WO2012111147A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012111147A1
WO2012111147A1 PCT/JP2011/053530 JP2011053530W WO2012111147A1 WO 2012111147 A1 WO2012111147 A1 WO 2012111147A1 JP 2011053530 W JP2011053530 W JP 2011053530W WO 2012111147 A1 WO2012111147 A1 WO 2012111147A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
torque
internal combustion
motor
combustion engine
Prior art date
Application number
PCT/JP2011/053530
Other languages
English (en)
French (fr)
Inventor
明朗 古石
繁幸 浦野
鈴木 裕介
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/053530 priority Critical patent/WO2012111147A1/ja
Priority to EP11858910.0A priority patent/EP2677143B1/en
Priority to US13/984,540 priority patent/US9163601B2/en
Priority to JP2012557759A priority patent/JP5660143B2/ja
Publication of WO2012111147A1 publication Critical patent/WO2012111147A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/004Generation of the ignition spark

Definitions

  • the present invention relates to a control device for an internal combustion engine, for example, and more particularly to a control device for an internal combustion engine configured to assist starting with a motor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-73838
  • a control device for an internal combustion engine provided with a motor for assisting starting is known.
  • the motor is stopped and the motor assist is released.
  • the motor is operated only during the period until the combustion is stabilized, and the fuel consumption performance and the like are improved.
  • the applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
  • the timing for releasing the motor assist is determined based on the amount of change in the in-cylinder pressure.
  • the motor assist since it is not determined whether or not the motor assist is necessary before starting, there is a problem that even when the motor assist is unnecessary, the motor may be driven uselessly and the operation efficiency is lowered.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to execute motor assist only when necessary when starting the engine, and to drive the motor efficiently. It is an object of the present invention to provide a control device for an internal combustion engine capable of achieving the above.
  • a first invention is a starter motor that is mounted on a direct injection type internal combustion engine that directly injects fuel into a cylinder, and that can assist the start of the internal combustion engine;
  • In-cylinder pressure detecting means for detecting the pressure in the cylinder;
  • Generated torque predicting means for predicting torque generated during combustion based on at least the in-cylinder pressure detected before combustion by the in-cylinder pressure detecting means;
  • Combustion start means for starting the internal combustion engine by combustion in the cylinder when a start request for the internal combustion engine occurs; When the start request occurs, the torque generated by the combustion in the first explosion cylinder is predicted by the generated torque prediction means before the start of combustion, and only when the predicted torque is smaller than a predetermined start request torque, Start assisting means for driving the starter motor; It is characterized by providing.
  • a cylinder when the predicted torque of the first explosion cylinder is smaller than the required start torque, a cylinder whose predicted torque is equal to or greater than the required start torque is detected from the second and subsequent cylinders that reach the combustion stroke. And a start assisting extension means for stopping the starter motor after the starter motor is continuously driven until the expansion stroke of the cylinder.
  • the generated torque predicting means is based on the in-cylinder pressure and in-cylinder volume of the cylinder to be predicted for torque, and the temperature parameter composed of the engine temperature and / or the intake air temperature of the internal combustion engine.
  • the torque generated in each cylinder is predicted.
  • the generated torque predicting means can calculate the predicted torque of the first explosion cylinder before actual combustion. Thereby, at the time of restart, only when the predicted torque is insufficient, the starter motor can be driven to smoothly start the internal combustion engine. Further, when the predicted torque of the first explosion cylinder is sufficient, the self-sustained start can be performed by normal combustion without driving the starter motor. Therefore, it is possible to reduce power consumption of the battery and the like by reducing unnecessary driving of the motor, and to efficiently operate the starter motor while ensuring startability.
  • the starter motor can be continuously driven until the expansion stroke of the cylinder. That is, even when it is predicted that the self-sustained start cannot be completed with the first explosion cylinder, it is possible to detect a self-supportable cylinder that can shift to the self-sustained start after the first explosion cylinder. If the starter motor is driven to the expansion stroke of the self-supporting cylinder, the internal combustion engine can be shifted to a self-starting operation even if the motor is stopped at that time. Therefore, since the drive time of the starter motor can be shortened as much as possible, the power consumption of the motor can be reliably suppressed even during cold start.
  • the generated torque predicting means is based on the in-cylinder pressure and the in-cylinder volume of the cylinder to be predicted for torque and the temperature parameter including the engine temperature and / or the intake air temperature of the internal combustion engine.
  • the torque generated in each cylinder can be predicted.
  • the predicted torque can be accurately corrected based on temperature parameters such as the engine water temperature and the intake air temperature, and a more accurate predicted torque can be obtained.
  • Embodiment 1 of this invention It is a whole block diagram for demonstrating the system configuration
  • FIG. 1 is an overall configuration diagram for explaining a system configuration according to the first embodiment of the present invention.
  • the system of the present embodiment includes an engine 10 that is a direct-injection internal combustion engine, and a combustion chamber 14 is formed in each cylinder of the engine 10 by a piston 12.
  • the piston 12 of each cylinder is connected to the crankshaft 16 of the engine.
  • FIG. 1 illustrates only one cylinder among a plurality of cylinders mounted on the multi-cylinder engine 10.
  • the engine 10 includes an intake passage 18 that sucks intake air into the combustion chamber 14 (cylinder) of each cylinder, and an exhaust passage 20 that discharges exhaust gas of each cylinder.
  • the intake passage 18 is provided with an electronically controlled throttle valve 22 for adjusting the amount of intake air
  • the exhaust passage 20 is provided with a catalyst 24 for purifying exhaust gas.
  • Each cylinder has a fuel injection valve 26 for directly injecting fuel into the cylinder, an ignition plug 28 for igniting an air-fuel mixture in the cylinder, and an intake valve 30 for opening and closing the intake passage 18 with respect to the cylinder.
  • an exhaust valve 32 that opens and closes the exhaust passage 20 with respect to the inside of the cylinder.
  • the system of the present embodiment is applied to, for example, an idle stop vehicle or a hybrid vehicle, and includes an electric starter motor 34 that performs starting assistance (motor assist) of the engine 10.
  • an engine that has been temporarily stopped while stopped (running) may be restarted.
  • the starter motor 34 is configured to assist the start by rotating the crankshaft 16 as necessary.
  • the system according to the present embodiment includes a sensor system including a crank angle sensor 40, an air flow sensor 42, an in-cylinder pressure sensor 44, an intake air temperature sensor 46, a water temperature sensor 48, and the like, and an ECU (Electronic that controls the operating state of the engine 10). Control Unit) 50.
  • the crank angle sensor 40 outputs a signal synchronized with the rotation of the crankshaft 16, and the air flow sensor 42 detects the intake air amount of the engine.
  • the in-cylinder pressure sensor 44 constitutes the in-cylinder pressure detecting means of the present embodiment and individually detects the in-cylinder pressure P of each cylinder, and is provided in each cylinder.
  • the intake air temperature sensor 46 detects the temperature of the intake air (intake air temperature) Ta
  • the water temperature sensor 48 detects the temperature of the engine cooling water (engine water temperature) Tw.
  • the intake air temperature and the engine water temperature are These are temperature parameters used in a generated torque prediction process and a torque determination process described later.
  • the sensor system includes various sensors necessary for controlling the engine 10 and a vehicle on which the engine 10 is mounted. Specifically, an air-fuel ratio sensor that detects an exhaust air-fuel ratio, an accelerator opening sensor that detects an accelerator operation amount (accelerator opening) of a vehicle, and the like. These sensors are connected to the input side of the ECU 50. On the other hand, various actuators including a throttle valve 22, a fuel injection valve 26, a spark plug 28, a starter motor 34, and the like are connected to the output side of the ECU 50.
  • the ECU 50 controls the operation by driving each actuator based on the engine operation information detected by the sensor system. Specifically, the engine speed (engine speed) and the crank angle are detected based on the output of the crank angle sensor 40. Then, the position of the piston 12 of each cylinder is detected based on the crank angle, and a cylinder discrimination process for discriminating a cylinder to be subjected to fuel injection or ignition is executed. Further, the engine load is calculated based on the intake air amount and the engine speed by the air flow sensor, the fuel injection amount is calculated based on the intake air amount, the engine load, etc., and the fuel injection timing and Determine the ignition timing. Then, the fuel injection valve 26 is driven when the fuel injection timing comes, and the spark plug 28 is driven when the ignition timing comes.
  • the motor assist is performed only for a minimum period only when necessary. Specifically, for example, when an idle stop vehicle starts from a stopped state, or when a hybrid vehicle switches from motor travel to engine travel, a start request for the engine is generated, and the engine that has been stopped once is It will be restarted.
  • the fuel injected into the cylinder from the fuel injection valve 26 is combusted to start the engine autonomously (hereinafter, the start by combustion is referred to as a self-sustained start).
  • the start by combustion is referred to as a self-sustained start.
  • the combustion stroke may not come immediately, or sufficient torque for starting may not be generated by combustion. Therefore, when a start request is generated, first, a generated torque prediction process and a torque determination process described below are executed based on the position of the piston 12 and the like, and motor assist is used together based on the determination result. Determine whether or not.
  • the predicted torque T1 of the first explosion cylinder is calculated before actual combustion by the above process, and the calculation result is temperature-corrected based on the engine water temperature Tw and the intake air temperature Ta. Note that a data map and the like necessary for temperature correction are stored in the ECU 50 in advance.
  • a minimum value (starting request torque) Ts1 of a generated torque necessary for performing a self-sustained start without motor assist in the first explosion cylinder is calculated.
  • the required start torque Ts1 is easily obtained by measurement with an actual machine or the like, and is temperature-corrected appropriately based on the engine water temperature Tw and the intake air temperature Ta in substantially the same manner as when the predicted torque T1 is calculated. If the predicted torque T1 of the first explosion cylinder is equal to or greater than the required start torque Ts1, the engine can be started without motor assistance, so the starter motor 34 is not driven and the first explosion cylinder and the subsequent cylinders are not driven. The engine is self-started by combustion.
  • FIG. 2 is an explanatory diagram showing a state in which the start request torque at the time of restart changes with time.
  • the air in the cylinder tends to leak to the outside through, for example, scratches on the cylinder liner, loose piston rings, and the like. This tendency is particularly noticeable in engines that have deteriorated over time. For this reason, when time elapses from when the engine is stopped, the predicted torque T1, which was sufficiently large at the beginning, decreases to less than the required start torque Ts1, and motor assist may be required.
  • the in-cylinder air amount can be calculated based on the in-cylinder pressure P, and the predicted torque T1 of the first explosion cylinder can be calculated before actual combustion.
  • the engine 10 can be smoothly started by driving the starter motor 34 only when the predicted torque T1 is insufficient.
  • the starter motor 34 is not driven and the self-sustained start can be performed by normal combustion. Therefore, it is possible to reduce the wasteful driving of the motor and suppress the power consumption of the battery or the like, and it is possible to efficiently operate the starter motor 34 while ensuring the startability.
  • more accurate predicted torque T1 can be obtained by correcting the temperature of predicted torque T1 based on temperature parameters such as engine water temperature and intake air temperature.
  • FIG. 3 is an explanatory view showing the position and behavior of a piston in a self-supporting cylinder.
  • a self-supporting cylinder if the piston is located before the top dead center, the torque in the normal rotation direction cannot be generated by combustion, but the piston is top dead by the starter motor 34. If it moves to the position after the point, the self-sustained start can be performed by combustion thereafter. For this reason, in the assist extension process, the starter motor 34 is continuously driven until the expansion stroke of the self-supporting cylinder.
  • FIG. 4 is a characteristic diagram showing comparison of cranking times when the motor assist process and the assist extension process are executed.
  • the cranking time is the shortest when the first explosion cylinder can be started independently.
  • the cranking time is shortened accordingly. Therefore, according to the assist extension processing, even when it is predicted that the self-sustained start cannot be completed with the first explosion cylinder, it is possible to detect a self-supportable cylinder that can shift to the self-sustained start after the first explosion cylinder. If the starter motor 34 is driven until the expansion stroke of the self-supportable cylinder, the engine can be shifted to a self-start even if the motor is stopped at that time. That is, since the drive time of the starter motor 34 can be shortened as much as possible, the power consumption of the motor can be reliably suppressed even during cold start.
  • FIG. 5 is a flowchart showing the control executed by the ECU in the first embodiment of the present invention.
  • the routine shown in this figure is executed when an engine start request is generated by another device or the like during operation of the engine.
  • the routine shown in FIG. 5 first, in step 100, the positions of the pistons of all the cylinders are detected based on the output of the crank angle sensor 40.
  • step 102 the in-cylinder air amount is calculated for each cylinder by using the equation (1).
  • step 104 torque generated by combustion in the cylinder (predicted torque Tn). Is calculated.
  • step 106 the required start torque Ts1 is calculated by the above-described method, and it is determined whether or not the predicted torque T1 of the initial explosion cylinder is larger than the required start torque Ts1. If this determination is established, it is not necessary to perform motor assist, and therefore normal autonomous start control is executed in step 108. On the other hand, if the determination in step 106 is not established, in step 110, the predicted torque T2 of the cylinder that will reach the next combustion stroke is calculated. In step 112, it is determined whether or not the predicted torque T1 is larger than the required start torque Ts1, and if the determination is satisfied, in step 114, the starter motor 34 is driven, and then the combustion stroke is performed. The piston of the cylinder that reaches the position is moved to a position corresponding to the expansion stroke, and then normal autonomous start control is executed in step 108.
  • step 112 determines whether the independent start cannot be completed even with the second cylinder. Therefore, in this case, in step 116, the starter motor 34 moves the piston of the cylinder that reaches the third combustion stroke to a position corresponding to the expansion stroke, and then in step 108, normal autonomous start control is executed. To do.
  • step 108 in FIG. 5 shows a specific example of the combustion starting means in claim 1
  • steps 100, 102, 104, 106, 110, 112, 114, 116 are claims.
  • 1 shows a specific example of start assisting means in FIG.
  • Steps 110, 112, 114, and 116 show specific examples of the auxiliary starting extension means in claim 2.
  • the present invention when it is estimated that the self-sustained start is difficult in the first explosion cylinder, it is determined whether the self-sustainable start is possible in the second explosion cylinder, and the expansion stroke of the self-sustainable cylinder is performed as necessary. Until the starter motor 34 is continuously driven.
  • the present invention is not limited to this, and may be configured to execute motor assist regardless of the situation of other cylinders when it is estimated that it is difficult to start independently in the first explosion cylinder.
  • the A / F used at the start may be switched according to the active state of the catalyst 24. Specifically, for example, when the catalyst is activated, the A / F at the time of restart is set to 14.5 or the like in consideration of the high purification capacity, and the exhaust emission is improved. It is good. When the catalyst is inactive, the A / F at the time of restart may be set to 12.5 (a value at which the torque becomes maximum), for example.
  • the predicted torques T1 and T2 are compared with the required start torques Ts1 and Ts2 for each of the cylinders in the second explosion stage that will reach the explosion stroke.
  • the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 この発明は、機関始動時において、モータアシストを必要な場合のみ実行することができ、モータを効率よく駆動することを目的とする。 エンジン10は、始動を補助するためのスタータモータ34を備え、燃焼により自立的に始動しようとするときに、必要に応じてスタータモータ34によりモータアシストを行う。ECU50は、始動時に初爆気筒で発生するトルクT1を実際の燃焼前に予測し、予測トルクT1が始動要求トルクTs1以上である場合には、モータ34を駆動せずに自立的な始動を行う。一方、予測トルクT1が始動要求トルクTs1未満の場合には、モータ34を駆動してモータアシストにより始動を行う。これにより、モータの無駄な駆動を減らしてバッテリ等の消費電力を抑制することができ、始動性を確保しつつ、スタータモータ34を効率よく運転することができる。

Description

内燃機関の制御装置
 本発明は、例えば内燃機関の制御装置に関し、特に、モータにより始動を補助する構成とした内燃機関の制御装置に関する。
 従来技術として、例えば特許文献1(日本特開2000-73838号公報)に開示されているように、始動を補助するモータを備えた内燃機関の制御装置が知られている。従来技術では、機関始動時において、筒内圧Pの変化量(dP/dθ)が所定値以上となったときに、モータを停止し、モータアシストを解除する構成としている。これにより、従来技術では、燃焼が安定するまでの期間中にのみモータを作動させ、燃費性能等を向上させるようにしている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開2000-73838号公報 日本特開2010-77859号公報 日本特開2009-209763号公報
 ところで、従来技術では、筒内圧の変化量に基いてモータアシストを解除するタイミングを決定している。しかし、始動前の段階でモータアシストが必要かどうかを判断していないため、モータアシストが不要な場合でも、モータを無駄に駆動することがあり、運転効率が低下するという問題がある。
 本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、機関始動時において、モータアシストを必要な場合のみ実行することができ、モータを効率よく駆動することが可能な内燃機関の制御装置を提供することにある。
 第1の発明は、筒内に燃料を直接噴射する直噴型の内燃機関に搭載され、当該内燃機関の始動を補助することが可能なスタータモータと、
 前記筒内の圧力を検出する筒内圧検出手段と、
 少なくとも前記筒内圧検出手段により燃焼前に検出した筒内圧に基いて、燃焼時に発生するトルクを予測する発生トルク予測手段と、
 内燃機関に対する始動要求が生じたときに、前記筒内での燃焼により内燃機関を始動させる燃焼始動手段と、
 前記始動要求が生じたときに、初爆気筒での燃焼により発生するトルクを前記発生トルク予測手段により燃焼開始前に予測し、当該予測トルクが所定の始動要求トルクよりも小さい場合にのみ、前記スタータモータを駆動する始動補助手段と、
 を備えることを特徴とする。
 第2の発明は、前記初爆気筒の予測トルクが前記始動要求トルクよりも小さい場合に、2番目以降に燃焼行程を迎える気筒のうち前記予測トルクが前記始動要求トルク以上である気筒を検出し、当該気筒の膨張行程まで前記スタータモータの駆動を継続してから前記スタータモータを停止する始動補助延長手段を備える。
 第3の発明によると、前記発生トルク予測手段は、トルクの予測対象となる気筒の筒内圧及び筒内容積と、内燃機関の機関温度及び/又は吸気温度からなる温度パラメータとに基いて、個々の気筒で発生するトルクを予測する構成としている。
 第1の発明によれば、発生トルク予測手段は、初爆気筒の予測トルクを実際の燃焼前に算出することができる。これにより、再始動時には、予測トルクが不足している場合にのみ、スタータモータを駆動して内燃機関を円滑に始動させることができる。また、初爆気筒の予測トルクが十分である場合には、スタータモータを駆動せずに、通常の燃焼により自立始動を行うことができる。従って、モータの無駄な駆動を減らしてバッテリ等の消費電力を抑制することができ、始動性を確保しつつ、スタータモータを効率よく運転することができる。
 第2の発明によれば、初爆気筒の予測トルクが始動要求トルクよりも小さい場合には、2番目以降に燃焼行程を迎える気筒のうち予測トルクが始動要求トルク以上である気筒を検出し、当該気筒の膨張行程までスタータモータの駆動を継続することができる。即ち、初爆気筒で自立始動を完了できないと予測される場合でも、初爆気筒の次に自立始動への移行が可能な自立可能気筒を検出することができる。そして、この自立可能気筒の膨張行程までスタータモータを駆動すれば、その時点でモータを停止しても、内燃機関を自立的な始動に移行させることができる。従って、スタータモータの駆動時間を出来る限り短縮することができるので、冷間始動時等においても、モータの消費電力を確実に抑制することができる。
 第3の発明によれば、発生トルク予測手段は、トルクの予測対象となる気筒の筒内圧及び筒内容積と、内燃機関の機関温度及び/又は吸気温度からなる温度パラメータとに基いて、個々の気筒で発生するトルクを予測することができる。これにより、エンジン水温や吸気温度等の温度パラメータに基いて予測トルクを正確に温度補正することができ、より正確な予測トルクを得ることができる。
本発明の実施の形態1のシステム構成を説明するための全体構成図である。 再始動時の始動要求トルクが時間的に変化する様子を示す説明図である。 自立可能気筒におけるピストンの位置及び挙動を示す説明図である。 モータアシスト処理及びアシスト延長処理を実行した場合のクランキング時間を比較して示す特性線図である。 本発明の実施の形態1において、ECUにより実行される制御を示すフローチャートである。
実施の形態1.
[実施の形態1の構成]
 以下、図1及び図5を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1のシステム構成を説明するための全体構成図である。本実施の形態のシステムは、直噴型の内燃機関であるエンジン10を備えており、エンジン10の各気筒には、ピストン12により燃焼室14が形成されている。各気筒のピストン12は、エンジンのクランク軸16に連結されている。なお、図1は、多気筒型のエンジン10に搭載された複数気筒のうち1気筒のみを例示したものである。
 また、エンジン10は、各気筒の燃焼室14内(筒内)に吸入空気を吸込む吸気通路18と、各気筒の排気ガスを排出する排気通路20とを備えている。吸気通路18には、吸入空気量を調整する電子制御式のスロットルバルブ22が設けられ、排気通路20には、排気ガスを浄化する触媒24が設けられている。また、各気筒には、筒内に燃料を直接噴射する燃料噴射弁26と、筒内の混合気に点火する点火プラグ28と、吸気通路18を筒内に対して開,閉する吸気バルブ30と、排気通路20を筒内に対して開,閉する排気バルブ32とが設けられている。
 また、本実施の形態のシステムは、例えばアイドルストップ車やハイブリッド車に適用されるものであり、エンジン10の始動補助(モータアシスト)を行う電動式のスタータモータ34を備えている。アイドルストップ車やハイブリッド車においては、停車中(走行中)に一旦停止させておいたエンジンを再始動する場合がある。このような再始動時に、スタータモータ34は、必要に応じてクランク軸16を回転駆動し、始動を補助するように構成されている。
 さらに、本実施の形態のシステムは、クランク角センサ40、エアフローセンサ42、筒内圧センサ44、吸気温センサ46、水温センサ48等を含むセンサ系統と、エンジン10の運転状態を制御するECU(Electronic Control Unit)50とを備えている。まず、センサ系統について説明すると、クランク角センサ40は、クランク軸16の回転に同期した信号を出力するもので、エアフローセンサ42は、エンジンの吸入空気量を検出する。また、筒内圧センサ44は、本実施の形態の筒内圧検出手段を構成し、個々の気筒の筒内圧Pを個別に検出するもので、各気筒にそれぞれ設けられている。一方、吸気温センサ46は、吸入空気の温度(吸気温度)Taを検出し、水温センサ48は、エンジン冷却水の温度(エンジン水温)Twを検出するもので、これらの吸気温度及びエンジン水温は、後述の発生トルク予測処理やトルク判定処理で用いられる温度パラメータである。
 また、センサ系統には、上記センサ以外にも、エンジン10やこれを搭載する車両の制御に必要な各種のセンサが含まれている。具体的には、排気空燃比を検出する空燃比センサ、車両のアクセル操作量(アクセル開度)を検出するアクセル開度センサ、などである。そして、これらのセンサは、ECU50の入力側に接続されている。一方、ECU50の出力側には、スロットルバルブ22、燃料噴射弁26、点火プラグ28、スタータモータ34等を含む各種のアクチュエータが接続されている。
 そして、ECU50は、センサ系統により検出したエンジンの運転情報に基いて、各アクチュエータを駆動することにより、運転制御を行う。具体的には、クランク角センサ40の出力に基いてエンジン回転数(機関回転数)とクランク角とを検出する。そして、クランク角に基いて各気筒のピストン12の位置を検出し、燃料噴射や点火の対象となる気筒を判別する気筒判別処理を実行する。また、エアフローセンサにより吸入空気量と、エンジン回転数とに基いて機関負荷を算出し、吸入空気量、機関負荷等に基いて燃料噴射量を算出すると共に、クランク角に基いて燃料噴射時期及び点火時期を決定する。そして、燃料噴射時期が到来した時点で燃料噴射弁26を駆動し、点火時期が到来した時点で点火プラグ28を駆動する。
[本実施の形態の特徴]
 本実施の形態は、エンジン10を再始動するときに、必要な場合に限って最小限の期間だけモータアシストを行う構成としている。具体的に述べると、例えばアイドルストップ車が停車状態から発進する場合や、ハイブリッド車がモータ走行からエンジン走行に切換わる場合には、エンジンに対する始動要求が発生され、一旦停止させておいたエンジンが再始動される。この場合、基本的には、燃料噴射弁26から筒内に噴射した燃料を燃焼させてエンジンを自立的に始動(以下、燃焼による始動を自立始動と称す)させる。しかし、各気筒のピストン12の位置によっては、燃焼行程がすぐに到来しなかったり、燃焼により始動に十分なトルクを発生できないことがある。このため、始動要求が発生した場合には、まず、ピストン12の位置等に基いて、以下に述べる発生トルク予測処理とトルク判定処理とを実行し、その判定結果に基いてモータアシストを併用するか否かを決定する。
(発生トルク予測処理)
 この処理では、まず、クランク角センサ40の出力に基いて各気筒のピストンの位置を検出し、始動の停止中にピストンが膨張行程にある気筒(初爆気筒)を特定する。そして、筒内圧センサ44により検出した初爆気筒の筒内圧Pと、クランク角に基いて算出した筒内容積Vと、吸気温センサ46により検出した吸気温度Tとが下記(1)式に示す気体の状態方程式を満たすことを利用して、初爆気筒内の空気量を算出し、この空気が所定のA/F(例えば、理論空燃比)で燃焼した場合に発生するトルクの予測値(予測トルク)を算出する。なお、(1)式において、Rは気体定数、nは空気のモル数である。
P*V=n*R*Ta   ・・・(1)
 発生トルク予測処理では、上記処理により初爆気筒の予測トルクT1を実際の燃焼前に算出し、その算出結果をエンジン水温Twや吸気温度Taに基いて温度補正する。なお、温度補正に必要なデータマップ等は、ECU50に予め記憶されている。
(トルク判定処理)
 この処理では、まず、初爆気筒において、モータアシストなしで自立始動を行うために必要な発生トルクの最小値(始動要求トルク)Ts1を算出する。始動要求トルクTs1は、実機での計測等により容易に求められるものであり、予測トルクT1の算出時とほぼ同様に、エンジン水温Twや吸気温度Taに基いて適切に温度補正される。そして、初爆気筒の予測トルクT1が始動要求トルクTs1以上である場合には、モータアシストなしでも始動が可能であるから、スタータモータ34を駆動せずに、初爆気筒及びそれ以降の気筒での燃焼によりエンジンを自立始動させる。
(モータアシスト処理)
 一方、初爆気筒の予測トルクT1が始動要求トルクTs1未満である場合には、初爆気筒の燃焼だけでは自立始動を行うことができない。そこで、この場合には、少なくとも初爆気筒の燃焼時にスタータモータ34を駆動し、モータアシストを実行する。図2は、再始動時の始動要求トルクが時間的に変化する様子を示す説明図である。この図に示すように、エンジンが停止すると、筒内の空気は、例えばシリンダライナの傷、ピストンリングの緩み等を介して外部に漏れる傾向がある。特に、経時劣化等が進んだエンジンにおいては、この傾向が顕著である。このため、エンジンの停止時から時間が経過すると、当初は十分に大きかった予測トルクT1が始動要求トルクTs1未満に低下し、モータアシストが必要となる場合がある。
 これに対し、上記モータアシスト処理によれば、筒内圧Pに基いて筒内空気量を算出し、さらに初爆気筒の予測トルクT1を実際の燃焼前に算出することができる。これにより、再始動時には、予測トルクT1が不足している場合にのみ、スタータモータ34を駆動してエンジン10を円滑に始動させることができる。また、初爆気筒の予測トルクT1が十分である場合には、スタータモータ34を駆動せずに、通常の燃焼により自立始動を行うことができる。従って、モータの無駄な駆動を減らしてバッテリ等の消費電力を抑制することができ、始動性を確保しつつ、スタータモータ34を効率よく運転することができる。また、エンジン水温や吸気温度等の温度パラメータに基いて予測トルクT1を温度補正することにより、より正確な予測トルクT1を得ることができる。
(アシスト延長処理)
 一方、初爆気筒の予測トルクT1が始動要求トルクTs1未満であり、モータアシスト処理を実行する場合には、アシスト延長処理を実行し、始動してからどの時点までモータアシストが必要であるかを判定する。アシスト延長処理では、2番目以降に燃焼行程を迎える気筒について、それぞれ前述の算出方法により予測トルクTn(nは気筒番号:2,3,…)を算出し、予測トルクTnが当該気筒の始動要求トルクTsn(n=2,3,…)以上となる気筒(以下、自立可能気筒と称す)を検出する。そして、自立可能気筒の膨張行程までスタータモータ34の駆動を継続してから、スタータモータ34を停止する。なお、アシスト延長処理の具体例については、後述のフローチャート(図5)で詳細に説明する。
 図3は、自立可能気筒におけるピストンの位置及び挙動を示す説明図である。この図に示すように、自立可能気筒において、ピストンが上死点よりも前にある場合には、燃焼により正規の回転方向に対するトルクを発生することができないが、スタータモータ34によりピストンを上死点以降の位置に移動すれば、その後は燃焼により自立始動を行うことができる。このため、上記アシスト延長処理では、自立可能気筒の膨張行程までスタータモータ34の駆動を継続する。
 図4は、モータアシスト処理及びアシスト延長処理を実行した場合のクランキング時間を比較して示す特性線図である。この図に示すように、初爆気筒で自立始動が可能である場合には、クランキング時間が最短となる。また、2番目以降の気筒で自立始動が可能な場合にも、その分だけクランキング時間が短縮している。従って、アシスト延長処理によれば、初爆気筒で自立始動を完了できないと予測される場合でも、初爆気筒の次に自立始動への移行が可能な自立可能気筒を検出することができる。そして、この自立可能気筒の膨張行程までスタータモータ34を駆動すれば、その時点でモータを停止しても、エンジンを自立的な始動に移行させることができる。即ち、スタータモータ34の駆動時間を出来る限り短縮することができるので、冷間始動時等においてもモータの消費電力を確実に抑制することができる。
 また、本実施の形態において、初爆気筒及び2番目の爆発気筒において自立始動が困難と推測される場合、即ち、T1<Ts1かつT2<Ts2が成立する場合には、燃焼による自立始動が不可能であると判断する。即ち、始動時において、全ての気筒の予測トルクTnが始動要求トルクTsn未満である場合には、例えばエンジン回転数が自立運転に対応する所定値を超えるまでスタータモータ34を駆動し続けることにより、通常のエンジン始動を実行する。
[実施の形態1を実現するための具体的な処理]
 次に、図5を参照して、上述した制御を実現するための具体的な処理について説明する。図5は、本発明の実施の形態1において、ECUにより実行される制御を示すフローチャートである。この図に示すルーチンは、エンジンの運転中において、他の機器等によりエンジンの始動要求が発生された場合に実行されるものとする。図5に示すルーチンでは、まず、ステップ100において、クランク角センサ40の出力に基いて、全気筒のピストンの位置を検出する。次に、ステップ102では、それぞれの気筒について、前記(1)の式を利用して筒内空気量を算出し、さらに、ステップ104では、当該気筒での燃焼により発生するトルク(予測トルクTn)を算出する。
 次に、ステップ106では、前述の方法により始動要求トルクTs1を算出し、初爆気筒の予測トルクT1が始動要求トルクTs1よりも大きいか否かを判定する。そして、この判定が成立した場合には、モータアシストを行う必要がないので、ステップ108で通常の自立的な始動制御を実行する。一方、ステップ106の判定が不成立の場合には、ステップ110において、次に燃焼行程を迎える気筒の予測トルクT2を算出する。そして、ステップ112では、この予測トルクT1が始動要求トルクTs1よりも大きいか否かを判定し、判定が成立した場合には、ステップ114において、スタータモータ34を駆動することにより、次に燃焼行程を迎える気筒のピストンを膨張行程に対応する位置まで移動し、その後にステップ108で通常の自立的な始動制御を実行する。
 また、ステップ112の判定が不成立の場合には、2番目の気筒でも自立始動を完了することができないと考えられる。そこで、この場合には、ステップ116において、スタータモータ34により3番目に燃焼行程を迎える気筒のピストンを膨張行程に対応する位置まで移動し、その後にステップ108で通常の自立的な始動制御を実行する。
 なお、前記実施の形態1において、図5中のステップ108は、請求項1における燃焼始動手段の具体例を示し、ステップ100,102,104,106,110,112,114,116は、請求項1における始動補助手段の具体例を示している。また、ステップ110,112,114,116は、請求項2における始動補助延長手段の具体例を示している。
 また、実施の形態では、初爆気筒で自立始動が困難と推測される場合、2番目の爆発気筒において自立始動が可能であるか否かを判定し、必要に応じて自立可能気筒の膨張行程までスタータモータ34の駆動を継続する構成した。しかし、本発明はこれに限らず、初爆気筒で自立始動が困難と推測された時点で、他の気筒の状況に関係なく、モータアシストを実行する構成としてもよい。
 また、本発明において、始動時に用いるA/Fは、触媒24の活性状態に応じて切換える構成としてもよい。具体例を挙げると、例えば触媒が活性化している場合には、その浄化能力が高いことを考慮して、再始動時のA/Fを14.5等に設定し、排気エミッションを改善する構成としてもよい。また、触媒が未活性である場合には、再始動時のA/Fを例えば12.5(トルクが最大となる値)等に設定してもよい。
 また、前記実施の形態では、初爆気筒の2番目に爆発行程を迎える気筒のそれぞれについて、予測トルクT1,T2と始動要求トルクTs1,Ts2を比較する構成とした。しかし、本発明はこれに限らず、例えば4気筒以上の気筒数をもつ内燃機関において、初爆気筒を基点として予測トルクTnと始動要求トルクTsn(n=1,2,3,…:気筒数)とを順次比較していき、Tn≧Tsnが成立した気筒の膨張行程までモータアシストを実行する構成としてもよい。
10 エンジン(内燃機関)
12 ピストン
14 燃焼室
16 クランク軸
18 吸気通路
20 排気通路
22 スロットルバルブ
24 触媒
26 燃料噴射弁
28 点火プラグ
30 吸気バルブ
32 排気バルブ
34 スタータモータ
40 クランク角センサ
42 エアフローセンサ
44 筒内圧センサ(筒内圧検出手段)
46 吸気温センサ
48 水温センサ
50 ECU
Ts1 始動要求トルク(所定値)

Claims (3)

  1.  筒内に燃料を直接噴射する直噴型の内燃機関に搭載され、当該内燃機関の始動を補助することが可能なスタータモータと、
     前記筒内の圧力を検出する筒内圧検出手段と、
     少なくとも前記筒内圧検出手段により燃焼前に検出した筒内圧に基いて、燃焼時に発生するトルクを予測する発生トルク予測手段と、
     内燃機関に対する始動要求が生じたときに、前記筒内での燃焼により内燃機関を始動させる燃焼始動手段と、
     前記始動要求が生じたときに、初爆気筒での燃焼により発生するトルクを前記発生トルク予測手段により燃焼開始前に予測し、当該予測トルクが所定の始動要求トルクよりも小さい場合にのみ、前記スタータモータを駆動する始動補助手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記初爆気筒の予測トルクが前記始動要求トルクよりも小さい場合に、2番目以降に燃焼行程を迎える気筒のうち前記予測トルクが前記始動要求トルク以上である気筒を検出し、当該気筒の膨張行程まで前記スタータモータの駆動を継続してから前記スタータモータを停止する始動補助延長手段を備えてなる請求項1に記載の内燃機関の制御装置。
  3.  前記発生トルク予測手段は、トルクの予測対象となる気筒の筒内圧及び筒内容積と、内燃機関の機関温度及び/又は吸気温度からなる温度パラメータとに基いて、個々の気筒で発生するトルクを予測する構成としてなる請求項1または2記載の内燃機関の制御装置。
PCT/JP2011/053530 2011-02-18 2011-02-18 内燃機関の制御装置 WO2012111147A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/053530 WO2012111147A1 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置
EP11858910.0A EP2677143B1 (en) 2011-02-18 2011-02-18 Control device for internal combustion engine
US13/984,540 US9163601B2 (en) 2011-02-18 2011-02-18 Control device for internal combustion engine
JP2012557759A JP5660143B2 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053530 WO2012111147A1 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012111147A1 true WO2012111147A1 (ja) 2012-08-23

Family

ID=46672107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053530 WO2012111147A1 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US9163601B2 (ja)
EP (1) EP2677143B1 (ja)
JP (1) JP5660143B2 (ja)
WO (1) WO2012111147A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234751A (ja) * 2013-05-31 2014-12-15 トヨタ自動車株式会社 内燃機関の制御装置
WO2015011999A1 (ja) * 2013-07-23 2015-01-29 日産自動車株式会社 内燃エンジンの始動制御装置及び始動制御方法
JP2015020702A (ja) * 2013-07-23 2015-02-02 日産自動車株式会社 内燃エンジンの始動制御装置及び始動制御方法
JP2015117611A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 ベルト張力制御装置
JP2016033007A (ja) * 2014-07-29 2016-03-10 トヨタ自動車株式会社 車両の駆動システム
US10145323B2 (en) 2016-12-15 2018-12-04 Toyota Jidosha Kabushiki Kaisha Starting control device for engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014797A1 (ja) * 2011-07-28 2013-01-31 トヨタ自動車株式会社 ハイブリッド車両のエンジン停止制御装置
KR20230040424A (ko) * 2021-09-15 2023-03-23 현대자동차주식회사 하이브리드 차량의 제어 방법 및 그 제어 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073838A (ja) 1998-09-01 2000-03-07 Honda Motor Co Ltd 内燃機関の制御装置
JP2005002847A (ja) * 2003-06-10 2005-01-06 Mazda Motor Corp エンジンの始動装置
JP2008185022A (ja) * 2007-01-31 2008-08-14 Mazda Motor Corp 車両の制御装置
JP2009209763A (ja) 2008-03-04 2009-09-17 Nissan Motor Co Ltd 車両のエンジン始動制御装置
JP2010077859A (ja) 2008-09-25 2010-04-08 Hitachi Automotive Systems Ltd エンジン始動装置及びエンジン始動制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286877A (ja) * 1989-04-27 1990-11-27 Nissan Motor Co Ltd エンジンの点火時期制御装置
JPH03242438A (ja) * 1990-02-16 1991-10-29 Nissan Motor Co Ltd 内燃機関の吸入空気制御装置
US6993427B2 (en) * 2002-09-03 2006-01-31 Toyota Jidosha Kabushiki Kaisha Combustion state estimating apparatus for internal combustion engine
JP3758626B2 (ja) 2002-09-20 2006-03-22 トヨタ自動車株式会社 内燃機関の始動方法及び始動装置並びにそれらに用いる始動エネルギの推定方法及び装置
JP4158583B2 (ja) 2003-04-11 2008-10-01 トヨタ自動車株式会社 内燃機関の始動装置
JP3966238B2 (ja) * 2003-06-24 2007-08-29 マツダ株式会社 エンジンの始動装置
JP2006183630A (ja) 2004-12-28 2006-07-13 Nissan Motor Co Ltd 内燃機関及びその始動方法
JP4380604B2 (ja) * 2005-07-29 2009-12-09 トヨタ自動車株式会社 内燃機関の制御装置
JP4539619B2 (ja) * 2006-08-03 2010-09-08 トヨタ自動車株式会社 モデル作成方法及び適合方法
US7788017B2 (en) * 2006-12-27 2010-08-31 Denso Corporation Engine control, fuel property detection and determination apparatus, and method for the same
DE102007023225A1 (de) * 2007-05-18 2008-11-20 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zum Starten einer Brennkraftmaschine
JP4875554B2 (ja) * 2007-06-29 2012-02-15 本田技研工業株式会社 単気筒内燃機関の運転制御装置
CN102264579B (zh) * 2008-12-25 2014-03-19 丰田自动车株式会社 用于车辆的诊断系统和诊断方法
JP2011163321A (ja) * 2010-02-15 2011-08-25 Denso Corp エンジン始動制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073838A (ja) 1998-09-01 2000-03-07 Honda Motor Co Ltd 内燃機関の制御装置
JP2005002847A (ja) * 2003-06-10 2005-01-06 Mazda Motor Corp エンジンの始動装置
JP2008185022A (ja) * 2007-01-31 2008-08-14 Mazda Motor Corp 車両の制御装置
JP2009209763A (ja) 2008-03-04 2009-09-17 Nissan Motor Co Ltd 車両のエンジン始動制御装置
JP2010077859A (ja) 2008-09-25 2010-04-08 Hitachi Automotive Systems Ltd エンジン始動装置及びエンジン始動制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677143A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234751A (ja) * 2013-05-31 2014-12-15 トヨタ自動車株式会社 内燃機関の制御装置
WO2015011999A1 (ja) * 2013-07-23 2015-01-29 日産自動車株式会社 内燃エンジンの始動制御装置及び始動制御方法
JP2015020702A (ja) * 2013-07-23 2015-02-02 日産自動車株式会社 内燃エンジンの始動制御装置及び始動制御方法
JP5950046B2 (ja) * 2013-07-23 2016-07-13 日産自動車株式会社 内燃エンジンの始動制御装置及び始動制御方法
JP2015117611A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 ベルト張力制御装置
JP2016033007A (ja) * 2014-07-29 2016-03-10 トヨタ自動車株式会社 車両の駆動システム
RU2659600C1 (ru) * 2014-07-29 2018-07-03 Тойота Дзидося Кабусики Кайся Устройство управления для транспортного средства и транспортное средство, оснащенное устройством управления
US10145323B2 (en) 2016-12-15 2018-12-04 Toyota Jidosha Kabushiki Kaisha Starting control device for engine

Also Published As

Publication number Publication date
US20130319361A1 (en) 2013-12-05
JP5660143B2 (ja) 2015-01-28
EP2677143A4 (en) 2015-08-05
JPWO2012111147A1 (ja) 2014-07-03
EP2677143A1 (en) 2013-12-25
EP2677143B1 (en) 2016-08-31
US9163601B2 (en) 2015-10-20

Similar Documents

Publication Publication Date Title
JP5660143B2 (ja) 内燃機関の制御装置
JP4428308B2 (ja) エンジン制御装置
JP4670710B2 (ja) エンジンの始動装置
JP2010185433A (ja) 内燃機関の触媒暖機制御装置
JP2002285883A (ja) ハイブリッド車の制御装置
JP4569509B2 (ja) エンジンの始動装置
JP4407832B2 (ja) エンジンの制御装置
JP5593132B2 (ja) 内燃機関の制御装置
JP5059043B2 (ja) エンジン停止始動制御装置
JP2010168939A (ja) 高膨張比内燃機関
JP4577178B2 (ja) 多気筒エンジンの始動装置
JP4232783B2 (ja) エンジンの始動装置
JP2007092719A (ja) 多気筒エンジンの始動装置
JP4206847B2 (ja) 車両の制御装置
JP4341477B2 (ja) エンジンの始動装置
JP4325477B2 (ja) エンジンの始動装置
US20180142659A1 (en) Control device for vehicle
JP4175200B2 (ja) 車両の制御装置
JP6153342B2 (ja) 内燃機関の制御装置
JP2012136980A (ja) エンジン回転停止制御装置
JP4200937B2 (ja) エンジンの始動装置
JP6881239B2 (ja) 内燃機関の制御装置
JP2005030237A (ja) 車両の制御装置
WO2011067831A1 (ja) 車載ディーゼル機関の制御装置
JP2009055655A (ja) エンジンの自動停止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557759

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011858910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011858910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE