WO2012114707A1 - コラーゲン材料、及びコラーゲン材料の製造方法 - Google Patents

コラーゲン材料、及びコラーゲン材料の製造方法 Download PDF

Info

Publication number
WO2012114707A1
WO2012114707A1 PCT/JP2012/001098 JP2012001098W WO2012114707A1 WO 2012114707 A1 WO2012114707 A1 WO 2012114707A1 JP 2012001098 W JP2012001098 W JP 2012001098W WO 2012114707 A1 WO2012114707 A1 WO 2012114707A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
orientation
collagen gel
gel fragment
growth factor
Prior art date
Application number
PCT/JP2012/001098
Other languages
English (en)
French (fr)
Inventor
太郎 佐久
仁博 礒部
峻興 礒部
Original Assignee
株式会社アトリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アトリー filed Critical 株式会社アトリー
Priority to CN201280009582.9A priority Critical patent/CN103384536B/zh
Priority to EA201300941A priority patent/EA027718B1/ru
Priority to JP2013500880A priority patent/JP6031435B2/ja
Priority to US14/000,397 priority patent/US10653785B2/en
Priority to EP12749411.0A priority patent/EP2679252B1/en
Publication of WO2012114707A1 publication Critical patent/WO2012114707A1/ja
Priority to US16/582,256 priority patent/US20200069804A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/142Cornea, e.g. artificial corneae, keratoprostheses or corneal implants for repair of defective corneal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Definitions

  • the present invention relates to a collagen material and a method for producing a collagen material, and more particularly to a collagen material using a collagen fragment and a method for producing a collagen material.
  • Non-oriented collagen has long been used as a substrate material for cell culture.
  • Patent Document 1 As a method for producing an oriented collagen material, it is generally known to apply a strong magnetic field in the process of forming collagen fibers (Patent Document 1). In addition, a method of spin-coating collagen gel has been proposed (Patent Document 2).
  • Collagen orientation technology has existed so far, but there is no technology to freely design the shape of the collagen material and the orientation direction in the material, and as a result, it has a limited shape and orientation direction. Only non-oriented and oriented collagen materials were present.
  • an object of the present invention is to provide a method for producing an oriented collagen material in which the shape and orientation direction can be freely designed, and to provide an oriented material obtained by the method.
  • the present inventors have intensively studied a collagen material using oriented collagen and non-oriented collagen, and have found the present invention.
  • the collagen material of the present invention is characterized by being composed of collagen gel fragments.
  • the collagen gel fragment has an orientation.
  • the collagen gel fragment is non-oriented.
  • the collagen gel fragment is composed of an oriented collagen gel fragment and a non-oriented collagen gel fragment.
  • the shape of the collagen gel fragment is a string, ribbon, sheet, sponge, grain (rod), rod, ring, spiral, spring (spring), disk, dome or block. It is at least one selected from the group consisting of
  • the orientation is uniaxial orientation, helical orientation, biaxial orientation, two-dimensional orientation, triaxial orientation or three-dimensional orientation.
  • a part or all of the collagen gel fragment is coated on a substrate made of metal, ceramics, polymer material, or biomaterial.
  • a substrate made of metal, ceramics, polymer material, or biomaterial.
  • the collagen gel fragment contains a cell growth promoter.
  • the cell growth promoter is an epidermal growth factor (EGF), an insulin-like growth factor (IGF), a transforming growth factor ( Transforming growth factor (TGF), nerve growth factor (Nerve growth factor: NGF), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), granulocyte colony Stimulating factor (Granulocyte-colony stimulating factor: G-CSF), granulocyte-macrophage-colony stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), erythropoietin ( Erythropoietin (EPO), thrombopoietin (TPO), basic fibroblast growth factor basic fibroblast growth factor: bFGF or FGF2), hepatocyte growth factor (Hepatocyte growth factor: characterized in that it is a HGF).
  • EGF epidermal growth factor
  • IGF insulin-like growth factor
  • TGF transforming growth factor
  • NGF nerve growth factor
  • the shape of the material is a ribbon, a sheet, a tube, a sponge, a grain, a rod, a ring, a spiral, a spring, a disk, a dome, or a block. It is characterized by that.
  • the material is designed to be approximately equal to the orientation of each part of normal living tissue.
  • the material contains oxygen.
  • the method for producing a collagen material of the present invention includes a step of preparing a collagen gel fragment, a step of arranging the collagen gel fragment in a desired shape, and a step of drying the collagen gel fragment arranged in a desired shape. It is characterized by comprising.
  • the method further comprises a step of imparting orientation to the collagen gel fragment.
  • the desired shape is a planar shape and / or a three-dimensional shape.
  • the desired shape is a ribbon, a sheet, a tube, a sponge, a grain, a rod, a ring, a spiral, a spring, a disk, a dome, or It is a block.
  • the step of drying the collagen gel fragment is characterized by drying by freeze drying.
  • the collagen gel is further obtained by any one of a pressure-reduced pressure method, a gas-liquid shear method, and / or a method of introducing from a membrane having pores. It includes a step of introducing bubbles into the fragments.
  • the collagen material of the present invention is obtained by the above-described method for producing a collagen material of the present invention.
  • the shape and orientation direction of the oriented collagen material can be freely designed.
  • the orientation is controlled to be equal to the orientation of each part of the normal biological tissue by the present invention.
  • the biocompatible material can be provided, and there is an advantageous effect that normal living tissue regeneration can be realized.
  • the present invention has an advantageous effect of providing a collagen material having a macro size of millimeter order or more.
  • the method for producing a collagen material of the present invention has an advantageous effect that it can be easily produced and can provide a collagen material whose shape can be freely designed.
  • the string-shaped oriented collagen is arranged in a desired direction in a plane or a three-dimensional shape, there is an advantageous effect that the orientation direction in the collagen material can be freely designed.
  • the dried oriented or non-oriented collagen material maintains its shape for a necessary period even if it is immersed in PBS, cell culture medium, etc., or transplanted into a living body.
  • This has an advantageous effect of not decomposing into a collagen gel fragment shape, for example, a string shape.
  • the reason why the required time shape is stable and is not easily decomposed is presumed to be due to the fact that the hydrophobic residues protrude outward due to the triple helical structure that is characteristic of the collagen molecule, and that they associate and stick together. .
  • FIG. 1 is a photograph showing a string-shaped oriented collagen gel immediately after being prepared in PBS.
  • FIG. 2 is a photograph showing a ribbon-shaped dry-oriented collagen material (FIG. (B)) obtained by drying string-oriented oriented collagen gels arranged in a ribbon shape (FIG. (A)). .
  • the orientation in the ribbon-shaped sample is the running direction of the string-shaped oriented collagen.
  • Fig. 3 shows a string-shaped oriented collagen gel arranged in two layers (Fig. 3 (a)). The first layer and the second layer are obtained when the running direction of the string-shaped oriented collagen is vertical. It is a photograph.
  • FIG. 3 (b) shows a dried product after arranging string-shaped oriented collagen gels, and FIG.
  • FIG. 4 is a photograph showing a tube-shaped dry oriented collagen sample after forming a sheet shape using a string-shaped oriented collagen gel, winding the sheet around a mandrel, and removing the mandrel.
  • FIG. 5 shows a Raman spectrum of oriented collagen, (i) shows the spectrum when the laser polarization direction is parallel to the collagen running direction, and (ii) shows the spectrum when it is perpendicular.
  • FIG. 6 is a diagram illustrating an example of a dome-shaped collagen material.
  • FIG. 7 is a diagram showing the results of confirming the orientation of the oriented sheet and the non-oriented sheet.
  • the collagen material of the present invention is composed of collagen gel fragments. That is, a collagen material composed of one or more collagen gel fragments.
  • a collagen material composed of one or more collagen gel fragments.
  • powdery collagen is dissolved in a solution to prepare a collagen solution, and the collagen solution is used as a starting material and gelled with a gelling agent or the like to obtain a desired sheet or the like. I use it.
  • a collagen material can be obtained by using collagen gel fragments as starting materials and bonding the collagen gel fragments together.
  • the collagen gel fragments may be bound to each other using, for example, a gelling agent.
  • bonding of collagen gel fragments can be performed without especially using a gelatinizer. That is, collagen gel fragments can be bonded together by arranging the collagen gel fragments in a desired shape and drying and solidifying.
  • Collagen is contained in all tissues in the body such as skin, muscle, internal organs, and bones. Unlike other proteins, collagen creates gaps between cells, that is, structures such as fibers and membranes outside the cells. Most of them exist without being dissolved in water. That is, in the living body, collagen is considered to play a role as a partition for arranging cells at the correct position as well as a role for attaching cells to each other. That is, it forms, supports, and joins the entire body and organs, and creates boundaries between cells. Collagen is also called cell matrix.
  • Collagen molecules have a rod-like shape with a length of about 300 nanometers and a diameter of about 1.5 nanometers. This molecule has a triple helix structure (helix structure) in which three chains are intertwined. is doing. Collagen molecules are cross-linked to increase the bond strength.
  • helix structure triple helix structure
  • Collagen molecules are cross-linked to increase the bond strength.
  • As a characteristic of collagen molecules it has a property of being dissolved by the application of heat, which is contrary to the property of a normal protein having a property of solidifying when heat is applied. The process of unraveling three chains and separating them into individual chains is usually called gelatinization.
  • the temperature at which this change occurs is generally referred to as the denaturation temperature, which is about 40 degrees or more for terrestrial animal collagen, and about 0 to about 25 degrees for temperature-change animals such as fish.
  • collagen gel fragments can be bonded to each other to obtain a collagen material, and the details of the mechanism are unknown, but they are solidified by setting in a desired shape and drying, By recombining, it is thought that it can be combined and stabilized without using a gelling agent or the like.
  • the drying step may be normal natural drying or freeze drying.
  • the collagen gel fragment has orientation.
  • orientation is described as follows.
  • Collagen having orientation means collagen in which the traveling direction of fibrous collagen such as a single collagen gel or dry collagen gel is aligned in a certain direction.
  • oriented collagen is coated on a substrate made of metal, ceramics, polymer material, or biological material (also referred to as collagen substrate), oriented collagen is processed into various shapes.
  • Collagen that is aligned in a certain direction in the running direction of fibrous collagen in collagen gel coated on a substrate such as metal, ceramics, polymer material, or biomaterial, dry collagen gel or the like.
  • an oriented collagen gel as a starting material are as follows. That is, for example, if there is an orientation of a collagen gel that draws a curve in the collagen gel as a starting material, it is possible to give the osteoblasts an orientation that also draws a curve. In the present invention, it is basically possible to grow osteoblasts with orientation on the “surface” of the collagen gel (substrate), and the inside of the collagen gel (substrate) with orientation. It is envisaged that osteoblasts may enter the cell, but such cases can also be included. Furthermore, according to the present invention, if the shape and orientation direction of the oriented collagen gel that is the starting material are prepared according to the needs of the orientation material that is the final product, the shape and orientation direction can be freely set. While controlling, it is possible to produce a collagen orientation material having a large size of millimeter or more.
  • the method for preparing the oriented collagen gel is not particularly limited by a conventional method.
  • a method of giving a flow in a certain direction to the collagen solution in the process of gelling the collagen solution has been proposed, but other methods may be used.
  • Other methods include a method of applying a strong magnetic field in the process of forming collagen fibers, a method of spin-coating a collagen gel, and a method of mechanically (physically) stretching the collagen gel in a certain direction. Can do.
  • collagen fibers are arranged perpendicular to the magnetic field, so if the magnetic field is continuously applied from the same direction It becomes a two-dimensional arrangement and becomes a uniaxial orientation when a rotating magnetic field is applied.
  • a method using a magnetic field can be used.
  • a magnetic field basically, only one having a uniform arrangement can be produced, and the macro shape tends to be limited.
  • oriented collagen (collagen alone) can be obtained by imparting orientation by a process of solidifying as a collagen gel using the flow of a collagen solution.
  • it is a string-shaped collagen gel fragment in the photographs of Examples described later, it is possible to produce oriented collagen gels or collagen gel fragments of various shapes (lines, planes, solids) such as a wide ribbon shape.
  • it is also possible to control the degree of orientation by controlling the flow speed. Therefore, even within the same collagen gel, it is possible to control the direction of orientation and the degree of orientation to have a distribution, so by using such a collagen gel or collagen gel substrate in the present invention, It is possible to control the orientation direction and the degree of orientation (that is, control of orientation distribution).
  • orientation There are mainly two meanings in controlling the orientation. First, (1) it is possible to freely give orientation to the collagen material itself, and (2) when cells are cultured using the collagen material having the orientation, or a living tissue is regenerated. In this case, the growth of cells and tissues along the orientation of the collagen material can be controlled. In the present invention, these two orientations can be controlled.
  • the concentration of the collagen solution is 10 mg / ml so that the obtained collagen or collagen substrate has sufficient mechanical strength.
  • the above is preferable, but it may be about 3 mg / ml or more.
  • the origin of collagen does not matter.
  • the species, tissue site, age, etc. of the animal from which it is derived are not particularly limited. For example, those extracted from animals such as rat tail, pig skin, cow skin, ostrich and fish can be used. That is, collagen obtained from the skin, bone, cartilage, tendon, organ, etc.
  • collagen-like proteins obtained from the skin, bones, cartilage, fins, scales, organs, etc. of fish eg cod, flounder, flounder, salmon, trout, tuna, mackerel, Thai, sardine, shark etc.
  • the extraction method of collagen is not specifically limited, A general extraction method can be used.
  • collagen obtained by gene recombination technology may be used.
  • atelocollagen treated with an enzyme to suppress antigenicity can be used.
  • Collagen includes acid-soluble collagen, salt-soluble collagen, unmodified soluble collagen such as enzyme-solubilized collagen (Atelocollagen), acylation such as succinylation and phthalation, esterification such as methylation, and deamidation of alkali solubilization It is possible to use chemically modified collagen such as glycated, and insoluble collagen such as tendon collagen. Furthermore, bubbles such as a chemical cross-linking agent, a drug, and oxygen can be introduced into the collagen solution. The introduction method is not particularly limited by a conventional method.
  • the orientation direction and degree of orientation of the obtained collagen can be quantitatively evaluated by, for example, a Raman spectroscopic microscope.
  • Raman spectroscopy is a spectroscope that examines the light scattered by the molecules and contains components that are frequency-modulated by the vibrations of the molecules. Information on the composition and crystal structure of the analysis target can be obtained. The orientation of the film can be analyzed.
  • the collagen gel fragment is non-oriented. This is because even if a non-oriented collagen gel fragment is used as a starting material, the collagen material can be obtained by arranging the collagen gel fragment in a desired shape and drying and solidifying it.
  • the collagen gel fragment is composed of a collagen gel fragment having orientation and a non-oriented collagen gel fragment.
  • the method for producing the non-oriented collagen gel fragment is not particularly limited by a conventional method. In the above-described method for producing an oriented collagen gel fragment, if the step of imparting orientation is omitted, a non-oriented collagen gel fragment can be obtained.
  • the string-shaped collagen gel fragment is mainly described.
  • the collagen gel fragment has a shape of string, ribbon, sheet, sponge, grain (grain). ), A rod, a ring, a spiral, a spring, a disk, a dome, or a block.
  • the orientation is uniaxial orientation, helical orientation, biaxial orientation, two-dimensional orientation, triaxial orientation, or three-dimensional orientation.
  • a part or all of the collagen gel fragment is coated on a substrate made of metal, ceramics, polymer material, or biomaterial.
  • the coating method is not particularly limited, and is a conventional method.
  • the collagen material is also characterized by having a macro size of millimeter order or more.
  • the collagen gel fragment contains a cell growth promoter from the viewpoint of growing cells in a short time and promoting tissue regeneration.
  • a cell growth promoter epidermal growth factor (EGF), insulin-like growth factor (IGF), transforming growth factor (TGF), nerve growth factor (Nerve) growth factor (NGF), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), granulocyte-colony stimulating factor (G-CSF) ), Granulocyte-macrophage-colony stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), erythropoietin (EPO), thrombopoietin (TPO), Basic fibroblast growth factor (basic fibroblast growth factor: bFGF or FGF2), hepatocyte growth One or more combinations of factors (Hepatocyte growth factor: HGF) can be mentioned.
  • EGF epidermal growth factor
  • IGF insulin-like growth factor
  • TGF nerve growth factor
  • NGF nerve
  • the shape of the material is a ribbon, a sheet, a tube, a sponge, a grain, a rod, a ring, a spiral, a spring, a disk, a dome, or a block.
  • Such processing can be realized by the method of arranging the collagen gel fragments, processing after arranging and drying and solidifying, and the like.
  • the collagen material composed of the collagen gel fragment of the present invention can be subjected to secondary processing. That is, a sheet-like collagen material (fragment) is first prepared from a string-shaped material as shown in FIG. 1, and the collagen material can be further processed to produce various final-shaped three-dimensional collagen materials.
  • the material is designed to be approximately equal to the orientation of each part of normal living tissue.
  • a collagen material designed so as to be approximately equal to the orientation of each part of normal living tissue can be used as it is as a regenerative medical material.
  • the collagen material is basically provided in a dry state, but can be provided in a gel state by immersing the collagen material in a dry state in PBS or the like.
  • a part of the collagen material tissue will be destroyed when dried, but storage stability (easy to maintain shape and easy to rot because it contains moisture), transportability (gel It is easy to handle the dry material from the viewpoint of being fragile because it contains water and moisture, and deforming when it is stuck to the container and peeled off.
  • the collagen material in a dry state can be returned to a gel with PBS or a culture solution when actually used.
  • the moisture of the gel is removed (90% or more is water), the collagen fiber tissue becomes dense, and it can be returned to the gel again with PBS or culture solution. It is smaller than the original volume, and as a result, the denseness of the structure remains, and it can often be said that it is superior to the gel at the time of manufacture in terms of strength and orientation.
  • the collagen material in a dry state, but it is also possible to provide it after returning to a gel with PBS or a culture solution.
  • the material contains oxygen.
  • Advantages of containing oxygen in the collagen material are as follows. That is, if the collagen material contains oxygen, (a) when cells grow inside the collagen material, it becomes a supply source of air (oxygen) to the cells, and (b) inside the collagen material. Advantages such as providing a space for cells to grow can be considered.
  • Oxygen-containing may be expressed as containing bubbles, but the following modes are generally conceivable. That is, containing oxygen can be said to be in the form of bubbles (bubbles), and its components include (1) air (so-called very common air containing oxygen, nitrogen and carbon dioxide), 2) When air contains low or high concentration oxygen (including cases where other components such as nitrogen and carbon dioxide fluctuate due to increase / decrease of oxygen concentration), (3) When literally contains only oxygen In other words, even if oxygen is contained, at least the above three aspects are conceivable.
  • collagen gel fragments remain as they are, multiple collagen gel fragments will not adhere, resulting in a stable and complex collagen material, and the fragments may be separated. It can be a method.
  • collagen When dried, collagen is a fiber, but for example, a collagen sheet has a property of not easily leaking water. Therefore, all the introduced bubbles do not escape as gas from the inside of the dried material, at least some of the oxygen and bubbles remain trapped inside the collagen material even after drying. .
  • the bubble ratio of 10 remains.
  • the collagen material is dried, there is a possibility that a certain part may come off. If it is not dried, almost all the bubbles introduced into the collagen solution are fixed in the collagen gel. However, how much bubbles are removed during drying and how much remains will be case-by-case.
  • the collagen solution 100 if the collagen concentration is 1%, 99% is water, and it is assumed that bubbles are removed to some extent together with the 99% water when dried.
  • the method for producing a collagen material of the present invention comprises a step of preparing a collagen gel fragment, a step of arranging the collagen gel fragment in a desired shape, and a step of drying the collagen gel fragment arranged in the desired shape. .
  • the drying process may be normal natural drying or freeze drying.
  • the collagen gel fragment can be applied with reference to the description of the collagen gel fragment in the description of the collagen material of the present invention as it is.
  • Collagen gel fragments are arranged according to the shape of the collagen material used as the final product, and then the collagen gel fragments are dried, so that the collagen gel fragments are bonded to each other, and are finally composed of collagen gel fragments. Can be obtained.
  • the step of drying the collagen gel fragment may be dried by freeze drying. If it is natural drying, it has the above-mentioned merit, but conversely, it may be smaller than the original volume, and it may be considered that there is no room for the cells to grow inside the collagen material. According to freeze drying, it is possible to prevent such problems. That is, if it is freeze-dried, the collagen gel fragments are shaped, and then the fragments are fixed together, and the inside of the fragments and, as a result, the inside of the shaped fragments as a whole can be maintained in a slender state. Then, it becomes easy for cells to grow inside the collagen material.
  • the method further includes a step of imparting orientation to the collagen gel fragment.
  • the method for preparing an oriented collagen gel fragment is not particularly limited by a conventional method.
  • the above-described method for producing an oriented collagen gel fragment can be applied. That is, the method using the above-mentioned collagen solution, the method using a magnetic field, the method of spin coating, and the like can be exemplified and are not particularly limited.
  • the desired shape is a planar shape and / or a three-dimensional shape.
  • a ribbon, a sheet, a tube, a sponge, a grain (grain), a rod, a ring, a spiral, a spring (spring), a disk, a dome, or a block can be given as a desired shape.
  • These shapes may be obtained by secondary processing or tertiary processing of collagen gel fragments.
  • the collagen gel is further obtained by any one of a pressure-reduced pressure method, a gas-liquid shear method, and / or a method of introducing from a membrane having pores. It includes a step of introducing bubbles into the fragments.
  • the bubble is introduced, but the purpose is to introduce oxygen. That is, to obtain a collagen material containing oxygen.
  • Oxygen-containing may be expressed as containing bubbles, but the following modes are generally conceivable. That is, containing oxygen can be said to be in the form of bubbles (bubbles), and its components include (1) air (so-called very common air containing oxygen, nitrogen and carbon dioxide), 2) When air contains low or high concentration oxygen (including cases where other components such as nitrogen and carbon dioxide fluctuate due to increase / decrease of oxygen concentration), (3) When literally contains only oxygen In other words, even if oxygen is contained, at least the above three aspects are conceivable.
  • the collagen gel fragment contains “bubbles (air, oxygen, etc.)”. More specifically, it is preferable to fill the bubble at the stage of producing the collagen gel fragment. Examples of the method include the following.
  • a certain amount of air is introduced into a container with a lid containing a collagen solution, the lid is capped, and mechanically vibrated to gel the collagen solution containing bubbles.
  • Simply adding air to the collagen solution by applying vibration may not result in a sufficiently small bubble.
  • you want to include a small bubble such as a so-called nano bubble the following method can also be used. is there.
  • fine bubbles can be included rather than shaking by hand or mechanically.
  • the method includes a step of introducing bubbles into the collagen gel fragment by any one of a pressure-reduced pressure method, a gas-liquid shear method, and / or a method of introducing from a membrane having pores.
  • a pressure-reduced pressure method a gas-liquid shear method
  • the pressure-reduced pressure method is a method in which a large amount of gas is dissolved under high pressure and re-bubbled by reduced pressure.
  • the gas-liquid shearing method is a method in which a vortex (400 to 600 revolutions per second) is created, gas is entrained in this, and cut and pulverized by a fan or the like.
  • an introduction method from a membrane having pores can be used. This method is a technique for generating nanobubbles by pressurizing a gas and releasing it from a film having innumerable nano-level holes. Shirasu porous glass (SPG) film is used as the film. If desired, bubbles, microbubbles, nanobubbles, etc. can be introduced into the collagen material by these conventional methods.
  • SPG Shirasu porous glass
  • the prepared string-shaped oriented collagen gel is arranged in a desired shape.
  • the arrangement may be a planar shape or a three-dimensional shape by stacking. Also, since it is within the surface shape and three-dimensional shape, the direction of the string shape becomes the direction of orientation, so if linear orientation is required, string-like oriented collagen gel is linearly arranged and curved orientation When the property is required, the string-shaped oriented collagen gel may be arranged in a curved line.
  • the collagen material of the present invention can be obtained by the above-described method for producing a collagen material of the present invention.
  • the shape and orientation direction can be freely designed by arranging in a flat or three-dimensional shape such as a ribbon, sheet, tube, or block, and then drying.
  • An oriented collagen material that can be obtained can be obtained.
  • the string-shaped collagen gel is arranged in a planar shape, such as a ribbon, a sheet, a tube, or a block shape, and a three-dimensional shape, and then dried.
  • a collagen material whose shape can be freely designed can also be obtained.
  • a collagen gel was prepared as oriented collagen (substrate) of millimeter order or higher.
  • Collagen gel is a dish container containing a rat tail type I collagen solution (BD) with a concentration of 9.3 mg / ml and phosphate buffered saline (PBS) pH 7.4 through a nozzle with an inner diameter of 0.38 mm.
  • BD rat tail type I collagen solution
  • PBS phosphate buffered saline
  • FIG. 5 shows the results of evaluating the polarization direction of the laser light in the parallel direction and the perpendicular direction with respect to the collagen running direction with the intensity of amide I and mid III.
  • the peak of amide III is due to the vibration of the CN bond located parallel to and perpendicular to the collagen fiber. 5 that the spectrum of the polarization direction parallel to the direction of the laser beam with respect to the collagen running direction, when compared with the peak intensity of CH 3 bending vibration near 1450cm -1, amideI (1670 cm -1 ) peak intensity vertical The direction was higher than the parallel direction.
  • a peak of CN bond vibration positioned perpendicular to the collagen fiber appears in the vicinity of Raman shift 1270-1300 cm ⁇ 1 . That is, it was found that collagen fibers were oriented in the long axis direction of the collagen gel.
  • Collagen gel is a dish containing rat tail type I collagen solution (BD) at a concentration of 9.3 mg / ml and phosphate buffered saline (PBS) at pH 7.4 through a nozzle with an inner diameter of 0.38 mm.
  • BD rat tail type I collagen solution
  • PBS phosphate buffered saline
  • a string-shaped collagen gel having a diameter of about 1 mm and a length of about 200 mm was obtained by sliding the nozzle while extruding it into the container.
  • FIG. 1 shows a photograph of a string-shaped oriented collagen gel immediately after being prepared in PBS.
  • the produced string-shaped oriented collagen gel was arranged on a flat surface as shown in FIG. 2 and then dried to obtain a sheet-shaped dry oriented collagen material.
  • the above-described string-shaped oriented collagen gel is arranged in a sheet shape on a plane. Thereafter, the second layer was arranged with the direction of the string-shaped oriented collagen gel perpendicular to the direction of the oriented collagen gel of the first layer (FIG. 3 (a)). Thereafter, the dried sample is shown in FIG. 3 (b), and the sample cut into a rectangle after drying is shown in FIG. 3 (c).
  • the sheet-like oriented collagen sheet can be not only a single layer but also a plurality of layers, and the orientation direction of each layer can be freely designed.
  • the aforementioned string-shaped oriented collagen gel was formed into a sheet shape on a flat surface and then dried. Thereafter, the obtained sheet was wound around a mandrel to obtain a tube-shaped dry oriented collagen material after removing the mandrel (FIG. 4).
  • the direction of orientation of the sheet-shaped collagen material matches the direction of travel of the string-shaped oriented collagen. Therefore, the direction of orientation of the tube-shaped collagen material depends on the orientation of the sheet with orientation relative to the mandrel. It is possible to design freely by wrapping around. That is, it is possible to design the tube axis direction, the tube circumferential direction, or a free angle from the tube axis direction.
  • the tube diameter can be freely designed according to the size of the mandrel, and the tube-shaped collagen material can be made into multiple layers, and the orientation direction can be freely designed in each of the multiple layers. Is possible.
  • FIG. 6 shows an example of a photograph of the dome-shaped collagen material. Dimensions are not major but scale display.
  • FIG. 6 is a photograph at the time of drying.
  • a white letter C is arranged on a black background on the background of one of the four sheet samples.
  • the four sheets are 20-layer sheets, and the orientation directions intersect each other vertically.
  • the yellow arrow indicates the orientation direction.
  • the 20 layers alone are “three-dimensional structure” collagen sheets, but further, these 20 layers are not only finished as flat disks (dried), but also can be finished in a dome shape, It turns out that more complex 3D structures are possible.
  • This dome-shaped sample is intended for cornea regeneration and is matched to the curvature of the eyeball.
  • the collagen material of the present invention can be produced in various shapes and can be expected to greatly contribute to regenerative medicine.
  • FIG. 7 is a diagram showing the results of confirming the orientation of the oriented sheet and the non-oriented sheet. That is, it is the figure which evaluated quantitatively the orientation of the dry orientation collagen sheet produced along the manufacturing method of the above-mentioned collagen material, and a dry non-orientation sheet. Both sheet thicknesses were about 10 microns.
  • This figure evaluates the “phase difference” in the sample with an ellipsometer using the parallel Nicol rotation method. Retardation ⁇ in the figure is a phase difference, and the phase difference in the rectangular sheet is used as a contour map.
  • the present invention can be expected to contribute to the treatment of diseases, the fields of regenerative medicine and dentistry (especially orthopedics, brain surgery, dentistry) and basic medicine.

Abstract

 本発明は、形状と配向性の方向を自由に設計できる配向性コラーゲン材料の製造方法と、該方法により得られる配向性材料を提供できるようにすることを目的とする。本発明のコラーゲン材料は、コラーゲンゲル断片から構成されることを特徴とする。また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、配向性を有することを特徴とする。また、本発明のコラーゲン材料の製造方法は、コラーゲンゲル断片を準備する工程と、前記コラーゲンゲル断片を所望の形状に配列させる工程と、所望の形状に配列した前記コラーゲンゲル断片を乾燥させる工程とからなることを特徴とする。また、本発明のコラーゲン材料の製造方法の好適な実施態様において、さらに、前記コラーゲンゲル断片に配向性を付与する工程を含むことを特徴とする。

Description

コラーゲン材料、及びコラーゲン材料の製造方法
 本発明は、コラーゲン材料、及びコラーゲン材料の製造方法に関し、特に、コラーゲン断片を利用したコラーゲン材料、及びコラーゲン材料の製造方法に関する。
 無配向のコラーゲンはこれまで細胞培養の基板材料として長く利用されてきた。一方、人の体内においてその部位に応じて配向性を有したコラーゲンが多数見られ、再生医療等の分野においては、コラーゲン材料の形状と配向性の方向を自由に設計、製造できることが極めて重要となる。
 配向性を有したコラーゲン材料を製造する方法として、コラーゲン繊維が形成される過程において強力な磁場を印加することが一般的に知られている(特許文献1)。また、コラーゲンゲルをスピンコートする方法が提案されている(特許文献2)。
特開2006-280222号 特開2010-148691号
 しかしながら、上述の特許文献1及び2に記載のコラーゲン材料の製造方法では、リボン、シート、チューブ、ブロック形状といった自由な平面形状、立体形状と、材料内における自由な配向性の方向を実現することはできなかった。
 また、コラーゲンの配向化技術はこれまで存在したが、コラーゲン材料の形状と、材料内における配向性の方向を自由に設計する技術はなく、その結果、限られた形状と配向性の方向を有した、無配向性、及び配向性コラーゲン材料しか存在しなかった。
 そこで、本発明は、形状と配向性の方向を自由に設計できる配向性コラーゲン材料の製造方法と、該方法により得られる配向性材料を提供できるようにすることを課題とする。
 上記目的を達成するために、本発明者らは、配向性を有するコラーゲンと無配向性コラーゲンとを用いたコラーゲン材料について鋭意検討した結果、本発明を見出すに至った。
 すなわち、本発明のコラーゲン材料は、コラーゲンゲル断片から構成されることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、配向性を有することを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、無配向であることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、配向性を有するコラーゲンゲル断片及び無配向のコラーゲンゲル断片からなることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片の形状が、ストリング、リボン、シート、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックからなる群から選択される少なくとも1種であることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記配向性が、一軸配向、らせん配向、二軸配向、二次元配向、三軸配向又は三次元配向であることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片の一部又は全部が、金属、セラミックス、高分子材料、又は生体材料からなる基板にコートされている請求項1~6項のいずれか1項に記載の材料。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、細胞成長促進剤を含むことを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記細胞成長促進剤が、上皮成長因子(Epidermal growth factor:EGF)、インスリン様成長因子(Insulin-like growth factor:IGF)、トランスフォーミング成長因子(Transforming growth factor:TGF)、神経成長因子(Nerve growth factor:NGF)、脳由来神経栄養因子(Brain-derived neurotrophic factor:BDNF)、血管内皮細胞増殖因子(Vesicular endothelial growth factor:VEGF)、顆粒球コロニー刺激因子(Granulocyte-colony stimulating factor:G-CSF)、顆粒球マクロファージコロニー刺激因子(Granulocyte-macrophage-colony stimulating factor:GM-CSF)、血小板由来成長因子(Platelet-derived growth factor:PDGF)、エリスロポエチン(Erythropoietin:EPO)、トロンボポエチン(Thrombopoietin:TPO)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor:bFGFまたはFGF2)、肝細胞増殖因子(Hepatocyte growth factor:HGF)であることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記材料の形状が、リボン、シート、チューブ、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックであることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記材料が、正常な生体組織の各部位の配向性と略等しくなるように設計されていることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記材料が、酸素を含有することを特徴とする。
 また、本発明のコラーゲン材料の製造方法は、コラーゲンゲル断片を準備する工程と、前記コラーゲンゲル断片を所望の形状に配列させる工程と、所望の形状に配列した前記コラーゲンゲル断片を乾燥させる工程とからなることを特徴とする。
 また、本発明のコラーゲン材料の製造方法の好ましい実施態様において、さらに、前記コラーゲンゲル断片に配向性を付与する工程を含むことを特徴とする。
 また、本発明のコラーゲン材料の製造方法の好ましい実施態様において、前記所望の形状が、平面形状及び/又は立体形状であることを特徴とする。
 また、本発明のコラーゲン材料の製造方法の好ましい実施態様において、前記所望の形状が、リボン、シート、チューブ、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックであることを特徴とする。
 また、本発明のコラーゲン材料の製造方法の好ましい実施態様において、前記コラーゲンゲル断片を乾燥させる工程が、フリーズドライにより乾燥させることを特徴とする。
 また、本発明のコラーゲン材料の製造方法の好ましい実施態様において、さらに、加圧減圧法、気液せん断法、及び/又は孔を有する膜からの導入法のいずれか1つの方法によって、前記コラーゲンゲル断片にバブルを導入する工程を含むことを特徴とする。
 また、本発明のコラーゲン材料は、上記本発明のコラーゲン材料の製造方法により得られたことを特徴とする。
 本発明では、配向性コラーゲン材料の形状と配向性の方向を自由に設計できるという有利な効果を奏する。また、生体組織において部位に応じてコラーゲンが配向性を持つ材料を提供することが可能であることから、本発明により正常な生体組織の各部位の配向性に等しくなるように配向性が制御された生体適合性材料を提供することができ、正常な生体組織の再生を実現することができるという有利な効果を奏する。
 また、本発明では、ミリメーターオーダー以上のマクロサイズのコラーゲン材料を提供し得るという有利な効果を奏する。また、本発明のコラーゲン材料の製造方法においては、製造が簡便で、しかも、形状を自由に設計できるコラーゲン材料を提供し得るという有利な効果を奏する。また、本発明において、ストリング形状の配向性コラーゲンを平面、立体形状内において希望する方向に配列すれば、コラーゲン材料内での配向性の方向を自由に設計できるという有利な効果を奏する。
 また、本発明によれば、乾燥させた配向性又は無配向コラーゲン材料はPBS、細胞培養液等に浸漬したり、生体内に移植したりしても、必要な期間において形状を保ち、最初のコラーゲンゲル断片の形状、例えばストリング形状に分解しないという有利な効果を奏する。必要な時間形状が安定し、容易に分解しないのは、コラーゲン分子の特徴である三重螺旋構造により、疎水性残基が外側に張り出していて、それらが会合、固着することによるものと推測される。
図1は、PBS中で作製された直後のストリング形状の配向性コラーゲンゲルを示す写真である。 図2は、ストリング形状の配向性コラーゲンゲルをリボン形状に配列した後に(図(a))、乾燥させることにより得られるリボン形状の乾燥配向性コラーゲン材料(図(b))を示す写真である。リボン形状の試料内における配向性は、ストリング形状の配向性コラーゲンの走行方向である。 図3は、ストリング形状の配向性コラーゲンゲルを2層に配列したもので(図3(a))、第1層と第2層はストリング形状の配向性コラーゲンの走行方向が垂直とした場合の写真である。ストリング形状の配向性コラーゲンゲルを配列した後に乾燥したものが図3(b)、端部をカットしたものが図3(c)である。 図4は、ストリング形状の配向性コラーゲンゲルを用いてシート形状とした後に、シートを心棒に巻きつけ、心棒を取り除いた後のチューブ形状の乾燥配向性コラーゲン試料を示す写真である。 図5は、配向性コラーゲンのラマンスペクトルを示し、(i)はレーザー偏光方向とコラーゲン走行方向が平行である場合、(ii)は垂直である場合のスペクトルを、それぞれ示す図である。 図6は、ドーム型のコラーゲン材料の一例を示す図である。 図7は、配向性シート及び無配向シートの配向性の確認結果を示す図である。
 本発明のコラーゲン材料は、コラーゲンゲル断片から構成される。すなわち、1又はそれ以上のコラーゲンゲル断片から構成されるコラーゲン材料である。従来では、コラーゲン材料を準備しようとする場合、粉末状のコラーゲンを溶液に溶解して、コラーゲン溶液を準備して、前記コラーゲン溶液を出発として、ゲル化剤等によりゲル化させて所望のシート等にして利用している。一方、本発明においては、コラーゲンゲル断片を出発材料として、当該コラーゲンゲル断片同士を結合させてコラーゲン材料を得ることができる。コラーゲンゲル断片同士の結合は、例えばゲル化剤等用いて結合させてもよい。また、本発明の特徴の一つとして、本発明においては、コラーゲンゲル断片同士の結合を特にゲル化剤を用いることなしに行うことができる。すなわち、コラーゲンゲル断片同士を所望の形に配列させて、乾燥させて固化することによりコラーゲンゲル断片同士を結合させることができる。
 コラーゲンは、皮膚、筋肉、内蔵、骨など体内のあらゆる組織に含まれており、コラーゲンは他のタンパク質とは異なり、細胞と細胞の隙間、つまり細胞の外側に繊維や膜などの構造体を作り、そのほとんどが水に溶けずに存在している。すなわち、生体内において、コラーゲンは、細胞と細胞をくっつけるのりのような役割を果たすと同時に、細胞を正しい位置に配列させる仕切りのような役割を果たしていると考えられる。すなわち、体全体、臓器等を形つくり、支え、結合したり、細胞間の境界をつくっている。コラーゲンは、細胞マトリックスとも呼ばれている。
 コラーゲンの分子は、長さが約300ナノメートル、直径が約1.5ナノメートルの棒状の形をしていて、この分子は3本の鎖が絡み合った3重らせん構造(へリックス構造)をしている。コラーゲン分子同士は、架橋を出して結びつき、結合強度を高くしている。コラーゲン分子の特徴として、熱を加えることによって溶ける性質をもち、これは通常のタンパク質が熱を加えると固まる性質を有するのと相反する性質となる。3本の鎖がほどけて1本1本の鎖に分かれていくことをゼラチン化と通常呼ぶ。この変化が生じた温度を一般に変性温度と呼び、陸上動物のコラーゲンでは約40度強であり、魚等の変温動物にておいては、約0~約25度である。
 本発明において、コラーゲンゲル断片同士が結合してコラーゲン材料を得ることができ、そのメカニズムの詳細は不明であるが、所望の形にセットして乾燥させることで固化するので、コラーゲンゲル断片同士が再結合することにより、ゲル化剤等を用いることなしに、結合して安定化することができると考えられる。なお、乾燥させる工程は通常の自然乾燥でもフリーズドライでも良い。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、配向性を有する。ここで配向性について説明すると以下のようである。
 まず、配向性を有するコラーゲンについて説明すると、以下のようである。配向性を有するコラーゲンとは、単体のコラーゲンゲル、乾燥コラーゲンゲルなどの繊維状コラーゲンの走行方向がある方位に揃っているコラーゲンを意味する。配向性を有するコラーゲンが、金属、セラミックス、高分子材料、又は生体材料からなる基板にコートされている場合(コラーゲン基板ともいう。)には、配向性を有するコラーゲンとは、各種形状に加工された金属、セラミックス、高分子材料、又は生体材料等の基板にコートされたコラーゲンゲル、乾燥コラーゲンゲルなどにおける繊維状コラーゲンの走行方向がある方位に揃っているコラーゲンを意味する。
 出発材料として、配向性を有するコラーゲンゲルを用いることの利点は、以下の通りである。すなわち、例えば出発材料のコラーゲンゲル内で、曲線を描いているコラーゲンゲルの配向性があれば、骨芽細胞にも曲線を描いた配向性をもたせることが可能になることである。また、本発明においては、基本的にはコラーゲンゲル(基板)の「表面」で、骨芽細胞を配向性をもたせて成長させることが可能となり、配向性を有したコラーゲンゲル(基板)の内部に骨芽細胞が入り込む場合も想定されるが、このような場合も含むことが可能である。さらに、本発明によれば、最終製品である配向性材料のニーズに応じて、出発材料である配向性コラーゲンゲルの形状、配向性の方向を準備すれば、形状、配向性の方向を自由に制御しつつ、ミリメーター以上の大きなサイズのコラーゲン配向性材料を製造することが可能である。
 配向性を有するコラーゲンゲルを準備する方法は、常法により特に限定されない。例えば、ミリメーターオーダー以上のコラーゲンゲルに配向性を与えるには、コラーゲン溶液をゲル化する過程でコラーゲン溶液に一定方向の流れを与える方法が提案されているが、他の方法としてもよい。他の方法としては、コラーゲン繊維が形成される過程において強力な磁場を印加する方法、コラーゲンゲルをスピンコートする方法、コラーゲンゲルを一定方向にメカニカルに(物理的に)延伸する方法などを挙げることができる。
 コラーゲン繊維が形成される過程において強力な磁場を印加する方法により、配向性を有するコラーゲンゲル断片を準備する場合、磁場に対してコラーゲン線維は垂直に配列するので、磁場を同じ方向からかけ続けると2次元の配列になり、回転磁場を与えると1軸配向となる。このような配向を有するコラーゲンゲルを、出発材料として用いたい場合に磁場を用いた方法を使用可能である。但し、磁場であれば、基本的には均一な配列をもったもののみ作製が可能で、マクロ形状も限定される傾向にある。これに対して、コラーゲン溶液をゲル化する過程でコラーゲン溶液に一定方向の流れを与える方法によって、配向性を有するコラーゲンゲルを準備する場合には、液体の流れを利用するためシート状の形状を含む様々な形状やそれを積層させることで、3次元的に配向性の異なるコラーゲンを作製可能である。 
 このような方法においては、配向性コラーゲン(コラーゲン単体)は、コラーゲン溶液の流れを利用してコラーゲンゲルとして固めるプロセスで配向性を与えることによって得ることができる。後述する実施例の写真ではストリング形状のコラーゲンゲル断片であるが、幅の広いリボン形状等、各種形状(線、面、立体)の配向性コラーゲンゲル又はコラーゲンゲル断片の作製が可能である。また、その際に、流れの速度を制御することで、配向性の程度を制御することも可能である。そのため、同一コラーゲンゲル内においても、配向性の方向、配向性の程度を制御して分布をもたせることは可能であるので、本発明でそのようなコラーゲンゲル又はコラーゲンゲル基板を用いることで、ひいては、配向性の方向、配向性の程度の制御(即ち、配向性の分布の制御)が可能となる。なお、配向性の制御には主として2つの意味がある。まず、(1)コラーゲン材料そのものに配向性を自由に持たせることが可能となること、そして(2)その配向性を有したコラーゲン材料を用いて細胞を培養する場合、或いは生体組織を再生する場合、コラーゲン材料の配向性に沿った細胞、組織の成長を制御することが可能となることである。本発明においては、この2つの配向性の制御が可能となる。
 例えば、コラーゲン溶液をゲル化する過程でコラーゲン溶液に一定方向の流れを与える方法において説明すると、コラーゲン溶液の濃度は、得られるコラーゲン又はコラーゲン基板が十分な機械的強度を有するためには10mg/ml以上が好ましいが、3mg/ml程度以上のものであってもよい。コラーゲンの由来は問わない。また、由来する動物の種、組織部位、年齢等は特に限定されない。例えば、ラット尾、豚皮、牛皮、ダチョウ、魚などの動物等から抽出したものを使用できる。すなわち、哺乳動物(例えばウシ、ブタ、ウマ、ウサギ、ネズミ等)や鳥類(例えばニワトリ等)の皮膚、骨、軟骨、腱、臓器等から得られるコラーゲンを使用できる。また魚類(例えばタラ、ヒラメ、カレイ、サケ、マス、マグロ、サバ、タイ、イワシ、サメ等)の皮、骨、軟骨、ひれ、うろこ、臓器等から得られるコラーゲン様蛋白を使用してもよい。なおコラーゲンの抽出方法は特に限定されず、一般的な抽出方法を使用することができる。また動物組織からの抽出ではなく、遺伝子組み替え技術によって得られたコラーゲンを使用してもよい。また、抗原性を抑えるために酵素処理したアテロコラーゲンを用いることができる。また、コラーゲンとしては酸可溶性コラーゲン、塩可溶性コラーゲン、酵素可溶化コラーゲン(アテロコラーゲン)等の未修飾可溶性コラーゲン、サクシニル化、フタル化等のアシル化、メチル化等のエステル化、アルカリ可溶化の脱アミド化等の化学修飾コラーゲン、さらにテンドンコラーゲン等不溶性のコラーゲンを用いることが出来る。さらにコラーゲン溶液に化学架橋剤、薬剤、酸素等の気泡を導入することもできる。導入方法は常法により特に限定されない。
 得られたコラーゲンの配向性の方位、配向性の程度は、例えば、ラマン分光顕微鏡によって定量的に評価が可能である。ラマン分光とは、分子に当たって散乱される光が分子の振動によって周波数変調を受けた成分を含むことを分光器によって調べることであり、分析対象の組成や結晶構造の情報を得ることができ、コラーゲンの配向性についても分析が可能となる。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、無配向である。無配向のコラーゲンゲル断片を出発材料として用いたとしても、コラーゲンゲル断片を所望の形状に配列させて乾燥固化することによりコラーゲン材料を得ることができるからである。また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片が、配向性を有するコラーゲンゲル断片及び無配向のコラーゲンゲル断片からなることを特徴とする。無配向コラーゲンゲル断片の作成方法については、常法により特に限定されるものではない。上述の配向性コラーゲンゲル断片を生産する方法において、配向性を付与する工程を省略すれば、無配向のコラーゲンゲル断片を得ることができる。
 また、上述においては、ストリング形状のコラーゲンゲル断片を主として説明しているが、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片の形状が、ストリング、リボン、シート、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックからなる群から選択される少なくとも1種であってもよい。
 また、配向性の制御という観点で説明すると、コラーゲンゲル又はコラーゲンゲル断片の配向性の方位、配向性の程度を制御することによって、コラーゲン材料の配向性の方位と程度を制御することが可能である。
 また、好ましい実施態様において、前記配向性が、一軸配向、らせん配向、二軸配向、二次元配向、三軸配向又は三次元配向であることを特徴とする。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記コラーゲンゲル断片の一部又は全部が、金属、セラミックス、高分子材料、又は生体材料からなる基板にコートされている。なお、コートの方法は、特に限定されず、常法による。また、本発明において、前記コラーゲン材料が、ミリメーターオーダー以上のマクロサイズであることも特徴の一つである。
 好ましい実施態様において、細胞を短時間で成長させ、組織再生を促進するという観点から、前記コラーゲンゲル断片が、細胞成長促進剤を含む。前記細胞成長促進剤としては、上皮成長因子(Epidermal growth factor:EGF)、インスリン様成長因子(Insulin-like growth factor:IGF)、トランスフォーミング成長因子(Transforming growth factor:TGF)、神経成長因子(Nerve growth factor:NGF)、脳由来神経栄養因子(Brain-derived neurotrophic factor:BDNF)、血管内皮細胞増殖因子(Vesicular endothelial growth factor:VEGF)、顆粒球コロニー刺激因子(Granulocyte-colony stimulating factor:G-CSF)、顆粒球マクロファージコロニー刺激因子(Granulocyte-macrophage-colony stimulating factor:GM-CSF)、血小板由来成長因子(Platelet-derived growth factor:PDGF)、エリスロポエチン(Erythropoietin:EPO)、トロンボポエチン(Thrombopoietin:TPO)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor:bFGFまたはFGF2)、肝細胞増殖因子(Hepatocyte growth factor:HGF)のいずれか1つ又はそれ以上の組合せを挙げることができる。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記材料の形状が、リボン、シート、チューブ、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックである。これらの加工は、上記コラーゲンゲル断片の配列の仕方、配列させ乾燥固化した後の加工等によって実現可能である。本発明のコラーゲンゲル断片から構成されるコラーゲン材料は、2次加工も行うことが可能である。すなわち、図1に示すようなまずストリング形状のものからシート状のコラーゲン材料(断片)を作成し、当該コラーゲン材料をさらに加工して種々の最終形状の3次元コラーゲン材料を作成することができる。
 また、好ましい実施態様において、前記材料が、正常な生体組織の各部位の配向性と略等しくなるように設計されていることを特徴とする。正常な生体組織の各部位の配向性と略等しくなるように設計したコラーゲン材料は、そのまま再生医療用材料として用いることが可能である。
 本発明においては、コラーゲン材料は、乾燥状態での提供を基本とするが、乾燥状態にあるコラーゲン材料をPBS等に浸漬することによりゲル状の状態でも提供可能である。通常、乾燥するとコラーゲン材料の組織が一部破壊去される可能性はあるが、保存性(形状維持が容易、またゲルのままでは水分を含んでいるので腐敗しやすい)、輸送性(ゲルだと水分を含んでいるので壊れやすい、容器にひっついて剥がす時に変形する等)の観点から乾燥材料のほうが扱いやすいといえる。
 本発明において、乾燥状態のコラーゲン材料は、実際に使用する時にPBS、培養液でゲルに戻して使用することが可能である。本発明において、乾燥状態野コラーゲン材料は、乾燥させることにより、ゲルの水分が抜けて(90%以上が水。)、コラーゲン繊維組織が緻密になり、再度PBS、培養液でゲルに戻しても、元の体積よりも小さく、結果として組織の緻密さが残され、強度において、そして配向性において、製作時のゲルより優れることが多いといえる。
 このように本発明においては、特徴として、乾燥状態でコラーゲン材料を提供することも可能である一方、PBS、培養液でゲルに戻してから提供することも可能である。
 また、本発明のコラーゲン材料の好ましい実施態様において、前記材料が、酸素を含有することを特徴とする。コラーゲン材料において、酸素を含有する利点は以下の通りである。すなわち、コラーゲン材料において、酸素を含有していると、(a) コラーゲンマテリアル内部に細胞が成長した場合に、細胞への空気(酸素)の供給源となること、また、(b) コラーゲンマテリアル内部に細胞が成長するための、空間を提供すること、等の利点が考えられる。
 酸素を含有とは、バブルを含有という表現でもよいのであるが、概ね以下のような態様が考えられる。すなわち、酸素を含有するとは、形態はバブル(気泡)ということができ、その成分としては、(1)空気(酸素、窒素、二酸化炭素を含むいわゆるごく一般的な空気)を含有する場合、(2)空気の中でも低濃度、高濃度の酸素を含む場合(酸素濃度の増減によって、他の成分である窒素、二酸化炭素が変動する場合をも含む。)、(3)文字通り酸素のみを含む場合等、一言で、酸素を含有するといっても、少なくとも上記3つの態様が考えられる。
 コラーゲンゲル断片のままでは、複数のコラーゲンゲル断片が接着ぜず、安定した複雑形状のコラーゲンマテリアルにならず、断片が分離してしまう可能性があるため、敢えて、一旦乾燥するのが一般的使用方法とすることができる。
 乾燥した場合には、コラーゲンは繊維ではあるが、例えばコラーゲンシートは簡単には水を漏らさない性質を有する。そのため、乾燥したマテリアルの内部から、導入したバブルがすべて気体として抜けてしまうことなく、すくなくとも酸素、バブルの一部は、乾燥後であってもコラーゲン材料の内部において閉じ込められたままになっている。
 コラーゲン溶液にバブルを導入して、コラーゲン溶液の体積が100から110に増加したとすれば、バブルの割合である10が残る。しかしながら、コラーゲン材料を乾燥する際に、ある部分は抜けてしまう可能性が考えられる。乾燥させなければ、コラーゲンゲル内にはコラーゲン溶液内に導入されたバブルのほぼ全量が固定されるのであるが、乾燥時にどれほど抜けて、どの程度残るかはケースバイケースということになろう。コラーゲン溶液100としても、コラーゲン濃度が1%であれば、99%は水で、乾燥するとこの99%の水といっしょにバブルがある程度抜けると想定される。
 次に、本発明のコラーゲン材料の製造方法について説明する。本発明のコラーゲン材料の製造方法は、コラーゲンゲル断片を準備する工程と、前記コラーゲンゲル断片を所望の形状に配列させる工程と、所望の形状に配列した前記コラーゲンゲル断片を乾燥させる工程とからなる。乾燥させる工程は通常の自然乾燥でもフリーズドライでも良い。コラーゲンゲル断片については、上述の本発明のコラーゲン材料の説明におけるコラーゲンゲル断片の説明をそのまま参照して、適用することができる。コラーゲンゲル断片を最終製品となるコラーゲン材料の形状等に合わせて、配列させて当該コラーゲンゲル断片を乾燥させることによって、コラーゲンゲル断片同士が結合し、最終的にコラーゲンゲル断片で構成されるコラーゲン材料を得ることができる。なお、コラーゲンゲル断片同士を乾燥、結合した後は、互いの境界は目視では識別が困難である。
 また、好ましい実施態様において、前記コラーゲンゲル断片を乾燥させる工程が、フリーズドライにより乾燥させてもよい。自然乾燥であれば上述のメリットがあるが、逆を言えば、元の体積より小さくなって、細胞がコラーゲン材料内部に成長する空間的余裕がなくなるということも考えられる。フリーズドライによれば、このような不具合を防止することが可能である。すなわち、フリーズドライであれば、コラーゲンゲル断片を整形したのちに、断片どうしを固着させると共に、断片内部、結果として、整形された断片全体の内部がスカスカになった状態を維持することができる。そうすれば、細胞がコラーゲン材料内部に成長することが容易となる。
 また、好ましい実施態様において、さらに、前記コラーゲンゲル断片に配向性を付与する工程を含む。配向性を有するコラーゲンゲル断片を準備する方法は、常法により特に限定されない。例えば、コラーゲンゲル断片に配向性を付与するには、上述の配向性コラーゲンゲル断片の製造方法を適用することができる。すなわち、上述のコラーゲン溶液を用いる方法、磁場を利用する方法、スピンコートする方法等を挙げることができ特に限定されない。
 また、好ましい実施態様において、前記所望の形状が、平面形状及び/又は立体形状であることを特徴とする。具体的には、例えば、所望の形状として、リボン、シート、チューブ、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックを挙げることができる。これらの形状はコラーゲンゲル断片の二次加工、三次加工等により得ることができる場合もある。
 また、本発明のコラーゲン材料の製造方法の好ましい実施態様において、さらに、加圧減圧法、気液せん断法、及び/又は孔を有する膜からの導入法のいずれか1つの方法によって、前記コラーゲンゲル断片にバブルを導入する工程を含むことを特徴とする。ここで、バブルを導入としているが、目的は酸素を導入するためである。すなわち、酸素を含有するコラーゲン材料を得るためである。酸素を含有する利点は、上述の酸素を含有するコラーゲン材料の説明を参照することができる。
 酸素を含有とは、バブルを含有という表現でもよいのであるが、概ね以下のような態様が考えられる。すなわち、酸素を含有するとは、形態はバブル(気泡)ということができ、その成分としては、(1)空気(酸素、窒素、二酸化炭素を含むいわゆるごく一般的な空気)を含有する場合、(2)空気の中でも低濃度、高濃度の酸素を含む場合(酸素濃度の増減によって、他の成分である窒素、二酸化炭素が変動する場合をも含む。)、(3)文字通り酸素のみを含む場合等、一言で、酸素を含有するといっても、少なくとも上記3つの態様が考えられる。
 「細胞成長促進剤」 の添加の場合と同じように、コラーゲンゲル断片に「バブル(前記の空気、酸素等)」が含まれている状態を狙ったものである。さらに具体的には、コラーゲンゲル断片を作成する段階で、バブルを充填することが好ましく、その方法としては、以下の例を挙げることができる。
 例えばコラーゲン溶液が入った蓋付の容器に空気をある割合導入して、蓋をしてから機械的に振動を加えて、バブルが含まれたコラーゲン溶液をゲル化する。単純に振動を加えて空気をコラーゲン溶液に混入させるだけでは、十分に小さなバブルにならない可能性があり、また実際はいわゆるナノバブルのような小さなバブルを含めたい場合には、以下の方法も使用可能である。
 例えば、空気をコラーゲン溶液に加えてから、超音波で加振するなどすれば、手で振るとか、機械的に振るよりは細かなバブルを含めることができる。
 また、本発明の好ましい態様において、加圧減圧法、気液せん断法、及び/又は孔を有する膜からの導入法のいずれか1つの方法によって、前記コラーゲンゲル断片にバブルを導入する工程を含むが、まず、マイクロバブルを導入した場合について説明する。マイクロバブルを導入した場合には、加圧減圧法や、気液せん断法を用いてバブルをコラーゲン材料に導入することができる。まず、加圧減圧法について説明すると、加圧減圧法とは、高圧下で気体を大量に溶解させ、減圧により再気泡化する方法である。また、気液せん断法とは、渦流(毎秒400~600回転)を作って、この中に気体を巻き込み、ファン等により切断・粉砕させ発生させる方法である。これらの方法を本発明に適用することができる。
 また、マイクロバブルより小さなサイズのナノバブルをコラーゲン材料に導入したい場合には、孔を有する膜からの導入法を用いることができる。この方法は、ガスを加圧して、ナノレベルの無数の穴が開いた膜から放出することによってナノバブルを生成する技術である。膜としてシラスポーラスガラス(SPG)膜が利用されている。これら常法により所望により、バブル、マイクロバブル、ナノバブル等をコラーゲン材料に導入することができる。
 以上簡単に製造工程をまとめると以下のようになる。すなわち、準備したストリング形状の配向性コラーゲンゲルを、希望する形状に配列する。配列は面形状であっても、積層させることにより立体形状であってもよい。また面形状、立体形状内にあって、ストリング形状の方向が配向性の方向となるため、直線的配向性が必要な場合はストリング形状の配向性コラーゲンゲルを直線的に配列し、曲線的配向性が必要な場合はストリング形状の配向性コラーゲンゲルを曲線的に配列すれば良い。
 ストリング形状の配向性コラーゲンゲルを乾燥させることにより、コラーゲンゲル間が固定される。このようにして、本発明のコラーゲン材料は、上記本発明のコラーゲン材料の製造方法により得られることが可能である。すなわち、ストリング形状の配向性コラーゲンゲルを用いて、リボン、シート、チューブ、ブロック形状等の平面形状、立体形状に配列し、その後乾燥させることにより得られる、形状と配向性の方向を自由に設計できる配向性コラーゲン材料を得ることができる。
 本発明の製造方法によれば、ストリング形状のコラーゲンゲルに配向性がない場合であっても、リボン、シート、チューブ、ブロック形状等の平面形状、立体形状に配列し、その後乾燥させることにより、形状を自由に設計できるコラーゲン材料をも得ることができる。
 ここで、本発明の実施例を説明するが、本発明は、下記の実施例に限定して解釈されるものではない。また、本発明の要旨を逸脱することなく、適宜変更することが可能であることは言うまでもない。
 本発明の製造方法においてはまず、ミリメーターオーダー以上の配向性コラーゲン(基板)としてのコラーゲンゲルを準備した。コラーゲンゲルは濃度9.3mg/mlのラット尾由来I型コラーゲン溶液(BD社)を、内径0.38mmのノズルを介して38℃、pH7.4の燐酸緩衝生理食塩水(PBS)が入った皿容器に押し出しながら、ノズルをスライドすることにより、直径1mm程度、長さ20mm程度の糸状のコラーゲンゲルを得た。
 得られたコラーゲンゲルの配向性については、ラマン分光顕微鏡(フォトンデザイン社)により解析した。その際、連続発振アルゴンイオンレーザー Stabilite 2017(スペクトラフィジックス社)により励起波長を514.5nm とし、分光器はHR-320(Jovin Yvon社)、検出器はLN/CCD-1100-PB/UV AR/1 (Roper scientific社)を用いた。コラーゲン走行方向に対してレーザー光の偏光方向が平行方向と垂直方向についてamide I 及びmide IIIの強度で評価した結果が図5である。amide Iのピークはコラーゲン繊維に垂直に位置するC=O結合の振動によるもので、amide IIIのピークはコラーゲン繊維に平行と垂直に位置するC-N結合の振動によるものである。図5より、コラーゲン走行方向に対してレーザー光の偏光方向が平行方向のスペクトルは、1450cm-1付近のCH3変角振動によるピーク強度と比較すると、amideI(1670 cm-1)ピーク強度は垂直方向の方が平行方向よりも高かった。また、コラーゲン走行方向に対してレーザー光の偏光方向が垂直方向のスペクトルには、コラーゲン繊維に垂直に位置するC-N結合の振動のピークがラマンシフト1270-1300cm-1付近に現れた。即ち、コラーゲンゲル長軸方向にコラーゲン繊維が配向していることがわかった。
 次に、よりサイズが大きいコラーゲン材料を得ることを試みた。まず、ストリング形状の配向性コラーゲンゲルを準備した。コラーゲンゲルは濃度9.3mg/mlのラット尾由来I型コラーゲン溶液(BD社)を、内径0.38mmのノズルを介して38℃度、pH7.4の燐酸緩衝生理食塩水(PBS)が入った皿容器に押し出しながら、ノズルをスライドすることにより、直径1mm程度、長さ200mm程度のストリング形状のコラーゲンゲルを得た。図1にPBS中で作製された直後のストリング形状の配向性コラーゲンゲルの写真を示す。
 作製したストリング形状の配向性コラーゲンゲルを、図2のように平面上に配列させ、その後乾燥させることによってシート形状の乾燥配向性コラーゲン材料を得た。
 前述のストリング形状の配向性コラーゲンゲルを、平面上にシート形状に配列する。その後、ストリング形状の配向性コラーゲンゲルの方向を第1層の配向性コラーゲンゲルの方向に対して垂直にして第2層を配列した(図3(a))。その後、乾燥させた試料が図3(b)、乾燥後に長方形にカットしたものが図3(c)である。このようにシート形状の配向性コラーゲンシートは単層のみならず、複数層とすることが可能で、さらに各層の配向性の方向を自由に設計することが可能である。
 前述のストリング形状の配向性コラーゲンゲルを、平面上にシート形状とした後に、乾燥させた。その後、得られたシートを心棒に巻きつけ、心棒を取り除いた後のチューブ形状の乾燥配向性コラーゲン材料を得た(図4)。シート形状のコラーゲン材料の配向性の方向はストリング形状の配向性コラーゲンの走行方向に一致するため、チューブ形状のコラーゲン材料の配向性の方向は配向性をもったシートを心棒に対して、どの方向に巻きつけるかによって自由に設計することが可能である。即ち、チューブ軸方向にもチューブ円周方向にも、或いはチューブ軸方向から自由な角度に設計することが可能である。
 また心棒の大きさによってチューブ径を自由に設計することが可能であり、さらにチューブ形状のコラーゲン材料を複数層とすることも、その複数層の各層において配向性の方向を自由に設計することが可能である。
 次に、ドーム型のコラーゲン材料の製造を試みた。図6にドーム型コラーゲン材料の写真の一例を示す。寸法はメジャーではなく、スケール表示となっている。図6は、乾燥時の写真であるが、透明性を強調するために、シート試料4枚の内1枚の背景に黒地に白文字Cを配置している。4枚のシートは20層のシートで配向性の向きは1層ごとに垂直に交差している。また、図中黄色の矢印は、配向性の方向を記す。図中、円形に見えるドームの外側に反射している様子が読み取れるが、これは、円形でありつつも、ドーム型になっているため反射光が見えることを示している。即ち、前記の20層だけでも「3次元構造」のコラーゲンシートであるが、さらにそれら20層をフラットなディスクとして仕上げる(乾燥させる)だけではなく、ドーム型にして仕上げることができるということによって、より「複雑な3次元構造」が可能であることが分かる。このドーム型試料は角膜再生を狙ったものであり、眼球の曲率に合わせている。
 このように本発明のコラーゲン材料は、種々多用な形状にも製造可能であり、再生医療に大きな貢献が期待できることが分かる。
 また、シート形状のコラーゲン材料の配向性を別の測定方法により評価した。図7は、配向性シート及び無配向シートの配向性の確認結果を示す図である。すなわち、上述のコラーゲン材料の製造方法に沿って作成した乾燥配向性コラーゲンシートと乾燥無配向シートの配向性を定量評価した図である。シート厚みはどちらも約10ミクロンであった。この図は、平行ニコル回転法を用いた偏光解析装置で試料内の「位相差」を評価するものである。図中のRetardation は位相差で、長方形のシート内の位相差をコンターマップとしている。この位相差が、配向性シートの場合、無配向シートと比較してはるかに高く(図では判別しにくいが、187.8~207.9nmを示す赤っぽい部分まで配向性シートでは数カ所において観察されるのに対して、無配向シートではこの領域においてほとんど観察されない。また、127.5~147.6nmを示す黄色も、配向性シートではかなりの領域(全体の10~20%位の領域)で認められるのに対して、無配向シートでは数カ所のごく微量の領域でしか見られない等。無配向シートにおいては、ほとんどが、0~3.93nmを示す青から深緑の領域となっている。)、またコンターマップの方向が図の左右に伸びているのが分かる。図の左右が配向性コラーゲンの配向方向、即ち、配向性のあるストリングを並べた方向となる。
 本発明によれば、疾患の治療や、再生医歯学分野(特に、整形外科学、脳外科学、歯学)や基礎医学の分野への貢献が期待できる。また、人の体内においてその部位に応じて存在する配向性を有したコラーゲン材料を自由に設計することができ、再生医療分野や基礎医学の分野への貢献が期待できる。

Claims (19)

  1.  コラーゲンゲル断片から構成されるコラーゲン材料。
  2.  前記コラーゲンゲル断片が、配向性を有することを特徴とする請求項1記載の材料。
  3.  前記コラーゲンゲル断片が、無配向であることを特徴とする請求項1記載の材料。
  4.  前記コラーゲンゲル断片が、配向性を有するコラーゲンゲル断片及び無配向のコラーゲンゲル断片からなる請求項1記載の材料。
  5.  前記コラーゲンゲル断片の形状が、ストリング、リボン、シート、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックからなる群から選択される少なくとも1種である請求項1~4項のいずれか1項に記載の材料。
  6.  前記配向性が、一軸配向、らせん配向、二軸配向、二次元配向、三軸配向又は三次元配向であることを特徴とする請求項2、4又は5項のいずれか1項に記載の材料。
  7.  前記コラーゲンゲル断片の一部又は全部が、金属、セラミックス、高分子材料、又は生体材料からなる基板にコートされている請求項1~6項のいずれか1項に記載の材料。
  8.  前記コラーゲンゲル断片が、細胞成長促進剤を含むことを特徴とする請求項1~7項のいずれか1項に記載の材料。
  9.  前記細胞成長促進剤が、上皮成長因子(Epidermal growth factor:EGF)、インスリン様成長因子(Insulin-like growth factor:IGF)、トランスフォーミング成長因子(Transforming growth factor:TGF)、神経成長因子(Nerve growth factor:NGF)、脳由来神経栄養因子(Brain-derived neurotrophic factor:BDNF)、血管内皮細胞増殖因子(Vesicular endothelial growth factor:VEGF)、顆粒球コロニー刺激因子(Granulocyte-colony stimulating factor:G-CSF)、顆粒球マクロファージコロニー刺激因子(Granulocyte-macrophage-colony stimulating factor:GM-CSF)、血小板由来成長因子(Platelet-derived growth factor:PDGF)、エリスロポエチン(Erythropoietin:EPO)、トロンボポエチン(Thrombopoietin:TPO)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor:bFGFまたはFGF2)、肝細胞増殖因子(Hepatocyte growth factor:HGF)である請求項8記載の材料。
  10.  前記材料の形状が、リボン、シート、チューブ、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックである請求項1~9項のいずれか1項に記載の材料。
  11.  前記材料が、正常な生体組織の各部位の配向性と略等しくなるように設計されている請求項1~10項のいずれか1項に記載の材料。
  12.  前記材料が、酸素を含有する請求項1~11記載のいずれか1項に記載の材料。
  13.  コラーゲンゲル断片を準備する工程と、前記コラーゲンゲル断片を所望の形状に配列させる工程と、所望の形状に配列した前記コラーゲンゲル断片を乾燥させる工程とからなることを特徴とするコラーゲン材料の製造方法。
  14.  さらに、前記コラーゲンゲル断片に配向性を付与する工程を含む請求項13記載の方法。
  15.  前記所望の形状が、平面形状及び/又は立体形状である請求項13又は14項に記載の方法。
  16.  前記所望の形状が、リボン、シート、チューブ、スポンジ、グレイン(粒)、ロッド、リング、スパイラル、スプリング(バネ)、ディスク、ドーム又はブロックである請求項13又は14項に記載の方法。
  17.  前記コラーゲンゲル断片を乾燥させる工程が、フリーズドライにより乾燥させることを特徴とする請求項13~16項のいずれか1項に記載の方法。
  18.  さらに、加圧減圧法、気液せん断法、及び/又は孔を有する膜からの導入法のいずれか1つの方法によって、前記コラーゲンゲル断片にバブルを導入する工程を含むことを特徴とする請求項13~17項のいずれか1項に記載の方法。
  19.  請求項13~18項のいずれか1項に記載の方法により得られたコラーゲン材料。
PCT/JP2012/001098 2011-02-21 2012-02-20 コラーゲン材料、及びコラーゲン材料の製造方法 WO2012114707A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280009582.9A CN103384536B (zh) 2011-02-21 2012-02-20 胶原材料及胶原材料的制造方法
EA201300941A EA027718B1 (ru) 2011-02-21 2012-02-20 Коллагеновый материал и способ получения коллагенового материала
JP2013500880A JP6031435B2 (ja) 2011-02-21 2012-02-20 コラーゲン材料、及びコラーゲン材料の製造方法
US14/000,397 US10653785B2 (en) 2011-02-21 2012-02-20 Collagen material and method for producing collagen material
EP12749411.0A EP2679252B1 (en) 2011-02-21 2012-02-20 Collagen material and method for producing collagen material
US16/582,256 US20200069804A1 (en) 2011-02-21 2019-09-25 Collagen material and method for producing collagen material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035239 2011-02-21
JP2011035239 2011-02-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/000,397 A-371-Of-International US10653785B2 (en) 2011-02-21 2012-02-20 Collagen material and method for producing collagen material
US16/582,256 Continuation US20200069804A1 (en) 2011-02-21 2019-09-25 Collagen material and method for producing collagen material

Publications (1)

Publication Number Publication Date
WO2012114707A1 true WO2012114707A1 (ja) 2012-08-30

Family

ID=46720501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001098 WO2012114707A1 (ja) 2011-02-21 2012-02-20 コラーゲン材料、及びコラーゲン材料の製造方法

Country Status (6)

Country Link
US (2) US10653785B2 (ja)
EP (1) EP2679252B1 (ja)
JP (2) JP6031435B2 (ja)
CN (1) CN103384536B (ja)
EA (1) EA027718B1 (ja)
WO (1) WO2012114707A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077411A (ja) * 2014-10-14 2016-05-16 地方独立行政法人東京都立産業技術研究センター コラーゲンゲルの作製方法及びコラーゲンゲル
JP2017047031A (ja) * 2015-09-03 2017-03-09 多木化学株式会社 透明性シート状コラーゲン成形体
JP2017086066A (ja) * 2015-11-05 2017-05-25 多木化学株式会社 線状コラーゲン架橋多孔体
US9737590B2 (en) 2013-07-31 2017-08-22 Vivex Biomedical, Inc. Self-assembly of collagen fibers from dermis, fascia and tendon for tissue augmentation and coverage of wounds and burns
JP2017531496A (ja) * 2014-10-10 2017-10-26 オーソセル・リミテッド コラーゲン構築物、およびコラーゲン構築物を生成する方法
JP2018521084A (ja) * 2015-07-24 2018-08-02 フィブラリン コーポレイションFibralign Corp. 核酸ベースの治療法の標的送達の組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561390A (zh) * 2014-10-17 2016-05-11 中国科学院遗传与发育生物学研究所 一种引导外周神经再生的功能生物材料及其制备方法
CN104383599A (zh) * 2014-11-05 2015-03-04 天津市赛瑞生物技术有限公司 一种胶原基眼角膜支架及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319068A (ja) * 1998-05-12 1999-11-24 Menicon Co Ltd 人工皮膚用基材およびその製法
JP2006280222A (ja) 2005-03-31 2006-10-19 Hitachi Metals Ltd コラーゲンおよび細胞等の分子配向用磁気回路およびそれを用いた装置
WO2009084507A1 (ja) * 2007-12-28 2009-07-09 Osaka University 積層コラーゲンゲルの作製方法及び積層コラーゲンゲル
JP2010504122A (ja) * 2006-09-20 2010-02-12 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) 生体高分子繊維を含んでなる合成多層構造
JP2010148691A (ja) 2008-12-25 2010-07-08 Osaka Univ 積層コラーゲンゲルの製造方法、配向方法およびそれらの方法により製造された積層コラーゲンゲル
JP2010167274A (ja) * 2008-12-26 2010-08-05 Hoya Corp 吸収置換型人工骨及びその製造方法
WO2010095427A1 (ja) * 2009-02-17 2010-08-26 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5532217A (en) 1992-04-24 1996-07-02 Silver; Frederick H. Process for the mineralization of collagen fibers, product produced thereby and use thereof to repair bone
JP3408870B2 (ja) * 1994-10-07 2003-05-19 ニッピコラーゲン工業株式会社 卵蛋白を含有するコラーゲンおよびその製法
JP2869528B2 (ja) 1996-10-28 1999-03-10 工業技術院長 コラーゲン繊維−リン酸カルシウム化合物複合材料及びその製造法
JP3463596B2 (ja) 1999-03-29 2003-11-05 ニプロ株式会社 縫合可能な癒着防止膜
US7615373B2 (en) * 1999-02-25 2009-11-10 Virginia Commonwealth University Intellectual Property Foundation Electroprocessed collagen and tissue engineering
US6387414B1 (en) 1999-08-05 2002-05-14 Nof Corporation Method for preparing hydroxyapatite composite and biocompatible material
JP4515553B2 (ja) 1999-05-11 2010-08-04 日油株式会社 ハイドロキシアパタイト複合体の製造方法、その複合体及び生体適合性材料
DE19956503A1 (de) 1999-11-24 2001-06-21 Universitaetsklinikum Freiburg Spritzbares Knochenersatzmaterial
JP3966045B2 (ja) 2002-04-03 2007-08-29 ニプロ株式会社 コラーゲン不織布、その製造方法、その処理方法および装置
JP2004041320A (ja) 2002-07-09 2004-02-12 Aruze Corp 遊技機
CN100372579C (zh) 2002-11-06 2008-03-05 独立行政法人物质·材料研究机构 含有自体组织化磷灰石-胶原复合体的交联磷灰石-胶原多孔体及其制备方法
JP4426532B2 (ja) 2003-10-15 2010-03-03 独立行政法人産業技術総合研究所 転写因子を利用した骨・軟骨再生用インプラント
JP4522124B2 (ja) 2004-03-30 2010-08-11 ニプロ株式会社 歯周組織再生用材料
CN101005865A (zh) * 2004-08-24 2007-07-25 郡是株式会社 胶原海绵的制造方法、人造皮肤的制造方法、人造皮肤及细胞组织培养基质
US20090028921A1 (en) 2007-06-18 2009-01-29 New Jersey Institute Of Technology Electrospun Ceramic-Polymer Composite As A Scaffold For Tissue Repair
JP5320726B2 (ja) 2007-11-07 2013-10-23 ニプロ株式会社 コラーゲン繊維束の製造方法
CN101554493B (zh) 2008-07-31 2013-01-23 华南理工大学 颗粒定向排列的纳米羟基磷灰石/胶原支架的制备方法
AU2009282095B2 (en) * 2008-08-11 2015-11-26 Fibralign Corp. Biocomposites and methods of making the same
WO2010101639A1 (en) * 2009-03-04 2010-09-10 The Board Of Trustees Of The Leland Stanford Junior University Oriented collagen gel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319068A (ja) * 1998-05-12 1999-11-24 Menicon Co Ltd 人工皮膚用基材およびその製法
JP2006280222A (ja) 2005-03-31 2006-10-19 Hitachi Metals Ltd コラーゲンおよび細胞等の分子配向用磁気回路およびそれを用いた装置
JP2010504122A (ja) * 2006-09-20 2010-02-12 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) 生体高分子繊維を含んでなる合成多層構造
WO2009084507A1 (ja) * 2007-12-28 2009-07-09 Osaka University 積層コラーゲンゲルの作製方法及び積層コラーゲンゲル
JP2010148691A (ja) 2008-12-25 2010-07-08 Osaka Univ 積層コラーゲンゲルの製造方法、配向方法およびそれらの方法により製造された積層コラーゲンゲル
JP2010167274A (ja) * 2008-12-26 2010-08-05 Hoya Corp 吸収置換型人工骨及びその製造方法
WO2010095427A1 (ja) * 2009-02-17 2010-08-26 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHIZURU HONGO ET AL.: "Bunshi Haiko o Seigyo shita Sekisoka Collagen Gel no Sosei to Kakumaku Jisshitsu Saisei Iryo eno Oyo", JAPANESE SOCIETY FOR BIOMATERIALS SYMPOSIUM YOKOSHU, vol. 2008, 2008, pages 139, XP008170758 *
CHIZURU HONGO ET AL.: "Bunshi Haiko o Seigyo shita Sekisoka Collagen Gel no Sosei", THE SOCIETY OF POLYMER SCIENCE JAPAN IYO KOBUNSHI SYMPOSIUM KOEN YOSHISHU, vol. 37, 2008, pages 65 - 66, XP008170757 *
HONGO C. ET AL.: "Development of a Collagen Hydrogel with High Mechanical Strength by a Simple Orientation Method for Triple-helix.", CHEMISTRY LETTERS, vol. 37, no. 12, 2008, pages 1254 - 1255, XP055120967 *
MASATO KUKISAKI ET AL.: "Nano Bubble no Seisei to Kihokei no Seigyo", MIYAZAKI PREFECTURE INDUSTRIAL TECHNOLOGY CENTER, MIYAZAKI PREFECTURE FOODS DEVELOPMENT CENTER KENKYU HOKOKU, vol. 48, 2004, pages 13 - 16, XP008170752 *
MITSURU AKASHI: "Kakumaku Jisshitsu Saisei o Mokuteki to shita Haiko Sekisogata Collagen Gel no Sosei", KAKUMAKU ZENSO NO SAISEI IRYO GIJUTSU NO KAIHATSU OYOBI RINSHO OYO NI KANSURU KENKYU HEISEI 19 NENDO SOKATSU -BUNTAN KENKYU HOKOKUSHO, 2008, pages 9 - 12, XP008170754 *
RAZAL J. M. ET AL.: "Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers.", ADVANCED FUNCTIONAL MATERIALS, vol. 17, no. 15, 2007, pages 2918 - 2924, XP001507273 *
See also references of EP2679252A4
TORBET J. ET AL.: "Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction.", BIOMATERIALS, vol. 28, no. 29, 2007, pages 4268 - 4276, XP022192635 *
YUJI TANAKA ET AL.: "Kakumaku Saisei Iryo ni Muketa Bunshi Haiko o Seigyo shita Sekisogata Collagen Gel no Kaihatsu to Yukosei Hyoka", JAPANESE SOCIETY FOR BIOMATERIALS SYMPOSIUM YOKOSHU, vol. 2008, 2008, pages 138, XP008170761 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9737590B2 (en) 2013-07-31 2017-08-22 Vivex Biomedical, Inc. Self-assembly of collagen fibers from dermis, fascia and tendon for tissue augmentation and coverage of wounds and burns
JP2017531496A (ja) * 2014-10-10 2017-10-26 オーソセル・リミテッド コラーゲン構築物、およびコラーゲン構築物を生成する方法
JP2019177154A (ja) * 2014-10-10 2019-10-17 オーソセル・リミテッド コラーゲン構築物、およびコラーゲン構築物を生成する方法
CN113209379A (zh) * 2014-10-10 2021-08-06 奥托细胞有限公司 胶原构建物及用于产生所述胶原构建物的方法
JP7034983B2 (ja) 2014-10-10 2022-03-14 オーソセル・リミテッド コラーゲン構築物、およびコラーゲン構築物を生成する方法
CN113209379B (zh) * 2014-10-10 2022-10-14 奥托细胞有限公司 胶原构建物及用于产生所述胶原构建物的方法
JP2016077411A (ja) * 2014-10-14 2016-05-16 地方独立行政法人東京都立産業技術研究センター コラーゲンゲルの作製方法及びコラーゲンゲル
JP2018521084A (ja) * 2015-07-24 2018-08-02 フィブラリン コーポレイションFibralign Corp. 核酸ベースの治療法の標的送達の組成物
JP2021185153A (ja) * 2015-07-24 2021-12-09 フィブラリン コーポレイションFibralign Corp. 核酸ベースの治療法の標的送達の組成物
JP2017047031A (ja) * 2015-09-03 2017-03-09 多木化学株式会社 透明性シート状コラーゲン成形体
JP2017086066A (ja) * 2015-11-05 2017-05-25 多木化学株式会社 線状コラーゲン架橋多孔体

Also Published As

Publication number Publication date
CN103384536A (zh) 2013-11-06
US20130323199A1 (en) 2013-12-05
EA027718B1 (ru) 2017-08-31
CN103384536B (zh) 2015-11-25
US20200069804A1 (en) 2020-03-05
EP2679252A4 (en) 2015-04-01
EA201300941A1 (ru) 2014-02-28
EP2679252A1 (en) 2014-01-01
EP2679252B1 (en) 2018-12-26
JP2016154866A (ja) 2016-09-01
JPWO2012114707A1 (ja) 2014-07-07
JP6031435B2 (ja) 2016-11-24
US10653785B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP6031435B2 (ja) コラーゲン材料、及びコラーゲン材料の製造方法
Naomi et al. Current insights into collagen type I
JP7188779B2 (ja) 生物医学的応用のための制御可能な自己アニーリング型ミクロゲル粒子
Zhang et al. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery
CN107847633A (zh) 用于增强愈合的双层设备
Akkineni et al. Highly concentrated alginate-gellan gum composites for 3D plotting of complex tissue engineering scaffolds
Chan et al. Additive biomanufacturing with collagen inks
CN106178110B (zh) 冰胶三维结构体、其制备方法及应用
Patil et al. Engineered collagen matrices
Sanz et al. Light cross-linkable marine collagen for coaxial printing of a 3D model of neuromuscular junction formation
Hu et al. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy
Alzanbaki et al. Engineered microgels—Their manufacturing and biomedical applications
Willson et al. Bioprinting au natural: the biologics of bioinks
Sultan et al. Three-dimensional digital light-processing bioprinting using silk fibroin-based bio-ink: Recent advancements in biomedical applications
CN108165517B (zh) 以胶原蛋白膜为基底的生物芯片及其制备方法
WO2012039112A1 (ja) コラーゲン/アパタイト配向性材料、及びコラーゲン/アパタイト配向性材料の製造方法
Katrilaka et al. Freeze-drying process for the fabrication of collagen-based sponges as medical devices in biomedical engineering
CN112940302B (zh) 金属离子介导的胶原蛋白凝胶、制备方法及应用
CN108220223A (zh) 以水凝胶膜为基底的生物芯片及其制备方法
Hachinohe et al. Bone formation on murine cranial bone by injectable cross-linked hyaluronic acid containing nano-hydroxyapatite and bone morphogenetic protein
Madappura et al. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine
Dong et al. Electrospun nanofibrous membranes of recombinant human collagen type III promote cutaneous wound healing
CN114870082B (zh) 一种高强度复合胶原膜及其制备方法和应用
WO2020085018A1 (ja) ハイドロゲル膜及びその使用
RU2751885C1 (ru) Способ синтеза желатиновых наночастиц

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500880

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14000397

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012749411

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201300941

Country of ref document: EA