WO2012114901A1 - 電気自動車、インホイールモータ駆動装置およびモータ制御方法 - Google Patents

電気自動車、インホイールモータ駆動装置およびモータ制御方法 Download PDF

Info

Publication number
WO2012114901A1
WO2012114901A1 PCT/JP2012/053060 JP2012053060W WO2012114901A1 WO 2012114901 A1 WO2012114901 A1 WO 2012114901A1 JP 2012053060 W JP2012053060 W JP 2012053060W WO 2012114901 A1 WO2012114901 A1 WO 2012114901A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
circuit abnormality
short
wheel
electric vehicle
Prior art date
Application number
PCT/JP2012/053060
Other languages
English (en)
French (fr)
Inventor
尾崎孝美
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011039853A external-priority patent/JP5805406B2/ja
Priority claimed from JP2011039751A external-priority patent/JP5781326B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP12750003.1A priority Critical patent/EP2679434B1/en
Priority to US14/000,379 priority patent/US9252590B2/en
Priority to CN201280009939.3A priority patent/CN103384615B/zh
Publication of WO2012114901A1 publication Critical patent/WO2012114901A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0822Integrated protection, motor control centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0805Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle to be an in-wheel motor vehicle such as a battery drive and a fuel cell drive having a motor for driving a wheel, an in-wheel motor drive device used for a drive wheel of the electric vehicle, and a motor control method.
  • an in-wheel motor vehicle such as a battery drive and a fuel cell drive having a motor for driving a wheel, an in-wheel motor drive device used for a drive wheel of the electric vehicle, and a motor control method.
  • a motor used in an electric vehicle particularly an IPM type motor using a neodymium magnet
  • a motor coil short circuit abnormality occurs, a braking force is generated due to a power generation phenomenon in the motor.
  • the motor is in a high-speed rotation state.
  • a short circuit abnormality of the motor coil occurs under such circumstances, there are problems in traveling such as the vehicle suddenly becoming unable to travel. is there.
  • a short circuit abnormality of the motor coil occurs, there is a problem that the vehicle is not easily moved by towing by an external vehicle because the motor is always braked by the rotation of the motor.
  • An object of the present invention is to provide an electric vehicle, an in-wheel motor drive device, and a motor control method capable of detecting a short circuit abnormality of a motor coil at an early stage and avoiding problems in vehicle running.
  • the electric vehicle includes a motor 6 that drives the wheels 2, an ECU 21 that is an electric control unit that controls the entire vehicle, and an inverter 31 that converts the DC power of the battery 19 into AC power used to drive the motor 6. And an inverter device 22 having a motor control unit 29 that controls at least the power circuit unit 28 according to the control of the ECU 21, wherein the motor 6 includes three-phase motor coils.
  • 78 is a synchronous motor that is connected by a star connection with one end of which is connected at a neutral point P1, and a short-circuit abnormality monitoring unit 95 that detects a short-circuit abnormality of the motor coil 78, and a short-circuit abnormality monitoring unit 95 detects a short-circuit abnormality. Then, an abnormal time cutting means Es for electrically disconnecting each motor coil 78 from the neutral point P1 is provided. Those were.
  • the short circuit abnormality monitoring means 95 constantly monitors the short circuit abnormality of the motor coil 78.
  • the abnormal disconnection means Es electrically disconnects each motor coil 78 from the neutral point P1 when the short-circuit abnormality monitoring means 95 detects a short-circuit abnormality.
  • the short-circuit abnormality of the motor coil 78 is constantly monitored, so that the short-circuit abnormality of the motor 6 is detected at an early stage, and each motor coil 78 is electrically disconnected from the neutral point P1, thereby rapidly rotating the motor. Braking can be prevented. Therefore, it is possible to avoid that the vehicle suddenly becomes unable to travel.
  • the motor rotation speed is undesirably high even if any one of the three-phase (U, V, W) motor coils 78 causes a short circuit abnormality. Can be reliably prevented.
  • motor braking due to short circuit abnormality cannot be avoided. This is because when the motor rotor has a permanent magnet due to a short circuit of the motor coil, an electromotive voltage is generated in the motor coil, thereby causing a current to flow through the coil.
  • the above short circuit abnormality is not limited to a complete short circuit, but refers to a case where a short circuit flow of current has occurred to a certain extent. Whether or not it is above a certain level may be determined by appropriately setting a threshold value.
  • the short-circuit abnormality monitoring means 95 may determine whether or not a short-circuit abnormality of the motor coil 78 has occurred, based on the three-phase supply current measurement value from the inverter 31 to the motor 6.
  • the short circuit abnormality monitoring means 95 may determine that a short circuit abnormality of the motor coil 78 has occurred when the motor current value is greater than a predetermined motor current threshold with respect to the motor applied voltage. If the motor current value is abnormally high with respect to the motor applied voltage, it is estimated that the motor 6 is short-circuited. Alternatively, the determination may be made based on variations between the three-phase supply currents.
  • the “motor current threshold value” may be a motor current value when a short-circuit abnormality of the motor coil 78 occurs by obtaining a motor current value with respect to a motor applied voltage by experiment, simulation, or the like.
  • the motor current value may be determined as appropriate, for example, using a value that allows for a safety factor as a threshold value.
  • the abnormal disconnection means Es may be a relay or an electronic switch.
  • each wiring is connected to one end of each motor coil 78 via a relay or an electronic switch.
  • the other end of each motor coil 78 is connected to the inverter 31.
  • the short-circuit abnormality monitoring means 95 may be provided in the inverter device 22 or the ECU 21.
  • a short-circuit abnormality is detected in a portion close to the motor 6, which is advantageous in terms of wiring, and can be controlled more quickly than in the case where it is provided in the ECU 21. Problems can be avoided quickly. Further, it is possible to reduce the burden on the ECU 21 that is becoming more complicated due to higher functions.
  • the inverter device 22 is provided with short-circuit abnormality monitoring means 95, and when the short-circuit abnormality monitoring means 95 detects a short-circuit abnormality, an abnormality report means 41 that outputs abnormality occurrence information of the short-circuit abnormality to the ECU 21. May be provided in the inverter device 22. Since the ECU 21 is a device that controls the vehicle in general, when the short circuit abnormality monitoring means 95 in the inverter device 22 detects the short circuit abnormality of the motor coil 78, the ECU 21 outputs abnormality occurrence information of the short circuit abnormality to the ECU 21. Thus, the ECU 21 can perform appropriate control of the entire vehicle.
  • the ECU 21 is a higher-level control unit that gives a drive command to the inverter device 22, and after the emergency control by the inverter device 22, the ECU 21 can perform more appropriate control of the subsequent drive.
  • an in-wheel motor drive device 8 having a wheel bearing 4 and a speed reducer 7 interposed between the motor 6 and the wheel bearing 4 may be further included.
  • the wheel bearing 4, the speed reducer 7, and the motor 6 are accompanied by a reduction in the amount of materials used and a high-speed rotation of the motor 6, so that reliability is ensured. Is an important issue.
  • the short circuit abnormality of the motor coil 78 of the motor 6 is detected at an early stage, and each motor coil 78 is electrically disconnected from the neutral point P1, Sudden braking of the motor 6 can be prevented. Therefore, it is possible to avoid that the vehicle suddenly becomes unable to travel.
  • a reduction gear 7 that reduces the rotation of the motor 6 may be provided, and the reduction gear 7 may be a cycloid reduction gear.
  • the reduction gear 7 is a cycloid reduction gear and the reduction ratio is increased to, for example, 1/6 or more, the motor 6 can be downsized and the apparatus can be downsized.
  • a reduction gear having a high reduction ratio is used, a reduction in size is achieved.
  • an abnormal short circuit of the motor coil 78 is caused. If this occurs, a sudden braking state can occur.
  • the sudden braking state due to the short circuit abnormality of the motor coil 78 can be prevented by the short circuit abnormality monitoring means 95, it is possible to avoid the vehicle from suddenly becoming unable to travel.
  • the motor 6 may be an embedded magnet type synchronous motor using a neodymium permanent magnet having high efficiency performance. In this case, the cruising range of the vehicle can be improved under a limited battery capacity. Further, when the embedded magnet type synchronous motor is used, the short circuit abnormality of the motor coil 78 can be eliminated, so that it is possible to avoid the occurrence of the braking force due to the power generation phenomenon in the motor 6.
  • moisture detection means Sk for detecting moisture in the motor 6 may be provided near the terminal block 6a of the motor 6.
  • the motor 6 in the in-wheel motor drive device 8 is near the wheel and is exposed to the road surface environment.
  • the moisture detecting means Sk provided in the vicinity of the terminal block 6a of the motor 6 always detects moisture in the motor 6, that is, in the motor housing 72.
  • the in-wheel motor drive device 8 limits the motor current or cuts off the motor current, for example, based on the moisture detection signal. This is because when the moisture detection means Sk detects moisture, it is presumed that the wiring of the motor 6 is easily short-circuited. Thereby, it is possible to prevent the short-circuit abnormality in the motor 6 in a high-speed rotation state, for example. Therefore, it is possible to avoid that the vehicle suddenly becomes unable to travel.
  • the wiring in the motor 6 has a coating, it may be exposed for connection in the vicinity of the terminal block 6a, and a short circuit is likely to occur when moisture enters the motor 6. . Therefore, short circuit abnormality can be detected effectively by providing the moisture detection means Sk in the vicinity of the terminal block 6a.
  • the terminal block 6 a may have a plurality of terminals 96, and these terminals 96 may be accommodated in the housing 72 of the motor 6.
  • the moisture detection means Sk By providing the moisture detection means Sk in the vicinity of the plurality of terminals installed in such a location, moisture in the space of the exposed portion of the current passage 100 can be accurately detected, and moisture that causes a short circuit is reliably detected. In addition, it is possible to prevent erroneous detection.
  • the motor current is limited or It may have a moisture detection correspondence control means 102 that cuts off the motor current.
  • the detection signal from the moisture detection means Sk is in the set state, it is estimated that the motor 6 installed near the wheel is in a state where it is easily short-circuited. For this reason, when it is determined that the moisture detection correspondence control means 102 has entered the set state, the motor current is limited or cut off. In this way, the abnormality of the motor 6 can be detected at an early stage, and problems in vehicle travel can be avoided.
  • the inverter device 22 having the motor control unit 29 for controlling the circuit unit 28 may be provided with the moisture detection correspondence control means 102.
  • the moisture detection correspondence control means 102 By providing the moisture detection correspondence control means 102 in the inverter device 22, it is possible to perform quicker control than in the case where the moisture detection detection control means 102 is provided in the ECU 21, and it is possible to quickly avoid problems in running the vehicle. Further, it is possible to reduce the burden on the ECU 21 that is becoming more complicated due to higher functions.
  • the moisture detection response control means 102 may be provided in the ECU 21 which is an electric control unit for controlling the entire vehicle.
  • the moisture detection means Sk may be a continuity sensor or an electrochemical sensor.
  • the motor control method is an electric vehicle including an in-wheel motor drive device including a wheel bearing 4, a motor 6, and a speed reducer 7 interposed between the motor 6 and the wheel bearing 4.
  • the motor current is Providing a limit or interrupting the motor current.
  • FIG. 1 is a block diagram of a conceptual configuration showing an electric vehicle according to a first embodiment of the present invention in a plan view. It is a block diagram of conceptual composition, such as an inverter device of the electric vehicle.
  • A is the schematic which shows the circuit structural example of the motor of the same electric vehicle
  • B is the conceptual diagram by which each motor coil and the cutting means at the time of abnormality were connected.
  • (A) is a diagram schematically showing the connection between a three-phase motor coil of the motor and an inverter
  • (B) is a schematic diagram showing an example in which one end of each motor coil is connected to an abnormal disconnection means.
  • It is a characteristic view which shows the relationship between a motor applied voltage and a motor electric current value.
  • It is a fracture front view of the in-wheel motor drive device in an electric vehicle.
  • It is a longitudinal cross-sectional view of the motor part used as the VII-VII line cross section of FIG.
  • It is a longitudinal cross-sectional view of the reduction gear part used as the VIII-VIII line cross section of FIG.
  • It is a partial expanded sectional view of FIG.
  • FIG. 1 It is a block diagram of conceptual composition, such as ECU of an electric vehicle concerning a 2nd embodiment of this invention. It is a block diagram of the conceptual structure which provided the moisture detection corresponding
  • (A) is a fractured front view of the in-wheel motor drive device of the electric vehicle according to the third embodiment
  • (B) is a longitudinal sectional view near the terminal block of the motor of the in-wheel motor drive device
  • (C) is moisture. It is a front view which shows an example of a detection means. It is a block diagram of the conceptual structure of the control system in the in-wheel motor drive device of the electric vehicle which concerns on 4th Embodiment of this invention.
  • This electric vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are driving wheels, and the wheels 3 that are the left and right front wheels are steering wheels of driven wheels.
  • Each of the wheels 2 and 3 serving as the driving wheel and the driven wheel has a tire and is supported by the vehicle body 1 via wheel bearings 4 and 5, respectively.
  • the wheel bearings 4 and 5 are given the abbreviation “H / B” of the hub bearing in FIG.
  • the left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively. The rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor driving device 8 that is one assembly part, and the in-wheel motor driving device 8 is partially or entirely inside the wheel 2. Placed in.
  • the in-wheel motor drive device 8 is also referred to as an in-wheel motor unit.
  • the motor 6 may directly rotate and drive the wheels 2 without using the speed reducer 7.
  • Each wheel 2, 3 is provided with an electric brake 9, 10.
  • Wheels 3 and 3 which are steering wheels serving as left and right front wheels can be steered via a steering mechanism 11 and are steered by a steering mechanism 12.
  • the steering mechanism 11 is a mechanism that changes the angle of the left and right knuckle arms 11b that hold the wheel bearings 5 by moving the tie rod 11a to the left and right. It is driven and moved left and right via a rotation / linear motion conversion mechanism (not shown).
  • the steering angle is detected by the steering angle sensor 15, and the sensor output is output to the ECU 21, and the information is used for acceleration / deceleration commands for the left and right wheels.
  • the in-wheel motor drive device 8 is a wheel that is a drive wheel that is supported by the wheel bearing 4 with a speed reducer 7 interposed between the wheel bearing 4 and the motor 6 shown in FIG. 1. 2 (FIG. 2) and the rotation output shaft 74 of the motor 6 (FIG. 6) are connected coaxially.
  • the reduction gear 7 should have a reduction ratio of 1/6 or more.
  • the speed reducer 7 is a cycloid speed reducer, in which eccentric portions 82a and 82b are formed on a rotational input shaft 82 that is coaxially connected to a rotational output shaft 74 of the motor 6, and bearings 85 are provided on the eccentric portions 82a and 82b, respectively.
  • the curvilinear plates 84a and 84b are attached to the discs, and the eccentric motion of the curvilinear plates 84a and 84b is transmitted to the wheel bearing 4 as rotational motion.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
  • the wheel bearing 4 includes an outer member 51 in which a double row rolling surface 53 is formed on the inner periphery, an inner member 52 in which a rolling surface 54 facing each of the rolling surfaces 53 is formed on the outer periphery, and these
  • the outer member 51 and the inner member 52 are composed of double-row rolling elements 55 interposed between the rolling surfaces 53 and 54 of the inner member 52.
  • the inner member 52 also serves as a hub for attaching the drive wheels.
  • the wheel bearing 4 is a double-row angular ball bearing, and the rolling elements 55 are made of balls and are held by a cage 56 for each row.
  • the rolling surfaces 53 and 54 have a circular arc cross section, and the rolling surfaces 53 and 54 are formed so that the contact angles are aligned with the back surface.
  • An end on the outboard side of the bearing space between the outer member 51 and the inner member 52 is sealed with a seal member 57.
  • the outer member 51 is a stationary raceway, has a flange 51a attached to the housing 83b on the outboard side of the speed reducer 7, and is formed as an integral part as a whole.
  • the flange 51a is provided with bolt insertion holes 64 at a plurality of locations in the circumferential direction.
  • the housing 83b is provided with a bolt screw hole 94 whose inner periphery is threaded at a position corresponding to the bolt insertion hole 64.
  • the outer member 51 is attached to the housing 83b by screwing the mounting bolt 65 inserted into the bolt insertion hole 94 into the bolt screwing hole 94.
  • the inner member 52 is a rotating raceway, and the outboard side member 59 having a hub flange 59a for wheel mounting and the outboard side member 59 are fitted to the inner periphery of the outboard side member 59.
  • the inboard side material 60 is integrated with the outboard side material 59 by fastening.
  • the rolling surface 54 of each row is formed in each of the outboard side material 59 and the inboard side material 60.
  • a through hole 61 is provided in the center of the inboard side member 60.
  • the hub flange 59a is provided with press-fit holes 67 for hub bolts 66 at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 63 that guides driving wheels and braking components (not shown) protrudes toward the outboard side.
  • a cap 68 that closes the outboard side end of the through hole 61 is attached to the inner periphery of the pilot portion 63.
  • the motor 6 is a radial gap type IPM motor (that is, an embedded magnet type synchronous motor) in which a radial gap is provided between a motor stator 73 fixed to a cylindrical motor housing 72 and a motor rotor 75 attached to the rotation output shaft 74. ).
  • the rotation output shaft 74 is cantilevered by two bearings 76 on the cylindrical portion of the housing 83 a on the inboard side of the speed reducer 7.
  • FIG. 7 shows a longitudinal sectional view of the motor (cross section taken along line VII-VII in FIG. 6).
  • the rotor 75 of the motor 6 includes a core portion 79 made of a soft magnetic material and a permanent magnet 80 built in the core portion 79.
  • the permanent magnets 80 are arranged so that two adjacent permanent magnets face each other in a cross-sectional shape on the same circumference in the rotor core portion 79.
  • the permanent magnet 80 is a neodymium magnet.
  • the stator 73 includes a core part 77 and a coil 78 made of a soft magnetic material.
  • the core portion 77 has a ring shape with an outer peripheral surface having a circular cross section, and a plurality of teeth 77a protruding inward on the inner peripheral surface are formed side by side in the circumferential direction.
  • the coil 78 is wound around the teeth 77 a of the stator core portion 77.
  • the motor 6 is provided with an angle sensor 36 that detects a relative rotation angle between the motor stator 73 and the motor rotor 75.
  • the angle sensor 36 detects and outputs a signal representing a relative rotation angle between the motor stator 73 and the motor rotor 75, and an angle calculation circuit 71 that calculates an angle from the signal output from the angle sensor body 70.
  • the angle sensor main body 70 includes a detected portion 70a provided on the outer peripheral surface of the rotation output shaft 74, and a detecting portion 70b provided in the motor housing 72 and disposed in close proximity to the detected portion 70a, for example, in the radial direction. Become.
  • the detected portion 70a and the detecting portion 70b may be arranged close to each other in the axial direction.
  • the angle sensor 36 may be a resolver.
  • each phase of each wave of alternating current flowing through the coil 78 of the motor stator 73 based on the relative rotation angle between the motor stator 73 and the motor rotor 75 detected by the angle sensor 36. Is controlled by the motor drive control unit 33 of the motor control unit 29.
  • the wiring of the motor current of the in-wheel motor drive device 8 and the wiring of various sensor systems and command systems are collectively performed by a connector 99 provided in the motor housing 72 and the like.
  • the speed reducer 7 is a cycloid speed reducer, and two curved plates 84a and 84b formed with wavy trochoid curves having a gentle outer shape as shown in FIG.
  • the shaft 82 is attached to each eccentric part 82a, 82b.
  • a plurality of outer pins 86 for guiding the eccentric movements of the curved plates 84a and 84b on the outer peripheral side are provided across the housing 83b, and a plurality of inner pins 88 attached to the inboard side member 60 of the inner member 2 are provided.
  • the curved plates 84a and 84b are engaged with a plurality of circular through holes 89 provided in the inserted state.
  • the rotation input shaft 82 is spline-coupled with the rotation output shaft 74 of the motor 6 and rotates integrally.
  • the rotary input shaft 82 is supported at both ends by two bearings 90 on the inboard side housing 83a and the inner diameter surface of the inboard side member 60 of the inner member 52.
  • the curved plates 84a and 84b attached to the rotation input shaft 82 that rotates together with the motor 6 perform an eccentric motion.
  • the eccentric motions of the curved plates 84 a and 84 b are transmitted to the inner member 52 as rotational motion by the engagement of the inner pins 88 and the through holes 89.
  • the rotation of the inner member 52 is decelerated with respect to the rotation of the rotation output shaft 74. For example, a reduction ratio of 1/10 or more can be obtained with a single-stage cycloid reducer.
  • the two curved plates 84a and 84b are attached to the eccentric portions 82a and 82b of the rotary input shaft 82 so as to cancel out the eccentric motion with each other, and are mounted on both sides of the eccentric portions 82a and 82b.
  • a counterweight 91 that is eccentric in the direction opposite to the eccentric direction of the eccentric portions 82a and 82b is mounted so as to cancel the vibration caused by the eccentric movement of the curved plates 84a and 84b.
  • bearings 92 and 93 are attached to the outer pins 86 and the inner pins 88, and outer rings 92a and 93a of the bearings 92 and 93 are respectively connected to the curved plates 84a and 84b. It comes into rolling contact with the outer periphery and the inner periphery of each through-hole 89. Therefore, the contact resistance between the outer pin 86 and the outer periphery of each curved plate 84a, 84b and the contact resistance between the inner pin 88 and the inner periphery of each through hole 89 are reduced, and the eccentric motion of each curved plate 84a, 84b is smooth. Can be transmitted to the inner member 52 as a rotational motion.
  • the wheel bearing 4 of the in-wheel motor drive device 8 is attached to the vehicle body via a suspension device (not shown) such as a knuckle on the outer periphery of the housing 83b of the speed reducer 7 or the housing 72 of the motor 6. Fixed.
  • the vehicle body 1 includes an ECU 21 that is an electric control unit that controls the entire vehicle, an inverter device 22 that controls the motor 6 for traveling according to a command from the ECU 21, and a brake controller 23.
  • the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
  • the ECU 21 is roughly divided into a drive control unit 21a and a general control unit 21b when classified roughly by function.
  • the drive control unit 21a gives the left and right wheel motors 6 and 6 the acceleration command output from the accelerator operation unit 16, the deceleration command output from the brake operation unit 17, and the turning command output from the steering angle sensor 15.
  • the given acceleration / deceleration command is generated and output to the inverter device 22.
  • the drive control unit 21a outputs an acceleration / deceleration command to be output, information on the tire rotation speed obtained from the rotation sensor 24 provided on the wheel bearings 4 and 5 of the wheels 2 and 3, You may have the function to correct
  • the accelerator operation unit 16 includes an accelerator pedal and a sensor 16a that detects the amount of depression and outputs the acceleration command.
  • the brake operation unit 17 includes a brake pedal and a sensor 17a that detects the amount of depression and outputs the deceleration command.
  • the general control unit 21b of the ECU 21 processes a function of outputting a deceleration command output from the brake operation unit 17 to the brake controller 23, a function of controlling various auxiliary machine systems 25, and an input command from the console operation panel 26.
  • the auxiliary machine system 25 is, for example, an air conditioner, a light, a wiper, a GPS, an air bag, and the like, and is shown here as a representative block.
  • the brake controller 23 is means for giving a braking command to the brakes 9 and 10 of the wheels 2 and 3 according to the deceleration command output from the ECU 21.
  • the braking command output from the ECU 21 includes a command generated by means for improving the safety of the ECU 21.
  • the brake controller 23 includes an antilock brake system.
  • the brake controller 23 is configured by an electronic circuit, a microcomputer, or the like.
  • the inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28.
  • the motor control unit 29 may be provided in common for each power circuit unit 28 or may be provided separately, but even if provided in common, each power circuit unit 28. For example, can be controlled independently so that the motor torque is different from each other.
  • the motor control unit 29 has a function of outputting information (referred to as “IWM system information”) such as detection values and control values related to the in-wheel motor 8 of the motor control unit 29 to the ECU.
  • FIG. 2 is a block diagram showing a conceptual configuration of the inverter device 22 and the like.
  • the power circuit unit 28 includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power that is used to drive the motor 6, and a PWM driver 32 that controls the inverter 31.
  • the motor 6 is composed of a three-phase synchronous motor or the like.
  • the inverter 31 is composed of a plurality of semiconductor switching elements (not shown), and the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 29 includes a computer, a program executed on the computer, and an electronic circuit, and has a motor drive control unit 33 as a basic control unit.
  • the motor drive control unit 33 is a unit that converts the current command into a current command in accordance with an acceleration / deceleration command by a torque command or the like given from the ECU that is the host control unit, and gives the current command to the PWM driver 32 of the power circuit unit 28.
  • the motor drive control unit 33 obtains a motor current value to be passed from the inverter 31 to the motor 6 from the current detection unit 35 and performs current feedback control.
  • the motor drive control unit 33 obtains the rotation angle of the rotor of the motor 6 from the angle sensor 36 and performs vector control.
  • the motor control unit 29 having the above configuration is provided with the following short-circuit abnormality monitoring means 95 and abnormality report means 41, and the ECU 21 is provided with an abnormality display means 42.
  • the motor 6 is provided with an abnormal disconnection means Es described later.
  • the short circuit abnormality monitoring means 95 detects a short circuit abnormality of the motor coil 78 of the motor 6. This short circuit abnormality monitoring means 95 determines whether or not a short circuit abnormality of the motor coil 78 has occurred based on the measured supply current value for each of the three phases (U, V, W phase) from the inverter 31 to the motor 6. To do. Specifically, the short circuit abnormality monitoring unit 95 includes a determination unit 39 and a control unit 40.
  • FIG. 5 is a characteristic diagram showing the relationship between the motor applied voltage and the motor current value.
  • the determination unit 39 obtains the motor current value of each phase of the three phases flowing through the motor 6 from the current detection means 35, and the motor in which at least one of the three-phase motor current values is determined with respect to the motor applied voltage. It is determined whether it is larger than the current threshold.
  • the reference value of the motor current value is uniquely determined with respect to the motor applied voltage.
  • the motor current threshold for example, a reference value of the motor current value with respect to the motor applied voltage is obtained by experiment, simulation, etc., and a motor current value when a short circuit abnormality of the motor coil 78 occurs is obtained. For example, assume a value that allows for a safety factor.
  • FIG. 3B is a conceptual diagram in which each motor coil 78 is connected to the abnormal disconnection means Es. Specifically, each motor coil 78 is as shown in FIGS. 4A and 4B below. Are connected to the disconnection means Es at the time of abnormality.
  • FIG. 4A is a diagram schematically showing the connection between the three-phase motor coil 78 of the motor 6 and the inverter 31, and FIG. 4B shows that one end of each motor coil 78 is connected to the abnormal-time cutting means Es. It is the schematic which shows the example connected.
  • the motor 6 is a synchronous motor that is connected by a star connection in which one end of a three-phase motor coil 78 is connected at a neutral point P1.
  • Each wire is connected to one end Ua, Va, Wa of the winding of each motor coil 78 of three phases (U, V, W phase) via a relay which is an abnormal disconnection means Es.
  • the other ends Ub, Vb, Wb of the motor coil 78 are connected to the inverter 31, respectively.
  • a so-called normally closed relay in which all three relay contacts are closed is applied as a relay in this example, and a command from the control unit 40 is issued when a short circuit is abnormal. In response, all three relay contacts are opened.
  • FIG. 4A only one electrode U, V, W is shown in the motor 6, but when this electrode U, V, W is provided in an integer multiple along the circumferential direction.
  • the one end of the winding of each motor coil 78 wound around each electrode is connected in parallel or in series for each phase, and is connected to the disconnecting means Es at the time of abnormality.
  • the abnormality reporting unit 41 is a unit that outputs abnormality occurrence information to the ECU 21 when the determination unit 39 determines that a short circuit has occurred.
  • the abnormality display means 42 provided in the ECU 21 is means for receiving the abnormality occurrence information of the short-circuit abnormality output from the abnormality report means 41 and causing the display device 27 in the driver's seat to perform a display notifying the abnormality.
  • the driver can immediately recognize the abnormality and can take appropriate measures more quickly by the driver, such as stopping or slowing down the vehicle or traveling to a repair shop.
  • the display on the display device 27 is a display using characters or symbols, for example, an icon.
  • the short circuit abnormality monitoring means 95 constantly monitors the short circuit abnormality of the motor coil 78.
  • the determination unit 39 determines that a short-circuit abnormality of the motor coil 78 has occurred when the motor current value is greater than a predetermined motor current threshold with respect to the motor applied voltage.
  • the control unit 40 instructs the abnormal-time cutting means Es to electrically disconnect each motor coil 78 from the neutral point P1 of the motor coil 78.
  • the abnormal disconnection means Es electrically disconnects each motor coil 78 from the neutral point P1 based on a command from the controller 40.
  • the abnormality display means 42 causes the display device 27 in the driver's seat to display a message indicating that there is a short circuit abnormality. Can immediately recognize the short-circuit abnormality, and can take appropriate measures more quickly by the driver, such as stopping or slowing the vehicle or traveling to a repair shop.
  • the short-circuit abnormality monitoring means 95 is provided in the inverter device 22, it is possible to perform quicker control than in the case where it is provided in the ECU 21, and it is possible to quickly avoid problems in traveling the vehicle. Further, it is possible to reduce the burden on the ECU 21 that is becoming more complicated due to higher functions.
  • the reduction gear 7 is a cycloid reduction gear and the reduction ratio is increased to, for example, 1/6 or more (more specifically, a high reduction ratio of 1/10 or more), the motor 6 is reduced in size and the apparatus is reduced in size. be able to. However, if a reduction gear having a high reduction ratio is used, a reduction in size is achieved. However, since the rotation torque of the motor 6 is enlarged and transmitted to the tire 2 as the reduction ratio is increased, an abnormal short circuit of the motor coil 78 is caused. If this occurs, a sudden braking state can occur. On the other hand, since the sudden braking state due to the short circuit abnormality of the motor coil 78 can be prevented by the short circuit abnormality monitoring means 95, it is possible to avoid the vehicle from suddenly becoming unable to travel.
  • the motor 6 is an embedded magnet type synchronous motor using a neodymium permanent magnet, the cruising distance of the vehicle can be improved under a limited battery capacity. Further, when the embedded magnet type synchronous motor 6 is used, the short circuit abnormality of the motor coil 78 can be eliminated, so that it is possible to avoid the occurrence of a braking force due to a power generation phenomenon in the motor 6.
  • the short circuit abnormality monitoring means 95 is provided in the ECU 21 which is an electric control unit for controlling the entire vehicle.
  • the abnormal disconnection means Es may use an electronic switch other than a relay. In this case, each motor coil 78 can be disconnected from the neutral point P1 by physically destroying the neutral point P1 of the motor 6 with an electronic switch.
  • FIGS. 11 and 12A to 12C This embodiment is for the inverter device of the electric vehicle shown in FIG. 1, and the description of FIG. 1 and FIGS. 7 to 9 used in the first embodiment can be applied to the following embodiments. Description is omitted.
  • FIG. 11 corresponds to FIG. 2
  • FIG. 12A corresponds to FIG. 6, and the differences will be mainly described.
  • the following description includes a description of a motor control method.
  • the in-wheel motor drive device 8 according to this embodiment includes a moisture detection unit Sk and a moisture detection response control unit 102 in addition to the abnormal-time cutting unit Es and the short-circuit abnormality monitoring unit 95 already described in relation to the first embodiment.
  • moisture detection means Sk for detecting moisture in the motor 6 is provided in the terminal block 6a of the motor 6.
  • the inside of the motor 6 is a space in the housing 72 of the motor 6 as shown in FIG.
  • the wiring in the motor 6 has a coating
  • the conductive path 100 including the wiring and connection terminals is exposed in the vicinity of the terminal block 6a. Accordingly, in the vicinity of the terminal block 6 a where the conductive path 100 is exposed, a short circuit is likely to occur when moisture enters the motor 6. Therefore, by providing the moisture detection means Sk in the vicinity of the terminal block 6a in the housing 72, a short circuit abnormality can be detected effectively.
  • the moisture detection means Sk for example, a continuity sensor or an electrochemical sensor is applied.
  • the continuity sensor has two terminals Sk1 and Sk2, and is a sensor having a structure in which the terminals Sk1 and Sk2 are both in a state of being immersed in water.
  • the electrochemical sensor for example, a sensor having a plurality of electrodes and detecting moisture from measurement data based on electrochemical current noise generated between the electrodes is applied.
  • the moisture detection means Sk is electrically connected to a moisture detection response control means 102 described later.
  • the terminal block 6 a has a plurality of (three in this example) terminals 96, and these terminals 96 are accommodated in a housing 72 of the motor 6.
  • the plurality of terminals 96 are terminals that connect the wiring of each phase in the motor 6 and the wiring outside the motor 6, and are connected to the wiring inside the motor 6, and are connected to the end of the wiring outside the motor 6.
  • the provided wiring-side terminal 101 may be screwed or plugged in.
  • the plurality of terminals 96 are installed at locations in the housing 72 where no oil is applied.
  • the motor control unit 29 having the above-described configuration in the inverter device 22 is provided with the moisture detection correspondence control means 102 and the abnormality report means 41 described in relation to the first embodiment.
  • the ECU 21 is provided with the abnormality display means 42 described in relation to the first embodiment.
  • the moisture detection correspondence control unit 102 determines that the moisture detection signal by the moisture detection unit Sk is in a set state (a state where the moisture detection signal is in a state exceeding the preset water amount) and the set state. Sometimes, it has a control unit 40A that limits the motor current or cuts off the motor current.
  • the embodiment will be described as a method for controlling the motor 6.
  • the motor 6 is controlled in the process of limiting the motor current or cutting off the motor current.
  • the continuity sensor When the continuity sensor is applied as the moisture detection means Sk in FIG. 11, the continuity sensor conducts when both of the two terminals of the continuity sensor are submerged while the motor current is flowing, and the continuity sensor sends a detection signal to the determination unit 39A. send.
  • the determination unit 39A monitors, for example, whether or not the detection signal is present, whether or not the detection signal is detected continuously for a predetermined time, or the number of detection signals within the predetermined time. This is because it is presumed that the wiring of the motor 6 is likely to be short-circuited when the continuity sensor conducts beyond a predetermined time or when the number of detection signals within a predetermined time exceeds a predetermined number. is there.
  • a test for submerging the motor 6 is performed in advance, and a plurality of samples are investigated for a limit time when the short circuit abnormality of the motor coil occurs due to the influence of water immersion in the housing 72.
  • the time shorter than these limit times, that is, a time with a margin is set as the predetermined time.
  • the electrochemical sensor When the electrochemical sensor is applied as the moisture detection means Sk, the electrochemical sensor obtains data, that is, a detection signal based on electrochemical current noise generated between the electrodes in a state where the motor current is flowing.
  • the detection signal is represented by a voltage value, for example.
  • the determination unit 39A monitors whether this detection signal is present or whether the detection signal exceeds a predetermined signal threshold (set state). In this case as well, a test for submerging the motor is performed in advance, and a plurality of samples of the voltage value of the electrochemical sensor when a short circuit abnormality of the motor coil occurs due to the flooding in the housing is investigated. A voltage value lower than these voltage values is set as the signal threshold value.
  • the determination unit 39A determines, for example, whether or not a detection signal from the electrochemical sensor is detected for a predetermined time, or a predetermined time. You may make it monitor the frequency
  • the control unit 40 ⁇ / b> A limits the motor current that flows through the motor 6. That is, the output of the inverter device 22 is limited.
  • the abnormality report means 41 reports an abnormality to the ECU 21, and the abnormality display means 42 of the ECU 21 displays an abnormality on the display device 27 in the driver's seat according to the abnormality report.
  • the ECU 21 performs control corresponding to the limitation on the output of the inverter device 22 by the control unit 40A.
  • the control unit 40A may limit the motor current that flows to the motor 6.
  • the control unit 40A may set the motor current flowing through the motor 6 to “0” A, that is, block the motor current.
  • the moisture detection correspondence control means 102 limits the motor current or cuts off the motor current based on the detection signal from the moisture detection means Sk, so that a short circuit abnormality occurs in the motor 6 in a high-speed rotation state, for example. This can be prevented beforehand.
  • the motor current is interrupted, it is possible to prevent the motor coil 78 from being seized by stopping the rotation of the motor 6 at an early stage. Therefore, it is possible to avoid that the vehicle suddenly becomes unable to travel. In this way, the abnormality of the motor 6 can be detected at an early stage, and problems in vehicle travel can be avoided.
  • moisture detection means Sk near the plurality of terminals, moisture in the space of the exposed portion of the energization path 100 can be accurately detected, moisture that causes a short circuit can be reliably detected, and erroneous detection is prevented. It becomes possible.
  • the moisture detection correspondence control means 102 By providing the moisture detection correspondence control means 102 in the inverter device 22, quick control can be performed as compared with the case where the moisture detection detection control means 102 is provided in the ECU 21, and problems in vehicle travel can be avoided quickly. Further, it is possible to reduce the burden on the ECU 21 that is becoming more complicated due to higher functions. Since the motor 6 is an embedded magnet type synchronous motor having a high efficiency performance using a neodymium-based permanent magnet, the cruising distance of the vehicle can be improved under a limited battery capacity.
  • FIG. 13 is a block diagram of a conceptual configuration of a control system in the in-wheel motor drive device of the electric vehicle according to the fourth embodiment
  • FIG. 14 shows a circuit configuration example of the motor drive device in the in-wheel motor drive device.
  • illustration of the short circuit abnormality monitoring means 95 is abbreviate
  • the inverter 31 includes, for example, an electromagnetic contactor or an electromagnetic opening / closing between an internal wiring of each phase connected to each driving element 97 such as a switching transistor and the output terminal 98.
  • An open / close switch 99 is provided.
  • the control unit 40 ⁇ / b> A is electrically connected to each open / close switch 99.
  • the control unit 40A controls each open / close switch 99 to the open state.
  • the determination unit 39A determines that the detection signal is in the set state
  • the control unit 40A switches each open / close switch 99 to the closed state.
  • the motor current is cut off. Therefore, it is possible to avoid that the vehicle suddenly becomes unable to travel. In this way, the abnormality of the motor 6 can be detected at an early stage, and problems in vehicle travel can be avoided.
  • the moisture detection support control means 102 may be provided in the ECU 21 that is an electric control unit for controlling the entire vehicle.
  • the short circuit abnormality monitoring means 95 (not shown) may be provided in either the inverter device 22 or the ECU 21.
  • the control unit 40A may be electrically connected to the motor drive control unit 33 to limit the output of the inverter device 22.
  • the control unit 40A is electrically connected to each electromagnetic contactor 99 (see FIG. 14) of the inverter 31 in the power circuit unit 28, and the open / close position of each electromagnetic contactor 99. May be controlled to be switched.
  • This in-wheel motor drive device can be applied not only to electric vehicles but also to fuel cell vehicles and hybrid vehicles.

Abstract

 モータコイルの短絡異常を早期に検知し、車両走行上の問題を回避し得る電気自動車を提供する。電気自動車において、車輪(2)を駆動するモータ(6)は、3相の各モータコイルの一端が中性点で接続されるスター結線により結線された同期モータであり、モータコイルの短絡異常を検出する短絡異常監視手段(95)と、この短絡異常監視手段(95)で短絡異常が検出されると、前記中性点(P1)から各モータコイルを電気的に切断する異常時切断手段(Es)を設けた。

Description

電気自動車、インホイールモータ駆動装置およびモータ制御方法 関連出願
 本出願は、2011年2月25日出願の特願2011-039751、2011年2月25日出願の特願2011-039853の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、車輪を駆動するモータを備えたバッテリ駆動、燃料電池駆動等のインホイールモータ車両等となる電気自動車、ならびに電気自動車等の駆動輪に用いられるインホイールモータ駆動装置およびモータの制御方法に関する。
 電気自動車では、車両駆動のためのモータの性能低下や故障は、走行性、安全性に大きく影響する。特に、インホイールモータ駆動装置のコンパクト化を図る結果、車輪用軸受、減速機、およびモータは、材料使用量の削減、モータの高速回転化を伴うため、これらの信頼性確保が重要な課題となる。そのため、インホイールモータ駆動装置を含む、バッテリ駆動の電気自動車駆動装置では、限られたバッテリ容量下で航続距離を向上させるため、高効率性能を有するネオジウム系磁石を使ったIPM型のモータ(埋込磁石型同期モータ)が利用される。
 さらに、従来、インホイールモータ駆動装置において、信頼性確保のために、車輪用軸受、減速機、およびモータ等の温度を測定して過負荷を監視し、温度測定値に応じてモータの駆動電流の制限や、モータ回転数を低下させるものが提案されている(例えば、特許文献1)。
特開2008-168790号公報
 電気自動車に用いられるモータ、特にネオジウム系磁石を使ったIPM型のモータでは、モータコイルの短絡異常が発生すると、モータ内での発電現象によるブレーキ力が生じる。特に、車両が高速走行している場合には、モータは高速回転状態にあり、その状況下でモータコイルの短絡異常が起こった場合には、車両が急激に走行不能に陥る等走行上問題がある。さらに、モータコイルの短絡異常が発生すると、モータの回転により常時ブレーキがかかる状態となるため、外部車両による牽引による車両移動も容易にできないといった問題もある。
 この発明の目的は、モータコイルの短絡異常を早期に検知し、車両走行上の問題を回避し得る、電気自動車、インホイールモータ駆動装置およびモータの制御方法を提供することである。以下、この発明の概要について、実施形態を示す図面中の符号を用いて説明する。
 この発明の電気自動車は、車輪2を駆動するモータ6と、車両全般を制御する電気制御ユニットであるECU21と、バッテリ19の直流電力を前記モータ6の駆動に用いる交流電力に変換するインバータ31を含むパワー回路部28および前記ECU21の制御に従って少なくとも前記パワー回路部28を制御するモータコントロール部29を有するインバータ装置22とを備えた電気自動車であって、前記モータ6は、3相の各モータコイル78の一端が中性点P1で接続されるスター結線により結線された同期モータであり、モータコイル78の短絡異常を検出する短絡異常監視手段95と、この短絡異常監視手段95で短絡異常が検出されると、前記中性点P1から各モータコイル78を電気的に切断する異常時切断手段Esを設けたものである。
 3相の各モータコイル78の一端が中性点P1で接続されるスター結線により結線された同期モータにおいて、モータ回転時、モータコイル78の短絡異常が発生すると、モータコイルに流れる電流値が異常に高くなり、モータの回転に急制動が作用する。そこで、短絡異常監視手段95は、常時モータコイル78の短絡異常を監視する。異常時切断手段Esは、短絡異常監視手段95で短絡異常が検出されると、前記中性点P1から各モータコイル78を電気的に切断する。このようにモータコイル78の短絡異常を常時監視することで、モータ6の短絡異常を早期に検知し、中性点P1から各モータコイル78を電気的に切断することで、モータの回転に急制動を防ぐことができる。したがって、車両が急激に走行不能に陥ることを回避することができる。
 また切断を前記中性点P1で行うため、3相(U,V,W)の各モータコイル78のうち何れのモータコイル78が短絡異常を起こしても、モータ回転数が不所望に高回転となることを確実に防止できる。これに対して、インバータ31とモータ6間で3相とも切断した場合には、短絡異常によるモータ制動を回避することはできない。モータコイル短絡によって、モータロータに永久磁石がある場合モータコイル内で起電圧が発生し、これによって、コイルに電流が流れてしまうからである。なお、上記の短絡異常は、完全に短絡した場合に限らず、電流の短絡流れがある程度以上に発生した場合を言う。ある程度以上であるか否かは、適宜に閾値を定めて判定すれば良い。
 前記短絡異常監視手段95は、インバータ31からモータ6への3相の供給電流計測値から、モータコイル78の短絡異常が発生したか否かを判断するものであっても良い。前記短絡異常監視手段95は、モータ印加電圧に対してモータ電流値が定められたモータ電流閾値よりも大きいとき、モータコイル78の短絡異常が発生したと判断するものであっても良い。モータ印加電圧に対してモータ電流値が異常に高いと、モータ6が短絡していると推定される。また、3相の供給電流間のばらつきによって判断してもよい。前記「モータ電流閾値」は、実験、シミュレーション等によりモータ印加電圧に対するモータ電流値を求めておき、モータコイル78の短絡異常が発生したときのモータ電流値としてもよい。このモータ電流値に例えば安全係数を見込んだ値を閾値とする等、適宜に定めればよい。
 前記異常時切断手段Esは、リレーまたは電子スイッチであっても良い。この場合、各モータコイル78の一端にリレーまたは電子スイッチを介して各配線を接続する。各モータコイル78の他端をインバータ31に接続する。
 前記短絡異常監視手段95を、前記インバータ装置22または前記ECU21に設けても良い。短絡異常監視手段95をインバータ装置22に設けた場合、モータ6に近い部位で短絡異常を検出するため、配線上有利であり、ECU21に設ける場合に比べて迅速な制御が行え、車両走行上の問題を迅速に回避することができる。また高機能化により煩雑化が進むECU21の負担を軽減することができる。
 前記インバータ装置22に短絡異常監視手段95が設けられたものであって、この短絡異常監視手段95で短絡異常が検出されたとき、前記ECU21に短絡異常の異常発生情報を出力する異常報告手段41を前記インバータ装置22に設けたものであっても良い。ECU21は、車両全般を統括して制御する装置であるため、インバータ装置22における短絡異常監視手段95により、モータコイル78の短絡異常を検出したとき、ECU21に短絡異常の異常発生情報を出力することで、ECU21により車両全体の適切な制御が行える。また、ECU21はインバータ装置22に駆動の指令を与える上位制御手段であり、インバータ装置22による応急的な制御の後、ECU21により、その後の駆動の、より適切な制御を行うことも可能となる。
 この発明において、さらに、車輪用軸受4と、前記モータ6と前記車輪用軸受4との間に介在した減速機7とを有するインホイールモータ駆動装置8を含んでも良い。インホイールモータ駆動装置8の場合、コンパクト化を図る結果、車輪用軸受4、減速機7、およびモータ6は、材料使用量の削減、モータ6の高速回転化を伴うため、これらの信頼性確保が重要な課題となる。これに対して、モータ6のモータコイル78の短絡異常を常時監視することで、モータ6の短絡異常を早期に検知し、中性点P1から各モータコイル78を電気的に切断することで、モータ6の急制動を防ぐことができる。したがって、車両が急激に走行不能に陥ることを回避することができる。
 前記モータ6の回転を減速する減速機7を備え、前記減速機7はサイクロイド減速機であっても良い。減速機7をサイクロイド減速機として減速比を例えば1/6以上に高くした場合、モータ6の小型化を図り、装置のコンパクト化を図ることができる。しかし、高い減速比を有する減速機を利用すると、コンパクト化が図られる反面、減速比を高くした分、モータ6の回転トルクは拡大してタイヤ2に伝達されるため、モータコイル78の短絡異常が生じると急ブレーキ状態となり得る。これに対して、短絡異常監視手段95によってモータコイル78の短絡異常による急ブレーキ状態を未然に防止することができるので、車両が急激に走行不能に陥ることを回避することができる。
 前記モータ6が高効率性能を有するネオジウム系の永久磁石を用いた埋込磁石型同期モータであっても良い。この場合、限られたバッテリ容量下で車両の航続距離を向上させることができる。また、埋込磁石型同期モータを用いる場合に、モータコイル78の短絡異常を解消することができるので、モータ6内で発電現象によるブレーキ力が生じることを回避し得る。
 前記電気自動車に含まれる前記インホイールモータ駆動装置8において、前記モータ6の端子台6a付近に、モータ6内の水分を検出する水分検出手段Skを設けても良い。
 インホイールモータ駆動装置8におけるモータ6は、車輪付近にあり路面環境に曝される。この構成によると、モータ6の端子台6a付近に設けた水分検出手段Skは、常時、モータ6内つまりモータハウジング72内の水分を検出する。インホイールモータ駆動装置8は、この水分の検出信号に基づいて、例えば、モータ電流に制限を与えるかまたはモータ電流を遮断する。水分検出手段Skが水分を検出すると、モータ6の配線が短絡し易い状態になったと推定されるからである。これにより、モータ6について例えば高速回転状態で短絡異常が起こることを、未然に防止することができる。したがって、車両が急激に走行不能に陥ることを回避することができる。また、モータ6内の配線は、被覆を有しているが、端子台6aの付近では、接続のために露出していることがあり、モータ6内に水分が浸入した際に短絡が生じ易い。そのため、端子台6aの付近に水分検出手段Skを設けることで、効果的に短絡異常を検出することができる。
 前記端子台6aは複数の端子96を有し、これら端子96がモータ6のハウジング72内に収容されていても良い。このような箇所に設置される複数の端子付近に水分検出手段Skを設けることで、通電路100の露出部分の空間内の水分を正確に検出することができ、短絡を招く水分を確実に検出できると共に、誤検出を防ぐことが可能となる。
 前記水分検出手段Skによる水分の検出信号が設定状態(予め設定した水分量を超える状態)になったか否かを監視し、設定状態になったと判定したときに、モータ電流に制限を与えるかまたはモータ電流を遮断する水分検出対応制御手段102を有するものであっても良い。水分検出手段Skによる検出信号が設定状態になった場合、車輪付近に設置されるモータ6が短絡し易い状態になっていると推定される。そのため、水分検出対応制御手段102は、設定状態になったと判定したときに、モータ電流に制限を与えるかまたはモータ電流を遮断する。このようにモータ6の異常を早期に検知し、車両走行上の問題を回避することができる。
 車両に搭載されるバッテリ19の直流電流を前記モータ6の駆動に用いる交流電流に変換するインバータ31を含むパワー回路部28と、車両全般を制御する電気制御ユニットであるECU21の制御に従って少なくとも前記パワー回路部28を制御するモータコントロール部29とを有するインバータ装置22に、水分検出対応制御手段102を設けたものとしても良い。水分検出対応制御手段102をインバータ装置22に設けることで、ECU21に設ける場合に比べて迅速な制御が行え、車両走行上の問題を迅速に回避することができる。また高機能化により煩雑化が進むECU21の負担を軽減することができる。前記水分検出対応制御手段102を、車両全般を制御する電気制御ユニットであるECU21に設けても良い。
 前記水分検出手段Skは、導通センサまたは電気化学センサであっても良い。
 この発明のモータの制御方法は、車輪用軸受4、モータ6、およびこのモータ6と前記車輪用軸受4との間に介在した減速機7とを有するインホイールモータ駆動装置を含む電気自動車における前記モータ6の制御方法であって、前記モータ6のハウジング72内に水分が浸入したか否かを判断する過程と、前記過程で前記ハウジング72内に水分が浸入したと判断したとき、モータ電流に制限を与えるかまたはモータ電流を遮断する過程とを有する。このようにモータ6のハウジング72内に水分が浸入したと判断したとき、モータ電流に制限を与えるかまたはモータ電流を遮断することで、モータ6について例えば高速回転状態で短絡異常が起こることを、未然に防止することができる。したがって、車両が急激に走行不能に陥ることを回避することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車のインバータ装置等の概念構成のブロック図である。 (A)は、同電気自動車のモータの回路構成例を示す概略図、(B)は、各モータコイルと異常時切断手段とが接続された概念図である。 (A)は、同モータの3相のモータコイルとインバータとの接続を概略示す図、(B)は各モータコイルの一端が異常時切断手段にそれぞれ接続された例を示す概略図である。 モータ印加電圧とモータ電流値との関係を示す特性図である。 電気自動車におけるインホイールモータ駆動装置の破断正面図である。 図6のVII-VII 線断面となるモータ部分の縦断面図である。 図6のVIII-VIII線断面となる減速機部分の縦断面図である。 図8の部分拡大断面図である。 この発明の第2実施形態に係る電気自動車のECU等の概念構成のブロック図である。 この発明の第3実施形態に係る電気自動車のインバータ装置に水分検出対応制御手段を設けた概念構成のブロック図である。 (A)は第3実施形態に係る電気自動車のインホイールモータ駆動装置の破断正面図、(B)は同インホイールモータ駆動装置のモータの端子台付近の縦断面図、(C)は、水分検出手段の一例を示す正面図である。 この発明の第4実施形態に係る電気自動車のインホイールモータ駆動装置における制御系の概念構成のブロック図である。 同インホイールモータ駆動装置におけるモータ駆動装置の回路構成例を示す概略図である。 (A)および(B)は、この発明の第5実施形態に係る電気自動車のインホイールモータ駆動装置における制御系の概念構成のブロック図である。
 この発明の第1実施形態に係る電気自動車を図1ないし図9と共に説明する。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪の操舵輪とされた4輪の自動車である。駆動輪および従動輪となる車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4,5を介して車体1に支持されている。車輪用軸受4,5は、図1ではハブベアリングの略称「H/B」を付してある。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成しており、インホイールモータ駆動装置8は、一部または全体が車輪2内に配置される。インホイールモータ駆動装置8は、インホイールモータユニットとも称される。モータ6は、減速機7を介さずに直接に車輪2を回転駆動するものであっても良い。各車輪2,3には、電動式のブレーキ9,10が設けられている。
 左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、操舵機構12により操舵される。転舵機構11は、タイロッド11aを左右移動させることで、車輪用軸受5を保持した左右のナックルアーム11bの角度を変える機構であり、操舵機構12の指令によりEPS(電動パワーステアリング)モータ13を駆動させ、回転・直線運動変換機構(図示せず)を介して左右移動させられる。操舵角は操舵角センサ15で検出し、このセンサ出力はECU21に出力され、その情報は左右輪の加速・減速指令等に使用される。
 図6に示すように、インホイールモータ駆動装置8は、図1に示す車輪用軸受4とモータ6との間に減速機7を介在させ、車輪用軸受4で支持される駆動輪である車輪2(図2)のハブとモータ6(図6)の回転出力軸74とを同軸心上で連結してある。減速機7は、減速比が1/6以上のものであるのが良い。この減速機7は、サイクロイド減速機であって、モータ6の回転出力軸74に同軸に連結される回転入力軸82に偏心部82a,82bを形成し、偏心部82a,82bにそれぞれ軸受85を介して曲線板84a,84bを装着し、曲線板84a,84bの偏心運動を車輪用軸受4へ回転運動として伝達する構成である。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 車輪用軸受4は、内周に複列の転走面53を形成した外方部材51と、これら各転走面53に対向する転走面54を外周に形成した内方部材52と、これら外方部材51および内方部材52の転走面53,54間に介在した複列の転動体55とで構成される。内方部材52は、駆動輪を取り付けるハブを兼用する。この車輪用軸受4は、複列のアンギュラ玉軸受とされていて、転動体55はボールからなり、各列毎に保持器56で保持されている。上記転走面53,54は断面円弧状であり、各転走面53,54は接触角が背面合わせとなるように形成されている。外方部材51と内方部材52との間の軸受空間のアウトボード側端は、シール部材57でシールされている。
 外方部材51は静止側軌道輪となるものであって、減速機7のアウトボード側のハウジング83bに取り付けるフランジ51aを有し、全体が一体の部品とされている。フランジ51aには、周方向の複数箇所にボルト挿通孔64が設けられている。また、ハウジング83bには,ボルト挿通孔64に対応する位置に、内周にねじが切られたボルト螺着孔94が設けられている。ボルト挿通孔94に挿通した取付ボルト65をボルト螺着孔94に螺着させることにより、外方部材51がハウジング83bに取り付けられる。
 内方部材52は回転側軌道輪となるものであって、車輪取付用のハブフランジ59aを有するアウトボード側材59と、このアウトボード側材59の内周にアウトボード側が嵌合して加締めによってアウトボード側材59に一体化されたインボード側材60とでなる。これらアウトボード側材59およびインボード側材60に、前記各列の転走面54が形成されている。インボード側材60の中心には貫通孔61が設けられている。ハブフランジ59aには、周方向複数箇所にハブボルト66の圧入孔67が設けられている。アウトボード側材59のハブフランジ59aの根元部付近には、駆動輪および制動部品(図示せず)を案内する円筒状のパイロット部63がアウトボード側に突出している。このパイロット部63の内周には、前記貫通孔61のアウトボード側端を塞ぐキャップ68が取り付けられている。
 モータ6は、円筒状のモータハウジング72に固定したモータステータ73と、回転出力軸74に取り付けたモータロータ75との間にラジアルギャップを設けたラジアルギャップ型のIPMモータ(すなわち埋込磁石型同期モータ)である。回転出力軸74は、減速機7のインボード側のハウジング83aの筒部に2つの軸受76で片持ち支持されている。
 図7は、モータの縦断面図(図6のVII-VII線断面)を示す。モータ6のロータ75は、軟質磁性材料からなるコア部79と、このコア部79に内蔵される永久磁石80から構成される。永久磁石80は、隣り合う2つの永久磁石がロータコア部79内の同一円周上で断面ハ字状に向き合うように配列される。永久磁石80にはネオジウム系磁石が用いられている。ステータ73は軟質磁性材料からなるコア部77とコイル78で構成される。コア部77は外周面が断面円形とされたリング状で、その内周面に内径側に突出する複数のティース77aが円周方向に並んで形成されている。コイル78は、ステータコア部77の前記各ティース77aに巻回されている。
 図6に示すように、モータ6には、モータステータ73とモータロータ75の間の相対回転角度を検出する角度センサ36が設けられる。角度センサ36は、モータステータ73とモータロータ75の間の相対回転角度を表す信号を検出して出力する角度センサ本体70と、この角度センサ本体70の出力する信号から角度を演算する角度演算回路71とを有する。角度センサ本体70は、回転出力軸74の外周面に設けられる被検出部70aと、モータハウジング72に設けられ前記被検出部70aに例えば径方向に対向して近接配置される検出部70bとでなる。被検出部70aと検出部70bは軸方向に対向して近接配置されるものであっても良い。角度センサ36はレゾルバであっても良い。このモータ6では、その効率を最大にするため、角度センサ36の検出するモータステータ73とモータロータ75の間の相対回転角度に基づき、モータステータ73のコイル78へ流す交流電流の各波の各相の印加タイミングを、モータコントロール部29のモータ駆動制御部33によってコントロールするようにされている。
 なお、インホイールモータ駆動装置8のモータ電流の配線や各種センサ系,指令系の配線は、モータハウジング72等に設けられたコネクタ99により纏めて行われる。
 減速機7は、上記したようにサイクロイド減速機であり、図8のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板84a,84bが、それぞれ軸受85を介して回転入力軸82の各偏心部82a,82bに装着してある。これら各曲線板84a,84bの偏心運動を外周側で案内する複数の外ピン86を、それぞれハウジング83bに差し渡して設け、内方部材2のインボード側材60に取り付けた複数の内ピン88を、各曲線板84a,84bの内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。回転入力軸82は、モータ6の回転出力軸74とスプライン結合されて一体に回転する。なお、回転入力軸82はインボード側のハウジング83aと内方部材52のインボード側材60の内径面とに2つの軸受90で両持ち支持されている。
 モータ6の回転出力軸74が回転すると、これと一体回転する回転入力軸82に取り付けられた各曲線板84a,84bが偏心運動を行う。この各曲線板84a,84bの偏心運動が、内ピン88と貫通孔89との係合によって、内方部材52に回転運動として伝達される。回転出力軸74の回転に対して内方部材52の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
 前記2枚の曲線板84a,84bは、互いに偏心運動が打ち消されるように180°位相をずらして回転入力軸82の各偏心部82a,82bに装着され、各偏心部82a,82bの両側には、各曲線板84a,84bの偏心運動による振動を打ち消すように、各偏心部82a,82bの偏心方向と逆方向へ偏心させたカウンターウエイト91が装着されている。
 図9に拡大して示すように、前記各外ピン86と内ピン88には軸受92,93が装着され、これらの軸受92,93の外輪92a,93aが、それぞれ各曲線板84a,84bの外周と各貫通孔89の内周とに転接するようになっている。したがって、外ピン86と各曲線板84a,84bの外周との接触抵抗、および内ピン88と各貫通孔89の内周との接触抵抗を低減し、各曲線板84a,84bの偏心運動をスムーズに内方部材52に回転運動として伝達することができる。
 図6において、このインホイールモータ駆動装置8の車輪用軸受4は、減速機7のハウジング83bまたはモータ6のハウジング72の外周部で、ナックル等の懸架装置(図示せず)を介して車体に固定される。
 制御系を説明する。図1に示すように、自動車全般の制御を行う電気制御ユニットであるECU21と、このECU21の指令に従って走行用のモータ6の制御を行うインバータ装置22と、ブレーキコントローラ23とが、車体1に搭載されている。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
 ECU21は、機能別に大別すると駆動制御部21aと一般制御部21bとに分けられる。駆動制御部21aは、アクセル操作部16の出力する加速指令と、ブレーキ操作部17の出力する減速指令と、操舵角センサ15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令を生成し、インバータ装置22へ出力する。駆動制御部21aは、上記の他に、出力する加速・減速指令を、各車輪2,3の車輪用軸受4,5に設けられた回転センサ24から得られるタイヤ回転数の情報や、車載の各センサの情報を用いて補正する機能を有していても良い。アクセル操作部16は、アクセルペダルとその踏み込み量を検出して前記加速指令を出力するセンサ16aとでなる。ブレーキ操作部17は、ブレーキペダルとその踏み込み量を検出して前記減速指令を出力するセンサ17aとでなる。
 ECU21の一般制御部21bは、前記ブレーキ操作部17の出力する減速指令をブレーキコントローラ23へ出力する機能、各種の補機システム25を制御する機能、コンソールの操作パネル26からの入力指令を処理する機能、表示手段27に表示を行う機能などを有する。前記補機システム25は、例えば、エアコン、ライト、ワイパー、GPS、アエバッグ等であり、ここでは代表して一つのブロックとして示す。
 ブレーキコントローラ23は、ECU21から出力される減速指令に従って、各車輪2,3のブレーキ9,10に制動指令を与える手段である。ECU21から出力される制動指令には、ブレーキ操作部17の出力する減速指令によって生成される指令の他に、ECU21の持つ安全性向上のための手段によって生成される指令がある。ブレーキコントローラ23は、この他にアンチロックブレーキシステムを備える。ブレーキコントローラ23は、電子回路やマイコン等により構成される。
 インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、これらパワー回路部28を制御するモータコントロール部29とで構成される。モータコントロール部29は、各パワー回路部28に対して共通して設けられていても、別々に設けられていても良いが、共通して設けられた場合であっても、各パワー回路部28を、例えば互いにモータトルクが異なるように独立して制御可能なものとされる。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ8に関する各検出値や制御値等の各情報(「IWMシステム情報」と称す)をECUに出力する機能を有する。
 図2は、インバータ装置22等の概念構成を示すブロック図である。パワー回路部28は、バッテリ19の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とで構成される。モータ6は3相の同期モータ等からなる。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
 モータコントロール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部としてモータ駆動制御部33を有している。モータ駆動制御部33は、上位制御手段であるECUから与えられるトルク指令等による加速・減速指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える手段である。モータ駆動制御部33は、インバータ31からモータ6に流すモータ電流値を電流検出手段35から得て、電流フィードバック制御を行う。また、モータ駆動制御部33は、モータ6のロータの回転角を角度センサ36から得て、ベクトル制御を行う。
 この実施形態では、上記構成のモータコントロール部29に、次の短絡異常監視手段95、および異常報告手段41を設け、ECU21に異常表示手段42を設けている。また、モータ6に後述の異常時切断手段Esを設けている。
 短絡異常監視手段95は、モータ6のモータコイル78の短絡異常を検出するものである。この短絡異常監視手段95は、インバータ31からモータ6への3相(U,V,W相)の各相毎の供給電流計測値から、モータコイル78の短絡異常が発生したか否かを判断する。具体的には、短絡異常監視手段95は、判定部39と、制御部40とを有する。
 ここで図5は、モータ印加電圧とモータ電流値との関係を示す特性図である。判定部39は、モータ6に流す3相のうちの各相モータ電流値を電流検出手段35から得て、モータ印加電圧に対して3相のモータ電流値の少なくともいずれか1つが定められたモータ電流閾値よりも大きいか否かを判定する。ここで、モータ印加電圧に対してモータ電流値の基準値が一義的に定められている。前記モータ電流閾値は、例えば、実験、シミュレーション等によりモータ印加電圧に対するモータ電流値の基準値を求めておき、モータコイル78の短絡異常が発生したときのモータ電流値を求め、このモータ電流値に例えば安全係数を見込んだ値とする。
 図2に示すように、制御部40は、判定部39よりモータ電流値が閾値を超えたと判定したときに、異常時切断手段Esに対し、モータコイル78の中性点P1(図3(A))から各モータコイル78を電気的に切断するように指令を行う。なお図3(B)は、各モータコイル78と異常時切断手段Esとが接続された概念図であり、具体的には以下の図4(A),(B)のように各モータコイル78と異常時切断手段Esとが接続される。
 図4(A)は、モータ6の3相のモータコイル78とインバータ31との接続を概略示す図であり、図4(B)は、各モータコイル78の一端が異常時切断手段Esにそれぞれ接続された例を示す概略図である。モータ6は、3相のモータコイル78の一端が中性点P1で接続されるスター結線により結線された同期モータである。
 3相(U,V,W相)の各モータコイル78の巻線の一端Ua,Va,Waに、それぞれ異常時切断手段Esであるリレーを介して各配線を接続し、3相毎の各モータコイル78の他端Ub,Vb,Wbをそれぞれインバータ31に接続している。リレーは、この例では、図4(B)に示すように、通常時、3つ全てのリレー接点が閉じられているいわゆるノーマルクローズのリレーが適用され、短絡異常時に制御部40からの指令を受けて、3つ全てのリレー接点を開くようになっている。なお、図4(A)の例では、モータ6において、一つの電極U,V,Wのみを表しているが、この電極U,V,Wを円周方向に沿って整数倍設けた場合には、それぞれの電極に巻回される各モータコイル78の巻線の一端が、相毎に並列接続または直列接続されて異常時切断手段Esに繋がっている。
 図2に示すように、異常報告手段41は、判定部39により短絡異常と判定したときに、ECU21に異常発生情報を出力する手段である。ECU21に設けられた異常表示手段42は、異常報告手段41から出力された短絡異常の異常発生情報を受けて、運転席の表示装置27に、異常を知らせる表示を行わせる手段である。運転者は、その異常を直ぐに認識することができて、車両の停止や徐行、修理工場への走行など、運転者により迅速に適切な処置を行うことができる。表示装置27における表示は、文字や記号による表示、例えばアイコンによる表示とされる。
 作用効果について説明する。3相の同期モータにおいて、モータ回転時、モータコイル78の短絡異常が発生すると、モータ印加電圧に対してモータ電流値が異常に高くなり、不所望なモータ回転数となる。そこで、短絡異常監視手段95は、常時モータコイル78の短絡異常を監視する。短絡異常監視手段95のうち判定部39は、モータ印加電圧に対してモータ電流値が定められたモータ電流閾値よりも大きいとき、モータコイル78の短絡異常が発生したと判断する。制御部40は、判定部39の判断に基づき、異常時切断手段Esに対し、モータコイル78の中性点P1から各モータコイル78を電気的に切断するように指令を行う。異常時切断手段Esは、この制御部40からの指令に基づき、前記中性点P1から各モータコイル78を電気的に切断する。
 このようにモータコイル78の短絡異常を常時監視することで、モータ6の短絡異常を早期に検知し、中性点P1から各モータコイル78を電気的に切断することで、不所望なモータ回転数となることを防ぐことができる。また切断を前記中性点P1で行うため、3相(U,V,W)の各モータコイル78のうち何れのモータコイル78が短絡異常を起こしても、モータ6の急制動を防ぐことができる。したがって、車両が急激に走行不能に陥ることを回避することができる。
 また、判定部39がモータコイル78の短絡異常ありと判断したときは、異常表示手段42により、運転席の表示装置27に、短絡異常である旨を知らせる表示を行わせるようにしたため、運転者は、その短絡異常を直ぐに認識することができて、車両の停止や徐行、修理工場への走行など、運転者により迅速に適切な処置を行うことができる。
 短絡異常監視手段95をインバータ装置22に設けたため、ECU21に設ける場合に比べて迅速な制御が行え、車両走行上の問題を迅速に回避することができる。また高機能化により煩雑化が進むECU21の負担を軽減することができる。
 減速機7をサイクロイド減速機として減速比を例えば1/6以上に高くした場合(より具体的には1/10以上の高減速比)、モータ6の小型化を図り、装置のコンパクト化を図ることができる。しかし、高い減速比を有する減速機を利用すると、コンパクト化が図られる反面、減速比を高くした分、モータ6の回転トルクは拡大してタイヤ2に伝達されるため、モータコイル78の短絡異常が生じると急ブレーキ状態となり得る。これに対して、短絡異常監視手段95によってモータコイル78の短絡異常による急ブレーキ状態を未然に防止することができるので、車両が急激に走行不能に陥ることを回避することができる。
 モータ6がネオジウム系の永久磁石を用いた埋込磁石型同期モータであるため、限られたバッテリ容量下で車両の航続距離を向上させることができる。また、埋込磁石型同期モータ6を用いる場合に、モータコイル78の短絡異常を解消することができるので、モータ6内で発電現象によるブレーキ力が生じることを回避し得る。
 図10に示すように、第2実施形態に係る電気自動車のインホイールモータ駆動装置における制御系では、短絡異常監視手段95を、車両全般を制御する電気制御ユニットであるECU21に設ける。異常時切断手段Esは、リレー以外の電子スイッチを用いても良い。この場合、モータ6の中性点P1を電子スイッチにより物理的に破壊することで、中性点P1から各モータコイル78を切断することができる。
 以下に、この発明の第3~第5実施形態に係る電気自動車について説明する。以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 まず、第3実施形態について図11および図12(A)~(C)を参照しながら説明する。この実施形態は、図1に示す電気自動車のインバータ装置についてのものであり、第1実施形態で用いた図1、図7~図9についての説明は以降の実施形態についても適用できるので、詳しい説明は省略する。図11は図2に対応し、図12(A)は図6に対応しており、主に相違点について説明する。なお、以下の説明はモータの制御方法についての説明も含む。この実施形態に係るインホイールモータ駆動装置8は、第1実施形態に関連して既に説明した異常時切断手段Esおよび短絡異常監視手段95に加えて、水分検出手段Skおよび水分検出対応制御手段102を有する。
 図12(A)に示すように、前記モータ6の端子台6aの内部に、モータ6内の水分を検出する水分検出手段Skを設けている。前記モータ6内とは、図12(B)に示すように、モータ6のハウジング72内の空間である。またモータ6内の配線は被覆を有しているが、端子台6a付近では、配線や接続端子から成る導電路100が露出している。したがって導電路100が露出した端子台6aの付近では、モータ6内に水分が浸入した際に短絡が生じ易い。そのため、ハウジング72内の端子台6aの付近に、水分検出手段Skを設けることで、効果的に短絡異常を検出することができる。
 水分検出手段Skとして、例えば、導通センサまたは電気化学センサ等が適用される。図12(C)に示すように、前記導通センサは、2個の端子Sk1,Sk2を有し、これらの端子Sk1,Sk2がいずれも水に浸った状態で導通する構造のセンサである。電気化学センサとしては、例えば、複数個の電極を有し、各電極間に生じる電気化学的電流ノイズに基づく測定データから水分を検出するセンサが適用される。この水分検出手段Skは、後述の水分検出対応制御手段102に電気的に接続されている。
 図12(B)に示すように、端子台6aは複数(この例では3つ)の端子96を有し、これら端子96がモータ6のハウジング72内に収容されている。これら複数の端子96は、モータ6内の各相の配線とモータ6外の配線とを接続する端子であって、モータ6内の配線と接続されており、モータ6外の配線の端部に設けられた配線側の端子101を、ねじ止めするものであっても、差込み接続するものであっても良い。複数の端子96は、ハウジング72内における油が掛からない箇所に設置される。このようなハウジング72内の箇所に設置される複数の端子6a付近に水分検出手段Skを設けることで、前記通電路100の露出部分の空間内の水分を正確に検出し得る。
 この実施形態では、インバータ装置22における上記構成のモータコントロール部29に、水分検出対応制御手段102、および第1実施形態に関連して説明した異常報告手段41を設けている。ECU21には第1実施形態に関連して説明した異常表示手段42を設けている。水分検出対応制御手段102は、水分検出手段Skによる水分の検出信号が設定状態(予め設定した水分量を超える状態)になったか否かを監視する判定部39Aと、設定状態になったと判定したときに、モータ電流に制限を与えるかまたはモータ電流を遮断する制御部40Aとを有する。
 前記実施形態をモータ6の制御方法として説明すると、図12に示すモータ6のハウジング72内に水分が浸入したか否かを判断する過程と、前記過程で前記ハウジング72内に水分が浸入したと判断したとき、モータ電流に制限を与えるかまたはモータ電流を遮断する過程とで、モータ6を制御している。
 図11の水分検出手段Skとして前記導通センサが適用される場合、モータ電流が流れている状態で導通センサの2個の端子がいずれも浸水すると導通し、導通センサは判定部39Aに検出信号を送る。判定部39Aは、例えば、この検出信号があったか、または定められた時間続いて検出されるか否か、または定められた時間内における検出信号の回数を監視する。導通センサが定められた時間を超えて導通する、または定められた時間内における検出信号の回数が所定回数以上となった場合、モータ6の配線が短絡し易い状態になったと推定されるからである。なお、このモータ6を水没させる試験を予め行い、ハウジング72内への浸水の影響によりモータコイルの短絡異常が発生した限界時間を複数サンプル調査する。これらの限界時間よりも短い、つまり余裕を持たせた時間を前記定められた時間とする。
 水分検出手段Skとして前記電気化学センサが適用される場合、電気化学センサは、モータ電流が流れている状態で各電極間に生じる電気化学的電流ノイズに基づくデータつまり検出信号を得る。検出信号は例えば電圧値によって表される。判定部39Aは、この検出信号があったか、または検出信号が所定の信号閾値(設定状態)を超えるか否かを監視する。この場合にも、モータを水没させる試験を予め行い、ハウジング内への浸水の影響によりモータコイルの短絡異常が発生したときの、電気化学センサの電圧値を複数サンプル調査する。これらの電圧値よりも低い電圧値を、前記信号閾値とする。なお、この電気化学センサについて、前記導通センサの場合と同様に、判定部39Aは、例えば、電気化学センサからの検出信号が定められた時間続いて検出されるか否か、または定められた時間内における検出信号の回数を監視するようにしても良い。
 判定部39Aにより検出信号が設定状態になったと判定されたとき、制御部40Aは、モータ6に流すモータ電流に制限を与える。つまりインバータ装置22の出力に制限を与える。これと共に、異常報告手段41がECU21に異常の報告を行い、その異常の報告により、ECU21の異常表示手段42が運転席の表示装置27に異常の表示を行う。ECU21は、この他に、制御部40Aによるインバータ装置22の出力に制限に対応した制御を行う。なお、導通センサまたは電気化学センサから、判定部39Aに検出信号が送られたとき、制御部40Aは、モータ6に流すモータ電流に制限を与えるようにしても良い。判定部39Aにより検出信号が設定状態になったと判定されたとき、制御部40Aは、モータ6に流すモータ電流を「0」Aとする、つまりモータ電流を遮断するようにしても良い。
 このように水分検出対応制御手段102は、水分検出手段Skによる検出信号に基づいて、モータ電流に制限を与えるか、またはモータ電流を遮断するため、モータ6について例えば高速回転状態で短絡異常が起こることを、未然に防止することができる。モータ電流を遮断した場合、モータ6の回転を早期に止めることでモータコイル78が焼付き等に至ることを未然に防止できる。したがって、車両が急激に走行不能に陥ることを回避することができる。このようにモータ6の異常を早期に検知し、車両走行上の問題を回避することができる。複数の端子付近に水分検出手段Skを設けることで、前記通電路100の露出部分の空間内の水分を正確に検出することができ、短絡を招く水分を確実に検出できると共に、誤検出を防ぐことが可能となる。
 水分検出対応制御手段102をインバータ装置22に設けることで、ECU21に設ける場合に比べて迅速な制御が行え、車両走行上の問題を迅速に回避することができる。また高機能化により煩雑化が進むECU21の負担を軽減することができる。前記モータ6がネオジウム系の永久磁石を用いた高効率性能を有する埋込磁石型同期モータであるため、限られたバッテリ容量下で車両の航続距離を向上させることができる。
 図13は、第4実施形態に係る電気自動車のインホイールモータ駆動装置における制御系の概念構成のブロック図であり、図14は、同インホイールモータ駆動装置におけるモータ駆動装置の回路構成例を示す概略図である。なお、図14において、短絡異常監視手段95の図示は省略する。この例においては、インバータ31は、図14に示すように、スイッチングトランジスタ等の各駆動素子97に接続された各相の内部配線と出力端子98との間に、例えば、電磁接触器または電磁開閉器からなる開閉スイッチ99が設けられる。図13および図14に示すように、前記制御部40Aが各開閉スイッチ99に電気的に接続されている。
 モータ電流が流れている通常状態において、制御部40Aは、各開閉スイッチ99を開状態に制御している。判定部39Aにより検出信号が設定状態になったと判定されたとき、制御部40Aは、各開閉スイッチ99を閉状態に切換えるようになっている。これによりモータ電流が遮断される。したがって、車両が急激に走行不能に陥ることを回避することができる。このようにモータ6の異常を早期に検知し、車両走行上の問題を回避することができる。
 図15(A),(B)に示す第5実施形態のように、水分検出対応制御手段102を、車両全般を制御する電気制御ユニットであるECU21に設けても良い。ここで、図示を省略した短絡異常監視手段95は、インバータ装置22とECU21のいずれに設けられていても良い。この場合に、図15(A)に示すように、制御部40Aが、モータ駆動制御部33に電気的に接続され、インバータ装置22の出力に制限を与えるようにしても良い。また、図15(B)に示すように、制御部40Aが、パワー回路部28におけるインバータ31の各電磁接触器99(図14参照)に電気的に接続され、各電磁接触器99の開閉位置を切換え制御するようにしても良い。
 このインホイールモータ駆動装置は、電気自動車だけでなく燃料電池車、ハイブリッド車にも適応することができる。
 以下、この発明における「モータコイルの短絡異常を検出する短絡異常監視手段」という要件を備えない態様について説明する。
 [態様1]
 車輪用軸受、モータ、およびこのモータと前記車輪用軸受との間に介在した減速機を有するインホイールモータ駆動装置であって、
 前記モータの端子台付近に、モータ内の水分を検出する水分検出手段を設けるのが良い。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
4,5…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
19…バッテリ
21…ECU
28…パワー回路部
29…モータコントロール部
31…インバータ
39,39A…判定部
40,40A…制御部
41…異常報告手段
78…モータコイル
95…短絡異常監視手段
102…水分検出対応制御手段
Es…異常時切断手段
Sk…水分検出手段

Claims (15)

  1.  車輪を駆動するモータと、車両全般を制御する電気制御ユニットであるECUと、バッテリの直流電力を前記モータの駆動に用いる交流電力に変換するインバータを含むパワー回路部および前記ECUの制御に従って少なくとも前記パワー回路部を制御するモータコントロール部を有するインバータ装置とを備えた電気自動車であって、
     前記モータは、3相の各モータコイルの一端が中性点で接続されるスター結線により結線された同期モータであり、モータコイルの短絡異常を検出する短絡異常監視手段と、この短絡異常監視手段で短絡異常が検出されると、前記中性点から各モータコイルを電気的に切断する異常時切断手段を設けた電気自動車。
  2.  請求項1において、前記短絡異常監視手段は、インバータからモータへの3相の供給電流計測値から、モータコイルの短絡異常が発生したか否かを判断する電気自動車。
  3.  請求項1において、前記短絡異常監視手段は、モータ印加電圧に対してモータ電流値が定められたモータ電流閾値よりも大きいとき、モータコイルの短絡異常が発生したと判断する電気自動車。
  4.  請求項1において、前記短絡異常監視手段を、前記インバータ装置または前記ECUに設けた電気自動車。
  5.  請求項4において、前記インバータ装置に短絡異常監視手段が設けられたものであって、この短絡異常監視手段で短絡異常が検出されたとき、前記ECUに短絡異常の異常発生情報を出力する異常報告手段を前記インバータ装置に設けた電気自動車。
  6.  請求項1において、さらに、車輪用軸受と、前記モータと前記車輪用軸受との間に介在した減速機とを有するインホイールモータ駆動装置を含む電気自動車。
  7.  請求項1において、前記モータの回転を減速する減速機を備え、前記減速機はサイクロイド減速機である電気自動車。
  8.  請求項1において、前記モータがネオジウム系の永久磁石を用いた埋込磁石型同期モータである電気自動車。
  9.  請求項6に記載の電気自動車に含まれる前記インホイールモータ駆動装置であって、前記モータの端子台付近に、モータ内の水分を検出する水分検出手段を設けたインホイールモータ駆動装置。
  10.  請求項9において、前記端子台は複数の端子を有し、これら端子が前記モータのハウジング内に収容されているインホイールモータ駆動装置。
  11.  請求項9において、前記水分検出手段による水分の検出信号が設定状態になったか否かを監視し、設定状態になったと判定したときに、モータ電流に制限を与えるかまたはモータ電流を遮断する水分検出対応制御手段を有するインホイールモータ駆動装置。
  12.  請求項9において、車両に搭載されるバッテリの直流電流を前記モータの駆動に用いる交流電流に変換するインバータを含むパワー回路部と、車両全般を制御する電気制御ユニットであるECUの制御に従って少なくとも前記パワー回路部を制御するモータコントロール部とを有するインバータ装置に、水分検出対応制御手段を設けたインホイールモータ駆動装置。
  13.  請求項9において、前記水分検出対応制御手段を、車両全般を制御する電気制御ユニットであるECUに設けたインホイールモータ駆動装置。
  14.  請求項9において、前記水分検出手段は、導通センサまたは電気化学センサであるインホイールモータ駆動装置。
  15.  車輪用軸受、モータ、およびこのモータと前記車輪用軸受との間に介在した減速機とを有するインホイールモータ駆動装置を含む電気自動車における前記モータの制御方法であって、
     前記モータのハウジング内に水分が浸入したか否かを判断する過程と、
     前記過程で前記ハウジング内に水分が浸入したと判断したとき、モータ電流に制限を与えるかまたはモータ電流を遮断する過程とを有するモータの制御方法。
PCT/JP2012/053060 2011-02-25 2012-02-10 電気自動車、インホイールモータ駆動装置およびモータ制御方法 WO2012114901A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12750003.1A EP2679434B1 (en) 2011-02-25 2012-02-10 Electric automobile, in-wheel motor drive device, and motor control method
US14/000,379 US9252590B2 (en) 2011-02-25 2012-02-10 Electric automobile, in-wheel motor drive device, and motor control method
CN201280009939.3A CN103384615B (zh) 2011-02-25 2012-02-10 电动汽车、内轮电动机驱动装置和电动机控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011039853A JP5805406B2 (ja) 2011-02-25 2011-02-25 インホイールモータ駆動装置
JP2011039751A JP5781326B2 (ja) 2011-02-25 2011-02-25 電気自動車
JP2011-039853 2011-02-25
JP2011-039751 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012114901A1 true WO2012114901A1 (ja) 2012-08-30

Family

ID=46720685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053060 WO2012114901A1 (ja) 2011-02-25 2012-02-10 電気自動車、インホイールモータ駆動装置およびモータ制御方法

Country Status (4)

Country Link
US (1) US9252590B2 (ja)
EP (1) EP2679434B1 (ja)
CN (1) CN103384615B (ja)
WO (1) WO2012114901A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150175192A1 (en) * 2013-12-24 2015-06-25 Mando Corporation Rack type electric power steering system
CN108336944A (zh) * 2017-01-19 2018-07-27 爱信精机株式会社 用于致动器的控制器以及转向装置
CN113825664A (zh) * 2019-05-15 2021-12-21 埃萨姆·阿卜杜勒拉赫曼·阿马尔 用于球形组件的设备和方法
EP3379721B1 (en) * 2015-11-19 2022-03-09 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2546406C1 (ru) * 2013-11-29 2015-04-10 Общество с ограниченной ответственностью "Эйдос-Медицина" Привод для генерации обратной тактильной связи на инструмент по усилию
CN103682225B (zh) * 2013-12-30 2016-01-06 天津长城精益汽车零部件有限公司 蓄电池正极连接结构
CN104104307B (zh) * 2014-07-02 2017-03-22 上海新时达电气股份有限公司 一种变频器断电续航方法
DE102015102228A1 (de) * 2015-02-17 2016-08-18 Robert Bosch Automotive Steering Gmbh Lenksystem für ein kraftfahrzeug
US10913363B2 (en) * 2015-03-10 2021-02-09 Ford Global Technologies, Llc Voltage injection-based cable swap detection
JP6553414B2 (ja) * 2015-06-04 2019-07-31 株式会社日立産機システム 電力変換装置
CN107921522B (zh) 2015-06-15 2021-08-17 米沃奇电动工具公司 液压压接机工具
CN104943562B (zh) * 2015-06-30 2017-01-18 郑州日产汽车有限公司 适于电动汽车的汽车级永磁同步电机控制器
FR3052730B1 (fr) 2016-06-15 2018-07-13 Alstom Transp Tech Dispositif de traction pour un vehicule, notamment pour un vehicule ferroviaire, a securite amelioree
US20180275698A1 (en) * 2017-03-27 2018-09-27 Ge Energy Power Conversion Technology Limited Health monitoring system having a power converter controller for an electric machine
US20180287545A1 (en) * 2017-04-03 2018-10-04 Ge Energy Power Conversion Technology Limited Dynamic Parameter Limiting Based on Asset Performance and Health Status
US11697392B2 (en) * 2017-12-01 2023-07-11 Gogoro Inc. Security mechanisms for electric motors and associated systems
KR102251501B1 (ko) 2017-12-01 2021-05-14 고고로 아이엔씨. 허브 장치 및 관련 시스템들
TWI666460B (zh) * 2018-08-10 2019-07-21 東元電機股份有限公司 馬達層間短路快篩方法
WO2020163221A1 (en) * 2019-02-04 2020-08-13 DRiV Automotive Inc. Electric propulsion, suspension, and steering systems
CN110543115A (zh) * 2019-08-13 2019-12-06 江苏斯菲尔电气股份有限公司 一种多处理器组件式的电动机综合保护控制器
EP4280454A4 (en) * 2021-01-14 2024-04-03 Nissan Motor DIAGNOSTIC METHOD AND DIAGNOSTIC DEVICE FOR THREE-PHASE ALTERNATING CURRENT MOTOR
GB2616027A (en) * 2022-02-24 2023-08-30 Safran Electrical & Power Stator control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527174A (ja) * 2002-05-24 2005-09-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 電子的にコミュテート可能なモータ
JP2006062461A (ja) * 2004-08-25 2006-03-09 Toyota Motor Corp 車両制御装置
JP2006111032A (ja) * 2004-10-12 2006-04-27 Toyota Motor Corp ステアリングシステム
JP2007295658A (ja) * 2006-04-21 2007-11-08 Nsk Ltd モータ制御装置及びこれを用いた電動パワーステアリング制御装置
JP2008168790A (ja) 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2009219271A (ja) * 2008-03-11 2009-09-24 Ntn Corp モータ駆動装置およびインホイールモータ駆動装置
JP2010098790A (ja) * 2008-10-14 2010-04-30 Denso Corp 同期電動機の駆動装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540922A (en) * 1983-03-21 1985-09-10 Automeg, Inc. Motor winding leakage monitor
JP3696384B2 (ja) * 1997-09-16 2005-09-14 本田技研工業株式会社 電動機の駆動装置
US6320731B1 (en) * 2000-05-24 2001-11-20 Electric Boat Corporation Fault tolerant motor drive arrangement with independent phase connections and monitoring system
JP4480433B2 (ja) 2004-03-24 2010-06-16 トヨタ自動車株式会社 電動機の冷却構造
KR100679888B1 (ko) * 2005-01-06 2007-02-08 엘지전자 주식회사 습건식 모터의 전원차단장치
CN101160713B (zh) * 2005-04-15 2011-07-27 株式会社日立制作所 交流电动机控制装置
US7276871B2 (en) * 2005-07-25 2007-10-02 Honeywell International, Inc. System and method for fault protection for permanent magnet machines
JP2007191019A (ja) * 2006-01-18 2007-08-02 Toyota Motor Corp 車輪駆動装置
CN101682289B (zh) * 2007-06-28 2012-07-04 三菱电机株式会社 功率转换装置
DE102008021854A1 (de) * 2008-05-02 2009-11-05 Volkswagen Ag Vorrichtung und Verfahren zur Überwachung möglicher Fehler in einer technischen Einrichtung, insbesondere Servo-Lenksystem
JP5003589B2 (ja) * 2008-05-15 2012-08-15 トヨタ自動車株式会社 短絡相特定方法
JP4877296B2 (ja) * 2008-08-21 2012-02-15 トヨタ自動車株式会社 駆動装置およびその制御装置
JP4780170B2 (ja) 2008-09-30 2011-09-28 トヨタ自動車株式会社 車両用モータ駆動装置
JP5407581B2 (ja) 2009-06-18 2014-02-05 アイシン精機株式会社 インホイールモータ
JP5168307B2 (ja) * 2010-04-07 2013-03-21 株式会社デンソー 電動機制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527174A (ja) * 2002-05-24 2005-09-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 電子的にコミュテート可能なモータ
JP2006062461A (ja) * 2004-08-25 2006-03-09 Toyota Motor Corp 車両制御装置
JP2006111032A (ja) * 2004-10-12 2006-04-27 Toyota Motor Corp ステアリングシステム
JP2007295658A (ja) * 2006-04-21 2007-11-08 Nsk Ltd モータ制御装置及びこれを用いた電動パワーステアリング制御装置
JP2008168790A (ja) 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2009219271A (ja) * 2008-03-11 2009-09-24 Ntn Corp モータ駆動装置およびインホイールモータ駆動装置
JP2010098790A (ja) * 2008-10-14 2010-04-30 Denso Corp 同期電動機の駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2679434A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150175192A1 (en) * 2013-12-24 2015-06-25 Mando Corporation Rack type electric power steering system
EP3379721B1 (en) * 2015-11-19 2022-03-09 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device
CN108336944A (zh) * 2017-01-19 2018-07-27 爱信精机株式会社 用于致动器的控制器以及转向装置
CN108336944B (zh) * 2017-01-19 2022-10-11 株式会社爱信 用于致动器的控制器以及转向装置
CN113825664A (zh) * 2019-05-15 2021-12-21 埃萨姆·阿卜杜勒拉赫曼·阿马尔 用于球形组件的设备和方法
CN113825664B (zh) * 2019-05-15 2024-04-12 埃萨姆·阿卜杜勒拉赫曼·阿马尔 用于球形组件的设备和方法

Also Published As

Publication number Publication date
US9252590B2 (en) 2016-02-02
EP2679434A4 (en) 2018-03-21
US20130328512A1 (en) 2013-12-12
CN103384615A (zh) 2013-11-06
CN103384615B (zh) 2016-02-10
EP2679434B1 (en) 2020-01-01
EP2679434A1 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2012114901A1 (ja) 電気自動車、インホイールモータ駆動装置およびモータ制御方法
JP5603807B2 (ja) 電気自動車用駆動モータの診断装置および診断方法並びに電気自動車用駆動モータの診断装置を備えた電気自動車
JP5985178B2 (ja) モータの制御装置
JP5657426B2 (ja) 電気自動車
JP5886008B2 (ja) 電気自動車のモータ制御装置
WO2012114902A1 (ja) 電気自動車
WO2012114903A1 (ja) 電気自動車
JP5731233B2 (ja) 電気自動車
JP2014241720A (ja) 電気自動車用駆動モータの診断装置
WO2012114900A1 (ja) 電気自動車
JP5731593B2 (ja) 電気自動車
JP5781326B2 (ja) 電気自動車
JP5731234B2 (ja) 電気自動車
JP6199454B2 (ja) モータの制御装置
JP5805406B2 (ja) インホイールモータ駆動装置
JP5731594B2 (ja) 電気自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012750003

Country of ref document: EP