WO2012121087A1 - デジタルアナログ変換回路及び表示装置のデータドライバ - Google Patents

デジタルアナログ変換回路及び表示装置のデータドライバ Download PDF

Info

Publication number
WO2012121087A1
WO2012121087A1 PCT/JP2012/055153 JP2012055153W WO2012121087A1 WO 2012121087 A1 WO2012121087 A1 WO 2012121087A1 JP 2012055153 W JP2012055153 W JP 2012055153W WO 2012121087 A1 WO2012121087 A1 WO 2012121087A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
voltage
reference voltages
decoder
levels
Prior art date
Application number
PCT/JP2012/055153
Other languages
English (en)
French (fr)
Inventor
弘 土
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to US14/002,948 priority Critical patent/US9224356B2/en
Priority to JP2013503473A priority patent/JP5607815B2/ja
Publication of WO2012121087A1 publication Critical patent/WO2012121087A1/ja
Priority to US14/967,992 priority patent/US20160098968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/661Improving the reconstruction of the analogue output signal beyond the resolution of the digital input signal, e.g. by interpolation, by curve-fitting, by smoothing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/76Simultaneous conversion using switching tree

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2011-047282 (filed on March 4, 2011), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a digital-analog conversion circuit, a data driver, and a display device using the same.
  • LCDs are widely used as display devices. Not only notebook PCs and monitors, but also large-screen LCD TVs, multi-function mobile phones, and tablet-type high functions Applications are expanding to information terminals.
  • liquid crystal display devices many active matrix drive type liquid crystal display devices capable of high-definition display are used.
  • OLED organic light emitting diode
  • FIG. 20A is a block diagram illustrating the main structure of the thin display device.
  • FIG. 20B shows a main part configuration of a unit pixel of the display panel of the liquid crystal display device
  • FIG. 20C shows a main part configuration of the unit pixel of the display panel of the organic light emitting diode display device. Yes.
  • each unit pixel is shown by a schematic equivalent circuit.
  • an active matrix driving type thin display device generally includes a power supply circuit 940, a display controller 950, a display panel 960, a gate driver 970, and a data driver 980.
  • unit pixels including the pixel switch 964 and the display element 963 are arranged in a matrix (for example, in the case of a color SXGA (Super eXtended Graphics Array) panel, 1280 ⁇ 3 pixel columns ⁇ 1024 pixel rows), and each unit pixel
  • a scanning line 961 for transmitting a scanning signal output from the gate driver 970 and a data line 962 for transmitting a gradation voltage signal output from the data driver 980 are wired in a grid pattern.
  • the gate driver 970 and the data driver 980 are controlled by the display controller 950, and necessary clock signals CLK, control signals, and the like are supplied from the display controller 950, and video data is a digital signal from the display controller 950 as a data driver. 980.
  • the power supply circuit 940 supplies necessary power to the gate driver 970 and the data driver 980.
  • the display panel 960 includes a semiconductor substrate. In particular, in a large-screen display device, a semiconductor substrate in which a pixel switch or the like is formed using a thin film transistor (TFT) on an insulating substrate such as a glass substrate or a plastic substrate is widely used.
  • TFT thin film transistor
  • the display device controls on / off of the pixel switch 964 by a scanning signal, and when the pixel switch 964 is turned on, a gradation voltage signal corresponding to video data is applied to the display element 963, and the gradation voltage An image is displayed by changing the luminance of the display element 963 in accordance with the signal.
  • Rewriting of data for one screen is performed in one frame period (usually about 0.017 seconds when driven at 60 Hz), and is sequentially selected (pixel switch 964) for each pixel row (each line) on each scanning line 961. And the gradation voltage signal is supplied from each data line 962 to the display element 963 through the pixel switch 964 within the selection period. In some cases, driving is performed at a frame frequency of 120 Hz or a higher frame frequency in order to simultaneously select a plurality of pixel rows on the scanning line or improve moving image characteristics.
  • a display panel 960 in a liquid crystal display device, includes a semiconductor substrate in which pixel switches 964 and transparent pixel electrodes 973 are arranged in a matrix as unit pixels, and a whole surface. And a counter substrate on which one transparent electrode (counter substrate electrode) 974 is formed. The two substrates are arranged to face each other, and liquid crystal is sealed therebetween.
  • the display element 963 included in the unit pixel includes a pixel electrode 973, a counter substrate electrode 974, a liquid crystal capacitor 971, and an auxiliary capacitor 972.
  • a backlight (not shown) is provided as a light source on the back surface of the display panel.
  • the gradation voltage signal from the data line 962 is applied to the pixel electrode 973, and between each pixel electrode 973 and the counter substrate electrode 974. Even after the transmittance of the backlight that transmits the liquid crystal changes due to the potential difference between the pixel switch 964 and the pixel switch 964 is turned off (non-conducting), the potential difference is held in the liquid crystal capacitor 971 and the auxiliary capacitor 972 for a certain period. Done.
  • the driving in order to prevent the deterioration of the liquid crystal, the driving (inversion driving) is performed to switch the voltage polarity (positive or negative) with a period of one frame for each pixel with respect to the common voltage of the counter substrate electrode 974.
  • the driving inversion driving
  • column inversion driving in which the voltage polarity is different between adjacent data lines.
  • a dot inversion drive a gradation voltage signal having a different voltage polarity is output for each selection period (one data period), and in a column inversion drive, for example, a gradation having a different voltage polarity for each frame period is output to one data line.
  • a voltage signal is output.
  • the display panel 960 includes a pixel switch 964 and an organic film sandwiched between two thin film electrode layers as unit pixels.
  • An organic light emitting diode 982 and a semiconductor substrate on which thin film transistors (TFTs) 981 for controlling a current supplied to the organic light emitting diode 982 are arranged in a matrix are provided.
  • the TFT 981 and the organic light emitting diode 982 are connected in series between power supply terminals 984 and 985 to which different power supply voltages are supplied, and further include an auxiliary capacitor 983 that holds the control terminal voltage of the TFT 981.
  • the display element 963 corresponding to one pixel includes a TFT 981, an organic light emitting diode 982, power supply terminals 984 and 985, and an auxiliary capacitor 983.
  • the gradation voltage signal from the data line 962 is applied to the control terminal of the TFT 981, and the current corresponding to the gradation voltage signal is
  • the organic light emitting diode 982 is supplied from the TFT 981 to the organic light emitting diode 982, and the organic light emitting diode 982 emits light with luminance corresponding to the current, thereby displaying. Even after the pixel switch 964 is turned off (non-conducting), the gradation voltage signal applied to the control terminal of the TFT 981 is held in the auxiliary capacitor 983 for a certain period, so that light emission is held.
  • the pixel switch 964 and the TFT 981 are examples of n-channel transistors, they can be formed of p-channel transistors.
  • the organic EL element can be connected to the power supply terminal 984 side. Further, the driving of the organic light emitting diode display device does not require the inversion driving as in the liquid crystal display device, and the gradation voltage signal corresponding to the pixel is output to the data line 962 every one selection period (one data period). .
  • the organic light emitting diode display device performs display in response to the grayscale current signal output from the data driver, separately from the configuration in which display is performed in response to the grayscale voltage signal from the data line 962 described above.
  • a configuration in which display is performed by receiving a grayscale voltage signal output from a data driver will be described.
  • the gate driver 970 only needs to supply at least binary scanning signals, whereas the data driver 980 supplies each data line 962 with multi-level gray levels corresponding to the number of gray levels. Driving with a voltage signal is required. Therefore, the data driver 980 includes a digital / analog conversion circuit including a decoder that converts video data into a gradation voltage signal and an amplification circuit that amplifies and outputs the gradation voltage signal to the data line 962.
  • High-end mobile devices multi-function mobile phones, tablet-type high-performance information terminals having thin display devices, notebook PCs, monitors, TVs, etc.
  • image quality multi-color
  • RGB 8 Display devices compatible with bit video data signals about 16.8 million colors
  • demand for display devices corresponding to 10-bit video data signals about 1.1 billion colors or more is also expected.
  • an organic light emitting diode display device featuring high image quality there is an increasing demand for 10-bit video data signals.
  • the number of switch transistor elements increases in a decoder that selects a voltage corresponding to a video data signal from a large number of reference voltages.
  • the progress of the multi-gradation (10 bits or more) leads to an increase in the area of the decoder of the digital-analog conversion circuit, resulting in an increase in driver cost.
  • the area of the digital-analog conversion circuit that receives multi-bit video data signals depends on the decoder configuration. For this reason, a technique for reducing the area of the decoder is required.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-43944 discloses a configuration shown in FIGS. 21 and 22 (FIGS. 21 and 22 show FIG. 1 of Patent Document 1). , Corresponding to FIG. In FIG. 21, the reference numerals of the constituent elements are changed from those in FIG.
  • the DA converter 310 converts a 6-bit digital signal (Bit 5 to Bit 0) into a voltage level of 64 gradations.
  • a reference voltage generation circuit 318 that generates a reference voltage at 17 voltage levels from the 0th gradation to every 64th gradation, and two adjacent references according to a 6-bit digital signal (Bit5 to Bit0)
  • a selection circuit 316 that selects a voltage and outputs it to the three terminals (IN3, IN2, and IN1) of the voltage follower circuit 317, and a predetermined weighting calculation of the voltages (VIN3, VIN2, and VIN1) of the three terminals,
  • a voltage follower circuit 317 that outputs one of two reference voltages and a total of four voltage levels obtained by linear interpolation of the two reference voltages (a signal is input to a non-inverting input terminal).
  • An operational amplifier having an output terminal connected to an inverting input terminal).
  • the selection circuit 316 selects a reference voltage selection circuit 316a that selects two reference voltages whose voltage levels are adjacent based on the upper bits Bit5 to Bit2 of the digital signal, and a reference voltage selection circuit 316a based on the lower bits Bit0 and Bit1. And a generated voltage selection circuit 316b that outputs one or two of the two reference voltages selected in step 3 to the three terminals (IN1, IN2, and IN3) of the voltage follower circuit 317.
  • the reference voltage selection circuit 316a sequentially selects from the upper bit (Bit5) to the lower bit side (Bit0 side).
  • the switch SW (5, 1) that is on / off controlled by Bit5 selects one of V0 and V32
  • the switch SW (5, 2) that is on / off controlled by Bit5 is V4 and V36. Select one.
  • the switch SW (4, 1) controlled to be turned on / off by Bit 4 which is one bit lower than Bit 5 is the output of the switch SW (5, 1) and the switch SW (5, 5) for selecting one of V16 and V48. Select one of the outputs.
  • the switch SW (2, 1) that is on / off controlled by Bit 2 lower by 1 bit selects one of the output of the switch SW (3, 1) and the output of the SW (3, 2). Then, with the two least significant bits, Bit1 and Bit0 (the least significant bit), the three outputs (IN3, IN2, IN1) of the voltage follower circuit 317 are obtained from the two outputs SW (2, 1) and SW (2, 2). ) To select one of the combinations of assignments.
  • FIG. 22 shows a 6-bit digital signal (Bit5 to Bit0), an output from the selection circuit 316 to the three terminals (IN3, IN2, IN1) of the voltage follower circuit 317, and a voltage follower in the DA converter 310 of FIG. 6 is a diagram illustrating a relationship with an output voltage Vout of a circuit 317.
  • the voltage follower circuit 317 performs a weighting operation (also referred to as a weighted average or weighted addition) on the three-terminal voltages (VIN3, VIN2, VIN1) at a ratio of 1: 1 to 2, and uses the following expression (1) as the output voltage Vout.
  • the voltage given by is output.
  • Vout (VIN3 + VIN2 + VIN1 ⁇ 2) / 4 (1)
  • the three terminals (IN3, IN2, and IN1) of the voltage follower circuit 317 have two reference voltages V0 and V4 that are adjacent to each other. (V0, V0, V0), (V0, V4, V0), (V0, V0, V4), (V0, V4, V4)
  • the output voltage Vout corresponding to the gradations 0, 1, 2, and 3 is four voltage levels obtained by linear interpolation of the reference voltages V0 and V4.
  • the gradation follower 4 outputs the (4j) to (4j + 3) gradations (where j is an integer from 1 to 15). From the adjacent reference voltages V (4j) and V (4j + 4) to the three terminals (IN3, IN2, and IN1) of the circuit 317, (V (4j), V (4j), V (4j)), (V (4j), V (4j + 4), V (4j)), (V (4j), V (4j), V (4j + 4)), (V (4j), V (4j + 4), V (4j + 4)) The output voltage Vout is a total of four voltage levels V (4j), which is a reference voltage V (4j) and three voltage levels obtained by linear interpolation of the reference voltages V (4j) and V (4j + 4). (3 ⁇ V (4j) + V (4j + 4)) / 4, (2 ⁇ V (4j) + 2 ⁇ V (4j + 4)) / 4, (V (4j) + 3 ⁇ V (4j + 4)
  • Patent Document 1 discloses a specific example of the voltage follower circuit 317.
  • FIG. 23 shows the configuration disclosed in FIG.
  • the voltage follower circuit includes a first differential pair (NMOS transistor pair N1, N2) having a commonly connected source connected to a first current source (NMOS transistor N9) and a gate connected to IN1 and OUT.
  • a second differential pair (NMOS transistor pair N3, N4) having a commonly connected source connected to a second current source (NMOS transistor N10) and a gate connected to IN1 and OUT;
  • a third differential pair (NMOS transistor pair N5, N6) having a commonly connected source connected to a third current source (NMOS transistor N11) and a gate connected to IN2 and OUT;
  • the NMOS transistor N1 includes a fourth differential pair (NMOS transistor pair N7, N8) having a commonly connected source connected to a fourth current source (NMOS transistor N12) and a gate connected to IN4 and OUT.
  • N3, N5 and N7 are connected to the drain of the PMOS transistor P1 of the active load circuit (current mirror), and the drains of the NMOS transistors N2, N4, N6 and N8 are connected to the PMOS transistor P2 of the active load circuit (current mirror).
  • the sources of the PMOS transistors P1 and P2 are connected to the power supply terminal in common. Further, the source is connected to the power supply terminal, the drain is connected to the output terminal OUT, the gate is connected to the connection node of the PMOS transistor P1 and the drains of the NMOS transistors N1, N3, N5, and N7, and the source is connected to the PMOS transistor P3.
  • the NMOS transistor N13 is connected to the ground, the gate is connected to the bias voltage terminal INf, and the drain is connected to OUT.
  • the sources of the first to fourth current source transistors N9 to N12 are connected to the ground, and the gates are connected to the bias voltage terminal INf.
  • ⁇ V1 VIN1-VOUT
  • ⁇ V1, ⁇ V2 VIN2-VOUT
  • ⁇ V3 VIN3-VOUT
  • the selection circuit, the voltage follower circuit, the reference voltage, and the DA converter are a decoder, a differential amplifier (operational amplifier), a reference voltage, and a digital / analog conversion circuit in the embodiment of the present specification. Referenced.
  • the digital-to-analog converter circuit (DA converter 310) has two reference voltages adjacent to each other from four reference voltages (reference voltages V0, V4, V8,..., V60, V64). By selecting (reference voltage), it is possible to output one of the four reference voltage levels, that is, one reference voltage and three voltage levels for linear interpolation of the two reference voltages.
  • the total number of reference voltages is 1/4 plus 1 of the number of output voltage levels (grayscale voltages). For example, when the configuration is extended to input 10-bit digital data, 257 reference voltages are required for 1024 output voltage levels. When expanded to a configuration in which 12-bit digital data is input, the number of reference voltages is required to be 1025 for the number of output voltage levels 4096. For digital data of 10 bits or more, the number of reference voltages is still very large, and the number of switches for selecting the reference voltage is also large. Therefore, the area of the decoder is increased, and the cost of a chip equipped with a digital / analog conversion circuit is increased. Becomes big.
  • the reference voltage to be generated can be expanded every 8 levels, and the number of voltage levels for linear interpolation of two adjacent reference voltages can be expanded to 7.
  • the total number of reference voltages is 1/8 plus 1 of the number of output voltage levels, and the number of reference voltages can be reduced, but there are eight interpolation amplifiers (voltage follower circuit 317 in FIG. 21). Differential pair is required. As a result, the area of the interpolation amplifier increases.
  • Digital-to-analog conversion circuit capable of reducing the number of input reference voltages with respect to the number of voltage levels output corresponding to multi-bit digital data, and suppressing or reducing the increase in area, and the digital-to-analog conversion
  • a driver including a circuit and a display device including the driver are disclosed below.
  • the present disclosure is generally configured as follows.
  • an N reference voltage and an n-bit (n is a predetermined integer of 4 or more) digital signal are input, and the n reference voltage is input from the N reference voltages.
  • a first decoder that selects the first to third voltages according to the digital signal;
  • An operational amplifier that inputs the first to third voltages selected by the first decoder and outputs a voltage level of (first voltage + second voltage + 2 ⁇ third voltage) / 4;
  • 2 ⁇ n ( ⁇ is a power operator) combination of the n-bit digital signals, 2 ⁇ n from the A level as the reference level to the (A-1 + 2 ⁇ n) level
  • the voltage level can be output from the operational amplifier,
  • the N reference voltages are: With respect to the A th to (A-1 + 2 ⁇ n) levels, which are the 2 ⁇ n output voltage levels, voltage levels A + 4k every four levels from the A level (where k is from 0 to 2 ⁇ ) Of ⁇ 1 + 2 ⁇ (n-2)
  • a data driver is provided that receives the input digital signal corresponding to the input video signal and outputs the voltage corresponding to the input digital signal, and that drives the data line with the voltage corresponding to the input digital signal.
  • the display device includes a unit pixel including a pixel switch and a display element at an intersection of the data line and the scanning line, and the signal of the data line is written to the display element through the pixel switch turned on by the scanning line.
  • a display device having a data driver for driving the data line is provided.
  • the increase in the number of switch transistors of the decoder can be suppressed by significantly reducing the number of reference voltages input to the decoder for increasing the number of bits.
  • the area can be reduced.
  • an increase in the number of reference voltages input to the decoder can be suppressed with respect to the increase in the number of bits, and area saving (low cost) can be realized. Further, according to the display device, the cost can be reduced by using the data driver.
  • (A), (B) is a figure explaining the 1st specification of 1st Embodiment. It is a figure explaining the 2nd specification of 1st Embodiment. It is a figure explaining the 2nd specification of 1st Embodiment. It is a figure explaining the 3rd specification of a 1st embodiment. It is a figure explaining the 3rd specification of a 1st embodiment. It is a figure explaining the 4th specification of a 1st embodiment. It is a figure explaining the 4th specification of a 1st embodiment. It is a figure explaining the 5th specification of a 1st embodiment. It is a figure explaining the 5th specification of a 1st embodiment. It is a figure explaining the 5th specification of a 1st embodiment.
  • FIG. 1 is an overall configuration of a display device
  • B is a pixel of a liquid crystal
  • C is a diagram illustrating an organic EL pixel.
  • FIG. 1 of patent document 1 as related technology.
  • FIG. It is the figure which quoted FIG. 2 of patent document 1.
  • FIG. It is a figure which shows the structural example of the 2nd specification of 2nd Embodiment. It is a figure explaining the specification of a 1st Example.
  • It is a figure which shows the circuit structure of a 1st Example.
  • It is a figure which shows the example of a change of the circuit structure of a 1st Example.
  • N reference voltages (4 ⁇ N ⁇ 1 + 2 ⁇ (n ⁇ 2): where ⁇ represents a power operation) and n bits (n is a positive number of 4 or more) digital signals are input.
  • a first decoder for selecting first to third voltages (V (T1), V (T2), V (T3)) from the N reference voltages according to the n-bit digital signal ( 10) and an operational amplifier (60) for inputting the first to third voltages and amplifying and outputting the voltage levels obtained by weighting one-to-one to two.
  • the N reference voltages correspond to the value of the n-bit digital signal on a one-to-one basis, 2 ⁇ n voltage levels that can be output from the operational amplifier (60): A level, (A + 1),..., (A-1 + 2 ⁇ n) level (where Ath level is a predetermined reference level) Voltage levels every four levels from the A level: A + 4k (where k is an integer from 0 to 2 ⁇ (n-2)) corresponding to ⁇ 1 + 2 ⁇ (n-2) ⁇ reference voltages home, Level A, The (A + 4) level, The (A-4 + 2 ⁇ n) level, (A + 2 ⁇ n) level four reference voltages (these are not subject to thinning), ⁇ -3 + 2 ⁇ (n-2) ⁇ reference voltages other than the four reference voltages among ⁇ 1 + 2 ⁇ (n-2) ⁇ reference voltages corresponding to voltage levels every four levels from the A level A reference voltage of at most ⁇ 4 + 2 ⁇ (n ⁇ 2)
  • the voltage level output from the operational amplifier (60) is the first to third voltages (V (T1), V (T2), V) in the first decoder (10). (T3)) is selected and has a voltage level output based on three different reference voltages.
  • FIG. 1 is a diagram illustrating a digital-to-analog converter circuit according to a first exemplary embodiment.
  • N reference voltages (4 ⁇ N ⁇ 1 + 2 ⁇ (n ⁇ 2); ⁇ is a power operator), where n is a predetermined positive number equal to or greater than 4)
  • N-bit digital signals (D (n ⁇ 1) to D0 and their complementary signals D (n ⁇ 1) B to D0B) are input, and the first reference signal is generated from N reference voltages according to the n-bit digital signal.
  • a first decoder 10 for selecting a third voltage (V (T1), V (T2), V (T3)) and a first to a third voltage (V (T1), V (T2), V (T3)) is input to three input terminals (non-inverting input terminals), and operational amplifiers 60 that amplify and output voltage levels Vout obtained by weighting one-to-one to two, respectively.
  • D0 LSB (Least Significant Bit)
  • D (n ⁇ 1) MSB (Most Significant Bit).
  • the operational amplifier 60 has a configuration in which the output terminal is connected to the inverting input terminal in a feedback manner, and performs an operation (interpolation operation) of the following equation (2).
  • Vout ⁇ V (T1) + V (T2) + 2 ⁇ V (T3) ⁇ ) / 4 (2)
  • Equation (2) is an arithmetic expression in which VIN3, VIN2, and VIN1 in the above equation (1) correspond to V (T1), V (T2), and V (T3), respectively.
  • VIN3, VIN2, and VIN1 in the above equation (1) correspond to V (T1), V (T2), and V (T3), respectively.
  • a voltage V (T3) is applied in common with the gate (IN1) of the NMOS transistor N3 of the pair (N3, N4) as the third terminal (T3), and the NMOS transistor N5 of the third differential pair (N5, N6)
  • the voltage V (T2) is applied using the gate (IN2) as the second terminal (T2), and the gate (IN3) of the NMOS transistor N7 of the fourth differential pair (N7, N8) is used as the first terminal (T1).
  • V (T1) is applied.
  • the operational amplifier 60 uses the voltage V (T1), V (T2), and V (T3) of the first terminal (T1), the second terminal (T2), and the third terminal (T3) as weights of 1: 1: 2. Any configuration can be used as long as it is an interpolation amplifier that outputs the voltage level Vout subjected to weighting calculation (also called weighted addition or weighted average).
  • N reference voltages (4 ⁇ N ⁇ 1 + 2 ⁇ (n ⁇ 2)) input to the first decoder 10 are output from the operational amplifier 60 in one-to-one correspondence with the value of the n-bit digital signal. 2 ⁇ n possible voltage levels: A level, (A + 1) level, (A + 2) level,...
  • (A-1 + 2 ⁇ n) level (where A level is an arbitrary reference level)
  • a level is an arbitrary reference level
  • the four reference voltages respectively corresponding to the (A + 2 ⁇ n) level are not subject to thinning and are included in the N reference voltages as they are.
  • ⁇ 2 ⁇ (n-2) +1 ⁇ reference voltages corresponding to voltage levels every four levels from the A level
  • ⁇ 3 + 2 ⁇ (n ⁇ 2) ⁇ references other than these four reference voltages
  • the remaining number of reference voltages to be thinned (after thinning) is ⁇ 4 + 2 ⁇ (n ⁇ 2) ⁇ or less, and this is a reference voltage that is not a thinning target.
  • the sum of (four) is the number N of reference voltages, where N is 4 or more and 2 ⁇ (n-2) or less.
  • the voltage level Vout output from the operational amplifier 60 is different from each other as the first to third voltages (V (T1), V (T2), and V (T3)) selected by the first decoder 10. At least two voltage levels amplified based on the three reference voltages are provided. That is, at least two voltage levels output from the operational amplifier 60 are: Three voltages (V (T1), V (T2), V (T) where V (T1) ⁇ V (T2), V (T1) ⁇ V (T3), and V (T2) ⁇ V (T3) are satisfied. T3)).
  • the decoder selects three voltages output to the three terminals IN3, IN2, and IN1 of the voltage follower circuit 317 from the same or adjacent two reference voltages.
  • the first decoder 10 includes two or three including not only two identical or adjacent reference voltages (adjacent reference voltage pairs) but also sets other than adjacent voltages.
  • One reference voltage is selected as the first, second and third voltages (V (T1), V (T2), V (T3)).
  • V (T1), V (T2), V (T3) the first, second and third voltages
  • the total number of reference voltages can be reduced rather than the total number of reference voltages of the related art which made the reference voltage number every four levels. That is, when the number of bits of the digital signal is the same and the number of output gradations is the same, according to the present embodiment, the resolution of the digital-analog converter circuit remains the same as in the related art of FIG. The total number can be further reduced.
  • At least two of the three voltages output from the decoder (selection circuit 316) to the three terminals IN3, IN2, and IN1 of the voltage follower circuit 317 have the same reference voltage. Are selected and output. That is, in the related technique of FIG. 21, three different reference voltages are not selected for the three terminals IN1, IN2, and IN3 of the voltage follower circuit 317, but are amplified and output based on the three different reference voltages. There is no voltage level.
  • V (T1), V (T2), V (T3) three different references are used as the first to third voltages (V (T1), V (T2), V (T3)) selected by the first decoder 10.
  • V (T1), V (T2), V (T3) A plurality of voltage levels amplified and output based on the voltage are provided. That is, as will be described in detail later, some of the output voltage levels from the operational amplifier 60 are V (T1) ⁇ V (T2) as first to third voltages input to the operational amplifier 60, It is generated from V (T1), V (T2), and V (T3) that satisfy the relationship of V (T1) ⁇ V (T3) and V (T2) ⁇ V (T3).
  • FIG. 2A and 2B are diagrams for explaining the first specification in the embodiment of FIG.
  • Voltage levels that can be output from the operational amplifier 60 in one-to-one correspondence with 4-bit digital signal values four reference voltages for one section consisting of 16 voltage levels from the 0th level to the 15th level Are set to the 0th level, the 4th level, the 12th level, and the 16th level.
  • the reference phone corresponding to is not required).
  • the 0th to 16th levels of the output voltage level are almost linear voltage levels, which are monotonically increasing or monotonically decreasing with respect to the order of level numbers (0, 1, 2,). Is done.
  • Each number (0 to 15) of the 0th to 15th levels of the output voltage level corresponds to the adjacent value of the 4-bit digital signal (binary code of the lower-order bit signal including LSB), and the adjacent voltage
  • the level difference voltage corresponds to the quantization step width (1LSB step width) of the digital-analog conversion circuit, and the quantization step width is substantially uniform in the 0th to 15th levels (DNL (Differential Nonlinearity)). Is constant).
  • FIG. 2B shows three voltages selected from the four reference voltages (the 0th level, the 4th level, the 12th level, and the 16th level) set in FIG. 3 shows a list of voltage levels (specified by the above equation (2)) of the output Vout of the operational amplifier 60 that receives a combination of three voltages (V (T1), V (T2), V (T3)). Yes. All combinations of four reference voltages (levels 0, 4, 12, 16) are shown.
  • the voltages selected as V (T1) and V (T2) can be interchanged.
  • FIG. 2B the voltages selected as V (T1) and V (T2) can be interchanged.
  • V (T1), V (T2), and V (T3)) FIG.
  • the combinations (V (T2) and V (T1)) in which V (T1) and V (T2) are exchanged are also included. The same applies to FIG. 8, FIG. 10, FIG. 12, and FIG.
  • the sixteenth level in FIG. 2B is obtained by setting the first to third voltages V (T1), V (T2), and V (T3) to the sixteenth level. Corresponds to the 0 level.
  • the first decoder 10 in FIG. 1 includes first to third voltages (V (T1), V (T2), V (T2), corresponding to the respective voltage levels from the 0th level to the 15th level output from the operational amplifier 60.
  • V (T1), V (T2), V (T2) One of the combinations (FIG. 2B) of V (T3)) is selected corresponding to the value of the 4-bit digital signal.
  • the Vout voltage levels 0, 1, 2,..., 15 in FIG. 2B correspond to each voltage level using a 4-bit digital signal (V (T1), V (T2). ), V (T3)).
  • Vout 5 (fifth level)
  • D3, D2, D1, D0) (0, 1, 0, 1)
  • the 0th, fourth, eighth Among the four reference voltages of the sixteenth level, the sixteenth level for the first voltage V (T1), the fourth level for the second voltage V (T2), the zeroth level for the third voltage V (T3), or
  • the twelfth level is selected for the first voltage V (T1)
  • the zeroth level is selected for the second voltage V (T2)
  • the fourth level is selected for the third voltage V (T3).
  • a section consisting of 16 voltage levels from the 0th level to the 15th level is shown as a correspondence between the output level of 4 bits and 16 levels and the reference voltage (section). ).
  • an additional section is provided after the 16th level, such as 5 bits, 32 levels, 6 bits, 64 levels, etc., and the reference voltage is set in each additional section in the same manner as the 1st section of the 0th to 15th levels. Of course, it may be.
  • the reference voltage at the 16th level corresponding to one section and the reference voltage at the 0th level in the next section are set to the same voltage level.
  • a decoder corresponding to a 10-bit digital signal it can be configured by 16 levels (1 section) ⁇ 64 sections, which is 1 in comparison with the related art configuration (a configuration in which FIGS. 21 and 22 are expanded to 10 bits). 64 reference voltages are thinned out per section and 64 sections.
  • 2A shows 16 continuous levels (levels 0 to 15) with the 0th level as a reference level (Ath level) as an output level for convenience, the level 32 or 48 as the Ath level. It is also possible to correspond to 16 levels forming a part of a plurality of voltage levels, such as 16 consecutive levels (for example, levels 32 to 47 or levels 48 to 63). In that case, the reference level of one section is preferably set to the first voltage level of the section having 16 voltage levels as a unit.
  • the 0th level to the 32nd level are almost linear voltage levels and are monotonically increasing or monotonically decreasing voltage levels.
  • FIG. 4 shows six reference voltages (0th level, 4th level, 12th level, 20th level, 28th level, 32nd level) set according to the specification of FIG.
  • the voltage levels corresponding to the above equation (2) that can be output from the operational amplifier 60 when combined as voltages (V (T1), V (T2), V (T3)) are shown.
  • FIG. 4 shows all combinations of six reference voltages.
  • the voltage levels output from the operational amplifier 60 all exist from the 0th level to the 31st level, and the six reference voltages (0th level, 4th level, 12th level) set in FIG. , 20th level, 28th level, 32nd level), it can be confirmed that 32 voltage levels from 0th level to 31st level can be output.
  • the first to third voltages (V (T1), V (T2), and V (T3)) that output the 13th level and the 19th level, respectively, are combined with each other. This is a combination of three reference voltages having different levels. When these voltage levels (the 13th level and the 19th level) are output, the first to third voltages V (T1) and V (T2) , V (T3) are different from each other, and there is no combination in which the same reference voltage overlaps.
  • the first decoder 10 shown in FIG. 1 has first to third voltages (V (T1), V) based on FIG. 4 corresponding to voltage levels from the 0th level to the 31st level output from the operational amplifier 60.
  • V (T1), V first to third voltages
  • One of the combinations of (T2) and V (T3)) is selected according to the value of a 5-bit digital signal (lower 5-bit signal including LSB).
  • FIG. 3 shows one section composed of 32 voltage levels from the 0th level to the 31st level, but an additional section is provided after the 32nd level, and each additional section also has the 0th level to the 0th level.
  • the reference voltage can be set in the same manner as one section of 31 levels. At this time, the reference voltage of the 32nd level corresponding to one section and the reference voltage of the 0th level in the next section are set to the same voltage level.
  • a decoder corresponding to a 10-bit digital signal it can be configured with 32 levels (1 section) ⁇ 32 sections, compared to the configuration in the related art (the configuration in which FIGS. 21 and 22 are expanded to 10 bits), 96 reference voltages are thinned out in 3 sections and 32 sections per section.
  • 32 levels are shown with the 0th level as a reference level, but may correspond to 32 levels forming a part of a plurality of voltage levels (for example, 64 levels or more).
  • the reference level of one section is preferably set to the first voltage level of the section having 32 voltage levels as a unit.
  • Voltage levels every 4th level from the 0th level: among the reference voltages corresponding to 4k (where k is an integer from 0 to 8), the 8th level, the 12th level, the 20th level, the 24th level (k Four reference voltages corresponding to 2, 3, 5, 6) are thinned out.
  • the 0th level to the 32nd level are almost linear voltage levels and are monotonically increasing or monotonically decreasing voltage levels.
  • FIG. 6 shows five reference voltages (0th level, 4th level, 16th level, 28th level, 32nd level) set in the specification of FIG. 5 as first to third voltages (V ( The voltage levels corresponding to the above equation (2) that can be output from the operational amplifier 60 when combined as T1), V (T2), and V (T3)) are shown.
  • FIG. 6 shows all combinations of five reference voltages.
  • the voltage levels output from the operational amplifier 60 include all levels from the 0th level to the 31st level, and the five reference voltages (the 0th level, the 1st level) set in FIG. 4 levels, 16th level, 28th level, and 32nd level), it can be confirmed that 32 voltage levels from 0th level to 31st level can be output.
  • the first to third voltages (V (T1), V) for outputting the fifth level, the sixth level, the ninth level, the fifteenth level, the seventeenth level, the twenty-third level, the twenty-sixth level, and the twenty-seventh level.
  • the combination of (T2) and V (T3)) is a combination of three reference voltages in which the first to third voltages have different voltage levels. When these voltage levels are output, the first The third voltages V (T1), V (T2), and V (T3) are different from each other, and there is no combination in which the same reference voltage overlaps.
  • the first decoder 10 shown in FIG. 1 includes first to third voltages (V (T1), V (T2), V (T2), corresponding to voltage levels from the 0th level to the 31st level output from the operational amplifier 60.
  • V (T3)) is selected corresponding to the value of the 5-bit digital signal.
  • the 0th level to the 64th level are almost linear voltage levels and are monotonically increasing or monotonically decreasing voltage levels.
  • FIG. 8 shows seven reference voltages (0th level, 4th level, 16th level, 32nd level, 48th level, 60th level, 64th level) set according to the specification of FIG.
  • the voltage level corresponding to the above equation (2) that can be output from the operational amplifier 60 when combined as the third voltage (V (T1), V (T2), V (T3)) is shown.
  • FIG. 8 shows all combinations of seven reference voltages.
  • the voltage levels output from the operational amplifier 60 all exist from the 0th level to the 63rd level, and the seven reference voltages (0th level, 4th level, 16th level) set in FIG. , The 32nd level, the 48th level, the 60th level, and the 64th level), it can be confirmed that 64 voltage levels from the 0th level to the 63rd level can be output.
  • the combinations of the first to third voltages (V (T1), V (T2), V (T3)) for outputting the fifth level, the sixth level, the ninth level,... 3 is a combination of three reference voltages having different voltage levels, and when these voltage levels are output, the first to third voltages V (T1), V (T2), V ( T3) are different from each other, and there is no combination in which the same reference voltage overlaps.
  • the first decoder 10 of FIG. 1 has first to third voltages (V (T1), V based on FIG. 8) corresponding to the voltage levels from the 0th level to the 63rd level output from the operational amplifier 60.
  • V (T1), V based on FIG. 8) One of the combinations of (T2) and V (T3)) is selected according to the value of a 6-bit digital signal (for example, lower 6 bits including LSB).
  • FIG. 9 and 10 are diagrams for explaining the fifth specification in the embodiment of FIG.
  • An example is shown.
  • the reference voltage is thinned out.
  • the 0th level to the 64th level are almost linear voltage levels, and are monotonically increasing or monotonically decreasing voltage levels.
  • FIG. 10 shows seven reference voltages (0th level, 4th level, 8th level, 32nd level, 56th level, 60th level, 64th level) set according to the specification of FIG.
  • the voltage level corresponding to the above equation (2) that can be output from the operational amplifier 60 when combined as the third voltage (V (T1), V (T2), V (T3)) is shown.
  • FIG. 10 shows all combinations of seven reference voltages.
  • the voltage levels output from the operational amplifier 60 all exist from the 0th level to the 63rd level, and the seven reference voltages (0th level, 4th level, 8th level) set in FIG. , 32 level, 56th level, 60th level, 64th level), it can be confirmed that 64 voltage levels from 0th level to 63rd level can be output.
  • the combinations of the first to third voltages (V (T1), V (T2), V (T3)) for outputting the ninth level, the tenth level, the twelfth level,... 3 is a combination of three reference voltages having different voltage levels, and when these voltage levels are output, the first to third voltages V (T1), V (T2), V ( T3) are different from each other, and there is no combination in which the same reference voltage overlaps.
  • the first decoder 10 in FIG. 1 has first to third voltages (V (T1), V) based on FIG. 10 corresponding to the voltage levels from the 0th level to the 63rd level output from the operational amplifier 60.
  • One of the combinations of (T2) and V (T3)) is selected according to the value of a 6-bit digital signal (for example, lower 6 bits including LSB).
  • FIG. 11 and 12 are diagrams for explaining the sixth specification in the embodiment of FIG.
  • An example is shown.
  • the reference voltage is thinned out.
  • the 0th level to the 64th level are almost linear voltage levels, and are monotonically increasing or monotonically decreasing voltage levels.
  • FIG. 12 shows the seven reference voltages (the 0th level, the 4th level, the 12th level, the 32nd level, the 52nd level, the 60th level, and the 64th level) set in FIG. 3 shows a voltage level corresponding to the above equation (2) that can be output from the operational amplifier 60 when combined as a voltage of 3 (V (T1), V (T2), V (T3)).
  • FIG. 12 shows all combinations of seven reference voltages.
  • the combination of the first to third voltages (V (T1), V (T2), V (T3)) for outputting the fifth level, the seventh level, the fourteenth level,... 3 is a combination of three reference voltages having different voltage levels, and when these voltage levels are output, the first to third voltages V (T1), V (T2), V ( T3) are different from each other, and there is no combination in which the same reference voltage overlaps.
  • the first decoder 10 in FIG. 1 has first to third voltages (V (T1), V) based on FIG. 12 corresponding to voltage levels from the 0th level to the 63rd level output from the operational amplifier 60.
  • V (T1), V first to third voltages
  • One of the combinations of (T2) and V (T3)) is selected corresponding to the value of the 6-bit digital signal.
  • FIG. 13 and 14 are diagrams for explaining the seventh specification in the embodiment of FIG.
  • An example is shown.
  • the 0th level to the 64th level are almost linear voltage levels, and are monotonically increasing or monotonically decreasing voltage levels.
  • FIG. 14 shows seven reference voltages (0th level, 4th level, 20th level, 32nd level, 44th level, 60th level, 64th level) set according to the specification of FIG.
  • the voltage level corresponding to the above equation (2) that can be output from the operational amplifier 60 when combined as the third voltage (V (T1), V (T2), V (T3)) is shown.
  • FIG. 14 shows all combinations of seven reference voltages.
  • the voltage levels output from the operational amplifier 60 all exist from the 0th level to the 63rd level, and the seven reference voltages (0th level, 4th level, 20th level) set in FIG. , 32th level, 44th level, 60th level, 64th level), it can be confirmed that 64 voltage levels from 0th level to 63rd level can be output.
  • the combinations of the first to third voltages (V (T1), V (T2), V (T3)) for outputting the sixth level, the seventh level, the ninth level, and others are the first to third levels. Is a combination of three reference voltages having different voltage levels. When these voltage levels are output, the first to third voltages V (T1), V (T2), and V (T3 ) Are different from each other, and there is no combination in which the same reference voltage overlaps.
  • the first decoder 10 in FIG. 1 has first to third voltages (V (T1), V) based on FIG. 12 corresponding to voltage levels from the 0th level to the 63rd level output from the operational amplifier 60.
  • V (T1), V first to third voltages
  • One of the combinations of (T2) and V (T3)) is selected corresponding to the value of the 6-bit digital signal.
  • FIG. 15 is a diagram illustrating a second embodiment of the digital-analog conversion circuit.
  • the second embodiment includes a reference voltage group including N (4 ⁇ N ⁇ 1 + 2 ⁇ (n ⁇ 2)) reference voltages in addition to the configuration of the first embodiment of FIG.
  • a reference voltage generation circuit 50 that generates m, and m (m> n) bit digital signals (D (m ⁇ 1) to D0 and its complementary signal D) including an n bit (n is a positive number of 4 or more) digital signal.
  • D-1) B to D0B and a second decoder 20 are further provided.
  • the first decoder 10 and the second decoder 20 together constitute a decoder block 40.
  • the voltage levels that can be output from the operational amplifier 60 are the first to Sth non-overlapping voltages having 2 ⁇ n voltage levels of the Az level to the (Az ⁇ 1 + 2 ⁇ n) level as one section. Including a section (where S is a positive number equal to or greater than 1. Az is a reference level of the z-th section (1 ⁇ z ⁇ S)).
  • the reference voltage group input from the reference voltage generation circuit 50 to the decoder 20 is divided into four voltage levels from the Az level to every fourth level: Az + 4k (where k is from 0 to 2 ⁇ ( Among the reference voltages corresponding to the integers up to n-2), the four reference voltages Az, (Az + 4), (Az-4 + 2 ⁇ n), and (Az + 2 ⁇ n) are excluded ⁇ 3 + 2 A reference voltage obtained by thinning out a predetermined number (one or more) from ⁇ (n ⁇ 2) ⁇ reference voltages.
  • the second decoder 20 receives the upper (mn) bits (D (m ⁇ 1) to Dn and its complementary signal D (m ⁇ ) of the m-bit digital signal from the reference voltage group input from the reference voltage generation circuit 50.
  • N N is 4 or more, 2 ⁇ (n) assigned to one corresponding section (for example, the z-th section) among the first to S-th sections according to the values of B to DnB) -2)
  • the following positive number) reference voltages Az, (Az + 4),..., (Az-4 + 2 ⁇ n), (Az + 2 ⁇ n) reference voltages are selected and sent to the first decoder 10. Output.
  • the first decoder 10 is subordinate to the N reference voltages selected by the second decoder 20: Az, (Az + 4),..., (Az-4 + 2 ⁇ n), (Az + 2 ⁇ n).
  • First to third voltages V (T1), V (T2) according to the values of n-bit digital signals (D (n-1) to D0 and their complementary signals D (n-1) B to D0B) , V (T3)). Note that the configurations and operations of the first decoder 10 and the operational amplifier 60 are the same as those in FIG.
  • the digital-to-analog converter circuit of FIG. 15 described above may be configured to include a section in which the voltage level that can be output from the operational amplifier 60 is different from the specifications of FIGS. 2 (A) to 14.
  • the decoder block 40 further includes a third decoder 30 corresponding to sections of different specifications, as shown in FIG.
  • a reference voltage corresponding to the first to third voltages selected by the third decoder 30 is input from the reference voltage generation circuit 50 to the third decoder 30.
  • the third decoder 30 corresponds to the values of m bits (D (m ⁇ 1) to D0 and its complementary signals D (m ⁇ 1) B to D0B) of the digital signal input in common with the first decoder 10.
  • the first to third voltages are selected and input to the operational amplifier 60.
  • the operational amplifier 60 is shared by the first decoder 10 and the third decoder 30. In FIG. 24, there is no overlap of sections between different specifications, and when one of the first decoder 10 and the third decoder 30 selectively outputs the first to third voltages, the other decoder is not selected. The first to third voltages are not output. In FIG. 24, with respect to voltages V (T1), V (T2), and V (T3) output to the three terminals T1, T2, and T3 shared by the first decoder 10 and the third decoder 30.
  • the operational amplifier 60 outputs a voltage corresponding to the calculation of the above equation (2).
  • the operational amplifier 60 has the following equation (1).
  • a voltage corresponding to the calculation result (Vout ⁇ VIN3 + VIN2 + 2 ⁇ VIN1) ⁇ / 4) is output.
  • the first to third voltages selected by the third decoder 30 are VIN2, VIN3, and VIN1, respectively, and are output to the terminals T1, T2, and T3 of the operational amplifier 60, respectively.
  • FIG. 16 is a diagram for explaining the first specification in the second embodiment of FIG.
  • V (T1), V (T2), V (T3) the first to third voltages
  • D9 to D0 the value of the 10-bit digital signal
  • the second decoder 20 performs the Az, (Az + 4), (Az + 12), and (Az + 16) th Az corresponding to the value of the digital signal (D9, D8, D7, D6, D5, D4). Are selected and output to the first decoder 10.
  • the total number of reference voltages (potentials different from each other) input to the decoder 40 is 193 with respect to the output voltage level number 1024.
  • the number of reference voltages of the digital-analog conversion circuit (DA converter 310) expanded to a 10-bit digital signal is 257.
  • the total number of reference voltages is reduced by about 1 ⁇ 4 of the related technology (FIGS. 21 and 22).
  • the total number of reference voltages is reduced, the total number of decoder switch transistors is also reduced. As a result, the area of the decoder can be reduced.
  • the operational amplifier 60 can be the same as the operational amplifier of FIGS. 21 and 23 (voltage follower circuit 317). Therefore, in this embodiment, the area of the operational amplifier 60 does not increase as compared with the related technology of FIG.
  • FIG. 18 shows the number of reference voltages when the specifications of FIGS. 2A to 14 are applied to all 1024 voltage levels in the digital-to-analog conversion circuit of FIG. 15 corresponding to a 10-bit digital signal.
  • FIG. 18 shows the number of voltage levels per section for each of the specifications of FIGS. 2A and 2B, FIGS. 3 and 4, FIGS. 5 and 6, and FIGS. Indicates the number of reference voltages per section, the section function, and the number of reference voltages for all sections.
  • the number of reference voltages per section is obtained by adding the reference voltage corresponding to the reference voltage level of the next section to the number of reference voltages corresponding to the voltage level in the section (corresponding to “+1”).
  • the number of reference voltages in all sections is a value obtained by adding one of the 1024th level reference voltages to the product of the number of reference voltages corresponding to the voltage level in each section and the section function.
  • the number of reference voltages can be further reduced by applying the specifications of FIGS. 3 to 14 from the specifications of FIGS. 2A and 2B described above.
  • the reference voltage number of the digital-analog conversion circuit in FIG. 15 corresponding to a 12-bit digital signal is much larger than the reference voltage number of the expanded digital-analog conversion circuit (DA converter 310) in FIG.
  • the number of reference voltages is reduced, and the area of the decoder can be greatly reduced.
  • the output voltage level (16 levels) in each section is substantially linear. For this reason, nonlinear characteristics are possible in a plurality of sections, but it is difficult to realize nonlinear voltage characteristics in one section (within 16 levels). However, for example, by combining the specifications of FIG. 22 in which the four levels are linear, it is possible to sufficiently cope with non-linear voltage characteristics that change relatively smoothly.
  • the digital-to-analog converter circuit of FIG. 24 capable of dealing with non-linear voltage characteristics will be described.
  • FIG. 17 is a diagram for explaining the second specification in the second embodiment.
  • the circuit configuration of the second specification corresponds to FIG.
  • FIG. 17 shows a modification of the specification of FIG.
  • the specifications are applied.
  • the reference voltage is set at 4 levels, the 0th level, the 4th level, the 8th level, the 12th level, and the 16th level (however, the 16th level is the standard of the 2nd section)
  • V (T1) and V (T2) in FIG. 17 may be interchanged with each other, and (VIN 2 and VIN 3 ) in FIG. 22 may also be interchanged with each other.
  • the digital-analog conversion circuit of FIG. 24 corresponding to the second specification (FIG. 17) further includes a third decoder 30 in addition to the decoder block 40 of FIG.
  • the third decoder 30 selects the first to third voltages (VIN2, VIN3, VIN1) for outputting the voltage level in the first section of FIG. 17 and outputs them to the terminals T1, T2, T3.
  • the first and second decoders 10 and 20 output the first to third voltages (V (T1), V (T2), V (T3)) is selected and output to terminals T1, T2, and T3.
  • the third decoder 30 receives five references of the 0th level, the 4th level, the 8th level, the 12th level, and the 16th level in the first section of FIG. 17 from the reference voltage generation circuit 50.
  • the first to third voltages (VIN2, VIN3, VIN1) corresponding to the first section (0th level to 15th level) in FIG. 17 are selected and output to the terminals T1, T2, T3.
  • the operational amplifier 60 (1: 1: 2 interpolation amplifier) converts the first to third voltages (VIN2, VIN3, VIN1) output to the terminals T1, T2, T3 to (V (T1), V (T2). ), V (T3)), and outputs a voltage corresponding to the calculation result of the above equation (2). Note that the voltage output from the operational amplifier 60 corresponds to the calculation result of the above equation (1) for the first to third voltages (VIN2, VIN3, VIN1) selected by the third decoder 30. Of course.
  • the first and second decoders 10 and 20 receive three voltage levels ⁇ 63 sections + 1024 levels from the reference voltage generation circuit 50 for 63 sections from the second section to the 64th section in FIG.
  • the voltage (V (T1), V (T2), V (T3)) is selected and output to the terminals T1, T2, T3.
  • the operational amplifier 60 (1: 1: 2 interpolation amplifier) receives the first to third voltages (V (T1), V (T2), V (T3)) output to the terminals T1, T2, and T3. Input and output a voltage corresponding to the calculation result of the above equation (2).
  • a specification different from that shown in FIG. 22 may be applied to the non-linear voltage characteristic section.
  • a reference voltage corresponding to each voltage level in the section of the non-linear voltage characteristic may be provided on a one-to-one basis, and a decoder for selecting the reference voltage may be further added to the decoder block 40 in FIG.
  • the operational amplifier 60 can be shared with the added decoder.
  • the added decoder selects the first to third voltages (V (T1), V (T2), V (T3)) by duplicating the reference voltage equal to the output voltage level according to the digital signal.
  • V (T1), V (T2), V (T3) the first to third voltages
  • the specifications of FIGS. 3 to 14 can be set in the same manner as the specifications of FIG. That is, the specifications of FIGS. 3 to 14 are applied to the section of the linear voltage characteristic at all voltage levels, and the section including the non-linear voltage characteristic is different from the present embodiment such as the specification of FIG. Specification can be applied.
  • a plurality of specifications shown in FIGS. 2A to 14 may be combined with a linear voltage characteristic section (one section is 16 levels or more).
  • the decoder block 40 of FIG. 15 includes the first and second decoders 10 and 20 for each of a plurality of specifications, and the operational amplifier 60 is shared by the first decoder 10 for each of the plurality of specifications. It becomes the composition to be done.
  • FIG. 19 is a diagram showing a main configuration of the data driver of the display device according to the third embodiment of the present invention.
  • This data driver corresponds to, for example, the data driver 980 in FIG. 20A (the display element is a liquid crystal or an organic light emitting diode).
  • the data driver includes a shift register 801, a data register / latch 802, a level shifter group 803, a reference voltage generation circuit 804, a decoder circuit group 805, and an output circuit group 806. Is done.
  • the reference voltage generation circuit 804 generates N reference voltages in FIG. Alternatively, the reference voltage generation circuit 50 of FIG. 15 is included.
  • the decoder circuit group 805 includes a plurality of first decoders 10 in FIG. 1 corresponding to the number of outputs or a plurality of decoder blocks 40 in FIG.
  • the output circuit group 806 includes a plurality of operational amplifiers 60 shown in FIGS. 1 and 15 corresponding to the number of outputs.
  • a reference voltage group output from the reference voltage generation circuit 804 is input in common to a plurality of decoders (or decoder blocks) constituting the decoder circuit group 805.
  • the shift register 801 determines the data latch timing based on the start pulse and the clock signal CLK. Based on the timing determined by the shift register 801, the data register / latch 802 develops the input video digital data into digital data signals for each output unit, latches for each predetermined number of outputs, and according to the control signal And output to the level shift circuit group 803.
  • the level shifter group 803 converts the level of each output unit digital data signal output from the data register / latch 802 from a low amplitude signal to a high amplitude signal, and outputs the result to the decoder circuit group 805.
  • the decoder circuit group 805 generates, for each output, a reference voltage (first to third voltages (V (T1), V)) corresponding to an input digital data signal from the reference signal group generated by the reference signal generation circuit 804. V (T2), V (T3)) is selected.
  • the output circuit group 806 includes one or a plurality of reference voltages (first to third voltages (V (T1), V (T2), V) selected by a corresponding decoder of the decoder circuit group 805. (T3)) is input, and a gradation signal corresponding to one or a plurality of reference voltages is amplified and output.
  • the output terminal group of the output circuit group 806 is connected to the data line (962 in FIG. 20A) of the display device.
  • the shift register 801 and the data register / latch 802 are logic circuits and are generally constituted by a low voltage (for example, 0 V to 3.3 V) and supplied with a corresponding power supply voltage.
  • the level shifter group 803, the decoder circuit group 805, and the output circuit group 806 are generally configured with a high voltage (for example, 0V to 18V) necessary for driving the display element, and are supplied with corresponding power supply voltages.
  • the number of reference voltages necessary for the number of voltage levels output from the output circuit (operational amplifier 60) is greatly reduced, and the number of transistor switches constituting the decoder circuit is greatly reduced.
  • a data driver and a display device that can reduce the decoder area can be realized.
  • FIG. 25 shows 4-bit digital from the reference voltage (corresponding to four reference voltages of the 0th level, the 4th level, the 12th level, and the 16th level in FIG. 2A) input to the decoder 10 of FIG.
  • the decoder 10 of FIG. Corresponding to the signals (D3, D2, D1, D0), voltages V (T1), V (T2), V (T3) selectively output to the output terminals T1, T2, T3 of the decoder 10 and the operational amplifier 60 Shows the relationship with the voltage Vout calculated and output based on the voltages V (T1), V (T2), and V (T3).
  • each voltage is indicated by a voltage level number, and a digital signal is indicated by a binary value (0 or 1).
  • FIG. 25 is the same as the specification of the first section in FIG.
  • the 0th level corresponding to the reference level of the 0th level to the 15th level in FIG. 25 may be replaced with a voltage level that is an arbitrary multiple of 16 to obtain a section corresponding to 16 levels from the reference level.
  • FIG. 26 is a diagram showing an example (10-1A) of the circuit configuration of the decoder 10 that realizes the specification of FIG.
  • reference voltages input to the decoder 10-1A are V (Az), V (Az + 4), V (Az + 12), and V (Az + 16), and include a 4-bit digital signal (LSB) as a digital signal.
  • Lower 4 bits) (D3, D2, D1, D0) and their complementary signals (D3B, D2B, D1B, D0B) are input.
  • the reference voltages V (Az), V (Az + 4), V (Az + 12), and V (Az + 16) are the 0th level (V0), the 4th level (V4), and the 12th level in FIG.
  • the decoder 10-1A shown in FIG. 26 includes an N-channel transistor switch (hereinafter referred to as an Nch transistor switch). Note that the Nch transistor switch is indicated by a symbol in which “x” is added to “ ⁇ ” for convenience of the drawing.
  • the Nch transistor switch is controlled by a digital signal Dx (x is an integer of 0 or more) and its complementary signal DxB.
  • the Nch transistor to which the signal Dx is input The switch is turned on (conductive), and the Nch transistor switch to which the complementary signal DxB is input is turned off (non-conductive).
  • the Nch transistor to which the signal Dx is input The switch is turned off (non-conductive), and the Nch transistor switch to which the complementary signal DxB is input is turned on (conductive).
  • Pch transistor switch When configured with a P-channel transistor switch (hereinafter referred to as a Pch transistor switch), it is easy to replace the positive signal (Dx) and complementary signal (DxB) of each bit signal and replace the Nch transistor switch with a Pch transistor switch. Can be configured. In the following circuit configuration, a configuration example with an Nch transistor switch is shown, but it goes without saying that it can be converted to a configuration with a Pch transistor switch.
  • the decoder 10-1A shown in FIG. 26 corresponds to the specification shown in FIG.
  • the value of the digital signal for example, Dx
  • the (Nch) transistor switch in FIG. 26 is controlled by the positive signal (Dx).
  • the 16th level of the reference voltage of FIG. 25 is not selected as V (T2).
  • the decoder 10-1A shown in FIG. 26 includes 44 Nch transistor switches.
  • FIG. 25 shows an example in which the reference voltages input to the nodes N1 to N4 are selected in order from the lower order (D0, D0B) to the higher order (D3, D3B) of the digital signal. In this case, the order of the digital signals may be arbitrarily changed.
  • FIG. 27 is a diagram showing another circuit configuration example 10-1B of the decoder 10 that realizes the specification of FIG.
  • a decoder 10-1B in FIG. 27 is a modification of the decoder 10-1A shown in FIG.
  • This circuit configuration makes it possible to reduce the area by reducing the number of transistor switches.
  • the reference voltage input to the decoder 10-1B, the digital signal, and the voltage selectively output to the terminals T1 to T3 are all the same as in FIG.
  • the decoder 10-1B in FIG. 27 reduces the number of transistors by deleting one of the transistor switches that select the same voltage in common in the decoder 10-1A in FIG.
  • the transistor switches 103, 110 are related to the transistor switches (101, 102, 103) between the nodes N1 and T1 and the transistor switches (108, 109, 110) between the nodes N2 and T1.
  • ON / OFF is controlled by different digital signals D0B and D0, but transistor switches 101 and 108 are controlled ON / OFF by the digital signal D3B, and transistor switches 102 and 109 are ON by the digital signal D2B. ⁇ Off is controlled.
  • the transistor switches 106 and 116 between the nodes N1 and T3 and the transistor switches 116 and 117 between the nodes N2 and T2 are shared by the D3B. Controlled and conducted in common with terminal T3 when selected. Therefore, in the decoder 10-1B in FIG. 27, the output side nodes of the transistor switches 107 and 117 in FIG. 26 are connected in common (node N14 in FIG. 27), the transistor switch 116 in FIG. 26 is left, and the transistor switch 106 in FIG. Has been deleted.
  • the transistor switches 113 and 126 are related to the transistor switches (113, 114, 115) between the nodes N2 and T2 and the transistor switches (126, 127, 128) between the nodes N3 and T2. Are commonly controlled on / off by D3, and the transistor switches 114 and 127 are commonly controlled on / off by D2B.
  • the transistor switches 113, 114, 126, and 127 are electrically connected to the terminal T2. Therefore, in the decoder 10-1B of FIG. 27, the output side nodes of the transistor switches 115 and 128 of FIG. 26 are connected in common (node N16 of FIG. 27), and the transistor switches (126 and 127) of FIG.
  • the transistor switches (113, 114) are deleted.
  • both the transistor switches 126 and 129 are controlled by D3, and are electrically connected to the terminal T2 when selected. Therefore, in the decoder 10-1B of FIG. 27, the output side nodes of the transistor switches 127 and 130 of FIG. 26 are connected in common (node N17 of FIG. 27), the transistor switch 129 of FIG. 26 is left, and the transistor switch 126 of FIG. Has been deleted.
  • the transistor switches 118 and 131 are related to the transistor switches (118, 119, 120) between the nodes N2 and T2 and the transistor switches (131, 132, 133) between the nodes N3 and T3. Are commonly controlled on / off by D3, and transistor switches 119 and 132 are commonly controlled on / off by D2B.
  • the transistor switches 118, 119, 131, and 132 are electrically connected in common with the terminal T3 when selected. Therefore, in the decoder 10-1B of FIG. 27, the output side nodes of the transistor switches 120 and 133 of FIG. 26 are commonly connected (node N18), and the transistor switches (118 and 119) of FIG. 26 are deleted.
  • both the transistor switches 131 and 134 are controlled by D3, and are electrically connected to the terminal T3 when selected. Therefore, in the decoder 10-1B of FIG. 27, the output side nodes of the transistor switches 132 and 135 of FIG. 26 are connected in common (node N19), the transistor switch 134 of FIG. 26 is left, and the transistor switch 131 of FIG. ing.
  • the transistor switches 134 and 142 are related to the transistor switches (134, 135, 136) between the nodes N3 and T3 and the transistor switches (142, 143, 144) between the nodes N4 and T3.
  • On / off is commonly controlled by D3
  • transistor switches 135 and 143 are commonly controlled on / off by D2
  • the transistor switches 134, 135, 143, and 143 are electrically connected to the terminal T3 when selected. . Therefore, in the decoder 10-1B of FIG. 27, the output side nodes of the transistor switches 136 and 144 of FIG. 26 are connected in common (node N20 of FIG. 27), leaving the transistor switches (134, 135), and FIG. Transistor switches (142, 143) are deleted. *
  • the transistor switches 123 and 125 having one end connected to the node N3 are commonly controlled by D0B and are electrically connected to the node N3 when selected. Therefore, in the decoder 10-1B of FIG. 27, the transistor switches 123 and 125 of FIG. 26 are combined into one, the transistor switch 123 is left, and the transistor switch 125 of FIG. 26 is deleted. Similarly, the transistor switches 139 and 141 whose one ends are connected to the node N4 in FIG. 26 are commonly controlled by D0, and are electrically connected to the node N4 when selected. Therefore, in the decoder 10-1B of FIG. 27, the transistor switches 139 and 141 of FIG. 26 are combined into one, the transistor switch 139 of FIG. 26 is left, and the transistor switch 141 of FIG. 26 is deleted.
  • the transistor switches 121, 122, 123) between the nodes N3 and T1 and the transistor switches (137, 138, 139) between the nodes N4 and T3 the transistor switches 121 and 137 are connected by D3B. On / off is controlled in common, and transistor switches 122 and 138 are controlled on / off in common by D2, and these transistors 121, 122, 137, and 138 are electrically connected to the terminal T1 when selected. Therefore, in the decoder 10-1B of FIG. 27, the output side nodes of the transistor switches 123 and 139 are connected in common (node N15), the transistor switches (121 and 122) of FIG.
  • the transistor switches (137, 138) may be deleted.
  • the transistor switches (124, 125) between the nodes N3 and T1 and the transistor switches (140, 141) between the nodes N4 and T3 are controlled in common by the transistor switches 124 and 140 by D3. And conducts in common with the terminal T1 when selected. Therefore, in the decoder 10-1B of FIG. 27, the output side nodes of the transistor switches 125 and 141 of FIG. 26 are connected in common (node N15), and the transistor switch 140 of FIG. 26 is deleted.
  • the number of transistor switches in the decoder 10-1B is 26.
  • the number of transistor switches in the decoder 10-1A in FIG. 26 is 44. Compared with the configuration of FIG. 26, the number of transistor switches is greatly reduced.
  • a digital signal is changed from the lower bit side (D0, D0B) to the upper bit side (D3) as in the decoder 10-1B shown in FIG. , D3B), a configuration in which the reference voltage is selected in order.
  • the upper bit side digital signal has more transistor switches to be controlled in common than the lower bit side digital signal, and the number of output side terminals of the decoder (T1, T2, T3).
  • the number of nodes on the input side of the decoder is as large as four (N1, N2, N3, and N4), and can be reduced by arranging transistor switches controlled by higher-order digital signals on the output side of the decoder. This is because the number of transistors increases.
  • FIG. 28 is a diagram showing the results of circuit simulation using the decoder circuit 10-1A of FIG. 26 and the decoder circuit 10-1B of FIG.
  • the horizontal axis represents the voltage level, but the value of the digital signal corresponding to each voltage level from the first level to the fifteenth level (“0” is Low level, “1” is High level).
  • (D3, D2, D1, D0) and (D3B, D2B, D1B, D0B) are input respectively.
  • the reference voltages V0, V4, V12, and V16 input to the decoder are set to 0V, 0.8V, 2.4V, and 3.2V, respectively.
  • V (T1) and V (T2) selectively output to the output-side terminals T1, T2, and T3 of the decoder circuit when the value of the digital signal is changed from the first level to the fifteenth level.
  • V (T3) and the voltage Vout that is calculated and output from the operational amplifier 60 based on the voltages V (T1), V (T2), and V (T3). From FIG. 28, the voltages V (T1), V (T2), V (T3) and the voltage Vout selectively output by the decoder circuit 10-1A of FIG. 26 and the decoder circuit 10-1B of FIG. It was confirmed that it was consistent with the relationship shown in.
  • the voltages V (T1), V selectiveively output to the output terminals T1, T2, T3 of the decoder 10
  • T2 and V (T3) and the voltage Vout calculated and output from the operational amplifier 60 is shown.
  • the output terminals T1, T2, and T3 of the decoder 10 are connected to the input of the operational amplifier 60.
  • the terminals T1, T2, and T3 correspond to the terminals IN2, IN3, and IN1 of FIG. 23, respectively, and transistors N5, N7
  • the transistors N1 and N3 are connected to the respective gate terminals.
  • Each transistor has a parasitic capacitance corresponding to the size (transistor size), and a gate capacitance exists at the gate terminal. That is, when the reference voltage Vz is selected in common as V (T1), V (T2), and V (T3), the gate capacitances of the four transistors N1, N3, N5, and N7 of the operational amplifier of FIG.
  • V (T1), V (T2), V (T3) V (T1), V (T2), V (T3).
  • V (T1), V (T2), V (T3) the minimum combination in which the same reference voltage is commonly selected as V (T1), V (T2), V (T3).
  • V (T1), V (T2), V (T3)) are selected by at least two or three different reference voltages.
  • V (T1), V (T2), V (T3) When the input voltages (V (T1), V (T2), V (T3)) of the operational amplifier 60 are selected not only by one reference voltage but also by two reference voltages, three The degree of delay varies depending on the case where the reference voltage is selected.
  • the input capacitance (gate) of the operational amplifier 60 In addition to the capacitance, the branching into three paths corresponding to the terminals T1, T2, and T3 within the decoder 10 also increases the parasitic capacitance of the transistor switch that passes through the decoder 10.
  • This combination may most affect the delay in voltage change of the input and output of the operational amplifier 60. Therefore, in this embodiment, such a combination is set to be minimum (only one set).
  • the voltage level (the 0th level in FIG. 29) is set. It is possible to take other measures to reduce the impedance of the decoder 10 when selected.
  • FIG. 30 is a diagram showing another circuit configuration example of the decoder 10 that realizes the specification of FIG.
  • the reference voltage and digital signal input to the decoder 10-2 are the same as those in FIG.
  • the voltages V (T1), V (T2), and V (T3) selectively output to the terminals T1 to T3 correspond to the specifications of FIG.
  • the decoder 10-2 in FIG. 30 is a configuration example with an Nch transistor switch.
  • the decoder 10-2 in FIG. 30 is configured to reduce the number of transistor switches and reduce the area, similarly to the decoder 10-1B in FIG.
  • the configuration before reducing the number of transistors with respect to the decoder 10-1B in FIG. 27 is the decoder 10-1A in FIG. 26, but the circuit configuration before reducing the number of transistors is different from the circuit configuration in FIG. Illustration of a decoder circuit (a decoder circuit corresponding to the specification of FIG. 29) is omitted.
  • the method for reducing the number of transistors in FIG. 30 is the same as that in FIG. 27, and detailed description thereof is omitted.
  • the number of transistor switches is 24, and the number of transistor switches is greatly reduced as in the decoder 10-1B in FIG.
  • the decoder 10-2 of FIG. 30 is configured to select the reference voltage in order from the lower side (D0, D0B) to the upper side (D3, D3B). .
  • a circuit simulation as shown in FIG. 28 is performed, and the voltages V (T1), V (T2), and V (T3) selected and output by the decoder circuit 10-2 in FIG. It is confirmed that the voltage Vout matches the relationship shown in the specification of FIG. However, the simulation result is omitted.
  • FIG. 32 is a diagram showing a circuit configuration example 10-3 of the decoder 10 that realizes the specification of FIG.
  • the reference voltages input to the decoder 10-3 are V (Az), V (Az + 4), V (Az + 12), V (Az + 20), V (Az + 28), V (Az + 32),
  • the input digital signal is a 5-bit digital signal (D4, D3, D2, D1, D0) and its complementary signal (D4B, D3B, D2B, D1B, D0B).
  • the decoder 10-3 in FIG. 32 is configured by an Nch transistor switch.
  • the decoder 10-3 has a configuration in which the area can be reduced by reducing the number of transistor switches.
  • 27 is the decoder 10-1A in FIG. 26 before the number of transistors is reduced with respect to the decoder 10-1B in FIG. 27, but the circuit configuration before the number of transistors is reduced (see FIG. 32).
  • the decoder circuit corresponding to the 31 specification is not shown.
  • the method of reducing the number of transistors in FIG. 32 is the same as in FIG. 27, and detailed description thereof is omitted.
  • the decoder 10-3 of FIG. 32 is configured to select the reference voltage in order from the lower order (D0, D0B) to the upper order (D4, D4B). .
  • the levels of the five reference voltages are 0th level, 4th level, 16th level,
  • the voltage V selected and outputted to the output terminals T1, T2 and T3 of the decoder 10 corresponding to the same 5-bit digital signals (D4, D3, D2, D1, and D0) input from the 28th and 32nd levels) Relationship between (T1), V (T2), and V (T3) and the voltage Vout calculated and output from the operational amplifier 60 of FIG. 1 based on the input voltages V (T1), V (T2), and V (T3) It is shown.
  • FIG. 34 is a diagram showing an example of a circuit configuration of a decoder that realizes the specification of FIG. 34, in the decoder 10-4, the input reference voltages are V (Az), V (Az + 4), V (Az + 16), V (Az + 28), V (Az + 32), and the input digital signal is A 5-bit digital signal (D4, D3, D2, D1, D0) and its complementary signal (D4B, D3B, D2B, D1B, D0B).
  • the decoder 10-4 in FIG. 34 is composed of an Nch transistor switch.
  • the decoder 10-4 in FIG. 34 has a configuration in which the number of transistor switches can be reduced to reduce the area, similarly to the decoder 10-1B in FIG.
  • the configuration before reducing the number of transistors with respect to the decoder 10-1B of FIG. 27 is the decoder 10-1A of FIG. 26, but the circuit configuration before reducing the number of transistors with respect to the configuration of FIG.
  • the decoder circuit corresponding to the specification 33 is omitted.
  • the method for reducing the number of transistors is the same as in FIG.
  • the decoder 10-4 in FIG. 34 is configured to select the reference voltage in order from the lower order side (D0, D0B) to the upper order side (D4, D4B). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 参照電圧の総数を削減するデジタルアナログ変換回路(DAC)を提供する。DACはN個の参照電圧とnビット(n≧4)のデジタル信号を入力し第1乃至第3の電圧を選択する第1のデコーダ(10)と、前記第1乃至第3の電圧を入力し(第1の電圧+第2の電圧+2×第3の電圧)/4の電圧レベルを出力する演算増幅器(60)を備える。演算増幅器(60)はnビットのデジタル信号の2^n通りの組み合わせのそれぞれに対して基準レベルとなる第Aレベルから第(A-1+2^n)レベルまでの2^n個の電圧レベルが出力可能とされ、N個の参照電圧は2^n個の出力電圧レベルである第Aレベル乃至第(A-1+2^n)レベルに対して第Aレベルから4レベル置きの電圧レベル:A+4k(但し、kは0から2^(n-2)までの整数)に対応する{1+2^(n-2)}個の参照電圧のうち第Aレベル、第(A+4)レベル、第(A-4+2^n)レベル、第(A+2^n)レベルの4個の参照電圧と、前記第Aレベルから4レベル置きの電圧レベルに対応する{1+2^(n-2)}個の参照電圧のうち前記4個の参照電圧以外の{-3+2^(n-2)}の参照電圧から予め定められた少なくとも1つの個数の参照電圧を間引いた、多くとも{-4+2^(n-2)}の参照電圧を含み、Nは4以上、2^(n-2)である(図1)。

Description

デジタルアナログ変換回路及び表示装置のデータドライバ
[関連出願についての記載]
 本発明は、日本国特許出願:特願2011-047282号(2011年3月4日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、デジタルアナログ変換回路とデータドライバ及びそれを用いた表示装置に関する。
 現在、表示装置は、薄型、軽量、低消費電力を特徴とする液晶表示装置(LCD)が幅広く普及し、ノートPCやモニターだけでなく、大画面液晶テレビや多機能携帯電話機、タブレット型高機能情報端末などに用途が広がっている。これらの液晶表示装置としては、高精細表示が可能なアクティブマトリクス駆動方式の液晶表示装置が多く利用されている。また液晶表示装置に次ぐ薄型表示装置として、自発光型で鮮明な画質を特長とする有機発光ダイオード(OLED)を用いたアクティブマトリクス駆動方式の表示装置の開発も進んでいる。
 図20を参照して、アクティブマトリクス駆動方式の薄型表示装置(液晶表示装置及び有機発光ダイオード表示装置)の典型的な構成について概説しておく。なお、図20(A)には、薄型表示装置の要部構成がブロック図にて示されている。図20(B)には、液晶表示装置の表示パネルの単位画素の要部構成、図20(C)には、有機発光ダイオード表示装置の表示パネルの単位画素の要部構成がそれぞれ示されている。図20(B)、及び図20(C)ではそれぞれ単位画素が模式的な等価回路で示されている。
 図20(A)を参照すると、一般に、アクティブマトリクス駆動方式の薄型表示装置は、電源回路940、表示コントローラー950、表示パネル960、ゲートドライバ970、データドライバ980を備えている。表示パネル960は、画素スイッチ964と表示素子963を含む単位画素がマトリクス状に配置され(例えばカラーSXGA(Super eXtended Graphics Array)パネルの場合、1280×3画素列×1024画素行)、各単位画素にゲートドライバ970から出力される走査信号を送る走査線961と、データドライバ980から出力される階調電圧信号を送るデータ線962とが格子状に配線される。なお、ゲートドライバ970及びデータドライバ980は、表示コントローラー950によって制御され、それぞれ必要なクロック信号CLK、制御信号等が表示コントローラー950より供給され、映像データは、表示コントローラー950からデジタル信号にてデータドライバ980に供給される。電源回路940は、ゲートドライバ970、データドライバ980に必要な電源を供給する。表示パネル960は、半導体基板で構成され、特に大画面表示装置では、ガラス基板やプラスチック基板等の絶縁性基板上に薄膜トランジスタ(TFT)で画素スイッチ等を形成した半導体基板が広く使われている。
 上記表示装置は、画素スイッチ964のオン・オフを走査信号により制御し、画素スイッチ964がオンとなるときに、映像データに対応した階調電圧信号が表示素子963に印加され、該階調電圧信号に応じて表示素子963の輝度が変化することで画像を表示するものである。
 1画面分のデータの書き換えは、1フレーム期間(60Hz駆動時は通常、約0.017秒)で行われ、各走査線961で1画素行毎(ライン毎)、順次、選択(画素スイッチ964がオン)され、選択期間内に、各データ線962より階調電圧信号が画素スイッチ964を介して表示素子963に供給される。なお、走査線で複数の画素行を同時に選択したり、動画特性を向上させるため、フレーム周波数120Hzあるいは更に高いフレーム周波数で駆動が行われる場合もある。
<液晶表示装置>
 図20(A)及び図20(B)を参照すると、液晶表示装置において、表示パネル960は、単位画素として画素スイッチ964と透明な画素電極973をマトリクス状に配置した半導体基板と、面全体に1つの透明な電極(対向基板電極)974を形成した対向基板と、を備え、これら2枚の基板を対向配置させ、その間に液晶を封入した構造からなる。なお、単位画素を構成する表示素子963は、画素電極973、対向基板電極974、液晶容量971及び補助容量972を備えている。また表示パネルの背面に光源としてバックライト(不図示)を備えている。
 走査線961からの走査信号により画素スイッチ964がオン(導通)となるときに、データ線962からの階調電圧信号が画素電極973に印加され、各画素電極973と対向基板電極974との間の電位差により液晶を透過するバックライトの透過率が変化し、画素スイッチ964がオフ(非導通)とされた後も、該電位差を液晶容量971及び補助容量972で一定期間保持することで表示が行われる。
 なお、液晶表示装置の駆動では、液晶の劣化を防ぐため、対向基板電極974のコモン電圧に対して画素ごと通常1フレーム周期で電圧極性(正又は負)を切替える駆動(反転駆動)が行われる。代表的な駆動として、隣接画素間で異なる電圧極性となるようなドット反転駆動や隣接データ線間で異なる電圧極性となるようなカラム反転駆動がある。1つのデータ線には、ドット反転駆動では例えば1選択期間(1データ期間)毎に異なる電圧極性の階調電圧信号が出力され、カラム反転駆動では例えば1フレーム期間毎に異なる電圧極性の階調電圧信号が出力される。
<有機発光ダイオード表示装置>
 図20(A)及び図20(C)を参照すると、有機発光ダイオード表示装置において、表示パネル960は、単位画素として、画素スイッチ964、及び、2つの薄膜電極層に挟まれた有機膜からなる有機発光ダイオード982、有機発光ダイオード982に供給する電流を制御する薄膜トランジスタ(TFT)981をマトリックス状に配置した半導体基板を備えている。TFT981と有機発光ダイオード982は、異なる電源電圧が供給される電源端子984、985との間に直列形態で接続されており、TFT981の制御端子電圧を保持する補助容量983を更に備える。なお、1画素に対応した表示素子963は、TFT981、有機発光ダイオード982、電源端子984、985及び補助容量983で構成される。
 走査線961からの走査信号により画素スイッチ964がオン(導通)となるときに、データ線962からの階調電圧信号がTFT981の制御端子に印加され、該階調電圧信号に対応した電流が、TFT981から有機発光ダイオード982に供給され、電流に応じた輝度で有機発光ダイオード982が発光することで表示が行われる。画素スイッチ964がオフ(非導通)とされた後も、TFT981の制御端子に印加された該階調電圧信号を補助容量983で一定期間保持することで発光が保持される。なお画素スイッチ964、TFT981はnチャネル型トランジスタの例を示すが、pチャネル型トランジスタで構成することも可能である。また有機EL素子は電源端子984側に接続される構成も可能である。また、有機発光ダイオード表示装置の駆動では、液晶表示装置のような反転駆動は必要なく、データ線962には1選択期間(1データ期間)毎に画素に対応した階調電圧信号が出力される。
 なお、有機発光ダイオード表示装置は、上記に説明したデータ線962からの階調電圧信号に対応して表示を行う構成とは別に、データドライバから出力された階調電流信号を受けて表示を行う構成もあるが、本明細書では、データドライバから出力された階調電圧信号を受けて表示を行う構成について説明する。
<データドライバのデジタルアナログ変換回路>
 図20(A)において、ゲートドライバ970は、少なくとも2値の走査信号を供給すればよいのに対して、データドライバ980は、各データ線962を階調数に応じた多値レベルの階調電圧信号で駆動することが必要とされる。このため、データドライバ980は、映像データを階調電圧信号に変換するデコーダと、その階調電圧信号をデータ線962に増幅出力する増幅回路を含むデジタルアナログ変換回路を備えている。
 薄型表示装置を有するハイエンド用途のモバイル機器(多機能携帯電話機、タブレット型高機能情報端末)、ノートPC、モニタ、TV等において、高画質化(多色化)が進んでおり、現在RGB各8ビット映像データ信号(約1680万色)対応の表示装置が主流であるが、さらには10ビット映像データ信号(約11億色)以上に対応する表示装置の需要も予測される。特に、高画質を特長とする有機発光ダイオード表示装置では、10ビット映像データ信号への対応の要求が高まっている。
 このため、10ビット等、多ビットの映像データ信号に対応した階調電圧信号を出力するデータドライバにおいて、映像デジタルデータ信号を階調信号に変換するデジタルアナログ変換回路に入力される参照電圧として、階調数に対応した多くの参照電圧が必要となり、参照電圧配線の本数も増大する。
 また、多数の参照電圧から、映像データ信号に対応する電圧を選択するデコーダにおいてスイッチトランジスタの素子数が増大する。
 すなわち、多階調化(10ビット以上)の進展は、デジタルアナログ変換回路のデコーダの面積増を招き、ドライバのコスト増を招く。
 多ビットの映像データ信号を入力とするデジタルアナログ変換回路の面積は、デコーダの構成に依存している。このため、デコーダの面積を削減する技術が求められている。
 デコーダの面積を削減する関連技術として、内挿方式の演算増幅器を利用して参照電圧の数、及び、デコーダ構成におけるスイッチトランジスタの数を削減するデジタルアナログ変換回路が知られている。この種の関連技術として、例えば特許文献1(特開2002-43944号公報)には、図21、図22に示す構成が開示されている(図21、図22は、特許文献1の図1、図4に対応する)。なお、図21では、特許文献1の図1とは構成要素の参照番号を変更してある。
 図21において、DA変換器310は、6ビットのデジタル信号(Bit5~Bit0)を、64階調の電圧レベルに変換する。基準電圧を第0階調から4階調置きに第64階調までの17通りの電圧レベルで発生する基準電圧発生回路318と、6ビットのデジタル信号(Bit5~Bit0)に従って隣接する2つの基準電圧を選択し、ボルテージフォロア回路317の3端子(IN3、IN2、IN1)へ出力する選択回路316と、上記3端子の電圧(VIN3、VIN2、VIN1)を予め定められた重み付け演算して、前記2つの基準電圧の一方及び前記2つの基準電圧を線形補間した3つの電圧レベルの計4つの電圧レベルの中からいずれか1つを出力するボルテージフォロア回路317(非反転入力端子に信号を入力し出力端子を反転入力端子に接続した演算増幅器)を備えている。
 選択回路316は、デジタル信号の上位ビットBit5~Bit2に基づいて、電圧レベルが隣接する2つの基準電圧を選択する基準電圧選択回路316aと、下位ビットBit0、Bit1に基づいて、基準電圧選択回路316aで選択された2つの基準電圧の1つ又は2つをボルテージフォロア回路317の3端子(IN1、IN2、IN3)へ出力する生成電圧選択回路316bとを備えている。基準電圧選択回路316aでは、上位ビット(Bit5)から下位ビット側(Bit0側)に向かって順次選択を行う。すなわち、例えばBit5でオン・オフ制御されるスイッチSW(5,1)は、V0とV32の一方を選択し、Bit5でオン・オフ制御されるスイッチSW(5,2)は、V4とV36の一方を選択する。Bit5の1ビット下位のBit4でオン・オフ制御されるスイッチSW(4,1)は、スイッチSW(5,1)の出力と、V16とV48の一方を選択するスイッチSW(5,5)の出力との一方を選択する。Bit4の1ビット下位のBit3でオン・オフ制御されるスイッチSW(3,1)は、スイッチSW(4,1)の出力とSW(4,3)の出力との一方を選択し、Bit3の1ビット下位のBit2でオン・オフ制御されるスイッチSW(2,1)は、スイッチSW(3,1)の出力とSW(3,2)の出力との一方を選択する。そして、最下位側の2ビットBit1、Bit0(最下位ビット)で、SW(2、1)、SW(2,2)の2つの出力から、ボルテージフォロア回路317の3端子(IN3、IN2、IN1)への割当ての組み合せの中から1つを選択する。
 図22は、図21のDA変換器310において、6ビットのデジタル信号(Bit5~Bit0)と、選択回路316からボルテージフォロア回路317の3端子(IN3、IN2、IN1)への出力と、ボルテージフォロア回路317の出力電圧Voutとの関係を説明する図である。図22より、出力電圧Voutとして、例えば階調0~階調3の電圧をそれぞれ出力するとき、選択回路316は、3端子(IN3、IN2、IN1)に、
 (V0、V0、V0)、
 (V0、V4、V0)、
 (V0、V0、V4)、
 (V0、V4、V4)
をそれぞれ供給する。すなわち、3端子(IN3、IN2、IN1)には、隣接する2つの基準電圧V0とV4の一方又は両方が選択され、3端子の少なくとも2つの端子には、一方の基準電圧が重複して選択出力される。
 ボルテージフォロア回路317は、3端子の電圧(VIN3、VIN2、VIN1)を1対1対2の比率で重み付け演算し(加重平均、あるいは重み付け加算ともいう)、出力電圧Voutとして、次式(1)で与えられる電圧を出力する。
 Vout=(VIN3+VIN2+VIN1×2)/4    …(1)
 これにより、階調0、1、2、3を出力する場合、ボルテージフォロア回路317の3端子(IN3、IN2、IN1)には、隣接する2つの基準電圧V0、V4から、
 (V0、V0、V0)、
 (V0、V4、V0)、
 (V0、V0、V4)、
 (V0、V4、V4)
が入力され、階調0、1、2、3に対応した出力電圧Voutは、基準電圧V0、V4を線形補間した4つの電圧レベル、
 (V0+V0+2×V0)/4=V0
 (V0+V4+2×V0)/4=(3×V0+V4)/4、
 (V0+V0+2×V4)/4=(2×V0+2×V4)/4、
 (V0+V4+2×V4)/4=(V0+3×V4)/4、
 とされる。
 階調4以降も、上述した階調0~階調3と同様に、第(4j)~第(4j+3)階調(但し、jは1から15までの整数)をそれぞれ出力するとき、ボルテージフォロア回路317の3端子(IN3、IN2、IN1)には、隣接する基準電圧V(4j)、V(4j+4)から、
 (V(4j)、V(4j)、V(4j))、
 (V(4j)、V(4j+4)、V(4j))、
 (V(4j)、V(4j)、V(4j+4))、
 (V(4j)、V(4j+4)、V(4j+4))
が入力され、出力電圧Voutは、基準電圧V(4j)と、基準電圧V(4j)とV(4j+4)を線形補間した3つの電圧レベルの計4つの電圧レベル
 V(4j)、
 (3×V(4j)+V(4j+4))/4、
 (2×V(4j)+2×V(4j+4))/4、
 (V(4j)+3×V(4j+4))/4、
とされる。
 なお、特許文献1には、ボルテージフォロア回路317の具体例が開示されている。図23に、特許文献1の図2に開示された構成を示す。このボルテージフォロア回路は、共通接続されたソースが第1の電流源(NMOSトランジスタN9)に接続され、ゲートがIN1とOUTに接続された第1の差動対(NMOSトランジスタ対N1、N2)と、
 共通接続されたソースが第2の電流源(NMOSトランジスタN10)に接続され、ゲートがIN1とOUTに接続された第2の差動対(NMOSトランジスタ対N3、N4)と、
 共通接続されたソースが第3の電流源(NMOSトランジスタN11)に接続され、ゲートがIN2とOUTに接続された第3の差動対(NMOSトランジスタ対N5、N6)と、
 共通接続されたソースが第4の電流源(NMOSトランジスタN12)に接続され、ゲートがIN4とOUTに接続された第4の差動対(NMOSトランジスタ対N7、N8)とを備え、NMOSトランジスタN1、N3、N5、N7のドレインは能動負荷回路(カレントミラー)のPMOSトランジスタP1のドレインに接続され、NMOSトランジスタN2、N4、N6、N8のドレインは能動負荷回路(カレントミラー)のPMOSトランジスタP2のドレインとゲートに接続され、PMOSトランジスタP1、P2のソースは電源端子に共通に接続されている。さらに、ソースが電源端子に接続され、ドレインが出力端子OUTに接続され、ゲートがPMOSトランジスタP1とNMOSトランジスタN1、N3、N5、N7のドレインの接続ノードに接続されたPMOSトランジスタP3と、ソースがグランドに接続され、ゲートがバイアス電圧端子INfに接続され、ドレインがOUTに接続されたNMOSトランジスタN13を備えている。第1~第4の電流源トランジスタN9~N12のソースはグランドに接続され、ゲートはバイアス電圧端子INfに接続されている。
 ΔV1(=VIN1-VOUT)、
 ΔV1、
 ΔV2(=VIN2-VOUT)、
 ΔV3(=VIN3-VOUT)
 を第1乃至第4の差動対に入力される差動電圧とし、gmを第1乃至第4の差動対の相互コンダクタンスとすると、第1乃至第4の差動対の差動出力電流ΔI1、ΔI2、ΔI3、ΔI4は、それぞれ、
 ΔI1=I1-I2=gmΔV1、
 ΔI2=I3-I4=gmΔV1、
 ΔI3=I5-I6=gmΔV2、
 ΔI4=I7-I8=gmΔV3
であり、
 IL1=I1+I3+I5+I7、
 IL2=I2+I4+I6+I8、
 IL1=IL2(カレントミラーP1、P2の入力電流=出力電流)
 より、
 ΔV1+ΔV1+ΔV2+ΔV3=0、すなわち、
 (VIN1-VOUT)+(VIN1-VOUT)+(VIN2-VOUT)+(VIN3-VOUT)=0
から、上式(1)が成り立つ。
 なお、図21、図22において、選択回路、ボルテージフォロア回路、基準電圧、DA変換器は、本明細書の実施形態では、デコーダ、差動増幅器(演算増幅器)、参照電圧、デジタルアナログ変換回路として参照される。
特開2002-43944号公報
 以下に、本発明による関連技術の分析を与える。
 図21に示した関連技術において、デジタルアナログ変換回路(DA変換器310)は4レベル置きの参照電圧(基準電圧V0、V4、V8、・・・、V60、V64)から隣接する2つの参照電圧(基準電圧)を選択して、その一方の参照電圧、及び、2つの参照電圧を線形補間する3つの電圧レベルの計4つの電圧レベルの中から一つを出力することができる。
 参照電圧の総数は、出力される電圧レベル(階調電圧)数の1/4プラス1とされる。例えば、10ビットデジタルデータが入力される構成に拡張した場合、出力電圧レベル数1024に対して、参照電圧数は257個必要となる。12ビットデジタルデータが入力される構成に拡張した場合、出力電圧レベル数4096に対して、参照電圧数は1025個必要となる。10ビット以上のデジタルデータに対しては、参照電圧数はまだ非常に多く、参照電圧を選択するスイッチ数も多くなり、したがって、デコーダの面積が増大し、デジタルアナログ変換回路を搭載したチップのコストが大となる。
 なお、生成する参照電圧を8レベル置きに広げて、隣接する2つの参照電圧を線形補間する電圧レベル数を7個に拡張することも可能である。この場合、参照電圧の総数は、出力される電圧レベル数の1/8プラス1とされ、参照電圧数を削減することはできるが、内挿アンプ(図21のボルテージフォロア回路317)として8個の差動対が必要となる。この結果、内挿アンプの面積が増大する。
 多ビットデジタルデータに対応して出力される電圧レベル数に対して、入力される参照電圧数を削減を可能とし、面積の増大を抑止又は削減可能とするデジタルアナログ変換回路と、該デジタルアナログ変換回路を備えたドライバ、該ドライバを備えた表示装置が以下に開示される。
 本願の開示は、前記課題を解決するため、概略以下の構成とされる。
 1つの側面(アスペクト)によれば、N個の参照電圧と、nビット(nは、4以上の予め定められた整数)のデジタル信号を入力し、前記N個の参照電圧から、前記nビットのデジタル信号に応じて、第1乃至第3の電圧を選択する第1のデコーダと、
 前記第1のデコーダで選択された前記第1乃至第3の電圧を入力し、(第1の電圧+第2の電圧+2×第3の電圧)/4の電圧レベルを出力する演算増幅器と、
 を備え、
 前記nビットのデジタル信号の2^n(^は冪乗演算子)通りの組み合わせのそれぞれに対して、基準レベルとなる第Aレベルから第(A-1+2^n)レベルまので2^n個の電圧レベルが前記演算増幅器から出力可能とされ、
 前記N個の参照電圧は、
 前記2^n個の出力電圧レベルである前記第Aレベル乃至第(A-1+2^n)レベルに対して、前記第Aレベルから4レベル置きの電圧レベルA+4k(但し、kは0から2^(n-2)までの整数)に対応する{1+2^(n-2)}個の参照電圧のうち、
 第Aレベル、第(A+4)レベル、第(A-4+2^n)レベル、第(A+2^n)レベルの4個の参照電圧と、
 前記第Aレベルから4レベル置きの電圧レベルに対応する{1+2^(n-2)}個の参照電圧のうち前記4個の参照電圧以外の{-3+2^(n-2)}の参照電圧から、予め定められた少なくとも1つの個数の参照電圧を間引いた、多くとも{-4+2^(n-2)}個の参照電圧と、
 を含み、前記Nは4以上、且つ、2^(n-2)以下である、デジタルアナログ変換回路が提供される。
 入力映像信号に対応した入力デジタル信号を受け、前記入力デジタル信号に対応した電圧を出力する前記デジタルアナログ変換回路を備え、前記入力デジタル信号に対応した電圧でデータ線を駆動するデータドライバが提供される。さらに、データ線と走査線の交差部に画素スイッチと表示素子を含む単位画素を備え、前記走査線でオンとされた画素スイッチを介して前記データ線の信号が表示素子に書き込まれる表示装置であって、前記データ線を駆動するデータドライバを備えた表示装置が提供される。
 本願で開示される前記デジタルアナログ変換回路によれば、多ビット化に対して、デコーダに入力される参照電圧数を大幅に削減することにより、デコーダのスイッチトランジスタの数の増大を抑制し、回路面積の削減を可能とする。
 また、本願で開示される前記データドライバによれば、多ビット化に対してデコーダに入力される参照電圧数の増大を抑制し、省面積(低コスト)を実現可能としている。さらに、前記表示装置によれば、上記データドライバを用いることにより、コスト低減を可能としている。
第1の実施形態を示す図である。 (A)、(B)とも第1の実施形態の第1の仕様を説明する図である。 第1の実施形態の第2の仕様を説明する図である。 第1の実施形態の第2の仕様を説明する図である。 第1の実施形態の第3の仕様を説明する図である。 第1の実施形態の第3の仕様を説明する図である。 第1の実施形態の第4の仕様を説明する図である。 第1の実施形態の第4の仕様を説明する図である。 第1の実施形態の第5の仕様を説明する図である。 第1の実施形態の第5の仕様を説明する図である。 第1の実施形態の第6の仕様を説明する図である。 第1の実施形態の第6の仕様を説明する図である。 第1の実施形態の第7の仕様を説明する図である。 第1の実施形態の第7の仕様を説明する図である。 第2の実施形態を示す図である。 第2の実施形態の第1の仕様を説明する図である。 第2の実施形態の第2の仕様を説明する図である。 10ビットデジタルアナログ変換回路の各仕様を比較して説明する図である。 データドライバの構成例を示す図である。 (A)は表示装置の全体構成、(B)は液晶の画素、(C)は有機ELの画素を説明する図である。 関連技術として特許文献1の図1を引用した図である。 特許文献1の図4を引用した図である。 特許文献1の図2を引用した図である。 第2の実施形態の第2の仕様の構成例を示す図である。 第1の実施例の仕様を説明する図である。 第1の実施例の回路構成を示す図である。 第1の実施例の回路構成の変更例を示す図である。 第1の実施例のシミュレーション結果を示す図である。 第1の実施例の変更例の仕様を説明する図である。 第1の実施例の変更例の回路構成を示す図である。 第2の実施例の仕様を説明する図である。 第2の実施例の回路構成を示す図である。 第3の実施例の仕様を説明する図である。 第3の実施例の回路構成を示す図である。
 添付図面を参照していくつかの好ましい形態を以下に説明する。いくつかの好ましい態様において、N個(4≦N<1+2^(n-2):^は冪乗演算を示す)の参照電圧とnビット(nは4以上の正数)のデジタル信号を入力し、前記N個の参照電圧から、前記nビットのデジタル信号に応じて第1乃至第3の電圧(V(T1)、V(T2)、V(T3))を選択する第1のデコーダ(10)と、前記第1乃至第3の電圧を入力し、それぞれ1対1対2の重み付け演算した電圧レベルを増幅出力する演算増幅器(60)と、を備えている。好ましいいくつかの態様において、N個の参照電圧は、前記nビットのデジタル信号の値に1対1対応して、前記演算増幅器(60)から出力可能な、2^n個の電圧レベル:第Aレベル、第(A+1)、・・・、第(A-1+2^n)レベル(但し、第Aレベルは所定の基準レベル)に対して、
 第Aレベルから4レベル置きの電圧レベル:A+4k(但し、kは0から2^(n-2)までの整数)に対応するに対応する{1+2^(n-2)}個の参照電圧のうち、
 第Aレベル、
 第(A+4)レベル、
 第(A-4+2^n)レベル、
 第(A+2^n)レベル
 の4個の参照電圧と(これらは間引き対象とされない)、
 前記第Aレベルから4レベル置きの電圧レベルに対応する{1+2^(n-2)}個の参照電圧のうち前記4個の参照電圧以外の{-3+2^(n-2)}の参照電圧から、予め定められた少なくとも1つの個数の参照電圧を間引いた、多くとも{-4+2^(n-2)}の参照電圧と、
 を含む。したがって、参照電圧の個数Nは、4以上であり、且つ、4+{-4+2^(n-2)}=2^(n-2)以下である。
 いくつかの好ましい態様において、前記演算増幅器(60)から出力される電圧レベルは、前記第1のデコーダ(10)において前記第1~第3の電圧(V(T1)、V(T2)、V(T3))として選択される、互いに異なる3個の参照電圧に基づいて出力される電圧レベルを有する。以下、いくつかの例示的実施形態に即して説明する。
<第1実施形態>
 図1は、第1の例示的実施形態のデジタルアナログ変換回路を示す図である。図1に示すように、N個(4≦N<1+2^(n-2);^は冪乗演算子)、ただし、nは予め定められた4以上の所定の正数)の参照電圧と、nビットのデジタル信号(D(n-1)~D0及びその相補信号D(n-1)B~D0B)を入力し、N個の参照電圧から、nビットのデジタル信号に応じて第1~第3の電圧(V(T1)、V(T2)、V(T3))を選択する第1のデコーダ10と、第1~第3の電圧(V(T1)、V(T2)、V(T3))を3つの入力端子(非反転入力端子)に入力し、それぞれ1対1対2の重み付け演算した電圧レベルVoutを増幅出力する演算増幅器60と、を備える。なお、nビットのデジタル信号(D(n-1)~D0)は、D0をLSB(Least Significant Bit)、D(n-1)をMSB(Most Significant Bit)とする。
 演算増幅器60は、出力端子を反転入力端子に帰還接続した構成とされ、次式(2)の演算(内挿演算)を行う。
 Vout={V(T1)+V(T2)+2×V(T3)})/4  …(2)
 式(2)は、上式(1)のVIN3、VIN2、VIN1をV(T1)、V(T2)、V(T3)にそれぞれ対応させた演算式である。特に制限されるものではないが、演算増幅器60として、例えば図23の回路を用いた場合、第1の差動対(N1、N2)のNMOSトランジスタN1のゲート(IN1)と第2の差動対(N3、N4)のNMOSトランジスタN3のゲート(IN1)を第3端子(T3)として電圧V(T3)を共通に印加し、第3の差動対(N5、N6)のNMOSトランジスタN5のゲート(IN2)を第2端子(T2)として電圧V(T2)を印加し、第4の差動対(N7、N8)のNMOSトランジスタN7のゲート(IN3)を第1端子(T1)として電圧V(T1)を印加する。なお、演算増幅器60は第1端子(T1)、第2端子(T2)、第3端子(T3)の電圧V(T1)、V(T2)、V(T3)を1:1:2の重みで重み付け演算(重み付け加算、あるいは加重平均ともいう)した電圧レベルVoutを出力する内挿アンプであれば、任意の構成を用いることができる。
 第1のデコーダ10に入力される、N個の参照電圧(4≦N<1+2^(n-2))は、nビットのデジタル信号の値に1対1対応して、演算増幅器60から出力可能な2^n個の電圧レベル:
 第Aレベル、第(A+1)レベル、第(A+2)レベル、・・・第(A-1+2^n)レベル(但し、第Aレベルは任意の基準レベル)
 に対して、第Aレベルから4レベル置きの電圧レベル:
 A+4k (但し、kは0から2^(n-2)までの整数)
 に対応する{2^(n-2)+1}個の参照電圧のうち、
 第Aレベル、
 第(A+4)レベル、
 第(A-4+2^n)レベル、
 第(A+2^n)レベル
 にそれぞれ対応する4個の参照電圧は、間引き対象とされず、N個の参照電圧にそのまま含まれる。第Aレベルから4レベル置きの電圧レベルに対応する{2^(n-2)+1}個の参照電圧のうち、これら4個の参照電圧以外の{-3+2^(n-2)}の参照電圧[∵ {2^(n-2)+1}-4=-3+2^(n-2)]から、所定個(1個以上)の参照電圧が間引かれる。1個以上の参照電圧を間引いた場合、間引き対象とされる参照電圧の(間引き後の)残りの個数は{-4+2^(n-2)}以下となり、これと、間引き対象とされない参照電圧(4個)の和が参照電圧の個数Nとなり、Nは4以上、2^(n-2)以下となる。
 例えばn=4の場合、Nは4≦N<1+2^(n-2)=1+2^2=5から、Nは4とされる。N=4個の参照電圧は、第0、第4、第12、第16レベルとされる。これは、4ビットのデジタル信号の値に1対1対応して、演算増幅器60から出力可能な2^4=16個の電圧レベル:第0レベル(基準レベル)、第1レベル、・・・第15レベルに対して、第0レベルから4レベル置きの電圧レベル:
 第0、第4、第8、第12、第16のレベルに対応する{2^(4-2)+1}=5個の参照電圧のうち、
 第Aレベル=第0レベル、
 第A+4レベル=第4レベル、
 第(A-4+2^n)レベル=第12レベル、
 第(A+2^n)レベル=第16レベルの計4個と、
 上記4個の参照電圧以外の{-3+2^(4-2)}=1から、所定個(1個以上)のレベル、したがって、第8レベルに対応する参照電圧1個が間引かれ、間引き対象とされる参照電圧の残りの個数{-4+2^(n-2)}は0となり、N=4個の参照電圧は、第0、第4、第12、第16レベルとされる。
 また、演算増幅器60から出力される電圧レベルVoutは、第1のデコーダ10で選択される第1~第3の電圧(V(T1)、V(T2)、V(T3))として、互いに異なる3個の参照電圧に基づいて増幅出力される電圧レベルを少なくとも2つ有する。すなわち、演算増幅器60から出力される少なくとも二つの電圧レベルは、
 V(T1)≠V(T2)、且つ、V(T1)≠V(T3)、且つ、V(T2)≠V(T3)の3つの電圧(V(T1)、V(T2)、V(T3))から生成される。
<図21の関連技術との相違点>
 図1の本実施形態と、関連技術として説明した図21のデジタルアナログ変換回路(DA変換器310)との相違点について説明する。
 図21の関連技術では、デコーダ(選択回路316)は、同一又は隣接する2つの参照電圧から、ボルテージフォロワ回路317の3端子IN3、IN2、IN1に出力される3つの電圧を選択している。
 これに対して、図1の本実施形態では、第1のデコーダ10は、同一又は隣接する2つの参照電圧(隣接参照電圧対)だけでなく、隣接する電圧以外の組も含む2つ又は3つの参照電圧を、第1、第2、第3の電圧(V(T1)、V(T2)、V(T3))として選択する。これにより、本実施形態によれば、参照電圧数を4レベル置きとした関連技術の参照電圧の総数よりも、参照電圧の総数を削減することができる。すなわち、デジタル信号のビット数が同一であり、出力階調数が同一の場合、本実施形態によれば、図21の関連技術よりも、デジタルアナログ変換回路の分解能は同一のまま、参照電圧の総数をさらに削減することができる。
 また、図21の関連技術では、デコーダ(選択回路316)から、ボルテージフォロワ回路317の3端子IN3、IN2、IN1に出力される3つの電圧のうち少なくとも2つの電圧は同一の参照電圧が重複して選択出力される。すなわち、図21の関連技術において、ボルテージフォロワ回路317の3端子IN1、IN2、IN3に互いに異なる3個の参照電圧が選択されることはなく、互いに異なる3個の参照電圧に基づいて増幅出力される電圧レベルは存在しない。
 これに対して、本実施形態では、第1のデコーダ10で選択される第1~第3の電圧(V(T1)、V(T2)、V(T3))として、互いに異なる3個の参照電圧に基づいて増幅出力される電圧レベルを複数有する。すなわち、後に詳細に説明されるように、演算増幅器60からの出力電圧レベルのいくつかは、演算増幅器60に入力される第1乃至第3の電圧として、V(T1)≠V(T2)、V(T1)≠V(T3)、V(T2)≠V(T3)の関係を満たすV(T1)、V(T2)、V(T3)から生成される。
<第1の実施形態の第1の仕様>
 図2(A)、(B)は、図1の実施形態における第1の仕様を説明する図である。図2(A)に示す例は、図1において、n=4、N=4、A=0としている。4ビットのデジタル信号の値に1対1対応して演算増幅器60から出力可能な電圧レベル:第0レベル~第15レベルの16個の電圧レベルからなる1区間に対して、4個の参照電圧を、第0レベル、第4レベル、第12レベル、第16レベルに設定している。
 第0レベルから4レベル置きの電圧レベル:4k(但し、kは0から4までの整数)に対応する参照電圧のうち、第8レベルに対応する参照電圧が間引かれている(第8レベルに対応する参照電は不要とされる)。なお、出力の電圧レベルの第0レベル~第16レベルは、ほぼリニアな電圧レベルとされ、レベル番号の順序(0,1,2,…)に対して単調増加又は単調減少となる電圧レベルとされる。なお、出力の電圧レベルの第0レベル~第15レベルの各番号(0~15)は、4ビットデジタル信号の隣接値(LSBを含む下位ビット信号の2進符号)に対応し、隣接する電圧レベルの差電圧は、デジタルアナログ変換回路の量子化ステップ幅(1LSBのステップ幅)に対応し、第0~第15レベルにおいて量子化ステップ幅は実質的に一様である(DNL(Differential Nonliniarity)が一定)。
 図2(B)は、図2(A)で設定された4個の参照電圧(第0レベル、第4レベル、第12レベル、第16レベル)から選択された3つの電圧:第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せを入力とする演算増幅器60の出力Voutの電圧レベル(上式(2)で規定される)の一覧を示している。4個の参照電圧(レベル0、4、12、16)の全ての組合せを示している。
 第1、第2の電圧V(T1)、V(T2)は、互いに入れ替えても同じ演算結果となるため、図2(B)では、電圧レベルの大小関係をV(T1)>V(T2)として示している。すなわち、図2(B)には、4つの電圧(レベル0、4、12、16)を、3つの端子へ重複を含めて割当てる場合の、4×4×4=64通りの中から、V(T1)<V(T2)の組み合わせ:(V(T1)、V(T2))=(レベル0、4)、(レベル0、12)、(レベル0、16)、(レベル4、12)、(レベル4、16)、(レベル12、16)の組み合わせを省略した40通りが示されている。図2(B)において、V(T1)、V(T2)として選択される電圧は入れ替えが可能である。
 図2(B)において、V(T1)、V(T2)として選択される電圧の入れ替えが可能であり、(V(T1)、V(T2)、V(T3))において、図2(B)に示した組み合せのほかに、V(T1)、V(T2)を入れ替えた組み合わせ(V(T2)、V(T1))も含まれることは、後に参照される図4、図6、図8、図10、図12、図14についても同様である。
 図2(B)より、演算増幅器60から出力されるVoutの電圧レベルとして、第0レベルから第15レベルまでの全てのレベルが存在し、図2(A)で設定された4個の参照電圧により第0レベル乃至第15レベルの16個の電圧レベルが出力可能であることが確認できる。なお、図2(B)の第16レベルは、第1~第3の電圧V(T1)、V(T2)、V(T3)を全て第16レベルとしたものであり、第2区間の第0レベルに対応する。
 また、第5レベル、第11レベルを出力する第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せは(V(T1)、V(T2)、V(T3))=(レベル16、4、0)、(レベル12、0、4)であり、V(T1)、V(T2)、V(T3)が互いに電圧レベルの異なる3個の参照電圧の組合せとなっている。V(T1)、V(T2)として選択される電圧を入れ替えた場合も、互い異なる3個の参照電圧の組合せは変わらない。したがって、第5レベル、第11レベルを出力する第1~第3の電圧V(T1)、V(T2)、V(T3)は互いに異なり、同一参照電圧が重複する組合せは存在しない。
 図1の第1のデコーダ10は、演算増幅器60から出力される第0レベルから第15レベルまでの各電圧レベルに対応した第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せ(図2(B))の1つを4ビットのデジタル信号の値に対応して選択する構成とされる。
 図2(B)のVoutの電圧レベル0、1、2・・・、15の16通りに対して、4ビットデジタル信号を用いて、各電圧レベルに対応する(V(T1)、V(T2)、V(T3))の組合せを1つ選択する。例えば、Vout=5(第5レベル)に対しては、4ビットデジタル信号(D3,D2,D1,D0)=(0,1,0,1)に基づき、第0、第4、第8、第16レベルの4つの参照電圧の中から、第1電圧V(T1)に第16レベル、第2電圧V(T2)に第4レベル、第3電圧V(T3)に第0レベル、あるいは、第1電圧V(T1)に第12レベル、第2電圧V(T2)に第0レベル、第3電圧V(T3)に第4レベルを選択する構成とされる。
 なお、図2(A)は、単に説明の簡単化のため、4ビット16レベルの出力レベルと参照電圧の対応として、第0レベル乃至第15レベルの16個の電圧レベルからなる1区間(section)を示している。しかしながら、5ビット32レベル等、6ビット64レベル等、第16レベル以降に追加の区間を設け、追加の各区間も第0レベル乃至第15レベルの1区間と同様に参照電圧を設定するようにしてもよいことは勿論である。このとき、ある1区間に対応した第16レベルの参照電圧と、次の区間の第0レベルの参照電圧は同一電圧レベルとされる。
 10ビットデジタル信号に対応したデコーダの場合、16レベル(1区間)×64区間で構成することができ、関連技術の構成(図21、図22を10ビットに拡張した構成)と比べて、1区間あたり1個、64区間で64個の参照電圧が間引かれる。
 また図2(A)は、便宜上、出力レベルとして、第0レベルを基準レベル(第Aレベル)とした連続16レベル(レベル0~15)を示しているが、第Aレベルとしてレベル32あるいは48とした連続16レベル(例えばレベル32~47、あるいは、レベル48~63等)のように、複数の電圧レベルの一部をなす16レベルに対応させてもよい。その場合、1区間の基準レベルは、好ましくは、16個の電圧レベルを単位とする区間の最初の電圧レベルに設定される。
<第1の実施形態の第2の仕様>
 図3、図4は、図1の実施形態における第2の仕様を説明する図である。図3は、図1において、n=5、N=6、A=0とされ、5ビットのデジタル信号の値に1対1対応して演算増幅器60から出力可能な第0レベル乃至第31レベルの32個の電圧レベルからなる1区間に対して、6個の参照電圧を、第0レベル、第4レベル、第12レベル、第20レベル、第28レベル、第32レベルに設定した例を示す。第0レベルから4レベル置きの電圧レベル:4k(但し、kは0から8までの整数)に対応する参照電圧のうち、第8レベル、第16レベル、第24レベル(k=2、4、6)に対応する3つの参照電圧が間引かれている。なお、第0レベル~第32レベルは、ほぼリニアな電圧レベルとされ、単調増加又は単調減少となる電圧レベルとされる。
 図4は、図3の仕様で設定された6個の参照電圧(第0レベル、第4レベル、第12レベル、第20レベル、第28レベル、第32レベル)を、第1~第3の電圧(V(T1)、V(T2)、V(T3))として組合わせたときに、演算増幅器60から出力可能な上式(2)に対応する電圧レベルを示している。図4には、6個の参照電圧の全ての組合せが示されている。
 図4より、演算増幅器60から出力される電圧レベルとして、第0レベルから第31レベルまで全て存在し、図3で設定された6個の参照電圧(第0レベル、第4レベル、第12レベル、第20レベル、第28レベル、第32レベル)により、第0レベル乃至第31レベルの32個の電圧レベルが出力可能であることが確認できる。
 また、第13レベル、第19レベルをそれぞれ出力する第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せは、第1~第3の電圧が互いに電圧レベルの異なる3個の参照電圧の組合せとなっており、これらの電圧レベル(第13レベル、第19レベル)を出力するときに、第1~第3の電圧V(T1)、V(T2)、V(T3)は互いに異なり、同一参照電圧が重複する組合せは存在しない。
 図1の第1のデコーダ10は、演算増幅器60から出力される第0レベルから第31レベルまでの各電圧レベルに対応した図4に基づく第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せの1つを、5ビットのデジタル信号(LSBを含む下位5ビット信号)の値に対応して選択する構成とされる。
 なお、図3は、第0レベル乃至第31レベルの32個の電圧レベルからなる1区間を示しているが、第32レベル以降に追加の区間を設け、追加の各区間も第0レベル乃至第31レベルの1区間と同様に参照電圧を設定することが可能である。このとき、ある1区間に対応した第32レベルの参照電圧と、次の区間の第0レベルの参照電圧は同一電圧レベルとされる。10ビットデジタル信号に対応したデコーダの場合、32レベル(1区間)×32区間で構成することができ、関連技術での構成(図21、図22を10ビットに拡張した構成)と比べて、1区間あたり3個、32区間で96個の参照電圧が間引かれる。また、図3では、便宜上、第0レベルを基準レベルとした32レベルを示しているが、複数の電圧レベル(例えば64レベル以上)の一部をなす32レベルに対応させてもよい。その場合、1区間の基準レベルは、好ましくは、32個の電圧レベルを単位とする区間の最初の電圧レベルに設定される。
<第1の実施形態の第3の仕様>
 図5、図6は、図1の実施形態における第3の仕様を説明する図である。図5は、図1において、n=5、N=5、A=0とされ、5ビットのデジタル信号の値に1対1対応して演算増幅器60から出力可能な第0レベル乃至第31レベルの32個の電圧レベルからなる1区間に対して、5個の参照電圧を、第0レベル、第4レベル、第16レベル、第28レベル、第32レベルに設定した例を示す。第0レベルから4レベル置きの電圧レベル:4k(但し、kは0から8までの整数)に対応する参照電圧のうち、第8レベル、第12レベル、第20レベル、第24レベル(k=2、3、5、6)に対応する4つの参照電圧が間引かれている。なお第0レベル~第32レベルは、ほぼリニアな電圧レベルとされ、単調増加又は単調減少となる電圧レベルとされる。
 図6は、図5の仕様で設定された5個の参照電圧(第0レベル、第4レベル、第16レベル、第28レベル、第32レベル)を、第1~第3の電圧(V(T1)、V(T2)、V(T3))として組合せたときに、演算増幅器60から出力可能な上式(2)に対応する電圧レベルを示している。図6には、5個の参照電圧の全ての組合せが示されている。
 図6より、演算増幅器60から出力される電圧レベルとして、第0レベルから第31レベルまでの全てのレベルが含まれており、図5で設定された5個の参照電圧(第0レベル、第4レベル、第16レベル、第28レベル、第32レベル)により第0レベル乃至第31レベルの32個の電圧レベルが出力可能であることが確認できる。
 また、第5レベル、第6レベル、第9レベル、第15レベル、第17レベル、第23レベル、第26レベル、第27レベルを出力する第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せは、第1~第3の電圧が互いに電圧レベルの異なる3個の参照電圧の組合せとなっており、これらの電圧レベルを出力するときに、第1~第3の電圧V(T1)、V(T2)、V(T3)は互いに異なり、同一参照電圧が重複する組合せは存在しない。
 図1の第1のデコーダ10は、演算増幅器60から出力される第0レベルから第31レベルまでの各電圧レベルに対応した第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せ(図6参照)の1つを、5ビットのデジタル信号の値に対応して選択する構成とされる。
 なお、図5においても、図3の場合と同様に、第32レベル以降に追加の区間を設けることや、複数の電圧レベルの一部をなす32レベルに対応させることが可能である。
<第1の実施形態の第4の仕様>
 図7、図8は、図1の実施形態における第4の仕様を説明する図である。図7は、図1において、n=6、N=7、A=0とされ、6ビットのデジタル信号の値に1対1対応して演算増幅器60から出力可能な第0レベル乃至第63レベルの64個の電圧レベルからなる1区間に対して、7個の参照電圧を、第0レベル、第4レベル、第16レベル、第32レベル、第48レベル、第60レベル、第64レベルに設定した例を示す。第0レベルから4レベル置きの電圧レベル:4k(但し、kは0から16までの整数)に対応する参照電圧のうち、矢印←で示すように、第8レベル、第12レベル、第20レベル、第24レベル、第28レベル、第36レベル、第40レベル、第44レベル、第52レベル、第56レベル(k=2、3、5、6、7、9、10、11、13、14)に対応する10個の参照電圧が間引かれている。なお、第0レベル~第64レベルはほぼリニアな電圧レベルとされ、単調増加又は単調減少となる電圧レベルとされる。
 図8は、図7の仕様で設定された7個の参照電圧(第0レベル、第4レベル、第16レベル、第32レベル、第48レベル、第60レベル、第64レベル)を、第1~第3の電圧(V(T1)、V(T2)、V(T3))として組合せたときに、演算増幅器60から出力可能な上式(2)に対応する電圧レベルを示している。図8には、7個の参照電圧の全ての組合せが示されている。
 図8より、算増幅器60から出力される電圧レベルとして、第0レベルから第63レベルまで全て存在し、図7で設定された7個の参照電圧(第0レベル、第4レベル、第16レベル、第32レベル、第48レベル、第60レベル、第64レベル)により第0レベル乃至第63レベルの64個の電圧レベルが出力可能であることが確認できる。
 また、第5レベル、第6レベル、第9レベル・・・を出力する第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せは、第1~第3の電圧が互いに電圧レベルの異なる3個の参照電圧の組合せとなっており、これらの電圧レベルを出力するときに、第1~第3の電圧V(T1)、V(T2)、V(T3)は互いに異なり、同一参照電圧が重複する組合せは存在しない。
 図1の第1のデコーダ10は、演算増幅器60から出力される第0レベルから第63レベルまでの各電圧レベルに対応した図8に基づく第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せの1つを、6ビットのデジタル信号(例えばLSBを含む下位6ビット)の値に対応して選択する構成とされる。
 なお、図7においても、第64レベル以降に追加の区間を設けることや、複数の電圧レベル(例えば128レベル以上)の一部をなす64レベルに対応させることが可能である。追加の区間を設けるときには、ある1区間に対応した第64レベルの参照電圧と、次の区間の第0レベルの参照電圧は同一電圧レベルとされる。
<第1の実施形態の第5の仕様>
 図9、図10は、図1の実施形態における第5の仕様を説明する図である。図9は、図1において、n=6、N=7、A=0とされ、6ビットのデジタル信号の値に1対1対応して演算増幅器60から出力可能な第0レベル乃至第63レベルの64個の電圧レベルからなる1区間に対して、7個の参照電圧を、第0レベル、第4レベル、第8レベル、第32レベル、第56レベル、第60レベル、第64レベルに設定した例を示す。第0レベルから4レベル置きの電圧レベル:4k(但し、kは0から16までの整数)に対応する参照電圧のうち、第12レベル、第16レベル、第20レベル、第24レベル、第28レベル、第36レベル、第40レベル、第44レベル、第48レベル、第52レベル(k=3、4、5、6、7、9、10、11、12、13)に対応する10個の参照電圧が間引かれている。なお、第0レベル~第64レベルは、ほぼリニアな電圧レベルとされ、単調増加又は単調減少となる電圧レベルとされる。
 図10は、図9の仕様で設定された7個の参照電圧(第0レベル、第4レベル、第8レベル、第32レベル、第56レベル、第60レベル、第64レベル)を、第1~第3の電圧(V(T1)、V(T2)、V(T3))として組合せたときに、演算増幅器60から出力可能な上式(2)に対応する電圧レベルを示している。図10には、7個の参照電圧の全ての組合せが示されている。
 図10より、算増幅器60から出力される電圧レベルとして、第0レベルから第63レベルまで全て存在し、図9で設定された7個の参照電圧(第0レベル、第4レベル、第8レベル、第32レベル、第56レベル、第60レベル、第64レベル)により第0レベル乃至第63レベルの64個の電圧レベルが出力可能であることが確認できる。
 また、第9レベル、第10レベル、第12レベル・・・を出力する第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せは、第1~第3の電圧が互いに電圧レベルの異なる3個の参照電圧の組合せとなっており、これらの電圧レベルを出力するときに、第1~第3の電圧V(T1)、V(T2)、V(T3)は互いに異なり、同一参照電圧が重複する組合せは存在しない。
 図1の第1のデコーダ10は、演算増幅器60から出力される第0レベルから第63レベルまでの各電圧レベルに対応した図10に基づく第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せの1つを、6ビットのデジタル信号(例えばLSBを含む下位6ビット)の値に対応して選択する構成とされる。
 なお、図9においても、図7の場合と同様に、第64レベル以降に追加の区間を設けることや、複数の電圧レベル(例えば128レベル以上)の一部をなす64レベルに対応させることが可能である。
<第1の実施形態の第6の仕様>
 図11、図12は、図1の実施形態における第6の仕様を説明する図である。図11は、図1において、n=6、N=7、A=0とされ、6ビットのデジタル信号の値に1対1対応して演算増幅器60から出力可能な第0レベル乃至第63レベルの64個の電圧レベルからなる1区間に対して、7個の参照電圧を、第0レベル、第4レベル、第12レベル、第32レベル、第52レベル、第60レベル、第64レベルに設定した例を示す。第0レベルから4レベル置きの電圧レベル:4k(但し、kは0から16までの整数)に対応する参照電圧のうち、第8レベル、第16レベル、第20レベル、第24レベル、第28レベル、第36レベル、第40レベル、第44レベル、第48レベル、第56レベル(k=2、4、5、6、7、9、10、11、12、14)に対応する10個の参照電圧が間引かれている。なお、第0レベル~第64レベルは、ほぼリニアな電圧レベルとされ、単調増加又は単調減少となる電圧レベルとされる。
 図12は、図11で設定された7個の参照電圧(第0レベル、第4レベル、第12レベル、第32レベル、第52レベル、第60レベル、第64レベル)を、第1~第3の電圧(V(T1)、V(T2)、V(T3))として組合せたときに、演算増幅器60から出力可能な上式(2)に対応する電圧レベルを示している。図12には、7個の参照電圧の全ての組合せが示されている。
 図12より、算増幅器60から出力される電圧レベルとして、第0レベルから第63レベルまで全て存在し、図11で設定された7個の参照電圧(第0レベル、第4レベル、第12レベル、第32レベル、第52レベル、第60レベル、第64レベル)により第0レベル乃至第63レベルの64個の電圧レベルが出力可能であることが確認できる。
 また、第5レベル、第7レベル、第14レベル・・・を出力する第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せは、第1~第3の電圧が互いに電圧レベルの異なる3個の参照電圧の組合せとなっており、これらの電圧レベルを出力するときに、第1~第3の電圧V(T1)、V(T2)、V(T3)は互いに異なり、同一参照電圧が重複する組合せは存在しない。
 図1の第1のデコーダ10は、演算増幅器60から出力される第0レベルから第63レベルまでの各電圧レベルに対応した図12に基づく第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せの1つを、6ビットのデジタル信号の値に対応して選択する構成とされる。
 なお、図11においても、図7の場合と同様に、第64レベル以降に追加の区間を設けることや、複数の電圧レベル(例えば128レベル以上)の一部をなす64レベルに対応させることが可能である。
<第1の実施形態の第7の仕様>
 図13、図14は、図1の実施形態における第7の仕様を説明する図である。図13は、図1において、n=6、N=7、A=0とされ、6ビットのデジタル信号の値に1対1対応して演算増幅器60から出力可能な第0レベル乃至第63レベルの64個の電圧レベルからなる1区間に対して、7個の参照電圧を、第0レベル、第4レベル、第20レベル、第32レベル、第44レベル、第60レベル、第64レベルに設定した例を示す。第0レベルから4レベル置きの電圧レベル:4k(但し、kは0から16までの整数)に対応する参照電圧のうち、第8レベル、第12レベル、第16レベル、第24レベル、第28レベル、第36レベル、第40レベル、第48レベル、第52レベル、第56レベル(k=2、3、4、6、7、9、10、12、13、14)に対応する参照電圧が間引かれている。なお、第0レベル~第64レベルは、ほぼリニアな電圧レベルとされ、単調増加又は単調減少となる電圧レベルとされる。
 図14は、図13の仕様で設定された7個の参照電圧(第0レベル、第4レベル、第20レベル、第32レベル、第44レベル、第60レベル、第64レベル)を、第1~第3の電圧(V(T1)、V(T2)、V(T3))として組合せたときに、演算増幅器60から出力可能な上式(2)に対応する電圧レベルを示している。図14には、7個の参照電圧の全ての組合せが示されている。
 図14より、算増幅器60から出力される電圧レベルとして、第0レベルから第63レベルまで全て存在し、図13で設定された7個の参照電圧(第0レベル、第4レベル、第20レベル、第32レベル、第44レベル、第60レベル、第64レベル)により第0レベル乃至第63レベルの64個の電圧レベルが出力可能であることが確認できる。また、第6レベル、第7レベル、第9レベル、他を出力する第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せは、第1~第3の電圧が互いに電圧レベルの異なる3個の参照電圧の組合せとなっており、これらの電圧レベルを出力するときに、第1~第3の電圧V(T1)、V(T2)、V(T3)は互いに異なり、同一参照電圧が重複する組合せは存在しない。
 図1の第1のデコーダ10は、演算増幅器60から出力される第0レベルから第63レベルまでの各電圧レベルに対応した図12に基づく第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せの1つを、6ビットのデジタル信号の値に対応して選択する構成とされる。
 なお、図13においても、図7の場合と同様に、第64レベル以降に追加の区間を設けることや、複数の電圧レベル(例えば128レベル以上)の一部をなす64レベルに対応させることが可能である。
<第2実施形態>
 図15は、デジタルアナログ変換回路の第2の実施形態を示す図である。図15を参照すると、この第2の実施形態は、図1の第1の実施形態の構成に加え、N個(4≦N<1+2^(n-2))の参照電圧を含む参照電圧群を生成する参照電圧発生回路50と、nビット(nは4以上の正数)のデジタル信号を含むm(m>n)ビットのデジタル信号(D(m-1)~D0及びその相補信号D(m-1)B~D0B)と、第2のデコーダ20とを更に備える。第1のデコーダ10と第2のデコーダ20を合わせてデコーダブロック40を構成している。
 図15において、演算増幅器60から出力可能な電圧レベルは、第Azレベル乃至第(Az-1+2^n)レベルよりなる2^n個の電圧レベルを1区間とする重複しない第1~第Sの区間を含む(但し、Sは1以上の正数である。Azは、第zの区間(1≦z≦S)の基準レベルである)。
 参照電圧発生回路50からデコーダ20に入力される参照電圧群は、第1~第Sの各区間ごとに、第Azレベルから4レベル置きの電圧レベル:Az+4k(但し、kは0から2^(n-2)までの整数)に対応する参照電圧のうち、第Az、第(Az+4)、第(Az-4+2^n)、第(Az+2^n)の4個の参照電圧を除く{-3+2^(n-2)}個の参照電圧から所定個(1個以上)を間引いた参照電圧とされる。
 第2のデコーダ20は、参照電圧発生回路50から入力された参照電圧群からmビットのデジタル信号の上位(m-n)ビット(D(m-1)~Dn及びその相補信号D(m-1)B~DnB)の値に応じて、第1~第Sの区間の中の対応する1つの区間(例えば第zの区間)に割り当てられたN個(Nは4以上、2^(n-2)以下の正数)の参照電圧:第Az、第(Az+4)、…、第(Az-4+2^n)、第(Az+2^n)の参照電圧を選択して第1のデコーダ10へ出力する。
 第1のデコーダ10は、第2のデコーダ20で選択されたN個の参照電圧:第Az、第(Az+4)、…、第(Az-4+2^n)、第(Az+2^n)から、下位nビットのデジタル信号(D(n-1)~D0及びその相補信号D(n-1)B~D0B)の値に応じて第1~第3の電圧(V(T1)、V(T2)、V(T3))を選択する。なお、第1のデコーダ10及び演算増幅器60の構成、作用等は、図1と同様であるため、説明は省略する。
<第2実施形態の変形例>
 第2実施形態の変形例を説明する。上記した図15のデジタルアナログ変換回路は、演算増幅器60から出力可能な電圧レベルが、図2(A)~図14の各仕様とは異なる仕様の区間を含んで構成してもよい。
 この場合、デコーダブロック40は、図24に示すように、異なる仕様の区間に対応した第3のデコーダ30を更に備える。第3のデコーダ30には、参照電圧発生回路50から、第3のデコーダ30で選択される第1~第3の電圧に対応する参照電圧が入力される。第3のデコーダ30は、第1のデコーダ10と共通に入力するデジタル信号のmビット(D(m-1)~D0、及びその相補信号D(m-1)B~D0B)の値に応じて、第1~第3の電圧を選択し、演算増幅器60に入力する。
 演算増幅器60は、第1のデコーダ10と第3のデコーダ30とで共有される。図24において、異なる仕様同士で区間の重複はなく、第1のデコーダ10と第3のデコーダ30の一方のデコーダが、第1~第3の電圧を選択出力するとき、他方のデコーダは非選択とされ、第1~第3の電圧は出力されない。図24において、第1のデコーダ10と第3のデコーダ30とで共有された3つの端子T1、T2、T3に出力される電圧V(T1)、V(T2)、V(T3)に対して、演算増幅器60は、上式(2)の演算に対応する電圧を出力する。なお、特に制限されないが、図24に示す例では、後述されるように、第3のデコーダ30で選択出力される第1~第3の電圧について、演算増幅器60は、上式(1)の演算結果(Vout={VIN3+VIN2+2×VIN1)}/4)に対応する電圧を出力する。このとき、第3のデコーダ30で選択された第1~第3の電圧は、それぞれVIN2、VIN3、VIN1とされ、演算増幅器60の端子T1、T2、T3にそれぞれ出力される。
<第2の実施形態の第1の仕様>
 図16は、図15の第2の実施形態における第1の仕様を説明する図である。図16は、図15において、m=10、n=4、N=4とされ、10ビットのデジタル信号の値に対応して演算増幅器60から出力可能な第0レベル乃至第1023レベルの1024個の電圧レベルにおいて、参照電圧の設定と、第1~第3の電圧(V(T1)、V(T2)、V(T3))の組合せ、及び10ビットのデジタル信号(D9~D0)の値の関係の一例を示している。
 図16に示した仕様では、1024個の電圧レベルは、16個の電圧レベルを1区間とし、電圧レベルが互いに重複しない第1~第64の区間(S=64)で構成される。
 第1~第64の各区間の参照電圧の設定は、図2(A)の仕様を適用している。すなわち各区間の第0レベル、第4レベル、第12レベル、第16レベルの4個(N=4)の参照電圧が設定される。また、第0レベル~第1023レベルの1024個の電圧レベルに対して、第1~第64の区間のそれぞれの最初の電圧レベル(第0レベル、第16レベル、第32レベル、…、第1008レベル)がそれぞれの区間の基準レベル(Az)とされている。
 第1~第64の各区間のそれぞれのN番目(N=4)の参照電圧は、それぞれ次の区間の基準レベルとされている。ただし、第64区間では、次の区間(第65区間)はなく、第64区間のN番目(N=4)の参照電圧は、仮想的に第65区間の基準レベルである1024レベルとされている。
 図16の仕様に対応する図15の第2のデコーダ20は、図16で設定される参照電圧群から10ビットのデジタル信号の上位6ビット(D9~D4)の値に応じて、第1~第64の区間の中から、対応する1つの区間に割り当てられた4個の参照電圧を選択して第1のデコーダ10へ供給する。例えば第1の区間の場合、第2のデコーダ20は、デジタル信号(D9,D8,D7,D6,D5,D4)=(0,0,0,0,0,0,0)のとき、第0レベル、第4レベル、第12レベル、第16レベルの参照電圧を選択して第1のデコーダ10へ入力する。第z区間の場合、第2のデコーダ20は、デジタル信号(D9,D8,D7,D6,D5,D4)の値に対応した第Az、第(Az+4)、第(Az+12)、第(Az+16)の参照電圧を選択して第1のデコーダ10へ出力する。
 図16の仕様において、出力電圧レベル数1024に対して、デコーダ40に入力される参照電圧(互いに異なる電位)の総数は193個である。
 一方、関連技術(図21、図22)の場合、10ビットのデジタル信号に拡張したデジタルアナログ変換回路(DA変換器310)の参照電圧数は、257個である。
 本実施形態によれば、参照電圧総数を、関連技術(図21、図22)の約1/4削減している。
 参照電圧総数の削減に伴い、デコーダのスイッチトランジスタの総数も削減される。この結果、デコーダの面積の削減を図ることができる。
 なお、演算増幅器60は、図21、図23(ボルテージフォロア回路317)の演算増幅器と同じものを用いることができる。したがって、本実施形態において、演算増幅器60の面積が、図21の関連技術よりも増加することはない。
 図18は、10ビットのデジタル信号に対応した図15のデジタルアナログ変換回路について、1024個の全電圧レベルに対して、図2(A)~図14の仕様を適用した場合の参照電圧数の比較を一覧で示す。図18は、図2(A)及び図2(B)と、図3及び図4と、図5及び図6と、図7~図14の仕様ごとに、1区間あたりの電圧レベル数、1区間あたりの参照電圧数、区関数、全区間の参照電圧数を示す。なお、1区間あたりの参照電圧数は、区間内の電圧レベルに対応する参照電圧数に、次の区間の基準電圧レベルに対応する参照電圧が加わる(「+1」に該当)。全区間の参照電圧数は、各区間内の電圧レベルに対応する参照電圧数と区関数の積に第1024レベルの参照電圧の1個を加えた値である。
 図18より、上記で説明した図2(A)、(B)の仕様より、図3~図14の仕様を適用すると更に参照電圧数が大幅に削減することができる。また、図示されないが、12ビットのデジタル信号に対応した図15のデジタルアナログ変換回路の参照電圧数は、拡張した図21のデジタルアナログ変換回路(DA変換器310)の参照電圧数よりも更に大幅に参照電圧数が削減され、デコーダの面積も大幅に削減することができる。
 上記実施形態では、線形な電圧特性を実現するデジタルアナログ変換回路への適用例を説明した。以下では、非線形な電圧特性への適用例を説明する。
<第2の実施形態の第2の仕様>
 第1の仕様では、各区間の出力電圧レベル(16レベル)がほぼリニア(線形)となる。このため、複数の区間同士では非線形な特性は可能であるが、1つの区間内(16レベル内)において、非線形な電圧特性の実現は困難である。しかし、例えば4レベルがリニア(線形)となる図22の仕様を組み合せて構成することで、比較的滑らかに変化するような非線形な電圧特性にも、十分に対応することができる。次に、非線形な電圧特性に対応可能な図24のデジタルアナログ変換回路について説明する。
 図17は、第2の実施形態における第2の仕様を説明する図である。第2の仕様の回路構成は図24に対応している。図17は、図16の仕様の変更例を示している。図17に示す例は、第1~第64の区間のうち、第1の区間に図22の仕様を適用し、第2~第64(S=63)の各区間に、図2(A)の仕様を適用したものである。
 第1の区間における第0~第15レベルでは、参照電圧を4レベル置き第0レベル、第4レベル、第8レベル、第12レベル、第16レベル(但し、第16レベルは第2区間の基準レベルと重複)に設定しており、入出力特性(入力(V(T1)、V(T2)、V(T3))と出力Voutの関係)は、図22の仕様の入出力特性(入力(VIN2、VIN3、VIN1)と出力Voutの関係)と対応し、上式(1)のVout={VIN3+VIN2+2×VIN1}/4の関係を満たしている。
例えば、図17の第0~第3レベル(V0~V3)を出力する(V(T1)、V(T2)、V(T3))の組合せは、
第0レベル:(V(T1)、V(T2)、V(T3))=(V0、V0、V0)
第1レベル:(V(T1)、V(T2)、V(T3))=(V4、V0、V0)
第2レベル:(V(T1)、V(T2)、V(T3))=(V0、V0、V4)
第3レベル:(V(T1)、V(T2)、V(T3))=(V4、V0、V4)
であり、図22の第0~第3階調(V0~V3)を出力する(VIN2、VIN3、VIN1)の組合せは、
第0階調:(VIN2、VIN3、VIN1)=(V0、V0、V0)
第1階調:(VIN2、VIN3、VIN1)=(V4、V0、V0)
第2階調:(VIN2、VIN3、VIN1)=(V0、V0、V4)
第3階調:(VIN2、VIN3、VIN1)=(V4、V0、V4)
であり、対応関係が一致している。
なお、図17の(V(T1)、V(T2))は互いに入れ替えていてもよく、図22の(VIN、VIN)も互いに入れ替えていてもよい。
 第2の仕様(図17)に対応した図24のデジタルアナログ変換回路は、図15のデコーダブロック40に、更に第3のデコーダ30を備える。第3のデコーダ30が、図17の第1の区間の電圧レベルを出力するための第1~第3の電圧(VIN2、VIN3、VIN1)を選択して端子T1、T2、T3に出力する。一方、第1及び第2のデコーダ10、20は、図17の第2~第64の区間の電圧レベルを出力するための第1~第3の電圧(V(T1)、V(T2)、V(T3))を選択して端子T1、T2、T3に出力する。
 図24において、第3のデコーダ30は、参照電圧発生回路50から、図17の第1の区間の第0レベル、第4レベル、第8レベル、第12レベル、第16レベルの5個の参照電圧を入力し、D9~D0の10ビット入力デジタル信号に応じて((D9,D8,D7,D6,D5,D4)=(0,0,0,0,0,0,0)のとき)、図17の第1の区間(第0レベル~第15レベル)に対応する第1~第3の電圧(VIN2、VIN3、VIN1)を選択して端子T1、T2、T3に出力する。演算増幅器60(1:1:2の内挿アンプ)は、端子T1、T2、T3に出力された第1~第3の電圧(VIN2、VIN3、VIN1)を(V(T1)、V(T2)、V(T3))として入力し、上式(2)の演算結果に対応した電圧を出力する。なお、演算増幅器60から出力される電圧は、第3のデコーダ30で選択された第1~第3の電圧(VIN2、VIN3、VIN1)に対して上式(1)の演算結果とも対応していることは勿論である。
 第1及び第2のデコーダ10、20は、参照電圧発生回路50から、図17の第2の区間から第64の区間の63区間について、各区間3個の電圧レベル×63区間+第1024レベルの計190個の参照電圧を入力し、D9~D0の10ビットデジタル信号に応じて((D9,D8,D7,D6,D5,D4)=(0,0,0,0,0,0,1)~(1,1,1,1,1,1,1)のとき)、図17の第2~第64の区間(第16レベル~第1023レベル)に対応する第1~第3の電圧(V(T1)、V(T2)、V(T3))を選択して端子T1、T2、T3に出力する。演算増幅器60(1:1:2の内挿アンプ)は、端子T1、T2、T3に出力された第1~第3の電圧(V(T1)、V(T2)、V(T3))を入力し、上式(2)の演算結果に対応した電圧を出力する。
 図17の第1区間の電圧レベル(第0レベル~第15レベル)を出力する第3のデコーダ30は、図22の仕様(第0レベル~第15レベル)に対応した図21の選択回路316の下位4ビット構成に、(D9,D8,D7,D6,D5,D4)=(0,0,0,0,0,0,0)を選択する上位6ビットの選択回路を追加した構成としてもよい。
 図17の仕様では、非線形な電圧特性の範囲を、第1区間のみに設定した例を示しているが、非線形な電圧特性の範囲に応じて設定を変更できることは勿論である。
 また、非線形な電圧特性の区間について、図22とは別の仕様を適用してもよい。例えば、非線形な電圧特性の区間の各電圧レベルに1対1で対応する参照電圧を設け、それを選択するデコーダを、図15のデコーダブロック40にさらに追加しても良い。この場合も、追加されたデコーダに対して演算増幅器60を共有することができる。追加されるデコーダは、デジタル信号に応じて、出力される電圧レベルに等しい参照電圧を重複して第1~第3の電圧(V(T1)、V(T2)、V(T3))として選択し、演算増幅器60へ出力する構成となる。
 また、図3~図14の仕様についても、図17の仕様と同様の設定が可能である。すなわち、全電圧レベルにおいて、線形な電圧特性の区間に対して図3~図14の仕様を適用し、非線形な電圧特性を含む区間は、図22の仕様等、本実施形態とは、別の仕様を適用することができる。
また、線形な電圧特性の区間(1区間が16レベル以上)に対して図2(A)~図14の複数の仕様を組合せてもよい。その場合、図15のデコーダブロック40には、第1及び第2のデコーダ10、20が複数の仕様ごとに設けられ、複数の仕様ごとの第1のデコーダ10に対して、演算増幅器60が共有される構成となる。
<第3の実施形態>
 図19は、本発明の第3の実施形態の表示装置のデータドライバの要部構成を示す図である。このデータドライバは、例えば図20(A)のデータドライバ980(表示素子は液晶又は有機発光ダイオード)に対応している。図19を参照すると、このデータドライバは、シフトレジスタ801と、データレジスタ/ラッチ802と、レベルシフタ群803と、参照電圧発生回路804と、デコーダ回路群805と、出力回路群806とを含んで構成される。
 参照電圧発生回路804は、図1のN個の参照電圧を生成する。又は、図15の参照電圧発生回路50を含む。デコーダ回路群805は、出力数に対応した複数個の図1の第1のデコーダ10、又は、複数個の図15のデコーダブロック40を含んで構成される。
 出力回路群806は、出力数に対応した複数個の図1及び図15の演算増幅器60で構成される。参照電圧発生回路804から出力される参照電圧群は、デコーダ回路群805を構成する複数個のデコーダ(又はデコーダブロック)に共通に入力される。
 図19において、シフトレジスタ801は、スタートパルスとクロック信号CLKに基づき、データラッチのタイミングを決定する。データレジスタ/ラッチ802は、シフトレジスタ801で決定されたタイミングに基づいて、入力された映像デジタルデータを各出力単位のデジタルデータ信号に展開し、所定の出力数毎ラッチし、制御信号に応じて、レベルシフト回路群803に出力する。レベルシフタ群803は、データレジスタ/ラッチ802から出力される各出力単位のデジタルデータ信号を低振幅信号から高振幅信号にレベル変換して、デコーダ回路群805に出力する。デコーダ回路群805は、各出力毎に、参照信号発生回路804で生成された参照信号群から、入力されたデジタルデータ信号に応じた参照電圧(第1~第3の電圧(V(T1)、V(T2)、V(T3))を選択する。
 出力回路群806は、各出力毎に、デコーダ回路群805の対応するデコーダで選択された一つ又は複数の参照電圧(第1~第3の電圧(V(T1)、V(T2)、V(T3))を入力し、一つ又は複数の参照電圧に対応した階調信号を増幅出力する。
 出力回路群806の出力端子群は表示装置のデータ線(図20(A)の962)に接続されている。
 シフトレジスタ801及びデータレジスタ/ラッチ802はロジック回路で、一般に低電圧(例えば0V~3.3V)で構成され、対応する電源電圧が供給されている。レベルシフタ群803、デコーダ回路群805及び出力回路群806は、一般に表示素子を駆動するのに必要な高電圧(例えば0V~18V)で構成され、対応する電源電圧が供給されている。
 本実施形態によれば、出力回路(演算増幅器60)から出力される電圧レベルの数に対して必要な参照電圧の数を大幅に縮減し、デコーダ回路を構成するトランジスタスイッチ数を大幅に縮減することでデコーダ面積の削減を可能とするデータドライバ、表示装置を実現可能としている。
 次に、上記で説明した各実施形態(図2(A)~図14)に対応した図1、図15、図24のデコーダ10に好適な、仕様例及び回路構成例について、図面を参照して説明する。
<第1の実施例>
 図25は、図2(A)、(B)に対応した仕様(n=4、N=4、A=0)の1例を示す図である。図25は、図1のデコーダ10に入力される参照電圧(図2(A)の第0レベル、第4レベル、第12レベル、第16レベルの4個の参照電圧に対応)から4ビットデジタル信号(D3,D2,D1,D0)に対応して、デコーダ10の出力端子T1、T2、T3に選択出力される電圧V(T1)、V(T2)、V(T3)と、演算増幅器60から電圧V(T1)、V(T2)、V(T3)に基づき演算出力される電圧Voutとの関係を示す。なお、図25において、各電圧は電圧レベル番号、デジタル信号は2進数の値(0又は1)で示している。図25は、図16の第1区間の仕様と同一である。図25の第0レベル~第15レベルの基準レベルに対応する第0レベルを、16の任意の倍数の電圧レベルに置換えて、その基準レベルから16レベル分の区間としてもよい。
 図26は、図25の仕様を実現するデコーダ10の回路構成の一例(10-1A)を示す図である。図26において、デコーダ10-1Aに入力される参照電圧は、V(Az)、V(Az+4)、V(Az+12)、V(Az+16)とされ、デジタル信号として、4ビットデジタル信号(LSBを含む下位4ビット)(D3,D2,D1,D0)とその相補信号(D3B,D2B,D1B,D0B)が入力される。参照電圧V(Az)、V(Az+4)、V(Az+12)、V(Az+16)は、Az=0とすれば、図25の第0レベル(V0)、第4レベル(V4)、第12レベル(V12)、第16レベル(V16)に対応する。図26のデコーダ10-1Aは、Nチャネル型トランジスタスイッチ(以下、Nchトランジスタスイッチと記す)で構成されている。なおNchトランジスタスイッチは図面の便宜上、○の中に×を加えた記号で示す。Nchトランジスタスイッチは、デジタル信号Dx(xは0以上の整数)とその相補信号DxBで制御される。デジタル信号Dx(x=0~3)の値が1(Highレベル)のとき、相補信号DxB(x=0~3)の値は0(Lowレベル)であり、信号Dxが入力されるNchトランジスタスイッチはオン(導通)、相補信号DxBが入力されるNchトランジスタスイッチはオフ(非導通)とされる。デジタル信号Dx(x=0~3)の値が0(Lowレベル)のとき、相補信号DxB(x=0~3)の値は1(Highレベル)であり、信号Dxが入力されるNchトランジスタスイッチはオフ(非導通)、相補信号DxBが入力されるNchトランジスタスイッチはオン(導通)とされる。
Pチャネル型トランジスタスイッチ(以下、Pchトランジスタスイッチと記す)で構成する場合は、各ビット信号の正信号(Dx)と相補信号(DxB)を入れ替え、NchトランジスタスイッチをPchトランジスタスイッチに置き換えることで容易に構成できる。なお、以下の回路構成においては、Nchトランジスタスイッチでの構成例を示すが、Pchトランジスタスイッチでの構成に変換できることは言うまでもない。
 前述したように、図26のデコーダ10-1Aは図25の仕様に対応している。例えば図25の参照電圧の第0レベル(ノードN1に入力)をV(T1)として選択するデジタル信号の値は、(D3、D2,D0)=(0,0,0)、(D3B、D2B,D0B)=(1,1,1)であり、図26のノードN1、T1間のトランジスタスイッチ101、102、103に対応している(トランジスタスイッチ101、102、103のゲートはD3B、D2B、D0Bにそれぞれ接続され、オンとなる)。なお、デジタル信号(例えばDx)の値が1のとき、図26の(Nch)トランジスタスイッチは、正信号(Dx)で制御される構成となる。
 図25の参照電圧の第0レベルをV(T2)として選択するデジタル信号の値は、(D3,D2)=(0,0)であり、(D3B、D2B)=(1,1)であり、図26のノードN1、T2間のトランジスタスイッチ104、105に対応する(トランジスタスイッチ104、105のゲートはD3B、D2Bにそれぞれ接続され、オンとなる)。
図25の参照電圧の第0レベルをV(T3)として選択するデジタル信号の値は、(D3,D1)=(0,0)、(D3B,D1B)=(1,1)であり、図26のノードN1、T3間のトランジスタスイッチ106、107に対応する(トランジスタスイッチ106、107のゲートはD3B、D1Bにそれぞれ接続され、オンとなる)。
 同様に、図25の参照電圧の第4レベル(ノードN2に入力)をV(T1)として選択するデジタル信号の値は、(D3,D2,D0)=(0,0,1)、(D3B、D2B,D0B)=(1,1,0)であり、図26のノードN2、T1間のトランジスタスイッチ108、109、110に対応している(トランジスタスイッチ108、109、110のゲートは、D3B、D2B、D0にそれぞれ接続され、オンとなる)。図25の参照電圧の第4レベルをV(T2)として選択するデジタル信号の値は、(D3、D2)=(0,1)、(D3B、D2B)=(1,0)、及び、(D3,D2,D1)=(1,0,1)、(D3B,D2B,D1B)=(0,1,0)であり、図26のノードN2、T2間のトランジスタスイッチ111、112、及びトランジスタスイッチ113、114、115に対応している。トランジスタスイッチ111、112のゲートは、D3B、D2にそれぞれ接続され、(D3、D2)=(0,1)のとき、オンとなる。またトランジスタスイッチ113、114、115のゲートは、D3、D2B、D1にそれぞれ接続され、(D3,D2,D1)=(1,0,1)のとき、オンとなる)。図25の参照電圧の第4レベルをV(T3)として選択するデジタル信号は、(D3、D1)=(0,1)、(D3B、D1B)=(1,0)、及び、(D3、D2,D1)=(1,0,0)、(D3B、D2B,D1B)=(0,1,1)であり、図26のノードN2、T3間のトランジスタスイッチ116、117及びトランジスタスイッチ118、119、120に対応する。すなわち、トランジスタスイッチ116、117のゲートは、D3B、D1にそれぞれ接続され、(D3、D1)=(0,1)のとき、オンとなる。トランジスタスイッチ118、119、1のゲートはD3、D2B、D1Bに接続され、(D3、D2,D1)=(1,0,0)のとき、オンとなる。
 以下同様に、図25の参照電圧の第12レベル(ノードN3に入力)をV(T1)として選択するデジタル信号の値は、(D3,D2,D0)=(0,1,0)、相補の信号(D3B,D2B,D0B)=(1,0,1)、及び、(D3,D0)=(1,0)、(D3B,D0B)=(0,1)であり、図26のノードN3、T1間のトランジスタスイッチ121、122、123及びトランジスタスイッチ124、125に対応している(トランジスタスイッチ121、122、123のゲートは、D3B、D2、D0Bにそれぞれ接続され、(D3,D2,D0)=(0,1,0)のとき、オンとなる。トランジスタスイッチ124、125のゲートは、D3、D0Bにそれぞれ接続され、(D3,D0)=(1,0)のとき、オンとなる)。図25の参照電圧の第12レベルをV(T2)として選択するデジタル信号は、(D3,D2,D1)=(1,0,0)、(D3B,D2B,D1B)=(0,1,1)、及び、(D3,D2)=(1,1)、(D3,D2)=(0,0)であり、図26のノードN3、T2間のトランジスタスイッチ126、127、128、及びトランジスタスイッチ129、130に対応している(トランジスタスイッチ126、127、128は、それぞれのゲートが、D3、D2B、D1Bに接続され、(D3,D2,D0)=(1,0,0)のとき、オンとなる。トランジスタスイッチ129、130のゲートはD3、D2にそれぞれ接続され、(D3,D2)=(1,1)のとき、オンとなる)。
 図25の参照電圧の第12レベルをV(T3)として選択するデジタル信号の値は(D3,D2,D1)=(1,0,1)、(D3B,D2B,D0B)=(0,1,0)、及び、(D3,D2,D1)=(1,1,0)、(D3B,D2B,D0B)=(0,0,1)であり、図26のノードN3、T3間のトランジスタスイッチ131、132、133及びトランジスタスイッチ134、135、136に対応する(トランジスタスイッチ131、132、133のゲートは、D3、D2B、D1にそれぞれ接続され、(D3,D2,D0)=(1,0,1)のとき、オンとなる。トランジスタスイッチ134、135、136のゲートは、D3、D2、D1Bにそれぞれ接続され、(D3,D2,D1)=(1,1,0)のとき、オンとなる)。
 更に、図25の参照電圧の第16レベル(ノードN4に入力)をV(T1)として選択するデジタル信号の値は、(D3,D2,D0)=(0,1,1)、(D3B,D2B,D0B)=(1,0,0)、及び、(D3,D0)=(1,1)、(D3B,D0B)=(0,0)であり、図26のノードN4、T1間のトランジスタスイッチ137、138、139及びトランジスタスイッチ140、141に対応している(トランジスタスイッチ137、138、139のゲートは、D3B、D2、D0にそれぞれ接続され、(D3,D2,D0)=(0,1,1)のとき、オンとなる。トランジスタスイッチ140、141のゲートはD3、D0にそれぞれ接続され、(D3,D0)=(1,1)のとき、オンとなる)。
 図25の参照電圧の第16レベルをV(T3)として選択するデジタル信号の値は、(D3,D2,D1)=(1,1,1)、(D3B,D2B,D1B)=(0,0,0)であり、図26のノードN4、T3間のトランジスタスイッチ142、143、144に対応する(トランジスタスイッチ142、143、144のゲートはD3,D2,D1にそれぞれ接続され、オンする)。なお、図25の仕様では図25の参照電圧の第16レベルはV(T2)として選択されない。
 以上より、図26のデコーダ10-1Aは、44個のNchトランジスタスイッチで構成される。なお、図25では、ノードN1~N4に入力される各参照電圧をデジタル信号の下位(D0,D0B)から上位(D3,D3B)の順で選択する例を示しているが、図25の構成の場合、デジタル信号の順序を任意に入れ替えても構わない。
 図27は、図25の仕様を実現するデコーダ10の別の回路構成例10-1Bを示す図である。図27のデコーダ10-1Bは、図26に示したデコーダ10-1Aの変更例である。この回路構成は、トランジスタスイッチ数を削減して面積の削減を可能としたものである。デコーダ10-1Bに入力される参照電圧、デジタル信号及び端子T1~T3に選択出力される電圧は、いずれも図26と同一である。
 図27のデコーダ10-1Bは、図26のデコーダ10-1Aにおいて、同じ電圧を共通に選択するトランジスタスイッチの一方を削除することにより、トランジスタ数を削減している。例えば、図26のデコーダ10-1Aにおいて、ノードN1、T1間のトランジスタスイッチ(101、102、103)と、ノードN2、T1間のトランジスタスイッチ(108、109、110)に関して、トランジスタスイッチ103、110は異なるデジタル信号D0B、D0でオン・オフが制御されるが、トランジスタスイッチ101と108はデジタル信号D3Bで共通にオン・オフが制御され、トランジスタスイッチ102と109は、デジタル信号D2Bで共通にオン・オフが制御される。トランジスタスイッチ101、102、108、109は、(D3B、D2B)=(1、1)、すなわち(D3,D2)=(0,0)のときに、端子T1と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26におけるトランジスタスイッチ103、110の出力側ノードを共通接続し(図27のノードN11)、図26のトランジスタスイッチ(108、109)を残し、図26のトランジスタスイッチ(101、102)を削除してもよい。また図26のデコーダ10-1Aにおいて、トランジスタスイッチ108と121が共にD3Bに制御され、選択時(D3=0)に端子T1と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ109、122の出力側ノードを共通接続し(図27のノードN12)、図26のトランジスタスイッチ121を残し、図26のトランジスタスイッチ108を削除している。
 また、図26のデコーダ10-1Aにおいて、ノードN1、T2間のトランジスタスイッチ(104、105)とノードN2、T2間のトランジスタスイッチ(111、112)は、トランジスタスイッチ104、111がD3Bにより共通に制御され、選択時(D3=0)に端子T2と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ105、112の出力側ノードを共通接続し(図27のノードN13)、図26のトランジスタスイッチ111を残し、図26トランジスタスイッチ104を削除している。
 また、図26のデコーダ10-1Aにおいて、ノードN1、T3間のトランジスタスイッチ(106、107)とノードN2、T2間のトランジスタスイッチ(116、117)は、トランジスタスイッチ106、116がD3Bにより共通に制御され、選択時に端子T3と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ107、117の出力側ノードを共通接続し(図27のノードN14)、図26のトランジスタスイッチ116を残し、図26のトランジスタスイッチ106を削除している。
 また、図26のデコーダ10-1Aにおいて、ノードN2、T2間のトランジスタスイッチ(113、114、115)と、ノードN3、T2間のトランジスタスイッチ(126、127、128)に関して、トランジスタスイッチ113と126は、D3により共通にオン・オフが制御され、トランジスタスイッチ114と127は、D2Bにより共通にオン・オフが制御される。選択時に、トランジスタスイッチ113、114、126、127は端子T2と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ115、128の出力側ノードを共通接続し(図27のノードN16)、図26のトランジスタスイッチ(126、127)を残し、図26のトランジスタスイッチ(113、114)を削除している。図26のデコーダ10-1Aにおいて、トランジスタスイッチ126と129が共にD3で制御され、選択時に端子T2と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ127、130の出力側ノードを共通接続し(図27のノードN17)、図26のトランジスタスイッチ129を残し、図26のトランジスタスイッチ126を削除している。
 また、図26のデコーダ10-1Aにおいて、ノードN2、T2間のトランジスタスイッチ(118、119、120)と、ノードN3、T3間のトランジスタスイッチ(131、132、133)に関して、トランジスタスイッチ118と131は、D3により共通にオン・オフが制御され、トランジスタスイッチ119と132は、D2Bにより共通にオン・オフが制御される。トランジスタスイッチ118、119、131、132は、選択時に端子T3と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ120、133の出力側ノードを共通接続し(ノードN18)、図26のトランジスタスイッチ(118、119)を削除している。また図26のデコーダ10-1Aにおいて、トランジスタスイッチ131と134が共にD3で制御され、選択時に端子T3と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ132、135の出力側ノードを共通接続し(ノードN19)、図26のトランジスタスイッチ134を残し、図26のトランジスタスイッチ131を削除している。
 また、図26のデコーダ10-1Aにおいて、ノードN3、T3間のトランジスタスイッチ(134、135、136)とノードN4、T3間のトランジスタスイッチ(142、143、144)に関して、トランジスタスイッチ134と142はD3により共通にオン・オフが制御され、トランジスタスイッチ135と143はD2により共通にオン・オフが制御され、このトランジスタスイッチ134、135、143、143は、選択時に端子T3と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ136、144の出力側ノードを共通接続し(図27のノードN20)、トランジスタスイッチ(134、135)を残し、図26の図26のトランジスタスイッチ(142、143)を削除している。 
 また、図26のデコーダ10-1Aにおいて、ノードN3に一端が接続されるトランジスタスイッチ123、125は、D0Bにより共通に制御され、選択時にノードN3と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ123、125を1つにまとめ、トランジスタスイッチ123を残し、図26のトランジスタスイッチ125を削除している。同様に、図26のノードN4に一端が接続されるトランジスタスイッチ139、141は、D0により共通に制御され、選択時にノードN4と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ139、141を1つにまとめ、図26のトランジスタスイッチ139を残し、図26のトランジスタスイッチ141を削除している。
 図26のデコーダ10-1Aにおいて、ノードN3、T1間のトランジスタスイッチ(121、122、123)とノードN4、T3間のトランジスタスイッチ(137、138、139)に関して、トランジスタスイッチ121と137はD3Bにより共通にオン・オフが制御され、トランジスタスイッチ122と138はD2により共通にオン・オフが制御され、これらのトランジスタ121、122、137、138は、選択時に端子T1と共通に導通される。したがって、図27のデコーダ10-1Bでは、トランジスタスイッチ123、139の出力側ノードを共通接続し(ノードN15)、図26のトランジスタスイッチ(121、122)を残し、図26のトランジスタスイッチ(137、138)を削除してもよい。また図26のデコーダ10-1Aにおいて、ノードN3、T1間のトランジスタスイッチ(124、125)とノードN4、T3間のトランジスタスイッチ(140、141)は、トランジスタスイッチ124と140がD3により共通に制御され、選択時に端子T1と共通に導通される。したがって、図27のデコーダ10-1Bでは、図26のトランジスタスイッチ125、141の出力側ノードを共通接続し(ノードN15)、図26のトランジスタスイッチ140を削除している。
 以上より、図27に示すように、デコーダ10-1Bのトランジスタスイッチ数は26個となる。図26のデコーダ10-1Aのトランジスタスイッチ数は44個である。図26の構成に比べて、トランジスタスイッチ数は大幅に削減されている。
 このように、トランジスタスイッチ数を大幅に削減可能なデコーのダ構成としては、図27に示したデコーダ10-1Bのように、デジタル信号を下位ビット側(D0、D0B)から上位ビット側(D3,D3B)へ向かう順で、参照電圧を選択する構成が好ましい。これは、上位ビット側のデジタル信号の方が下位ビット側のデジタル信号に比べて、共通に制御するトランジスタスイッチ数が多いこと、また、デコータの出力側端子数の3個(T1、T2、T3)に対して、デコーダの入力側ノード数は4個(N1、N2、N3、N4)と多いため、上位側のデジタル信号で制御されるトランジスタスイッチをデコーダの出力側に配置すると、削減可能なトランジスタ数が多くなる、ためである。
 図28は、図26のデコーダ回路10-1A及び図27のデコーダ回路10-1Bを用いた回路シミュレーションの結果を示す図である。図28において、横軸は電圧レベルを表しているが、第1レベルから第15レベルまでの各電圧レベルに対応したデジタル信号の値(“0”はLowレベル、“1”はHighレベル)を(D3,D2,D1,D0)及び(D3B,D2B,D1B,D0B)にそれぞれ入力している。また、デコーダに入力する参照電圧V0、V4、V12、V16は、それぞれ0V、0.8V、2.4V、3.2Vに設定している。図28は、デジタル信号の値を第1レベルから第15レベルまで変化させたときの、デコーダ回路の出力側端子T1、T2、T3へそれぞれ選択出力される電圧V(T1)、V(T2)、V(T3)と、演算増幅器60から電圧V(T1)、V(T2)、V(T3)に基づき演算出力される電圧Voutを示している。図28より、図26のデコーダ回路10-1A及び図27のデコーダ回路10-1Bで選択出力される電圧V(T1)、V(T2)、V(T3)及び電圧Voutが、図25の仕様で示す関係と一致していることが確認できた。
<第1の実施例の変更例>
 次に、図25の変更例を示す。図29は、図2(A)、(B)に対応した仕様(n=4、N=4、A=0)の別の例で、デコーダ10に入力される参照電圧(図2(A)に対応)から、同じく入力される4ビットデジタル信号(D3,D2,D1,D0)に対応して、デコーダ10の出力端子T1、T2、T3に選択出力される電圧V(T1)、V(T2)、V(T3)と、演算増幅器60から電圧V(T1)、V(T2)、V(T3)に基づき演算出力される電圧Voutとの関係を示す。
 図29に示した仕様では、図1のデコーダ10で同一参照電圧を選択して、V(T1)=V(T2)=V(T3)となる演算増幅器60の入力電圧(V(T1)、V(T2)、V(T3))の組み合わせを最小化している。一方、図25に示した仕様では、同一参照電圧を選択する(V(T1)、V(T2)、V(T3))の組み合わせは、第0レベル及び第12レベルの2つある。さらに、第4レベルについても(V(T1)、V(T2)、V(T3))が同一参照電圧を選択するような組合せとなる仕様に設定することもできる。
 しかし、演算増幅器60の入力電圧V(T1)、V(T2)、V(T3)として、同一参照電圧(例えばVz)が共通選択される状態は、必ずしも良い選択状態ではない。その例を以下に説明する。
 デコーダ10の出力端子T1、T2、T3は、演算増幅器60の入力に接続される。例えば演算増幅器60が図23の演算増幅器のような構成の場合、端子T1、T2、T3は図23の端子IN2、IN3、IN1にそれぞれ対応し、差動対を構成するトランジスタN5、トランジスタN7、トランジスタN1、N3のそれぞれのゲート端子と接続される。トランジスタはそれぞれサイズ(トランジスタ寸法)に応じた寄生容量を有しており、ゲート端子にはゲート容量が存在する。すなわち、V(T1)、V(T2)、V(T3)として、参照電圧Vzが共通に選択される場合、図23の演算増幅器の4個のトランジスタN1、N3、N5、N7のゲート容量が充電又は放電されて参照電圧Vzに変化することになる。このため、参照電圧Vzを選択するときのデコーダのインピ-ダンスが大きいと、図23の演算増幅器の入力(トランジスタN1、N3、N5、N7のゲート)の電圧変化に遅延が生じ、演算増幅器60の出力電圧の変化にも遅延が生じる場合がある。
 演算増幅器60の入力電圧及び出力電圧の変化の遅延を抑制するため、V(T1)=V(T2)=V(T3)となる(V(T1)、V(T2)、V(T3))の組み合わせを最小にすることは、デコーダ10の高速動作に対応する上で有効である。
 ただし、区間の両端のうちの一方の電圧レベルは、V(T1)=V(T2)=V(T3)となる(V(T1)、V(T2)、V(T3))の組み合わせとなるため、V(T1)、V(T2)、V(T3)として、同一参照電圧が共通選択される最小の組合せは、1となる。図29では、第0レベルから第15レベルまでの16レベルが1区間であるが、区間の両端(第0レベル、第15レベル)のうちの第0レベルだけは、V(T1)、V(T2)、V(T3)として第0レベルの参照電圧が共通選択される。第1レベルから第15レベルは、少なくとも異なる2個又は3個の参照電圧で(V(T1)、V(T2)、V(T3))が選択される。
 演算増幅器60の入力電圧(V(T1)、V(T2)、V(T3))が一つの参照電圧で共通に選択される場合だけでなく、二つの参照電圧で選択される場合、三つの参照電圧で選択される場合により、遅延の程度は異なる。
 演算増幅器60の第1乃至第3の入力電圧V(T1)、V(T2)、V(T3)が、一つの参照電圧で共通に選択される場合には、演算増幅器60の入力容量(ゲート容量)だけでなく、デコーダ10内で端子T1、T2、T3に対応した三つ経路に分岐されることで、デコーダ10内において経由するトランジスタスイッチの寄生容量も多くなる。
 このように、演算増幅器60の3個の入力電圧V(T1)、V(T2)、V(T3)が共通(同一)となる(V(T1)=V(T2)=V(T3))の組み合わせは、演算増幅器60の入力や出力の電圧変化の遅延に最も影響を与える可能性がある。そこで、本実施例では、そのような組み合せを最小(1組のみ)となるように設定している。
 V(T1)=V(T2)=V(T3)となる1つの電圧レベル(選択された参照電圧は、図29の第0レベル)については、該電圧レベル(図29の第0レベル)を選択するときのデコーダ10のインピーダンスを低減するための別の措置を講ずることも可能である。
 図30は、図29の仕様を実現するデコーダ10の別の回路構成例を示す図である。図30において、デコーダ10-2に入力される参照電圧、デジタル信号は、図26と同一である。ただし、端子T1~T3に選択出力される電圧V(T1)、V(T2)、V(T3)は、図29の仕様に対応している。図30のデコーダ10-2は、Nchトランジスタスイッチでの構成例である。
 図30のデコーダ10-2は、図27のデコーダ10-1Bと同様に、トランジスタスイッチ数を削減し面積の削減を可能とする構成である。なお、図27のデコーダ10-1Bに対してトランジスタ数を削減する前の構成が、図26のデコーダ10-1Aであるが、図30の回路構成に対して、トランジスタ数削減前の回路構成のデコーダ回路(図29の仕様に対応したデコーダ回路)の図示は省略している。図30のトランジスタ数の削減方法は図27と同様であり、詳細な説明は省略する。図30のデコーダ10-2では、トランジスタスイッチ数が24個で、図27のデコーダ10-1Bと同様にトランジスタスイッチ数が大幅に削減されている。
 図30のデコーダ10-2は、図27のデコーダ10-1Bと同様に、デジタル信号を下位側(D0、D0B)から上位側(D3,D3B)へ向かう順で参照電圧を選択する構成としている。なお、図30のデコーダ10-2について、図28のような回路シミュレーションを実施し、図30のデコーダ回路10-2で選択出力される電圧V(T1)、V(T2)、V(T3)及び電圧Voutが、図29の仕様で示す関係と一致していることを確認している。ただし、シミュレーション結果は省略する。
<第2の実施例>
 図31は、図3、図4に対応した仕様(n=5、N=6、A=0)の一例を示す図である。図1のデコーダ10に入力されるN=6個の参照電圧(図3に対応し、6個の参照電圧のレベルは、第0レベル、第4レベル、第12レベル、第20レベル、第28レベル、第32レベル)から、同じく入力される5ビットデジタル信号(D4,D3,D2,D1,D0)に対応して、デコーダ10の出力端子T1、T2、T3に選択出力される電圧V(T1)、V(T2)、V(T3)と、演算増幅器60から電圧V(T1)、V(T2)、V(T3)に基づき演算出力される電圧Voutとの関係が示されている。
 図31の仕様では、図29と同様に、図1のデコーダ10において、6個の参照電圧(第0レベル、第4レベル、第12レベル、第20レベル、第28レベル、第32レベル)から、同一の参照電圧を選択して、V(T1)=V(T2)=V(T3)となる演算増幅器60の入力電圧(V(T1)、V(T2)、V(T3))の組み合わせを最小化(第0レベルの1つのみと)している。これにより、演算増幅器60の入力電圧及び出力電圧の変化の遅延を抑制できる構成としている。
 図32は、図31の仕様を実現するデコーダ10の回路構成例10-3を示す図である。図32に示すように、このデコーダ10-3に入力される参照電圧は、V(Az)、V(Az+4)、V(Az+12)、V(Az+20)、V(Az+28)、V(Az+32)、入力されるデジタル信号は、5ビットデジタル信号(D4,D3,D2,D1,D0)とその相補信号(D4B,D3B,D2B,D1B,D0B)である。
 参照電圧V(Az)、V(Az+4)、V(Az+12)、V(Az+20)、V(Az+28)、V(Az+32)は、Az=0とすれば、図31の第0レベル(V0)、第4レベル(V4)、第12レベル(V12)、第20レベル(V20)、第28レベル(V28)、第32レベル(V32)に対応する。図32のデコーダ10-3は、Nchトランジスタスイッチで構成されている。
 図32のデコーダ10-3は、図27のデコーダ10-1Bと同様に、トランジスタスイッチ数を削減して面積の削減を可能とした構成である。図27のデコーダ10-1Bに対してトランジスタ数を削減する前の構成が、図26のデコーダ10-1Aであるが、図32の構成に対して、トランジスタ数を削減する前の回路構成(図31の仕様に対応したデコーダ回路)の図示は省略している。図32のトランジスタ数の削減の仕方は図27と同様であり詳細な説明は省略する。図32のデコーダ10-3も、図27のデコーダ10-1Bと同様に、デジタル信号を下位側(D0、D0B)から上位側(D4,D4B)へ向かう順で参照電圧を選択する構成としている。
 なお、図32のデコーダ10-3について、図28のような回路シミュレーションを実施し、図32のデコーダ回路10-3で選択出力される電圧V(T1)、V(T2)、V(T3)及び電圧Voutが、図31の仕様で示す関係と一致していることを確認している。ただし、シミュレーション結果は省略する。
<第3の実施例>
 図33は、図5、図6に対応した仕様(n=5、N=5、A=0)の例を示す図である。図33には、図1のデコーダ10に入力されるN=5個の参照電圧(図5に対応し、5個の参照電圧のレベルは、第0レベル、第4レベル、第16レベル、第28レベル、第32レベル)から、同じく入力される5ビットデジタル信号(D4,D3,D2,D1,D0)に対応して、デコーダ10の出力端子T1、T2、T3に選択出力される電圧V(T1)、V(T2)、V(T3)と、図1の演算増幅器60から、入力電圧V(T1)、V(T2)、V(T3)に基づき演算出力される電圧Voutとの関係が示されている。
 図33の仕様では、図29と同様に、デコーダ10で同一参照電圧を選択して、V(T1)=V(T2)=V(T3)となる演算増幅器60の入力電圧(V(T1)、V(T2)、V(T3))の組み合わせを最小化(第0レベルの1つのみ)している。これにより演算増幅器の入力電圧及び出力電圧の変化の遅延を抑制できる構成としている。
 図34は、図33の仕様を実現するデコーダの回路構成の一例を示す図である。図34において、デコーダ10-4は、入力される参照電圧がV(Az)、V(Az+4)、V(Az+16)、V(Az+28)、V(Az+32)とされ、入力されるデジタル信号は、5ビットデジタル信号(D4,D3,D2,D1,D0)とその相補信号(D4B,D3B,D2B,D1B,D0B)である。参照電圧V(Az)、V(Az+4)、V(Az+16)、V(Az+28)、V(Az+32)は、Az=0とすれば、図32の第0レベル(V0)、第4レベル(V4)、第16レベル(V16)、第28レベル(V28)、第32レベル(V32)に対応する。図34のデコーダ10-4は、Nchトランジスタスイッチで構成されている。
 図34のデコーダ10-4は、図27のデコーダ10-1Bと同様に、トランジスタスイッチ数を削減して面積の削減を可能とした構成である。図27のデコーダ10-1Bに対してトランジスタ数を削減する前の構成が、図26のデコーダ10-1Aであるが、図34の構成に対して、トランジスタ数を削減する前の回路構成(図33の仕様に対応したデコーダ回路)は省略している。図34のデコーダ回路10-4において、トランジスタ数の削減の仕方は、図27と同様であるため、その説明は省略する。
 図34のデコーダ10-4も、図27のデコーダ10-1Bと同様に、デジタル信号を下位側(D0、D0B)から上位側(D4,D4B)へ向かう順で参照電圧を選択する構成としている。
 なお、図34のデコーダ10-4について、図28のような回路シミュレーションを実施し、図34のデコーダ回路10-4で選択出力される電圧V(T1)、V(T2)、V(T3)及び電圧Voutが、図33の仕様で示す関係と一致していることを確認している。ただし、シミュレーション結果は省略する。
 なお、上記図7と図8に対応した仕様、図9と図10に対応した仕様、図11と図12に対応した仕様、図13と図14に対応した仕様(n=6、N=7、A=0)の例、及び、該仕様を実現するデコーダ10の回路構成は、図25から図34に示した実施例と同様の手法により構成することができるため、図示は省略する。
 なお、上記の特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 10、10-1A、10-1B、10-2、10-3、10-4 第1のデコーダ
 20 第2のデコーダ
 30 第3のデコーダ
 40 デコーダ
 50 参照電圧群
 60 演算増幅器
 101~144 Nchトランジスタスイッチ
 801 シフトレジスタ
 802 データレジスタ/ラッチ
 803 レベルシフタ群
 804 参照電圧発生回路
 805 デコーダ回路群
 806 出力回路群
 940 電源回路
 950 表示コントローラー
 960 表示部
 961 走査線
 962 データ線
 963 表示素子
 964 薄膜トランジスタ(TFT)
 964 画素電極
 970 ゲートドライバ
 971 液晶容量
 972 補助容量。
 973 画素電極
 974 対向基板電極
 980 データドライバ
 981 薄膜トランジスタ(TFT)
 982 有機発光ダイオード
 983 補助容量
 984、985 電源端子

Claims (13)

  1.  N個の参照電圧と、nビット(nは、4以上の予め定められた整数)のデジタル信号を入力し、前記N個の参照電圧から、前記nビットのデジタル信号に応じて、第1乃至第3の電圧を選択する第1のデコーダと、
     前記第1のデコーダで選択された前記第1乃至第3の電圧を入力し、(第1の電圧+第2の電圧+2×第3の電圧)/4の演算に対応した電圧レベルを出力する演算増幅器と、
     を備え、
     前記nビットのデジタル信号の2^n(^は冪乗演算子)通りの組み合わせのそれぞれに対して、基準レベルとなる第Aレベルから第(A-1+2^n)レベルまので2^n個の電圧レベルが前記演算増幅器から出力可能とされ、
     前記N個の参照電圧は、
     前記2^n個の出力電圧レベルである前記第Aレベル乃至第(A-1+2^n)レベルに対して、前記第Aレベルから4レベル置きの電圧レベルA+4k(但し、kは0から2^(n-2)までの整数)に対応する{1+2^(n-2)}個の参照電圧のうち、
     第Aレベル、第(A+4)レベル、第(A-4+2^n)レベル、第(A+2^n)レベルの4個の参照電圧と、
     前記第Aレベルから4レベル置きの電圧レベルに対応する{1+2^(n-2)}個の参照電圧のうち前記4個の参照電圧以外の{-3+2^(n-2)}個の参照電圧から、予め定められた少なくとも1つの個数の参照電圧を間引いた、多くとも{-4+2^(n-2)}個の参照電圧と、
     を含み、前記Nは4以上、且つ、2^(n-2)以下である、デジタルアナログ変換回路。
  2.  前記2^n個の出力電圧レベルは、前記第1のデコーダにおいて、前記第1乃至第3の電圧として互いに異なる電圧レベルの3個の参照電圧が選択され、前記第1のデコーダで選択された前記互いに異なる3個の参照電圧に基づき前記演算増幅器から出力される電圧レベルを含む、ことを特徴とする請求項1に記載のデジタルアナログ変換回路。
  3.  参照電圧群と、
     前記nビットのデジタル信号を下位側ビットに含むmビット(m>n)幅のデジタル信号と、
     第2のデコーダと、
     を備え、
     前記演算増幅器から出力可能な電圧レベルは、互いに重複しない第1~第Sの区間(但し、Sは1以上の所定の整数)に区分され、
     第zの区間(1≦z≦S)は、第Azレベル乃至第(Az-1+2^n)レベルよりなる2^n個の電圧レベルを含み、
     前記参照電圧群は、前記各区間z(1≦z≦S)に対応して、
     第Azレベルから4レベル置きの電圧レベル:Az+4k(但し、kは0から2^(n-2)までの整数)に対応する{1+2^(n-2)}個の参照電圧のうち、
     第Azレベル、第(Az+4)レベル、第(Az-4+2^n)レベル、第(Az+2^n)レベルの4個の参照電圧と、
     前記第Aレベルから4レベル置きの電圧レベルに対応する{1+2^(n-2)}個の参照電圧のうち、前記4個の参照電圧以外の{-3+2^(n-2)}の参照電圧から、予め定められた少なくとも1つの個数の参照電圧を間引いた、多くとも{-4+2^(n-2)}個の参照電圧と、
     からなるN個の参照電圧を含み、
     前記Nは4以上、2^(n-2)以下であり、
     第z(1≦z<S)の区間の第(Az+2^n)レベルの参照電圧は、第(z+1)の区間の基準レベルである第A(z+1)レベルの参照電圧と等しく、前記第1~第Sの区間の参照電圧の総数は、S×(N-1)+1とされ、
     前記第2のデコーダは、前記参照電圧群から前記mビットのデジタル信号の上位側の(m-n)ビットの値に応じて、前記第1~第Sの区間の中の対応する1つの区間に割り当てられた前記N個の参照電圧を選択し、前記第1のデコーダへ出力する、請求項1又は2に記載のデジタルアナログ変換回路。
  4.  参照電圧群と、
     前記nビットのデジタル信号を下位側ビットに含むmビット(m>n)幅のデジタル信号と、
     第2及び第3のデコーダを更に備え、
     前記演算増幅器から出力可能な電圧レベルは、互いに重複しない第1~第Sの区間(但し、Sは1以上の所定の整数)に区分され、
     第zの区間(1≦z≦S)は、第Azレベル乃至第(Az-1+2^n)レベルよりなる2^n個の電圧レベルを含み、
     前記参照電圧群は、前記第1~第Sの区間の少なくとも1つの区間pに対応して、
     第Apレベルから4レベル置きの電圧レベル:Ap+4k(但し、kは0から2^(n-2)までの整数)に対応する{1+2^(n-2)}個の参照電圧のうち、第Apレベル、第(Ap+4)レベル、第(Ap-4+2^n)レベル、第(Ap+2^n)レベルの4個の参照電圧と、
     前記第Aレベルから4レベル置きの電圧レベルに対応する{1+2^(n-2)}個の参照電圧のうち前記4個の参照電圧以外の{-3+2^(n-2)}個の参照電圧から、予め定められた少なくとも1つの個数の参照電圧を間引いた、多くとも{-4+2^(n-2)}の参照電圧と、
     からなる計N個の参照電圧を含み、
     前記Nは4以上、2^(n-2)以下であり、
     前記参照電圧群は更に、前記第1~第Sの区間の前記区間pとは別の少なくとも1つの区間qに対応して、第Aqレベルから4レベル置きに、第(Aq-4+2^n)レベルまでの2^(n-2)の参照電圧を含み、
     前記第2のデコーダは、前記参照電圧群から前記mビットのデジタル信号の上位側の(m-n)ビットの値に応じて、前記第1~第Sの区間の中の対応する区間pに対して、割り当てられた前記N個の参照電圧を選択して前記第1のデコーダへ出力し、
     前記第3のデコーダは、前記参照電圧群から、前記2^(n-2)個の参照電圧が入力され、前記第3のデコーダは、前記mビットのデジタル信号に応じて、前記2^(n-2)個の参照電圧から第1乃至第3の電圧を選択して、前記演算増幅器に供給し、
     前記第1のデコーダと前記第3のデコーダとは、前記演算増幅器を共有する、請求項1又は2に記載のデジタルアナログ変換回路。
  5.  前記nが4、前記Nが4であり、
     前記N個の参照電圧が、前記演算増幅器から出力可能な第Aレベル乃至第(A+15)レベルよりなる16個の電圧レベルに対して、
     第A、第(A+4)、第(A+12)、第(A+16)の電圧レベルとされる、請求項1に記載のデジタルアナログ変換回路。
  6.  前記nが5、前記Nが6であり、
     前記N個の参照電圧が、前記演算増幅器から出力可能な第Aレベル乃至第(A+31)レベルよりなる32個の電圧レベルに対して、第A、第(A+4)、第(A+12)、第(A+20)、第(A+28)、第(A+32)の電圧レベルとされる請求項1に記載のデジタルアナログ変換回路。
  7.  前記nが5、前記Nが5であり、
     前記N個の参照電圧が、前記演算増幅器から出力可能な第Aレベル乃至第(A+31)レベルよりなる32個の電圧レベルに対して、第A、第(A+4)、第(A+16)、第(A+28)、第(A+32)の電圧レベルに設定されることを特徴とする請求項1に記載のデジタルアナログ変換回路。
  8.  前記nが6、前記Nが7であり、
     前記N個の参照電圧が、前記演算増幅器から出力可能な第Aレベル乃至第(A+63)レベルよりなる64個の電圧レベルに対して、第A、第(A+4)、第(A+32)、第(A+60)、第(A+64)の5個の電圧レベルに加え、
     第(A+16)と第(A+48)、又は、第(A+8)と第(A+56)、又は、第(A+12)と第(A+52)、又は、第(A+20)と第(A+44)のいずれかの組合せの2個の電圧レベルに設定されることを特徴とする請求項1に記載のデジタルアナログ変換回路。
  9.  前記第1のデコーダは、前記N個の参照電圧から選択出力する前記第1乃至第3の電圧の組み合せに関して、前記演算増幅器から出力される前記2^n個の出力電圧レベルに対応した前記第1乃至第3の電圧の組み合わせのうち、前記N個の参照電圧の中の1つの参照電圧を前記第1乃至第3の電圧に対して共通に選択する組み合せを最小化し、1組とした、ことを特徴とする請求項1に記載のデジタルアナログ変換回路。
  10.  前記第1のデコーダは、前記N個の参照電圧を、前記nビットのデジタル信号の下位側ビットから上位側ビットへ向かって順次選択する、ことを特徴とする請求項1に記載のデジタルアナログ変換回路。
  11.  入力映像信号に対応した入力デジタル信号を受け、前記入力デジタル信号に対応した電圧を出力する、請求項1乃至10のいずれか一に記載のデジタルアナログ変換回路を備え、前記入力デジタル信号に対応した電圧でデータ線を駆動するデータドライバ。
  12.  データ線と走査線の交差部に画素スイッチと表示素子を含む単位画素を備え、前記走査線でオンとされた画素スイッチを介して前記データ線の信号が表示素子に書き込まれる表示装置であって、
     前記データ線を駆動するデータドライバとして、請求項11記載の前記データドライバを備えた表示装置。
  13.  表示素子が液晶素子又は有機発光ダイオード表示からなる請求項12記載の表示装置。
PCT/JP2012/055153 2011-03-04 2012-03-01 デジタルアナログ変換回路及び表示装置のデータドライバ WO2012121087A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/002,948 US9224356B2 (en) 2011-03-04 2012-03-01 Digital to-analog-conversion circuit and data driver for display device
JP2013503473A JP5607815B2 (ja) 2011-03-04 2012-03-01 デジタルアナログ変換回路及び表示装置のデータドライバ
US14/967,992 US20160098968A1 (en) 2011-03-04 2015-12-14 Digital-to-analog-conversion circuit and data driver for display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011047282 2011-03-04
JP2011-047282 2011-03-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/002,948 A-371-Of-International US9224356B2 (en) 2011-03-04 2012-03-01 Digital to-analog-conversion circuit and data driver for display device
US14/967,992 Continuation US20160098968A1 (en) 2011-03-04 2015-12-14 Digital-to-analog-conversion circuit and data driver for display device

Publications (1)

Publication Number Publication Date
WO2012121087A1 true WO2012121087A1 (ja) 2012-09-13

Family

ID=46798055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055153 WO2012121087A1 (ja) 2011-03-04 2012-03-01 デジタルアナログ変換回路及び表示装置のデータドライバ

Country Status (3)

Country Link
US (2) US9224356B2 (ja)
JP (1) JP5607815B2 (ja)
WO (1) WO2012121087A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010291A (ja) * 2016-06-30 2018-01-18 株式会社半導体エネルギー研究所 表示装置およびその動作方法、ならびに電子機器
JP2018180378A (ja) * 2017-04-17 2018-11-15 ラピスセミコンダクタ株式会社 出力回路、データ線ドライバ及び表示装置
US10573219B2 (en) 2017-11-16 2020-02-25 Seiko Epson Corporation Display driver, electro-optical device, and electronic apparatus
US10713992B2 (en) 2018-07-23 2020-07-14 Seiko Epson Corporation Display driver, electro-optical device, and electronic apparatus
JP2020148858A (ja) * 2019-03-12 2020-09-17 ラピスセミコンダクタ株式会社 デジタルアナログ変換回路及びデータドライバ
JP2021010076A (ja) * 2019-06-28 2021-01-28 キヤノン株式会社 デジタルアナログ変換回路、表示装置、電子機器
KR102713870B1 (ko) 2019-07-09 2024-10-04 삼성전자주식회사 소스 드라이버 및 이를 포함하는 디스플레이 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099026B2 (en) 2012-09-27 2015-08-04 Lapis Semiconductor Co., Ltd. Source driver IC chip
KR102286726B1 (ko) * 2015-05-14 2021-08-05 주식회사 실리콘웍스 디스플레이 장치 및 그 구동 회로
CN110610678B (zh) * 2018-06-15 2022-02-01 深圳通锐微电子技术有限公司 驱动电路及显示装置
TWI807602B (zh) * 2022-01-20 2023-07-01 大陸商集璞(上海)科技有限公司 Led背光驅動電路、顯示裝置及資訊處理裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043944A (ja) * 2000-07-25 2002-02-08 Sharp Corp Da変換器およびそれを用いた液晶駆動装置
JP2005156621A (ja) * 2003-11-20 2005-06-16 Hitachi Displays Ltd 表示装置
JP2008067145A (ja) * 2006-09-08 2008-03-21 Nec Electronics Corp デコーダ回路並びにそれを用いた表示装置用駆動回路及び表示装置
JP2009104056A (ja) * 2007-10-25 2009-05-14 Nec Electronics Corp デジタルアナログ変換回路とデータドライバ及び表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155316B2 (ja) * 2006-06-30 2008-09-24 ソニー株式会社 D/a変換回路、液晶駆動回路及び液晶表示装置
GB2440770A (en) * 2006-08-11 2008-02-13 Sharp Kk Switched capacitor DAC
JP5376723B2 (ja) * 2008-06-09 2013-12-25 株式会社半導体エネルギー研究所 液晶表示装置
JP5508978B2 (ja) * 2010-07-29 2014-06-04 ルネサスエレクトロニクス株式会社 デジタルアナログ変換回路及び表示ドライバ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043944A (ja) * 2000-07-25 2002-02-08 Sharp Corp Da変換器およびそれを用いた液晶駆動装置
JP2005156621A (ja) * 2003-11-20 2005-06-16 Hitachi Displays Ltd 表示装置
JP2008067145A (ja) * 2006-09-08 2008-03-21 Nec Electronics Corp デコーダ回路並びにそれを用いた表示装置用駆動回路及び表示装置
JP2009104056A (ja) * 2007-10-25 2009-05-14 Nec Electronics Corp デジタルアナログ変換回路とデータドライバ及び表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010291A (ja) * 2016-06-30 2018-01-18 株式会社半導体エネルギー研究所 表示装置およびその動作方法、ならびに電子機器
JP7017327B2 (ja) 2016-06-30 2022-02-08 株式会社半導体エネルギー研究所 表示装置及び電子機器
JP2018180378A (ja) * 2017-04-17 2018-11-15 ラピスセミコンダクタ株式会社 出力回路、データ線ドライバ及び表示装置
US10573219B2 (en) 2017-11-16 2020-02-25 Seiko Epson Corporation Display driver, electro-optical device, and electronic apparatus
US10713992B2 (en) 2018-07-23 2020-07-14 Seiko Epson Corporation Display driver, electro-optical device, and electronic apparatus
JP2020148858A (ja) * 2019-03-12 2020-09-17 ラピスセミコンダクタ株式会社 デジタルアナログ変換回路及びデータドライバ
JP2021010076A (ja) * 2019-06-28 2021-01-28 キヤノン株式会社 デジタルアナログ変換回路、表示装置、電子機器
JP7374627B2 (ja) 2019-06-28 2023-11-07 キヤノン株式会社 デジタルアナログ変換回路、表示装置、電子機器
KR102713870B1 (ko) 2019-07-09 2024-10-04 삼성전자주식회사 소스 드라이버 및 이를 포함하는 디스플레이 장치

Also Published As

Publication number Publication date
JPWO2012121087A1 (ja) 2014-07-17
US20160098968A1 (en) 2016-04-07
US9224356B2 (en) 2015-12-29
US20130342520A1 (en) 2013-12-26
JP5607815B2 (ja) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5607815B2 (ja) デジタルアナログ変換回路及び表示装置のデータドライバ
JP4282710B2 (ja) 出力回路、及びそれを用いたデータドライバならびに表示装置
JP4100407B2 (ja) 出力回路及びデジタルアナログ回路並びに表示装置
JP4472507B2 (ja) 差動増幅器及びそれを用いた表示装置のデータドライバ並びに差動増幅器の制御方法
JP4661324B2 (ja) デジタルアナログ回路とデータドライバ及び表示装置
JP4609297B2 (ja) デジタルアナログ変換器、それを用いたデータドライバ及び表示装置
JP4401378B2 (ja) デジタルアナログ変換回路とデータドライバ及びそれを用いた表示装置
JP4627078B2 (ja) デジタルアナログ変換回路とデータドライバ及び表示装置
JP5508978B2 (ja) デジタルアナログ変換回路及び表示ドライバ
US20090295767A1 (en) Digital-to-analog converting circuit, data driver and display device
JP5373680B2 (ja) デジタルアナログ変換回路とデータドライバ及び表示装置
JP5017871B2 (ja) 差動増幅器及びデジタルアナログ変換器
JP5138490B2 (ja) サンプル・ホールド回路及びデジタルアナログ変換回路
JP2008067145A (ja) デコーダ回路並びにそれを用いた表示装置用駆動回路及び表示装置
JP2005130332A (ja) 差動増幅器
JP5047699B2 (ja) 増幅回路、デジタルアナログ変換回路及び表示装置
JP5329465B2 (ja) レベル電圧選択回路、データドライバ及び表示装置
JP2006053252A (ja) インピーダンス変換回路、駆動回路及び制御方法
JP2013218021A (ja) データドライバと表示装置
JP4819921B2 (ja) 差動増幅器及びそれを用いた表示装置のデータドライバ並びに差動増幅器の制御方法
Lu et al. A 10-bit 1026-channel column driver IC with partially segmented piecewise linear digital-to-analog converters for ultra-high-definition TFT-LCDs with one billion color display
JP2009258237A (ja) 液晶駆動装置
JP2024047657A (ja) デジタルアナログ変換回路、データドライバ及び表示装置
Lu TFT-LCD Driver IC Design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503473

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755358

Country of ref document: EP

Kind code of ref document: A1