチコアファイバの各コア部は、他のマルチコアファイバの対応するコア部や、それぞれ別の光ファイバや光素子等と接続されて伝送信号を送受する必要がある。このようなマルチコアファイバとシングルコアファイバとを接続する方法として、マルチコアファイバと、そのマルチコアファイバのコア部に対応する位置にシングルコアの光ファイバが配列されたバンドルファイバとを接続し、伝送信号を送受信する方法が提案されている(特許文献2)。また、このようなバンドル光ファイバの作製方法として、複数のシングルコアのファイバを所定間隔で結束等によってバンドル化する方法が提案されている(特許文献3)。
特開2010-152163号公報 特開昭62-47604号公報 特開平03-12607号公報
 上述のように、マルチコアファイバの各コア部を個々の光ファイバ心線に接続させる場合には、マルチコアファイバの端面と個々の光ファイバ心線とで、互いにコア部同士を光学的に精密に接続する必要がある。しかしながら、通常、マルチコアファイバのコア部間隔は狭く(例えば40~50μm)、通常の光ファイバ心線(外径125μm)を使用することはできない。すなわち、マルチコアファイバのコア部間隔と同等以下の外径の光ファイバ心線を用いる必要がある。
 しかしながら、このような光ファイバ心線は極めて細く、取り扱い性が悪い。また、特にシングルモードファイバの場合には、接続部の位置ずれは1~2μm以下とする必要があるため、非常に高い位置精度が必要となる。
 これに対し、従来の特許文献3のように機械的に外側からの押圧力等でファイバ束を形成しようとしても、対象となるシングルコアファイバのコアの位置が意図する配置とならず、コア間隔が若干ずれてしまい、結果として接続対象のマルチコアファイバのコアと位置ずれが生じて光損失が生じる。すなわち、このようなマルチコアファイバと個々の光ファイバ心線との接続構造を、光損失が少なく精密に位置合わせする方法については現状十分な方法は提案されていない。
 本発明は、このような問題に鑑みてなされたもので、狭ピッチのコア部を有するマルチコアファイバに対しても精密に位置あわせが可能で確実に光接続ができる、光ファイバ心線のバンドル構造の製造方法およびその接続方法等を提供することを目的とする。
 前述した目的を達成するため、第1の発明は、複数のコアを有するマルチコアファイバと接続可能な、複数の光ファイバ心線からなるバンドル構造の製造方法であって、複数の光ファイバ心線を略最密配置でキャピラリに挿通し、前記キャピラリの端面から同一長さだけ前記複数の光ファイバ心線の先端を突出させ、前記複数の光ファイバ心線の先端を第1の接着剤に接触させることで、前記第1の接着剤の表面張力によって前記複数の光ファイバ心線同士を密着させて接着し、前記第1の接着剤が硬化後、前記キャピラリと前記複数の光ファイバ心線とを第2の接着剤で固定し、前記キャピラリの端面を研磨することで、最密配置された光ファイバ心線を得ることを特徴とするバンドル構造の製造方法である。
 また、複数のコアを有するマルチコアファイバと接続可能な、複数の光ファイバ心線からなるバンドル構造の製造方法であって、複数の光ファイバ心線を略最密配置で仮配列部材に挿通し、前記仮配列部材の端面から同一長さだけ前記複数の光ファイバ心線の先端を突出させ、前記複数の光ファイバ心線の先端を第1の接着剤に接触させることで、前記第1の接着剤の表面張力によって前記複数の光ファイバ心線同士を密着させて接着して光ファイバ束を形成し、前記第1の接着剤が硬化後、前記光ファイバ束を仮配列部材から取り外し、前記光ファイバ束の端面を研磨することで、最密配置された光ファイバ束を得ることを特徴とするバンドル構造の製造方法である。この場合、前記光ファイバ束の端面の研磨前に、前記光ファイバ束をキャピラリに挿通し、前記光ファイバ束と前記キャピラリとを第2の接着剤で固定し、前記キャピラリとともに前記光ファイバ束の端面を研磨してもよい。
 前記第1ないしは第2の接着剤の屈折率は、前記光ファイバ心線を構成するクラッドの屈折率よりも小さいことが望ましい。
 前記第1の接着剤は溶液系の接着剤であり、接着剤主成分の溶液に対する濃度が50%以下であってもよい。前記第1の接着剤の硬化収縮率は10%以上であってもよい。前記第1の接着剤の粘度は100cps以下であってもよい。前記第2の接着剤は、硬化後の硬度がショアD60以上であってもよい。
 ここで、硬化収縮率は10%以上であるとは、硬化前の接着剤の元の体積から、硬化後の接着剤の体積を比較すると、硬化前後で10%以上体積が縮小することをいう。
 前記光ファイバ心線が挿通される前記キャピラリには、光ファイバ心線の最密配置に対応した六角形の孔が形成され、前記光ファイバ心線は、前記六角形の孔に挿通されて固定されてもよい。
 前記光ファイバ心線が挿通される前記キャピラリの内面には、最密配置された前記光ファイバ心線の各ファイバ同士の間に形成される外周の少なくとも一か所の凹み部に対応する位置に、突起が形成されてもよい。
 第1の発明によれば、光ファイバ心線が最密に配置された状態でバンドル化されて一体化されるため、各光ファイバ心線同士の間隔が一定になる。このため、所定間隔で配置されているマルチコアファイバの各コア部に対して確実に位置を合わせることができる。
 また、接着剤の表面張力を利用するため、容易に精度よく光ファイバ心線を最密状態で接着し、所定間隔で光ファイバ心線を固定することができる。特に、第1の接着剤を粘度の小さな溶液系接着剤とすることで、表面張力により光ファイバ心線同士を確実に密着させることができるとともに、硬化後の体積が小さくなることで、接着層を薄く形成する事が可能となる。更に第2の接着剤の硬度を大きくすることで、その後の研磨時に光ファイバ心線が損傷することがない。
 また、光ファイバ心線同士が接着剤で固定され、光ファイバ心線同士を接着する接着剤の屈折率が、光ファイバ心線を構成するクラッドの屈折率よりも小さければ、各光ファイバ心線の光の漏えいを抑制することができる。
 また、光ファイバ心線が挿通されるキャピラリに、光ファイバ心線の最密配置に対応した六角形の孔が形成され、光ファイバ心線が六角形の孔に挿通されて固定されることで、キャピラリに対して光ファイバ心線の配置を一定の方向に合わせることができる。
 また、光ファイバ心線が挿通される前記キャピラリの内面に、最密配置された光ファイバ心線の各ファイバ同士の間に形成される外周の凹み部に対応する位置に突起を形成することで、キャピラリに対して光ファイバ心線の配置を一定の方向に合わせることができる。
 第2の発明は、第1の発明にかかるバンドル構造の製造方法により、バンドル構造を製造し、キャピラリに挿通されたマルチコアファイバと、前記バンドル構造とを、それぞれのキャピラリ同士で接合することを特徴とするファイバ接続方法である。
 前記マルチコアファイバとキャピラリとを接着する第3の接着剤の屈折率は、前記マルチコアファイバのクラッドの屈折率よりも小さいことが望ましい。
 第2の発明によれば、複数の光ファイバ心線およびマルチコアファイバがキャピラリに挿入されて固定されることで、当該接続部の取り扱いが容易となる。
 この際、マルチコアファイバとキャピラリとは接着剤で固定され、マルチコアファイバとキャピラリとを接着する接着剤の屈折率が、マルチコアファイバのクラッドの屈折率よりも小さければ、キャピラリにおいてマルチコアファイバからの光の漏えいを抑制することができる。
 第3の発明は、第1の発明にかかるバンドル構造の製造方法により、バンドル構造を製造し、マルチコアファイバの中心コアと、前記バンドル構造の対応するコアのアクティブアライメントを行い、前記マルチコアファイバの中心コアの周囲の1または2つのコアと前記バンドル構造の対応するコアとのアクティブアライメントを行い、前記マルチコアファイバと前記バンドル構造とを接着することを特徴とするファイバ接続方法である。
 複数のコアを有するマルチコアファイバと複数の光ファイバ心線からなるバンドル構造との接続方法であって、複数の光ファイバ心線を略最密配置でキャピラリに挿通し、前記光ファイバ心線と前記キャピラリとを耐熱性接着剤で接着し、前記キャピラリの端面を研磨することでバンドル構造を形成し、前記バンドル構造とキャピラリに挿入されたマルチコアファイバとを融着して接続してもよい。
 複数のコアを有するマルチコアファイバと複数の光ファイバ心線からなるバンドル構造との接続方法であって、複数の光ファイバ心線を略最密配置でキャピラリに挿通した状態で加熱し、前記光ファイバ心線と前記キャピラリとを融着し、前記キャピラリの端面を研磨することでバンドル構造を形成し、前記バンドル構造とキャピラリに挿入されたマルチコアファイバとをさらに融着して接続してもよい。
 複数のコアを有するマルチコアファイバと複数の光ファイバ心線からなるバンドル構造との接続方法であって、複数の光ファイバ心線を略最密配置でキャピラリに挿通し、前記光ファイバ心線と前記キャピラリとを水ガラスまたはガラスパウダで接着し、前記キャピラリの端面を研磨することでバンドル構造を形成し、前記バンドル構造と他のキャピラリに挿入されたマルチコアファイバとを融着して接続してもよい。
 第3の発明によれば、確実にマルチコアファイバのコアと光ファイバ束の対応する各コアとを光接続することができる。
 第4の発明は、略円筒状のキャピラリと、複数の光ファイバ心線と、を具備し、前記光ファイバ心線は、前記キャピラリに挿通され、前記キャピラリの内部において断面が略最密で配置され、隣り合う前記光ファイバ心線同士が接触した状態で接合されており、前記キャピラリの内面と、最密に互いに接合された前記光ファイバ心線のバンドル構造との間には、隙間が形成されることを特徴とするバンドル端末構造である。
 第5の発明は、第4の発明にかかるバンドル端末構造と、略最密で配置された前記光ファイバ心線と、前記キャピラリとの間には、ガラスパウダが充填され、前記キャピラリとマルチコアファイバの端末とが融着によって接合されることを特徴とするファイバの接続構造である。
 第4、第5の発明によれば、マルチコアファイバと容易に接続可能なバンドル構造と、このバンドル構造とマルチコアファイバとの接続構造を得ることができる。
 本発明によれば、狭ピッチのコア部を有するマルチコアファイバに対しても確実に光接続が可能な、光ファイバ心線のバンドル構造の製造方法等を提供することができる。
ファイバ接続構造1を示す図であり、(a)は正面図、(b)は(a)のA-A線断面図、(c)は(a)のB-B線断面図、(d)は接合部の断面における電極の配置を示す図。 ファイバ接続構造1aを示す図であり、(a)は正面図、(b)は(a)のC-C線断面図。 (a)はバンドル構造5aを示す図であり図2(a)のD-D線断面図、(b)はバンドル構造5bを示す図、(c)はバンドル構造5cを示す図。 (a)はファイバ接続構造1cを示す図であり、(b)はファイバ接続構造1dを示す図。 バンドル構造の製造工程を示す図。 光ファイバ心線同士の接着構造を示す図。 キャピラリ先端を研磨する状態を示す図。 (a)はキャピラ21cを示す図、(b)はキャピラリ21dを示す図。 (a)は光ファイバ7aを示す図、(b)は光ファイバ7aをキャピラリ21cに挿入した状態を示す図。 バンドル構造5dを示す図。 バンドル構造5fを示す図。 バンドル構造5eを示す図。 マルチコアファイバ3とバンドル構造5aの調芯方法を示す図。 他のバンドル構造を示す図。 治具83、89を示す図。 治具83を用いたバンドル構造の製造工程を示す図。 マルチコアファイバ90とバンドル構造91とを示す図。
 以下、ファイバ接続構造1について説明する。図1(a)はファイバ接続構造1の正面図、図1(b)は図1(a)のA-A線断面図、図1(c)は図1(a)のB-B線断面図である。ファイバ接続構造1は、マルチコアファイバ3と、複数の光ファイバ心線7がバンドルされたバンドル構造5との接続構造である。
 図1(b)に示すように、マルチコアファイバ3は、複数のコア11が所定の間隔で配置され、周囲をクラッド13で覆われたファイバである。全部で7つのコア11は、マルチコアファイバ3の中心と、その周囲に正六角形の各頂点位置に配置される。すなわち、中心のコア11と周囲の6つのコア11とは全て一定の間隔となる。また、6つのコア11において、隣り合う互いのコア11同士の間隔も同一となる。ここで、コア11のピッチは例えば40~50μm程度である。
 バンドル構造5は、同一径の7本の光ファイバ心線が最密配置で接合される。すなわち、中央に1本の光ファイバ心線7が配置され、その周囲に6本の光ファイバ心線7が配置される。したがって、それぞれの光ファイバ心線7のコア15は全て等間隔で配置される。また、光ファイバ心線7同士は接着剤19aによって接着される。したがって、隣り合う光ファイバ心線7のクラッド17同士は直接または接着剤19aを介して互いに全て接触する。また、光ファイバ心線7同士の隙間にも接着剤19aが充填される。
 なお、マルチコアファイバ3および光ファイバ心線7は例えば石英ガラス製である。また、本実施例では、中心コアの外周に6つのコアを有する全7つのコアで構成される最密配置の例について説明するが、その外周にさらに12のコアを形成して最密配置とすることもできる。すなわち、本発明では、コア同士が最密配置されていれば、その個数は限定されない。
 ただし、本願発明はファイバ間に侵入した接着剤等の表面張力のバランスにより自己整合的にファイバを最密に整列させることを意図しているので、7本のファイバからなるバンドル構造が最も精度がよく、ついでその外周にさらに12のコアを設けるバンドル構造が精度良く形成できる。それ以上の本数からなるバンドル構造においても本願は適用可能であるが、コアの位置ずれの精度(特に外周側)が劣化する。ただし、本数を多くした場合には例えば、まず、7本のファイバからなるバンドル構造を形成し、その接着後にさらに、その外周に12本のファイバを表面張力によって接着するというように段階的にバンドル構造を形成することでコアの位置ずれ精度の劣化を減少させることができる。
 マルチコアファイバ3の端面とバンドル構造5の端面は互いに研磨されて対向して配置される。この状態で、それぞれのコア11とコア15とが光接続する位置で対向する。すなわち、コア11のピッチと、光ファイバ心線7の外径(クラッド17の径)とは略一致する。なお、光ファイバ心線7同士の隙間に接着剤19aによる接着層が形成されることを考慮して、光ファイバ心線7(クラッド17)の外径をマルチコアファイバ3のコア11のピッチよりも0.1~3μm程度小さく設定してもよい。この場合でも、光ファイバ心線7同士が接着されたバンドル構造において、個々のコア15の間隔はコア11のピッチと一致する。
 図1(a)に示すように、マルチコアファイバ3の端面とバンドル構造5の端面が対向して配置され、互いのコア11とコア15とが光接続した位置で、接着剤9によって互いに固定される。位置合わせについての詳細は後述するが、マルチコアファイバ3の端面とバンドル構造5の端面が対向して配置された状態で、少なくとも一方を回転装置付治具で固定し、例えば、マルチコアファイバ3の各コアに、対向端面の反対側の端部より信号光を入力し、バンドルファイバの対向端面の反対側から出力された信号光を受信させるようにし、バンドルファイバ束(あるいはマルチコアファイバ)の位置調整および回転調整を行い、その光信号出力が最大になった位置で治具を固定し、双方のファイバを接着(あるいは融着)接続させる。
 なお、図1(d)に示すように、融着を行う場合には、接合部の断面において、異なる3方向に電極12を配置し、それぞれの電極12から放電して融着を行うことが望ましい。このようにすることで、外径の大きなマルチコアファイバ3に対しても確実に融着を行うことができる。なお、融着を行う場合には、耐熱性(例えば1000℃程度)の接着剤(金属系の接着剤などを含む)、水ガラスまたはガラスパウダによって、光ファイバ心線7同士をあらかじめ接着しておくことが望ましい。
 ここで、本願の最密構造のバンドルファイバは非常にコアの位置精度が高いので少なくとも2つのコアに関して調整を行えばよい。なお、まずは、中心のコアについて位置あわせを行い、周囲の1または2つのコアについて位置合わせを行うと簡便で精度も高くなる。また当然ではあるが、より高精度な位置あわせを行うために、全てのコアに対して軸ずれの測定を行い、最適な位置に位置あわせを行う事も可能である。
 以上により、マルチコアファイバ3の各コア11と光ファイバ心線7の各コア15とが光接続された接続構造を得ることができる。ここで、バンドル構造5では、光ファイバ心線7が最密配置された状態でバンドルされるため、互いのコア15の間隔を精度よく一定に保つことができる。
 次に、他の実施形態にかかるファイバ接続構造1aについて説明する。図2(a)はファイバ接続構造1aの正面図、図2(b)は図2(a)のC-C線断面図、図3(a)は図2(a)のD-D線断面図である。ファイバ接続構造1aは、ファイバ接続構造1に対して、マルチコアファイバ3および光ファイバ心線7がそれぞれキャピラリ21a、21bに挿入され、キャピラリ21a、21b同士が接合される点で異なる。
 図2(b)に示すように、キャピラリ21aは内部に孔を有する筒状部材である。キャピラリ21aの孔はマルチコアファイバ3の外径よりもわずかに大きい。マルチコアファイバ3とキャピラリ21aとは、例えば接着剤で接着される。この場合、当該接着剤の屈折率が、マルチコアファイバ3のクラッド13の屈折率よりも小さいことが望ましい。このようにすることで、クラッドからの光のもれを防止することができる。
 また、図3(a)に示すように、バンドル構造5aは、光ファイバ心線7が最密配置された状態でキャピラリ21bに挿入される。キャピラリ21bは内部に孔を有する筒状部材であり、キャピラリ21bの孔は光ファイバ心線7が最密配置された状態の外接円の外径よりもわずかに大きい円断面形状である。
 例えば、隣り合う光ファイバ心線7同士が互いに接触し、光ファイバ心線7が断面において最密で配置された際、キャピラリ21bの内面と光ファイバ心線7の最密構造の外接円との間には、1μm程度の隙間が形成される。すなわち、外径D(μm)の光ファイバ心線7が7本で最密構造を構成する場合には、キャピラリ21bの内径は、3×D+1μmで設定される。
 また、光ファイバ心線7とキャピラリ21bとは、接着剤19bで接着される。この場合、接着剤19bの屈折率が、光ファイバ心線7のクラッド17の屈折率よりも小さいことが望ましい。このようにすることで、クラッドからの光のもれを防止することができる。なお、接着剤19bは接着剤19aと同じものであってもよい。すなわち、光ファイバ心線7がキャピラリ21bに挿入された状態で、空隙には接着剤が充填されていればよい。
 キャピラリ21a、21bの端面が対向して配置され、互いのコア11とコア15とが光接続した位置で、接着剤等によって互いに固定される。以上により、マルチコアファイバ3の各コア11と光ファイバ心線7の各コア15とが光接続された接続構造を得ることができる。ここで、ファイバ接続構造1aでは、マルチコアファイバ3とバンドル構造5aの端部がそれぞれキャピラリ21a、21bに収められるため、取り扱いが容易である。また、キャピラリの面同士の接合となるため、接合面が広く確実に互いを接合することができる。また、光接続させる際に上述の実施例と同様にアクティブアライメントを行って接着することによって、バンドルファイバ束とキャピラリの隙間に起因する位置ズレを防止することができる。
 上述のように本願の7コアのバンドル構造と7コアのマルチコアファイバの接続構造によれば、従来の7コアのバンドル構造と7コアのマルチコアファイバの接続構造に比べて、7コアの平均で1dBの損失の改善が認められた。
 なお、キャピラリ21bに光ファイバ心線7が挿通されるバンドル構造としては、図3(b)に示すバンドル構造5bであってもよい。バンドル構造5bは、キャピラリ21bの内部の孔が円形ではなく、略正六角形となる。すなわち、光ファイバ心線7の最密配置状態に外接する略正六角形であり、孔のそれぞれの頂点部にそれぞれ光ファイバ心線7が配置される。したがって、光ファイバ心線7の配置が規制され、キャピラリ21bに対して光ファイバ心線7が常に一定の配置となるようにすることができる。なお、同図において、六角形の頂点はファイバの半径以下のR形状であっても良い。
 また、図3(c)に示すように、バンドル構造5cとしてもよい。バンドル構造5cは、キャピラリ21bの内部の略円形の孔の内面の少なくとも一部に、突起23が設けられる。すなわち、光ファイバ心線7の最密配置状態に外接する外接円の内面に、光ファイバ心線7の最密配置状態における光ファイバ心線7同士の隙間に形成される凹部に嵌るように突起23が形成される。したがって、光ファイバ心線7の配置が規制され、キャピラリ21bに対して光ファイバ心線7が常に一定の配置となるようにすることができる。なお、突起23は、一つだけでも良く、複数個形成してもよい。
 図4は、さらに異なる実施形態を示す図である。本発明は、図4(a)は、ファイバ接続構造1cを示す図である。図4(a)に示すように、バンドル構造5を、マルチコアファイバ3に直接接続してもよい。すなわち、マルチコアファイバ3は、キャピラリ21aに挿入されなくてもよい。なお、マルチコアファイバ3とバンドル構造5とは、接着または融着で接続すればよい。
 また、図4(b)は、ファイバ接続構造1dを示す図である。図4(b)に示すように、バンドル構造5aを、マルチコアファイバ3に直接接続してもよい。すなわち、マルチコアファイバ3は、キャピラリ21aに挿入されなくてもよい。なお、マルチコアファイバ3とバンドル構造5とは、接着または融着で接続すればよい。この場合、キャピラリ21bとマルチコアファイバ3の外径が略等しいことが望ましい。このようにすることで、より安定した接続が可能である。
 なお、図2に示す接続構造に対しても、図4に示す接続構造と同様に、接着に代えて融着を行ってもよい。この場合、接着剤19a、19bとして、前述した耐熱性の接着剤や水ガラスまたはガラスパウダを用いてもよい。また、キャピラリ21bと光ファイバ心線7との接合も融着によって行ってもよい。例えば、最密配置された光ファイバ心線7をキャピラリ21bに挿入した状態で加熱することで、光ファイバ心線7の外面がキャピラリ21bの内面に融着される。
 このようにすることで、その後のキャピラリ21a、21bを容易に融着することができる。なお、融着の場合には、キャピラリ21a、21bはガラスキャピラリであることが望ましい。ガラスキャピラリであれば、加熱時の変形が少なく、安定した融着接続が可能となる。
 また、キャピラリ21bを熱収縮材で構成することもできる。この場合、光ファイバ心線7をキャピラリ21bに挿入した状態で、キャピラリ21bの先端を加熱すればよい。なお、光ファイバ心線7同士は、キャピラリ21bに挿入する際に、あらかじめ互いに最密状態で接着しておくことが望ましい。キャピラリ21bが加熱によって収縮することで、光ファイバ心線7を最密状態で保持することができる。
 次に、特にバンドル構造5a~5cを対象とした、光ファイバ心線7を最密に接着するバンドル構造の製造方法について説明する。まず、図5に示すように、所定本数の光ファイバ心線7の被覆を除去してキャピラリ21bに挿入する。この際、キャピラリ21bの端部からは、光ファイバ心線7の先端がそれぞれ同一長さだけ出るように(例えば10mm程度)、光ファイバ心線7をキャピラリ21bに挿入する。なお、キャピラリ21bは例えば光ファイバ心線7に仮固定される。
 キャピラリ21bの端部から突出する光ファイバ心線7の先端は、あらかじめ容器に溜められた接着剤25に浸けられる。接着剤25は例えば溶液系の接着剤であり、合成樹脂等の高分子固形分が、水、アルコール、有機溶剤などの溶媒に溶け込んだ液状のものである。このような溶液系接着剤では、溶媒が気化した後に残留する溶質が硬化することで接着される。
 なお、接着剤25としては、通常使用される溶質濃度よりもさらに希釈されたものが望ましい。このようにすることで、接着剤の粘度を下げ、また、残留する溶質量を抑えることができる。このため、光ファイバ心線同士の隙間の接着層を薄くし、光ファイバ心線7同士の間隔をより精度よく一定にすることができる。すなわち、接着力は弱くてもよいが、例えば1000cps以下のものを用いることができ、さらに望ましくは、100cps以下のごく低粘度のものが望ましい。接着剤25の粘度を100ps以下とすれば、接着後の光ファイバ心線同士の隙間を1μm以下とすることができる。また、硬化時に接着剤が収縮する事で、光ファイバをより密接に引き寄せ合う効果が得られる。また、光ファイバ心線のクラッドよりも低屈折率のものが望ましい。また、極低粘度(100cps以下)の接着剤を用いる事で、希釈を行わなくても同様の効果を得ることが可能である。
 このような接着剤としては、例えば、溶液系としては、セメダイン社製「セメダインC」(商品名)を薄め液で希釈したもの(屈折率の調整のためフッ素を添加することが望ましい)や、極低粘度の接着剤(アクリレート系)としては、NTT-AT社製の屈折率制御樹脂(UV硬化)や、極低粘度の接着剤(エポキシ系)としては、Epo-Tek社製の熱硬化型接着剤を用いることができる。また接着剤を加熱することにより、より粘度を下げることができるため、接着後の光ファイバ心線同士の隙間をより小さくすることが可能である。
 ここで、キャピラリ21b内部では、光ファイバ心線7は略最密に近い状態で挿入されるが、光ファイバ心線7の先端が接着剤25に浸けられる前の状態では、一部では互いの間に隙間が形成したり、また他の部位では互いが密着したりするなど、完全な最密配置(一定のコア間隔)とすることは困難である。
 図6は接着剤25の表面張力による光ファイバ心線7同士の接着状態を示す概念図で、図6(a)は正面図(簡単のため光ファイバ心線7は2本のみ示す)、図6(b)は断面図である。
 前述の通り、光ファイバ心線7同士の間には隙間が形成される場合があるが、接着剤25の粘度は低く、表面張力(毛細管現象)によって接着剤25は光ファイバ心線7同士の隙間に吸い上げられる。この際、互いの表面張力によって光ファイバ心線7同士が密着される(図中矢印E方向)。
 すなわち、図6(b)に示すように、光ファイバ心線7同士の間に多少不均一な隙間が形成されていても、その隙間には接着剤25が吸い上げられて、光ファイバ心線7同士が密着される。この際、それぞれのファイバ間に吸引されて存在する接着剤の表面張力が安定化する配置、すなわち、光ファイバ心線7同士が確実に最密配置となるとともに、この状態で接着剤25を硬化させることで互いを接着することができる。このような効果は、本発明のように極めて微細な光ファイバ心線7(例えばΦ50μm以下)に対して特に有効である。
 なお、接着剤25の吸い上げ高さが高すぎると(接着剤25の吸い上げ量が多すぎると)、却って光ファイバ心線7の端部同士の間の接着剤25の量が多くなる。このため、光ファイバ心線7同士の隙間が大きくなる恐れがある。このため、表面張力により吸い上げられる接着剤25の量は、キャピラリ21bの内部における光ファイバ心線7同士の隙間を埋める量以下とすることが望ましい。すなわち、図4において、接着剤25の吸い上げ高さが、キャピラリ21bの上端よりも下(図中I)であり、かつ、後述する研磨部よりも上方までくるように調整することが望ましい。
 このように調整する方法としては、接着剤25の量をあらかじめ必要最低限の量としておくか、所定高さまで接着剤25が上がってきたとことで、光ファイバ心線7の先端を接着剤25から引き揚げればよい。このようにすると、光ファイバ心線7により吸い上げられる接着剤25の量は、光ファイバ心線7の半径をrとし、キャピラリ21bの長さをLとしたとき、接着剤量を(3^(0.5)×r-0.5πr)×L以下とすることができる。
 なお、接着剤25は希釈された溶液タイプの接着剤であるので、硬化後のファイバ束のファイバ間のファイバ同士が密接しない部位には接着剤の収縮によって隙間が形成される事になる。
 次に、図7に示すように、光ファイバ心線7同士が最密状態で互いに接着された状態で、当該部位をキャピラリ21bに接着する。この際に使用される接着剤(接着剤19a)としては、熱硬化型エポキシ系接着剤や、UV硬化型アクリレート系接着剤を使用すればよい。接着剤19aは、キャピラリ21bとファイバ束との隙間およびファイバ心線同士(接着剤25同士)の隙間を埋めて、ファイバ束とキャピラリとを接着する。なお、ここではキャピラリと光ファイバ束を接着したが、キャピラリを取り外して光ファイバ束のみを用いてマルチコアファイバと接続させてもよい。
 なお、接着剤25により光ファイバ心線7同士の仮接着を行った後、光ファイバ心線7同士の間の接着を接着剤19aで行い、さらに光ファイバ心線7とキャピラリ21bとの間の接着を接着剤19bで行ってもよい。また、接着剤25に代えて、接着剤19aの表面張力によって光ファイバ心線7同士を接着し、その後、接着剤19bによってキャピラリ21bと接着してもよい。
 次いで、キャピラリ21bより突出する光ファイバ心線7およびキャピラリ21bの一部を研磨面27で研磨する。以上によりバンドル構造5aが形成される。なお、バンドル構造の端面を研磨によって均一な面を得るのではなく、例えばダイシングソー等による切断により均一な面を得ても良い。
 なお、接着剤19a(19b)としては、低粘度であることが望ましいが接着剤25よりも粘度が高くてもよい(例えば5000cps以下)。また、硬化時の収縮率は低く、硬度が高い(ショアDで60以上)であることが望ましい。なお、接着剤25も硬化後の硬度は高い方が良いが、硬化後の接着層がかなり薄くなるため、その硬度が研磨時の特性への影響は小さい。
 このような接着剤としては、例えば、エポキシ系の熱硬化接着剤である、EPOXY TECHNOLOGY社製「Epo-tek 353-ND」(商品名)や、アクリレート系UV硬化接着剤である、大日本インキ社製「OP-40Z」(商品名)や、NTT-AT社製の屈折率制御樹脂(UV硬化)を用いることができる。
 なお、前述の通り、ファイバ接続構造を融着によって形成する場合には、接着剤として、耐熱性接着剤を用いればよい。また、ガラスパウダを溶媒に混ぜて、上述の方法で毛細管現象によりファイバ心線同士を密着させた後、溶媒を揮発させて、ガラスパウダのみを残してもよい。すなわち、略最密で配置された光ファイバ心線7と、キャピラリ21bとの間には、ガラスパウダが充填されることで、光ファイバ心線とキャピラリ21bとが固定され、この状態のキャピラリ21(バンドル構造5a)とマルチコアファイバ3の端末とを直接融着によって接合してもよい。また、接着剤に替えて、水ガラス(液体ガラス/ゾル・ゲルガラス)を用いてもよい。
 なお、本実施例では先に複数の光ファイバ心線7をキャピラリ21bに挿通する手順としたが、本発明はこれに限られる必要は無く、例えば本実施例と同様の方法により複数の光ファイバ心線7を密着して固定し、しかる後にキャピラリ21bに挿入し第2の接着剤で固定しても良い。この場合、複数の光ファイバ心線7は筒状の仮配列部材に挿入した状態で第1の接着剤25に浸す事で、確実に細密構造に固定する事が可能となる。
 この方法の場合、キャピラリ21bへの光ファイバ心線7の挿入が容易になるため、キャピラリ21bの内径クリアランスを小さくする事が可能となる。
 なお、本実施例においては、接着剤19aは接着剤25とは別の接着剤としたが、接着剤19aは接着剤25が兼ねる事も可能である。すなわち、接着剤25を用いてファイバ同士を密着固定する際に、ファイバ間に隙間が空かないような、硬化時の収縮が小さい接着剤を用いる事も可能である。この場合においても、接着剤25の表面張力を用いてファイバ同士を密着固定する事が可能である。この場合、接着剤25は、硬度が高い(ショアDで60以上)であることが望ましい。
 また、接着剤25は屈折率が低いものが好ましいが、これは、光の閉じ込め効果を高めるためのものであり、光ファイバ心線に十分に光の閉じ込め効果があるものを用いるならば、接着剤25は屈折率が高いものも使用可能である。
 また、光ファイバ心線の凝集効果を向上させる手段として、光ファイバ心線7の表面の濡れ性を向上させてもよい。濡れ性を向上させる手段としては、プライマーと呼ばれる表面処理剤を塗布乾燥する方法や、プラズマ放電処理による方法が知られている。また当然ではあるが、作業に際し、光ファイバ心線7は十分に清浄にしておく事が望ましい。
 図8は、キャピラリの他の実施形態を示す図である。図8(a)に示すように、キャピラリ21bに代えて、キャピラリ21cを用いることもできる。キャピラリ21cは、被覆部が除去された光ファイバ心線7を完全に覆うように所定の長さで形成される。すなわち、キャピラリ21cの上縁部は、光ファイバ心線7の被覆部の位置に配置される。キャピラリ21cの内面の上部には、テーパ部22が形成される。すなわち、キャピラリ21cの上端部に行くにつれて、キャピラリ21cの孔径が大きくなる。また、テーパ部22と直線部との境界部には、断面円弧状の面取り部24が形成される。
 このようにすることで、被覆が除去された裸心線をキャピラリ21cによって確実に保護することができる。また、テーパ部22によって、光ファイバ心線7の挿入作業性に優れる。また、テーパ部22と直線部との境界が面取り部であるため、光ファイバ心線7の一部に力が集中することがない。また、光ファイバの曲がりによる伝送損失の増加を防止することができる。
 また、同様に、テーパ部22を有するキャピラリとしては、図8(b)に示すようなキャピラリ21dを用いることもできる。キャピラリ21dは、キャピラリ21cと略同様の構成であるが、上端部に段差26が形成される点で異なる。段差26は、光ファイバ心線7の被覆部に対応する。すなわち、キャピラリ21dを用いると、段差26の位置に光ファイバ心線7の被覆部が位置し、テーパ部22より下方に、裸の光ファイバ心線7が位置する。キャピラリ21dによってもキャピラリ21cと同様の効果を得ることができる。
 図9は、光ファイバ心線7に代えて、光ファイバ心線7aを用いた例を示す図である。光ファイバ心線7aは、光ファイバ心線7と同様であるが、被覆部から露出するファイバの根元部が太く、先端側が細い。例えば、被覆部から露出する5mm程度の長さは、125μmΦであるが、その先端側は例えば45μm程度である。
 このような光ファイバ心線7aは、以下のようにして製造される。まず、光ファイバ心線7の先端部の被覆層を所定長さ除去する。次いで、露出した光ファイバ心線7の先端部を、被覆部から約5mm程度残してフッ化水素酸水溶液中に浸漬する。浸漬した部位の光ファイバ心線は、エッチングにより細径化する。先端部の径がおおよそ45μm程度となった後、エッチングを終了する。以上により、光ファイバのクラッド部の一部がエッチングされて細径化された光ファイバ心線7aを得ることができる。
 なお、先端部が細径化した光ファイバ心線としては、他の方法で製造してもよい。例えば、125μm径の光ファイバの先端部に、45μmの光ファイバを融着等によって接合してもよい。但し、融着による光伝送ロスが生じる恐れがあるため、前述のエッチングによる製法の方が望ましい。
 図9(b)は、光ファイバ心線7aをキャピラリ21cに挿入した状態を示す図である。この場合には、光ファイバ心線7aの被覆部までが、キャピラリ21c内に保持され、キャピラリ21の内部で、細径化した光ファイバ心線7aが最密化される。なお、光ファイバ心線7aに対しては、他のキャピラリ21b、21dなどいずれのキャピラリも適用することができる。また、図9(b)に示した時異形低以外の他の実施形態においても、光ファイバ心線7に代えて光ファイバ心線7aを用いることもできる。
 図10はさらに別の実施の形態であるバンドル構造5dを示す図である。バンドル構造5dは以下のように形成される。まず、上面にV溝28を有する保持部材29aにダミーファイバ31および光ファイバ心線7を配置する。ダミーファイバ31は、光ファイバ心線7と同一径のものであればいずれのものでも使用することができる。なお、V溝28の下部の角度は略60度である。
 ダミーファイバ31は、V溝28の最深部と最上部の両端部にそれぞれ設けられる。すなわち、ダミーファイバ31を頂点とする略正三角形状にダミーファイバ31および光ファイバ心線7が配置される。したがって、ダミーファイバ31を除く光ファイバ心線7は、確実に六角形の最密状態で配置される。
 この状態で、上部より板状の保持部材29bで押さえつけて接着剤19aにより保持部材29a、29b、光ファイバ心線7、ダミーファイバ31を互いに接着する。接着剤19a硬化後、端面を研磨してバンドル構造5dが形成される。この場合、保持部材29a、29bがキャピラリ21bと同様に機能し、マルチコアファイバ側のキャピラリ21aと接合される。
 図11はさらに別の実施の形態であるバンドル構造5fを示す図である。バンドル構造5fは以下のように形成される。まず、上面に溝30を有する保持部材29cに光ファイバ心線7を配置する。なお、溝30は、光ファイバ心線7が最密配置された外形に対応した形状(正六角形の一部の形状)である。
 溝30内には、光ファイバ心線7が最密配置される。さらに、溝30および光ファイバ心線7を覆うように、保持部材29dが被せられる。なお、保持部材29dと溝30とによって、略六角形の断面空間が形成される。したがって、光ファイバ心線7は、当該空間内において最密状態で保持される。
 なお、保持部材29dは、硬度が低く、容易に変形可能な材質であることが望ましい。例えば、フィラーを含まない樹脂で構成される。このような材質で保持部材29dを構成することで、保持部材29dによって光ファイバ心線7が確実に押さえつけられ、光ファイバ心線7が、最密状態でより確実に保持される。
 バンドル構造5fはこのような状態で、端部から光ファイバ心線7を突出させて、図5~図7に示した方法と同様にして(キャピラリ21bに代えて保持部材29c、29dを用い)、光ファイバ心線7同士を互いに接着させてもよい。また、他の方法で接着剤を塗布してもよく、融着してもよい。
 図12はさらに別の実施形態であるバンドル構造5eを示す図である。バンドル構造5eは、光ファイバ心線7の外周にコーティング剤33が設けられる。コーティング剤33としては、低融点ガラスまたは金属が適用可能である。
 前述した通り、光ファイバ心線7は石英ガラス等で構成される。このため、光ファイバ心線7の融点は極めて高い。一方、低融点ガラスや金属(アルミニウム等)は光ファイバ心線7よりも融点が低い。このため、最密配置した状態で加熱することで、互いを融着することができる。この際、加熱時にコーティング剤33が溶融することで、光ファイバ心線7同士が、その表面張力で互いに引き付けあって、より確実に最密構造を形成することができる。
 なお、コーティング剤33は光ファイバ心線7の表面に蒸着、スパッタリング、メッキ等いずれの方法で形成してもよい。また、加熱前に光ファイバ心線自体を最密に配置する方法としては、例えば図10に示すような保持部材を用いてもよい。
 次に、バンドル構造とマルチコアファイバとの調芯方法について詳細に説明する。図13はバンドル構造5aとマルチコアファイバ3との調芯方法を示す図であり、マルチコアファイバ3を点線(コア部を黒塗り)で示し、バンドル構造5a側を実線(コア部が白抜き)で示す。なお以下の例では、バンドル構造5aについて説明するが、他の実施形態のバンドル構造であっても同様に行うことができる。
 まず、図13(a)に示すように、マルチコアファイバ3とバンドル構造5aを対向させた状態(互いの端面間距離は例えば5μm)でそれぞれの中心のコア11a、15aの位置を合わせる。この際、例えばマルチコアファイバ側から光を入射した状態で、マルチコアファイバ3側(キャピラリ21a)をバンドル構造5a側(キャピラリ21b)に対してX方向およびこれと垂直なY方向(図中F方向およびG方向)に移動させる。
 図13(b)に示すように、コア11a、15aの位置が合うと、例えばコア15aに接続された光検出器で検出される光強度が最大となる。なお、光はコア15a側から入射してコア11a側で検出してもよい。
 この状態で、マルチコアファイバ3側(キャピラリ21a)をキャピラリ21bに対して、キャピラリ21aの断面中心を回転軸として回転させる(図中矢印H方向)。この際、例えば一方のコア11側から光を入射させて他方のコア15で光を検出する。
 図13(c)に示すように、コア11、15の位置が合うと、例えばコア15に接続された光検出器で検出される光強度が最大となる。なお、光はコア15側から入射してコア11側で検出してもよい。
 なお、キャピラリ21b側を移動(回転)させて調芯を行うことも可能である。しかしながら、マルチコアファイバ3の方が、キャピラリ21aとのクリアランスを小さくすることが可能である。このため、キャピラリ21aの中心とマルチコアファイバ3の中心の位置とが略一致する。したがって、キャピラリ21aを、断面中心を回転軸として回転させた際には、マルチコアファイバ3の略断面中心が回転軸となる。
 一方、キャピラリ21b側では、複数の光ファイバ心線7を挿入する必要があることから、キャピラリ21aとマルチコアファイバ3とのクリアランスと比較して、より大きなクリアランスが必要となる。このため、キャピラリ21bの断面中心と光ファイバ心線7の最密配置断面中心との位置がずれる恐れがある。したがって、キャピラリ21bの断面中心を回転軸とすると、光ファイバ心線7の最密配置断面中心が回転軸とならず、中心のコア15a自体の位置ずれの恐れがある。したがって、キャピラリ21bを固定し、キャピラリ21a側を回転させることが望ましい。
 また、上記中心コアの調芯と、その他のコアの調芯を繰り返しながら、それぞれのコアでの光の検出強度が最大となるようにすることもできる。さらに、上記調芯が終了後、5点調芯(現在の位置、±X方向、±Y方向の計5点における光の検出強度から、現状の軸ずれ状態を計算して最適な方向に最適な量を移動させる調芯方法)を用いることもできる。調芯が終了後、その状態で接着剤等により接合して固定すればよい。
 また、他の調芯方法を用いる事も可能である。例えば最初に任意の2心の調芯を行い、その後、残りのコアの調芯を行う方法も可能である。具体的には以下の様な方法である。最初に中心のファイバを挟んでX軸上の両端に位置する2つのコア同士を、XY及び回転の調整を行い調芯する。更にその状態から、全ての心線の軸ずれ状態(X、Yの軸ずれ)の状態を測定し、最適な方向に最適な量を移動させる調芯方法である。
 ここでいう最適な方向及び最適な量とは、軸ずれが最大となるコアの軸ずれ量ができるだけ小さくなるような状態にする事である。またその他に、全体の軸ずれの平均が小さくなるようにする方法や、二乗平均が小さくなるようにする方法(最小二乗法)を用いる事も可能である。
 本発明によれば、光ファイバ心線7を最密配置した状態で一体化するため、各光ファイバ心線7同士の間隔を容易に一定とすることができる。したがって、マルチコアファイバ3の各コア11と光ファイバ心線7の各コア15とを確実に光接続することができる。
 特に、光ファイバ心線7が最密配置した状態で接着され、キャピラリまたは保持部材で保持されるため、接続作業が容易である。また、キャピラリ21bの孔を六角形にしたり、または内面に突起23を形成したりすることで、キャピラリ21bに対する光ファイバ心線7の最密配置の方向を規制することができる。このため、例えばキャピラリ21bの外周に内部の光ファイバ心線7の配置が認識可能なマークを設ければ、調芯作業においてコアの位置を把握することが容易である。
 また、光ファイバ心線を最密配置する方法として、希釈した接着剤25の表面張力を利用することで、容易に確実に光ファイバ心線7同士を最密に配置して接着することができる。この際、最密状態の光ファイバ心線7を、より高粘度かつ高硬度な接着剤でキャピラリ21bに接着し、端面を研磨することで、キャピラリ21bと光ファイバ心線7とを確実に接合することが可能であるとともに、研磨時に光ファイバ心線7の先端を破損することがない。
 また、ダミーファイバ31を用いて光ファイバ心線7を最密配置とすることで、簡易なV溝28を用いて確実に最密配置を行うことができる。
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、バンドル構造は、円断面形状のキャピラリを用いなくてもよい。図14(a)は、バンドル構造5gを示す図である。バンドル構造5gは、MTコネクタ35が用いられる。MTコネクタ35には、孔37が設けられる。孔37は、略六角形である。孔37が、光ファイバ心線7が挿通されるキャピラリとなる。すなわち、バンドル構造5gでは、キャピラリ(孔37)を有するMTコネクタ35に、複数の光ファイバ心線7が最密配置される。バンドル構造5gは、例えば、図5~図7に示した方法で製造することができる。
 なお、バンドル構造5gでは、孔37の両側部にガイド孔39が一対形成される。ガイド孔39は、他のコネクタとの接続時に、ガイドピンが挿入される部位である。ガイドピンによって、光ファイバ心線の位置を合わせることができる。
 図14(b)は、バンドル構造5hを示す図である。バンドル構造5hは、バンドル構造5gと略同様の構成であるが、孔37の六角形の向きが異なる。本発明では、孔37の向きはいずれの向きであってもよい。なお、孔37は、光ファイバ心線7を最密配置した外形よりもわずかに大きく構成される。したがって、光ファイバ心線7をより確実に隙間なく最密に配置するためには、六角形の孔37のいずれかの角部の方向に押し付けることが望ましい。
 また、バンドル構造5g、5hと接続可能なマルチコアファイバ3としては、図14(c)に示したように、MTコネクタ35にマルチコアファイバ3を固定して形成してもよい。このように構成することで、バンドル構造5g、5hと、マルチコアファイバ3とを容易に接続することができる。
 また、以上の実施例ではコアを7個有するマルチコアファイバに対するバンドル構造の例を示したが、本発明はこれに限るものではない。例えば、コアの層が更に1層増え、19コアとしたマルチコアファイバに対しても適用可能である。この場合、同様の方法により19本の光ファイバのバンドル構造を作製する事で、上記実施例と同様の効果を得ることが可能である。
 図15(a)は、19コアのバンドル構造を製造するための治具83を示す図である。治具83は、中央に孔85が形成され、孔85の周囲に、略六角形の線上に12個の孔87が形成される。孔85には、予めバンドルされた光ファイバ心線7が挿通される。すなわち、孔85には、予め断面において最密配置で(仮)接合された7本の光ファイバ心線7が挿通される。また、孔87には、それぞれ、光ファイバ心線7が挿通される。
 図16(a)は、図15のK-K線断面図である。バンドル化された中央の7本の光ファイバ心線7に対し、周囲の光ファイバ心線7を、先端部において接触するようにして、接着剤25に浸漬する。このようにすることで、7本の最密配置された光ファイバ心線7の外周に、さらに12本の光ファイバ心線7を互いの表面張力によって光ファイバ心線7同士が密着される。
 なお、図16(b)に示すように、孔87は、光ファイバ心線7の挿通方向に向けて斜めに形成してもよい。また、バンドルする光ファイバ心線の本数に応じて、治具83の孔85、87の配置や大きさは適宜設定することができる。
 また、マルチコアファイバのコア間隔は必ずしも均一でなくても良い。この場合、マルチコアファイバのコアピッチに合わせて、バンドルするファイバの外径(すべて同じ外径ではなく異なる外径)を適宜選択すればよい。
 この場合でも、図15(b)に示すような治具89を用いればよい。例えば、中央の太径の光ファイバ心線7を孔85に挿通し、周囲の細径の光ファイバ心線7を孔87に挿通すればよい。また、これらの先端を、接着剤等に浸漬することで、互いに密着したバンドル構造を得ることができる。
 図17(a)は、10コアのマルチコアファイバ90を示す図であり、図17(b)は、図15(b)の方法で製造されたバンドル構造91を示す図である。図17(a)に示すように、マルチコアファイバ90は、クラッド13にコア11が10個配置される。すなわち、中心のコア11に対し、周囲に9個のコア11が40°の間隔で配置される。
 図17(b)に示すように、バンドル構造91は、このようなマルチコアファイバ90と接続可能に各光ファイバ心線7が配置される。このように、それぞれの光ファイバ心線7を密接させて固定することで、マルチコアファイバ90と接続可能となる。ここで、中央に1つのコアを持ち、周囲に等間隔で配列されたn個のコアを持つマルチコアファイバに対応するバンドル構造としては、中心の光ファイバ心線7のクラッド17の半径をRとし、周囲に配置される光ファイバ心線7の半径をrとすると、下式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 このような関係になるように、中心の光ファイバ心線と周囲の光ファイバ心線の半径を決定する事で、前述のようなマルチコアファイバと接続可能なバンドル構造を得ることが可能となる。
1、1a………ファイバ接続構造
3、90………マルチコアファイバ
5、5a、5b、5c、5d、5e、5f、5g、5h、91………バンドル構造
7、7a………光ファイバ心線
9………接着剤
11、11a………コア
12………電極
13………クラッド
15、15a………コア
17………クラッド
19a、19b………接着剤
21a、21b、21c、21d………キャピラリ
22………テーパ部
23………突起
24………面取り部
25………接着剤
27………研磨面
28………V溝
29a、29b、29c、29d………保持部材
30………溝
31………ダミーファイバ
33………コーティング
35………MTコネクタ
37………孔
39………ガイド孔
83、89………治具
85、87………孔
 

Claims (18)

  1.  複数のコアを有するマルチコアファイバと接続可能な、複数の光ファイバ心線からなるバンドル構造の製造方法であって、
     複数の光ファイバ心線を略最密配置でキャピラリに挿通し、前記キャピラリの端面から同一長さだけ前記複数の光ファイバ心線の先端を突出させ、
     前記複数の光ファイバ心線の先端を第1の接着剤に接触させることで、前記第1の接着剤の表面張力によって前記複数の光ファイバ心線同士を密着させて接着し、
     前記第1の接着剤が硬化後、前記キャピラリと前記複数の光ファイバ心線とを第2の接着剤で固定し、前記キャピラリの端面を研磨することで、最密配置された光ファイバ心線を得ることを特徴とするバンドル構造の製造方法。
  2.  複数のコアを有するマルチコアファイバと接続可能な、複数の光ファイバ心線からなるバンドル構造の製造方法であって、
     複数の光ファイバ心線を略最密配置で仮配列部材に挿通し、前記仮配列部材の端面から同一長さだけ前記複数の光ファイバ心線の先端を突出させ、
     前記複数の光ファイバ心線の先端を第1の接着剤に接触させることで、前記第1の接着剤の表面張力によって前記複数の光ファイバ心線同士を密着させて接着して光ファイバ束を形成し、
     前記第1の接着剤が硬化後、前記光ファイバ束を前記仮配列部材から取り外し、前記光ファイバ束の端面を研磨することで、最密配置された光ファイバ束を得ることを特徴とするバンドル構造の製造方法。
  3.  前記光ファイバ束の端面の研磨前に、前記光ファイバ束をキャピラリに挿通し、
     前記光ファイバ束と前記キャピラリとを第2の接着剤で固定し、前記キャピラリとともに前記光ファイバ束の端面を研磨することを特徴とする請求項2記載のバンドル構造の製造方法。
  4.  前記第1ないし第2の接着剤の屈折率は、前記光ファイバ心線を構成するクラッドの屈折率よりも小さいことを特徴とする請求項1または請求項3に記載のバンドル構造の製造方法。
  5.  前記第1の接着剤は溶液系の接着剤であり、接着剤主成分の溶液に対する濃度が50%以下であることを特徴とする請求項1または請求項2に記載のバンドル構造の製造方法。
  6.  前記第1の接着剤の硬化収縮率は10%以上である事を特徴とする請求項1または請求項2に記載のバンドル構造の製造方法。
  7.  前記第1の接着剤の粘度は1000cps以下である事を特徴とする請求項1または請求項2に記載のバンドル構造の製造方法。
  8.  前記第2の接着剤は、硬化後の硬度がショアD60以上である事を特徴とする請求項1または請求項3のいずれかに記載のバンドル構造の製造方法。
  9.  前記キャピラリには、光ファイバ心線の最密配置に対応した六角形の孔が形成され、前記光ファイバ心線を、前記六角形の孔に挿通して固定することを特徴とする請求項1または請求項3のいずれかに記載のバンドル構造の製造方法。
  10.  前記キャピラリの内面には、最密配置された前記光ファイバ心線の各ファイバ同士の間に形成される外周の少なくとも一か所の凹み部に対応する位置に、突起が形成されることを特徴とする請求項1または請求項3のいずれかに記載のバンドル構造の製造方法。
  11.  請求項1または請求項2のいずれかに記載のバンドル構造の製造方法により、バンドル構造を製造し、
     キャピラリに挿通されたマルチコアファイバと、キャピラリに挿通された前記バンドル構造とを、それぞれのキャピラリ同士で接合することを特徴とするファイバ接続方法。
  12.  前記マルチコアファイバとキャピラリとを接着する第3の接着剤の屈折率は、前記マルチコアファイバのクラッドの屈折率よりも小さいことを特徴とする請求項11記載のファイバ接続方法。
  13.  複数のコアを有するマルチコアファイバと複数の光ファイバ心線からなるバンドル構造との接続方法であって、
     複数の光ファイバ心線を略最密配置でキャピラリに挿通し、前記光ファイバ心線と前記キャピラリとを耐熱性接着剤で接着し、前記キャピラリの端面を研磨することでバンドル構造を形成し、
     前記バンドル構造と他のキャピラリに挿入されたマルチコアファイバとを融着して接続することを特徴とするファイバの接続方法。
  14.  複数のコアを有するマルチコアファイバと複数の光ファイバ心線からなるバンドル構造との接続方法であって、
     複数の光ファイバ心線を略最密配置でキャピラリに挿通した状態で加熱し、前記光ファイバ心線と前記キャピラリとを融着し、前記キャピラリの端面を研磨することでバンドル構造を形成し、
     前記バンドル構造と他のキャピラリに挿入されたマルチコアファイバとをさらに融着して接続することを特徴とするファイバの接続方法。
  15.  複数のコアを有するマルチコアファイバと複数の光ファイバ心線からなるバンドル構造との接続方法であって、
     複数の光ファイバ心線を略最密配置でキャピラリに挿通し、前記光ファイバ心線と前記キャピラリとを水ガラスまたはガラスパウダで接着し、前記キャピラリの端面を研磨することでバンドル構造を形成し、
     前記バンドル構造と他のキャピラリに挿入されたマルチコアファイバとを融着して接続することを特徴とするファイバの接続方法。
  16.  請求項1または請求項2のいずれかに記載のバンドル構造の製造方法により、バンドル構造を製造し、
     マルチコアファイバの中心コアと、前記バンドル構造の対応するコアのアクティブアライメントを行い、前記マルチコアファイバの中心コアの周囲の1または2つのコアと前記バンドル構造の対応するコアとのアクティブアライメントを行い、前記マルチコアファイバと前記バンドル構造とを接着することを特徴とするファイバ接続方法。
  17.  略円筒状のキャピラリと、
     複数の光ファイバ心線と、
     を具備し、
     前記光ファイバ心線は、前記キャピラリに挿通され、前記キャピラリの内部において断面が略最密で配置され、隣り合う前記光ファイバ心線同士が接触した状態で接合されており、
     前記キャピラリの内面と、最密に互いに接合された前記光ファイバ心線のバンドル構造との間には、隙間が形成されることを特徴とするバンドル端末構造。
  18.  請求項17記載のバンドル端末構造において、略最密で配置された前記光ファイバ心線と、前記キャピラリとの間には、ガラスパウダが充填され、前記キャピラリとマルチコアファイバの端末とが融着によって接合されることを特徴とするファイバの接続構造。
PCT/JP2012/055931 2011-03-09 2012-03-08 バンドル構造の製造方法、ファイバ接続方法、バンドル端末構造、ファイバの接続構造 WO2012121320A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280011793.6A CN103403589B (zh) 2011-03-09 2012-03-08 光纤束结构的制造方法、光纤连接方法、光纤束终端结构、光纤的连接结构
JP2013503593A JP6034284B2 (ja) 2011-03-09 2012-03-08 バンドル構造の製造方法、ファイバ接続構造の製造方法、ファイバの接続方法、ファイバの接続構造
EP12754906.1A EP2685296B1 (en) 2011-03-09 2012-03-08 Method for producing bundle structure, method for connecting fibers, bundle terminal structure, and fiber connection structure
US14/021,680 US9158064B2 (en) 2011-03-09 2013-09-09 Method for producing bundle structure including a plurality of optical fibers, method for connecting optical fibers, bundle terminal structure comprising capillary and optical fibers, and fiber connection structure comprising bundle terminal structure comprising capillary and optical fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011051235 2011-03-09
JP2011-051235 2011-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/021,680 Continuation US9158064B2 (en) 2011-03-09 2013-09-09 Method for producing bundle structure including a plurality of optical fibers, method for connecting optical fibers, bundle terminal structure comprising capillary and optical fibers, and fiber connection structure comprising bundle terminal structure comprising capillary and optical fibers

Publications (1)

Publication Number Publication Date
WO2012121320A1 true WO2012121320A1 (ja) 2012-09-13

Family

ID=46798275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055931 WO2012121320A1 (ja) 2011-03-09 2012-03-08 バンドル構造の製造方法、ファイバ接続方法、バンドル端末構造、ファイバの接続構造

Country Status (5)

Country Link
US (1) US9158064B2 (ja)
EP (1) EP2685296B1 (ja)
JP (2) JP6034284B2 (ja)
CN (2) CN103403589B (ja)
WO (1) WO2012121320A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195562A (ja) * 2012-03-16 2013-09-30 Sumitomo Electric Ind Ltd 光ファイバ分岐デバイス、及び光ファイバ分岐デバイスの製造方法
JP2013205761A (ja) * 2012-03-29 2013-10-07 Mitsubishi Cable Ind Ltd ファンアウトモジュール
WO2014077069A1 (ja) * 2012-11-19 2014-05-22 富士電機株式会社 光合波装置
WO2014132990A1 (ja) * 2013-02-26 2014-09-04 古河電気工業株式会社 光ファイババンドル構造、希土類添加マルチコアファイバ、これらの接続構造、希土類添加マルチコアファイバの励起方法およびマルチコア光ファイバアンプ
JP2014228742A (ja) * 2013-05-23 2014-12-08 日本電気硝子株式会社 光ファイバー保持用キャピラリー
JP2015004762A (ja) * 2013-06-20 2015-01-08 三菱電線工業株式会社 光ファイバの接続方法
WO2015093520A1 (ja) * 2013-12-18 2015-06-25 住友電気工業株式会社 光接続部品
JP2015215498A (ja) * 2014-05-12 2015-12-03 住友電気工業株式会社 光ファイバ接続部品製造方法
WO2016021589A1 (ja) * 2014-08-08 2016-02-11 古河電気工業株式会社 光ファイババンドル構造および光ファイバ接続構造
JP2017009859A (ja) * 2015-06-24 2017-01-12 ウシオ電機株式会社 光ファイババンドル構造体とその組立て方法および光源装置
JP2017167299A (ja) * 2016-03-16 2017-09-21 古河電気工業株式会社 光ファイババンドル構造およびその製造方法、光コネクタ、光ファイバ接続構造
JP2018055043A (ja) * 2016-09-30 2018-04-05 株式会社アマダホールディングス 光ファイバコンバイナ及びレーザ装置
WO2018116391A1 (ja) * 2016-12-21 2018-06-28 オリンパス株式会社 光モジュール、内視鏡、および光モジュールの製造方法
WO2018221589A1 (ja) * 2017-05-30 2018-12-06 古河電気工業株式会社 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
WO2019003466A1 (ja) * 2017-06-29 2019-01-03 株式会社フジクラ 光デバイスの製造方法
JP2019020665A (ja) * 2017-07-20 2019-02-07 株式会社ハタ研削 光ファイバコネクタおよびピッチ変換型光ファイバアレイ
WO2020145010A1 (ja) * 2019-01-08 2020-07-16 住友電気工業株式会社 光コネクタの製造方法
WO2020145011A1 (ja) * 2019-01-08 2020-07-16 住友電気工業株式会社 光コネクタ及びその製造方法
JP2021162624A (ja) * 2020-03-30 2021-10-11 古河電気工業株式会社 ファイバの接続構造及び複数の光ファイバ心線とマルチコアファイバとの接続方法
JP2021182040A (ja) * 2020-05-18 2021-11-25 住友電気工業株式会社 ファンインファンアウト装置の製造方法及びファンインファンアウト装置
WO2023149012A1 (ja) * 2022-02-01 2023-08-10 株式会社フジクラ バンドルファイバコネクタ及びファイバコネクタの製造方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765661B1 (en) 2011-10-04 2018-12-05 Furukawa Electric Co., Ltd. Multi-core amplified optical fiber and multi-core optical fiber amplifier
JP6260362B2 (ja) * 2014-03-10 2018-01-17 住友電気工業株式会社 光モジュール製造方法
GB2544198B (en) 2014-05-21 2021-01-13 Integenx Inc Fluidic cartridge with valve mechanism
CN104297866B (zh) * 2014-10-17 2016-03-02 长飞光纤光缆股份有限公司 一种适用于多芯光纤的空间复用/解复用器及其制备方法
EP3552690B1 (en) 2014-10-22 2024-09-25 IntegenX Inc. Systems and methods for sample preparation, processing and analysis
KR20160051988A (ko) * 2014-10-30 2016-05-12 한국수력원자력 주식회사 장수명 노내계측기
CN104503031A (zh) * 2015-01-08 2015-04-08 武汉正光恒远科技有限公司 准直器及包含该准直器的多光路输入对多光路输出的装置
US9551839B2 (en) * 2015-03-31 2017-01-24 Raytheon Company Optical component including nanoparticle heat sink
US10321358B2 (en) * 2015-05-22 2019-06-11 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and device therefor
CN105022119B (zh) * 2015-08-07 2018-07-31 中时讯通信建设有限公司 一种光纤熔接方法
DE102015118010A1 (de) * 2015-08-31 2017-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Herstellung eines Faserkopplers
CN105204119B (zh) * 2015-10-22 2018-03-09 华中科技大学 一种基于微孔加工的多芯光纤耦合器制备方法
US20200301065A1 (en) * 2016-03-18 2020-09-24 Malcolm H. Hodge Multi-core optical fiber
GB201700936D0 (en) 2017-01-19 2017-03-08 Univ Bath Optical fibre apparatus and method
CN109254353A (zh) * 2017-07-12 2019-01-22 福州高意光学有限公司 一种不同光纤的连接方法
CN110396369A (zh) * 2017-08-30 2019-11-01 福建南新电缆有限公司 加固型中心管束式光缆用粘结剂、加固型中心管束式光缆及制备方法
WO2019108607A1 (en) * 2017-11-28 2019-06-06 Alan Kersey Apparatus and method for assessment of cancer margin
CN109239847A (zh) * 2018-09-29 2019-01-18 武汉锐科光纤激光技术股份有限公司 光纤合束器及其制备方法
CN109669235A (zh) * 2019-01-11 2019-04-23 浙江富春江光电科技有限公司 一种多芯转换光纤及生产方法
KR102171083B1 (ko) * 2019-01-16 2020-10-28 한국광기술원 멀티코어 광섬유 분기용 접속 구조체 및 이를 이용한 멀티코어 광섬유의 분기방법
US11327250B1 (en) * 2019-03-08 2022-05-10 Wavefront Research, Inc. Optical interconnect devices
CN113574431B (zh) * 2019-03-27 2023-08-25 古河电气工业株式会社 光纤束结构、光连接器、光纤连接结构、以及光纤束结构的制造方法
CN110187446A (zh) * 2019-06-03 2019-08-30 江苏法尔胜光电科技有限公司 一种多芯数集束光纤连接器制备方法
JP7430993B2 (ja) 2019-07-23 2024-02-14 京セラ株式会社 光ファイバー部品、分波器及び光伝送システム
WO2021048918A1 (ja) * 2019-09-10 2021-03-18 日本電信電話株式会社 多心光コネクタ及び光ファイバ接続方法
CN115280207B (zh) * 2020-03-16 2024-04-26 住友电气工业株式会社 光纤连接部件以及光纤连接部件的制造方法
IL300587A (en) * 2020-09-03 2023-04-01 Asml Netherlands Bv Photonic crystal radiation generator based on broadband hollow crystal fibers
CN113246553B (zh) * 2021-05-20 2022-12-23 东风汽车集团股份有限公司 汽车内饰发光表皮结构及其成型方法
JP2023082832A (ja) * 2021-12-03 2023-06-15 住友電気工業株式会社 光ファイババンドル構造、光接続構造体、及び、光ファイババンドル構造の製造方法
CN114509848A (zh) * 2022-02-16 2022-05-17 东北大学 内六边形插芯组件及扇入扇出复用装置和制备方法
US11931977B2 (en) 2022-03-31 2024-03-19 Microsoft Technology Licensing, Llc Multi-core polymer optical fibre and the fabrication thereof
US20230314695A1 (en) * 2022-03-31 2023-10-05 Microsoft Technology Licensing, Llc Multi-core optical fibre and fabrication thereof
US20230314696A1 (en) * 2022-03-31 2023-10-05 Microsoft Technology Licensing, Llc Graded-index polymer optical fibre and the fabrication thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596905A (en) * 1979-01-17 1980-07-23 Toshiba Corp Securing method of optical fiber terminal
JPS6247604A (ja) 1985-08-27 1987-03-02 Furukawa Electric Co Ltd:The マルチコアフアイバの端末部
JPH0312607A (ja) 1989-05-31 1991-01-21 Sci & Technol Inc 光ファイバー素線の結束方法
JPH04104104A (ja) * 1990-08-23 1992-04-06 Olympus Optical Co Ltd 照明用光学繊維束
JP2010152163A (ja) 2008-12-25 2010-07-08 Furukawa Electric Co Ltd:The マルチコア光ファイバ
JP2010286661A (ja) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd ファイバアレイ及びそれを含む光コネクタ
JP2012022176A (ja) * 2010-07-15 2012-02-02 Hitachi Cable Ltd マルチコアインターフェイス

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565907A (en) * 1978-11-10 1980-05-17 Toshiba Corp Glass brazing method of optical fiber
JPS5814108A (ja) 1981-07-17 1983-01-26 Nippon Telegr & Teleph Corp <Ntt> マルチコア光フアイバ用光結合器
JPS62129507U (ja) 1986-02-06 1987-08-15
JP2566961B2 (ja) 1987-06-10 1996-12-25 日本電気株式会社 光ファイバコネクタフェル−ル
JPH0282212A (ja) 1988-09-20 1990-03-22 Fujitsu Ltd 光スイッチ
GB8912356D0 (en) * 1989-05-30 1989-07-12 Keymed Medicals & Ind Equip A method of forming a fibre optic terminal assembly
JPH05297231A (ja) * 1992-04-23 1993-11-12 Kurabo Ind Ltd ライトガイド端末部およびその形成方法
US5748820A (en) * 1994-03-24 1998-05-05 France Telecom Component for connection to a multi-core fiber, and a method of manufacture
JP3317824B2 (ja) 1995-08-25 2002-08-26 株式会社精工技研 光減衰ファイバ組立体の製造方法および光減衰ファイバ組立体
JP3639119B2 (ja) * 1998-06-24 2005-04-20 株式会社フジクラ 光ファイババンドルとその製造方法
JP4069343B2 (ja) * 1998-12-02 2008-04-02 住友電気工業株式会社 光ファイバアレイおよびその製造方法
JP3455692B2 (ja) * 1999-03-09 2003-10-14 住友電気工業株式会社 光コネクタ用フェルール
JP2002040285A (ja) * 2000-07-21 2002-02-06 Totoku Electric Co Ltd 定偏波光ファイバの接着固定方法
JP2004101989A (ja) 2002-09-11 2004-04-02 Nippon Sheet Glass Co Ltd 光ファイバアレイおよびそれを用いた光モジュール
JP2007279194A (ja) 2006-04-04 2007-10-25 Wired Japan:Kk 光ファイバケーブル、光伝送方法、及び分光分析システム
JP4690249B2 (ja) 2006-05-29 2011-06-01 昭和電線ケーブルシステム株式会社 高屈曲性光ファイバ
US7419308B2 (en) * 2006-09-15 2008-09-02 The Boeing Company Fiber bundle termination with reduced fiber-to-fiber pitch
JP2008070675A (ja) 2006-09-15 2008-03-27 Yazaki Corp 雌フェルール
JP2008076685A (ja) * 2006-09-20 2008-04-03 National Institute Of Advanced Industrial & Technology 端面近接多芯光ファイバーおよびその製造方法
JP2008083155A (ja) 2006-09-26 2008-04-10 Yazaki Corp マルチコア光ファイバの端末処理方法及び端末構造
JP2008277582A (ja) * 2007-04-27 2008-11-13 Fujikura Ltd 光ポンピングデバイス用マルチコアファイバとその製造方法、光ポンピングデバイス、ファイバレーザ及びファイバ増幅器
DK2209031T3 (da) 2009-01-20 2020-04-06 Sumitomo Electric Industries Anordningsomformer
DE102009039159A1 (de) * 2009-08-27 2011-03-17 Voith Patent Gmbh System zur Speicherung elektrischer Energie

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596905A (en) * 1979-01-17 1980-07-23 Toshiba Corp Securing method of optical fiber terminal
JPS6247604A (ja) 1985-08-27 1987-03-02 Furukawa Electric Co Ltd:The マルチコアフアイバの端末部
JPH0312607A (ja) 1989-05-31 1991-01-21 Sci & Technol Inc 光ファイバー素線の結束方法
JPH04104104A (ja) * 1990-08-23 1992-04-06 Olympus Optical Co Ltd 照明用光学繊維束
JP2010152163A (ja) 2008-12-25 2010-07-08 Furukawa Electric Co Ltd:The マルチコア光ファイバ
JP2010286661A (ja) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd ファイバアレイ及びそれを含む光コネクタ
JP2012022176A (ja) * 2010-07-15 2012-02-02 Hitachi Cable Ltd マルチコアインターフェイス

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195562A (ja) * 2012-03-16 2013-09-30 Sumitomo Electric Ind Ltd 光ファイバ分岐デバイス、及び光ファイバ分岐デバイスの製造方法
JP2013205761A (ja) * 2012-03-29 2013-10-07 Mitsubishi Cable Ind Ltd ファンアウトモジュール
WO2014077069A1 (ja) * 2012-11-19 2014-05-22 富士電機株式会社 光合波装置
US9692201B2 (en) 2013-02-26 2017-06-27 Furukawa Electric Co., Ltd. Optical-fiber-bundle structure, rare-earth-doped multi-core fiber, connection structure therefor, method for exciting rare-earth-doped multi-core fibers, and multi-core-optical-fiber amplifier
WO2014132990A1 (ja) * 2013-02-26 2014-09-04 古河電気工業株式会社 光ファイババンドル構造、希土類添加マルチコアファイバ、これらの接続構造、希土類添加マルチコアファイバの励起方法およびマルチコア光ファイバアンプ
JPWO2014132990A1 (ja) * 2013-02-26 2017-02-02 古河電気工業株式会社 光ファイババンドル構造、希土類添加マルチコアファイバ、これらの接続構造、希土類添加マルチコアファイバの励起方法およびマルチコア光ファイバアンプ
JP2014228742A (ja) * 2013-05-23 2014-12-08 日本電気硝子株式会社 光ファイバー保持用キャピラリー
JP2015004762A (ja) * 2013-06-20 2015-01-08 三菱電線工業株式会社 光ファイバの接続方法
WO2015093520A1 (ja) * 2013-12-18 2015-06-25 住友電気工業株式会社 光接続部品
US9864150B2 (en) 2013-12-18 2018-01-09 Sumitomo Electric Industries, Ltd. Optical interconnection component
JPWO2015093520A1 (ja) * 2013-12-18 2017-03-23 住友電気工業株式会社 光接続部品
JP2015215498A (ja) * 2014-05-12 2015-12-03 住友電気工業株式会社 光ファイバ接続部品製造方法
WO2016021589A1 (ja) * 2014-08-08 2016-02-11 古河電気工業株式会社 光ファイババンドル構造および光ファイバ接続構造
JPWO2016021589A1 (ja) * 2014-08-08 2017-04-27 古河電気工業株式会社 光ファイババンドル構造および光ファイバ接続構造
US10012803B2 (en) 2014-08-08 2018-07-03 Furukawa Electric Co., Ltd. Optical fiber bundle structure and optical fiber connection structure
JP2017009859A (ja) * 2015-06-24 2017-01-12 ウシオ電機株式会社 光ファイババンドル構造体とその組立て方法および光源装置
JP2017167299A (ja) * 2016-03-16 2017-09-21 古河電気工業株式会社 光ファイババンドル構造およびその製造方法、光コネクタ、光ファイバ接続構造
JP2018055043A (ja) * 2016-09-30 2018-04-05 株式会社アマダホールディングス 光ファイバコンバイナ及びレーザ装置
WO2018116391A1 (ja) * 2016-12-21 2018-06-28 オリンパス株式会社 光モジュール、内視鏡、および光モジュールの製造方法
JP2018205347A (ja) * 2017-05-30 2018-12-27 古河電気工業株式会社 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
WO2018221589A1 (ja) * 2017-05-30 2018-12-06 古河電気工業株式会社 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
US10935728B2 (en) 2017-05-30 2021-03-02 Furukawa Electric Co., Ltd. Optical fiber terminal structure, optical element connection structure, and method for manufacturing optical fiber terminal structure
CN110832370B (zh) * 2017-06-29 2021-01-08 株式会社藤仓 光器件的制造方法
WO2019003466A1 (ja) * 2017-06-29 2019-01-03 株式会社フジクラ 光デバイスの製造方法
JP2019012096A (ja) * 2017-06-29 2019-01-24 株式会社フジクラ 光デバイスの製造方法
CN110832370A (zh) * 2017-06-29 2020-02-21 株式会社藤仓 光器件的制造方法
US11644632B2 (en) 2017-06-29 2023-05-09 Fujikura Ltd. Method for manufacturing optical device
JP2019020665A (ja) * 2017-07-20 2019-02-07 株式会社ハタ研削 光ファイバコネクタおよびピッチ変換型光ファイバアレイ
WO2020145010A1 (ja) * 2019-01-08 2020-07-16 住友電気工業株式会社 光コネクタの製造方法
CN112055824A (zh) * 2019-01-08 2020-12-08 住友电气工业株式会社 光连接器及其制造方法
JPWO2020145011A1 (ja) * 2019-01-08 2021-11-25 住友電気工業株式会社 光コネクタ及びその製造方法
JPWO2020145010A1 (ja) * 2019-01-08 2021-11-25 住友電気工業株式会社 光コネクタの製造方法
CN112055824B (zh) * 2019-01-08 2023-03-03 住友电气工业株式会社 光连接器及其制造方法
WO2020145011A1 (ja) * 2019-01-08 2020-07-16 住友電気工業株式会社 光コネクタ及びその製造方法
JP7363820B2 (ja) 2019-01-08 2023-10-18 住友電気工業株式会社 光コネクタ及びその製造方法
JP7444076B2 (ja) 2019-01-08 2024-03-06 住友電気工業株式会社 光コネクタの製造方法
US11994721B2 (en) 2019-01-08 2024-05-28 Sumitomo Electric Industries, Ltd. Method for manufacturing optical connector
JP2021162624A (ja) * 2020-03-30 2021-10-11 古河電気工業株式会社 ファイバの接続構造及び複数の光ファイバ心線とマルチコアファイバとの接続方法
JP7434027B2 (ja) 2020-03-30 2024-02-20 古河電気工業株式会社 複数の光ファイバ心線とマルチコアファイバとの接続方法
JP2021182040A (ja) * 2020-05-18 2021-11-25 住友電気工業株式会社 ファンインファンアウト装置の製造方法及びファンインファンアウト装置
WO2023149012A1 (ja) * 2022-02-01 2023-08-10 株式会社フジクラ バンドルファイバコネクタ及びファイバコネクタの製造方法

Also Published As

Publication number Publication date
CN103403589A (zh) 2013-11-20
EP2685296A4 (en) 2015-02-25
EP2685296B1 (en) 2020-08-05
JPWO2012121320A1 (ja) 2014-07-17
US9158064B2 (en) 2015-10-13
JP2016212447A (ja) 2016-12-15
CN103403589B (zh) 2017-12-19
JP6034284B2 (ja) 2016-11-30
CN107479140A (zh) 2017-12-15
US20140010501A1 (en) 2014-01-09
EP2685296A1 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6034284B2 (ja) バンドル構造の製造方法、ファイバ接続構造の製造方法、ファイバの接続方法、ファイバの接続構造
JP5877194B2 (ja) 光コネクタ
US6331081B1 (en) Optical transmission member and manufacturing method therefor
JP6157457B2 (ja) 多心光コネクタ
US20080069502A1 (en) Fiber bundle termination with reduced fiber-to-fiber pitch
JP2011123398A (ja) 光ファイバおよびその製造方法、並びに光ファイバの端部加工方法
EP1312955B1 (en) Process for coupling optical fibres
JPH06148447A (ja) リボン光ファイバ用接続部品
WO2016084465A1 (ja) 光ファイバ、光ファイバの調芯方法およびその接続構造、テープ心線およびその製造方法
JP3772929B2 (ja) 光ファイバ保持部品および光ファイバアレイ
JP2021162624A (ja) ファイバの接続構造及び複数の光ファイバ心線とマルチコアファイバとの接続方法
JP6696804B2 (ja) 光ファイババンドル構造およびその製造方法、光コネクタ、光ファイバ接続構造
JP3989316B2 (ja) 光ファイバの接続方法および光ファイバの接続構造
JP2008070545A (ja) メカニカルスプライス
CN209842140U (zh) 一种新型光纤阵列结构
WO2018221589A1 (ja) 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
JP2016200735A (ja) 光学デバイス
JP2018120169A (ja) 光ファイバアレイの製造方法及び光ファイバアレイ
CN117388987A (zh) 光纤束结构、光连接结构体及光纤束结构的制造方法
JPH09120016A (ja) 光ファイバ永久接続器
JP2002243986A (ja) 光ファイバ配列部材
JP2019020665A (ja) 光ファイバコネクタおよびピッチ変換型光ファイバアレイ
JPH09304641A (ja) 光ファイバ接続構造
JPH0713040A (ja) 光導波路と光ファイバとの接合部構造及びその製造方法
JP2011253870A (ja) 光ファイバカプラの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012754906

Country of ref document: EP