WO2012120680A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2012120680A1
WO2012120680A1 PCT/JP2011/055659 JP2011055659W WO2012120680A1 WO 2012120680 A1 WO2012120680 A1 WO 2012120680A1 JP 2011055659 W JP2011055659 W JP 2011055659W WO 2012120680 A1 WO2012120680 A1 WO 2012120680A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
inner cylinder
exhaust
upstream
extension
Prior art date
Application number
PCT/JP2011/055659
Other languages
English (en)
French (fr)
Inventor
▲吉▼岡 衛
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180004049.9A priority Critical patent/CN103443415B/zh
Priority to JP2012517941A priority patent/JP5316707B2/ja
Priority to US13/499,802 priority patent/US9039981B2/en
Priority to PCT/JP2011/055659 priority patent/WO2012120680A1/ja
Priority to EP11826194.0A priority patent/EP2685061B1/en
Publication of WO2012120680A1 publication Critical patent/WO2012120680A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2871Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets having an additional, e.g. non-insulating or non-cushioning layer, a metal foil or an adhesive layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electric heating type exhaust purification device that is disposed in an exhaust passage of an internal combustion engine and is heated by energization.
  • An electric heating type exhaust purification device comprising: a catalyst carrier that generates heat when energized; a shell (case) that accommodates the catalyst carrier; and a fibrous mat member disposed between the catalyst carrier and the shell; A member provided with an insulating layer is known (for example, see Patent Document 1).
  • the shell and the catalyst carrier can be short-circuited. There is sex.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a technique capable of preventing a short circuit between a heating element and a case that generate heat by energization in an electrically heated exhaust purification device. is there.
  • the present invention provides a laminated body of a holding member and an inner cylinder between a heating element that generates heat by energization and a case that houses the heating element, and an upstream end of the inner cylinder
  • the extended portion is provided with a protruding portion that protrudes radially inward.
  • the exhaust gas purification apparatus for an internal combustion engine of the present invention is A heating element that generates heat when energized; A cylindrical member having an inner diameter larger than the outer diameter of the heating element, and a case for housing the heating element; A cylindrical insulator having an inner diameter larger than the outer diameter of the heating element and an outer diameter smaller than the inner diameter of the case, an inner cylinder disposed between the heating element and the case; A cylindrical insulator disposed between the case and the inner cylinder, the first holding member holding the inner cylinder; A cylindrical insulator disposed between the heating element and the inner cylinder, the second holding member holding the heating element; An extension formed by extending the upstream end of the inner cylinder to the upstream side from the upstream end surfaces of the first holding member and the second holding member; A protrusion provided on the extension and projecting radially inward of the inner cylinder; I was prepared to.
  • the heating element may be used as a catalyst carrier or may be arranged upstream of the catalyst carrier.
  • the first holding member and the second holding member are cylindrical members having insulating properties and buffering properties.
  • a fibrous metal having insulating properties for example, an alumina fiber mat
  • the cylindrical shape here is not limited to a shape whose cross-sectional shape is a perfect circle, and includes a shape whose cross-sectional shape is an ellipse.
  • the member for holding the heating element in the case is separated into the first holding member and the second holding member by the inner cylinder. Even if the condensed water accumulated on the surface adheres to the end face of the first holding member or penetrates into the first holding member, the condensed water is not transmitted to the heating element via the second holding member. As a result, a situation in which the case and the heating element are short-circuited via the condensed water does not occur.
  • the surface of the inner cylinder (the outer peripheral surface and the inner peripheral surface of the extension), the upstream end surface of the first holding member, and the upstream end surface of the second holding member are covered with particulate matter (PM) in the exhaust gas. Then, the case and the heating element may be short-circuited via PM.
  • PM particulate matter
  • a gap formed between the inner cylinder and the case upstream of the upstream end surface of the first holding member More specifically, a space surrounded by the outer peripheral surface of the inner cylinder, the upstream end surface of the first holding member, and the inner peripheral surface of the case (hereinafter, this space is referred to as an “upstream gap”). It is effective to reduce this.
  • the amount of exhaust flowing into the upstream gap is such that the exhaust that flows backward after colliding with the heating element (hereinafter referred to as “backward exhaust”) is upstream from the upstream end of the extension. Increase when you reach it. This is because when the exhaust that collided with the heating element flows backward from the upstream end of the extension to the upstream, the backflow exhaust receives the pressure of the subsequent exhaust (exhaust that flows into the case from the upstream of the case). It is considered that it moves to the vicinity of the periphery and flows into the upstream gap.
  • backward exhaust the exhaust that flows backward after colliding with the heating element
  • the exhaust gas purification apparatus for an internal combustion engine includes a protrusion that protrudes inward in the radial direction of the inner cylinder from the extension, so that the flow of the counterflow exhaust gas is blocked by the protrusion.
  • the backflow exhaust does not reach upstream from the upstream end of the extension. Therefore, the amount of exhaust gas flowing into the upstream gap can be reduced.
  • the amount of exhaust flowing into the upstream gap decreases, the amount of PM adhering to the outer peripheral surface of the extension and the upstream end surface of the first holding member decreases. Further, when the amount of exhaust flowing into the upstream gap decreases, the amount of heat released from the exhaust through the case into the atmosphere also decreases, so that a decrease in catalyst temperature and a decrease in warm-up performance are also suppressed.
  • the exhaust gas purification apparatus for an internal combustion engine of the present application is provided with the projections as described above in the extension part, the contact area or contact time between the exhaust gas and the inner cylinder can be increased.
  • the contact area or contact time between the exhaust and the inner cylinder increases, the amount of heat transferred from the exhaust to the inner cylinder increases.
  • the temperature of the inner cylinder can be increased. Therefore, PM adhering to the outer peripheral surface of the extension can be oxidized quickly, and condensed water present on the inner peripheral surface of the case can be quickly vaporized.
  • the protrusion according to the present invention may be formed by bending the upstream end portion of the extension portion radially inward.
  • the contact area or contact time between the backflow exhaust and the inner cylinder is increased compared to the case where a protrusion is provided in the middle of the extension (a part closer to the downstream than the upstream end of the extension).
  • the temperature of the cylinder is more likely to rise.
  • PM adhering to the outer peripheral surface of the inner cylinder is more easily oxidized, and condensed water existing on the inner peripheral surface of the case is further easily vaporized.
  • the protrusion may be curved so that the tip of the protrusion is directed downstream. According to such a configuration, the backflow exhaust flows in the forward flow direction after hitting the protrusion. As a result, the backflow exhaust that reaches upstream from the upstream end of the extension portion is further reduced.
  • the curvature of the curved portion of the protruding portion may be set to a size such that the exhaust gas that flows backward along the inner wall surface of the inner cylinder turns in the forward flow direction along the inner wall surface of the protruding portion.
  • the backflow exhaust gas can be swung in the forward flow direction without disturbing the flow of the exhaust gas in the case.
  • the contact area or contact time between the exhaust and the inner cylinder can be further increased. Therefore, the temperature rise amount of the inner cylinder can be increased without unnecessarily increasing the pressure loss of the exhaust purification device.
  • the exhaust gas purification apparatus for an internal combustion engine is an annular body projecting downstream from the inner wall surface of the upstream cone portion, and further includes a regulating member having an inner diameter equal to or smaller than that of the inner cylinder. You may do it.
  • the axial center of a control member shall be located in the same straight line as the axial center of an inner cylinder. According to such a restricting member, the exhaust does not easily spread outward (radially outward) from the inner cylinder in the upstream cone portion. As a result, it becomes difficult for the exhaust gas flowing into the upstream cone portion to flow into the upstream gap. Therefore, the amount of PM adhering to the outer peripheral surface of the inner cylinder and the upstream end face of the first holding member can be further reduced, and the amount of heat radiated from the exhaust through the outer cylinder to the atmosphere can be further reduced. it can.
  • the exhaust gas purification apparatus provided with the restriction member as described above, the volume chamber (surge tank) in which the space surrounded by the outer peripheral surface of the restriction member and the inner wall surface of the upstream cone portion temporarily retains the exhaust gas. ). Therefore, even when the exhaust pressure in the case becomes high, the amount of exhaust flowing into the gap between the inner cylinder and the case can be suppressed to a low level.
  • a sub-projection that protrudes obliquely outward and upstream in the radial direction of the inner cylinder may be provided in the middle of the projection. In that case, the flow of the exhaust gas that is about to flow into the upstream gap is blocked by the sub-projections and guided to the volume chamber. As a result, the amount of exhaust flowing into the upstream gap can be further reduced.
  • the exhaust flowing out from the heating element flows around the periphery in the case (near the periphery of the cylindrical portion).
  • the exhaust gas flowing backward in this way is a gap formed between the inner cylinder and the case downstream from the downstream end face of the first holding member (specifically, the outer peripheral surface of the inner cylinder and the downstream side of the first holding member).
  • a space surrounded by the end surface and the inner peripheral surface of the case hereinafter, this space may be referred to as a “downstream gap”.
  • the exhaust gas purification apparatus for an internal combustion engine includes a shielding portion that is provided at a site downstream of the downstream end portion of the inner cylinder on the inner peripheral surface of the case and projects radially inward of the case. It may be.
  • the shape of the shielding portion may be a shape such that the backflow exhaust air swirls in the forward flow direction along the wall surface of the shielding portion, similarly to the projection portion described above.
  • a discharge phenomenon may occur between them. If a discharge phenomenon occurs between the outer peripheral surface of the extension part and the inner peripheral surface of the case, between the inner cylinder and the regulating member, or between the inner cylinder and the shielding part, the case and the heating element may be short-circuited. is there.
  • the shortest distance between the outer peripheral surface of the extension portion of the inner cylinder and the inner peripheral surface of the case, the shortest distance between the inner cylinder and the regulating member, and the shortest distance between the inner cylinder and the shielding portion are spaces in which no discharge phenomenon occurs. It is preferable to set the distance or more.
  • the creeping discharge may occur along the surface of the extension portion between the first holding member and the second holding member. That is, when the creeping distance of the extension from the upstream end surface of the first holding member to the upstream end surface of the second holding member is shortened, there is a possibility that creeping discharge occurs between the first holding member and the second holding member. There is. Therefore, the creepage distance of the extended portion from the upstream end surface of the first holding member to the upstream end surface of the second holding member is set to be equal to or greater than the distance at which the creeping discharge does not occur between the first holding member and the second holding member.
  • the creeping discharge through the inner cylinder can also occur between the downstream end surface of the first holding member and the downstream end surface of the second holding member. Therefore, the downstream end portion of the inner cylinder also extends downstream from the downstream end surfaces of the first holding member and the second holding member, and the creeping distance of the extended portion is the downstream end surface of the first holding member and the second holding member. It may be set to be equal to or greater than a distance at which creeping discharge does not occur between the downstream end surface of the surface.
  • the electrically heated exhaust purification apparatus it is possible to prevent a short circuit between the heating element that generates heat by energization and the case.
  • FIGS. 1 and 2 are diagrams showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present invention.
  • An exhaust purification device 1 shown in FIGS. 1 and 2 is an electric heating type exhaust purification device disposed in an exhaust passage of an internal combustion engine.
  • the arrow F in FIG. 1 has shown the flow direction of exhaust_gas
  • the exhaust purification device 1 includes a columnar catalyst carrier 2, a cylindrical inner cylinder 3 that covers the catalyst carrier 2, and a cylindrical case 4 that covers the inner cylinder 3.
  • the catalyst carrier 2, the inner cylinder 3, and the case 4 are arranged coaxially.
  • the catalyst carrier 2 is a structure in which a plurality of passages extending in the exhaust flow direction F are arranged in a honeycomb shape, and the outer shape of the structure is formed in a cylindrical shape.
  • the catalyst carrier 2 an oxidation catalyst, three-way catalyst, storage-reduction NO X catalyst or a catalyst such as a selective reduction type NO X catalyst is supported.
  • the catalyst carrier 2 is made of a material having a large electric resistance, such as porous ceramic (SiC).
  • the inner cylinder 3 is formed by cylindrically molding an insulating material having a low electrical conductivity and high heat resistance (for example, an alumina or stainless steel material coated with an insulating layer).
  • the inner cylinder 3 is formed such that the inner diameter of the inner cylinder 3 is larger than the outer diameter of the catalyst carrier 2.
  • a cylindrical mat member 5 is press-fitted between the inner peripheral surface of the inner cylinder 3 and the outer peripheral surface of the catalyst carrier 2.
  • the mat member 5 is formed of an insulating material (for example, an inorganic fiber mat such as an alumina fiber mat) having a low electrical conductivity and a high buffering property.
  • the mat member 5 is formed so that the length of the mat member 5 in the axial direction (the length in the exhaust flow direction F) is substantially equal to that of the catalyst carrier 2.
  • the mat member 5 is disposed so that the positions of both end faces of the mat member 5 in the axial direction are substantially equal to the positions of both end faces of the catalyst carrier 2.
  • the case 4 is a metal (for example, stainless steel) housing that houses the catalyst carrier 2 and the inner cylinder 3.
  • the case 4 includes a cylindrical part 40 having an inner diameter larger than the outer diameter of the inner cylinder 3, an upstream cone part 41 connected to an upstream end part of the cylindrical part 40, and a downstream end part of the cylindrical part 40 And a downstream cone portion 42 connected to the main body.
  • the upstream cone portion 41 and the downstream cone portion 42 are formed in a tapered shape in which the inner diameter decreases as the distance from the cylindrical portion 40 increases.
  • a cylindrical mat member 6 is press-fitted between the inner peripheral surface of the cylindrical portion 40 and the outer peripheral surface of the inner cylinder 3.
  • the mat member 6 is formed of an insulating material having a low electrical conductivity and a high buffering property, like the mat member 5 described above.
  • the mat member 6 is formed so that the length of the mat member 6 in the axial direction is substantially equal to that of the catalyst carrier 2.
  • the mat member 6 is disposed so that the positions of both end faces of the mat member 6 in the axial direction are substantially equal to the positions of both end faces of the catalyst carrier 2.
  • the mat member 6 corresponds to a first holding member according to the present invention
  • the mat member 5 corresponds to a second holding member according to the present invention.
  • the mat member 6 is referred to as a first mat member 6, and the mat member 5 is referred to as a second mat member 5.
  • a pair of through holes 10 and 11 that pass through the case 4, the first mat member 6, the inner cylinder 3, and the second mat member 5 are provided at two positions facing each other on the outer peripheral surface of the exhaust purification device 1.
  • a pair of electrodes 20 and 21 are provided at two locations desired for the through holes 10 and 11 on the outer peripheral surface of the catalyst carrier 2.
  • the electrodes 20 and 21 have terminals that protrude through the through holes 10 and 11 to the outside of the case 4.
  • the protruding portions (terminals) of the electrodes 20 and 21 are connected to a battery (not shown).
  • Support members 22 and 23 for supporting the electrodes 20 and 21 are provided at the peripheral portions of the through holes 10 and 11 in the case 4.
  • the support members 22 and 23 are formed so as to cover the annular opening between the case 4 and the electrodes 20 and 21.
  • the support members 22 and 23 are formed of an insulating material having low electrical conductivity and low air permeability.
  • the catalyst carrier 2 when a voltage is applied from the battery to the electrodes 20 and 21, the catalyst carrier 2 becomes an electric resistance and generates heat. When the catalyst carrier 2 generates heat, the temperature of the catalyst supported on the catalyst carrier 2 rises. Therefore, when a voltage is applied from the battery to the electrodes 20 and 21 when the internal combustion engine is cold started, the catalyst can be activated early, and exhaust emission can be reduced.
  • the moisture may be aggregated and collected in the exhaust passage or the exhaust gas purification device 1 while the operation of the internal combustion engine is stopped.
  • the condensed water receives the pressure of the exhaust during operation of the internal combustion engine and moves downstream.
  • the condensed water flowing into the exhaust purification device 1 from the exhaust passage or the condensed water accumulated in the exhaust purification device 1 moves downstream along the inner peripheral surface of the case 4.
  • the case 4 and the catalyst carrier 2 may be short-circuited.
  • the axial length of the inner cylinder 3 is made longer than that of the first mat member 6 and the second mat member 5, and both end portions of the inner cylinder 3 are the first.
  • the mat member 6 and the second mat member 5 are protruded upstream and downstream.
  • the upstream protruding portion (the portion located upstream from the upstream end surfaces of the first mat member 6 and the second mat member 5) 30 in the inner cylinder 3 is referred to as an upstream extension 30 and
  • a downstream projecting portion (portion located on the downstream side of the downstream end surfaces of the first mat member 6 and the second mat member 5) 31 is referred to as a downstream extension portion 31.
  • exhaust gas flowing into the case 4 flows into the catalyst carrier 2 along the exhaust flow direction F, but some exhaust gas may be reflected back to the upstream end face of the catalyst carrier 2 and flow backward.
  • exhaust flowing near the center in the case 4 tends to flow into the catalyst carrier 2
  • exhaust flowing near the periphery in the case 4 tends to flow backward after colliding with the upstream end face of the catalyst carrier 2.
  • Exhaust gas that flows backward after colliding with the upstream end surface of the catalyst carrier 2 flows upstream along the inner wall surface of the inner cylinder 3 (inner wall surface of the upstream extension 30), and upstream of the inner cylinder 3. It may reach upstream from the end.
  • the backflow exhaust gas receives the pressure of the subsequent exhaust, and is surrounded by a space (upstream gap) surrounded by the outer peripheral surface of the upstream extension 30, the inner peripheral surface of the case 4, and the upstream end surface of the first mat member 6. ) Easy to be pushed into A1. As a result, a large amount of exhaust gas may flow into the upstream gap A1.
  • the wall surfaces surrounding the upstream gap A1 are PM. May be covered. At this time, if the inner peripheral surface of the upstream extension 30 and the upstream end surface of the second mat member 5 are covered with PM, the case 4 and the catalyst carrier 2 may be short-circuited via the PM.
  • the exhaust emission control device 1 of the present embodiment includes a protrusion 32 that protrudes radially inward from the upstream extension 30.
  • a protrusion 32 that protrudes radially inward from the upstream extension 30.
  • the flow of backflow exhaust is blocked by the protrusion 32.
  • the contact area and the contact time between the inner cylinder 3 and the exhaust increase due to the backflow exhaust coming into contact with the protrusion 32.
  • the temperature rise amount and the temperature rise speed of the inner cylinder 3 increase. Therefore, even if a small amount of PM adheres to the outer peripheral surface of the upstream extension 30, the PM can be oxidized and removed quickly. Further, when the temperature rise amount and the temperature rise speed of the inner cylinder 3 are increased, it is possible to quickly vaporize the condensed water present in the upstream gap A1.
  • the protrusion 32 may be gently curved so that the tip of the protrusion 32 is directed downstream. At this time, the curvature of the protrusion 32 is such that the backflow exhaust gas flowing along the inner wall surface of the upstream extension 30 flows without peeling from the inner wall surface of the protrusion 32 when reaching the protrusion 32. Shall be determined.
  • the backflow exhaust gas swirls along the shape of the protrusion 32 as shown by the broken line arrow in FIG. That is, the backflow exhaust gas is guided by the protrusion 32 and swirls from the backflow direction to the forward flow direction. As a result, the backflow exhaust does not flow into the upstream gap A1. Therefore, the amount of PM adhering to the inner peripheral surface of the case 4, the upstream end surface of the first mat member 6, and the outer peripheral surface of the upstream extension 30 can be reliably reduced, and the inflow temperature can be reliably reduced. Can be suppressed.
  • FIG. 4 shows changes in the inflow temperature when the protrusion 32 is provided on the upstream extension 30 and changes in the inflow temperature when the protrusion 32 is not provided on the upstream extension 30.
  • the horizontal axis in FIG. 4 shows the elapsed time from the start of the internal combustion engine, and the vertical axis shows the inflow temperature.
  • the solid line in FIG. 4 indicates the inflow temperature when the protrusion 32 is provided on the upstream extension 30, and the alternate long and short dash line indicates the inflow temperature when the protrusion 32 is not provided on the upstream extension 30.
  • the protrusion 32 when the protrusion 32 is provided on the upstream extension 30, the rising speed of the inflow temperature is increased and the temperature rise of the inflow temperature is higher than when the protrusion 32 is not provided. The amount increases. Therefore, when the protrusion 32 is provided on the upstream extension 30, the activation time of the catalyst can be advanced and the power consumption of the battery can be reduced compared to the case where the protrusion 32 is not provided.
  • the contact area and the contact time between the exhaust and the inner cylinder 3 are further increased.
  • the temperature rise amount and the temperature rise speed of the inner cylinder 3 are further increased. Therefore, PM adhering to the outer peripheral surface of the upstream extension 30 can be more reliably oxidized and removed, and condensed water present in the upstream gap A1 can be more reliably vaporized and removed.
  • the exhaust gas flowing into the case 4 tends to flow downstream while spreading radially outward at the upstream cone portion 41. Therefore, a part of the exhaust gas that spreads radially outward in the upstream cone portion 41 (for example, exhaust gas that flows in the vicinity of the periphery in the case 4) may flow into the upstream gap A1.
  • the exhaust emission control device 1 of the present embodiment includes an annular regulating member 43 that protrudes downstream from the inner wall surface of the upstream cone portion 41.
  • the restricting member 43 is formed so as to have an inner diameter equal to or less than the outer diameter of the inner cylinder 3, and is arranged so that the axis of the restricting member 43 is positioned in the same straight line as the axis of the inner cylinder 3. That is, the restriction member 43 is configured such that the position of the restriction member 43 in the radial direction is on the inner side (near the center) than the outer peripheral surface of the inner cylinder 3.
  • Such a restricting member 43 makes it difficult for the exhaust gas flowing into the case 4 to spread outward (in the radial direction) from the inner cylinder 3 at the upstream cone portion 41. As a result, it becomes difficult for the exhaust gas flowing around the periphery in the case 4 to flow into the upstream gap A1. Further, since the gap (opening area) between the restricting member 43 and the protruding portion 32 is narrowed, the exhaust gas flowing in the vicinity of the peripheral edge in the case 4 is more difficult to flow into the upstream gap A1. Therefore, the amount of exhaust gas flowing into the upstream gap A1 can be further reduced.
  • the exhaust emission control device 1 including the restriction member 43 as described above the space A3 surrounded by the outer peripheral surface of the restriction member 43 and the inner peripheral surface of the upstream cone portion 41 temporarily exhausts the exhaust gas. It functions as a volume chamber (surge tank) for staying in the tank. Therefore, even when the exhaust pressure in the case 4 becomes high, the amount of exhaust flowing into the upstream gap A1 can be reduced.
  • a sub-protrusion 320 that protrudes obliquely toward the radially outer side and the upstream side may be provided.
  • the exhaust gas flowing into the gap between the regulating member 43 and the projection part 32 is less likely to flow into the upstream gap A1, and more easily into the volume chamber A3 described above.
  • the amount of exhaust flowing into the upstream gap A1 is extremely small.
  • the wall surface surrounding the upstream gap A1 (the inner peripheral surface of the case 4, the upstream end surface of the first mat member 6, and the outer peripheral surface of the upstream extension 30 are covered with PM.
  • the temperature drop of the exhaust gas flowing into the catalyst carrier 2 can be suppressed, and according to the exhaust purification device 1 of the present embodiment, the inner cylinder 3 (upstream extension portion 30). ),
  • the PM adhering to the outer peripheral surface of the upstream extension 30 and the condensed water present in the upstream gap A1 can be quickly removed, and as a result, the case 4 and the catalyst carrier 2 can be removed. It becomes possible to activate the catalyst efficiently while suppressing the short circuit.
  • the relative distance of each member is not particularly described, but it is desirable to determine the relative distance of each member so that no discharge occurs between the members.
  • the shortest distance L1 between the inner peripheral surface of the case 4 and the upstream extension 30 (downstream extension 31) is equal to the case 4 and the upstream extension 30 (downstream extension 31). Is set to be greater than the spatial distance at which no discharge occurs.
  • the shortest distance L ⁇ b> 2 between the protrusion 32 and the restriction member 43 is set to be equal to or greater than a spatial distance at which no discharge occurs between the protrusion 32 and the restriction member 43.
  • the length L3 of the upstream extension 30 is the outer circumference of the upstream extension 30 (downstream extension 31) from the upstream end face (downstream end face) of the first mat member 6.
  • the creepage distance that reaches the upstream end face (downstream end face) of the second mat member 5 through the surface and the inner peripheral face of the upstream extension 30 (downstream extension 31) is greater than the creepage distance that does not generate creeping discharge. It is determined as follows.
  • the protrusion 321 may be provided so as to protrude radially inward from a portion between the upstream end and the downstream end of the upstream extension 30.
  • the protruding portion 321 may be formed so as to be gently curved, like the protruding portion 32 shown in FIG.
  • the protrusion 321 may be formed such that the tip of the protrusion 321 is directed downstream. According to such a configuration, compared with the configuration shown in FIG. 1, the contact area or contact time between the inner cylinder 3 and the exhaust gas is reduced, but the exhaust amount flowing into the upstream gap A1 can be reduced.
  • a shielding portion 44 is provided at a location downstream of the downstream end portion of the downstream extension portion 31 on the inner peripheral surface of the case 4. .
  • the exhaust gas flowing in the vicinity of the periphery of the case 4 may flow backward after colliding with the inner wall surface of the downstream cone portion 42.
  • the exhaust gas flowing backward in this manner flows upstream along the inner peripheral surface of the case 4, and reaches the outer peripheral surface of the downstream extension 31, the inner peripheral surface of the case 4, and the downstream end surface of the first mat member 6. There is a possibility of flowing into the enclosed space (downstream gap) A2.
  • the wall surface surrounding the downstream gap A2 (the inner peripheral surface of the case 4, the downstream end surface of the first mat member 6, and the outer periphery of the downstream extension portion 31). Surface) may be covered by PM.
  • the case 4 and the catalyst carrier 2 may be short-circuited via the PM.
  • the exhaust emission control device 1 of the present embodiment has a radially inner side and a downstream side on the inner peripheral surface of the case 4 from the downstream side of the downstream end of the downstream extension 31.
  • An annular shielding portion 44 that protrudes obliquely is provided.
  • the shielding portion 44 is provided in the cylindrical portion 40 of the case 4, but may be provided in the downstream cone portion 42.
  • the flow of exhaust gas flowing backward after colliding with the downstream cone part 42 is blocked by the shielding part 44.
  • the surface from the inner peripheral surface of the case 4 to the shielding portion 44 may be formed as a gently curved surface.
  • the exhaust gas flowing backward from the downstream cone portion 42 turns along the wall surface of the shielding portion 44 from the inner peripheral surface of the case 4 as shown in FIG. 9.
  • the exhaust gas that flows backward after colliding with the downstream cone portion 42 does not flow into the downstream gap A2. Therefore, the situation where the wall surface surrounding the downstream gap A2 is covered with PM can be avoided.
  • the shielding part 44 and the downstream extension part 31 shall be arrange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 本発明は、電気加熱式の排気浄化装置において、通電により発熱する発熱体とケースとの短絡を防止することを課題とする。この課題を解決するために、本発明は、通電より発熱する発熱体と該発熱体を収容するケースとの間に保持部材と内筒との積層体を配置し、内筒の上流側端部を前記発熱体及び前記保持部材の上流側端面より上流側へ延長させるとともに、その延長部に径方向内側へ突出する突起部を設けるようにした。発熱体に衝突した後に逆流する排気の流れは、前記突起部に阻まれることになる。その結果、逆流排気は、ケースと内筒との間隙に流入しなくなる。よって、ケースの内周面と保持部材の上流側端面と内筒の外周面がPMによって覆われることに因る絶縁性の低下が抑制される。

Description

内燃機関の排気浄化装置
 本発明は、内燃機関の排気通路に配置され、通電により加熱される電気加熱式の排気浄化装置に関する。
 電気加熱式の排気浄化装置として、通電により発熱する触媒担体と、触媒担体を収容するシェル(ケース)と、触媒担体およびシェルの間に配置される繊維状のマット部材と、を備え、前記マット部材に絶縁層を設けたものが知られている(たとえば、特許文献1を参照)。
特開平05-269387号公報
 ところで、排気中のカーボンがマット部材に付着したり、排気通路やケースに溜まった凝縮水がマット部材の端面に付着若しくはマット部材に浸透したりすると、シェルと触媒担体との間が短絡する可能性がある。
 本発明は、上記した実情に鑑みてなされたものであり、その目的は、電気加熱式の排気浄化装置において、通電により発熱する発熱体とケースとの短絡を防止することができる技術の提供にある。
 本発明は、上記した課題を解決するために、通電より発熱する発熱体と該発熱体を収容するケースとの間に保持部材と内筒との積層体を配置し、内筒の上流側端部を前記発熱体及び前記保持部材の上流側端面より上流側へ延長させるとともに、その延長部に径方向内側へ突出する突起部を設けるようにした。
 詳細には、本発明の内燃機関の排気浄化装置は、
 通電により発熱する発熱体と、
 前記発熱体の外径より大きな内径を有する筒状の部材であって、前記発熱体を収容するケースと、
 前記発熱体の外径より大きな内径を有するとともに前記ケースの内径より小さな外径を有する筒状の絶縁体であって、前記発熱体と前記ケースとの間に配置される内筒と、
 前記ケースと前記内筒との間に配置される筒状の絶縁体であって、前記内筒を保持する第1保持部材と、
 前記発熱体と前記内筒との間に配置される筒状の絶縁体であって、前記発熱体を保持する第2保持部材と、
 前記内筒の上流側端部を前記第1保持部材及び前記第2保持部材の上流側端面より上流側へ延長させることにより形成される延長部と、
 前記延長部に設けられ、前記内筒の径方向内側へ突出する突起部と、
を備えるようにした。
 ここでいう発熱体は、触媒担体を兼用してもよく、或いは触媒担体の上流に配置されてもよい。第1保持部材及び第2保持部材は、絶縁性と緩衝性を有する筒状の部材であり、たとえば絶縁性を有する繊維状金属(たとえば、アルミナ繊維マット)を筒状に成形したものを用いることができる。なお、ここでいう筒状は、断面形状が真円となる形状に限られず、断面形状が楕円となる形状も含むものとする。
 このように構成された内燃機関の排気浄化装置によれば、発熱体をケースに保持するための部材が内筒により第1保持部材と第2保持部材とに分離されるため、ケースの内周面に溜まった凝縮水が第1保持部材の端面に付着若しくは第1保持部材に浸透しても、それらの凝縮水が第2保持部材を介して発熱体に伝わらなくなる。その結果、ケースと発熱体とが凝縮水を介して短絡する事態が発生しなくなる。
 ところで、内筒の表面(延長部の外周面及び内周面)と、第1保持部材の上流側端面と、第2保持部材の上流側端面とが排気中の粒子状物質(PM)によって被覆されると、ケースと発熱体とがPMを介して短絡する可能性がある。この問題を解決する方法としては、延長部の外周面や第1保持部材の上流側端面に付着するPM量を減少させるとともに、前記延長部の外周面に付着したPMを速やかに酸化させる方法が有効である。
 延長部の外周面や第1保持部材の上流側端面に付着するPM量を減少させる方法としては、第1保持部材の上流側端面より上流において内筒とケースとの間に形成される間隙(詳細には、内筒の外周面と第1保持部材の上流側端面とケースの内周面とに囲繞された空間。以下、この空間を「上流側間隙」と称する)へ流入する排気の量を減少させる方法が有効である。
 本願発明者の知見によれば、上流側間隙に流入する排気の量は、発熱体に衝突した後に逆流する排気(以下、「逆流排気」と称する)が延長部の上流側端部より上流へ到達したときに多くなる。これは、発熱体に衝突した排気が延長部の上流側端部より上流まで逆流すると、その逆流排気が後続の排気(ケースの上流からケース内へ流入する排気)の圧力を受けてケース内の周縁付近へ移動して前記上流側間隙へ流入するものと考えられる。
 これに対し、本発明の内燃機関の排気浄化装置は、延長部から内筒の径方向内側へ突出する突起部を備えているため、前記逆流排気の流れが突起部によって阻まれるようになる。その結果、前記逆流排気が延長部の上流側端部より上流に到達しなくなる。よって、上流側間隙へ流入する排気の量を減少させることができる。上流側間隙に流入する排気の量が少なくなると、延長部の外周面や第1保持部材の上流側端面に付着するPM量が減少する。また、上流側間隙に流入する排気の量が少なくなると、排気からケースを介して大気中に放出される熱量も減少するため、触媒の温度低下や暖機性の低下も抑制される。
 延長部の外周面に付着したPMを速やかに酸化させる方法としては、内筒の温度を高める方法が有効である。これに対し、本願の内燃機関の排気浄化装置は、延長部に前記したような突起部を設けているため、排気と内筒との接触面積又は接触時間を増加させることができる。排気と内筒との接触面積又は接触時間が増加すると、排気から内筒へ伝わる熱量が増加する。その結果、内筒の温度を高めることができる。よって、延長部の外周面に付着したPMが速やかに酸化されるとともに、ケースの内周面に存在する凝縮水を速やかに気化させることができる。
 本発明に係わる突起部は、延長部の上流側端部を径方向内側へ曲げて形成されるようにしてもよい。その場合は、延長部の途中(延長部における上流側端部より下流寄りの部位)に突起部が設けられる場合に比べ、逆流排気と内筒との接触面積又は接触時間が多くなるため、内筒の温度が一層上昇し易くなる。その結果、内筒の外周面に付着したPMが一層酸化され易くなるとともに、ケースの内周面に存在する凝縮水も一層気化され易くなる。
 なお、前記突起部は、該突起部の先端が下流側を指向するように湾曲していてもよい。このような構成によれば、逆流排気は、突起部に当たった後に順流方向へ流れるようになる。その結果、延長部の上流側端部より上流に到達する逆流排気が一層少なくなる。
 また、前記突起部の湾曲部分の曲率は、前記内筒の内壁面に沿って逆流する排気が突起部の内壁面に沿って順流方向へ旋回する大きさに定められてもよい。その場合、ケース内における排気の流れを乱すことなく、逆流排気を順流方向へ旋回させることができる。さらに、排気と内筒との接触面積又は接触時間を一層多くすることができる。よって、排気浄化装置の圧力損失を不要に増加させることなく、内筒の温度上昇量を増加させることができる。
 ここで、排気浄化装置のケースとしては、筒部と、該筒体の上流側端部及び下流側端部に連結されるテーパ状のコーン部と、を備えたものが広く知られている。このようなケースに流入した排気は、上流側のコーン部において径方向外側へ拡がりつつ下流側へ流れる傾向がある。そのため、上流側のコーン部において径方向外側へ拡がった排気の一部(たとえば、ケース内の周縁付近を流れる排気)は、上流側間隙へ流入する可能性がある。
 これに対し、本発明の内燃機関の排気浄化装置は、上流側のコーン部の内壁面から下流側へ突出する環状体であって、前記内筒と同等以下の内径を有する規制部材を更に備えるようにしてもよい。なお、規制部材の軸心は、内筒の軸心と同一直線状に位置するものとする。このような規制部材によれば、上流側のコーン部において排気が前記内筒より外側(径方向外側)へ広がり難くなる。その結果、上流側コーン部へ流入した排気が上流側間隙へ流入し難くなる。よって、内筒の外周面や第1保持部材の上流側端面に付着するPM量を一層少なくすることができるとともに、排気から外筒を介して大気中へ放熱される熱量を一層少なくすることができる。
 ところで、排気の流量増加などによってケース内の排気圧力が高くなるときは、排気の一部が上流側間隙へ押し込まれる可能性がある。しかしながら、前記したような規制部材を備えた排気浄化装置によれば、規制部材の外周面と上流側コーン部の内壁面とに囲繞された空間が排気を一時的に滞留させる容積室(サージタンク)として機能する。そのため、ケース内の排気圧力が高くなった場合であっても、内筒とケースとの間隙に流入する排気量を少なく抑えることができる。
 また、前記突起部の途中には、内筒の径方向外側且つ上流側へ斜めに突出する副突起部が設けられるようにしてもよい。その場合、上流側間隙へ流入しようとする排気の流れは、副突起部に遮られて前記容積室へ導かれるようになる。その結果、上流側間隙へ流入する排気の量を一層少なくすることができる。
 ところで、排気浄化装置のケースとして、筒部の両端にコーン部が連結されたものが用いられる場合は、発熱体から流出した排気のうち、ケース内の周縁付近(筒部の周縁付近)を流れる排気が下流側コーン部の内壁面に衝突した後に逆流する可能性がある。このようにして逆流する排気は、第1保持部材の下流側端面より下流において内筒とケースとの間に形成される間隙(詳細には、内筒の外周面と第1保持部材の下流側端面とケースの内周面とに囲繞された空間。以下、この空間を「下流側間隙」と称する)へ流入する可能性がある。下流側間隙に排気が流入すると、内筒の外周面や第1保持部材の下流側端面がPMによって被覆され、ケースと発熱体との短絡を誘発する虞がある。
 そこで、本発明の内燃機関の排気浄化装置は、前記ケースの内周面において前記内筒の下流側端部より下流の部位に設けられ、該ケースの径方向内側へ突出する遮蔽部を備えるようにしてもよい。このような構成によれば、下流側コーン部から上流側へ逆流する排気の流れは、前記遮蔽部によって阻まれることになる。その結果、前記下流側間隙へ流入する排気が減少する。よって、内筒の外周面と第1保持部材の下流側端面とケース内周面とに付着するPM量を減少させることができる。なお、遮蔽部の形状は、前述した突起部と同様に、逆流排気が遮蔽部の壁面に沿って順流方向へ旋回するような形状にしてもよい。
 なお、上記した種々の構成において、延長部の外周面とケースの内周面との最短距離、内筒(延長部及び突起部を含む)と規制部材との最短距離、或いは、内筒と遮蔽部との最短距離が短くなると、それらの間で放電現象が発生する可能性がある。延長部の外周面とケースの内周面との間、内筒と規制部材との間、或いは内筒と遮蔽部との間に放電現象が発生すると、ケースと発熱体が短絡する可能性もある。そこで、内筒の延長部の外周面とケースの内周面との最短距離、内筒と規制部材との最短距離、及び、内筒と遮蔽部との最短距離は、放電現象が発生しない空間距離以上に設定されることが好ましい。
 また、延長部の距離が短くなると、第1保持材と第2保持部材との間に該延長部の表面に沿って沿面放電が発生する可能性もある。すなわち、第1保持部材の上流側端面から第2保持部材の上流側端面に至る延長部の沿面距離が短くなると、第1保持部材と第2保持部材との間に沿面放電が発生する可能性がある。そこで、第1保持部材の上流側端面から第2保持部材の上流側端面に至る延長部の沿面距離は、第1保持部材と第2保持部材との間に沿面放電が発生しない距離以上に設定されることが好ましい。なお、内筒を介した沿面放電は、第1保持部材の下流側端面と第2保持部材の下流側端面との間でも発生し得る。よって、内筒の下流側端部も第1保持部材及び第2保持部材の下流側端面より下流側へ延長し、その延長部の沿面距離が第1保持部材の下流側端面と第2保持部材の下流側端面との間に沿面放電が発生しない距離以上に設定されてもよい。
 上記したように各部の相対位置や寸法が設定されると、ケースと発熱体との短絡をより確実に防止することができる。
 本発明によれば、電気加熱式の排気浄化装置において、通電により発熱する発熱体とケースとの短絡を防止することができる。
第1の実施例における排気浄化装置の縦断面を示す図である。 第1の実施例における排気浄化装置の横断面を示す図である。 触媒担体に衝突した後に逆流する排気の流れを示す図である。 内燃機関の始動時からの経過時間と触媒担体へ流入する排気の温度(流入温度)との関係を示す図である。 突起部に副突起部が設けられる構成例を示す図である。 上流側延長部と他の部材との最短距離を示す図である。 突起部が上流側延長部の途中に設けられる構成例を示す図である。 第2の実施例における排気浄化装置の縦断面を示す図である。 下流側コーン部の内壁面に衝突した後に逆流する排気の流れを示す図である。 遮蔽部と他の部材との最短距離を示す図である。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 先ず、本発明の第1の実施例について図1乃至図7に基づいて説明する。図1,2は、本発明に係わる内燃機関の排気浄化装置の概略構成を示す図である。図1,2に示す排気浄化装置1は、内燃機関の排気通路に配置される電気加熱式の排気浄化装置である。なお、図1中の矢印Fは、排気の流れ方向を示している。
 排気浄化装置1は、円柱状に形成された触媒担体2と、触媒担体2を覆う筒状の内筒3と、内筒3を覆う筒状のケース4と、を備えている。それら触媒担体2と、内筒3と、ケース4とは、同軸に配置されている。
 前記触媒担体2は、排気の流れ方向Fに延在する複数の通路がハニカム状に配置された構造体であり、該構造体の外形は、円柱状に成形されている。触媒担体2には、酸化触媒、三元触媒、吸蔵還元型NO触媒、或いは選択還元型NO触媒などの触媒が担持されている。なお、触媒担体2は、多孔質のセラミック(SiC)などのように、電気抵抗が大きい材料により形成されている。
 前記内筒3は、電気伝導率が低く、且つ、耐熱性が高い絶縁材(たとえば、アルミナ、或いはステンレス鋼材の表面に絶縁層をコートしたもの)を円筒状に成形したものである。内筒3は、該内筒3の内径が触媒担体2の外径より大きくなるように形成される。
 前記内筒3の内周面と触媒担体2の外周面との間には、筒状のマット部材5が圧入される。マット部材5は、電気伝導率が低く、且つ緩衝性が高い絶縁材(たとえば、アルミナ繊維マットなどの無機繊維マット)により形成される。マット部材5は、該マット部材5の軸方向の長さ(排気の流れ方向Fの長さ)が触媒担体2と略同等に形成される。マット部材5は、軸方向における該マット部材5の両端面の位置が触媒担体2の両端面の位置と略同等になるように配置される。
 前記ケース4は、前記触媒担体2及び前記内筒3を収容する金属製(たとえば、ステンレス鋼材)の筐体である。ケース4は、前記内筒3の外径より大きな内径を有する筒部40と、該筒部40の上流側端部に連結される上流側コーン部41と、該筒部40の下流側端部に連結される下流側コーン部42と、を備えている。上流側コーン部41と下流側コーン部42は、筒部40から離間するほど内径が小さくなるテーパ状に成形されている。
 前記筒部40の内周面と前記内筒3の外周面との間には、筒状のマット部材6が圧入されている。マット部材6は、上記したマット部材5と同様に、電気伝導率が低く、且つ緩衝性が高い絶縁材により形成される。マット部材6は、該マット部材6の軸方向の長さが触媒担体2と略同等に形成される。マット部材6は、軸方向における該マット部材6の両端面の位置が触媒担体2の両端面の位置と略同等になるように配置される。
 なお、前記マット部材6は本発明に係わる第1保持部材に相当し、前記マット部材5が本発明に係わる第2保持部材に相当する。以下では、マット部材6を第1マット部材6と称し、マット部材5を第2マット部材5と称する。
 また、排気浄化装置1の外周面における互いに対向する2箇所には、ケース4と第1マット部材6と内筒3と第2マット部材5とを貫通する一対の貫通孔10,11が設けられている。触媒担体2の外周面において前記貫通孔10,11に望む2箇所には、一対の電極20,21が設けられている。電極20,21は、貫通孔10,11を通ってケース4の外部へ突出する端子を有している。電極20,21の突出部分(端子)は、図示しないバッテリに接続されている。
 前記ケース4における貫通孔10,11の周縁部には、電極20,21を支持する支持部材22,23が設けられている。支持部材22,23は、ケース4と電極20,21との間の環状の開口部を覆うように形成される。なお、支持部材22,23は、電気伝導率が低く、且つ通気性が低い絶縁材により形成されるものとする。
 このように構成された排気浄化装置1によれば、バッテリから電極20,21へ電圧が印加されたときに、触媒担体2が電気抵抗となって発熱する。触媒担体2が発熱すると、該触媒担体2に担持された触媒が昇温する。そのため、内燃機関が冷間始動された場合等に、バッテリから電極20,21へ電圧が印加されれば、触媒を早期に活性させることができ、排気エミッションの低減を図ることができる。
 ところで、内燃機関の排気には水分が含まれているため、その水分が内燃機関の運転停止中に凝集して排気通路や排気浄化装置1内に溜まる場合がある。凝縮水は、内燃機関の運転中に排気の圧力を受けて下流側へ移動する。排気通路から排気浄化装置1へ流入した凝縮水、或いは排気浄化装置1内に溜まっていた凝縮水は、ケース4の内周面を伝って下流側へ移動する。このような凝縮水が第1マット部材6の上流側端面に到達すると、該第1マット部材6の上流側端面から第2マット部材5の上流側端面を介して触媒担体2の表面へ伝わる場合がある。そのような場合にバッテリから電極20,21へ電圧が印加されていると、ケース4と触媒担体2が短絡する虞がある。
 これに対し、本実施例の排気浄化装置1では、内筒3の軸方向の長さが第1マット部材6や第2マット部材5より長くされるとともに、内筒3の両端部が第1マット部材6及び第2マット部材5より上流側及び下流側へ突出させられている。以下では、内筒3における上流側の突出部分(第1マット部材6及び第2マット部材5の上流側端面より上流側に位置する部分)30を上流側延長部30と称し、内筒3における下流側の突出部分(第1マット部材6及び第2マット部材5の下流側端面より下流側に位置する部分)31を下流側延長部31と称する。
 上記したように内筒3が形成及び配置されると、第1マット部材6の上流側端面に付着した凝縮水が第2マット部材5の上流側端面へ伝わらなくなる。その結果、凝集水に起因したケース4と触媒担体2との短絡を防止することができる。
 また、ケース4内へ流入した排気の大部分は排気の流れ方向Fに沿って触媒担体2へ流入するが、一部の排気は触媒担体2の上流側端面に反射して逆流する場合がある。たとえば、ケース4内の中心付近を流れる排気は触媒担体2へ流入し易いが、ケース4内の周縁付近を流れる排気は触媒担体2の上流側端面に衝突した後に逆流し易い。
 触媒担体2の上流側端面に衝突した後に逆流する排気(逆流排気)は、内筒3の内壁面(上流側延長部30の内壁面)に沿って上流側へ流れ、内筒3の上流側端部より上流へ到達する場合がある。その場合、逆流排気は、後続の排気の圧力を受けて上流側延長部30の外周面とケース4の内周面と第1マット部材6の上流側端面とに囲繞された空間(上流側間隙)A1に押し込まれやすい。その結果、多量の排気が上流側間隙A1へ流入する可能性がある。
 多量の排気が上流側間隙A1へ流入すると、該上流側間隙A1を囲む壁面(ケース4の内周面、第1マット部材6の上流側端面、及び上流側延長部30の外周面)がPMによって被覆される可能性がある。その際、上流側延長部30の内周面及び第2マット部材5の上流側端面がPMによって被覆されていると、ケース4と触媒担体2とがPMを介して短絡する虞がある。
 また、多量の排気が上流側間隙A1へ流入すると、排気からケース4の壁面を介して大気中へ放出される熱量が増加する。その場合、触媒担体2へ流入する排気の温度(以下、「流入温度」と称する)が減少するため、排気から触媒担体2へ伝達される熱量が減少し、或いは触媒担体2から排気へ伝達される熱量が増加する。その結果、触媒の活性時期が遅くなったり、バッテリの消費電力が大きくなったりする可能性がある。
 これに対し、本実施例の排気浄化装置1は、上流側延長部30から径方向内側へ突出する突起部32を備えている。このような突起部32が上流側延長部30に設けられると、逆流排気の流れが突起部32により阻まれるようになる。その結果、逆流排気が上流側延長部30の上流側端部より上流へ到達し難くなり、上流側間隙A1へ流入する排気の量が減少する。よって、ケース4の内周面、第1マット部材6の上流側端面、及び上流側延長部30の外周面に付着するPM量を少なく抑えることができるとともに、流入温度の低下を抑制することができる。
 また、逆流排気が突起部32に接触することにより、内筒3と排気との接触面積及び接触時間が増加する。その結果、内筒3の温度上昇量や温度上昇速度が増加する。よって、上流側延長部30の外周面に少量のPMが付着しても、それらのPMを速やかに酸化及び除去することができる。さらに、内筒3の温度上昇量や温度上昇速度が増加すると、上流側間隙A1内に存在する凝縮水を速やかに気化させることも可能となる。
 なお、突起部32は、該突起部32の先端が下流側を指向するように緩やかに湾曲されてもよい。その際、突起部32の曲率は、上流側延長部30の内壁面に沿って流れる逆流排気が突起部32へ到達したときに、該突起部32の内壁面から剥離することなく流れる大きさに定められるものとする。
 このように突起部32が形成されると、図3中の破線矢印で示すように、逆流排気が突起部32の形状に沿って旋回する。すなわち、逆流排気は、突起部32に案内されて逆流方向から順流方向へ旋回する。その結果、逆流排気が上流側間隙A1へ流入しなくなる。よって、ケース4の内周面、第1マット部材6の上流側端面、及び上流側延長部30の外周面に付着するPM量を確実に減少させることができるとともに、流入温度の低下を確実に抑制することができる。
 ここで、上流側延長部30に突起部32が設けられた場合における流入温度の変化と、上流側延長部30に突起部32が設けられない場合における流入温度の変化を図4に示す。図4中の横軸は内燃機関の始動時からの経過時間を示し、縦軸は流入温度を示す。また、図4中の実線は上流側延長部30に突起部32が設けられた場合の流入温度を示し、一点鎖線は上流側延長部30に突起部32が設けられない場合の流入温度を示す。
 図4に示すように、上流側延長部30に突起部32が設けられた場合は突起部32が設けられない場合に比して、流入温度の上昇速度が高くなるとともに、流入温度の温度上昇量が多くなる。よって、上流側延長部30に突起部32が設けられた場合は突起部32が設けられない場合に比べ、触媒の活性時期を早めることができるとともに、バッテリの消費電力を少なくすることができる。
 また、逆流排気が上流側延長部30及び突起部32の内壁面に沿って流れるようになると、排気と内筒3との接触面積及び接触時間が一層増加する。その結果、内筒3の温度上昇量や温度上昇速度も一層増加する。よって、上流側延長部30の外周面に付着したPMをより確実に酸化及び除去することができるとともに、上流側間隙A1に存在する凝縮水をより確実に気化及び除去することができる。
 ところで、ケース4内へ流入した排気は、上流側コーン部41において径方向外側へ拡がりつつ下流側へ流れる傾向がある。そのため、上流側コーン部41において径方向外側へ拡がった排気の一部(たとえば、ケース4内の周縁付近を流れる排気)は、上流側間隙A1へ流入する可能性がある。
 これに対し、本実施例の排気浄化装置1は、上流側コーン部41の内壁面から下流側へ突出する環状の規制部材43を備えている。規制部材43は、内筒3の外径と同等以下の内径を有するように形成され、該規制部材43の軸心が内筒3の軸心と同一直線状に位置するように配置される。すなわち、規制部材43は、径方向における規制部材43の位置が内筒3の外周面より内側(中心寄り)となるように構成される。
 このような規制部材43によれば、ケース4内へ流入した排気が上流側コーン部41において内筒3より外側(径方向外側)へ拡がり難くなる。その結果、ケース4内の周縁付近を流れる排気が上流側間隙A1へ流入し難くなる。また、規制部材43と突起部32との隙間(開口面積)が狭くなるため、ケース4内の周縁付近を流れる排気は上流側間隙A1へ一層流入し難くなる。よって、上流側間隙A1へ流入する排気の量を一層少なくすることができる。
 なお、排気流量の増加などによってケース4内の排気圧力が高くなるときは、排気の一部が上流側間隙A1へ押し込まれる可能性がある。これに対し、上記したような規制部材43を備えた排気浄化装置1によれば、規制部材43の外周面と上流側コーン部41の内周面とに囲繞された空間A3が排気を一時的に滞留させるための容積室(サージタンク)として機能する。そのため、ケース4内の排気圧力が高くなった場合であっても、上流側間隙A1へ流入する排気の量を少なく抑えることができる。
 ここで、突起部32の途中には、図5に示すように、径方向外側且つ上流側へ向かって斜めに突出する副突起部320が設けられてもよい。このような副突起部320によれば、規制部材43と突起部32との間隙へ流入する排気は、上流側間隙A1へ流入し難く、且つ上記した容積室A3へ流入し易くなる。その結果、上流側間隙A1へ流入する排気の量は、極めて少なくなる。
 以上述べた排気浄化装置1によれば、上流側間隙A1を囲む壁面(ケース4の内周面、第1マット部材6の上流側端面、及び上流側延長部30の外周面がPMにより被覆される事態を回避することができるとともに、触媒担体2へ流入する排気の温度低下を抑制することができる。さらに、本実施例の排気浄化装置1によれば、内筒3(上流側延長部30)の温度を高めることができるため、上流側延長部30の外周面に付着したPMや上流側間隙A1に存在する凝縮水を速やかに除去することができる。その結果、ケース4と触媒担体2との短絡を抑制しつつ、触媒を効率的に活性させることが可能となる。
 なお、本実施例においては、各部材の相対距離などについて特段記載していないが、部材間において放電が発生しないように各部材の相対距離を定めることが望ましい。たとえば、図6に示すように、ケース4の内周面と上流側延長部30(下流側延長部31)との最短距離L1は、ケース4と上流側延長部30(下流側延長部31)との間に放電が発生しない空間距離以上に設定される。突起部32と規制部材43との最短距離L2は、突起部32と規制部材43との間に放電が発生しない空間距離以上に設定される。また、上流側延長部30(下流側延長部31)の長さL3は、第1マット部材6の上流側端面(下流側端面)から、上流側延長部30(下流側延長部31)の外周面及び上流側延長部30(下流側延長部31)の内周面を経て、第2マット部材5の上流側端面(下流側端面)に至る沿面距離が沿面放電を発生しない沿面距離以上となるように定められる。
 このように各部材の相対距離が定められると、放電に起因したケースと発熱体との短絡も防止することができる。
 また、本実施例においては、突起部が上流側延長部30の上流側端部に形成される例について述べたが、上流側延長部30の途中に形成されてもよい。たとえば、図7に示すように、上流側延長部30における上流側端部と下流側端部の間の部位から径方向内側へ突出するように突起部321が設けられてもよい。その際、突起部321は、図1に示す突起部32と同様に、緩やかに湾曲するように形成されてもよい。さらに、突起部321は、該突起部321の先端が下流側を指向するように形成されてもよい。このような構成によれば、図1に示す構成に比べ、内筒3と排気の接触面積又は接触時間は少なくなるが、上流側間隙A1へ流入する排気量を低下させることができる。
<実施例2>
 次に、本発明にかかる内燃機関の排気浄化装置の第2の実施例について図8乃至図10に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成について説明を省略する。
 前述した第1の実施例と本実施例との相違点は、ケース4の内周面において、下流側延長部31の下流側端部より下流の部位に、遮蔽部44が設けられる点にある。
 触媒担体2から流出した排気のうち、ケース4の周縁付近を流れる排気は、下流側コーン部42の内壁面に衝突した後に逆流する可能性がある。このようにして逆流する排気は、ケース4の内周面に沿って上流側へ流れ、下流側延長部31の外周面とケース4の内周面と第1マット部材6の下流側端面とに囲繞された空間(下流側間隙)A2へ流入する可能性がある。
 ここで、多量の排気が前記下流側間隙A2へ流入すると、該下流側間隙A2を囲む壁面(ケース4の内周面、第1マット部材6の下流側端面、及び下流側延長部31の外周面)がPMによって被覆される可能性がある。その際、下流側延長部31の内周面及び第2マット部材5の下流側端面がPMによって被覆されていると、ケース4と触媒担体2とがPMを介して短絡する可能性がある。
 また、多量の排気が前記下流側間隙A2へ流入すると、排気からケース4の壁面を介して大気中へ放出される熱量が増加する。よって、排気浄化装置1と異なる排気浄化装置が該排気浄化装置1より下流の排気通路に配置される場合は、その排気浄化装置へ流入する排気の温度低下を招くことになる。
 これに対し、本実施例の排気浄化装置1は、図8に示すように、ケース4の内周面において、下流側延長部31の下流側端部より下流の部位から径方向内側且つ下流側へ斜めに突出する環状の遮蔽部44を備えるようにした。図8に示す例では、遮蔽部44は、ケース4の筒部40に設けられているが、下流側コーン部42に設けられてもよい。
 このような遮蔽部44によれば、下流側コーン部42に衝突した後に逆流する排気の流は、遮蔽部44によって阻まれることになる。なお、ケース4の内周面から遮蔽部44へ至る面は緩やかな曲面で形成されてもよい。その場合、下流側コーン部42から逆流する排気は、図9に示すように、ケース4の内周面から遮蔽部44の壁面に沿って旋回する。その結果、下流側コーン部42に衝突した後に逆流する排気は、前記下流側間隙A2へ流入しなくなる。よって、下流側間隙A2を囲む壁面がPMによって被覆される事態を回避することができる。
 なお、遮蔽部44と下流側延長部31は、両者の間に放電が発生しないように配置されるものとする。すなわち、図10に示すように、遮蔽部44と下流側延長部31との最短距離L4は、両者の間に放電が発生しない空間距離以上となるように定められるものとする。
1     排気浄化装置
2     触媒担体
3     内筒
4     ケース
5     第2マット部材
6     第1マット部材
30   上流側延長部
31   下流側延長部
32   突起部
40   筒部
41   上流側コーン部
42   下流側コーン部
43   規制部材
44   遮蔽部
320 副突起部
321 突起部

Claims (10)

  1.  通電により発熱する発熱体と、
     前記発熱体の外径より大きな内径を有する筒状の部材であって、前記発熱体を収容するケースと、
     前記発熱体の外径より大きな内径を有するとともに前記ケースの内径より小さな外径を有する筒状の絶縁体であって、前記発熱体と前記ケースとの間に配置される内筒と、
     前記ケースと前記内筒との間に配置される筒状の絶縁体であって、前記内筒を保持する第1保持部材と、
     前記発熱体と前記内筒との間に配置される筒状の絶縁体であって、前記発熱体を保持する第2保持部材と、
     前記内筒の上流側端部を前記第1保持部材及び前記第2保持部材の上流側端面より上流側へ延長させることにより形成される延長部と、
     前記延長部に設けられ、前記内筒の径方向内側へ突出する突起部と、
    を備える内燃機関の排気浄化装置。
  2.  請求項1において、前記突起部は、前記延長部の上流側端部を径方向内側へ曲げることにより形成される内燃機関の排気浄化装置。
  3.  請求項2において、前記突起部は、該突起部の先端が下流側を指向するように湾曲している内燃機関の排気浄化装置。
  4.  請求項3において、前記突起部の曲率は、前記延長部の内壁面に沿って逆流する排気が該突起部の内壁面に沿って順流方向へ旋回する大きさに定められる内燃機関の排気浄化装置。
  5.  請求項1乃至4の何れか1項において、前記ケースは、筒部と該筒体の上流側端部及び下流側端部に連結されるテーパ状のコーン部とを具備し、
     前記筒部の上流側に連結されるコーン部の内壁面には、下流側へ突出する環状体であって、前記内筒と同等以下の内径を有する規制部材が設けられる内燃機関の排気浄化装置。
  6.  請求項5において、前記規制部材と前記延長部との最短距離は、前記規制部材と前記延長部との間に放電が発生しない空間距離以上に設定される内燃機関の排気浄化装置。
  7.  請求項5又は6において、前記筒部の内周面における前記内筒の下流側端部より下流の部位に設けられ、該筒部の径方向内側へ突出する遮蔽部を更に備える内燃機関の排気浄化装置。
  8.  請求項7において、前記遮蔽部と前記内筒との最短距離は、前記遮蔽部と前記内筒との間に放電が発生しない空間距離以上に設定される内燃機関の排気浄化装置。
  9.  請求項1乃至8の何れか1項において、前記延長部と前記ケースとの最短距離は、前記延長部と前記ケースとの間に放電が発生しない空間距離以上に設定される内燃機関の排気浄化装置。
  10.  請求項1乃至9の何れか1項において、前記第1保持部材の上流側端面から前記第2保持部材の上流側端面に至る前記延長部の沿面距離は、前記第1保持部材と前記第2保持部材との間に沿面放電が発生しない距離以上に設定される内燃機関の排気浄化装置。
PCT/JP2011/055659 2011-03-10 2011-03-10 内燃機関の排気浄化装置 WO2012120680A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180004049.9A CN103443415B (zh) 2011-03-10 2011-03-10 内燃机的排气净化装置
JP2012517941A JP5316707B2 (ja) 2011-03-10 2011-03-10 内燃機関の排気浄化装置
US13/499,802 US9039981B2 (en) 2011-03-10 2011-03-10 Exhaust gas purification apparatus of an internal combustion engine
PCT/JP2011/055659 WO2012120680A1 (ja) 2011-03-10 2011-03-10 内燃機関の排気浄化装置
EP11826194.0A EP2685061B1 (en) 2011-03-10 2011-03-10 Exhaust gas purification apparatus of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055659 WO2012120680A1 (ja) 2011-03-10 2011-03-10 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2012120680A1 true WO2012120680A1 (ja) 2012-09-13

Family

ID=46797676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055659 WO2012120680A1 (ja) 2011-03-10 2011-03-10 内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US9039981B2 (ja)
EP (1) EP2685061B1 (ja)
JP (1) JP5316707B2 (ja)
CN (1) CN103443415B (ja)
WO (1) WO2012120680A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193726A (ja) * 2011-03-18 2012-10-11 Toyota Motor Corp 触媒コンバータ装置
CN104234877A (zh) * 2013-06-21 2014-12-24 摩丁制造公司 废气冷却器
JP2015124705A (ja) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 触媒コンバータ装置
JP2019085955A (ja) * 2017-11-09 2019-06-06 アイシン高丘株式会社 触媒コンバータ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874834A (zh) 2011-10-18 2014-06-18 丰田自动车株式会社 电加热式催化剂
US8741224B2 (en) * 2012-01-12 2014-06-03 Toyota Jidosha Kabushiki Kaisha Electrically heated catalyst
US8997461B2 (en) 2012-05-21 2015-04-07 Cummins Emission Solutions Inc. Aftertreatment system having two SCR catalysts
US9677439B2 (en) 2014-01-20 2017-06-13 Cummins Inc. Systems and methods to mitigate NOx and HC emissions
US9512761B2 (en) * 2014-02-28 2016-12-06 Cummins Inc. Systems and methods for NOx reduction and aftertreatment control using passive NOx adsorption
US9567888B2 (en) 2014-03-27 2017-02-14 Cummins Inc. Systems and methods to reduce reductant consumption in exhaust aftertreament systems
JP2016050559A (ja) * 2014-09-02 2016-04-11 トヨタ自動車株式会社 触媒コンバータ装置
JP6445838B2 (ja) 2014-10-28 2018-12-26 イビデン株式会社 電気加熱式触媒コンバータ
JP2016217305A (ja) * 2015-05-25 2016-12-22 本田技研工業株式会社 内燃機関の排気浄化装置
JP6747466B2 (ja) * 2018-03-15 2020-08-26 株式会社デンソー 電気加熱式触媒
JP6797152B2 (ja) * 2018-05-18 2020-12-09 マレリ株式会社 排気浄化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171214A (ja) * 1990-11-02 1992-06-18 Nissan Motor Co Ltd 排気浄化用触媒コンバータ
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH0596423U (ja) * 1992-05-26 1993-12-27 カルソニック株式会社 メタル触媒コンバータ
JPH084521A (ja) * 1994-06-16 1996-01-09 Ngk Insulators Ltd ヒーターユニット及び触媒コンバーター

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094074A (en) 1990-02-23 1992-03-10 Nissan Motor Co., Ltd. Catalytic converter with metallic carrier and method for producing same
JPH0596423A (ja) 1991-06-17 1993-04-20 Fanuc Ltd 放電加工方法と放電加工装置
JP3035035B2 (ja) * 1991-11-21 2000-04-17 日本碍子株式会社 ヒーターユニット
US5451349A (en) * 1994-08-08 1995-09-19 Praxair Technology, Inc. Advanced gas control in gas-liquid mixing systems
GB2357048B (en) * 1999-12-09 2003-08-20 Eminox Ltd Apparatus
JP4292031B2 (ja) * 2003-03-31 2009-07-08 本田技研工業株式会社 排気管への触媒体固定構造
DE10324165A1 (de) * 2003-05-28 2004-12-16 Adam Opel Ag Integration der Rückdruckleitung in einem Dieselpartikelfilter
GB0507326D0 (en) * 2005-04-12 2005-05-18 Delphi Tech Inc Catalytic converter apparatus and method
CN101832168B (zh) * 2010-04-09 2012-04-25 上海交通大学 用于去除柴油机NOx的介质阻挡放电耦合催化剂整体反应器
WO2012093481A1 (ja) * 2011-01-06 2012-07-12 イビデン株式会社 排ガス処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171214A (ja) * 1990-11-02 1992-06-18 Nissan Motor Co Ltd 排気浄化用触媒コンバータ
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH0596423U (ja) * 1992-05-26 1993-12-27 カルソニック株式会社 メタル触媒コンバータ
JPH084521A (ja) * 1994-06-16 1996-01-09 Ngk Insulators Ltd ヒーターユニット及び触媒コンバーター

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685061A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193726A (ja) * 2011-03-18 2012-10-11 Toyota Motor Corp 触媒コンバータ装置
CN104234877A (zh) * 2013-06-21 2014-12-24 摩丁制造公司 废气冷却器
JP2015124705A (ja) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 触媒コンバータ装置
US10077704B2 (en) 2013-12-26 2018-09-18 Toyota Jidosha Kabushiki Kaisha Catalytic converter
JP2019085955A (ja) * 2017-11-09 2019-06-06 アイシン高丘株式会社 触媒コンバータ

Also Published As

Publication number Publication date
JP5316707B2 (ja) 2013-10-16
CN103443415A (zh) 2013-12-11
US9039981B2 (en) 2015-05-26
JPWO2012120680A1 (ja) 2014-07-07
EP2685061B1 (en) 2017-06-21
US20130336847A1 (en) 2013-12-19
CN103443415B (zh) 2015-11-25
EP2685061A4 (en) 2015-01-21
EP2685061A1 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5316707B2 (ja) 内燃機関の排気浄化装置
JP6025896B2 (ja) 排ガス装置
JP5408341B2 (ja) 電気加熱式触媒装置
JP5418680B2 (ja) 電気加熱式触媒
JP2015132256A (ja) 内燃機関の触媒装置
JP2013185573A (ja) 電気加熱式触媒
JP6036716B2 (ja) 触媒コンバータ装置
JPWO2013057792A1 (ja) 電気加熱式触媒
JP5626371B2 (ja) 電気加熱式触媒
JP5754189B2 (ja) 触媒コンバータ装置
JP2012172580A (ja) 排気浄化装置
JP5617938B2 (ja) 電気加熱式触媒
JP2015124705A (ja) 触媒コンバータ装置
JP5673683B2 (ja) 電気加熱式触媒
JP2015148204A (ja) 排ガス浄化用触媒コンバータ装置
JP2011247162A (ja) 通電加熱式触媒装置
JP5626375B2 (ja) 電気加熱式触媒
JP6136856B2 (ja) 触媒コンバータ装置
JP5655857B2 (ja) 電気加熱式触媒
JP5601240B2 (ja) 触媒コンバータ装置
JP5397550B2 (ja) 電気加熱式触媒
JP2023153607A (ja) 触媒装置
JP2023180393A (ja) 触媒装置
JP5472468B2 (ja) 電気加熱式触媒

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2011826194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011826194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499802

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012517941

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE