WO2012114935A1 - 成膜方法及び成膜装置 - Google Patents

成膜方法及び成膜装置 Download PDF

Info

Publication number
WO2012114935A1
WO2012114935A1 PCT/JP2012/053356 JP2012053356W WO2012114935A1 WO 2012114935 A1 WO2012114935 A1 WO 2012114935A1 JP 2012053356 W JP2012053356 W JP 2012053356W WO 2012114935 A1 WO2012114935 A1 WO 2012114935A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
gas
substrate
film
forming apparatus
Prior art date
Application number
PCT/JP2012/053356
Other languages
English (en)
French (fr)
Inventor
本間 孝治
仁 犬塚
Original Assignee
株式会社サンケイエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サンケイエンジニアリング filed Critical 株式会社サンケイエンジニアリング
Priority to CN2012800098437A priority Critical patent/CN103392222A/zh
Priority to EP12749395.5A priority patent/EP2680297A4/en
Priority to KR1020137022074A priority patent/KR20140012978A/ko
Priority to US13/984,944 priority patent/US20130323421A1/en
Publication of WO2012114935A1 publication Critical patent/WO2012114935A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and apparatus for forming a film containing impurities to diffuse impurities such as boron and phosphorus in a silicon substrate, for example, in the manufacturing process of a solar cell or a semiconductor.
  • boron oxide film For example, as a technique for forming a P-type diffusion layer, monosilane (SiH 4 ) and diborane (B 2 H 6 ) are thermally decomposed under atmospheric pressure to form a boron oxide film (BSG) on the substrate (APCVD) Alternatively, a boron oxide film (BSG) is formed on the substrate using plasma in a decompression vessel, and then a silicon oxide film (SiO 2 , NSG) is formed as a cap layer, and then a diffusion layer is formed at a high temperature. Things to do are known.
  • a technique for forming an N-type diffusion layer monosilane (SiH 4 ) and phosphine (PH 3 ) are thermally decomposed at atmospheric pressure to form a phosphorylated film (PSG) on the substrate, or in a vacuum container
  • a phosphorous film (PSG) is formed on a substrate using plasma, a cap layer similar to that described above is formed, and a diffusion layer is formed at a high temperature.
  • any diffusion layer it is well known that film formation including impurities is necessary, and various proposals have been made on the film formation method and materials such as impurities. Also, for the purpose of simplifying the process and reducing manufacturing costs, a direct doping method using plasma, a continuous film forming method using thermal reaction instead of plasma, or a paste or solution containing impurities A method for obtaining an impurity diffusion layer by applying and heating is proposed.
  • the film forming apparatus requires vacuum equipment and high-frequency equipment, so that the equipment itself is expensive.
  • the deposition rate mainly depends on the flow rate of the deposition source gas, but it is difficult to introduce a large amount of source gas in a reduced pressure state, resulting in a prolonged deposition process and an increase in manufacturing cost. Connected.
  • the vacuum equipment cannot be continuously processed and is inevitably batch-type processing, it is difficult to improve productivity.
  • an object of the present invention is to provide a film forming method and a film forming apparatus that efficiently form a film containing a high-concentration impurity under atmospheric pressure without using harmful and toxic gases. is there.
  • the present invention solves the above-described problems by the following means.
  • the invention according to claim 1 is characterized in that a solid source of impurities is heated and evaporated to generate a gas, and a film containing the impurity is formed on the substrate by injecting the gas onto the substrate. It is a membrane method.
  • the invention according to claim 2 is the film forming method according to claim 1, wherein the substrate is preheated before the gas is injected.
  • the invention according to claim 3 is characterized in that the solid source is arranged in a container having injection holes, and the gas generated by heating the solid source in the container is injected from the injection holes onto the substrate.
  • the invention according to claim 4 is characterized in that a carrier gas for transporting the gas is introduced into the container, and the gas is injected together with the carrier gas from the injection hole. It is a membrane method.
  • the invention according to claim 5 is the film forming method according to any one of claims 1 to 4, wherein the gas is sprayed onto the substrate that is continuously transported by a transport device. .
  • the invention according to claim 6 is characterized in that the impurity is diffused into the substrate by utilizing the temperature of the gas simultaneously with the formation of the film.
  • the invention according to claim 7 is the film forming method according to any one of claims 1 to 6, wherein the solid source has boron.
  • the invention according to claim 8 is the film forming method according to any one of claims 1 to 6, wherein the solid source has a phosphor oxide.
  • the invention according to claim 9 is a heating means for heating and evaporating a solid source of impurities to generate a gas, and an injection means for forming a film containing impurities on the substrate by injecting the gas onto the substrate. Is a film forming apparatus.
  • the invention according to claim 10 is the film forming apparatus according to claim 9, further comprising preheating means for preheating the substrate before jetting the gas.
  • the invention which concerns on Claim 11 is equipped with the container part which accommodates the said solid source,
  • the said heating means is arrange
  • the invention according to claim 12 is provided with a carrier gas introduction means for introducing a carrier gas for conveying the gas to the container portion, and the injection hole injects the gas together with the carrier gas.
  • a carrier gas introduction means for introducing a carrier gas for conveying the gas to the container portion, and the injection hole injects the gas together with the carrier gas.
  • the invention according to claim 13 is the film forming apparatus according to any one of claims 9 to 12, further comprising a transport unit that transports the substrate continuously to the spray unit. .
  • the invention according to claim 14 is characterized in that the impurity is diffused into the substrate by utilizing the temperature of the gas simultaneously with the formation of the film.
  • the film forming apparatus according to the item.
  • the invention according to claim 15 is the film forming apparatus according to any one of claims 9 to 14, wherein the solid source has boron.
  • the invention according to claim 16 is the film forming apparatus according to any one of claims 9 to 14, wherein the solid source includes a phosphor oxide.
  • film formation can be performed without using a highly toxic gas such as monosilane (SiH 4 ), diborane (B 2 H 6 ), phosphine (PH 3 ), etc.
  • a highly toxic gas such as monosilane (SiH 4 ), diborane (B 2 H 6 ), phosphine (PH 3 ), etc.
  • Auxiliary equipment such as abatement equipment becomes unnecessary, and as a result, the effect of lowering the price of the solar panel itself can be expected.
  • a high-concentration impurity diffusion film can be formed, the effect of shortening the film formation process time and the wet process process time necessary for film removal can be expected.
  • it is possible to simultaneously perform film formation and diffusion without using a diffusion device it is possible to simplify the manufacturing process. It should be noted that substantially the same effect can be obtained not only in the solar cell panel but also in a semiconductor.
  • the film forming method and the film forming apparatus of each embodiment are for forming films containing boron and phosphorus as impurities on both sides of a silicon substrate, for example, in a manufacturing process of a solar cell panel or a semiconductor.
  • the boron is diffused into the silicon substrate by heating to, for example, 800 to 1100 ° C. in an oxygen or nitrogen atmosphere.
  • the phosphorus is diffused into the silicon substrate by heating to, for example, 800 to 1000 ° C. in an oxygen or nitrogen atmosphere.
  • a cap layer made of, for example, SiO 2 may be formed during this diffusion.
  • FIG. 1 is a diagram showing a configuration of a film forming apparatus according to the first embodiment.
  • FIG. 1 (a) is a cross-sectional view taken along the line aa of FIG. 1 (b), and
  • FIG. FIG. 2 is a cross-sectional view taken along the line bb in FIG.
  • the film forming apparatus 100 includes a vaporization container 110, a heating device 120, an exhaust device 130, and the like.
  • the vaporization container 110 is configured as a substantially rectangular parallelepiped box, for example.
  • the inside of the vaporization container 110 functions as a vaporization space that heats and evaporates the solid source S of boron, for example.
  • the solid source S has a surface area as large as possible and is subjected to drilling or grooving so that vapor can be easily taken out.
  • a solid source fixing plate 111 to which the solid source S is fixed is provided on the bottom surface of the vaporization container 110.
  • the solid source fixing plate 111 has a recess 112 into which the solid source S is fitted.
  • the solid source fixing plate 111 is formed with a slit nozzle 113 that is an injection hole for injecting the gas G generated by the evaporation of the solid source S to the workpiece W that is a silicon substrate, for example.
  • the vaporization vessel 110 is provided with a cooling water passage 114 through which cooling water flows.
  • the cooling water passage 114 is disposed between a reflector 123, which will be described later, and the outer wall of the vaporization container 110, and is disposed substantially parallel to the halogen bulb 121, which will be described later.
  • the heating device 120 includes a halogen bulb 121, a quartz tube 122, a reflector 123, a cooling gas connection port 124, and the like.
  • the halogen bulbs 121 are formed in a cylindrical shape, and for example, three are arranged in parallel in the horizontal direction. Both ends of the halogen bulb 121 are supported by lamp sockets provided on the wall surface of the vaporization vessel 110.
  • the quartz tube 122 is formed in a cylindrical shape, and the halogen bulb 121 is inserted so as to be substantially concentric on the inner diameter side thereof. The quartz tube 122 prevents an excessive temperature rise during long-time irradiation.
  • the reflector 123 is a reflector disposed above and to the side of the three quartz tubes 122, and the upper surface portion is formed in a curved shape surrounding each quartz tube 122.
  • the cooling gas connection port 124 is provided so as to protrude upward from the quartz tube 122 and introduces and discharges a cooling gas for cooling the halogen bulb 121 into the quartz tube 122.
  • N 2 can be used as the cooling gas.
  • Cooling gas connection ports 124 are provided at both ends of the quartz tube 122, respectively.
  • the exhaust device 130 is a passage that collects and discharges excess gas G after being injected onto the workpiece W from the periphery of the lower portion of the vaporization container 110.
  • the solid source S absorbs the emission wavelength of the halogen bulb 121 and generates heat, and the gas G, which is evaporated vapor, is combined with the carrier gas introduced from a carrier gas connection port (not shown) together with the slit nozzle 113.
  • the jetted steam is fixed as a film on the surface of the workpiece W by contact with the substrate having a temperature lower than the steam temperature atmosphere.
  • the workpiece W is heated in advance to prevent damage due to a rapid temperature change, and the film is efficiently formed by this preheating.
  • FIG. 2 is a graph showing SIMS profile data of Example 1.
  • solid boron is heated and evaporated at 700 ° C. to form a boron oxide film on the surface of the silicon substrate, and diffusion is performed at 1100 ° C. without a cap oxide film.
  • a boron concentration of 1 ⁇ 10 19 atoms / cm 3 can be diffused to 0.7 ⁇ m in the depth direction.
  • FIG. 3 is a graph showing SIMS profile data of Example 2.
  • Example 2 after film formation under the same conditions as in Example 1, a cap oxide film made of SiO 2 and having a thickness of about 100 nm is further formed and diffused at 1100 ° C.
  • a boron concentration of 1 ⁇ 10 19 atoms / cm 3 can be diffused to 1.5 ⁇ m in the depth direction.
  • FIG. 4 is a diagram illustrating a configuration of a film forming apparatus according to the second embodiment.
  • the solid source S is accommodated inside the pipe 210 and heated by the halogen bulb 121 from the outside of the pipe 210. And it is set as the structure which injects the gas G which has generated vapor
  • the pipe 210 is formed of a material that absorbs the emission wavelength of the halogen bulb 121, such as carbon or SiC, is easy to heat, and has heat resistance.
  • the pipe 210 is formed with a rectangular cross section, for example, and the slit nozzle 211 is formed on the lower surface thereof.
  • the pipe 210 is arranged in parallel in the horizontal direction, and the halogen bulb 121 is arranged to face the upper surface and side surfaces thereof.
  • the material, shape, etc. of the pipe 210 are not limited to this, and can be changed as appropriate.
  • a lower portion of the pipe 210 is exposed to the workpiece W side from an opening formed in the lower surface portion of the vaporization container 110.
  • the pipe 210 includes a carrier gas introduction port (not shown). Also in the second embodiment described above, substantially the same effect as the effect of the first embodiment described above can be obtained.
  • FIG. 5 is a diagram illustrating a configuration of a film forming apparatus according to the third embodiment.
  • a pipe 320 to which a solid source S is fixed is mounted inside a cylindrical heat diffusion furnace 310 through which a work W conveyed by a conveyor C passes, and the work W is piped.
  • an inlet-side purge chamber 330 and an outlet-side purge chamber 340 are provided on the inlet side and the outlet side of the thermal diffusion furnace 310, respectively.
  • a substrate cooling unit 350 is provided between the thermal diffusion furnace 310 and the outlet side purge chamber 340.
  • the manufacturing process can be simplified by performing film formation and diffusion simultaneously and continuously.
  • FIG. 6 is a diagram illustrating a configuration of a film forming apparatus according to the fourth embodiment.
  • the film forming apparatus 400 of the fourth embodiment is configured such that a preheating zone Z ⁇ b> 1, a film forming zone Z ⁇ b> 2, and a cooling zone Z ⁇ b> 3 are sequentially arranged on the conveyor C.
  • a preheating zone Z ⁇ b> 1 a film forming zone Z ⁇ b> 2
  • a cooling zone Z ⁇ b> 3 are sequentially arranged on the conveyor C.
  • a carrier gas introduction port 410 is provided on the side surface of the film forming apparatus 200.
  • the present invention is not limited to the embodiments described above, and various modifications and changes are possible, and these are also within the technical scope of the present invention.
  • each embodiment uses boron as a solid source and is used for manufacturing a P-type junction
  • the present invention can also be used for manufacturing an N-type junction using phosphorus pentoxide or the like as a solid source. Is possible.
  • the structure, configuration, and shape and arrangement of each member of the film forming apparatus are not limited to those of the above-described embodiments, and can be changed as appropriate.
  • the film forming conditions and the like in each of the above-described embodiments are examples, and these can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】有毒なガスを使用せず、大気圧下で効率よく高濃度の不純物を含む膜を成膜する成膜方法等を提供する。 【解決手段】成膜方法を、ボロン又は五酸化リンなどの不純物の固体ソースを加熱蒸発させてガスを発生させ、得られたガスを予熱された基板の表面に噴射することによって前記基板上に不純物を含有する膜を成膜する構成とする。

Description

成膜方法及び成膜装置
 本発明は、例えば太陽電池や半導体の製造工程において、シリコン基板にボロン、リン等の不純物を拡散するために不純物を含む膜を成膜する方法及び装置に関するものである。
 従来、例えば太陽電池や半導体の製造工程において、シリコン基板にPNジャンクションを形成するために、ボロン、リン等の不純物を拡散させる各種技術が提案されている。 P型、N型のいずれの拡散層を形成する場合にも、不純物を含んだ膜を成膜する必要があることは周知であり、その成膜方法や不純物層の素材等、様々な提案がなされている。
 例えば、P型拡散層を形成する技術として、モノシラン(SiH)とジボラン(B)を大気圧下で熱分解し、基板上にボロン酸化膜(BSG)を形成するもの(APCVD)、もしくは減圧容器内でプラズマを用いて基板上にボロン酸化膜(BSG)を形成し、その後キャップ層としてシリコン酸化膜(SiO,NSG)を形成した後、高温度下にて拡散層を形成するものなどが知られている。
 また、N型拡散層を形成する技術として、モノシラン(SiH)とホスフィン(PH)を大気圧下で熱分解し、基板上にリン酸化膜(PSG)を形成するもの、もしくは減圧容器内でプラズマを用いて基板上にリン酸化膜(PSG)を形成し、上述したものと同様のキャップ層を形成し、高温度下で拡散層を形成するものなどが知られている。
 いずれの拡散層の形成においても、不純物を含んだ成膜が必要であることは周知であり、その成膜方法や不純物等の素材など、様々な提案がなされている。
 また、工程の簡素化、製造コストの低減等を目的として、プラズマを用いた直接的なドーピング方法や、プラズマに代えて熱反応を用いた連続成膜方法、あるいは、不純物を含んだペーストもしくは溶液を塗布し、加熱することによって不純物拡散層を得る方法等が提案されている。
特開2010-161317号公報 特開2010- 56465号公報 特開2009-253127号公報 特開2009-246214号公報 特開2009-147070号公報 特開2008-282921号公報
 近年、太陽電池による発電システムの普及が急速に進んでおり、発電効率の向上が望まれているが、実際には、安価な太陽電池パネルを大量に設置することが、当面の発電量確保のためには重要である。
 ここで、太陽電池パネルを安価に供給するためには、製造リードタイムの短縮、製造設備の低価格化が急務であることは言うまでもないが、特に、従来のPNジャンクション形成のための製造手法である不純物層の成膜装置及び成膜工程を簡素化することが有用である。
 上述した従来技術のように、プラズマを用いて、拡散用不純物層を成膜する場合、成膜装置には、真空設備や高周波設備を必要とするため、設備自体が高価になる。また、成膜速度は主に成膜ソースガスの流量に依存するが、減圧状態では大量のソースガスを導入することが困難であり、成膜工程の長時間化を招き、製造コストの高騰につながる。さらに、真空設備は、連続処理ができず必然的にバッチ式処理となるため、生産性向上が困難である。
 これに対し、大気圧下において、モノシラン(SiH)、ジボラン(B)、ホスフィン(PH)をソースガスとしてAPCVD処理を行なう場合、これらのガスは爆燃性、毒性等があって危険なガスとして分類されており、その使用においては、制限と安全設備が課せられ、設備自体の運用には付帯設備の導入コストが必須である。
 さらに、P型であればボロン、N型であればリンを含んだ溶液もしくはペーストを基板上に滴下後スピンもしくはインクジェット方式プリント等で塗布後過熱して拡散層を得る場合、スピン方式では、薬液のほとんどが利用されずに廃棄されるため効率的ではない。また、これらの不純物は粒子状として溶剤に含まれるため、インクジェットプリント用のプリンタヘッドの小径ノズルを詰まらせる事となり、太陽電池製造のような量産工程には不向きである。
 なお、上述した太陽電池製造に関する諸問題は、半導体の製造においても同様の状況にある。
 上述した問題に鑑み、本発明の課題は、有害有毒なガスを使用せず、大気圧下で効率よく高濃度の不純物を含む膜を成膜する成膜方法及び成膜装置を提供することである。
 本発明は、以下のような解決手段により、上述した課題を解決する。
 請求項1に係る発明は、不純物の固体ソースを加熱し蒸発させてガスを発生させ、前記ガスを基板に噴射することによって前記基板上に不純物を含有する膜を形成することを特徴とする成膜方法である。
 請求項2に係る発明は、前記ガスの噴射前に前記基板を予熱することを特徴とする請求項1に記載の成膜方法である。
 請求項3に係る発明は、前記固体ソースを噴射孔を有する容器内に配置し、前記容器内で前記固体ソースを加熱して発生した前記ガスを前記噴射孔から前記基板に噴射することを特徴とする請求項1又は請求項2に記載の成膜方法である。
 請求項4に係る発明は、前記容器内に前記ガスを搬送するためのキャリアガスを導入し、前記ガスを前記キャリアガスとともに前記噴射孔から噴射することを特徴とする請求項3に記載の成膜方法である。
 請求項5に係る発明は、搬送装置によって連続的に搬送される前記基板に前記ガスを噴射することを特徴とする請求項1乃至請求項4のいずれか1項に記載の成膜方法である。
 請求項6に係る発明は、前記膜の形成と同時に前記ガスの温度を利用して前記基板中への前記不純物の拡散を行なうことを特徴とする請求項1から請求項5までのいずれか1項に記載の成膜方法である。
 請求項7に係る発明は、前記固体ソースがボロンを有することを特徴とする請求項1から請求項6までのいずれか1項に記載の成膜方法である。
 請求項8に係る発明は、前記固体ソースがリン酸化物を有することを特徴とする請求項1から請求項6までのいずれか1項に記載の成膜方法である。
 請求項9に係る発明は、不純物の固体ソースを加熱し蒸発させてガスを発生させる加熱手段と、前記ガスを基板に噴射することによって前記基板上に不純物を含有する膜を形成する噴射手段とを備えることを特徴とする成膜装置である。
 請求項10に係る発明は、前記ガスを噴射する前の前記基板を予熱する予熱手段を備えることを特徴とする請求項9に記載の成膜装置である。
 請求項11に係る発明は、前記固体ソースを収容する容器部を備え、前記加熱手段は前記容器部の内部に配置され、前記噴射手段は、前記容器部に形成された噴射孔であることを特徴とする請求項9又は請求項10に記載の成膜装置である。
 請求項12に係る発明は、前記容器部に前記ガスを搬送するためのキャリアガスを導入するキャリアガス導入手段を備え、前記噴射孔は前記ガスを前記キャリアガスとともに噴射することを特徴とする請求項11に記載の成膜装置である。
 請求項13に係る発明は、前記噴射手段に前記基板を連続的に搬送する搬送手段を備えることを特徴とする請求項9から請求項12までのいずれか1項に記載の成膜装置である。
 請求項14に係る発明は、前記膜の形成と同時に前記ガスの温度を利用して前記基板中への前記不純物の拡散を行なうことを特徴とする請求項9から請求項13までのいずれか1項に記載の成膜装置である。
 請求項15に係る発明は、前記固体ソースがボロンを有することを特徴とする請求項9から請求項14までのいずれか1項に記載の成膜装置である。
 請求項16に係る発明は、前記固体ソースがリン酸化物を有することを特徴とする請求項9から請求項14までのいずれか1項に記載の成膜装置である。
 本発明によれば、例えばモノシラン(SiH)、ジボラン(B)、ホスフィン(PH)等の危険性の高い有毒ガスを使用することなく成膜ができるため、装置の安全性が高く除害設備等の付帯設備が不要となり、ひいては太陽電池パネルの価格自体を引き下げる効果が期待できる。
 また、高濃度の不純物拡散膜を成膜できるため、成膜処理時間の短縮及び膜除去に必要なウェットプロセス処理時間の短縮の効果も期待できる。
 また、拡散装置を使用せずに成膜及び拡散を同時に行なうことも可能となるので、製造工程の簡素化を図ることも可能である。
 なお、太陽電池パネルに限らず、半導体においても実質的に同様の効果を得ることができる。
本発明を適用した成膜装置の第1実施形態の構成を示す図である。 実施形態1の成膜装置によって成膜し、その後拡散処理を行なったシリコン基板の実施例1のSIMSプロファイルデータを示すグラフである。 実施形態1の成膜装置によって成膜し、その後拡散処理を行なったシリコン基板の実施例2のSIMSプロファイルデータを示すグラフである。 本発明を適用した成膜装置の第2実施形態の構成を示す図である。 本発明を適用した成膜装置の第3実施形態の構成を示す図である。 本発明を適用した成膜装置の第4実施形態の構成を示す図である。
 以下、本発明を適用した成膜方法及び成膜装置の実施形態について、図面等を参照して説明する。
 各実施形態の成膜方法及び成膜装置は、例えば、太陽電池パネルや半導体の製造工程において、シリコン基板の両面に、不純物であるボロン及びリンを含有する膜を成膜するものである。
 そして、N型拡散層を形成するためには、ボロンを有する膜を形成した後に、例えば800~1100℃まで酸素又は窒素雰囲気下で加熱して、ボロンをシリコン基板中に拡散させる。
 また、P型拡散層を形成するためには、リンを有する膜を形成した後に、例えば800~1000℃まで酸素又は窒素雰囲気化で加熱して、リンをシリコン基板中に拡散させる。
 なお、この拡散時に、例えばSiO等からなるキャップ層を形成してもよい。
<第1実施形態>
 以下、本発明を適用した成膜装置の第1実施形態について説明する。
 図1は、第1実施形態の成膜装置の構成を示す図であって、図1(a)は図1(b)のa-a部矢視断面図であり、図1(b)は図1(a)のb-b部矢視断面図である。
 成膜装置100は、気化容器110、加熱装置120、排気装置130等を備えて構成されている。
 気化容器110は、例えばほぼ直方体状のボックスとして構成されている。
 気化容器110の内部は、例えばボロンの固体ソースSを加熱し、蒸発させる気化空間として機能する。
 固体ソースSは、出来るだけ表面積を大きくし、蒸気が取り出しやすいように穴加工又は溝加工等が施されている。
 気化容器110の底面部には、固体ソースSが固定される固体ソース固定プレート111が設けられている。
 固体ソース固定プレート111には、固体ソースSが嵌め込まれる凹部112が形成されている。
 また、固体ソース固定プレート111には、固体ソースSが蒸発して発生したガスGを、例えばシリコン基板であるワークWに噴射する噴射孔であるスリットノズル113が形成されている。
 さらに、気化容器110は、冷却水が通流される冷却水通路114が設けられている。冷却水通路114は、後述するリフレクタ123と、気化容器110の外壁との間に配置され、後述するハロゲンバルブ121とほぼ平行に配置されている。
 加熱装置120は、ハロゲンバルブ121、石英チューブ122、リフレクタ123、クーリングガス接続ポート124等を備えて構成されている。
 ハロゲンバルブ121は、円柱状に形成され、例えば3本が水平方向に並べて平行に配列されている。
 ハロゲンバルブ121の両端部は、気化容器110の壁面に設けられたランプソケットによって支持されている。
 石英チューブ122は、円筒状に形成され、ハロゲンバルブ121はその内径側にほぼ同心となるように挿入されている。
 石英チューブ122は、長時間の照射における過昇温を防止するものである。
 リフレクタ123は、3本の石英チューブ122の上方及び側方に配置された反射板であって、上面部はそれぞれの石英チューブ122を取り囲む曲面状に形成されている。
 クーリングガス接続ポート124は、石英チューブ122から装置の上方へ突き出して設けられ、石英チューブ122の内部にハロゲンバルブ121を冷却するためのクーリングガスを導入し、また、排出するものである。
 クーリングガスとして、例えば、Nを用いることができる。
 クーリングガス接続ポート124は、石英チューブ122の両端部にそれぞれ設けられている。
 排気装置130は、ワークWに噴射された後の余剰なガスGを、気化容器110の下部の周囲から回収して排出する通路である。
 第1実施形態においては、固体ソースSがハロゲンバルブ121の発光波長を吸収して発熱し、蒸発した蒸気であるガスGは、図示しないキャリアガス接続口から導入されたキャリアガスとともに、スリットノズル113から数ミリメートル下側を通過するワークWに噴射され、その後排気装置130から回収される。
 このとき、噴射された蒸気は、蒸気温度雰囲気よりも低温である基板との接触によりワークWの表面に膜として固着する。このとき、ワークWは、急激な温度変化による損傷を防ぐため、予め加熱されており、この予熱によって効率よく成膜される。
 以下、本実施形態の成膜装置によって酸化ボロンを成膜し、その後拡散処理を行なったシリコン基板の実施例について説明する。
 図2は、実施例1のSIMSプロファイルデータを示すグラフである。
 実施例1においては、固体ボロンを700℃で加熱蒸発させてシリコン基板の表面に酸化ボロン膜を成膜し、キャップ酸化膜無しで1100℃で拡散を行なっている。
 図2に示すように、ボロン濃度1×1019個/cmを、深さ方向で0.7μmまで拡散可能である。
 図3は、実施例2のSIMSプロファイルデータを示すグラフである。
 実施例2においては、実施例1と同様の条件で成膜した後、さらにSiOからなる厚さ約100nmのキャップ酸化膜を成膜して1100℃で拡散を行なっている。
 図3に示すように、実施例2においては、ボロン濃度1×1019個/cmを、深さ方向で1.5μmまで拡散可能である。
<第2実施形態>
 次に、本発明を適用した成膜装置の第2実施形態について説明する。
 なお、従前の実施形態と実質的に共通する箇所については同じ符号を付して説明を省略し、主に相違点について説明する。
 図4は、第2実施形態の成膜装置の構成を示す図である。
 第2実施形態の成膜装置200においては、固体ソースSをパイプ210の内部に収容してパイプ210の外部からハロゲンバルブ121によって加熱する。そして、発生した蒸気及びキャリアガスを有するガスGを、パイプ210の下部に形成されたスリットノズル211からワークWに噴射する構成としている。
 パイプ210は、例えばカーボン、もしくはSiCといった、ハロゲンバルブ121の発光波長を吸収し加熱が容易でありかつ耐熱性を有する素材によって形成される。
 パイプ210は、その横断面が例えば矩形に形成され、スリットノズル211はその下面部に形成される。
 パイプ210は、例えば4本が水平方向に平行に配列され、ハロゲンバルブ121は、その上面及び側面と対向して配置されている。
 なお、パイプ210の材質、形状等は、これに限定されず適宜変更することが可能である。
 パイプ210の下部は、気化容器110の下面部に形成された開口から、ワークW側に露出している。
 パイプ210は、図示しないキャリアガスの導入ポートを備えている。
 以上説明した第2実施形態においても、上述した第1実施形態の効果と実質的に同様の効果を得ることができる。
<第3実施形態>
 次に、本発明を適用した成膜装置の第3実施形態について説明する。
 図5は、第3実施形態の成膜装置の構成を示す図である。
 第3実施形態の成膜装置300は、コンベアCによって搬送されるワークWが通過する筒状の熱拡散炉310の内部に、固体ソースSが固定されたパイプ320を装着し、ワークWをパイプ320の内部を通過させることによって、成膜及び拡散を同時かつ連続的に行なうことが可能となっている。
 また、熱拡散炉310の入口側、出口側には、それぞれ入口側パージチャンバ330、出口側パージチャンバ340が設けられている。
 また、熱拡散炉310と出口側パージチャンバ340との間には、基板冷却部350が設けられている。
 以上説明した第3実施形態においては、成膜及び拡散を同時かつ連続的に行なうことによって、製造工程を簡素化することが可能となる。
<第4実施形態>
 次に、本発明を適用した成膜装置の第4実施形態について説明する。
 第4実施形態の成膜装置は、ハロゲンバルブで加熱された固体ソースSから効率よくボロンを取り出すために、酸素雰囲気下で350℃以上の雰囲気を可能とした装置ユニットである。
 図6は、第4実施形態の成膜装置の構成を示す図である。
 図6に示すように、第4実施形態の成膜装置400は、コンベアCの搬送経路状に、予備加熱ゾーンZ1、成膜ゾーンZ2、冷却ゾーンZ3を順次配置したものである。
 成膜ゾーンZ2は、第2実施形態と同様の成膜装置200を、コンベアCの搬送方向に沿って例えば2機設置している。
 成膜装置200の側面部には、キャリアガスの導入ポート410が設けられている。
(変形例)
 本発明は、以上説明した実施例に限定されることなく、種々の変形や変更が可能であって、それらも本発明の技術的範囲内である。
(1)各実施形態は固体ソースとしてボロンを用い、P型ジャンクションの製造に用いられるものであるが、本発明は固体ソースとして五酸化リンなどを用いて、N型ジャンクションの製造に用いることも可能である。
(2)成膜装置の構造、構成、各部材の形状や配置等は、上述した各実施形態のものに限らず適宜変更することが可能である。
(3)上述した各実施例の成膜条件等は一例であって、これらは適宜変更することが可能である。
 100  成膜装置          110  気化容器
 111  固体ソース固定プレート   112  凹部
 113  スリットノズル       114  冷却水水路
 120  加熱装置          121  ハロゲンバルブ
 122  石英チューブ        123  リフレクタ
 124  クーリングガス接続ポート  130  排気装置
   S  固体ソース           W  ワーク(基板)
 200  成膜装置          210  パイプ
 211  スリットノズル
 300  成膜装置          310  熱拡散炉
 320  パイプ           330  入口側パージチャンバ
 340  出口側パージチャンバ    350  基板冷却部
 400  成膜装置          410  導入ポート
  Z1  予備加熱ゾーン        Z2  成膜ゾーン
  Z3  冷却ゾーン

Claims (16)

  1.  不純物の固体ソースを加熱し蒸発させてガスを発生させ、
     前記ガスを基板に噴射することによって前記基板上に不純物を含有する膜を形成すること
     を特徴とする成膜方法。
  2.  前記ガスの噴射前に前記基板を予熱すること
     を特徴とする請求項1に記載の成膜方法。
  3.  前記固体ソースを噴射孔を有する容器内に配置し、
     前記容器内で前記固体ソースを加熱して発生した前記ガスを前記噴射孔から前記基板に噴射すること
     を特徴とする請求項1又は請求項2に記載の成膜方法。
  4.  前記容器内に前記ガスを搬送するためのキャリアガスを導入し、前記ガスを前記キャリアガスとともに前記噴射孔から噴射すること
     を特徴とする請求項3に記載の成膜方法。
  5.  搬送装置によって連続的に搬送される前記基板に前記ガスを噴射すること
     を特徴とする請求項1乃至請求項4のいずれか1項に記載の成膜方法。
  6.  前記膜の形成と同時に前記ガスの温度を利用して前記基板中への前記不純物の拡散を行なうこと
     を特徴とする請求項1から請求項5までのいずれか1項に記載の成膜方法。
  7.  前記固体ソースがボロンを有すること
     を特徴とする請求項1から請求項6までのいずれか1項に記載の成膜方法。
  8.  前記固体ソースがリン酸化物を有すること
     を特徴とする請求項1から請求項6までのいずれか1項に記載の成膜方法。
  9.  不純物の固体ソースを加熱し蒸発させてガスを発生させる加熱手段と、
     前記ガスを基板に噴射することによって前記基板上に不純物を含有する膜を形成する噴射手段と
     を備えることを特徴とする成膜装置。
  10.  前記ガスを噴射する前の前記基板を予熱する予熱手段を備えること
     を特徴とする請求項9に記載の成膜装置。
  11.  前記固体ソースを収容する容器部を備え、
     前記加熱手段は前記容器部の内部に配置され、
     前記噴射手段は、前記容器部に形成された噴射孔であること
     を特徴とする請求項9又は請求項10に記載の成膜装置。
  12.  前記容器部に前記ガスを搬送するためのキャリアガスを導入するキャリアガス導入手段を備え、
     前記噴射孔は前記ガスを前記キャリアガスとともに噴射すること
     を特徴とする請求項11に記載の成膜装置。
  13.  前記噴射手段に前記基板を連続的に搬送する搬送手段を備えること
     を特徴とする請求項9から請求項12までのいずれか1項に記載の成膜装置。
  14.  前記膜の形成と同時に前記ガスの温度を利用して前記基板中への前記不純物の拡散を行なうこと
     を特徴とする請求項9から請求項13までのいずれか1項に記載の成膜装置。
  15.  前記固体ソースがボロンを有すること
     を特徴とする請求項9から請求項14までのいずれか1項に記載の成膜装置。
  16.  前記固体ソースがリン酸化物を有すること
     を特徴とする請求項9から請求項14までのいずれか1項に記載の成膜装置。
PCT/JP2012/053356 2011-02-21 2012-02-14 成膜方法及び成膜装置 WO2012114935A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2012800098437A CN103392222A (zh) 2011-02-21 2012-02-14 成膜方法及成膜装置
EP12749395.5A EP2680297A4 (en) 2011-02-21 2012-02-14 FILM-EDGING METHOD AND FILM-EDITING DEVICE
KR1020137022074A KR20140012978A (ko) 2011-02-21 2012-02-14 성막 방법 및 성막 장치
US13/984,944 US20130323421A1 (en) 2011-02-21 2012-02-14 Film forming method and film forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-034440 2011-02-21
JP2011034440A JP5810357B2 (ja) 2011-02-21 2011-02-21 成膜方法及び成膜装置

Publications (1)

Publication Number Publication Date
WO2012114935A1 true WO2012114935A1 (ja) 2012-08-30

Family

ID=46720717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053356 WO2012114935A1 (ja) 2011-02-21 2012-02-14 成膜方法及び成膜装置

Country Status (7)

Country Link
US (1) US20130323421A1 (ja)
EP (1) EP2680297A4 (ja)
JP (1) JP5810357B2 (ja)
KR (1) KR20140012978A (ja)
CN (1) CN103392222A (ja)
TW (1) TW201303054A (ja)
WO (1) WO2012114935A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080202A1 (de) * 2011-08-01 2013-02-07 Gebr. Schmid Gmbh Vorrichtung und Verfahren zur Herstellung von dünnen Schichten
JP6125114B2 (ja) * 2015-02-10 2017-05-10 三菱電機株式会社 太陽電池の製造方法
DE102018120580A1 (de) * 2018-08-23 2020-02-27 Infineon Technologies Ag Vorrichtung und verfahren zum abscheiden einer schicht bei atmosphärendruck

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333856A (ja) * 1993-05-25 1994-12-02 Nec Corp 薄膜形成装置
JP2002329676A (ja) * 2001-04-27 2002-11-15 Shin Etsu Handotai Co Ltd アンチモン拡散方法
JP2002353157A (ja) * 2001-05-22 2002-12-06 Koyo Thermo System Kk 熱処理装置
JP2008282921A (ja) 2007-05-09 2008-11-20 Ulvac Japan Ltd シリコン層へのドーパント元素の導入方法、ポリシリコン太陽電池の製造方法、ポリシリコン型薄膜トランジスタの製造方法及びシリコン層のドーパント元素導入装置
JP2009147070A (ja) 2007-12-13 2009-07-02 Sharp Corp 太陽電池の製造方法
JP2009246214A (ja) 2008-03-31 2009-10-22 Mitsubishi Electric Corp 太陽電池用拡散層の製造方法および太陽電池セルの製造方法
JP2009253127A (ja) 2008-04-09 2009-10-29 Tokyo Ohka Kogyo Co Ltd インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法
JP2010056465A (ja) 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd 拡散用ボロンペースト及びそれを用いた太陽電池の製造方法
JP2010161317A (ja) 2009-01-09 2010-07-22 Tokyo Ohka Kogyo Co Ltd 拡散剤組成物、不純物拡散層の形成方法、および太陽電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343049A (en) * 1964-06-18 1967-09-19 Ibm Semiconductor devices and passivation thereof
JP2000124145A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 拡散ソース及びそれを用いた半導体装置の製造方法
JP2005005328A (ja) * 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd 不純物導入方法、不純物導入装置およびこれを用いて形成された半導体装置
WO2006016669A1 (en) * 2004-08-13 2006-02-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2006222140A (ja) * 2005-02-08 2006-08-24 Sumco Corp 熱拡散炉及び半導体用基板の製造方法
JP2009266962A (ja) * 2008-04-23 2009-11-12 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333856A (ja) * 1993-05-25 1994-12-02 Nec Corp 薄膜形成装置
JP2002329676A (ja) * 2001-04-27 2002-11-15 Shin Etsu Handotai Co Ltd アンチモン拡散方法
JP2002353157A (ja) * 2001-05-22 2002-12-06 Koyo Thermo System Kk 熱処理装置
JP2008282921A (ja) 2007-05-09 2008-11-20 Ulvac Japan Ltd シリコン層へのドーパント元素の導入方法、ポリシリコン太陽電池の製造方法、ポリシリコン型薄膜トランジスタの製造方法及びシリコン層のドーパント元素導入装置
JP2009147070A (ja) 2007-12-13 2009-07-02 Sharp Corp 太陽電池の製造方法
JP2009246214A (ja) 2008-03-31 2009-10-22 Mitsubishi Electric Corp 太陽電池用拡散層の製造方法および太陽電池セルの製造方法
JP2009253127A (ja) 2008-04-09 2009-10-29 Tokyo Ohka Kogyo Co Ltd インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法
JP2010056465A (ja) 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd 拡散用ボロンペースト及びそれを用いた太陽電池の製造方法
JP2010161317A (ja) 2009-01-09 2010-07-22 Tokyo Ohka Kogyo Co Ltd 拡散剤組成物、不純物拡散層の形成方法、および太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2680297A4 *

Also Published As

Publication number Publication date
TW201303054A (zh) 2013-01-16
EP2680297A1 (en) 2014-01-01
JP2012174838A (ja) 2012-09-10
US20130323421A1 (en) 2013-12-05
CN103392222A (zh) 2013-11-13
KR20140012978A (ko) 2014-02-04
JP5810357B2 (ja) 2015-11-11
EP2680297A4 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP4580323B2 (ja) 触媒化学気相蒸着装置
CN104822866B (zh) 具有可互换气体喷射器的沉积系统和相关的方法
CN1938447B (zh) 成膜装置及成膜方法
US20120202352A1 (en) Method of and apparatus for manufacturing semiconductor device
JP2007262541A (ja) 微結晶シリコン膜形成方法及び太陽電池
CN103649368B (zh) 气体喷注装置、原子层沉积装置以及使用该原子层沉积装置的原子层沉积方法
JP5810357B2 (ja) 成膜方法及び成膜装置
TWI495829B (zh) Exhaust gas treatment device
US20240247363A1 (en) Systems and methods for vaporization and vapor distribution
JP2008274334A (ja) 反射防止膜成膜装置及び反射防止膜製造方法
CN100517799C (zh) 制造有机发光器件的方法
EP2276057B1 (en) In-line gas-phase diffusion furnace
US9954135B2 (en) Solar cell manufacturing method
WO2016181692A1 (ja) 蒸気循環再生システム
KR100977330B1 (ko) 태양 전지를 위한 반사방지층 또는 패시베이션층을 제조하기 위한 방법
CN102899633B (zh) 一种选择性发射极电池掩膜的制备方法
KR20080078310A (ko) 가스 분사 장치 및 이를 구비하는 기판 처리 장치
JP5478723B2 (ja) 成膜装置
JP2009194001A (ja) 横型拡散炉および拡散層形成方法
CN101974736B (zh) 一种化学气相沉积装置及其喷头组件
CN202610325U (zh) 一种带有控温装置的气体喷淋装置以及真空处理装置
KR101214368B1 (ko) 하향식 셀레늄 크랙커
US20020012749A1 (en) Method and apparatus for coating and/or treating substrates
TW202309338A (zh) 碳化矽基板製造方法
CN112481606A (zh) 一种pecvd沉积太阳能电池掺杂层的气源和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13984944

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137022074

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012749395

Country of ref document: EP