CN108220223B - 以水凝胶膜为基底的生物芯片及其制备方法 - Google Patents

以水凝胶膜为基底的生物芯片及其制备方法 Download PDF

Info

Publication number
CN108220223B
CN108220223B CN201711492253.5A CN201711492253A CN108220223B CN 108220223 B CN108220223 B CN 108220223B CN 201711492253 A CN201711492253 A CN 201711492253A CN 108220223 B CN108220223 B CN 108220223B
Authority
CN
China
Prior art keywords
mixed solution
hydrogel
photosensitizer
hydrogel film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711492253.5A
Other languages
English (en)
Other versions
CN108220223A (zh
Inventor
马名泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xigu Energy Technology Co ltd
Original Assignee
Shenzhen Xigu Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xigu Energy Technology Co ltd filed Critical Shenzhen Xigu Energy Technology Co ltd
Priority to CN201711492253.5A priority Critical patent/CN108220223B/zh
Publication of CN108220223A publication Critical patent/CN108220223A/zh
Application granted granted Critical
Publication of CN108220223B publication Critical patent/CN108220223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种以水凝胶膜为基底的生物芯片及其制备方法,将一定浓度的纳米水凝胶与一定浓度的光敏剂溶解在水溶液中得到第一混合液,并采用紫外光照射第一混合液使得第一混合液形成膜状,得到水凝胶膜。然后将白蛋白与光敏剂溶解在水溶液得到第二混合液,将第二混合液加入到水凝胶膜上,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白。实验结果表明,上述方法制备的生物芯片,不破坏水凝胶本身的结构,且3D生物蛋白与水凝胶膜的结合力强、能够稳定设置在水凝胶膜上。

Description

以水凝胶膜为基底的生物芯片及其制备方法
技术领域
本发明涉及生物材料领域,特别是涉及一种以水凝胶膜为基底的生物芯片及其制备方法。
背景技术
传统的体外培养干细胞的方式是将干细胞种植在培养皿中,但是这样的环境是单一的,仅仅给细胞提供了一个平铺的二维结构空间。为了能够更贴近人体三维空间效果,一些可降解的聚合物生物材料出现了,比如通过光刻技术,或者电纺技术等等制备一些三维图案(3D图案)给细胞生长,但是这类技术均存在制作工艺复杂,周期长,制作过程有毒性物质的加入,结构单一化随机化的缺点,并且聚合物材料本身并不受细胞青睐。
水凝胶生物材料目前被临床治疗关节软骨得到了广泛的应用和认可,在临床试验中,新兴软骨覆盖率达86%,术后疼痛也大大减轻。水凝胶不仅有利于干细胞移植,也可加速眼睛与神经损伤的修复,同时起到润滑的作用,是干细胞移植的理想介质,可以帮助干细胞在体内存活,修复损伤组织。如果在水凝胶膜上形成三维图案制成生物芯片,能够为对科学研究以及临床试验提供更真实的人体模拟环境。
然而由于水凝胶本身的物理机械性能差,传统的方法无法在水凝胶上形成结合力强、且结构稳定的3D图案。
发明内容
基于此,有必要提供一种能够以水凝胶膜为基底并形成结合力强、且结构稳定的3D图案的生物芯片的制备方法。
此外,还有必要提供一种以水凝胶膜为基底的生物芯片。
一种以水凝胶膜为基底的生物芯片的制备方法,包括如下步骤:
将纳米水凝胶、光敏剂与水混合得到第一混合液,其中,所述第一混合液中所述纳米水凝胶的终浓度为50mg/mL~80mg/mL,所述光敏剂的终浓度为0.01w/v%~0.05w/v%;
采用紫外光照射所述第一混合液使得所述第一混合液形成膜状,得到水凝胶膜;
将白蛋白与光敏剂溶解在水溶液得到第二混合液,其中,所述第二混合液中所述白蛋白的终浓度为150mg/mL~200mg/mL,所述光敏剂的终浓度为0.15w/v%~0.3w/v%;以及
将所述第二混合液加入到所述水凝胶膜上,采用激发光穿过所述水凝胶膜并逐层扫描所述第二混合液使得所述第二混合液固化形成3D生物蛋白,得到所述以水凝胶膜为基底的生物芯片。
在一个实施方式中,所述将纳米水凝胶、光敏剂与水混合得到第一混合液的操作中,所述纳米水凝胶的粒径为100nm~200nm,所述光敏剂为虎红钠盐。
在一个实施方式中,所述采用紫外光照射所述第一混合液使得所述第一混合液形成膜状的操作中,所述紫外光的波长为100nm~400nm,所述紫外光的能量为0.2W~0.4W。
在一个实施方式中,所述水凝胶膜的厚度为100μm~200μm。
在一个实施方式中,所述将白蛋白与光敏剂溶解在水溶液得到第二混合液的操作中,所述白蛋白选自牛血清白蛋白、人血清白蛋白、人重组血清白蛋白、羊血清白蛋白和兔血清白蛋白中的至少一种,所述光敏剂为虎红钠盐。
在一个实施方式中,所述白蛋白上还标记有荧光素,所述荧光素选自FITC和PE中的至少一种。
在一个实施方式中,所述采用激发光穿过所述水凝胶膜并逐层扫描所述第二混合液使得所述第二混合液固化形成3D生物蛋白的操作中,逐层扫描时各层所述扫描截面相互平行,各层所述扫描截面的面积为0.05μm2~1μm2,相邻的两层所述扫描截面的间距为0.1μm~1.5μm。
在一个实施方式中,所述采用激发光穿过所述水凝胶膜并逐层扫描所述第二混合液使得所述第二混合液固化形成3D生物蛋白的操作中,还包括提供氧气环境,使得所述激发光在所述氧气环境中穿过所述水凝胶膜并逐层扫描所述第二混合液,所述氧气环境的氧分压为0.25Kpa~0.35Kpa、氧气浓度为70%~80%。
在一个实施方式中,所述采用激发光穿过所述水凝胶膜并逐层扫描所述第二混合液使得所述第二混合液固化形成3D生物蛋白的操作中,所述激发光的波长为730nm~780nm,所述激发光的能量为10mW~20mW。
一种以水凝胶膜为基底的生物芯片,包括水凝胶膜以及设置在所述水凝胶膜上的3D生物蛋白,所述生物芯片通过如上述任一项所述的方法制备得到。
上述以水凝胶膜为基底的生物芯片的制备方法,将一定浓度的纳米水凝胶与一定浓度的光敏剂溶解在水溶液中得到第一混合液,并采用紫外光照射第一混合液使得第一混合液形成膜状,得到水凝胶膜。然后将白蛋白与光敏剂溶解在水溶液得到第二混合液,将第二混合液加入到水凝胶膜上,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白。实验结果表明,上述方法制备的生物芯片,不破坏水凝胶本身的结构,且3D生物蛋白与水凝胶膜的结合力强、能够稳定设置在水凝胶膜上。相比在玻片上制造微米蛋白材料形成的生物芯片,该以水凝胶膜为基底的生物芯片结合了可植入体内的水凝胶材料,突破了仅仅在实验基础平台上对细胞进行科学研究的局限,能够将以水凝胶膜为基底的生物芯片植入体内,进行动物实验和临床实验。
附图说明
图1为实施例1制备的水凝胶膜的照片;
图2为实施例1制备的以水凝胶膜为基底的生物芯片的扫描电镜图;
图3为实施例1制备的生物芯片上的3D生物蛋白的扫描电镜图;
图4为实施例2中制备以水凝胶膜为基底的生物芯片的示意图;
图5为实施例2制备的生物芯片上的3D生物蛋白的扫描电镜图。
具体实施方式
下面主要结合附图及具体实施例对以水凝胶膜为基底的生物芯片及其制备方法作进一步详细的说明。
需要说明的是,本文中所述的3D生物蛋白是指具有立体结构的蛋白材料,3D生物蛋白的形状可以是任意的,例如圆柱体、长方体过其它不规则的形状。
一实施方式的以水凝胶膜为基底的生物芯片的制备方法,包括如下步骤S110~S140。
S110、将纳米水凝胶、光敏剂与水混合得到第一混合液,其中,第一混合液中纳米水凝胶的终浓度为50mg/mL~80g/mL,光敏剂的终浓度为0.01w/v%~0.05w/v%。
水凝胶是一种重要的功能高分子材料,水凝胶不仅有利于干细胞移植,也可加速眼睛与神经损伤的修复,同时起到润滑的作用。本实施方式的以纳米水凝胶、光敏剂与水混合得到第一混合液制备水凝胶膜,制得的水凝胶膜膜层均匀。
在一个实施方式中,光敏剂为虎红钠盐(RB)。第一混合液中加入一定量的光敏剂,光敏剂与水凝胶在紫外光的照射下能够促进水凝胶形成膜状,提高得到水凝胶膜的韧性,使得水凝胶膜能够经受后续的激光照射,以在水凝胶膜上形成稳定结构的3D生物蛋白。
具体地,第一混合液中纳米水凝胶的终浓度为50mg/mL~80mg/mL,光敏剂的终浓度为0.01w/v%~0.05w/v%。本实施方式的第一混合液中纳米水凝胶与光敏剂的浓度适宜,水凝胶使得制得的水凝胶膜膜层均匀,具有良好的柔韧性。而光敏剂与水凝胶混合,能够进一步提高制备的水凝胶膜的韧性,使得水凝胶膜能够经受后续的激光照射。
具体地,纳米水凝胶的粒径为100nm~200nm,纳米水凝胶粒径小,容易形成均匀的水明胶膜层。
具体地,第一混合液中纳米水凝胶的终浓度为60mg/mL~75mg/mL,光敏剂的终浓度为0.01w/v%~0.05w/v%。
进一步地,第一混合液中水凝胶的终浓度为70mg/mL,光敏剂的终浓度为0.04w/v%。
具体地,w/v%表示质量体积比。例如,第一混合液中光敏剂的终浓度为0.04w/v%,表示光敏剂在第一混合液中的终浓度为0.4g/L。
S120、采用紫外光照射S110中制备的第一混合液使得第一混合液形成膜状,得到水凝胶膜。
光敏剂与水凝胶的混合溶液在紫外光的照射下,使得水凝胶形成膜状,得到韧性较好的水凝胶膜的,使得水凝胶膜能够经受后续的激光照射,以在水凝胶膜上形成稳定结构的3D生物蛋白。
在一个实施方式中,采用紫外光照射第一混合液使得第一混合液形成膜状的操作中,紫外光的波长为100nm~400nm,紫外光的能量为0.2W~0.4W。如果紫外光强度过高,容易破坏水凝胶的内部结构,如果紫外光强度过低,无法形成膜状的水凝胶膜。通过测试不同的能量值,找到本实施方式优化的方案。
具体地,紫外光的波长为250nm~350nm,紫外光的能量为0.25W~0.35W。
进一步地,紫外光的波长为300nm,紫外光的能量为0.3W。
在一个实施方式中,将第一混合液涂覆在玻片上或者装载在器皿中,然后用紫外光照射成膜。
在一个实施方式中,水凝胶膜的厚度为100μm~200μm。水凝胶膜的厚度薄,可植入体内,进行动物实验和临床实验。
S130、将白蛋白与光敏剂溶解在水溶液得到第二混合液,其中,第二混合液中白蛋白的终浓度为150mg/mL~200mg/mL,光敏剂的终浓度为0.15w/v%~0.3w/v%。
在一个实施方式中,将白蛋白与光敏剂溶解在水溶液得到第二混合液的操作中,白蛋白选自牛血清白蛋白(BSA)、人血清白蛋白(HSA)、人重组血清白蛋白、羊血清白蛋白和兔血清白蛋白中的至少一种。光敏剂为虎红钠盐(RB)。白蛋白与光敏剂在激光条件下固化形成3D生物蛋白。
在一个实施方式中,白蛋白上还标记有荧光素,荧光素选自FITC(异硫氰酸荧光素)和PE(藻红蛋白)中的至少一种。白蛋白上标记有荧光素,能够进一步提高固化形成3D生物蛋白的表面较光滑度以及硬度,以在水凝胶膜上形成更加稳定结构的3D图案。
具体地,第二混合液中白蛋白的终浓度为150mg/mL~200mg/mL,光敏剂的终浓度为0.15w/v%~0.3w/v%。如果白蛋白的浓度过高、光敏剂过低,较难形成3D结构的生物蛋白。而如果白蛋白的浓度过低、光敏剂过高,无法达到3D生物蛋白的生物学性能。本实施方式的第二混合液中白蛋白与光敏剂的浓度适宜,容易在水凝胶膜上制得具有预设结构形状的3D生物蛋白,且能保持3D生物蛋白的生物学功能。
具体地,第二混合液中白蛋白的终浓度为160mg/mL~190mg/mL,光敏剂的终浓度为0.18w/v%~0.25w/v%。
进一步地,第二混合液中白蛋白的终浓度为180mg/mL,光敏剂的终浓度为0.2w/v%。
S140、将S130中制得的第二混合液加入到S120中制得的水凝胶膜上,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白,得到以水凝胶膜为基底的生物芯片。
具体地,第二混合液中含有白蛋白和光敏剂,激发光穿过水凝胶膜并逐层扫描第二混合液,第二混合液在水凝胶膜上固化形成3D生物蛋白。
在一个实施方式中,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白的操作中,逐层扫描时各层扫描截面相互平行,各层扫描截面的面积为0.05μm2~1μm2,相邻的两层扫描截面的间距为0.1μm~1.5μm。
具体地,逐层扫描是指从一个方向到另一个方向,例如将激发光穿过水凝胶膜并从第二混合液的液底开始扫描,然后向上移动一定距离,继续扫描下一层液面,第二混合液逐渐固化形成3D生物蛋白。
在一个实施方式中,采用激发光穿过水凝胶膜并逐层扫描第二混合液的操作中,激发光分为多束激光单元,多束激光单元同时逐层扫描第二混合液,以在第二混合液中同时形成多个3D生物蛋白,简便的实现批量化生产。
具体地,采用激发光逐层扫描第二混合液的操作中,逐层扫描时各层扫描截面相互平行,各层扫描截面的面积为0.05μm2~1μm2,相邻的两层扫描截面的间距为0.1μm~1.5μm。逐层扫描使得形成的3D生物蛋白形成过程较为稳定,制得的3D生物蛋白硬度更强。
本实施方式中,各层扫描截面为矩形。当然在其他实施方式中,各层扫描截面还可以是圆形、三角形等任意的图形。
在一个实施方式中,激发光分为多束激光单元,每束激光单元扫描截面的面积为1μm2,激发光从水凝胶膜中穿过,先扫描第二混合液的液底,然后向上移动0.1μm,继续扫描下一层液面,总共移动距离为5μm,第二混合液逐渐固化形成15×15个长宽高为1μm×1μm×5μm的柱状3D生物蛋白。
在一个实施方式中,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白的操作中,还包括提供氧气环境,使得激发光在氧气环境中穿过水凝胶膜并逐层扫描第二混合液,氧气环境的氧分压为0.25Kpa~0.35Kpa、氧气浓度为70%~80%。第二混合液中的白蛋白、光敏剂以及周围氧气环境中的氧自由基三者发生共价重新结合,形成3D生物蛋白,这种3D生物蛋白内部结构交联更加紧密,从而使得制备的3D生物蛋白表面光滑,硬度高。
在一个实施方式中,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白的操作中,激发光的波长为730nm~780nm述激发光的能量为10mW~20mW。水凝胶膜的厚度薄、具有粘性,很容易在激发光的照射下被破坏结构,失去本身的生物学性能。如果激发光强度过高,容易破坏水凝胶膜的内部结构,如果激发光强度过低,无法激发使得第二混合液固化。通过测试不同的能量值,找到本实施方式优化的方案。
具体地,激发光的波长为740nm~760nm述激发光的能量为13mW~18mW。
进一步地,激发光的波长为750nm述激发光的能量为15mW。
在一个实施方式中,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白的操作中,第二混合液中的白蛋白上还标记有荧光素,在氧气环境的氧分压为0.25Kpa~0.35Kpa、氧气浓度为70%~80%的条件下逐层扫描第二混合液。荧光素标记的白蛋白与光敏剂在激光条件下发生交联反应,光敏剂被特定波长(730nm~780nm)和光能量(10mW~20mW)的激发光激发,光敏剂返回一个发射光,该发射光会进一步激发荧光素标记的白蛋白上的荧光素,使得荧光素标记的白蛋白、光敏剂以及周围氧气环境中的氧自由基三者发生共价重新结合,形成3D生物蛋白,这种3D生物蛋白内部结构交联更加紧密,从而使得制备的3D生物蛋白表面光滑,硬度高。
具体地,第一混合液涂覆在玻片上,然后用紫外光照射成水凝胶膜,将玻片连同水凝胶膜一起置于高氧密封仓中。在水凝胶膜上加入第二混合液,高氧密封仓内的氧分压为0.25Kpa~0.35Kpa、氧气浓度为70%~80%。然后在高氧密封仓中采用激发光从玻片以及水凝胶膜穿过,并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白,高氧密封仓环境中的氧分压的较为稳定,提高制得的3D生物蛋白的光滑性。
在一个实施方式中,采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白的过程中,还包括提供一定的湿度条件,进一步提高制得的3D生物蛋白的光滑性和硬度,具体地,湿度为45%~70%。
一种以水凝胶膜为基底的生物芯片,包括水凝胶膜以及设置在水凝胶膜上的3D生物蛋白,该生物芯片通过上述的方法制备得到。
在一个实施方式中,3D生物蛋白为多个且相互间隔。
具体地,该生物芯片上,3D生物蛋白具有一定的形状,该生物芯片能够用于研究细胞的生长状况或牵引细胞生长形成适合的形状。
该以水凝胶膜为基底的生物芯片结合了可植入体内的水凝胶材料,突破了仅仅在实验基础平台上对细胞进行科学研究的局限,能够将以水凝胶膜为基底的生物芯片植入体内,进行动物实验和临床实验。
一实施方式的上述以水凝胶膜为基底的生物芯片在制备医用功能材料中的应用。医用功能材料例如为眼科医用材料等。
上述以水凝胶膜为基底的生物芯片的制备方法,至少具有如下有益效果:(1)纳米水凝胶与光敏剂按一定浓度比例溶解在水溶液中得到第一混合液,并采用紫外光照射第一混合液使得第一混合液形成膜状。光敏剂与纳米水凝胶混合,提高制备的水凝胶膜的韧性,使得水凝胶膜能够经受后续的激光照射。(2)白蛋白与光敏剂按一定浓度比例溶解在水溶液得到第二混合液,第二混合液加入在水凝胶膜上,并采用激发光穿过水凝胶膜并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白。这种方法形成的3D生物蛋白不破坏水凝胶本身的结构,3D生物蛋白能够稳定设置在水凝胶膜上。(3)溶液状的第二混合液在激发光的照射下直接在水凝胶膜固化形成3D生物蛋白,3D生物蛋白与水凝胶膜结合紧密、结合力强。(4)进一步地,白蛋白上还标记有荧光素,采用荧光素标记白蛋白与光敏剂混合发生交联反应,并在氧分压为0.25Kpa~0.35Kpa、氧气浓度为70%~80%的条件下,用激光逐层照射,激发光激发光敏剂,光敏剂返回一个发射光,该发射光会进一步激发荧光素标记的白蛋白上的荧光素,使得荧光素标记的白蛋白、光敏剂以及周围的氧自由基三者发生共价重新结合,制备得到的3D生物蛋白孔隙小,硬度高,使得3D生物蛋白能够更加稳定的设置在水凝胶膜上。(5)制备过程简单,调节激光的照射路径即可方便的形成不同形状的三维图案,能够批量化的制备以水凝胶膜为基底的生物芯片。(5)相比在玻片上制造微米蛋白材料形成的生物芯片,该以水凝胶膜为基底的生物芯片结合了可植入体内的水凝胶材料,突破了仅仅在实验基础平台上对细胞进行科学研究的局限,能够将以水凝胶膜为基底的生物芯片植入体内,进行动物实验和临床实验。
下面为具体实施例。
未特别说明,以下实施例中所用的材料,胎牛血清(BSA)由life science公司提供,产品号为0332。异硫氰酸荧光素标记的胎牛血清(FITC-BSA)由nanocs公司提供,产品号为BS1-FC-1。光敏剂为虎红钠盐(RB)光敏剂由sigma公司提供,产品号为330000。纳米水凝胶由sigma公司提供,产品号为53747。
实施例1
将纳米水凝胶与RB光敏剂与一定量的水溶液混合得到第一混合液,其中,第一混合液中纳米水凝胶的终浓度为70mg/mL,RB光敏剂的终浓度为0.04w/v%。
将第一混合液加入培养皿中,采用波长为300nm、能量为0.3W的紫外光照射第一混合液10h,使得第一混合液形成膜状。该水凝胶膜如图1所示,厚度为150μm±50μm。
将BSA与RB光敏剂溶解在一定量的水溶液得到第二混合液,其中,第二混合液中BSA的终浓度为180mg/mL,RB光敏剂的终浓度为0.2w/v%。
将制得的水凝胶膜置于玻片上,并将玻片连同水凝胶膜一起置于培养皿中,将1mL的上述第二混合液通过移液枪滴加到水凝胶膜上。采用40×油性物镜,并利用双光子激发器发射激发光,该激发光从水凝胶膜穿过,并逐层扫描第二混合液使得第二混合液固化。设定的激发光的波长为750nm,能量为15mW,每束激光扫描截面的面积为1μm2。通过激光透过水凝胶膜到第二混合液中,由水凝胶膜表面(第二混合液的液底)逐层向上扫描,扫描完一层后向上移动0.1μm,继续扫描下一层液面,总共移动距离为5μm。第二混合液交联固化结合为微米级固体结构,即在水凝胶膜上形成3D生物蛋白。本实施例中一次在水凝胶膜上成型15×15个阵列的长宽高为1μm×1μm×5μm大小的3D柱体生物蛋白。
将水凝胶膜连同膜上的3D生物蛋白从玻片上撕下,得到以水凝胶膜为基底的生物芯片。该生物芯片的在扫描电镜图如图2所示,局部放大图如图3所示。上述方法能够以水凝胶膜为基底,并在水凝胶膜上形成3D生物蛋白。制备得到的生物芯片不破坏水凝胶本身的结构,且3D生物蛋白能够稳定设置在水凝胶膜上。
实施例2
按实施例1的方法制备水凝胶膜。该水凝胶膜的厚度为150μm±50μm。
将荧光素标记的胎牛血清(FITC-BSA)与RB光敏剂溶解在一定量的水溶液得到第二混合液,其中,第二混合液中FITC-BSA的终浓度为180mg/mL,RB光敏剂的终浓度为0.2w/v%。
请参见图4,将制得的水凝胶膜置于玻片上,并将玻片连同水凝胶膜一起置于培养皿中,将培养皿置于高氧密封仓中,设定高氧密闭仓中氧分压为0.3Kpa、氧气浓度为75%、湿度为60%。将1mL的上述第二混合液通过移液枪滴加到水凝胶膜上。采用40×油性物镜,并利用双光子激发器发射激发光,该激发光从水凝胶膜穿过,并逐层扫描第二混合液使得第二混合液固化。设定的激发光的波长为750nm,能量为15mW,每束激光扫描截面的面积为1μm2。通过激光透过水凝胶膜到第二混合液中,由水凝胶膜表面(第二混合液的液底)逐层向上扫描,扫描完一层后向上移动0.1μm,继续扫描下一层液面,总共移动距离为5μm。第二混合液交联固化结合为微米级固体结构,即在水凝胶膜上形成3D生物蛋白。本实施例中一次在水凝胶膜上成型15×15个阵列的长宽高为1μm×1μm×5μm大小的3D柱体生物蛋白。
将水凝胶膜连同膜上的3D生物蛋白从玻片上撕下,得到以水凝胶膜为基底的生物芯片。该生物芯片的3D生物蛋白在扫描电镜图如图5所示。相比实施例1,本实施例的第二混合液中采用异硫氰酸荧光素标记的胎牛血清(FITC-BSA)与RB光敏剂溶解在一定量的水溶液。并且在特定的高氧密封仓环境中采用激发光从玻片以及水凝胶膜穿过,并逐层扫描第二混合液使得第二混合液固化形成3D生物蛋白。本实施例制备的水凝胶膜上的3D生物蛋白孔隙小、表面较光滑。用于细胞培养实验中,3D生物蛋白硬度高,能够很好的模拟骨骼条件并解决细胞分泌的生长因子激素等进入生物蛋白材料本身的问题。
实施例3
将纳米水凝胶与RB光敏剂与一定量的水溶液混合中得到第一混合液,其中,第一混合液中纳米水凝胶的终浓度为80mg/mL,RB光敏剂的终浓度为0.05w/v%。
将第一混合液加入培养皿中,采用波长为400nm、能量为0.4W的紫外光照射第一混合液8h,使得第一混合液形成膜状。该水凝胶膜的厚度为150μm±50μm。
将BSA与RB光敏剂溶解在一定量的水溶液得到第二混合液,其中,第二混合液中BSA的终浓度为150mg/mL,RB光敏剂的终浓度为0.15w/v%。
将制得的水凝胶膜置于玻片上,并将玻片连同水凝胶膜一起置于培养皿中,将1mL的上述第二混合液通过移液枪滴加到水凝胶膜上。采用40×油性物镜,并利用双光子激发器发射激发光,该激发光从水凝胶膜穿过,并逐层扫描第二混合液使得第二混合液固化。设定的激发光的波长为730nm,能量为10mW,每束激光扫描截面的面积为1μm2。通过激光透过水凝胶膜到第二混合液中,由水凝胶膜表面(第二混合液的液底)逐层向上扫描,扫描完一层后向上移动0.1μm,继续扫描下一层液面,总共移动距离为5μm。第二混合液交联固化结合为微米级固体结构,即在水凝胶膜上形成3D生物蛋白。本实施例中一次在水凝胶膜上成型21×21个阵列的长宽高为1μm×1μm×5μm大小的3D柱体生物蛋白。
将水凝胶膜连同膜上的3D生物蛋白从玻片上撕下,得到以水凝胶膜为基底的生物芯片。上述方法能够以水凝胶膜为基底,并在水凝胶膜上形成3D生物蛋白。制备得到的生物芯片不破坏水凝胶本身的结构,且3D生物蛋白能够稳定设置在水凝胶膜上。
实施例4
将纳米水凝胶与RB光敏剂与在一定量的水溶液混合得到第一混合液,其中,第一混合液中纳米水凝胶的终浓度为50mg/mL,RB光敏剂的终浓度为0.01w/v%。
将第一混合液加入培养皿中,采用波长为100nm、能量为0.2W的紫外光照射第一混合液12h,使得第一混合液形成膜状。该水凝胶膜的厚度为150μm±50μm。
将BSA与RB光敏剂溶解在一定量的水溶液得到第二混合液,其中,第二混合液中BSA的终浓度为200mg/mL,RB光敏剂的终浓度为0.3w/v%。
将制得的水凝胶膜置于玻片上,并将玻片连同水凝胶膜一起置于培养皿中,将500μL的上述第二混合液通过移液枪滴加到水凝胶膜上。采用40×油性物镜,并利用双光子激发器发射激发光,该激发光从水凝胶膜穿过,并逐层扫描第二混合液使得第二混合液固化。设定的激发光的波长为780nm,能量为20mW,每束激光扫描截面的面积为1μm2。通过激光透过水凝胶膜到第二混合液中,由水凝胶膜表面(第二混合液的液底)逐层向上扫描,扫描完一层后向上移动0.1μm,继续扫描下一层液面,总共移动距离为5μm。第二混合液交联固化结合为微米级固体结构,即在水凝胶膜上形成3D生物蛋白。本实施例中一次在水凝胶膜上成型15×15个阵列的长宽高为1μm×1μm×5μm大小的3D柱体生物蛋白。
将水凝胶膜连同膜上的3D生物蛋白从玻片上撕下,得到以水凝胶膜为基底的生物芯片。上述方法能够以水凝胶膜为基底,并在水凝胶膜上形成3D生物蛋白。制备得到的生物芯片不破坏水凝胶本身的结构,且3D生物蛋白能够稳定设置在水凝胶膜上。
对比例1
将纳米水凝胶与水溶液混合,纳米水凝胶的终浓度为70mg/mL,干燥使得水凝胶形成膜状。按实施例1中的方法制备的第二溶液滴加到该膜状材料中,并按实施例1的方法采用激发光照射该膜状材料,发现该膜状材料容易被激发光穿洞,不能能够经受的激光照射,因此无法在膜上形成固体的3D生物蛋白。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种以水凝胶膜为基底的生物芯片的制备方法,其特征在于,包括如下步骤:
将纳米水凝胶、光敏剂与水混合得到第一混合液,其中,所述第一混合液中所述纳米水凝胶的终浓度为50mg/mL~80mg/mL,所述光敏剂为虎红钠盐,所述光敏剂的终浓度为0.01w/v%~0.05w/v%;
采用紫外光照射所述第一混合液使得所述第一混合液形成膜状,得到水凝胶膜,其中,所述紫外光的波长为100nm~400nm,所述紫外光的能量为0.2W~0.4W;
将白蛋白与光敏剂溶解在水溶液得到第二混合液,其中,所述第二混合液中所述白蛋白的终浓度为150mg/mL~200mg/mL,所述光敏剂为虎红钠盐,所述光敏剂的终浓度为0.15w/v%~0.3w/v%,所述白蛋白上还标记有荧光素,所述荧光素选自FITC和PE中的至少一种;以及
将所述第二混合液加入到所述水凝胶膜上,在氧分压为0.25Kpa~0.35Kpa、氧气浓度为70%~80%的氧气环境下,采用激发光穿过所述水凝胶膜并逐层扫描所述第二混合液使得所述第二混合液固化形成3D生物蛋白,得到所述以水凝胶膜为基底的生物芯片,其中,所述激发光的波长为730nm~780nm,所述激发光的能量为10mW~20mW。
2.根据权利要求1所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,所述将纳米水凝胶、光敏剂与水混合得到第一混合液的操作中,所述纳米水凝胶的粒径为100nm~200nm,所述光敏剂为虎红钠盐。
3.根据权利要求1所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,所述紫外光的波长为250nm~350nm,所述紫外光的能量为0.25W~0.35W。
4.根据权利要求1所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,所述水凝胶膜的厚度为100μm~200μm。
5.根据权利要求1所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,所述将白蛋白与光敏剂溶解在水溶液得到第二混合液的操作中,所述白蛋白选自牛血清白蛋白、人血清白蛋白、人重组血清白蛋白、羊血清白蛋白和兔血清白蛋白中的至少一种。
6.根据权利要求1或5所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,所述第二混合液中的白蛋白的终浓度为160mg/mL~190mg/mL,光敏剂的终浓度为0.18w/v%~0.25w/v%。
7.根据权利要求1所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,逐层扫描时各层扫描截面相互平行,各层扫描截面的面积为0.05μm2~1μm2,相邻的两层所述扫描截面的间距为0.1μm~1.5μm。
8.根据权利要求1所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,所述采用激发光穿过所述水凝胶膜并逐层扫描所述第二混合液使得所述第二混合液固化形成3D生物蛋白的操作中在湿度为45%~70%的条件下进行。
9.根据权利要求1所述的以水凝胶膜为基底的生物芯片的制备方法,其特征在于,所述激发光的波长为740nm~760nm,所述激发光的能量为13mW~18mW。
10.一种以水凝胶膜为基底的生物芯片,其特征在于,包括水凝胶膜以及设置在所述水凝胶膜上的3D生物蛋白,所述生物芯片通过如权利要求1~9任一项所述的方法制备得到。
CN201711492253.5A 2017-12-30 2017-12-30 以水凝胶膜为基底的生物芯片及其制备方法 Active CN108220223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711492253.5A CN108220223B (zh) 2017-12-30 2017-12-30 以水凝胶膜为基底的生物芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711492253.5A CN108220223B (zh) 2017-12-30 2017-12-30 以水凝胶膜为基底的生物芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN108220223A CN108220223A (zh) 2018-06-29
CN108220223B true CN108220223B (zh) 2021-07-23

Family

ID=62642391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711492253.5A Active CN108220223B (zh) 2017-12-30 2017-12-30 以水凝胶膜为基底的生物芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN108220223B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595840B (zh) * 2020-05-20 2022-07-05 中国科学院新疆理化技术研究所 一种防试剂渗透纸基阵列的制备方法及其应用
CN113244973B (zh) * 2021-07-15 2021-10-08 成都博奥晶芯生物科技有限公司 凝胶基质点样液及空白点样液、三维凝胶芯片及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952246A (zh) * 2011-08-18 2013-03-06 香港理工大学 角蛋白肽修饰的聚乙二醇水凝胶,其制备方法与应用
EP2752664A1 (en) * 2013-01-07 2014-07-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Label-free method for the detection of analytes
CN106062043A (zh) * 2013-12-10 2016-10-26 莫门蒂夫性能材料股份有限公司 亲水性有机硅组合物
CN107043467A (zh) * 2017-06-02 2017-08-15 东华大学 一种可光交联水凝胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952246A (zh) * 2011-08-18 2013-03-06 香港理工大学 角蛋白肽修饰的聚乙二醇水凝胶,其制备方法与应用
EP2752664A1 (en) * 2013-01-07 2014-07-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Label-free method for the detection of analytes
CN106062043A (zh) * 2013-12-10 2016-10-26 莫门蒂夫性能材料股份有限公司 亲水性有机硅组合物
CN107043467A (zh) * 2017-06-02 2017-08-15 东华大学 一种可光交联水凝胶及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles;Amol A. Pawar et al.;《Sci. Adv.》;20160401;第2卷;第1-7页 *
聚乙二醇水凝胶膜为载体的人角膜上皮细胞原代培养研究;郭译远 等;《眼科》;20161231;第25卷(第6期);第405-408页 *

Also Published As

Publication number Publication date
CN108220223A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
US11458042B2 (en) Bilayered devices for enhanced healing
Zhang et al. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery
US9301925B2 (en) Inkjet printing of tissues and cells
CN105688274B (zh) 一种聚己内酯/明胶电纺复合支架的制备工艺
US20130203146A1 (en) Microfabricated scaffold structures
Liu et al. Generation of nano-pores in silk fibroin films using silk nanoparticles for full-thickness wound healing
US20170281826A1 (en) Biohybrid for the Use Thereof in the Regeneration of Neural Tracts
KR20160115204A (ko) 3차원 프린팅용 조성물, 이의 제조방법, 및 이를 사용한 3차원 구조체의 제조방법
CN108165517B (zh) 以胶原蛋白膜为基底的生物芯片及其制备方法
CN108220223B (zh) 以水凝胶膜为基底的生物芯片及其制备方法
CN104203295A (zh) 用于修饰医疗装置表面形态的工艺
CN103384536B (zh) 胶原材料及胶原材料的制造方法
Pereira et al. Photopolymerizable hydrogels in regenerative medicine and drug delivery
Been et al. Preparation and characterization of a soluble eggshell membrane/agarose composite scaffold with possible applications in cartilage regeneration
Baptista et al. Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for in situ tissue engineering
EP2621714A2 (de) Photovernetzende elastomere für rapid prototyping
CN108159495B (zh) 3d生物蛋白及其制备方法和应用
KR101661725B1 (ko) Pva 코팅된 콜라겐 스캐폴드 및 이의 제조 방법
de Barros et al. Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor‐Releasing Microparticles
El Khoury et al. Research Article 3D Bioprinted Spheroidal Droplets for Engineering the Heterocellular Coupling between Cardiomyocytes and Cardiac Fibroblasts
Leng Microfluidic Approach for the Scalable Formation of 3D Soft Materials with Tailored Biomechanical Properties for Tissue Engineering Applications
Aiassa 3D hydrogel printing techniques for the development of a collagen-based alveoli unit model
KR20240034536A (ko) 적혈구막을 이용한 산소를 전달할 수 있는 골유도성 나노입자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant