WO2012121200A1 - モータの診断方法 - Google Patents

モータの診断方法 Download PDF

Info

Publication number
WO2012121200A1
WO2012121200A1 PCT/JP2012/055534 JP2012055534W WO2012121200A1 WO 2012121200 A1 WO2012121200 A1 WO 2012121200A1 JP 2012055534 W JP2012055534 W JP 2012055534W WO 2012121200 A1 WO2012121200 A1 WO 2012121200A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
coil
abnormality
resistance
vehicle
Prior art date
Application number
PCT/JP2012/055534
Other languages
English (en)
French (fr)
Inventor
尾崎孝美
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US14/003,418 priority Critical patent/US8701803B2/en
Priority to CN201280012184.2A priority patent/CN103415413B/zh
Priority to EP12754378.3A priority patent/EP2684731B1/en
Publication of WO2012121200A1 publication Critical patent/WO2012121200A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a diagnosis device and a diagnosis method for a motor that drives a wheel of an electric vehicle, and relates to a self-diagnosis function of a drive motor.
  • In-wheel motor type electric vehicles are equipped with motors with high responsiveness independently for each wheel.
  • the torque of a motor which is a driving source of an electric vehicle
  • the torque of the motor due to instability of motor control is increased. Torque is transmitted to the wheel. For this reason, when this motor fails, it is necessary to take measures according to the situation so that a stable vehicle posture can be maintained.
  • the in-wheel motor drive device when the vehicle travels, the temperature of the motor is measured to monitor the overload and the drive of the motor is limited.
  • the motor is abnormal It is desirable to go to the repair of the motor or request the rescue of this vehicle. Further, even when the motor is normal when not traveling, it is conceivable that an abnormality occurs in the motor coil when the vehicle is traveling.
  • An object of the present invention is to provide a motor diagnostic apparatus that can detect an abnormality in a motor coil and can quickly cope with a motor abnormality both when the vehicle is traveling and when the vehicle is not traveling. And providing a diagnostic method.
  • the motor diagnosis apparatus is a diagnosis apparatus for the motor 6 of an electric vehicle in which the wheels 2 are driven by the motor 6.
  • the motor temperature of the motor coil 78 and the motor are determined when the vehicle is not running.
  • a startup abnormality detection means 98 is provided for detecting the coil resistance or insulation resistance of the coil 78 and detecting that the coil temperature exceeds a threshold value or that the motor coil 78 is abnormal when the coil resistance or insulation resistance exceeds the threshold value. Detecting coil temperature, motor speed, motor applied voltage, and motor current when the vehicle is running, and relationship between motor applied voltage and motor current corresponding to the motor temperature exceeding the threshold or the coil temperature Is provided with a travel time abnormality detecting means 99 for detecting that the motor coil 78 is abnormal when the motor is out of the set range.
  • “When the vehicle is powered on and not running” means that the entire vehicle is controlled with a key or the like, such as at the time of starting after the driver gets on the vehicle and starts running. Although power is supplied to the control means such as the ECU 21 or the like, the power supply to the motor 6 has not been supplied yet, or the power supply to the motor 6 is not performed to stop traveling. This means when the power of the control means is kept on.
  • the abnormality of the motor coil 78 is detected by the starting abnormality detection means 98 when the vehicle is not running while the power is on. That is, the coil temperature and the coil resistance or the insulation resistance are detected, and when the coil temperature exceeds the threshold value or the coil resistance or the insulation resistance exceeds the threshold value, it is detected that the motor coil 78 is abnormal. For example, when an abnormality such as insulation deterioration occurs in the motor coil 78, the coil temperature exceeds the threshold value, or the coil resistance or the insulation resistance exceeds the threshold value.
  • the abnormality of the motor 6 is diagnosed at the stage before the vehicle travels. If an abnormality has occurred in the motor 6, the motor 6 can be repaired or the vehicle can be requested to be rescued.
  • an abnormality in the motor coil 78 is detected by the abnormality detection means 99 during traveling. That is, the coil temperature, the motor rotation speed, the motor applied voltage, and the motor current are detected, and the coil temperature exceeds a threshold value or the relationship between the motor applied voltage and the motor current corresponding to the motor rotation speed is out of the setting range.
  • the motor coil 78 is abnormal.
  • the motor 6 rotates while the vehicle is traveling. During this motor rotation, for example, if a short circuit abnormality of the motor coil 78 occurs, the motor current deviates from the set range and becomes abnormally high with respect to the motor applied voltage.
  • the abnormality of the motor coil 78 can be detected by constantly detecting the relationship between the motor applied voltage and the motor current corresponding to the motor rotation speed. As described above, the abnormality of the motor coil 78 can be detected both when the vehicle is traveling and when the vehicle is not traveling, and the reliability of the electric vehicle can be improved. In addition, it is possible to quickly cope with motor abnormality.
  • the start-up abnormality detection means 98 may detect the coil temperature and the coil resistance, and detect that the coil temperature exceeds a threshold value or that the motor coil 78 is abnormal when the coil resistance exceeds a threshold value.
  • the start-up abnormality detection means 98 may detect the coil temperature and the insulation resistance, and detect that the coil temperature exceeds the threshold value or that the motor coil 78 is abnormal when the insulation resistance exceeds the threshold value.
  • switching means 101 for switching the electrical connection between the motor 6 and the inverter 31 so as to be freely opened and closed.
  • the start-up abnormality detecting means 98 opens the switching means 101 to sequentially switch to each phase motor coil 78 to apply a voltage, and the current of each phase motor coil 78 to which the voltage has been applied is applied. It is good also as what measures the coil resistance of the motor coil 78 of each phase from a measured value.
  • the switching means 101 is opened to cut off the current flowing through the semiconductor switching element of the inverter 31 and the current of the motor coil 78 of each phase to which the voltage is applied is accurately determined. Can be measured. From this measurement value, the coil resistance of the motor coil 78 of each phase can be measured.
  • the switching means 101 is closed and current is supplied from the inverter 31 to the motor 6.
  • the start-up abnormality detection means 98 applies voltage to the motor coils 78 of each phase sequentially. It is good also as what measures the coil resistance of the motor coil 78 of each phase from the measured value of the electric current of the motor coil 78 of each phase to which the voltage was applied.
  • a voltage is applied between the electrical connection points of the motor coil 78 of each phase of the motor 6 and the inverter 31, and the measured value of the current between the electrical connection points is used for each phase.
  • the coil resistance of the motor coil 78 can be measured. In this case, switching means for switching the electrical connection between the motor 6 and the inverter 31 can be eliminated, and the structure of the apparatus can be simplified.
  • a thermistor 103 is provided in the vicinity of the motor coil 78, and the starting abnormality detecting means 98 includes a correcting means 104 for correcting the measured coil resistance in accordance with the coil temperature output from the thermistor 103. Also good. Thus, by correcting the coil resistance according to the coil temperature, it is possible to detect the abnormality of the motor 6 during non-travel more accurately.
  • the motor 6 may be provided for each wheel 2 which is a driving wheel.
  • the motor 6 may be partly or wholly disposed in the wheel 2 to constitute the in-wheel motor drive device 8 including the motor 6, the wheel bearing 4, and the speed reducer 7.
  • the wheel bearing 4, the speed reducer 7, and the motor 6 are accompanied by high-speed rotation. Therefore, ensuring their reliability is an important issue.
  • the abnormality of the motor coil 78 can be detected by the starting abnormality detecting means 98 when the vehicle is not traveling, and the abnormality of the motor coil 78 can be detected by the traveling abnormality detecting means 99 when the vehicle is traveling. Can be further increased.
  • the speed reducer 7 may be a cycloid speed reducer that decelerates the rotation of the motor 6.
  • the reduction gear 7 is a cycloid reduction gear and the reduction ratio is increased to, for example, 1/6 or more
  • the motor 6 can be downsized and the apparatus can be downsized.
  • the driving torque of the motor 6 is transmitted to the wheel via the speed reducer 7 having a high reduction ratio as described above, the driving torque is enlarged and transmitted to the wheel.
  • the abnormality of the motor coil 78 can be detected at the stage before the actual vehicle travels by the start-up abnormality detection means 98 when the vehicle is not traveling. Therefore, abnormality detection becomes more effective. Even if no abnormality is detected when the vehicle is not traveling, the abnormality in the motor coil 78 can be detected by the traveling abnormality detection means 99 when the vehicle is traveling.
  • the electric vehicle of the present invention is configured to be drivable by any one of the motors 6 described above.
  • the motor diagnosis method of the present invention is a method for diagnosing the motor 6 of an electric vehicle in which the wheels 2 are driven by the motor 6.
  • a start-up abnormality detection process for detecting a coil resistance or an insulation resistance of the coil 78 and detecting an abnormality of the motor coil 78 when the coil temperature exceeds a threshold value or the coil resistance or the insulation resistance exceeds a threshold value;
  • the coil temperature, motor speed, motor applied voltage, and motor current are detected and the coil temperature exceeds the threshold or the relationship between the motor applied voltage and motor current corresponding to the motor speed is set. It includes an abnormality detection process during driving that detects an abnormality of the motor coil 78 when it is out of the range.
  • an abnormality of the motor coil 78 is detected when the vehicle is powered and not running. That is, when the coil temperature exceeds the threshold value or the coil resistance or the insulation resistance exceeds the threshold value, it is detected that the motor coil 78 is abnormal.
  • the running abnormality detection process an abnormality in the motor coil 78 is detected when the coil temperature exceeds a threshold value or the relationship between the motor applied voltage and the motor current corresponding to the motor rotation speed is out of the set range.
  • the abnormality of the motor coil 78 can be detected both when the vehicle is traveling and when the vehicle is not traveling, and the reliability of the electric vehicle can be improved. In addition, it is possible to quickly cope with motor abnormality.
  • FIG. 1 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle equipped with an electric vehicle drive motor diagnostic device according to a first embodiment of the present invention. It is a block diagram of a conceptual composition of a diagnostic device of the drive motor for the electric vehicles. It is the schematic which shows the circuit structural example of the principal part of the diagnostic apparatus.
  • FIG. 1 is a figure which shows the detection example of the coil resistance in the abnormality detection means at the time of starting of the diagnostic apparatus.
  • (A)-(c) is a graph which shows the relationship between a motor applied voltage and a motor current corresponding to the motor rotation speed in the abnormality detection means at the time of driving
  • It is a fracture front view of the in-wheel motor drive device in the electric vehicle. It is sectional drawing of the motor part used as the VII-VII line cross section of FIG. It is sectional drawing of the reduction gear part used as the VIII-VIII line cross section of FIG. It is a partial expanded sectional view of FIG. It is a block diagram of the principal part of the conceptual structure of the diagnostic apparatus of the drive motor for electric vehicles which concerns on 2nd Embodiment of this invention.
  • This drive motor diagnostic device is mounted on an electric vehicle.
  • this electric vehicle is a four-wheeled vehicle in which the left and right rear wheels 2 of the vehicle body 1 are drive wheels, and the left and right front wheels 3 are driven wheels. is there.
  • Each of the wheels 2 and 3 serving as the driving wheel and the driven wheel has a tire and is supported by the vehicle body 1 via wheel bearings 4 and 5, respectively.
  • the wheel bearings 4 and 5 are given the abbreviation “H / B” of the hub bearing in FIG.
  • the left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively.
  • the rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor drive device 8 that is one assembly part.
  • the in-wheel motor drive device 8 is partially or entirely disposed in the drive wheel 2.
  • the entire wheel bearing 4 and the speed reducer 7 and a part of the motor 6 are overlapped with the drive wheel 2 along the axis C of the drive wheel 2.
  • the whole may be superposed with the drive wheel 2.
  • the in-wheel motor drive device 8 is also referred to as an in-wheel motor unit.
  • the motor 6 may directly rotate and drive the wheels 2 without using the speed reducer 7.
  • Each wheel 2, 3 is provided with an electric brake 9, 10.
  • the wheels 3 and 3 that are the steering wheels that are the left and right front wheels can be steered via the steering mechanism 11 and are steered by the steering mechanism 12.
  • the steering mechanism 11 is a mechanism that changes the angle of the left and right knuckle arms 11b that hold the wheel bearings 5 by moving the tie rod 11a to the left and right. It is driven and moved left and right via a rotation / linear motion conversion mechanism (not shown).
  • the steering angle is detected by the steering angle sensor 15, and the sensor output is output to the ECU 21, and the information is used for acceleration / deceleration commands for the left and right wheels.
  • the control device U ⁇ b> 1 includes an ECU 21 that is an electric control unit that controls the entire automobile, and an inverter device 22 that controls the traveling motor 6 in accordance with a command from the ECU 21.
  • the ECU 21, the inverter device 22, and the brake controller 23 are mounted on the vehicle body 1.
  • the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
  • the ECU 21 is roughly divided into a drive control unit 21a and a general control unit 21b when classified roughly by function.
  • the drive control unit 21a gives the left and right wheel motors 6 and 6 the acceleration command output from the accelerator operation unit 16, the deceleration command output from the brake operation unit 17, and the turning command output from the steering angle sensor 15.
  • the given acceleration / deceleration command is generated and output to the inverter device 22.
  • the drive control unit 21a outputs an acceleration / deceleration command to be output, information on the tire rotation speed obtained from the rotation sensor 24 provided on the wheel bearings 4 and 5 of the wheels 2 and 3, You may have the function to correct
  • the accelerator operation unit 16 includes an accelerator pedal and a sensor 16a that detects the amount of depression and outputs the acceleration command.
  • the brake operation unit 17 includes a brake pedal and a sensor 17a that detects the amount of depression and outputs the deceleration command.
  • the general control unit 21b of the ECU 21 processes a function of outputting a deceleration command output from the brake operation unit 17 to the brake controller 23, a function of controlling various auxiliary machine systems 25, and an input command from the console operation panel 26.
  • the auxiliary machine system 25 is, for example, an air conditioner, a light, a wiper, a GPS, an airbag or the like, and is shown here as a representative block.
  • the brake controller 23 is means for giving a braking command to the brakes 9 and 10 of the wheels 2 and 3 according to the deceleration command output from the ECU 21.
  • the braking command output from the ECU 21 includes a command generated by means for improving the safety of the ECU 21.
  • the brake controller 23 includes an antilock brake system.
  • the brake controller 23 is configured by an electronic circuit, a microcomputer, or the like.
  • the inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28.
  • the motor control unit 29 may be provided in common for each power circuit unit 28 or may be provided separately, but even if provided in common, each power circuit unit 28. For example, can be controlled independently so that the motor torque is different from each other.
  • the motor control unit 29 has a function of outputting information (referred to as “IWM system information”) such as detection values and control values related to the in-wheel motor 8 of the motor control unit 29 to the ECU 21.
  • FIG. 2 is a block diagram of a conceptual configuration of the diagnostic device for a drive motor for an electric vehicle.
  • the power circuit unit 28 includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power that is used to drive the motor 6, and a PWM driver 32 that controls the inverter 31.
  • the motor 6 is composed of a three-phase synchronous motor or the like.
  • the inverter 31 is composed of a plurality of semiconductor switching elements (not shown), and the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 29 includes a computer, a program executed on the computer, and an electronic circuit, and has a motor drive control unit 33 as a basic control unit.
  • the motor drive control unit 33 is a unit that converts the current command into a current command in accordance with an acceleration / deceleration command by a torque command or the like given from the ECU that is the host control unit, and gives the current command to the PWM driver 32 of the power circuit unit 28.
  • the motor drive control unit 33 obtains a motor current value to be passed from the inverter 31 to the motor 6 from the current detection unit 35 and performs current feedback control.
  • the motor drive control unit 33 obtains the rotation angle of the rotor of the motor 6 from the angle sensor 36 and performs control according to the rotation angle such as vector control.
  • the motor control unit 29 configured as described above is provided with the following motor coil abnormality detection means 95, detection control part 96, abnormality report means 41, and switching means 101, and the abnormality display means 42 is provided in the ECU 21. Yes.
  • the motor diagnosis apparatus in this embodiment includes these motor coil abnormality detection means 95, detection control unit 96, abnormality report means 41, switching means 101, and abnormality display means 42.
  • the motor coil abnormality detecting means 95 includes a starting abnormality detecting means 98 and a running abnormality detecting means 99.
  • the start-up abnormality detection means 98 includes a detection unit 98a and a determination unit 98b.
  • the detection unit 98a detects the coil temperature of the motor coil and the coil resistance or insulation resistance of the motor coil when the vehicle is not running.
  • the “non-running when the vehicle is powered on” refers to a state in which the ECU 21 of the electric vehicle is powered on and the vehicle is completely stopped. For example, (1) a driver or the like When the ECU 21 is turned on by operating the starting means such as the key and the start button from the “off” position to the “accessory power source” before supplying power to the motor 6, or (2) the ECU 21 is on.
  • the starting means When the starting means is in the “accessory power supply” or “on” position, it is determined that the ECU 21 is on. It is determined that the ECU 21 is on, and power is not supplied to the motor 6 from the motor current from the current detection means 35, the information on the tire rotation speed obtained from the rotation sensor 24, the information on each vehicle-mounted sensor, or the like. When the determination is made, it is determined that the vehicle is not running when the power is on.
  • the determination unit 98b determines that the motor coil is abnormal when the coil temperature detected by the detection unit 98a exceeds the threshold value, or when the coil resistance or the insulation resistance exceeds the threshold value.
  • FIG. 3 is a schematic diagram showing a circuit configuration example of a main part of the diagnostic device for the drive motor 6, and FIGS. 4 (a), 4 (b), and 4 (c) show an abnormality detection means at the start of the diagnostic device.
  • FIG. 98 is a diagram illustrating an example of detection of coil resistance at 98;
  • the motor housing 72 of the motor 6 is fixed to the knuckle 100 of the vehicle.
  • This motor 6 is a synchronous motor connected by a star connection in which one end of a three-phase motor coil 78 is connected at a neutral point P1.
  • Switching means 101 is provided for switching the electrical connection between the motor 6 and the inverter 31 so as to be freely opened and closed.
  • each of the three-phase (U, V, W-phase) motor coils 78 is connected to each drive element 97 such as a switching transistor in the inverter 31 via a relay as the switching means 101.
  • the internal wiring 102 of each phase is connected.
  • the relay is a normally closed relay in which all three relay contacts are closed when the vehicle is running.
  • the startup abnormality detection means 98 instructs the detection control unit 96 (FIG. 2) to open all three relay contacts when the vehicle is powered off and not running.
  • the starting means such as a key is in the “accessory power supply” or “on” position
  • the detection unit 98a of the start-up abnormality detection means 98 is sequentially switched to the motor coil 78 of each phase as shown in FIGS. 4 (a), (b), and (c). By applying a voltage, the coil resistance of the motor coil 78 of each phase is measured from the measured value of the current of the motor coil 78 of each phase to which the voltage is applied.
  • the measurement power sources V1, V2, V3 for applying a voltage between the electrodes of the U, V, and W phases to the detection unit 98a in the start-up abnormality detection means 98, and the current sensors A1, A2 and A3 are provided.
  • the measurement power sources V1 to V3 and the current sensors A1 to A3 are electrically connected to wirings of respective phases that are taken out from the motor housing 72 and extend to the contacts of the switching means 101.
  • a voltage is applied between the U and V phase electrodes by the measurement power source V1, and the measured values of the currents in the U and V phase motor coils 78 and 78 are measured by the current sensor A1.
  • a voltage is applied by the measurement power source V2 between the U and W phase electrodes, and the measured values of the currents of the U phase and W phase motor coils 78 and 78 are measured by the current sensor A2.
  • a voltage is applied between the V and W phase electrodes by the measurement power source V3, and the measured values of the currents of the V phase and W phase motor coils 78 and 78 are measured as current. Measurement is performed by the sensor A3.
  • the determination unit 98b of the start-up abnormality detection means 98 determines that the motor coil 78 is abnormal when the detected coil resistance exceeds a threshold value.
  • a threshold value In the example of FIG. 3, in the motor 6, only one motor coil 78 is shown for each phase, but the motor coil 78 of each phase is composed of a plurality of electrode coils arranged along the circumferential direction. In this case, a single motor coil 78 in the figure is obtained by connecting the coils of the electrodes in parallel or in series for each phase.
  • the detection unit 105 closes the relay 106, applies a predetermined voltage between the motor coil 78 and the motor case 72 by the measurement power source V4, and the current flowing between the two is a current sensor. Measurement can be performed by A4, and the insulation resistance between the motor coil 78 and the motor case 72 can be measured. The determination unit 107 determines whether the measured insulation resistance exceeds a threshold value.
  • the detection unit 105 is connected to the W phase of the motor coil 78, but may be connected to the U phase or the V phase.
  • a thermistor 103 is used as a temperature sensor for detecting the coil temperature of the motor coil 78.
  • the temperature of the motor coil 78 can be detected.
  • the detection unit 98a for example, the value detected by the thermistor 103 is amplified by an amplifier (not shown), and the determination unit 98b determines whether or not the amplified value exceeds a threshold value.
  • the thermistor 103 is fixed to the motor coil 78 and the coil temperature is detected.
  • the thermistor 103 is not fixed to the motor coil 78 and is brought close to the motor coil 78 to such an extent that the coil temperature can be detected. It may be provided. Further, the temperature of each coil connected to each phase U, V, W may be individually measured by the thermistor 103.
  • the relay 101 is used and the resistance value of the coil is measured by opening all three relay contacts when the vehicle is not running when the power is turned on. May be. In that case, the resistance value of the coil in which the motor coil 78 is normal is measured in advance.
  • the determination unit 98b determines that the motor coil 78 is abnormal when the coil resistance and the insulation resistance exceed the respective threshold values.
  • the relationship between the applied voltage and the current value in a normal state where no abnormality such as insulation deterioration has occurred in the motor coil 78 is stored as a reference value by experiment, simulation, or the like.
  • the current value of insulation degradation with respect to the specified applied voltage plus a measurement error etc. is used as the threshold value when determining coil resistance or insulation resistance.
  • the determination unit 98b determines that the motor coil 78 is abnormal when the coil temperature exceeds a threshold value.
  • a threshold value for example, the relationship between the applied voltage, the coil temperature, and the applied time when the motor coil 78 is normal is stored as a reference value by experiment, simulation, or the like.
  • the coil temperature during normal operation is uniquely determined. If the coil temperature measured in this case is higher than the reference value by ⁇ ( ⁇ is, for example, 10% or more), it is estimated that the motor 6 is overloaded.
  • is set as a threshold for determining the coil temperature.
  • the running abnormality detection means 99 includes a detection unit 99a and a determination unit 99b.
  • the detection unit 99a detects the coil temperature, the motor rotation speed, the motor applied voltage, and the motor current when the vehicle is traveling.
  • the determination unit 99b Judge as abnormal.
  • the threshold for determining the coil temperature when the vehicle is running is determined in the same manner as described above. That is, the relationship between the applied voltage, the coil temperature, and the applied time when the motor coil 78 is normal is stored as a reference value, and the coil temperature when the specified applied voltage is applied to the motor coil for a fixed time is stored. If ⁇ is higher than the reference value ( ⁇ is, for example, 10% or more), it is estimated that the motor 6 is overloaded. The ⁇ is set as a threshold for determining the coil temperature. However, when the coil temperature is detected and determined, the prescribed applied voltage is applied to the motor coil 78 with all three relay contacts closed.
  • FIGS. 5A to 5C are graphs showing the relationship between the motor applied voltage and the motor current corresponding to the motor rotational speed in the running time abnormality detecting means 99 of this diagnostic apparatus.
  • FIG. 5A shows the relationship between the motor applied voltage and the motor current when the motor rotation speed is not less than a1 rpm and less than a2 rpm.
  • the determination unit 99b determines that the motor coil 78 is abnormal when the motor rotation speed is a1 rpm or more and less than a2 rpm and is out of the range of ⁇ Sa with respect to the reference value K1.
  • the determination unit 99b determines that the motor coil is out of the range of ⁇ Sb with respect to the reference value K2 different from the reference value K1. It is determined that there are 78 abnormalities. As shown in FIG. 5C, the determination unit 99b determines that the motor coil 78 is abnormal when the motor rotation speed is a3 rpm or more and less than a4 rpm and is out of the range of ⁇ Sc with respect to the reference value K3.
  • the ranges of ⁇ Sa, ⁇ Sb, and ⁇ Sc are the set ranges.
  • the motor rotation speed region is divided into three regions, and the reference value and setting range in each region are determined.
  • the present invention is not necessarily limited to this example.
  • the motor rotation speed area may be divided into two areas, and the reference value and setting range in each area may be determined, or the motor rotation speed area may be divided into four or more areas and the reference value in each area.
  • a setting range may be determined.
  • the vehicle When the vehicle is turned off, when the vehicle is turned on, specifically, the driver or the like can start the auxiliary means 25, for example, a light, a wiper, etc.
  • the ECU 21 When the ECU 21 is turned on by operating to the position of “accessory power supply”, the abnormality of the motor coil 78 is detected by the abnormality detecting means 98 at the time of starting.
  • the ECU 21 remains on and the ECU 21 does not generate an acceleration command to the motor 6 after the vehicle travels, which will be described later, and from the information on the tire rotation speed obtained from the rotation sensor 24, information on each vehicle-mounted sensor, etc. Even when it is determined that the motor is in the running stop state, the start-up abnormality detecting means 98 detects the abnormality of the motor coil 78.
  • the detection unit 98a in the start-up abnormality detection means 98 detects the coil temperature and the coil resistance or the insulation resistance.
  • the determination unit 98b detects that the motor coil 78 is abnormal when the coil temperature exceeds the threshold value or when the coil resistance or the insulation resistance exceeds the threshold value. For example, when an abnormality such as insulation deterioration occurs in the motor coil 78, the coil temperature exceeds the threshold value, or the coil resistance or the insulation resistance exceeds the threshold value.
  • the abnormality of the motor 6 is diagnosed at the stage before the vehicle travels. If an abnormality has occurred in the motor 6, the motor 6 can be repaired or the vehicle can be requested to be rescued.
  • the detecting unit 99a in the running time abnormality detecting means 99 detects the coil temperature, the motor rotation number, the motor applied voltage, and the motor current.
  • the motor current deviates from the set range and becomes abnormally high with respect to the motor applied voltage.
  • the back electromotive force acts on the motor applied voltage according to the motor rotation speed, the relationship between the motor applied voltage and the motor current changes every moment according to the motor rotation speed. Therefore, the abnormality of the motor coil 78 can be detected by constantly detecting the relationship between the motor applied voltage and the motor current corresponding to the motor rotation speed.
  • the abnormality of the motor coil 78 can be detected both when the vehicle is running and when the vehicle is not running, and the reliability of the electric vehicle can be improved. In addition, it is possible to quickly cope with motor abnormalities.
  • the control unit 96 for detection uses a power circuit via the motor drive control unit 33 so as to reduce the current value of the motor 6 when the determination unit 99b of the abnormality detection unit 99 during travel detects an abnormality of the motor coil 78.
  • the unit 28 may be commanded.
  • the motor current may be reduced at a predetermined rate (for example, several percent) with respect to the current current, or may be reduced by a predetermined value.
  • the motor coil abnormality detecting means 95 is provided in the motor control unit 29 of the inverter device 22 and the abnormality determination of the motor coil can be performed near the motor 6, it is advantageous in terms of wiring, and quicker control than in the case where it is provided in the ECU 21 is possible. It is possible to quickly avoid problems in running the vehicle. Further, it is possible to reduce the burden on the ECU 21 that is becoming more complicated due to higher functions.
  • the ECU 21 is a device that performs overall control of the vehicle, when the abnormality is detected by the motor coil abnormality detecting means 95, the ECU 21 outputs an abnormality report indicating that the motor coil 78 is abnormal, thereby causing the ECU 21 to output the vehicle. Overall appropriate control can be performed.
  • the ECU 21 is a higher-level control unit that gives a drive command to the inverter device 22. After the emergency control by the inverter device 22, the ECU 21 can perform more appropriate control of the subsequent drive.
  • the wheel bearing 4, the speed reducer 7, and the motor 6 are accompanied by high-speed rotation, so ensuring reliability of these becomes an important issue.
  • the abnormality of the motor coil 78 can be detected by the starting abnormality detecting means 98 when the vehicle is not traveling, and the abnormality of the motor coil 78 can be detected by the traveling abnormality detecting means 99 when the vehicle is traveling. Can be further increased.
  • the motor 6 When the reduction gear 7 in the in-wheel motor drive device 8 is a cycloid reduction gear and the reduction ratio is increased to, for example, 1/6 or more, the motor 6 can be downsized and the device can be made compact.
  • the driving torque of the motor 6 is transmitted to the wheel via the speed reducer 7 having a high reduction ratio as described above, the driving torque is enlarged and transmitted to the wheel.
  • the abnormality of the motor coil 78 can be detected at the stage before the actual vehicle travels by the start-up abnormality detection means 98 when the vehicle is not traveling. Therefore, abnormality detection becomes more effective. Even if no abnormality is detected when the vehicle is not traveling, the abnormality in the motor coil 78 can be detected by the traveling abnormality detection means 99 when the vehicle is traveling.
  • the in-wheel motor drive device 8 includes a reduction gear 7 interposed between the wheel bearing 4 and the motor 6, and the wheel 2 (drive wheel supported by the wheel bearing 4 ( The hub of FIG. 2) and the rotation output shaft 74 of the motor 6 (FIG. 6) are connected coaxially.
  • the reduction gear 7 should have a reduction ratio of 1/6 or more.
  • the speed reducer 7 is a cycloid speed reducer, in which eccentric portions 82a and 82b are formed on a rotational input shaft 82 that is coaxially connected to a rotational output shaft 74 of the motor 6, and bearings 85 are provided on the eccentric portions 82a and 82b, respectively.
  • the curvilinear plates 84a and 84b are attached to the discs, and the eccentric motion of the curvilinear plates 84a and 84b is transmitted to the wheel bearing 4 as rotational motion.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
  • the wheel bearing 4 includes an outer member 51 in which a double row rolling surface 53 is formed on the inner periphery, an inner member 52 in which a rolling surface 54 facing each of the rolling surfaces 53 is formed on the outer periphery, and these
  • the outer member 51 and the inner member 52 are composed of double-row rolling elements 55 interposed between the rolling surfaces 53 and 54 of the inner member 52.
  • the inner member 52 also serves as a hub for attaching the drive wheels.
  • the wheel bearing 4 is a double-row angular ball bearing, and the rolling elements 55 are made of balls and are held by a cage 56 for each row.
  • the rolling surfaces 53 and 54 have a circular arc cross section, and the rolling surfaces 53 and 54 are formed so that the contact angles are aligned with the back surface.
  • An end on the outboard side of the bearing space between the outer member 51 and the inner member 52 is sealed with a seal member 57.
  • the outer member 51 is a stationary raceway, has a flange 51a attached to the housing 83b on the outboard side of the speed reducer 7, and is formed as an integral part as a whole.
  • the flange 51a is provided with bolt insertion holes 64 at a plurality of locations in the circumferential direction.
  • the housing 83b is provided with a bolt screw hole 94 whose inner periphery is threaded at a position corresponding to the bolt insertion hole 64.
  • the outer member 51 is attached to the housing 83b by screwing the mounting bolt 65 inserted into the bolt insertion hole 94 into the bolt screwing hole 94.
  • the inner member 52 is a rotating raceway, and the outboard side member 59 having a hub flange 59a for wheel mounting and the outboard side member 59 are fitted to the inner periphery of the outboard side member 59.
  • the inboard side material 60 is integrated with the outboard side material 59 by fastening.
  • the rolling surface 54 of each row is formed in each of the outboard side material 59 and the inboard side material 60.
  • a through hole 61 is provided in the center of the inboard side member 60.
  • the hub flange 59a is provided with press-fit holes 67 for hub bolts 66 at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 63 that guides driving wheels and braking components (not shown) protrudes toward the outboard side.
  • a cap 68 that closes the outboard side end of the through hole 61 is attached to the inner periphery of the pilot portion 63.
  • the motor 6 is a radial gap type IPM motor (that is, an embedded magnet type synchronous motor) in which a radial gap is provided between a motor stator 73 fixed to a cylindrical motor housing 72 and a motor rotor 75 attached to the rotation output shaft 74. ).
  • the rotation output shaft 74 is cantilevered by two bearings 76 on the cylindrical portion of the housing 83 a on the inboard side of the speed reducer 7.
  • FIG. 7 shows a cross-sectional view of the motor (VII-VII cross section of FIG. 6).
  • the rotor 75 of the motor 6 includes a core portion 79 made of a soft magnetic material and a permanent magnet 80 built in the core portion 79.
  • the permanent magnets 80 are arranged so that two adjacent permanent magnets face each other in a cross-sectional shape on the same circumference in the rotor core portion 79.
  • the permanent magnet 80 is a neodymium magnet.
  • the stator 73 includes a core part 77 and a coil 78 made of a soft magnetic material.
  • the core portion 77 has a ring shape with an outer peripheral surface having a circular cross section, and a plurality of teeth 77a protruding inward on the inner peripheral surface are formed side by side in the circumferential direction.
  • the coil 78 is wound around the teeth 77 a of the stator core portion 77.
  • the motor 6 is provided with an angle sensor 36 that detects a relative rotation angle between the motor stator 73 and the motor rotor 75.
  • the angle sensor 36 detects and outputs a signal representing a relative rotation angle between the motor stator 73 and the motor rotor 75, and an angle calculation circuit 71 that calculates an angle from the signal output from the angle sensor body 70.
  • the angle sensor main body 70 includes a detected portion 70a provided on the outer peripheral surface of the rotation output shaft 74, and a detecting portion 70b provided in the motor housing 72 and disposed in close proximity to the detected portion 70a, for example, in the radial direction. Become.
  • the detected portion 70a and the detecting portion 70b may be arranged close to each other in the axial direction.
  • the angle sensor 36 may be a resolver.
  • each phase of each wave of alternating current flowing through the coil 78 of the motor stator 73 based on the relative rotation angle between the motor stator 73 and the motor rotor 75 detected by the angle sensor 36. Is controlled by the motor drive control unit 33 of the motor control unit 29.
  • the wiring of the motor current of the in-wheel motor drive device 8 and the wiring of various sensor systems and command systems are collectively performed by a connector 99 provided in the motor housing 72 and the like.
  • the speed reducer 7 is a cycloid speed reducer, and two curved plates 84a and 84b formed with wavy trochoid curves having a gentle outer shape as shown in FIG.
  • the shaft 82 is attached to each eccentric part 82a, 82b.
  • a plurality of outer pins 86 for guiding the eccentric movements of the curved plates 84a and 84b on the outer peripheral side are provided across the housing 83b, and a plurality of inner pins 88 attached to the inboard side member 60 of the inner member 2 are provided.
  • the curved plates 84a and 84b are engaged with a plurality of circular through holes 89 provided in the inserted state.
  • the rotation input shaft 82 is spline-coupled with the rotation output shaft 74 of the motor 6 and rotates integrally.
  • the rotary input shaft 82 is supported at both ends by two bearings 90 on the inboard side housing 83a and the inner diameter surface of the inboard side member 60 of the inner member 52.
  • the curved plates 84a and 84b attached to the rotation input shaft 82 that rotates together with the motor 6 perform an eccentric motion.
  • the eccentric motions of the curved plates 84 a and 84 b are transmitted to the inner member 52 as rotational motion by the engagement of the inner pins 88 and the through holes 89.
  • the rotation of the inner member 52 is decelerated with respect to the rotation of the rotation output shaft 74. For example, a reduction ratio of 1/10 or more can be obtained with a single-stage cycloid reducer.
  • the two curved plates 84a and 84b are attached to the eccentric portions 82a and 82b of the rotary input shaft 82 so as to cancel out the eccentric motion with each other, and are mounted on both sides of the eccentric portions 82a and 82b.
  • a counterweight 91 that is eccentric in the direction opposite to the eccentric direction of the eccentric portions 82a and 82b is mounted so as to cancel the vibration caused by the eccentric movement of the curved plates 84a and 84b.
  • bearings 92 and 93 are attached to the outer pins 86 and the inner pins 88, and outer rings 92a and 93a of the bearings 92 and 93 are respectively connected to the curved plates 84a and 84b. It comes into rolling contact with the outer periphery and the inner periphery of each through-hole 89. Therefore, the contact resistance between the outer pin 86 and the outer periphery of each curved plate 84a, 84b and the contact resistance between the inner pin 88 and the inner periphery of each through hole 89 are reduced, and the eccentric motion of each curved plate 84a, 84b is smooth. Can be transmitted to the inner member 52 as a rotational motion.
  • the wheel bearing 4 of the in-wheel motor drive device 8 is fixed to the vehicle body via a suspension device (FIG. 3) such as a knuckle on the outer periphery of the housing 83 b of the speed reducer 7 or the housing 72 of the motor 6. Is done.
  • a suspension device such as a knuckle on the outer periphery of the housing 83 b of the speed reducer 7 or the housing 72 of the motor 6. Is done.
  • the startup abnormality detection means 98 in the first embodiment may be as described below. That is, the starting abnormality detecting means 98 shown in FIG. 2 detects the coil temperature and the coil resistance, and detects the abnormality of the motor coil 78 when the coil temperature exceeds the threshold value or the coil resistance exceeds the threshold value. It may be a thing. In this configuration, in a state where the inverter 31 and the motor 6 are electrically connected, the start-up abnormality detection means 98 applies a voltage to the motor coil 78 of each phase sequentially, and each phase to which the voltage is applied is applied. It is good also as what measures the coil resistance of the motor coil 78 of each phase from the measured value of the current of the motor coil 78.
  • a voltage is applied between the electrical connection points of the motor coil 78 of each phase of the motor 6 and the inverter 31, and the measured value of the current between the electrical connection points is used for each phase.
  • the coil resistance of the motor coil 78 can be measured.
  • switching means for switching the electrical connection between the motor 6 and the inverter 31 can be eliminated, and the structure of the apparatus can be simplified.
  • the start-up abnormality detection unit 98 may include a correction unit that corrects the measured coil resistance in accordance with the coil temperature output from the thermistor provided in the motor coil 78. As shown in FIG. 4, a voltage is sequentially applied to the motor coil 78 of each phase, and the coil resistance of the motor coil 78 of each phase is determined from the measured value of the current of the motor coil 78 of each phase to which the voltage is applied. For example, when the vehicle is restarted immediately after traveling, the coil temperature is relatively high and gradually decreases. As a result, the coil resistance is reduced for a long time. It becomes smaller than the coil resistance at the time of starting.
  • the correction means 104 is provided in the start-up abnormality detection means 98 as in the second embodiment shown in FIG.
  • the coil resistance when the coil temperature is the reference temperature (the temperature appropriately determined near room temperature) and the coil resistance when the coil temperature is increased are obtained by experiments or the like.
  • the correction coefficient Kt by the correction means 104 can be calculated from the obtained plurality of coil resistances. Therefore, by correcting the coil resistance by multiplying the correction coefficient Kt according to the coil temperature, it is possible to detect the abnormality of the motor 6 during non-travel more accurately.
  • the motor coil abnormality detection means 95 may be provided in the ECU 21, which is an electric control unit that controls the entire vehicle.

Abstract

 車輪(2)をモータ(6)により駆動する電気自動車のモータ(6)の診断装置であって、車両の電源が投入されている非走行時に、モータコイル(78)のコイル温度とモータコイル(78)のコイル抵抗または絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイル(78)の異常と検出する始動時異常検出手段(98)を設けた。さらに車両の走行時に、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出し、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイル(78)の異常と検出する走行時異常検出手段(99)を設けた。

Description

モータの診断方法 関連出願
 本出願は、2011年3月7日出願の特願2011-048633の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、電気自動車の車輪を駆動するモータの診断装置および診断方法に関し、駆動モータの自己診断機能に関する。
 電気自動車では、車両駆動のためのモータおよびこれを制御するコントローラの故障は、走行性、安全性に大きく影響する。特に、電気自動車において、インホイールモータ駆動装置を用いた場合、同装置のコンパクト化を図る結果、この構成部品である車輪用軸受、減速機、およびモータは、高速回転化を伴うため、これらの信頼性確保が重要な課題となる。従来、インホイールモータ駆動装置において、車両の走行時、信頼性確保のために、車輪用軸受、減速機、およびモータ等の温度を測定して過負荷を監視し、温度測定値に応じてモータの駆動電流の制限や、モータ回転数を低下させるものが提案されている(例えば、特許文献1)。
特開2008-168790号公報
 インホイールモータ型の電気自動車では、各輪独立に応答性の高いモータが取り付けられている。特に、電気自動車の駆動源であるモータの駆動トルクを、高い減速比を有する減速機を介してホイールにトルク伝達する場合、モータ制御の不安定化を原因としたモータのトルクは、拡大されてホイールにトルク伝達される。このため、このモータの故障時には、安定した車両姿勢を保つことができるように、その状況に応じた対応が必要となる。
 上記のように、インホイールモータ駆動装置において、車両走行時、モータの温度を測定して過負荷を監視し、モータを駆動制限することは行われている。しかし、この場合、車両の始動時またはモータへの電力供給を行っていない、例えば、車両を走行させる前段階のような非走行時に木目細かい診断を実施し、モータに異常が生じていた場合には、モータ等の修理に向かうか、この車両の救援を要請することが望ましい。また非走行時にモータが正常であった場合でも、車両走行時にモータコイルに異常が起こることも考えられる。
 この発明の目的は、車両の走行時と、車両の非走行時のいずれの場合でも、モータコイルの異常を検出することができ、モータ異常への対処を早期に図ることができるモータの診断装置および診断方法を提供することである。以下、この発明の概要について、実施形態を示す図面中の符号を用いて説明する。
 この発明のモータの診断装置は、車輪2をモータ6により駆動する電気自動車の前記モータ6の診断装置であって、車両の電源が投入されている非走行時に、モータコイル78のコイル温度とモータコイル78のコイル抵抗または絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイル78の異常と検出する始動時異常検出手段98を設け、車両の走行時に、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出し、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイル78の異常と検出する走行時異常検出手段99を設けたものである。
 前記「車両の電源が投入されている非走行時」とは、ドライバが車両に乗った後、走行を開始するまでの間である始動時等のように、キー等で車両の全体を制御するECU21等の制御手段に電源が投入されているが、まだモータ6への電力供給を行っていないときや、走行停止のためにモータ6への電力供給は行っていないが、前記車両の全体を制御する手段の電源は投入状態を維持しているときを言う。
 この構成によると、車両の電源が投入されている非走行時には、始動時異常検出手段98によりモータコイル78の異常を検出する。つまりコイル温度とコイル抵抗または絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイル78の異常と検出する。例えば、モータコイル78に絶縁劣化等の異常が起こると、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超える。このように車両を走行させる前段階などで、例えば走行前のオイル系等の車両全体の異常チェック時の一つのチェック項目として、あるいは走行開始後の停止時に、モータ6の異常を診断し、モータ6に異常が生じていた場合には、前記モータ6等の修理に向かうか、この車両の救援を要請することができる。
 車両の走行時には、走行時異常検出手段99によりモータコイル78の異常を検出する。つまりコイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出し、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイル78の異常と検出する。車両の走行時にはモータ6が回転している。このモータ回転時、例えば、モータコイル78の短絡異常が発生すると、モータ印加電圧に対してモータ電流が設定範囲から外れて異常に高くなる。またモータ回転数に応じてモータ印加電圧に逆起電力が作用するため、モータ印加電圧とモータ電流との関係は、モータ回転数に応じて時々刻々と変化する。したがって、モータ回転数に対応する、モータ印加電圧とモータ電流との関係を常時検出することで、モータコイル78の異常と検出し得る。このように、車両の走行時と、車両の非走行時のいずれの場合でも、モータコイル78の異常を検出でき、電気自動車の信頼性を高めることが可能となる。また、モータ異常への対処を早期に図ることができる。
 前記始動時異常検出手段98は、コイル温度とコイル抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗が閾値を超えたときモータコイル78の異常と検出するものとしても良い。
 前記始動時異常検出手段98は、コイル温度と絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、絶縁抵抗が閾値を超えたときモータコイル78の異常と検出するものとしても良い。
 前記モータ6を駆動する手段が、直流電力を前記モータ6の駆動に用いる交流電力に変換するインバータ31を有する場合は、これらモータ6とインバータ31との電気的接続を開閉自在に切り換える切換手段101を設け、前記始動時異常検出手段98は、前記切換手段101を開放して各相のモータコイル78に順次切換えて電圧を印加させて、電圧が印加された各相のモータコイル78の電流の計測値から、各相のモータコイル78のコイル抵抗を計測するものとしても良い。車両の電源が投入された非走行時に、切換手段101を開放することで、インバータ31の半導体スイッチング素子等に流れる電流を遮断して、電圧が印加された各相のモータコイル78の電流を正確に計測し得る。この計測値から、各相のモータコイル78のコイル抵抗を計測することが可能となる。なお、走行時には、切換手段101を閉じ、インバータ31から電流をモータ6に流す。
 前記モータ6を駆動する手段が、直流電力を前記モータ6の駆動に用いる交流電力に変換するインバータ31を有する場合は、前記始動時異常検出手段98は、各相のモータコイル78に順次電圧を印加させて、電圧が印加された各相のモータコイル78の電流の計測値から、各相のモータコイル78のコイル抵抗を計測するものとしても良い。コイル抵抗を計測する際、例えば、モータ6の各相のモータコイル78とインバータ31との電気的接続点間に電圧を印加し、その電気的接続点間の電流の計測値から、各相のモータコイル78のコイル抵抗を計測し得る。この場合、モータ6とインバータ31との電気的接続を切り換える切換手段を不要とでき、装置の構造を簡単化できる。
 前記モータコイル78に近接してサーミスタ103を設け、前記始動時異常検出手段98は、計測されたコイル抵抗を、前記サーミスタ103で出力されるコイル温度に応じて補正する補正手段104を含むものとしても良い。このようにコイル抵抗をコイル温度に応じて補正することで、非走行時のモータ6の異常をより正確に検出することができる。
 前記モータ6が、駆動輪である各車輪2毎にそれぞれ設けられるものであっても良い。前記モータ6は、一部または全体が車輪2内に配置されて前記モータ6と車輪用軸受4と減速機7とを含むインホイールモータ駆動装置8を構成するものであっても良い。インホイールモータ駆動装置8の場合、コンパクト化を図る結果、車輪用軸受4、減速機7、およびモータ6は、高速回転化を伴うため、これらの信頼性確保が重要な課題となる。車両の非走行時には始動時異常検出手段98によりモータコイル78の異常を検出でき、車両の走行時には走行時異常検出手段99によりモータコイル78の異常を検出することができるため、モータ6の信頼性をより高めることが可能となる。
 前記減速機7は、モータ6の回転を減速するサイクロイド減速機であっても良い。減速機7をサイクロイド減速機として減速比を例えば1/6以上に高くした場合、モータ6の小型化を図り、装置のコンパクト化を図ることができる。モータ6の駆動トルクを、前記のように高い減速比を有する減速機7を介してホイールにトルク伝達するとき、前記駆動トルクは拡大されてホイールにトルク伝達されるため、モータ異常の影響が大きくなるが、車両の非走行時に始動時異常検出手段98により実際の車両が走行する前段階でモータコイル78の異常を検出し得る。そのため、異常検出がより効果的となる。なお、仮に、車両の非走行時に異常が検出されなかったとしても、車両の走行時には走行時異常検出手段99によりモータコイル78の異常を検出し得る。
 この発明の電気自動車は、前記いずれかのモータ6により駆動可能に構成されるものである。
 この発明のモータの診断方法は、車輪2をモータ6により駆動する電気自動車の前記モータ6の診断方法であって、車両の電源が投入されている非走行時に、モータコイル78のコイル温度とモータコイル78のコイル抵抗または絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイル78の異常と検出する始動時異常検出過程と、車両の走行時に、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出し、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイル78の異常と検出する走行時異常検出過程とを含む。
 この構成によると、始動時異常検出過程では、車両の電源が投入されている非走行時におけるモータコイル78の異常を検出する。すなわちコイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイル78の異常と検出する。走行時異常検出過程では、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイル78の異常と検出する。このように、車両の走行時と、車両の非走行時のいずれの場合でも、モータコイル78の異常を検出でき、電気自動車の信頼性を高めることが可能となる。また、モータ異常への対処を早期に図ることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る電気自動車用駆動モータの診断装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車用駆動モータの診断装置の概念構成のブロック図である。 同診断装置の要部の回路構成例を示す概略図である。 (a)~(c)は同診断装置の始動時異常検出手段におけるコイル抵抗の検出例を示す図である。 (a)~(c)は同診断装置の走行時異常検出手段における、モータ回転数に対応する、モータ印加電圧とモータ電流との関係を示すグラフである。 同電気自動車におけるインホイールモータ駆動装置の破断正面図である。 図6のVII-VII 線断面となるモータ部分の断面図である。 図6のVIII-VIII 線断面となる減速機部分の断面図である。 図8の部分拡大断面図である。 この発明の第2実施形態に係る電気自動車用駆動モータの診断装置の概念構成の要部のブロック図である。
 この発明の第1実施形態に係る電気自動車用駆動モータの診断装置およびその診断方法を図1ないし図9と共に説明する。この駆動モータの診断装置は、電気自動車に搭載されている。この電気自動車は、図1に示すように、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪の操舵輪とされた4輪の自動車である。駆動輪および従動輪となる車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4,5を介して車体1に支持されている。車輪用軸受4,5は、図1ではハブベアリングの略称「H/B」を付してある。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成している。図2に示すように、インホイールモータ駆動装置8は、一部または全体が駆動輪2内に配置される。この実施形態では、駆動輪2の軸心Cに沿って、車輪用軸受4および減速機7の全体ならびにモータ6の一部分を、駆動輪2と重合させているが、インホイールモータ駆動装置8の全体を駆動輪2と重合させてもよい。インホイールモータ駆動装置8は、インホイールモータユニットとも称される。モータ6は、減速機7を介さずに直接に車輪2を回転駆動するものであっても良い。各車輪2,3には、電動式のブレーキ9,10が設けられている。
  左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、操舵機構12により操舵される。転舵機構11は、タイロッド11aを左右移動させることで、車輪用軸受5を保持した左右のナックルアーム11bの角度を変える機構であり、操舵機構12の指令によりEPS(電動パワーステアリング)モータ13を駆動させ、回転・直線運動変換機構(図示せず)を介して左右移動させられる。操舵角は操舵角センサ15で検出し、このセンサ出力はECU21に出力され、その情報は左右輪の加速・減速指令等に使用される。
 制御系を説明する。図1に示すように、制御装置U1は、自動車全般の制御を行う電気制御ユニットであるECU21と、このECU21の指令に従って走行用のモータ6の制御を行うインバータ装置22とを有する。前記ECU21と、インバータ装置22と、ブレーキコントローラ23とが、車体1に搭載されている。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
 ECU21は、機能別に大別すると駆動制御部21aと一般制御部21bとに分けられる。駆動制御部21aは、アクセル操作部16の出力する加速指令と、ブレーキ操作部17の出力する減速指令と、操舵角センサ15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令を生成し、インバータ装置22へ出力する。駆動制御部21aは、上記の他に、出力する加速・減速指令を、各車輪2,3の車輪用軸受4,5に設けられた回転センサ24から得られるタイヤ回転数の情報や、車載の各センサの情報を用いて補正する機能を有していても良い。アクセル操作部16は、アクセルペダルとその踏み込み量を検出して前記加速指令を出力するセンサ16aとでなる。ブレーキ操作部17は、ブレーキペダルとその踏み込み量を検出して前記減速指令を出力するセンサ17aとでなる。
 ECU21の一般制御部21bは、前記ブレーキ操作部17の出力する減速指令をブレーキコントローラ23へ出力する機能、各種の補機システム25を制御する機能、コンソールの操作パネル26からの入力指令を処理する機能、表示手段27に表示を行う機能などを有する。前記補機システム25は、例えば、エアコン、ライト、ワイパー、GPS、エアバッグ等であり、ここでは代表して一つのブロックとして示す。
 ブレーキコントローラ23は、ECU21から出力される減速指令に従って、各車輪2,3のブレーキ9,10に制動指令を与える手段である。ECU21から出力される制動指令には、ブレーキ操作部17の出力する減速指令によって生成される指令の他に、ECU21の持つ安全性向上のための手段によって生成される指令がある。ブレーキコントローラ23は、この他にアンチロックブレーキシステムを備える。ブレーキコントローラ23は、電子回路やマイコン等により構成される。
 インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とで構成される。モータコントロール部29は、各パワー回路部28に対して共通して設けられていても、別々に設けられていても良いが、共通して設けられた場合であっても、各パワー回路部28を、例えば互いにモータトルクが異なるように独立して制御可能なものとされる。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ8に関する各検出値や制御値等の各情報(「IWMシステム情報」と称す)をECU21に出力する機能を有する。
 図2は、この電気自動車用駆動モータの診断装置の概念構成のブロック図である。パワー回路部28は、バッテリ19の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とで構成される。モータ6は3相の同期モータ等からなる。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
 モータコントロール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部としてモータ駆動制御部33を有している。モータ駆動制御部33は、上位制御手段であるECUから与えられるトルク指令等による加速・減速指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える手段である。モータ駆動制御部33は、インバータ31からモータ6に流すモータ電流値を電流検出手段35から得て、電流フィードバック制御を行う。また、モータ駆動制御部33は、モータ6のロータの回転角を角度センサ36から得て、ベクトル制御等の回転角に応じた制御を行う。
 モータの診断装置について説明する。この実施形態では、上記構成のモータコントロール部29に、次のモータコイル異常検出手段95、検出用制御部96、異常報告手段41、および切換手段101を設け、ECU21に異常表示手段42を設けている。この実施形態におけるモータの診断装置は、これらモータコイル異常検出手段95、検出用制御部96、異常報告手段41、切換手段101、および異常表示手段42を有する。モータコイル異常検出手段95は、始動時異常検出手段98と、走行時異常検出手段99とを有する。
 先ず、始動時異常検出手段98について説明する。始動時異常検出手段98は、検出部98aと、判定部98bとを有する。この例では、検出部98aは、車両の電源が投入されている非走行時に、モータコイルのコイル温度と、モータコイルのコイル抵抗または絶縁抵抗とを検出する。前記「車両の電源が投入されている非走行時」とは、この電気自動車のECU21に電源が投入されていて、車両が完全に停止している状態を言い、例えば、(1)ドライバ等がキー、スタートボタン等の始動手段を、「オフ」からモータ6への電力供給前の「アクセサリ電源」の位置に操作してECU21がオンとなったときや、(2)ECU21がオンの状態で前記始動手段を「オン」の位置に操作しているが、ECU21がモータ6への加速指令を生成していない場合、および、回転センサ24から得られるタイヤ回転数の情報、車載の各センサの情報等から車両が走行停止状態にあると判定されるときを言い、ECU21に微小電流が流れてオンになっているが、車両にドライバ等が乗車せずに車両のセキュリティがオンとなったロック状態にあるときは含まない。
 前記始動手段が「アクセサリ電源」または「オン」の位置にあるとき、ECU21がオンとなっていると判定される。ECU21がオンと判定され、且つ、電流検出手段35からのモータ電流、または回転センサ24から得られるタイヤ回転数の情報、車載の各センサの情報等からモータ6への電力供給は行っていないと判定されるとき、車両の電源が投入されている非走行時であると判断される。前記判定部98bは、検出部98aにて検出されたコイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイルの異常と判定する。
 ここで図3は、駆動モータ6の診断装置の要部の回路構成例を示す概略図であり、図4(a),(b),(c)は、同診断装置の始動時異常検出手段98におけるコイル抵抗の検出例を示す図である。図3に示すように、モータ6のモータハウジング72は、車両のナックル100に固定されている。このモータ6は、3相のモータコイル78の一端が中性点P1で接続されるスター結線により結線された同期モータである。このモータ6とインバータ31との電気的接続を開閉自在に切り換える切換手段101を設けている。すなわち、3相(U,V,W相)の各モータコイル78の巻線の他端に、それぞれ切換手段101であるリレーを介して、インバータ31におけるスイッチングトランジスタ等の各駆動素子97に接続された各相の内部配線102が接続されている。
 前記リレーは、車両の走行時、3つ全てのリレー接点が閉じられるいわゆるノーマルクローズのリレーが適用されている。始動時異常検出手段98は、車両の電源が投入された非走行時に、3つ全てのリレー接点を開放するように検出用制御部96(図2)に指令する。キー等の始動手段が「アクセサリ電源」または「オン」の位置にあるとき、ECU21がオンと判定され、さらに、電流検出手段35からのモータ電流等からモータ6への電力供給は行っていないと判定されるとき、車両の電源が投入された非走行時であると判断される。3つ全てのリレー接点が開放すると、始動時異常検出手段98の検出部98aは、図4(a),(b),(c)に示すように、各相のモータコイル78に順次切換えて電圧を印加させて、電圧が印加された各相のモータコイル78の電流の計測値から、各相のモータコイル78のコイル抵抗を計測するものとしている。
 図3に示すように、例えば、始動時異常検出手段98における検出部98aに、各U,V,W相の電極間に電圧を印加する計測用電源V1,V2,V3、および電流センサA1,A2,A3がそれぞれ設けられる。これら計測用電源V1~V3および電流センサA1~A3は、この例ではモータハウジング72から取り出され切換手段101の接点まで延びる各相の配線に、それぞれ電気的に接続されている。
 図4(a)に示すように、U,V相の電極間に計測用電源V1により電圧を印加し、U相およびV相のモータコイル78,78の電流の計測値を電流センサA1により計測する。以下、図4(b)に示すように、U,W相の電極間に計測用電源V2により電圧を印加し、U相およびW相のモータコイル78,78の電流の計測値を電流センサA2により計測し、図4(c)に示すように、V,W相の電極間に計測用電源V3により電圧を印加し、V相およびW相のモータコイル78,78の電流の計測値を電流センサA3により計測する。始動時異常検出手段98の判定部98bは、検出されたコイル抵抗が閾値を超えたときモータコイル78の異常と判定する。なお、図3の例では、モータ6において、各相につき1つのモータコイル78のみを示しているが、各相のモータコイル78が円周方向に沿って配置された複数の電極のコイルからなる場合、それらの電極のコイルを、相毎に並列接続または直列接続されたものが、図の1つのモータコイル78となる。
 また、検出部105は、図3に示すように、リレー106を閉じ、モータコイル78とモータケース72との間に計測用電源V4により所定の電圧を印加し、両者間に流れる電流を電流センサA4により計測し、モータコイル78とモータケース72間の絶縁抵抗を計測し得る。判定部107は、計測された絶縁抵抗が閾値を超えるか否かを判定する。図3では、検出部105はモータコイル78のW相に接続されているが、U相やV相に接続されてもよい。
 図3に示すように、モータコイル78のコイル温度を検出する温度センサとして、例えば、サーミスタ103が使用される。このサーミスタ103を、モータコイル78に固着することで、モータコイル78の温度を検出し得る。検出部98aにおいて、例えば、サーミスタ103で検出された値が図示外のアンプで増幅され、判定部98bにてこの増幅値が閾値を超えるか否か判定される。この例では、サーミスタ103を、モータコイル78に固着してコイル温度を検出しているが、サーミスタ103を、モータコイル78に固着しないで、コイル温度を検出し得る程度にモータコイル78に近づけて設けても良い。また、各相U,V,Wに接続した各コイルの温度をサーミスタ103で個別に計測するようにしてもよい。
 また、図3ではリレー101を使用し、車両の電源が投入された非走行時に、3つ全てのリレー接点を開放してコイルの抵抗値を測定する方法を採っているが、リレーを設けなくてもよい。その場合、予め、モータコイル78が正常な状態のコイルの抵抗値が計測される。
 各閾値について説明する。前記のように、判定部98bにおいて、コイル抵抗、絶縁抵抗が各閾値を超えたときモータコイル78の異常と判定する。この場合、例えば、実験、シミュレーション等により、モータコイル78に絶縁劣化等の異常が生じていない正常時における、印加電圧と電流値との関係を基準値として記憶しておく。規定の印加電圧に対し絶縁劣化が生じた電流値にさらに計測誤差等を加味した値を、コイル抵抗または絶縁抵抗の判定の際の閾値とする
 また判定部98bにおいて、コイル温度が閾値を超えたときモータコイル78の異常と判定する。この場合、例えば、実験、シミュレーション等により、モータコイル78の正常時における、印加電圧とコイル温度と印加させた時間との関係を基準値として記憶しておく。規定の印加電圧を一定時間モータコイル78に印加させると、正常時のコイル温度は一義的に定まる。この場合に計測されるコイル温度が、基準値よりもα(αは例えば10数%以上)高いと、モータ6に過負荷が生じていると推定される。前記αを、コイル温度の判定の際の閾値とする。
 走行時異常検出手段99について説明する。図2に示すように、走行時異常検出手段99は、検出部99aと、判定部99bとを有する。この例では、検出部99aは、車両の走行時に、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出する。ECU21がオンで、且つ、回転センサ24から得られるタイヤ回転数の情報または電流検出手段35からのモータ電流からモータ6へ電力供給を行っていると判断されるとき、前記「車両の走行時」であると判定される。前記判定部99bは、検出部99aにて検出されたコイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイル78の異常と判定する。
 車両の走行時におけるコイル温度の判定の際の閾値は、前記と同様に定められる。つまり、モータコイル78の正常時における、印加電圧とコイル温度と印加させた時間との関係を基準値として記憶しておき、規定の印加電圧を一定時間モータコイルに印加させたときのコイル温度が、前記基準値よりもα(αは例えば10数%以上)高いと、モータ6に過負荷が生じていると推定される。前記αを、コイル温度の判定の際の閾値とする。但し、コイル温度を検出、判定する際、3つ全てのリレー接点が閉じられた状態で、前記規定の印加電圧をモータコイル78に印加させている。
 車両の走行時における、モータ印加電圧とモータ電流との関係は、モータ回転数に対応して種々設定されている。図5(a)~(c)は、この診断装置の走行時異常検出手段99における、モータ回転数に対応する、モータ印加電圧とモータ電流との関係を示すグラフである。図5(a)は、モータ回転数がa1rpm以上a2rpm未満のときのモータ印加電圧とモータ電流との関係を示す。この場合の基準値をK1とすると、モータ回転数がa1rpm以上a2rpm未満のとき、任意のモータ印加電圧における基準値K1に対し±Sa(Saは例えば10数%)の範囲内にあるとき、モータ6に過負荷が生じていないと推定される。換言すれば、判定部99bは、モータ回転数がa1rpm以上a2rpm未満のとき、基準値K1に対し±Saの範囲から外れるときモータコイル78の異常と判定する。
 以下同様に、図5(b)に示すように、判定部99bは、モータ回転数がa2rpm以上a3rpm未満のとき、基準値K1とは異なる基準値K2に対し±Sbの範囲から外れるときモータコイル78の異常と判定する。図5(c)に示すように、判定部99bは、モータ回転数がa3rpm以上a4rpm未満のとき、基準値K3に対し±Scの範囲から外れるときモータコイル78の異常と判定する。±Sa,±Sb,±Scの各範囲が前記設定範囲である。なお、この例では、モータ回転数の領域を3つの領域に分けて、各領域における基準値及び設定範囲を定めているが、必ずしもこの例に限定されるものではない。例えば、モータ回転数の領域を2つの領域に分けて、各領域における基準値及び設定範囲を定めても良いし、モータ回転数の領域を4つ以上の領域に分けて、各領域における基準値及び設定範囲を定めても良い。
 作用効果について説明する。車両の電源が投入された非走行時、具体的には、ドライバ等がキー、スタートボタン等の始動手段を、「オフ」から、補機システム25、例えば、ライト、ワイパー等を駆動可能な「アクセサリ電源」の位置に操作してECU21がオンとなったとき、始動時異常検出手段98によりモータコイル78の異常を検出する。後述の車両走行後、ECU21がオンのまま、ECU21がモータ6への加速指令を生成していない場合、および、回転センサ24から得られるタイヤ回転数の情報、車載の各センサの情報等から車両が走行停止状態にあると判定されるときにも、始動時異常検出手段98によりモータコイル78の異常を検出する。
 この始動時異常検出手段98における検出部98aは、コイル温度とコイル抵抗または絶縁抵抗とを検出する。判定部98bは、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイル78の異常と検出する。例えば、モータコイル78に絶縁劣化等の異常が起こると、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超える。このように車両を走行させる前段階などで、例えば走行前のオイル系等の車両全体の異常チェック時の一つのチェック項目として、あるいは走行開始後の停止時に、モータ6の異常を診断し、モータ6に異常が生じていた場合には、前記モータ6等の修理に向かうか、この車両の救援を要請することができる。
 車両の走行時、つまりECU21がオンで、且つ、回転センサ24から得られるタイヤ回転数の情報または電流検出手段35からのモータ電流からモータ6へ電力供給を行っていると判断されるときには、走行時異常検出手段99によりモータコイル78の異常を検出する。この走行時異常検出手段99における検出部99aは、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出する。判定部99bは、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイル78の異常と検出する。車両の走行時にはモータ6が回転している。このモータ回転時、例えば、モータコイル78の短絡異常が発生すると、モータ印加電圧に対してモータ電流が設定範囲から外れて異常に高くなる。またモータ回転数に応じてモータ印加電圧に逆起電力が作用するため、モータ印加電圧とモータ電流との関係は、モータ回転数に応じて時々刻々と変化する。したがって、モータ回転数に対応する、モータ印加電圧とモータ電流との関係を常時検出することで、モータコイル78の異常と検出し得る。
 このように、車両の走行時と、車両の非走行時のいずれの場合でも、モータコイル78の異常を検出でき、電気自動車の信頼性を高めることが可能となる。また、モータ異常への対処を早期に図ることができる
 検出用制御部96は、走行時異常検出手段99における判定部99bによりモータコイル78の異常を検出したときに、モータ6の電流値を低減するように、モータ駆動制御部33を介してパワー回路部28に指令しても良い。モータ電流の低減は、現在の電流に対して定められた割合(例えば数%)で低下させても良いし、また定められた値低下させても良い。
 モータコイル異常検出手段95をインバータ装置22のモータコントロール部29に設け、モータ6に近い部位でモータコイルの異常判定を行えるため、配線上有利であり、ECU21に設ける場合に比べて迅速な制御が行え、車両走行上の問題を迅速に回避することができる。また高機能化により煩雑化が進むECU21の負担を軽減することができる。
 ECU21は、車両全般を統括して制御する装置であるため、モータコイル異常検出手段95により異常を検出したとき、ECU21にモータコイル78に異常ありとの異常報告を出力することで、ECU21により車両全体の適切な制御が行える。また、ECU21はインバータ装置22に駆動の指令を与える上位制御手段であり、インバータ装置22による応急的な制御の後、ECU21により、その後の駆動のより適切な制御を行うことも可能となる。
 また、インホイールモータ駆動装置8の場合、コンパクト化を図る結果、車輪用軸受4、減速機7、およびモータ6は高速回転化を伴うため、これらの信頼性確保が重要な課題となる。車両の非走行時には始動時異常検出手段98によりモータコイル78の異常を検出でき、車両の走行時には走行時異常検出手段99によりモータコイル78の異常を検出することができるため、モータ6の信頼性をより高めることが可能となる。
 インホイールモータ駆動装置8における減速機7をサイクロイド減速機として減速比を例えば1/6以上に高くした場合、モータ6の小型化を図り、装置のコンパクト化を図ることができる。モータ6の駆動トルクを、前記のように高い減速比を有する減速機7を介してホイールにトルク伝達するとき、前記駆動トルクは拡大されてホイールにトルク伝達されるため、モータ異常の影響が大きくなるが、車両の非走行時に始動時異常検出手段98により実際の車両が走行する前段階でモータコイル78の異常を検出し得る。そのため、異常検出がより効果的となる。なお、仮に、車両の非走行時に異常が検出されなかったとしても、車両の走行時には走行時異常検出手段99によりモータコイル78の異常を検出し得る。
 図6に一例を示すように、インホイールモータ駆動装置8は、車輪用軸受4とモータ6との間に減速機7を介在させ、車輪用軸受4で支持される駆動輪である車輪2(図2)のハブとモータ6(図6)の回転出力軸74とを同軸心上で連結してある。減速機7は、減速比が1/6以上のものであるのが良い。この減速機7は、サイクロイド減速機であって、モータ6の回転出力軸74に同軸に連結される回転入力軸82に偏心部82a,82bを形成し、偏心部82a,82bにそれぞれ軸受85を介して曲線板84a,84bを装着し、曲線板84a,84bの偏心運動を車輪用軸受4へ回転運動として伝達する構成である。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 車輪用軸受4は、内周に複列の転走面53を形成した外方部材51と、これら各転走面53に対向する転走面54を外周に形成した内方部材52と、これら外方部材51および内方部材52の転走面53,54間に介在した複列の転動体55とで構成される。内方部材52は、駆動輪を取り付けるハブを兼用する。この車輪用軸受4は、複列のアンギュラ玉軸受とされていて、転動体55はボールからなり、各列毎に保持器56で保持されている。上記転走面53,54は断面円弧状であり、各転走面53,54は接触角が背面合わせとなるように形成されている。外方部材51と内方部材52との間の軸受空間のアウトボード側端は、シール部材57でシールされている。
 外方部材51は静止側軌道輪となるものであって、減速機7のアウトボード側のハウジング83bに取り付けるフランジ51aを有し、全体が一体の部品とされている。フランジ51aには、周方向の複数箇所にボルト挿通孔64が設けられている。また、ハウジング83bには,ボルト挿通孔64に対応する位置に、内周にねじが切られたボルト螺着孔94が設けられている。ボルト挿通孔94に挿通した取付ボルト65をボルト螺着孔94に螺着させることにより、外方部材51がハウジング83bに取り付けられる。
 内方部材52は回転側軌道輪となるものであって、車輪取付用のハブフランジ59aを有するアウトボード側材59と、このアウトボード側材59の内周にアウトボード側が嵌合して加締めによってアウトボード側材59に一体化されたインボード側材60とでなる。これらアウトボード側材59およびインボード側材60に、前記各列の転走面54が形成されている。インボード側材60の中心には貫通孔61が設けられている。ハブフランジ59aには、周方向複数箇所にハブボルト66の圧入孔67が設けられている。アウトボード側材59のハブフランジ59aの根元部付近には、駆動輪および制動部品(図示せず)を案内する円筒状のパイロット部63がアウトボード側に突出している。このパイロット部63の内周には、前記貫通孔61のアウトボード側端を塞ぐキャップ68が取り付けられている。
 モータ6は、筒状のモータハウジング72に固定したモータステータ73と、回転出力軸74に取り付けたモータロータ75との間にラジアルギャップを設けたラジアルギャップ型のIPMモータ(すなわち埋込磁石型同期モータ)である。回転出力軸74は、減速機7のインボード側のハウジング83aの筒部に2つの軸受76で片持ち支持されている。
 図7は、モータの断面図(図6のVII-VII 断面)を示す。モータ6のロータ75は、軟質磁性材料からなるコア部79と、このコア部79に内蔵される永久磁石80から構成される。永久磁石80は、隣り合う2つの永久磁石がロータコア部79内の同一円周上で断面ハ字状に向き合うように配列される。永久磁石80にはネオジウム系磁石が用いられている。ステータ73は軟質磁性材料からなるコア部77とコイル78で構成される。コア部77は外周面が断面円形とされたリング状で、その内周面に内径側に突出する複数のティース77aが円周方向に並んで形成されている。コイル78は、ステータコア部77の前記各ティース77aに巻回されている。
 図6に示すように、モータ6には、モータステータ73とモータロータ75の間の相対回転角度を検出する角度センサ36が設けられる。角度センサ36は、モータステータ73とモータロータ75の間の相対回転角度を表す信号を検出して出力する角度センサ本体70と、この角度センサ本体70の出力する信号から角度を演算する角度演算回路71とを有する。角度センサ本体70は、回転出力軸74の外周面に設けられる被検出部70aと、モータハウジング72に設けられ前記被検出部70aに例えば径方向に対向して近接配置される検出部70bとでなる。被検出部70aと検出部70bは軸方向に対向して近接配置されるものであっても良い。角度センサ36はレゾルバであっても良い。このモータ6では、その効率を最大にするため、角度センサ36の検出するモータステータ73とモータロータ75の間の相対回転角度に基づき、モータステータ73のコイル78へ流す交流電流の各波の各相の印加タイミングを、モータコントロール部29のモータ駆動制御部33によってコントロールするようにされている。
 なお、インホイールモータ駆動装置8のモータ電流の配線や各種センサ系,指令系の配線は、モータハウジング72等に設けられたコネクタ99により纏めて行われる。
 減速機7は、上記したようにサイクロイド減速機であり、図8のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板84a,84bが、それぞれ軸受85を介して回転入力軸82の各偏心部82a,82bに装着してある。これら各曲線板84a,84bの偏心運動を外周側で案内する複数の外ピン86を、それぞれハウジング83bに差し渡して設け、内方部材2のインボード側材60に取り付けた複数の内ピン88を、各曲線板84a,84bの内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。回転入力軸82は、モータ6の回転出力軸74とスプライン結合されて一体に回転する。なお、回転入力軸82はインボード側のハウジング83aと内方部材52のインボード側材60の内径面とに2つの軸受90で両持ち支持されている。
 モータ6の回転出力軸74が回転すると、これと一体回転する回転入力軸82に取り付けられた各曲線板84a,84bが偏心運動を行う。この各曲線板84a,84bの偏心運動が、内ピン88と貫通孔89との係合によって、内方部材52に回転運動として伝達される。回転出力軸74の回転に対して内方部材52の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
 前記2枚の曲線板84a,84bは、互いに偏心運動が打ち消されるように180°位相をずらして回転入力軸82の各偏心部82a,82bに装着され、各偏心部82a,82bの両側には、各曲線板84a,84bの偏心運動による振動を打ち消すように、各偏心部82a,82bの偏心方向と逆方向へ偏心させたカウンターウエイト91が装着されている。
 図9に拡大して示すように、前記各外ピン86と内ピン88には軸受92,93が装着され、これらの軸受92,93の外輪92a,93aが、それぞれ各曲線板84a,84bの外周と各貫通孔89の内周とに転接するようになっている。したがって、外ピン86と各曲線板84a,84bの外周との接触抵抗、および内ピン88と各貫通孔89の内周との接触抵抗を低減し、各曲線板84a,84bの偏心運動をスムーズに内方部材52に回転運動として伝達することができる。
 図6において、このインホイールモータ駆動装置8の車輪用軸受4は、減速機7のハウジング83bまたはモータ6のハウジング72の外周部で、ナックル等の懸架装置(図3)を介して車体に固定される。
 前記第1実施形態における始動時異常検出手段98は、以下に説明するようなものでも良い。すなわち、図2に示す始動時異常検出手段98は、コイル温度とコイル抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗が閾値を超えたときモータコイル78の異常と検出するものであっても良い。この構成において、インバータ31とモータ6とが電気的に接続された状態で、始動時異常検出手段98は、各相のモータコイル78に順次電圧を印加させて、電圧が印加された各相のモータコイル78の電流の計測値から、各相のモータコイル78のコイル抵抗を計測するものとしても良い。コイル抵抗を計測する際、例えば、モータ6の各相のモータコイル78とインバータ31との電気的接続点間に電圧を印加し、その電気的接続点間の電流の計測値から、各相のモータコイル78のコイル抵抗を計測し得る。この場合、モータ6とインバータ31との電気的接続を切り換える切換手段を不要とでき、装置の構造を簡単化できる。
 また、図2に示す始動時異常検出手段98は、コイル温度と絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、絶縁抵抗が閾値を超えたときモータコイル78の異常と検出するものであっても良い。始動時異常検出手段98は、計測されたコイル抵抗を、モータコイル78に設けた前記サーミスタで出力されるコイル温度に応じて補正する補正手段を含むものであっても良い。図4に示したように、各相のモータコイル78に順次電圧を印加させて、電圧が印加された各相のモータコイル78の電流の計測値から、各相のモータコイル78のコイル抵抗を計測するが、例えば、車両の走行後直ぐに再始動するような場合には、コイル温度が比較的高く徐々に温度低下していく結果、このコイル温度に応じてコイル抵抗は、長時間停止した車両の始動時のコイル抵抗よりも小さくなる。
 そこで、非走行時において計測されたコイル抵抗を客観的に判断するために、図10に示す第2実施形態のように、補正手段104を始動時異常検出手段98に設けている。この場合、実験等により、コイル温度が基準温度(常温付近で適宜に定めた温度)のときのコイル抵抗と、コイル温度が上昇したときのコイル抵抗を求めておく。求めた複数のコイル抵抗から補正手段104による補正係数Ktを算出し得る。したがって、コイル抵抗をコイル温度に応じて補正係数Ktを掛けて補正することで、非走行時のモータ6の異常をより正確に検出することができる。モータコイル異常検出手段95を、車両全般を制御する電気制御ユニットであるECU21に設けても良い。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
2,3…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
78…モータコイル
31…インバータ
98…始動時異常検出手段
99…走行時異常検出手段
101…切換手段
103…サーミスタ
104…補正手段

Claims (11)

  1.  車輪をモータにより駆動する電気自動車の前記モータの診断装置であって、
     車両の電源が投入されている非走行時に、モータコイルのコイル温度とモータコイルのコイル抵抗または絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイルの異常と検出する始動時異常検出手段を設け、
     車両の走行時に、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出し、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れたときモータコイルの異常と検出する走行時異常検出手段を設けた電気自動車用駆動モータの診断装置。
  2.  請求項1において、前記始動時異常検出手段は、コイル温度とコイル抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗が閾値を超えたときモータコイルの異常と検出する電気自動車用駆動モータの診断装置。
  3.  請求項1において、前記始動時異常検出手段は、コイル温度と絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、絶縁抵抗が閾値を超えたときモータコイルの異常と検出する電気自動車用駆動モータの診断装置。
  4.  請求項2において、前記モータを駆動する手段が、直流電力を前記モータの駆動に用いる交流電力に変換するインバータを有し、
     これらモータとインバータとの電気的接続を開閉自在に切り換える切換手段を設け、
     前記始動時異常検出手段は、前記切換手段を開放して各相のモータコイルに順次切換えて電圧を印加させて、電圧が印加された各相のモータコイルの電流の計測値から、各相のモータコイルのコイル抵抗を計測するものとした電気自動車用駆動モータの診断装置。
  5.  請求項2において、前記モータを駆動する手段が、直流電力を前記モータの駆動に用いる交流電力に変換するインバータを有し、
     前記始動時異常検出手段は、各相のモータコイルに順次電圧を印加させて、電圧が印加された各相のモータコイルの電流の計測値から、各相のモータコイルのコイル抵抗を計測するものとした電気自動車用駆動モータの診断装置。
  6.  請求項2において、前記モータコイルに近接してサーミスタを設け、前記始動時異常検出手段は、計測されたコイル抵抗を、前記サーミスタで出力されるコイル温度に応じて補正する補正手段を含む電気自動車用駆動モータの診断装置。
  7.  請求項1において、前記モータが、駆動輪である各車輪毎にそれぞれ設けられる電気自動車用駆動モータの診断装置。
  8.  請求項7において、前記モータは、一部または全体が車輪内に配置されて前記モータと車輪用軸受と減速機とを含むインホイールモータ駆動装置を構成する電気自動車用駆動モータの診断装置。
  9.  請求項8において、前記減速機は、モータの回転を減速するサイクロイド減速機である電気自動車用駆動モータの診断装置。
  10.  請求項1に記載のモータにより駆動可能に構成される電気自動車。
  11.  車輪をモータにより駆動する電気自動車の前記モータの診断方法であって、
     車両の電源が投入されている非走行時に、モータコイルのコイル温度とモータコイルのコイル抵抗または絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイルの異常と検出する始動時異常検出過程と、
     車両の走行時に、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出し、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイルの異常と検出する走行時異常検出過程と、を含む電気自動車用駆動モータの診断方法。
PCT/JP2012/055534 2011-03-07 2012-03-05 モータの診断方法 WO2012121200A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/003,418 US8701803B2 (en) 2011-03-07 2012-03-05 Diagnostic apparatus and method for motor
CN201280012184.2A CN103415413B (zh) 2011-03-07 2012-03-05 电动机的诊断装置和诊断方法
EP12754378.3A EP2684731B1 (en) 2011-03-07 2012-03-05 Diagnostic method for motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011048633A JP5603807B2 (ja) 2011-03-07 2011-03-07 電気自動車用駆動モータの診断装置および診断方法並びに電気自動車用駆動モータの診断装置を備えた電気自動車
JP2011-048633 2011-03-07

Publications (1)

Publication Number Publication Date
WO2012121200A1 true WO2012121200A1 (ja) 2012-09-13

Family

ID=46798162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055534 WO2012121200A1 (ja) 2011-03-07 2012-03-05 モータの診断方法

Country Status (5)

Country Link
US (1) US8701803B2 (ja)
EP (1) EP2684731B1 (ja)
JP (1) JP5603807B2 (ja)
CN (2) CN105150855B (ja)
WO (1) WO2012121200A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714152A (zh) * 2013-12-11 2015-06-17 北汽福田汽车股份有限公司 一种电动车用高压绝缘监测电路及监测方法
CN108515855A (zh) * 2018-03-12 2018-09-11 上海伊控动力系统有限公司 记录电动汽车启动失败原因的方法及系统

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114902A1 (ja) * 2011-02-25 2012-08-30 Ntn株式会社 電気自動車
EP2813414B1 (en) * 2012-02-06 2018-04-04 NSK Ltd. Electric power steering device
JP6217299B2 (ja) * 2013-10-15 2017-10-25 トヨタ自動車株式会社 モータ制御システム
WO2015068186A1 (ja) * 2013-11-06 2015-05-14 川崎重工業株式会社 乗物およびそれに用いる電源ユニット
CN103633624B (zh) * 2013-12-17 2017-02-01 北京天诚同创电气有限公司 一种用于直驱式永磁风力发电机的综合保护方法
JP2015144517A (ja) * 2014-01-31 2015-08-06 株式会社デンソー 電子制御装置
US9514421B2 (en) * 2014-03-10 2016-12-06 Regal Beloit America, Inc. System and method for decommissioning a motor
JP5832578B2 (ja) * 2014-04-15 2015-12-16 ファナック株式会社 モータの絶縁抵抗劣化検出部の故障検出機能を備えたモータ駆動装置及び故障検出方法
US10602082B2 (en) 2014-09-17 2020-03-24 Fluke Corporation Triggered operation and/or recording of test and measurement or imaging tools
DE112015004346T5 (de) * 2014-09-24 2017-06-01 Hitachi Automotive Systems, Ltd. Steuerungsvorrichtung für fahrzeugmontierte vorrichtung und servolenkvorrichtung
US10271020B2 (en) 2014-10-24 2019-04-23 Fluke Corporation Imaging system employing fixed, modular mobile, and portable infrared cameras with ability to receive, communicate, and display data and images with proximity detection
CN104617853A (zh) * 2014-10-28 2015-05-13 常州格力博有限公司 一种修枝机变速控制方法
US20160131607A1 (en) * 2014-11-06 2016-05-12 Fluke Corporation Method of combined use of infrared camera, non-contact infrared sensor, or contact temperature sensor with insulation resistance tester for automatic temperature normalization
US9815456B2 (en) * 2014-11-13 2017-11-14 Ford Global Technologies, Llc Methods and systems for temperature sensor fault detection
US10913363B2 (en) * 2015-03-10 2021-02-09 Ford Global Technologies, Llc Voltage injection-based cable swap detection
CN104793139B (zh) * 2015-04-22 2017-11-10 上海中科深江电动车辆有限公司 一种电机故障诊断及处理方法
WO2016181435A1 (ja) * 2015-05-08 2016-11-17 三菱電機株式会社 電動パワーステアリング装置
KR101646467B1 (ko) * 2015-06-18 2016-08-05 현대자동차주식회사 친환경자동차의 모터 감자 진단 방법
JP2017017889A (ja) 2015-07-02 2017-01-19 Ntn株式会社 モータ駆動装置
ITUB20153378A1 (it) * 2015-09-03 2017-03-03 Ferrari Spa Metodo di diagnosi di un motore elettrico di un sistema idraulico di una trasmissione in un veicolo
US10530977B2 (en) 2015-09-16 2020-01-07 Fluke Corporation Systems and methods for placing an imaging tool in a test and measurement tool
WO2017070629A1 (en) 2015-10-23 2017-04-27 Fluke Corporation Imaging tool for vibration and/or misalignment analysis
EP3372439A4 (en) * 2015-11-02 2018-11-14 Yamaha Hatsudoki Kabushiki Kaisha Mobile body using removable battery
CN105486356A (zh) * 2016-02-02 2016-04-13 北京至感传感器技术研究院有限公司 电机传感器
JP6340384B2 (ja) * 2016-05-25 2018-06-06 ヤマハ発動機株式会社 無人飛行体
CN106218443B (zh) * 2016-08-03 2018-05-08 北京新能源汽车股份有限公司 一种行车安全控制方法、装置及汽车
DE102016216041A1 (de) * 2016-08-25 2018-03-01 Robert Bosch Gmbh Verfahren und Steuereinrichtung zur Beheizung einer mit einem bürstenlosen Gleichstrommotor angetriebenen Vorrichtung
JP6708562B2 (ja) * 2017-01-16 2020-06-10 トヨタ自動車株式会社 自動車
JP6320604B1 (ja) * 2017-06-28 2018-05-09 三菱電機株式会社 車両用発電機の制御装置及び制御方法
CN111433059B (zh) * 2017-11-28 2023-06-30 日立安斯泰莫株式会社 车辆振动控制装置
CN109177808B (zh) * 2018-09-20 2023-08-29 广州小鹏汽车科技有限公司 电动汽车、电池充电电路的接触器状态的检测方法和装置
KR102169069B1 (ko) * 2019-02-26 2020-10-22 김수빈 모터 모니터링 장치 및 방법
JP2021027606A (ja) * 2019-07-31 2021-02-22 アズビル株式会社 モータの診断装置および電動アクチュエータ
CN110779156B (zh) * 2019-11-22 2021-05-25 珠海格力电器股份有限公司 启动预防检测方法、系统及空调
CN115003544A (zh) * 2020-01-14 2022-09-02 株式会社电装 车辆的驱动控制装置
CN113895230A (zh) * 2020-07-06 2022-01-07 北京新能源汽车股份有限公司 一种车辆的控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261404A (ja) * 1993-03-08 1994-09-16 Nissan Motor Co Ltd 電気自動車用インバータ装置
JPH11262101A (ja) * 1998-03-12 1999-09-24 Toshiba Corp 永久磁石式ホイールインモータ
JP2005119647A (ja) * 2003-09-25 2005-05-12 Nissan Motor Co Ltd 車輪独立駆動式車両の駆動力制御装置
JP2008168790A (ja) 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2009207315A (ja) * 2008-02-28 2009-09-10 Hitachi Ltd モータ制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766387A (en) * 1987-03-12 1988-08-23 The Charles Stark Draper Laboratory, Inc. Motor winding insulation resistance monitoring system
JPH0452441A (ja) * 1990-06-18 1992-02-20 Sanyo Electric Co Ltd ヒートポンプ式空気調和機の着霜検知方式
JP2001141795A (ja) * 1999-11-18 2001-05-25 Matsushita Refrig Co Ltd 空気調和装置における圧縮機の絶縁劣化検出装置
US7071649B2 (en) * 2001-08-17 2006-07-04 Delphi Technologies, Inc. Active temperature estimation for electric machines
JP4391719B2 (ja) * 2002-03-20 2009-12-24 トヨタ自動車株式会社 モータ温度推定装置およびモータ制御装置
US7081737B2 (en) * 2003-06-19 2006-07-25 O2Micro International Limited Battery cell monitoring and balancing circuit
JP4501433B2 (ja) * 2003-10-24 2010-07-14 ダイキン工業株式会社 Dcモータのコイル温度推定方法およびその装置
JP4513426B2 (ja) * 2004-06-15 2010-07-28 トヨタ自動車株式会社 温度センサの異常検出方法、および電源装置
JP2007315994A (ja) * 2006-05-29 2007-12-06 Toyota Motor Corp 回転電機の温度変化検知方法およびその装置
JP2008187861A (ja) * 2007-01-31 2008-08-14 Nissan Motor Co Ltd モータ制御装置、モータ制御方法及び車両用駆動制御装置
JP4715766B2 (ja) * 2007-02-13 2011-07-06 トヨタ自動車株式会社 昇圧システムの故障診断装置、昇圧回路の制御装置および車両
JP4811301B2 (ja) * 2007-03-06 2011-11-09 トヨタ自動車株式会社 二次電池の入出力制御装置、および車両
JP4325717B2 (ja) * 2007-12-06 2009-09-02 トヨタ自動車株式会社 車両駆動装置
US8354817B2 (en) * 2009-06-18 2013-01-15 GM Global Technology Operations LLC Methods and systems for diagnosing stator windings in an electric motor
CN201680919U (zh) * 2010-05-21 2010-12-22 广东东兴客车配件有限公司 汽车无级变速箱的电机温度测量装置
JP2012165564A (ja) * 2011-02-07 2012-08-30 Toyota Motor Corp 車両の異常診断装置および車両の異常診断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261404A (ja) * 1993-03-08 1994-09-16 Nissan Motor Co Ltd 電気自動車用インバータ装置
JPH11262101A (ja) * 1998-03-12 1999-09-24 Toshiba Corp 永久磁石式ホイールインモータ
JP2005119647A (ja) * 2003-09-25 2005-05-12 Nissan Motor Co Ltd 車輪独立駆動式車両の駆動力制御装置
JP2008168790A (ja) 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2009207315A (ja) * 2008-02-28 2009-09-10 Hitachi Ltd モータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2684731A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714152A (zh) * 2013-12-11 2015-06-17 北汽福田汽车股份有限公司 一种电动车用高压绝缘监测电路及监测方法
CN108515855A (zh) * 2018-03-12 2018-09-11 上海伊控动力系统有限公司 记录电动汽车启动失败原因的方法及系统

Also Published As

Publication number Publication date
CN103415413A (zh) 2013-11-27
CN103415413B (zh) 2015-11-25
EP2684731A4 (en) 2016-03-09
CN105150855B (zh) 2017-08-08
JP2012186930A (ja) 2012-09-27
US20130341109A1 (en) 2013-12-26
EP2684731A1 (en) 2014-01-15
CN105150855A (zh) 2015-12-16
US8701803B2 (en) 2014-04-22
JP5603807B2 (ja) 2014-10-08
EP2684731B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP5603807B2 (ja) 電気自動車用駆動モータの診断装置および診断方法並びに電気自動車用駆動モータの診断装置を備えた電気自動車
JP5705585B2 (ja) 電気自動車
JP5657426B2 (ja) 電気自動車
WO2012114901A1 (ja) 電気自動車、インホイールモータ駆動装置およびモータ制御方法
JP5985178B2 (ja) モータの制御装置
WO2012114902A1 (ja) 電気自動車
JP2014241720A (ja) 電気自動車用駆動モータの診断装置
JP5936306B2 (ja) 電気自動車
JP5886008B2 (ja) 電気自動車のモータ制御装置
JP5731233B2 (ja) 電気自動車
WO2012114900A1 (ja) 電気自動車
JP5731593B2 (ja) 電気自動車
JP5731234B2 (ja) 電気自動車
JP5781326B2 (ja) 電気自動車
JP6199454B2 (ja) モータの制御装置
JP6087399B2 (ja) モータ駆動装置
JP5731594B2 (ja) 電気自動車
JP5805406B2 (ja) インホイールモータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14003418

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012754378

Country of ref document: EP