WO2012114935A1 - 成膜方法及び成膜装置 - Google Patents
成膜方法及び成膜装置 Download PDFInfo
- Publication number
- WO2012114935A1 WO2012114935A1 PCT/JP2012/053356 JP2012053356W WO2012114935A1 WO 2012114935 A1 WO2012114935 A1 WO 2012114935A1 JP 2012053356 W JP2012053356 W JP 2012053356W WO 2012114935 A1 WO2012114935 A1 WO 2012114935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film forming
- gas
- substrate
- film
- forming apparatus
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000007789 gas Substances 0.000 claims abstract description 39
- 239000007787 solid Substances 0.000 claims abstract description 36
- 239000012535 impurity Substances 0.000 claims abstract description 30
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052796 boron Inorganic materials 0.000 claims abstract description 17
- 239000012159 carrier gas Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 230000032258 transport Effects 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- 229910001392 phosphorus oxide Inorganic materials 0.000 claims 2
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 claims 2
- 230000008016 vaporization Effects 0.000 abstract description 12
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 abstract description 3
- 239000002341 toxic gas Substances 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 16
- 229910052736 halogen Inorganic materials 0.000 description 12
- 150000002367 halogens Chemical class 0.000 description 12
- 238000009834 vaporization Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 239000010453 quartz Substances 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 239000000112 cooling gas Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 229910052810 boron oxide Inorganic materials 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical compound [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/228—Gas flow assisted PVD deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/2225—Diffusion sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2255—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/028—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
- H01L31/0288—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method and apparatus for forming a film containing impurities to diffuse impurities such as boron and phosphorus in a silicon substrate, for example, in the manufacturing process of a solar cell or a semiconductor.
- boron oxide film For example, as a technique for forming a P-type diffusion layer, monosilane (SiH 4 ) and diborane (B 2 H 6 ) are thermally decomposed under atmospheric pressure to form a boron oxide film (BSG) on the substrate (APCVD) Alternatively, a boron oxide film (BSG) is formed on the substrate using plasma in a decompression vessel, and then a silicon oxide film (SiO 2 , NSG) is formed as a cap layer, and then a diffusion layer is formed at a high temperature. Things to do are known.
- a technique for forming an N-type diffusion layer monosilane (SiH 4 ) and phosphine (PH 3 ) are thermally decomposed at atmospheric pressure to form a phosphorylated film (PSG) on the substrate, or in a vacuum container
- a phosphorous film (PSG) is formed on a substrate using plasma, a cap layer similar to that described above is formed, and a diffusion layer is formed at a high temperature.
- any diffusion layer it is well known that film formation including impurities is necessary, and various proposals have been made on the film formation method and materials such as impurities. Also, for the purpose of simplifying the process and reducing manufacturing costs, a direct doping method using plasma, a continuous film forming method using thermal reaction instead of plasma, or a paste or solution containing impurities A method for obtaining an impurity diffusion layer by applying and heating is proposed.
- the film forming apparatus requires vacuum equipment and high-frequency equipment, so that the equipment itself is expensive.
- the deposition rate mainly depends on the flow rate of the deposition source gas, but it is difficult to introduce a large amount of source gas in a reduced pressure state, resulting in a prolonged deposition process and an increase in manufacturing cost. Connected.
- the vacuum equipment cannot be continuously processed and is inevitably batch-type processing, it is difficult to improve productivity.
- an object of the present invention is to provide a film forming method and a film forming apparatus that efficiently form a film containing a high-concentration impurity under atmospheric pressure without using harmful and toxic gases. is there.
- the present invention solves the above-described problems by the following means.
- the invention according to claim 1 is characterized in that a solid source of impurities is heated and evaporated to generate a gas, and a film containing the impurity is formed on the substrate by injecting the gas onto the substrate. It is a membrane method.
- the invention according to claim 2 is the film forming method according to claim 1, wherein the substrate is preheated before the gas is injected.
- the invention according to claim 3 is characterized in that the solid source is arranged in a container having injection holes, and the gas generated by heating the solid source in the container is injected from the injection holes onto the substrate.
- the invention according to claim 4 is characterized in that a carrier gas for transporting the gas is introduced into the container, and the gas is injected together with the carrier gas from the injection hole. It is a membrane method.
- the invention according to claim 5 is the film forming method according to any one of claims 1 to 4, wherein the gas is sprayed onto the substrate that is continuously transported by a transport device. .
- the invention according to claim 6 is characterized in that the impurity is diffused into the substrate by utilizing the temperature of the gas simultaneously with the formation of the film.
- the invention according to claim 7 is the film forming method according to any one of claims 1 to 6, wherein the solid source has boron.
- the invention according to claim 8 is the film forming method according to any one of claims 1 to 6, wherein the solid source has a phosphor oxide.
- the invention according to claim 9 is a heating means for heating and evaporating a solid source of impurities to generate a gas, and an injection means for forming a film containing impurities on the substrate by injecting the gas onto the substrate. Is a film forming apparatus.
- the invention according to claim 10 is the film forming apparatus according to claim 9, further comprising preheating means for preheating the substrate before jetting the gas.
- the invention which concerns on Claim 11 is equipped with the container part which accommodates the said solid source,
- the said heating means is arrange
- the invention according to claim 12 is provided with a carrier gas introduction means for introducing a carrier gas for conveying the gas to the container portion, and the injection hole injects the gas together with the carrier gas.
- a carrier gas introduction means for introducing a carrier gas for conveying the gas to the container portion, and the injection hole injects the gas together with the carrier gas.
- the invention according to claim 13 is the film forming apparatus according to any one of claims 9 to 12, further comprising a transport unit that transports the substrate continuously to the spray unit. .
- the invention according to claim 14 is characterized in that the impurity is diffused into the substrate by utilizing the temperature of the gas simultaneously with the formation of the film.
- the film forming apparatus according to the item.
- the invention according to claim 15 is the film forming apparatus according to any one of claims 9 to 14, wherein the solid source has boron.
- the invention according to claim 16 is the film forming apparatus according to any one of claims 9 to 14, wherein the solid source includes a phosphor oxide.
- film formation can be performed without using a highly toxic gas such as monosilane (SiH 4 ), diborane (B 2 H 6 ), phosphine (PH 3 ), etc.
- a highly toxic gas such as monosilane (SiH 4 ), diborane (B 2 H 6 ), phosphine (PH 3 ), etc.
- Auxiliary equipment such as abatement equipment becomes unnecessary, and as a result, the effect of lowering the price of the solar panel itself can be expected.
- a high-concentration impurity diffusion film can be formed, the effect of shortening the film formation process time and the wet process process time necessary for film removal can be expected.
- it is possible to simultaneously perform film formation and diffusion without using a diffusion device it is possible to simplify the manufacturing process. It should be noted that substantially the same effect can be obtained not only in the solar cell panel but also in a semiconductor.
- the film forming method and the film forming apparatus of each embodiment are for forming films containing boron and phosphorus as impurities on both sides of a silicon substrate, for example, in a manufacturing process of a solar cell panel or a semiconductor.
- the boron is diffused into the silicon substrate by heating to, for example, 800 to 1100 ° C. in an oxygen or nitrogen atmosphere.
- the phosphorus is diffused into the silicon substrate by heating to, for example, 800 to 1000 ° C. in an oxygen or nitrogen atmosphere.
- a cap layer made of, for example, SiO 2 may be formed during this diffusion.
- FIG. 1 is a diagram showing a configuration of a film forming apparatus according to the first embodiment.
- FIG. 1 (a) is a cross-sectional view taken along the line aa of FIG. 1 (b), and
- FIG. FIG. 2 is a cross-sectional view taken along the line bb in FIG.
- the film forming apparatus 100 includes a vaporization container 110, a heating device 120, an exhaust device 130, and the like.
- the vaporization container 110 is configured as a substantially rectangular parallelepiped box, for example.
- the inside of the vaporization container 110 functions as a vaporization space that heats and evaporates the solid source S of boron, for example.
- the solid source S has a surface area as large as possible and is subjected to drilling or grooving so that vapor can be easily taken out.
- a solid source fixing plate 111 to which the solid source S is fixed is provided on the bottom surface of the vaporization container 110.
- the solid source fixing plate 111 has a recess 112 into which the solid source S is fitted.
- the solid source fixing plate 111 is formed with a slit nozzle 113 that is an injection hole for injecting the gas G generated by the evaporation of the solid source S to the workpiece W that is a silicon substrate, for example.
- the vaporization vessel 110 is provided with a cooling water passage 114 through which cooling water flows.
- the cooling water passage 114 is disposed between a reflector 123, which will be described later, and the outer wall of the vaporization container 110, and is disposed substantially parallel to the halogen bulb 121, which will be described later.
- the heating device 120 includes a halogen bulb 121, a quartz tube 122, a reflector 123, a cooling gas connection port 124, and the like.
- the halogen bulbs 121 are formed in a cylindrical shape, and for example, three are arranged in parallel in the horizontal direction. Both ends of the halogen bulb 121 are supported by lamp sockets provided on the wall surface of the vaporization vessel 110.
- the quartz tube 122 is formed in a cylindrical shape, and the halogen bulb 121 is inserted so as to be substantially concentric on the inner diameter side thereof. The quartz tube 122 prevents an excessive temperature rise during long-time irradiation.
- the reflector 123 is a reflector disposed above and to the side of the three quartz tubes 122, and the upper surface portion is formed in a curved shape surrounding each quartz tube 122.
- the cooling gas connection port 124 is provided so as to protrude upward from the quartz tube 122 and introduces and discharges a cooling gas for cooling the halogen bulb 121 into the quartz tube 122.
- N 2 can be used as the cooling gas.
- Cooling gas connection ports 124 are provided at both ends of the quartz tube 122, respectively.
- the exhaust device 130 is a passage that collects and discharges excess gas G after being injected onto the workpiece W from the periphery of the lower portion of the vaporization container 110.
- the solid source S absorbs the emission wavelength of the halogen bulb 121 and generates heat, and the gas G, which is evaporated vapor, is combined with the carrier gas introduced from a carrier gas connection port (not shown) together with the slit nozzle 113.
- the jetted steam is fixed as a film on the surface of the workpiece W by contact with the substrate having a temperature lower than the steam temperature atmosphere.
- the workpiece W is heated in advance to prevent damage due to a rapid temperature change, and the film is efficiently formed by this preheating.
- FIG. 2 is a graph showing SIMS profile data of Example 1.
- solid boron is heated and evaporated at 700 ° C. to form a boron oxide film on the surface of the silicon substrate, and diffusion is performed at 1100 ° C. without a cap oxide film.
- a boron concentration of 1 ⁇ 10 19 atoms / cm 3 can be diffused to 0.7 ⁇ m in the depth direction.
- FIG. 3 is a graph showing SIMS profile data of Example 2.
- Example 2 after film formation under the same conditions as in Example 1, a cap oxide film made of SiO 2 and having a thickness of about 100 nm is further formed and diffused at 1100 ° C.
- a boron concentration of 1 ⁇ 10 19 atoms / cm 3 can be diffused to 1.5 ⁇ m in the depth direction.
- FIG. 4 is a diagram illustrating a configuration of a film forming apparatus according to the second embodiment.
- the solid source S is accommodated inside the pipe 210 and heated by the halogen bulb 121 from the outside of the pipe 210. And it is set as the structure which injects the gas G which has generated vapor
- the pipe 210 is formed of a material that absorbs the emission wavelength of the halogen bulb 121, such as carbon or SiC, is easy to heat, and has heat resistance.
- the pipe 210 is formed with a rectangular cross section, for example, and the slit nozzle 211 is formed on the lower surface thereof.
- the pipe 210 is arranged in parallel in the horizontal direction, and the halogen bulb 121 is arranged to face the upper surface and side surfaces thereof.
- the material, shape, etc. of the pipe 210 are not limited to this, and can be changed as appropriate.
- a lower portion of the pipe 210 is exposed to the workpiece W side from an opening formed in the lower surface portion of the vaporization container 110.
- the pipe 210 includes a carrier gas introduction port (not shown). Also in the second embodiment described above, substantially the same effect as the effect of the first embodiment described above can be obtained.
- FIG. 5 is a diagram illustrating a configuration of a film forming apparatus according to the third embodiment.
- a pipe 320 to which a solid source S is fixed is mounted inside a cylindrical heat diffusion furnace 310 through which a work W conveyed by a conveyor C passes, and the work W is piped.
- an inlet-side purge chamber 330 and an outlet-side purge chamber 340 are provided on the inlet side and the outlet side of the thermal diffusion furnace 310, respectively.
- a substrate cooling unit 350 is provided between the thermal diffusion furnace 310 and the outlet side purge chamber 340.
- the manufacturing process can be simplified by performing film formation and diffusion simultaneously and continuously.
- FIG. 6 is a diagram illustrating a configuration of a film forming apparatus according to the fourth embodiment.
- the film forming apparatus 400 of the fourth embodiment is configured such that a preheating zone Z ⁇ b> 1, a film forming zone Z ⁇ b> 2, and a cooling zone Z ⁇ b> 3 are sequentially arranged on the conveyor C.
- a preheating zone Z ⁇ b> 1 a film forming zone Z ⁇ b> 2
- a cooling zone Z ⁇ b> 3 are sequentially arranged on the conveyor C.
- a carrier gas introduction port 410 is provided on the side surface of the film forming apparatus 200.
- the present invention is not limited to the embodiments described above, and various modifications and changes are possible, and these are also within the technical scope of the present invention.
- each embodiment uses boron as a solid source and is used for manufacturing a P-type junction
- the present invention can also be used for manufacturing an N-type junction using phosphorus pentoxide or the like as a solid source. Is possible.
- the structure, configuration, and shape and arrangement of each member of the film forming apparatus are not limited to those of the above-described embodiments, and can be changed as appropriate.
- the film forming conditions and the like in each of the above-described embodiments are examples, and these can be changed as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Photovoltaic Devices (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
例えば、P型拡散層を形成する技術として、モノシラン(SiH4)とジボラン(B2H6)を大気圧下で熱分解し、基板上にボロン酸化膜(BSG)を形成するもの(APCVD)、もしくは減圧容器内でプラズマを用いて基板上にボロン酸化膜(BSG)を形成し、その後キャップ層としてシリコン酸化膜(SiO2,NSG)を形成した後、高温度下にて拡散層を形成するものなどが知られている。
また、工程の簡素化、製造コストの低減等を目的として、プラズマを用いた直接的なドーピング方法や、プラズマに代えて熱反応を用いた連続成膜方法、あるいは、不純物を含んだペーストもしくは溶液を塗布し、加熱することによって不純物拡散層を得る方法等が提案されている。
ここで、太陽電池パネルを安価に供給するためには、製造リードタイムの短縮、製造設備の低価格化が急務であることは言うまでもないが、特に、従来のPNジャンクション形成のための製造手法である不純物層の成膜装置及び成膜工程を簡素化することが有用である。
なお、上述した太陽電池製造に関する諸問題は、半導体の製造においても同様の状況にある。
請求項1に係る発明は、不純物の固体ソースを加熱し蒸発させてガスを発生させ、前記ガスを基板に噴射することによって前記基板上に不純物を含有する膜を形成することを特徴とする成膜方法である。
また、高濃度の不純物拡散膜を成膜できるため、成膜処理時間の短縮及び膜除去に必要なウェットプロセス処理時間の短縮の効果も期待できる。
また、拡散装置を使用せずに成膜及び拡散を同時に行なうことも可能となるので、製造工程の簡素化を図ることも可能である。
なお、太陽電池パネルに限らず、半導体においても実質的に同様の効果を得ることができる。
各実施形態の成膜方法及び成膜装置は、例えば、太陽電池パネルや半導体の製造工程において、シリコン基板の両面に、不純物であるボロン及びリンを含有する膜を成膜するものである。
そして、N型拡散層を形成するためには、ボロンを有する膜を形成した後に、例えば800~1100℃まで酸素又は窒素雰囲気下で加熱して、ボロンをシリコン基板中に拡散させる。
また、P型拡散層を形成するためには、リンを有する膜を形成した後に、例えば800~1000℃まで酸素又は窒素雰囲気化で加熱して、リンをシリコン基板中に拡散させる。
なお、この拡散時に、例えばSiO2等からなるキャップ層を形成してもよい。
以下、本発明を適用した成膜装置の第1実施形態について説明する。
図1は、第1実施形態の成膜装置の構成を示す図であって、図1(a)は図1(b)のa-a部矢視断面図であり、図1(b)は図1(a)のb-b部矢視断面図である。
成膜装置100は、気化容器110、加熱装置120、排気装置130等を備えて構成されている。
気化容器110の内部は、例えばボロンの固体ソースSを加熱し、蒸発させる気化空間として機能する。
固体ソースSは、出来るだけ表面積を大きくし、蒸気が取り出しやすいように穴加工又は溝加工等が施されている。
気化容器110の底面部には、固体ソースSが固定される固体ソース固定プレート111が設けられている。
固体ソース固定プレート111には、固体ソースSが嵌め込まれる凹部112が形成されている。
また、固体ソース固定プレート111には、固体ソースSが蒸発して発生したガスGを、例えばシリコン基板であるワークWに噴射する噴射孔であるスリットノズル113が形成されている。
さらに、気化容器110は、冷却水が通流される冷却水通路114が設けられている。冷却水通路114は、後述するリフレクタ123と、気化容器110の外壁との間に配置され、後述するハロゲンバルブ121とほぼ平行に配置されている。
ハロゲンバルブ121は、円柱状に形成され、例えば3本が水平方向に並べて平行に配列されている。
ハロゲンバルブ121の両端部は、気化容器110の壁面に設けられたランプソケットによって支持されている。
石英チューブ122は、円筒状に形成され、ハロゲンバルブ121はその内径側にほぼ同心となるように挿入されている。
石英チューブ122は、長時間の照射における過昇温を防止するものである。
リフレクタ123は、3本の石英チューブ122の上方及び側方に配置された反射板であって、上面部はそれぞれの石英チューブ122を取り囲む曲面状に形成されている。
クーリングガス接続ポート124は、石英チューブ122から装置の上方へ突き出して設けられ、石英チューブ122の内部にハロゲンバルブ121を冷却するためのクーリングガスを導入し、また、排出するものである。
クーリングガスとして、例えば、N2を用いることができる。
クーリングガス接続ポート124は、石英チューブ122の両端部にそれぞれ設けられている。
このとき、噴射された蒸気は、蒸気温度雰囲気よりも低温である基板との接触によりワークWの表面に膜として固着する。このとき、ワークWは、急激な温度変化による損傷を防ぐため、予め加熱されており、この予熱によって効率よく成膜される。
図2は、実施例1のSIMSプロファイルデータを示すグラフである。
実施例1においては、固体ボロンを700℃で加熱蒸発させてシリコン基板の表面に酸化ボロン膜を成膜し、キャップ酸化膜無しで1100℃で拡散を行なっている。
図2に示すように、ボロン濃度1×1019個/cm3を、深さ方向で0.7μmまで拡散可能である。
実施例2においては、実施例1と同様の条件で成膜した後、さらにSiO2からなる厚さ約100nmのキャップ酸化膜を成膜して1100℃で拡散を行なっている。
図3に示すように、実施例2においては、ボロン濃度1×1019個/cm3を、深さ方向で1.5μmまで拡散可能である。
次に、本発明を適用した成膜装置の第2実施形態について説明する。
なお、従前の実施形態と実質的に共通する箇所については同じ符号を付して説明を省略し、主に相違点について説明する。
図4は、第2実施形態の成膜装置の構成を示す図である。
パイプ210は、例えばカーボン、もしくはSiCといった、ハロゲンバルブ121の発光波長を吸収し加熱が容易でありかつ耐熱性を有する素材によって形成される。
パイプ210は、その横断面が例えば矩形に形成され、スリットノズル211はその下面部に形成される。
パイプ210は、例えば4本が水平方向に平行に配列され、ハロゲンバルブ121は、その上面及び側面と対向して配置されている。
なお、パイプ210の材質、形状等は、これに限定されず適宜変更することが可能である。
パイプ210の下部は、気化容器110の下面部に形成された開口から、ワークW側に露出している。
パイプ210は、図示しないキャリアガスの導入ポートを備えている。
以上説明した第2実施形態においても、上述した第1実施形態の効果と実質的に同様の効果を得ることができる。
次に、本発明を適用した成膜装置の第3実施形態について説明する。
図5は、第3実施形態の成膜装置の構成を示す図である。
第3実施形態の成膜装置300は、コンベアCによって搬送されるワークWが通過する筒状の熱拡散炉310の内部に、固体ソースSが固定されたパイプ320を装着し、ワークWをパイプ320の内部を通過させることによって、成膜及び拡散を同時かつ連続的に行なうことが可能となっている。
また、熱拡散炉310の入口側、出口側には、それぞれ入口側パージチャンバ330、出口側パージチャンバ340が設けられている。
また、熱拡散炉310と出口側パージチャンバ340との間には、基板冷却部350が設けられている。
以上説明した第3実施形態においては、成膜及び拡散を同時かつ連続的に行なうことによって、製造工程を簡素化することが可能となる。
次に、本発明を適用した成膜装置の第4実施形態について説明する。
第4実施形態の成膜装置は、ハロゲンバルブで加熱された固体ソースSから効率よくボロンを取り出すために、酸素雰囲気下で350℃以上の雰囲気を可能とした装置ユニットである。
図6は、第4実施形態の成膜装置の構成を示す図である。
図6に示すように、第4実施形態の成膜装置400は、コンベアCの搬送経路状に、予備加熱ゾーンZ1、成膜ゾーンZ2、冷却ゾーンZ3を順次配置したものである。
成膜ゾーンZ2は、第2実施形態と同様の成膜装置200を、コンベアCの搬送方向に沿って例えば2機設置している。
成膜装置200の側面部には、キャリアガスの導入ポート410が設けられている。
本発明は、以上説明した実施例に限定されることなく、種々の変形や変更が可能であって、それらも本発明の技術的範囲内である。
(1)各実施形態は固体ソースとしてボロンを用い、P型ジャンクションの製造に用いられるものであるが、本発明は固体ソースとして五酸化リンなどを用いて、N型ジャンクションの製造に用いることも可能である。
(2)成膜装置の構造、構成、各部材の形状や配置等は、上述した各実施形態のものに限らず適宜変更することが可能である。
(3)上述した各実施例の成膜条件等は一例であって、これらは適宜変更することが可能である。
111 固体ソース固定プレート 112 凹部
113 スリットノズル 114 冷却水水路
120 加熱装置 121 ハロゲンバルブ
122 石英チューブ 123 リフレクタ
124 クーリングガス接続ポート 130 排気装置
S 固体ソース W ワーク(基板)
200 成膜装置 210 パイプ
211 スリットノズル
300 成膜装置 310 熱拡散炉
320 パイプ 330 入口側パージチャンバ
340 出口側パージチャンバ 350 基板冷却部
400 成膜装置 410 導入ポート
Z1 予備加熱ゾーン Z2 成膜ゾーン
Z3 冷却ゾーン
Claims (16)
- 不純物の固体ソースを加熱し蒸発させてガスを発生させ、
前記ガスを基板に噴射することによって前記基板上に不純物を含有する膜を形成すること
を特徴とする成膜方法。 - 前記ガスの噴射前に前記基板を予熱すること
を特徴とする請求項1に記載の成膜方法。 - 前記固体ソースを噴射孔を有する容器内に配置し、
前記容器内で前記固体ソースを加熱して発生した前記ガスを前記噴射孔から前記基板に噴射すること
を特徴とする請求項1又は請求項2に記載の成膜方法。 - 前記容器内に前記ガスを搬送するためのキャリアガスを導入し、前記ガスを前記キャリアガスとともに前記噴射孔から噴射すること
を特徴とする請求項3に記載の成膜方法。 - 搬送装置によって連続的に搬送される前記基板に前記ガスを噴射すること
を特徴とする請求項1乃至請求項4のいずれか1項に記載の成膜方法。 - 前記膜の形成と同時に前記ガスの温度を利用して前記基板中への前記不純物の拡散を行なうこと
を特徴とする請求項1から請求項5までのいずれか1項に記載の成膜方法。 - 前記固体ソースがボロンを有すること
を特徴とする請求項1から請求項6までのいずれか1項に記載の成膜方法。 - 前記固体ソースがリン酸化物を有すること
を特徴とする請求項1から請求項6までのいずれか1項に記載の成膜方法。 - 不純物の固体ソースを加熱し蒸発させてガスを発生させる加熱手段と、
前記ガスを基板に噴射することによって前記基板上に不純物を含有する膜を形成する噴射手段と
を備えることを特徴とする成膜装置。 - 前記ガスを噴射する前の前記基板を予熱する予熱手段を備えること
を特徴とする請求項9に記載の成膜装置。 - 前記固体ソースを収容する容器部を備え、
前記加熱手段は前記容器部の内部に配置され、
前記噴射手段は、前記容器部に形成された噴射孔であること
を特徴とする請求項9又は請求項10に記載の成膜装置。 - 前記容器部に前記ガスを搬送するためのキャリアガスを導入するキャリアガス導入手段を備え、
前記噴射孔は前記ガスを前記キャリアガスとともに噴射すること
を特徴とする請求項11に記載の成膜装置。 - 前記噴射手段に前記基板を連続的に搬送する搬送手段を備えること
を特徴とする請求項9から請求項12までのいずれか1項に記載の成膜装置。 - 前記膜の形成と同時に前記ガスの温度を利用して前記基板中への前記不純物の拡散を行なうこと
を特徴とする請求項9から請求項13までのいずれか1項に記載の成膜装置。 - 前記固体ソースがボロンを有すること
を特徴とする請求項9から請求項14までのいずれか1項に記載の成膜装置。 - 前記固体ソースがリン酸化物を有すること
を特徴とする請求項9から請求項14までのいずれか1項に記載の成膜装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012800098437A CN103392222A (zh) | 2011-02-21 | 2012-02-14 | 成膜方法及成膜装置 |
EP12749395.5A EP2680297A4 (en) | 2011-02-21 | 2012-02-14 | FILM-EDGING METHOD AND FILM-EDITING DEVICE |
KR1020137022074A KR20140012978A (ko) | 2011-02-21 | 2012-02-14 | 성막 방법 및 성막 장치 |
US13/984,944 US20130323421A1 (en) | 2011-02-21 | 2012-02-14 | Film forming method and film forming device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-034440 | 2011-02-21 | ||
JP2011034440A JP5810357B2 (ja) | 2011-02-21 | 2011-02-21 | 成膜方法及び成膜装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012114935A1 true WO2012114935A1 (ja) | 2012-08-30 |
Family
ID=46720717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/053356 WO2012114935A1 (ja) | 2011-02-21 | 2012-02-14 | 成膜方法及び成膜装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130323421A1 (ja) |
EP (1) | EP2680297A4 (ja) |
JP (1) | JP5810357B2 (ja) |
KR (1) | KR20140012978A (ja) |
CN (1) | CN103392222A (ja) |
TW (1) | TW201303054A (ja) |
WO (1) | WO2012114935A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011080202A1 (de) * | 2011-08-01 | 2013-02-07 | Gebr. Schmid Gmbh | Vorrichtung und Verfahren zur Herstellung von dünnen Schichten |
JP6125114B2 (ja) * | 2015-02-10 | 2017-05-10 | 三菱電機株式会社 | 太陽電池の製造方法 |
DE102018120580A1 (de) * | 2018-08-23 | 2020-02-27 | Infineon Technologies Ag | Vorrichtung und verfahren zum abscheiden einer schicht bei atmosphärendruck |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06333856A (ja) * | 1993-05-25 | 1994-12-02 | Nec Corp | 薄膜形成装置 |
JP2002329676A (ja) * | 2001-04-27 | 2002-11-15 | Shin Etsu Handotai Co Ltd | アンチモン拡散方法 |
JP2002353157A (ja) * | 2001-05-22 | 2002-12-06 | Koyo Thermo System Kk | 熱処理装置 |
JP2008282921A (ja) | 2007-05-09 | 2008-11-20 | Ulvac Japan Ltd | シリコン層へのドーパント元素の導入方法、ポリシリコン太陽電池の製造方法、ポリシリコン型薄膜トランジスタの製造方法及びシリコン層のドーパント元素導入装置 |
JP2009147070A (ja) | 2007-12-13 | 2009-07-02 | Sharp Corp | 太陽電池の製造方法 |
JP2009246214A (ja) | 2008-03-31 | 2009-10-22 | Mitsubishi Electric Corp | 太陽電池用拡散層の製造方法および太陽電池セルの製造方法 |
JP2009253127A (ja) | 2008-04-09 | 2009-10-29 | Tokyo Ohka Kogyo Co Ltd | インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法 |
JP2010056465A (ja) | 2008-08-29 | 2010-03-11 | Shin-Etsu Chemical Co Ltd | 拡散用ボロンペースト及びそれを用いた太陽電池の製造方法 |
JP2010161317A (ja) | 2009-01-09 | 2010-07-22 | Tokyo Ohka Kogyo Co Ltd | 拡散剤組成物、不純物拡散層の形成方法、および太陽電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3343049A (en) * | 1964-06-18 | 1967-09-19 | Ibm | Semiconductor devices and passivation thereof |
JP2000124145A (ja) * | 1998-10-15 | 2000-04-28 | Hitachi Ltd | 拡散ソース及びそれを用いた半導体装置の製造方法 |
JP2005005328A (ja) * | 2003-06-09 | 2005-01-06 | Matsushita Electric Ind Co Ltd | 不純物導入方法、不純物導入装置およびこれを用いて形成された半導体装置 |
WO2006016669A1 (en) * | 2004-08-13 | 2006-02-16 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP2006222140A (ja) * | 2005-02-08 | 2006-08-24 | Sumco Corp | 熱拡散炉及び半導体用基板の製造方法 |
JP2009266962A (ja) * | 2008-04-23 | 2009-11-12 | Hitachi Kokusai Electric Inc | 基板処理装置および半導体装置の製造方法 |
-
2011
- 2011-02-21 JP JP2011034440A patent/JP5810357B2/ja not_active Expired - Fee Related
-
2012
- 2012-02-14 KR KR1020137022074A patent/KR20140012978A/ko not_active Application Discontinuation
- 2012-02-14 US US13/984,944 patent/US20130323421A1/en not_active Abandoned
- 2012-02-14 EP EP12749395.5A patent/EP2680297A4/en not_active Withdrawn
- 2012-02-14 CN CN2012800098437A patent/CN103392222A/zh active Pending
- 2012-02-14 WO PCT/JP2012/053356 patent/WO2012114935A1/ja active Application Filing
- 2012-02-17 TW TW101105365A patent/TW201303054A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06333856A (ja) * | 1993-05-25 | 1994-12-02 | Nec Corp | 薄膜形成装置 |
JP2002329676A (ja) * | 2001-04-27 | 2002-11-15 | Shin Etsu Handotai Co Ltd | アンチモン拡散方法 |
JP2002353157A (ja) * | 2001-05-22 | 2002-12-06 | Koyo Thermo System Kk | 熱処理装置 |
JP2008282921A (ja) | 2007-05-09 | 2008-11-20 | Ulvac Japan Ltd | シリコン層へのドーパント元素の導入方法、ポリシリコン太陽電池の製造方法、ポリシリコン型薄膜トランジスタの製造方法及びシリコン層のドーパント元素導入装置 |
JP2009147070A (ja) | 2007-12-13 | 2009-07-02 | Sharp Corp | 太陽電池の製造方法 |
JP2009246214A (ja) | 2008-03-31 | 2009-10-22 | Mitsubishi Electric Corp | 太陽電池用拡散層の製造方法および太陽電池セルの製造方法 |
JP2009253127A (ja) | 2008-04-09 | 2009-10-29 | Tokyo Ohka Kogyo Co Ltd | インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法 |
JP2010056465A (ja) | 2008-08-29 | 2010-03-11 | Shin-Etsu Chemical Co Ltd | 拡散用ボロンペースト及びそれを用いた太陽電池の製造方法 |
JP2010161317A (ja) | 2009-01-09 | 2010-07-22 | Tokyo Ohka Kogyo Co Ltd | 拡散剤組成物、不純物拡散層の形成方法、および太陽電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2680297A4 * |
Also Published As
Publication number | Publication date |
---|---|
TW201303054A (zh) | 2013-01-16 |
EP2680297A1 (en) | 2014-01-01 |
JP2012174838A (ja) | 2012-09-10 |
US20130323421A1 (en) | 2013-12-05 |
CN103392222A (zh) | 2013-11-13 |
KR20140012978A (ko) | 2014-02-04 |
JP5810357B2 (ja) | 2015-11-11 |
EP2680297A4 (en) | 2014-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4580323B2 (ja) | 触媒化学気相蒸着装置 | |
CN104822866B (zh) | 具有可互换气体喷射器的沉积系统和相关的方法 | |
CN1938447B (zh) | 成膜装置及成膜方法 | |
US20120202352A1 (en) | Method of and apparatus for manufacturing semiconductor device | |
JP2007262541A (ja) | 微結晶シリコン膜形成方法及び太陽電池 | |
CN103649368B (zh) | 气体喷注装置、原子层沉积装置以及使用该原子层沉积装置的原子层沉积方法 | |
JP5810357B2 (ja) | 成膜方法及び成膜装置 | |
TWI495829B (zh) | Exhaust gas treatment device | |
US20240247363A1 (en) | Systems and methods for vaporization and vapor distribution | |
JP2008274334A (ja) | 反射防止膜成膜装置及び反射防止膜製造方法 | |
CN100517799C (zh) | 制造有机发光器件的方法 | |
EP2276057B1 (en) | In-line gas-phase diffusion furnace | |
US9954135B2 (en) | Solar cell manufacturing method | |
WO2016181692A1 (ja) | 蒸気循環再生システム | |
KR100977330B1 (ko) | 태양 전지를 위한 반사방지층 또는 패시베이션층을 제조하기 위한 방법 | |
CN102899633B (zh) | 一种选择性发射极电池掩膜的制备方法 | |
KR20080078310A (ko) | 가스 분사 장치 및 이를 구비하는 기판 처리 장치 | |
JP5478723B2 (ja) | 成膜装置 | |
JP2009194001A (ja) | 横型拡散炉および拡散層形成方法 | |
CN101974736B (zh) | 一种化学气相沉积装置及其喷头组件 | |
CN202610325U (zh) | 一种带有控温装置的气体喷淋装置以及真空处理装置 | |
KR101214368B1 (ko) | 하향식 셀레늄 크랙커 | |
US20020012749A1 (en) | Method and apparatus for coating and/or treating substrates | |
TW202309338A (zh) | 碳化矽基板製造方法 | |
CN112481606A (zh) | 一种pecvd沉积太阳能电池掺杂层的气源和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749395 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13984944 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137022074 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012749395 Country of ref document: EP |