WO2012108492A1 - 水性ポリウレタン樹脂分散体及びその使用 - Google Patents

水性ポリウレタン樹脂分散体及びその使用 Download PDF

Info

Publication number
WO2012108492A1
WO2012108492A1 PCT/JP2012/052941 JP2012052941W WO2012108492A1 WO 2012108492 A1 WO2012108492 A1 WO 2012108492A1 JP 2012052941 W JP2012052941 W JP 2012052941W WO 2012108492 A1 WO2012108492 A1 WO 2012108492A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
resin dispersion
weight
aqueous polyurethane
polyol
Prior art date
Application number
PCT/JP2012/052941
Other languages
English (en)
French (fr)
Inventor
敦史 森上
昌弘 内貴
文夫 足立
高橋 学
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020137023796A priority Critical patent/KR20140012659A/ko
Priority to US13/984,789 priority patent/US20130317171A1/en
Priority to CN2012800084504A priority patent/CN103347923A/zh
Priority to JP2012556924A priority patent/JP5870939B2/ja
Priority to EP12744180.6A priority patent/EP2674443A4/en
Publication of WO2012108492A1 publication Critical patent/WO2012108492A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols

Definitions

  • the present invention relates to an aqueous polyurethane resin dispersion in which a polyurethane resin is dispersed in an aqueous medium.
  • the present invention also relates to a coating composition containing the aqueous polyurethane resin dispersion and a polyurethane resin film obtained by heating and drying the composition containing the polyurethane resin dispersion.
  • aqueous polyurethane resin dispersion is an environmentally friendly material that can provide a coating film having adhesiveness, abrasion resistance, and rubbery properties, and can reduce volatile organic matter compared to conventional solvent-based polyurethane, It is a material that is being replaced by solvent-based polyurethane.
  • Polycarbonate polyol is a useful compound that can be used as a raw material for polyurethane resins. By reacting with isocyanate compounds, it produces durable polyurethane resins used for rigid foams, flexible foams, paints, adhesives, synthetic leather, ink binders, etc. can do.
  • the characteristics of polyurethane resin using polycarbonate polyol are expressed by the high cohesive strength of carbonate groups, and it is stated that water resistance, heat resistance, oil resistance, elastic recovery, wear resistance, and weather resistance are excellent (non- Patent Document 1). Also, it is known that a coating film obtained by applying an aqueous urethane resin dispersion using polycarbonate polyol as a raw material is excellent in light resistance, heat resistance, hydrolysis resistance, and oil resistance (see Patent Document 1). ).
  • an aqueous polyurethane resin dispersion using a polycarbonate polyol exhibits good characteristics, but it is not sufficient as compared with a solvent-based polyurethane. In particular, the solvent resistance and water resistance of the coating film are insufficient.
  • a crosslinked structure is introduced into the polyurethane resin, or a composition in which a crosslinking material such as an epoxy resin or a polyfunctional isocyanate is introduced as a composition is crosslinked at the time of curing.
  • the aqueous polyurethane resin dispersion having a blocked isocyanato group is stable at room temperature, and thus has a high utility value as a one-part crosslinking reactive dispersion having high storage stability (Patent Document 2 and Patent Document 3).
  • An aqueous polyurethane resin dispersion using polycarbonate polyol as a raw material is also known to have a feature of high adhesion to an electrodeposition coating film (Patent Document 4).
  • the present inventors have controlled the film-forming speed after coating by an aqueous polyurethane resin dispersion having a specific amount of a blocked isocyanate group having a urethane bond, a urea bond, and a carbonate bond.
  • the film can be re-dispersed in water, and the coating obtained by applying and heat treatment is excellent in water resistance and solvent resistance, and is excellent in adhesion to the electrodeposition coating film. It has been found that since the breaking energy in tension is high, the impact resistance is also excellent (Patent Document 5).
  • the aqueous polyurethane resin dispersion When the aqueous polyurethane resin dispersion is used as a film, paint or coating material, it is applied to a substrate or the like using an application device such as a bar coater, a roll coater or an air spray.
  • a conventional aqueous polyurethane resin dispersion capable of forming a solvent-resistant and water-resistant coating film is applied to a substrate, and then the coating layer or coating film is washed or removed to remove the coating layer or coating film. It was difficult to repaint.
  • an aqueous polyurethane resin dispersion having high adhesion to the substrate is used, in order to peel the coating film once formed, it is necessary to dissolve or redisperse the coating film using an organic solvent or the like.
  • a water-based polyurethane that has high impact resistance, can form a coating film with high adhesion to an electrodeposition coating film, and can easily repaint or remove paint layers and coating films applied to excess parts.
  • Resin dispersions are desired as protective coatings for electrodeposition coatings applied to steel sheets for building materials, electrical equipment, vehicles, industrial equipment, office machines, and the like.
  • the present invention has been made to solve the above problems, and specifically has the following configuration.
  • the present invention provides (a) a polyisocyanate compound, (b) a polyol compound containing a polycarbonate polyol having a number average molecular weight of 400 to 3000, (c) an acidic group-containing polyol compound, and (d) a blocking agent for an isocyanate group.
  • a polyurethane resin obtained by reacting (A) a polyurethane prepolymer obtained by reaction with a (B) chain extender having reactivity with the isocyanate group of the polyurethane prepolymer is dispersed in an aqueous medium.
  • the total of the urethane bond content and urea bond content is 7 to 15% by weight, the carbonate bond content is 15 to 40% by weight, and the ether bond content is based on the solid content.
  • the (b) polyol compound preferably contains a polyether polyol.
  • the polyether polyol is preferably 5 to 30% by weight in 100% by weight of the (b) polyol compound.
  • the weight average molecular weight is preferably 25,000 to 60,000.
  • the content of the alicyclic structure is preferably 10 to 40% by weight based on the solid content.
  • it is preferable that (a) the polyisocyanate compound is an alicyclic diisocyanate.
  • the polyisocyanate compound is preferably 4,4′-dicyclohexylmethane diisocyanate and / or isophorone diisocyanate.
  • the blocking agent is preferably at least one selected from the group consisting of oxime compounds, pyrazole compounds and malonic acid diester compounds.
  • the present invention also relates to a coating composition comprising any one of the above aqueous polyurethane resin dispersions. Furthermore, this invention relates to the polyurethane resin film obtained by heat-drying the composition containing one of the said aqueous polyurethane resin dispersions.
  • the coating film formed using the aqueous polyurethane resin dispersion of the present invention is prevented from swelling into water, while being swollen into an aqueous cleaning solution (for example, an aqueous solution containing alcohol, amine, amino alcohol, cellosolve, etc.).
  • an aqueous cleaning solution for example, an aqueous solution containing alcohol, amine, amino alcohol, cellosolve, etc.
  • the rate is high. That is, the present invention provides an aqueous polyurethane resin dispersion that can form a coating film that can be repainted while being excellent in water resistance and solvent resistance.
  • the coating film obtained by using the aqueous polyurethane resin dispersion or coating composition of the present invention has excellent adhesion to the electrodeposition coating film, and has high impact energy due to high breaking energy in tension. It is highly useful.
  • the polyurethane resin film of the present invention can also be used as a decorative film.
  • the (a) polyisocyanate compound in the present invention is not particularly limited, but a diisocyanate compound having two isocyanato groups per molecule is preferable. Specifically, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, 4,4′-diphenylenemethane diisocyanate (MDI), 2,4-diphenylmethane diisocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane Aromatic polyisocyanate compounds such as 1,5-naphthylene diisocyanate, m-isocyanatophenylsulfonyl isocyanate,
  • alicyclic polyisocyanate compounds are preferable.
  • the alicyclic polyisocyanate compound By using the alicyclic polyisocyanate compound, it is possible to obtain a coating film that is difficult to yellow, and the hardness of the obtained coating film tends to be higher.
  • an alicyclic diisocyanate compound is preferable.
  • isophorone diisocyanate (IPDI) and / or 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI) is more preferable from the viewpoint of controlling the reactivity and high elasticity of the resulting coating film.
  • the (b) polyol compound in the present invention is a polyol compound containing a polycarbonate polyol having a number average molecular weight of 400 to 3000.
  • the polycarbonate polyol having a number average molecular weight of 400 to 3000 in the present invention is not particularly limited as long as the number average molecular weight is 400 to 3000.
  • the number average molecular weight of the polycarbonate polyol is less than 400, there are problems such as low breaking energy in tension of the obtained coating film.
  • the number average molecular weight of the polycarbonate polyol exceeds 3000, there are problems such as poor water resistance of the resulting polyurethane resin.
  • the number average molecular weight is more preferably 800 to 2500 from the viewpoint of breaking energy and water resistance in tension.
  • a polycarbonate diol having two hydroxyl groups per molecule is preferred.
  • the polycarbonate polyol As the polycarbonate polyol, a polycarbonate polyol produced by a general production method such as a transesterification method between a polyol and a carbonate ester or a phosgene method can be used.
  • the proportion of the polycarbonate polyol having the (b-1) number average molecular weight of 400 to 3000 in the (b) polyol compound is from 50% by weight to 100% by weight from the viewpoint of breaking energy in the tension of the formed coating film. It is preferably 70% by weight to 100% by weight, more preferably 85% by weight to 100% by weight.
  • the number average molecular weight (Mn) of the polycarbonate polyol is determined from the hydroxyl value according to the following formula.
  • the valence is the number of hydroxyl groups in one molecule, and the hydroxyl value is measured according to the method B of JIS K1557.
  • the polycarbonate polyol is polycarbonate diol, the valence is 2.
  • polyol used as a raw material for the polycarbonate polyol examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, , 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, 1,3-butanediol, 3-methylpentane-1,5-diol, 2-ethyl Aliphatic diols such as hexane-1,6-diol, 2-methyl-1,3-pentanediol, neopentyl glycol, 2-methyl-1,8-octanediol; 1,3-cyclohexanediol, 1,4- Cyclohexanediol
  • the said polyol can also be used as the said polycarbonate polyol using only one type, and can also be used as a polycarbonate polyol combining multiple types.
  • the polycarbonate polyol is preferably a polycarbonate polyol containing the aliphatic diol or alicyclic diol, more preferably the polycarbonate polyol containing the aliphatic diol, and particularly preferably the polycarbonate polyol containing 1,6-hexanediol. .
  • (B-2) polyether polyol In the present invention, (b-2) a polyether polyol can be mixed with the (b) polyol compound in addition to the (b-1) polycarbonate polyol having a number average molecular weight of 400 to 3000. (B-2) By mixing the polyether polyol, the content of ether bonds in the polyurethane resin can be adjusted to an appropriate range, and the swelling ratio of the coating film into the aqueous cleaning liquid can be increased.
  • the polyether polyol is preferably 5 to 30% by weight, more preferably 5 to 20% by weight in 100% by weight of the (b) polyol compound.
  • the polyether polyol preferably has a number average molecular weight of 400 to 3000, more preferably 500 to 2000, from the viewpoint of the swelling ratio of the coating film with water and aqueous cleaning liquid and the tensile breaking energy.
  • polyether polyols the formula: H- (OA) n -OH (In the formula, A is an alkylene group having 2 to 6 carbon atoms, preferably 2 to 4, n represents an average degree of polymerization, preferably 5 to 70, more preferably 6 to 45)
  • A is an alkylene group having 2 to 6 carbon atoms, preferably 2 to 4, n represents an average degree of polymerization, preferably 5 to 70, more preferably 6 to 45
  • the polyalkylene ether polyol shown by these is mentioned.
  • alkylene oxide adducts of low molecular weight polyols such as ethylene oxide adducts of bisphenol-A are also exemplified as polyether polyols. Examples of the low molecular weight polyol include a polyol used as a raw material for the polycarbonate polyol.
  • (B-3) Other polyol compounds in the present invention, in addition to the (b-1) polycarbonate polyol and (b-2) polyether polyol having a number average molecular weight of 400 to 3000, (b-3) other A polyol compound can be mixed.
  • the other polyol compound is preferably 45% by weight or less, more preferably 0 to 15% by weight in 100% by weight of the (b) polyol compound.
  • the other polyol compound is not particularly limited, and examples thereof include polyester polyol, polycarbonate polyol having a number average molecular weight other than 400 to 3000, aliphatic diol, alicyclic diol, aromatic diol, polyfunctional polyol, and the like.
  • polyester polyol polycarbonate polyol having a number average molecular weight other than 400 to 3000
  • aliphatic diols and alicyclic diols, and polycarbonate polyols having a number average molecular weight other than 400 to 3000 can be used.
  • (b-3) the other polyol compound does not include the (c) acidic group-containing polyol compound described in the next section.
  • the (c) acidic group-containing polyol compound in the present invention is not particularly limited as long as it is a compound containing two or more hydroxyl groups and one or more acidic groups in one molecule.
  • the acidic group include a carboxy group, a sulfonic acid group, a phosphoric acid group, and a phenolic hydroxyl group.
  • 2,2-dimethylolpropionic acid 2,2-dimethylolalkanoic acid such as 2,2-dimethylolbutanoic acid, N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine 3,4-dihydroxybutanesulfonic acid, 3,6-dihydroxy-2-toluenesulfonic acid and the like. These may be used alone or in combination of two or more.
  • 2,2-dimethylolpropionic acid is preferable from the viewpoint of availability.
  • the blocking agent for the isocyanato group in the present invention is not particularly limited, and those that dissociate from the isocyanato group at 80 to 180 ° C. can be used.
  • the blocking agent that dissociates from an isocyanato group at 80 to 180 ° C. include, for example, malonic acid diester compounds such as dimethyl malonate and diethyl malonate; pyrazole compounds such as 1,2-pyrazole and 3,5-dimethylpyrazole Oxime compounds such as 1,2,4-triazole and methyl ethyl ketoxime; diisopropylamine, caprolactam and the like. These may be used alone or in combination of two or more.
  • the blocking agents at least one selected from oxime compounds, pyrazole compounds, and malonic acid diester compounds is preferable from the viewpoint of dissociation temperature, and 3,5- from the viewpoint of storage stability and impact resistance. Dimethylpyrazole is particularly preferred.
  • the (A) polyurethane prepolymer in the present invention is a polyurethane prepolymer obtained by reacting (a) a polyisocyanate compound, (b) a polyol compound, (c) an acidic group-containing polyol compound, and (d) a blocking agent. .
  • a polyisocyanate compound obtained by reacting (a) a polyisocyanate compound, (b) a polyol compound, (c) an acidic group-containing polyol compound, and (d) a blocking agent.
  • a polyisocyanate compound obtained by reacting (a) a polyisocyanate compound, (b) a polyol compound, (c) an acidic group-containing polyol compound, and (d) a blocking agent.
  • a blocking agent is reacted in the presence or absence of a catalyst to synthesize a polyurethane prepolymer (A) in which a part of the terminal isocyanato group is blocked.
  • the second is to synthesize a partially blocked polyisocyanate compound by reacting (a) a polyisocyanate compound with (d) a blocking agent in the presence or absence of a blocking catalyst.
  • a polyol compound and (c) an acidic group-containing polyol compound are reacted in the presence or absence of a urethanization catalyst to urethanize and (A) a polyurethane prepolymer.
  • the urethanization catalyst is not particularly limited, and examples thereof include salts of metals and organic and inorganic acids such as tin catalysts (trimethyltin laurate, dibutyltin dilaurate, etc.) and lead catalysts (lead octylate, etc.), and organic metals. Derivatives, amine catalysts (triethylamine, N-ethylmorpholine, triethylenediamine, etc.), diazabicycloundecene catalysts and the like. Among these, dibutyltin dilaurate is preferable from the viewpoint of reactivity.
  • the blocking catalyst is not particularly limited, and examples thereof include alkali catalysts such as dibutyltin dilaurate and sodium methoxide.
  • the amount of (a), (b), (c), and (d) used is 7 in the total amount of urethane bond content and urea bond content based on solid content in the resulting aqueous polyurethane resin dispersion. 15% by weight, carbonate bond content 15 to 40% by weight, ether bond content 0.5 to 5% by weight, and the content of isocyanate groups bound to the blocking agent is equivalent to isocyanate groups In the range of 0.2 to 2% by weight, there is no particular limitation, but the following amounts are preferable.
  • the amount of (b) used is preferably 0.1 to 0.5 times, more preferably 0.15 to 0.45 times, and particularly preferably 0.2 to 0.4 times on a molar basis with respect to (a). preferable.
  • the amount of (c) used is preferably 0.3 to 2.0 times, more preferably 0.4 to 1.6 times, and particularly preferably 0.5 to 1.3 times on a molar basis with respect to (b). preferable.
  • the amount of (d) used is preferably 0.03 to 0.25 times, more preferably 0.04 to 0.20 times, and particularly preferably 0.06 to 0.16 times on a molar basis with respect to (a). preferable.
  • the chain extender (B) in the present invention is not particularly limited, and examples thereof include hydrazine, ethylenediamine, 1,4-tetramethylenediamine, 2-methyl-1,5-pentanediamine, 1,6-hexamethylenediamine, , 4-Hexamethylenediamine, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, 1,3-bis (aminomethyl) cyclohexane, xylylenediamine, piperazine, 2,5-dimethylpiperazine, diethylenetriamine, triethylene Polyamine compounds such as tetramine, polyol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, polyalkylene glycols represented by polyethylene glycol, water, etc.
  • First grade Amine compounds These may be used alone or in combination of two or more.
  • the amount of the (B) chain extender added is preferably equal to or less than the equivalent of the unblocked isocyanato group serving as the chain extension starting point in the (A) urethane prepolymer, more preferably not blocked. 0.7 to 0.99 equivalents of the isocyanato group. If the chain extender is added beyond the equivalent of unblocked isocyanato groups, the molecular weight of the chain-extended urethane polymer may decrease, and it was formed using the resulting aqueous polyurethane resin dispersion. The strength of the coating film may decrease.
  • aqueous polyurethane resin dispersion Although the manufacturing method in particular of the aqueous polyurethane resin dispersion of this invention is not restrict
  • the total of urethane bonds and urea bonds in the aqueous polyurethane resin dispersion needs to be 7 to 15% by weight based on the solid content, and is 9 to 13% by weight. Is particularly preferred. If the total content of the urethane bond and urea bond is too small, a coating film cannot be formed, and there is a problem that the coating film surface becomes sticky after drying. Also, if the total content of the urethane bond and urea bond is too large, when the aqueous polyurethane resin dispersion is applied to the base material, the swelling rate of the dry coating film in the aqueous cleaning liquid is reduced, so that the removal is difficult.
  • the content of the urethane bond is preferably 5 to 11% by weight, more preferably 6 to 10% by weight from the viewpoint of the tensile breaking energy of the resulting coating film and the swelling ratio in the aqueous cleaning solution,
  • the content is preferably 1.5 to 6% by weight, more preferably 2 to 5% by weight, from the viewpoint of the water swelling ratio of the coating film and the drying property of the coating film.
  • the content of carbonate bonds in the aqueous polyurethane resin dispersion needs to be 15 to 40% by weight, more preferably 18 to 35% by weight, based on the solid content. 20 to 30% by weight is particularly preferable.
  • the content ratio of the carbonate bond is too small, there is a problem that the elongation at break of the obtained coating film is small and only a coating film that is weak against impact can be obtained.
  • a coating film cannot be formed and there exists a problem that the coating-film surface becomes sticky after drying.
  • the ether bond content in the aqueous polyurethane resin dispersion needs to be 0.5 to 5% by weight based on the solid content.
  • the elasticity modulus of a coating film will fall and it exists in the tendency for the swelling rate to the water of the coating film obtained to become high.
  • the ether bond content is too small, the swelling ratio of the dried coating film to the aqueous cleaning solution is low, and repainting of the paint or coating material becomes impossible.
  • the content of ether bonds is more preferably 1 to 3% by weight.
  • the content ratio of the ether bond can be controlled through the amount of the raw material containing the ether bond, (b) the amount of the (b-2) polyether polyol in the polyol compound, the amount of the polycarbonate polyol having an ether bond, the ether bond It can be controlled by adjusting the amount of the polyester polyol having a low molecular weight and the amount of the low molecular weight polyol having an ether bond.
  • the polycarbonate polyol and polyester polyol containing an ether bond can be obtained, for example, by using an ether group-containing diol as a raw material.
  • the content of the isocyanate group blocked with the blocking agent needs to be 0.2 to 2.0% by weight in terms of solid content and in terms of isocyanate group. It is particularly preferably 5 to 1.5% by weight. If the content ratio of the blocked isocyanate group is too small, there is a problem that the adhesion of the obtained coating film to the electrodeposition coating plate surface is poor. Moreover, when there is too much content rate of the said isocyanato group blocked, there exists a problem that only the coating film weak at an impact is obtained with the elongation at break of the coating film obtained small.
  • the content ratio of the isocyanate group blocked by the blocking agent is changed from (a) the number of moles of the isocyanate group contained in the polyisocyanate compound to (b) the number of moles of the hydroxy group contained in the polyol compound and (c) the acidic group.
  • the number of moles of the remaining isocyanate groups obtained by subtracting the number of moles of hydroxy groups contained in the contained polyol compound is (X)
  • a blocking agent having a mole number less than (X) an aqueous polyurethane resin It can be controlled by the proportion of the (d) blocking agent used on a solid basis in the dispersion.
  • the content ratio of the isocyanate group blocked with the blocking agent is that of (X) based on the solid content in the aqueous polyurethane resin dispersion. It can be determined by value.
  • the weight average molecular weight of the polyurethane resin in the aqueous polyurethane resin dispersion needs to be 25,000 to 60,000, more preferably 28,000 to 50,000, and more preferably 30,000 to 45,000. 000 is particularly preferred.
  • the weight average molecular weight of the polyurethane resin in the aqueous polyurethane resin dispersion is less than 25,000, the tensile strength of the obtained coating film becomes small, and the coating film may be weak against impact.
  • the weight average molecular weight of the polyurethane resin in the aqueous polyurethane resin dispersion exceeds 60,000
  • the swelling of the dried coating film into the aqueous cleaning liquid Since the rate decreases, it may be difficult to remove and it may be difficult to repaint.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC), and is a converted value obtained from a standard polystyrene calibration curve prepared in advance.
  • the acid value of the aqueous polyurethane resin dispersion needs to be 10 to 16 mgKOH / g, more preferably 12 to 16 mgKOH / g, and particularly preferably 14 to 16 mgKOH / g.
  • the acid value of the aqueous polyurethane resin dispersion exceeds 16 mgKOH / g, the swelling ratio of the coating film to water increases, and when it is less than 10 mgKOH / g, the dispersibility in an aqueous medium tends to deteriorate.
  • the acid value can be measured according to the indicator titration method of JIS K 1557. However, the neutralizing agent used to neutralize acidic groups is removed and measured.
  • an aqueous polyurethane resin dispersion is coated on a glass plate and dried at a temperature of 60 ° C. under a reduced pressure of 20 mmHg for 24 hours.
  • -It can be dissolved in methylpyrrolidone (NMP) and the acid value can be measured according to the indicator titration method of JIS K 1557.
  • the polyurethane resin in the aqueous polyurethane resin dispersion preferably contains an alicyclic structure.
  • the content of the alicyclic structure in the aqueous polyurethane resin dispersion is not particularly limited, but is 10 to 10 on a solids basis. It is preferably 40% by weight, more preferably 12 to 30% by weight, and particularly preferably 14 to 25% by weight. If the content of the alicyclic structure in the aqueous polyurethane resin dispersion is too small, the resulting coating film may have a low modulus of elasticity and the coating film may have a low hardness.
  • the content ratio of the alicyclic structure in the aqueous polyurethane resin dispersion is too large, the swelling ratio of the dried coating film to the aqueous cleaning liquid is reduced when the obtained aqueous polyurethane resin dispersion is applied to a substrate. Therefore, it may be difficult to remove, and it may be difficult to repaint.
  • the aqueous polyurethane resin dispersion of the present invention is preferably dispersed in an aqueous medium after neutralizing the acidic groups of the prepolymer with a neutralizing agent.
  • the neutralizing agent include trimethylamine, triethylamine, tri-n-propylamine, tributylamine, triethanolamine, aminomethylpropanol, aminomethylpropanediol, aminoethylpropanediol, trihydroxymethylaminomethane, monoethanolamine.
  • Organic amines such as triisopropanolamine, inorganic alkali salts such as potassium hydroxide and sodium hydroxide, and ammonia. These may be used alone or in combination of two or more.
  • neutralizing agents from the viewpoint of workability, organic amines are preferable, and triethylamine is more preferable.
  • the amount of neutralizing agent added is, for example, 0.4 to 1.2 equivalents, preferably 0.6 to 1.0 equivalents per equivalent of acidic group.
  • the polyurethane resin is dispersed in an aqueous medium.
  • the aqueous medium include water and a mixed medium of water and a hydrophilic organic solvent.
  • the water include clean water, ion-exchanged water, distilled water, and ultrapure water, but preferably ion-exchanged in consideration of availability and particle instability due to the influence of salt. Water is mentioned.
  • hydrophilic organic solvent examples include lower monohydric alcohols such as methanol, ethanol and propanol; polyhydric alcohols such as ethylene glycol and glycerin; N-methylmorpholine, dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, N— Examples include aprotic hydrophilic organic solvents such as ethylpyrrolidone.
  • the amount of the hydrophilic organic solvent in the aqueous medium is preferably 0 to 20% by weight.
  • the coating film obtained by applying the aqueous polyurethane resin dispersion of the present invention is excellent in water resistance and solvent resistance, and is excellent in adhesion to the electrodeposition coating film.
  • electrodeposition coatings There are two types of electrodeposition coatings, anionic and cationic.
  • the cationic type uses a modified epoxy resin as a base resin and is crosslinked with isocyanate, whereas the anionic type is crosslinked by oxidative polymerization. Since the secondary hydroxyl group produced by ring opening of the epoxy group remains in the cationic type and the carboxyl group is introduced in the anionic type, the blocking agent is used in the heat drying step of the aqueous polyurethane resin dispersion of the present invention.
  • Electrodeposition coatings are used in industrial machinery such as heavy machinery and agricultural machinery, vehicles such as automobiles and bicycles, prefabricated steel frames, fire doors, building materials such as sashes, electrical equipment such as switchboards, elevators, and microwave ovens. Yes.
  • the aqueous polyurethane resin dispersion of the present invention can be applied, for example, on a substrate on which the electrodeposition coating film is formed using a coating apparatus or the like and baked at a temperature of 80 to 250 ° C.
  • a drying step can be provided before the baking step, or baking can be performed at a time after the aqueous polyurethane resin dispersion is applied and dried, and another coating material is applied and dried.
  • the blocking agent of the blocked isocyanate group is dissociated to form a cross-linked structure with an acidic group or other isocyanate group.
  • a coating film having high hardness can be formed.
  • a general method can be used for the baking process and the drying process.
  • the aqueous polyurethane resin dispersion may be used as it is, or various additives may be added to the aqueous polyurethane resin dispersion.
  • the additives include plasticizers, antifoaming agents, leveling agents, fungicides, rust inhibitors, matting agents, flame retardants, tackifiers, thixotropic agents, lubricants, antistatic agents, thickeners, thickeners. Examples thereof include a viscosity agent, a diluent, a pigment, a dye, an ultraviolet absorber, a light stabilizer, an antioxidant, and a filler.
  • the coating composition of the present invention can be coated on various substrates such as metal, ceramic, synthetic resin, nonwoven fabric, woven fabric, knitted fabric, and paper.
  • the polyurethane resin film of the present invention is produced by heating and drying a composition containing the aqueous polyurethane resin dispersion.
  • the composition containing the aqueous polyurethane resin dispersion the above-mentioned aqueous polyurethane resin dispersion may be used as it is, or various additives may be added to the aqueous polyurethane resin dispersion.
  • the additives include plasticizers, antifoaming agents, leveling agents, fungicides, rust inhibitors, matting agents, flame retardants, tackifiers, thixotropic agents, lubricants, antistatic agents, thickeners, thickeners. Examples thereof include a viscosity agent, a diluent, a pigment, a dye, an ultraviolet absorber, a light stabilizer, an antioxidant, and a filler.
  • the method for producing the polyurethane resin film is not particularly limited.
  • the above-described aqueous polyurethane resin dispersion is applied on a releasable substrate using various coating apparatuses, and then dried, and then the releasable group.
  • the method of peeling a material and the said polyurethane resin film is mentioned.
  • the peelable substrate is not particularly limited, and examples thereof include a glass substrate, a plastic substrate such as polyethylene terephthalate and polytetrafluoroethylene, and a metal substrate.
  • the surface of each of the substrates may be treated with a release agent.
  • the coating apparatus is not particularly limited, and examples thereof include a bar coater, a roll coater, a gravure roll coater, and an air spray.
  • the thickness of the polyurethane resin film of the present invention is not particularly limited, but is preferably 0.01 to 0.5 mm.
  • the molar concentration was converted to the weight fraction of the isocyanato group to obtain the free isocyanate group content.
  • the indicator used for titration is bromophenol blue.
  • aqueous polyurethane resin dispersion (0.3 g) was applied to a glass substrate with a thickness of 0.2 mm, and the weight remaining after heating and drying at 140 ° C. for 4 hours was measured. The partial concentration was used. The weight fraction was calculated using the product of the total weight of the aqueous polyurethane resin dispersion and the solid content concentration as the solid content weight.
  • (4) Content ratio of carbonate bond based on solid content The molar concentration (mol / g) of carbonate bond was calculated from the charged ratio of each raw material of the aqueous polyurethane resin dispersion and expressed as a weight fraction.
  • the weight fraction was calculated based on the solid content of the aqueous polyurethane resin dispersion by the same method as the content ratio of the urethane bond based on the solid content.
  • (5) Content ratio based on solid content of ether bond The molar concentration (mol / g) of ether bond was calculated from the charged ratio of each raw material of the aqueous polyurethane resin dispersion, and expressed as a weight fraction.
  • the weight fraction was calculated based on the solid content of the aqueous polyurethane resin dispersion by the same method as the content ratio of the urethane bond based on the solid content.
  • the sample weight was calculated based on the solid content of the aqueous polyurethane resin dispersion by the same method as the content ratio of the urethane bond based on the solid content.
  • Weight average molecular weight of the polyurethane resin in the aqueous polyurethane resin dispersion measured by gel permeation chromatography (GPC), and a conversion value obtained from a standard polystyrene calibration curve prepared in advance was described.
  • the swelling rate and dissolution rate of the coating film in water were calculated according to the following equations.
  • the solid content concentration of the dried coating film was calculated by the same method as the content ratio of the urethane bond based on the solid content.
  • (Swelling ratio) [(weight of coating film after water immersion) ⁇ (weight of coating film before water immersion)] / (weight of coating film before water immersion) ⁇ 100
  • (Dissolution rate) [(weight of coated film after application) ⁇ (solid content concentration) ⁇ (weight of coated film dried at 140 ° C.
  • the coating film weight before and after immersion was measured.
  • the coating film after immersion was further dried at 140 ° C. for 4 hours, and the coating film weight was measured.
  • the swelling rate and dissolution rate of the coating film in the aqueous cleaning solution were calculated by the following equations.
  • the solid content concentration of the dried coating film was calculated by the same method as the content ratio of the urethane bond based on the solid content.
  • Elastic modulus, tensile strength, elongation at break of polyurethane resin film measured by a method based on JIS K 7311. The measurement conditions were a measurement temperature of 23 ° C., a humidity of 50%, and a tensile speed of 100 mm / min.
  • Breaking energy It was determined by integrating the stress from the elongation of the elongation-stress curve to zero at the breaking point.
  • Adhesiveness to the electrodeposition layer surface An aqueous polyurethane resin dispersion was applied at a thickness of 0.2 mm on an automobile steel plate cationic electrodeposition coating plate (manufactured by Nippon Test Panel Co., Ltd.), and the temperature was 120 ° C for 3 hours, 140 ° C. And then dried for 30 minutes, and a cross-cut peel test was performed using the obtained coating film. The coating film was cut at an interval of 1 mm vertically and horizontally in an area of 5 mm ⁇ 5 mm, and after sticking an adhesive tape, the number of cells remaining on the surface of the electrodeposition layer when peeled was visually evaluated. The case where 15 of 25 remained was described as 15/25.
  • Example 1 [Production of aqueous polyurethane resin dispersion (1)]
  • ETERNCOLLUH-200 (registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1961; hydroxyl value 57.2 mgKOH / g; 1,6-hexanediol and carbonic acid 178 g of a polycarbonate diol obtained by reacting with dimethyl)
  • ETERRNACOLL UH-100 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1004; hydroxyl value 111.8 mg KOH / g; 1,6-hexanediol and dimethyl carbonate (Polycarbonate diol) obtained by reacting with 12.5 g of polypropylene glycol (PPG-1000; number average molecular weight 1000), 25.6 g of 2,2-dimethylolprop
  • reaction mixture was cooled to 80 ° C., 516 g was extracted from the mixture obtained by adding and mixing 11.6 g of triethylamine, and added to 730 g of water under strong stirring.
  • a chain extension reaction was carried out by adding 16.1 g of a 35% by weight aqueous hydrazine solution to obtain an aqueous polyurethane resin dispersion.
  • Table 2 shows the results of the dispersion stability of the aqueous polyurethane resin dispersion (1), the coating film water swelling ratio and the adhesion test to the electrodeposition surface.
  • polyurethane film (A) The aqueous polyurethane resin dispersion (1) was applied as a coating composition on a glass plate and dried at 60 ° C. for 2 hours and at 120 ° C. for 2 hours to obtain a good coating layer. The obtained coating layer was peeled off to produce a polyurethane film (A).
  • the film thickness of the obtained polyurethane film (A) is 0.08 mm, and the tensile properties are shown in Table 2.
  • Example 2 [Production of aqueous polyurethane resin dispersion (2)]
  • ETERRNACOLL UH-200 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1961; hydroxyl value 57.2 mgKOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • ETERNACOLL UH-100 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1004; hydroxyl value 111.8 mg KOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • polycarbonate diol 52.9 g
  • polypropylene glycol PPG-1000; number average molecular weight 1000
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • DMPZ 3,5-dimethylpyrazole
  • the content ratio of free isocyanate groups at the end of the urethanization reaction was 1.13% by weight.
  • the reaction mixture was cooled to 80 ° C., and 502 g was extracted from the mixture in which 10.0 g of triethylamine was added and mixed, and added to 700 g of water under strong stirring.
  • a chain extension reaction was performed by adding 15.2 g of a 35% by weight aqueous hydrazine solution to obtain an aqueous polyurethane resin dispersion.
  • Table 2 shows the results of the dispersion stability of the aqueous polyurethane resin dispersion (2), the coating film water swelling rate, and the adhesion test to the electrodeposition surface.
  • polyurethane film (B) The aqueous polyurethane resin dispersion (2) was applied as a coating composition on a glass plate and dried at 60 ° C. for 2 hours and 120 ° C. for 2 hours to obtain a good coating layer. The obtained coating layer was peeled off to produce a polyurethane film (B).
  • the film thickness of the obtained polyurethane film (B) is 0.08 mm, and the tensile properties are shown in Table 2.
  • Example 3 [Production of aqueous polyurethane resin dispersion (3)]
  • ETERRNACOLL UH-200 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1982; hydroxyl value 56.6 mgKOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • ETERNACOLL UH-100 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1004; hydroxyl value 111.8 mg KOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • Table 2 shows the results of the dispersion stability of the aqueous polyurethane resin dispersion (3), the coating film water swelling ratio, and the adhesion test to the electrodeposition surface.
  • polyurethane film (C) The aqueous polyurethane resin dispersion (3) was applied as a coating composition on a glass plate and dried at 60 ° C. for 2 hours and at 120 ° C. for 2 hours to obtain a good coating layer. The obtained coating layer was peeled off to produce a polyurethane film (C).
  • the film thickness of the obtained polyurethane film (C) is 0.08 mm, and the tensile properties are shown in Table 2.
  • Example 4 [Production of aqueous polyurethane resin dispersion (4)]
  • ETERRNACOLL UH-200 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1979; hydroxyl value 56.7 mgKOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • ETERRNACOLL UH-100 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1010; hydroxyl value 111.1 mg KOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • polycarbonate diol 68.7 g, polypropylene glycol (PPG-1000; number average molecular weight 1000) 34.2 g, 2,2-dimethylolpropionic acid (DMPA) 11.7 g and N-methylpyrrolidone (NMP) 152
  • PPG-1000 polypropylene glycol
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • DMPZ 3,5-dimethylpyrazole
  • the content of free isocyanate groups at the end of the urethanization reaction was 1.80% by weight.
  • the reaction mixture was cooled to 80 ° C., 598 g was extracted from the mixture obtained by adding and mixing 9.93 g of triethylamine, and added to a mixed solution of 3.12 g of triethylamine and 876 g of water under vigorous stirring.
  • a chain extension reaction was carried out by adding 9.43 g of a 35% by weight hydrazine aqueous solution to obtain an aqueous polyurethane resin dispersion.
  • Table 1 shows the content ratio of blocked isocyanate groups (in terms of isocyanate groups).
  • Table 2 shows the results of the dispersion stability of the water-based polyurethane resin dispersion (4), the coating film water swelling ratio, and the adhesion test to the electrodeposition surface.
  • polyurethane film (D) The aqueous polyurethane resin dispersion (4) was applied as a coating composition on a glass plate and dried at 60 ° C. for 2 hours and 120 ° C. for 2 hours, thereby obtaining a good coating layer. The obtained coating layer was peeled off to produce a polyurethane film (D).
  • the film thickness of the obtained polyurethane film (D) is 0.08 mm, and the tensile properties are shown in Table 2.
  • Table 2 shows the results of the dispersion stability of the aqueous polyurethane resin dispersion (5), the coating film water swelling ratio, and the adhesion test to the electrodeposition surface.
  • polyurethane film (E) The aqueous polyurethane resin dispersion (5) was applied as a coating composition on a glass plate and dried at 60 ° C. for 2 hours and at 120 ° C. for 2 hours to obtain a good coating layer. The obtained coating layer was peeled off to produce a polyurethane film (E).
  • the film thickness of the obtained polyurethane film (E) is 0.08 mm, and the tensile properties are shown in Table 2.
  • DMPZ 3,5-dimethylpyrazole
  • the content of free isocyanate groups at the end of the urethanization reaction was 2.15% by weight.
  • the reaction mixture was cooled to 80 ° C., 592 g was extracted from the mixture in which 15.2 g of triethylamine was added and mixed, and added to 841 g of water under strong stirring.
  • a chain extension reaction was carried out by adding 12.3 g of a 35% by weight hydrazine aqueous solution to obtain an aqueous polyurethane resin dispersion.
  • Table 1 shows the content ratio of blocked isocyanate groups (in terms of isocyanate groups).
  • Table 2 shows the results of the dispersion stability of the aqueous polyurethane resin dispersion (6), the coating film water swelling ratio, and the adhesion test to the electrodeposition surface.
  • polyurethane film (F) The aqueous polyurethane resin dispersion (6) was applied as a coating composition on a glass plate and dried at 60 ° C. for 2 hours and 120 ° C. for 2 hours to obtain a good coating layer. The obtained coating layer was peeled off to produce a polyurethane film (F).
  • the film thickness of the obtained polyurethane film (F) is 0.08 mm, and the tensile properties are shown in Table 2.
  • polycarbonate diol 68.9 g, polypropylene glycol (PPG-1000; number average molecular weight 1000) 33.9 g, 2,2-dimethylolpropionic acid (DMPA) 8.29 g and N-methylpyrrolidone (NMP) 148 They were charged under a stream of nitrogen. Thereafter, the mixture was heated and stirred at 60 ° C. to confirm that DMPA was dissolved. 105 g of isophorone diisocyanate (IPDI) and 0.36 g of dibutyltin dilaurate (catalyst) were added and heated to 90 ° C. to carry out a urethanization reaction over 5 hours.
  • IPDI isophorone diisocyanate
  • catalyst dibutyltin dilaurate
  • Table 1 shows the content ratio of blocked isocyanate groups (in terms of isocyanate groups).
  • Table 2 shows the dispersion stability of the aqueous polyurethane resin dispersion (7).
  • Each of the aqueous polyurethane resin dispersions of the examples has a small swelling rate and dissolution rate in water of the obtained coating film and excellent water resistance, while showing a high swelling rate of the obtained coating film with respect to an aqueous cleaning solution. It can be seen that repainting is possible.
  • Comparative Example 1 is excellent in water resistance of the coating film, the swelling ratio of the coating film into the aqueous cleaning liquid is small and repainting is difficult.
  • Comparative Example 2 is inferior in terms of the water resistance of the coating film, and Comparative Example 3 lacks dispersion stability, making it difficult to use the aqueous polyurethane resin dispersion itself.
  • the aqueous polyurethane resin dispersion of the present invention can be widely used as a raw material for paints and coating agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

耐水性及び耐溶剤性に優れながらも、塗り直しを施すことが可能な塗膜を形成しうる、(a)ポリイソシアネート化合物、(b)数平均分子量が400~3000であるポリカーボネートポリオールを含むポリオール化合物、(c)酸性基含有ポリオール化合物、及び(d)ブロック化剤を反応させて得られる(A)ポリウレタンプレポリマーと、(B)鎖延長剤とを反応させて得られるポリウレタン樹脂が、水系媒体中に分散されており、固形分基準の含有割合で、ウレタン結合とウレア結合の合計が7~15重量%、カーボネート結合が15~40重量%、エーテル結合が0.5~5重量%、前記ブロック化剤が結合したイソシアナト基が0.2~2.0重量%、酸価が10~16mgKOH/gである、水性ポリウレタン樹脂分散体、これを含むコーティング用組成物及びこれを含む組成物を加熱乾燥して得られるポリウレタン樹脂フィルム。

Description

水性ポリウレタン樹脂分散体及びその使用
 本発明は、水系媒体中にポリウレタン樹脂を分散させた水性ポリウレタン樹脂分散体に関する。また、本発明は、前記水性ポリウレタン樹脂分散体を含有するコーティング用組成物及び前記ポリウレタン樹脂分散体を含む組成物を加熱乾燥させて得られるポリウレタン樹脂フィルムに関する。
 水性ポリウレタン樹脂分散体は、接着性、耐摩耗性、ゴム的性質を有する塗膜をもたらすことができ、従来の溶剤系ポリウレタンと比較して揮発性有機物を減少できる環境対応材料であることから、溶剤系ポリウレタンからの置き換えが進んでいる材料である。
 ポリカーボネートポリオールはポリウレタン樹脂の原料となる有用な化合物であり、イソシアネート化合物との反応により、硬質フォーム、軟質フォーム、塗料、接着剤、合成皮革、インキバインダー等に用いられる耐久性のあるポリウレタン樹脂を製造することができる。ポリカーボネートポリオールを用いたポリウレタン樹脂の特徴は、カーボネート基の高い凝集力によって発現し、耐水性、耐熱性、耐油性、弾性回復性、耐摩耗性、耐候性に優れることが述べられている(非特許文献1参照)。また、ポリカーボネートポリオールを原料とした水性ウレタン樹脂分散体を塗布して得られる塗膜においても、耐光性、耐熱性、耐加水分解性、耐油性に優れることが知られている(特許文献1参照)。
 上述のようにポリカーボネートポリオールを用いた水性ポリウレタン樹脂分散体は良好な特性を発現するが、溶剤系ポリウレタンに比較して十分とはいえない。特に塗膜の耐溶剤性及び耐水性は不十分である。そのような特性を改良するために、ポリウレタン樹脂に架橋構造を導入したり、組成物としてエポキシ樹脂や多官能イソシアネート等の架橋材を導入した組成物として硬化時に架橋することが行なわれる。中でも、ブロック化されたイソシアナト基を有する水性ポリウレタン樹脂分散体は常温で安定であることから貯蔵安定性の高い一液型の架橋反応性分散体として利用価値が高い(特許文献2及び特許文献3)。ポリカーボネートポリオールを原料とした水性ポリウレタン樹脂分散体は電着塗膜への密着性が高いという特長を有することでも知られている(特許文献4)。
 さらに、本発明者らにより、ウレタン結合、ウレア結合、カーボネート結合を有し、かつブロック化されたイソシアナト基を特定量で有する水性ポリウレタン樹脂分散体により、塗布後の製膜速度を制御し、塗膜の水への再分散を可能にすることができ、これを塗布・加熱処理して得られる塗膜は、耐水性及び耐溶剤性に優れ、電着塗膜への密着性にも優れ、引張における破断エネルギーが高いため、耐衝撃性にも優れるということを見出されている(特許文献5)。
特開平10-120757号公報 特開2002-128851号公報 特開2000-104015号公報 特開2005-220255号公報 国際公開第2010/098316号公報
「最新ポリウレタン材料と応用技術」 シーエムシー出版社発行 第2章 第43ページ
 水性ポリウレタン樹脂分散体は、フィルム、塗料やコーティング材料として用いる際には、バーコーター、ロールコーター、エアスプレー等の塗布装置を用いて基材等への塗布が行われる。耐溶剤性及び耐水性の高い塗膜を形成できる、従来の水性ポリウレタン樹脂分散体は、基材へ塗布した後に塗料層や塗膜を洗ったり剥がしたりして、塗料層や塗膜を除去し、塗り直しを施すことが困難であった。特に基材との密着性の高い水性ポリウレタン樹脂分散体を使用した場合、いったん形成した塗膜を剥離するためには、有機溶媒等を用いて塗膜を溶解又は再分散させる必要があった。しかしながら、有機溶媒や多量の界面活性剤を用いると、廃液の処理が煩雑になったり、基材が溶解したり、基材上に塗布された別の被膜まで剥離する等の問題があった。
 一方で、耐衝撃性が高く、電着塗膜への密着性の高い塗膜を形成でき、かつ、塗り直しや、余分な部分に塗布された塗料層や塗膜を容易に除去できる水性ポリウレタン樹脂分散体が、建材、電気機器、車両、産業機器、事務機等の鋼板に塗布された電着塗膜の保護被膜として要望されている。
 本発明は、前記の課題を解決するためになされたものであり、具体的には、以下の構成を有する。
 本発明は、(a)ポリイソシアネート化合物、(b)数平均分子量が400~3000であるポリカーボネートポリオールを含むポリオール化合物、(c)酸性基含有ポリオール化合物、及び(d)イソシアナト基のブロック化剤を反応させて得られる(A)ポリウレタンプレポリマーと、前記ポリウレタンプレポリマーのイソシアナト基との反応性を有する(B)鎖延長剤とを反応させて得られるポリウレタン樹脂が、水系媒体中に分散されており、それぞれ固形分基準で、ウレタン結合の含有割合とウレア結合の含有割合の合計が7~15重量%であり、カーボネート結合の含有割合が15~40重量%であり、エーテル結合の含有割合が0.5~5重量%であり、前記ブロック化剤が結合したイソシアナト基のイソシアナト基換算での含有割合が0.2~2.0重量%であり、酸価が10~16mgKOH/gである、水性ポリウレタン樹脂分散体に関する。
 前記の水性ポリウレタン樹脂分散体において、(b)ポリオール化合物が、ポリエーテルポリオールを含むことが好ましい。
 前記の水性ポリウレタン樹脂分散体において、(b)ポリオール化合物100重量%中、ポリエーテルポリオールが5~30重量%であることが好ましい。
 前記のいずれかの水性ポリウレタン樹脂分散体において、重量平均分子量が25,000~60,000であることが好ましい。
 前記のいずれかの水性ポリウレタン樹脂分散体において、脂環構造の含有割合が固形分基準で10~40重量%であることが好ましい。
 前記のいずれかの水性ポリウレタン樹脂分散体において、(a)ポリイソシアネート化合物が脂環式ジイソシアネートであることが好ましい。
 前記のいずれかの水性ポリウレタン樹脂分散体において、(a)ポリイソシアネート化合物が4,4’-ジシクロヘキシルメタンジイソシアネート及び/又はイソホロンジイソシアネートであることが好ましい。
 前記のいずれかの水性ポリウレタン樹脂分散体において、(d)ブロック化剤がオキシム系化合物、ピラゾール系化合物及びマロン酸ジエステル系化合物からなる群より選ばれる一種以上であることが好ましい。
 また、本発明は、前記のいずれかの水性ポリウレタン樹脂分散体を含むコーティング用組成物に関する。
 さらに、本発明は、前記のいずれかの水性ポリウレタン樹脂分散体を含む組成物を加熱乾燥して得られるポリウレタン樹脂フィルムに関する。
 本発明の水性ポリウレタン樹脂分散体を使用して形成した塗膜は、水への膨潤が抑制される一方で、水系洗浄液(例えば、アルコール、アミン、アミノアルコール、セルソルブを含む水溶液等)への膨潤率が高い。すなわち、本発明により、耐水性及び耐溶剤性に優れながらも、塗り直しを施すことが可能な塗膜を形成しうる水性ポリウレタン樹脂分散体が提供される。さらに、本発明の水性ポリウレタン樹脂分散体又はコーティング用組成物を用いて得られる塗膜は、電着塗膜への密着性にも優れ、引張における破断エネルギーが高いため、耐衝撃性にも優れたものであり、有用性が高い。また、本発明のポリウレタン樹脂フィルムは、加飾フィルムとしても利用できる。
〔(a)ポリイソシアネート化合物〕
 本発明における(a)ポリイソシアネート化合物は、特に制限されないが、1分子当りのイソシアナト基が2個のジイソシアネート化合物が好ましい。
 具体的には1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート(TDI)、2,6-トリレンジイソシアネート、4,4’-ジフェニレンメタンジイソシアネート(MDI)、2,4-ジフェニルメタンジイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート、m-イソシアナトフェニルスルホニルイソシアネート、p-イソシアナトフェニルスルホニルイソシアネート等の芳香族ポリイソシアネート化合物;エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等の脂肪族ポリイソシアネート化合物;イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水素添加TDI)、ビス(2-イソシアナトエチル)-4-ジクロヘキセン-1,2-ジカルボキシレート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネーネート等の脂環式ポリイソシアネート化合物等が挙げられる。これらのポリイソシアネート化合物は、単独で使用してもよいし、複数種を併用してもよい。
 前記(a)ポリイソシアネート化合物の中でも、脂環式ポリイソシアネート化合物が好ましい。前記脂環式ポリイソシアネート化合物を用いることにより、黄変しにくい塗膜を得ることができ、得られた塗膜の硬度がより高くなる傾向がある。脂環式ポリイソシアネート化合物としては、脂環式ジイソシアネート化合物が好ましい。
 中でも反応性の制御と得られる塗膜の弾性率が高いという観点から、イソホロンジイソシアネート(IPDI)及び/又は4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)がより好ましい。水素添加MDIの割合を大きくすることで塗膜の耐水性を高めることができ、IPDIの割合を高めることで乾燥塗膜の水系洗浄液への膨潤率を高めることができる。
〔(b)ポリオール化合物〕
 本発明における(b)ポリオール化合物は、数平均分子量が400~3000であるポリカーボネートポリオールを含むポリオール化合物である。
〔(b-1)数平均分子量が400~3000であるポリカーボネートポリオール〕
 本発明における数平均分子量が400~3000であるポリカーボネートポリオールは、数平均分子量が400~3000であれば、特に制限されない。前記ポリカーボネートポリオールの数平均分子量が400未満である場合には、得られる塗膜の引張における破断エネルギーが低い等の問題がある。前記ポリカーボネートポリオールの数平均分子量が3000を超える場合には、得られるポリウレタン樹脂の耐水性が劣る等の問題がある。数平均分子量としては、引張における破断エネルギー及び耐水性の観点から、800~2500がより好ましい。1分子当りの水酸基数が2個のポリカーボネートジオールが好ましい。
 前記ポリカーボネートポリオールとしては、ポリオールと炭酸エステルとのエステル交換法やホスゲン法等一般的な製造方法で製造されるポリカーボネートポリオールを用いることができる。
 前記(b)ポリオール化合物中における前記(b-1)数平均分子量が400~3000であるポリカーボネートポリオールの割合は、形成される塗膜の引張における破断エネルギーの観点から、50重量%~100重量%であることが好ましく、70重量%~100重量%であることがより好ましく、85重量%~100重量%であることが特に好ましい。本発明において、ポリカーボネートポリオールの数平均分子量(Mn)は、水酸基価から次式により求められる。
Mn=(56100×価数)/水酸基価
 前記式中において、価数は1分子中の水酸基の数であり、水酸基価はJIS K 1557のB法に準拠して測定したものである。ポリカーボネートポリオールがポリカーボネートジオールの場合は価数が2となる。
 前記ポリカーボネートポリオールの原料となるポリオールとしては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等や、1,3-ブタンジオール、3-メチルペンタン-1,5-ジオール、2-エチルヘキサン-1,6-ジオール、2-メチル-1,3-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,8-オクタンジオール等の脂肪族ジオール;1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、1,4-シクロヘキサンジメタノール等の脂環式ジオール;1,4-ベンゼンジメタノール等の芳香族ジオール;ジエチレングリコール、トリエチレングリコール、ビス(ヒドロキシメチル)ジオキサン等のエーテル基含有ジオール;トリメチロールプロパン、ペンタエリスリトール等の多官能ポリオール等を挙げることができる。前記ポリオールは、一種類のみを用いて前記ポリカーボネートポリオールとすることもできるし、複数種を併用してポリカーボネートポリオールとすることもできる。
 前記ポリカーボネートポリオールとしては、前記脂肪族ジオール又は脂環式ジオールを含有するポリカーボネートポリオールが好ましく、前記脂肪族ジオールを含有するポリカーボネートポリオールがより好ましく、1,6-ヘキサンジオールを含有するポリカーボネートポリオールが特に好ましい。
〔(b-2)ポリエーテルポリオール〕
 本発明において、(b)ポリオール化合物中には、前記(b-1)数平均分子量が400~3000であるポリカーボネートポリオールの他に、(b-2)ポリエーテルポリオールを混合することができる。(b-2)ポリエーテルポリオールを混合することにより、ポリウレタン樹脂中のエーテル結合の含有割合を適切な範囲に調整して、塗膜の水系洗浄液への膨潤率を高めることができる。
 (b-2)ポリエーテルポリオールは、(b)ポリオール化合物100重量%中、5~30重量%であることが好ましく、より好ましくは5~20重量%である。
 ポリエーテルポリオールは、塗膜の水及び水系洗浄液への膨潤率、引張破断エネルギーの点から、数平均分子量400~3000のものが好ましく、より好ましくは500~2000である。
 ポリエーテルポリオールとしては、式:
 H-(O-A)-OH
(式中、Aは、炭素原子数2~6のアルキレン基であり、好ましくは2~4であり、
 nは、平均重合度を表し、好ましくは5~70であり、より好ましくは6~45である)
で示されるポリアルキレンエーテルポリオールが挙げられる。具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリ(1,3-トリメチレングリコール)、ポリテトラメチレングリコール、ポリ(1,2-テトラメチレングリコール)、ポリ(1,3-テトラメチレングリコール)、ポリ(1,2-シクロヘキサンオキシド)及びこれらのうち2種以上を含む共重合体(ポリオキシエチレン-ポリオキシプロピレン(ブロック及び/またはランダム)グリコールなど)等が挙げられる。その他、ビスフェノール-Aのエチレンオキシド付加物など低分子量ポリオールのアルキレンオキシド付加物などもポリエーテルポリオールとして挙げられる。低分子量ポリオールとしては、前記ポリカーボネートポリオールの原料となるポリオール等が挙げられる。
〔(b-3)その他のポリオール化合物〕〕
 本発明において、(b)ポリオール化合物中には、前記(b-1)数平均分子量が400~3000であるポリカーボネートポリオール及び(b-2)ポリエーテルポリオールの他に、(b-3)その他のポリオール化合物を混合することができる。
 (b-3)その他のポリオール化合物は、(b)ポリオール化合物100重量%中、45重量%以下であることが好ましく、より好ましくは0~15重量%である。
 前記その他のポリオール化合物は、特に制限されないが、例えば、ポリエステルポリオール、数平均分子量が400~3000以外のポリカーボネートポリオール、脂肪族ジオール、脂環式ジオール、芳香族ジオール、多官能ポリオール等が挙げられる。引張における破断エネルギーや塗膜の耐水性を高めるために、脂肪族ジオール及び脂環族ジオール、数平均分子量が400~3000以外のポリカーボネートポリオールを使用することができる。ここで、(b-3)その他のポリオール化合物の中には、次項で記載する(c)酸性基含有ポリオール化合物を含まない。
〔(c)酸性基含有ポリオール化合物〕
 本発明における(c)酸性基含有ポリオール化合物としては、1分子中に2個以上の水酸基と1個以上の酸性基を含有する化合物であれば、特に制限されない。酸性基としては、カルボキシ基、スルホン酸基、リン酸基、フェノール性水酸基等が挙げられる。
 具体的には、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸等の2,2-ジメチロールアルカン酸、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン、3,4-ジヒドロキシブタンスルホン酸、3,6-ジヒドロキシ-2-トルエンスルホン酸等が挙げられる。これらは、単独で使用してもよいし、複数種を併用してもよい。前記酸性基含有ポリオール化合物の中でも入手の容易さの観点から、2,2-ジメチロールプロピオン酸が好ましい。
〔(d)ブロック化剤〕
 本発明におけるイソシアナト基のブロック化剤は、特に限定されず、80~180℃でイソシアナト基から解離するものを使用することができる。80~180℃でイソシアナト基から解離するブロック化剤としては、例えば、マロン酸ジメチル、マロン酸ジエチル等のマロン酸ジエステル系化合物;1,2-ピラゾール、3,5-ジメチルピラゾール等のピラゾール系化合物;1,2,4-トリアゾール、メチルエチルケトオキシム等のオキシム系化合物;ジイソプロピルアミン、カプロラクタム等が挙げられる。これらは、単独で使用してもよいし、複数種を併用してもよい。
 前記ブロック化剤の中でも、解離温度の観点から、オキシム系化合物、ピラゾール系化合物、マロン酸ジエステル系化合物の中から選ばれる一種以上が好ましく、保存安定性及び耐衝撃性の観点から3,5-ジメチルピラゾールが特に好ましい。
〔(A)ポリウレタンプレポリマー〕
 本発明における(A)ポリウレタンプレポリマーは、(a)ポリイソシアネート化合物、(b)ポリオール化合物、(c)酸性基含有ポリオール化合物、(d)ブロック化剤を反応させて得られるポリウレタンプレポリマーである。
 前記ポリウレタンプレポリマーの製造方法は、特に制限されないが、例えば、以下のような方法が挙げられる。
 一つ目は、ウレタン化触媒存在下又は不存在下で、(a)ポリイソシアネート化合物と、(b)ポリオール化合物と、(c)酸性基含有ポリオール化合物とを反応させてウレタン化し、その後ブロック化触媒存在下又は不存在下で(d)ブロック化剤を反応させて、末端イソシアナト基の一部がブロック化された(A)ポリウレタンプレポリマーを合成する方法である。
 二つ目は、ブロック化触媒存在下又は不存在下で、(a)ポリイソシアネート化合物と、(d)ブロック化剤とを反応させて、一部をブロック化したポリイソシアネート化合物を合成し、これにウレタン化触媒存在下又は不存在下で(b)ポリオール化合物と、(c)酸性基含有ポリオール化合物とを反応させてウレタン化し、(A)ポリウレタンプレポリマーを合成する方法である。
 前記ウレタン化触媒は、特に制限されないが、例えば、スズ系触媒(トリメチルスズラウレート、ジブチルスズジラウレート等)や鉛系触媒(オクチル酸鉛等)等の金属と有機及び無機酸の塩、及び有機金属誘導体、アミン系触媒(トリエチルアミン、N-エチルモルホリン、トリエチレンジアミン等)、ジアザビシクロウンデセン系触媒等が挙げられる。中でも、反応性の観点から、ジブチルスズジラウレートが好ましい。
 前記ブロック化触媒は、特に制限されないが、例えば、ジブチルスズジラウレートやナトリウムメトキシド等のアルカリ触媒が挙げられる。
 (a)、(b)、(c)及び(d)の使用量は、得られる水性ポリウレタン樹脂分散体において、それぞれ固形分基準で、ウレタン結合の含有割合とウレア結合の含有割合の合計が7~15重量%となり、カーボネート結合の含有割合が15~40重量%となり、エーテル結合の含有割合が0.5~5重量%となり、前記ブロック化剤が結合したイソシアナト基の含有割合がイソシアナト基換算で0.2~2重量%となる範囲であれば、特に制限されないが、以下の使用量が好ましい。(b)の使用量は、(a)に対してモル基準で0.1~0.5倍が好ましく、0.15~0.45倍がより好ましく、0.2~0.4倍が特に好ましい。(c)の使用量は、(b)に対してモル基準で0.3~2.0倍が好ましく、0.4~1.6倍がより好ましく、0.5~1.3倍が特に好ましい。(d)の使用量は、(a)に対してモル基準で0.03~0.25倍が好ましく、0.04~0.20倍がより好ましく、0.06~0.16倍が特に好ましい。
〔(B)鎖延長剤〕
 本発明における(B)鎖延長剤は、特に制限されないが、例えば、ヒドラジン、エチレンジアミン、1,4-テトラメチレンジアミン、2-メチル-1,5-ペンタンジアミン、1,6-ヘキサメチレンジアミン、1,4-ヘキサメチレンジアミン、3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン、1,3-ビス(アミノメチル)シクロヘキサン、キシリレンジアミン、ピペラジン、2,5-ジメチルピペラジン、ジエチレントリアミン、トリエチレンテトラミン等のポリアミン化合物、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等のポリオール化合物、ポリエチレングリコールに代表されるポリアルキレングリコール類、水等が挙げられ、中でも好ましくは1級ジアミン化合物が挙げられる。これらは単独で使用してもよく、複数種を併用してもよい。
 前記(B)鎖延長剤の添加量は、前記(A)ウレタンプレポリマー中の鎖延長起点となるブロック化されていないイソシアナト基の当量以下であることが好ましく、より好ましくはブロック化されていないイソシアナト基の0.7~0.99当量である。ブロック化されていないイソシアナト基の当量を超えて鎖延長剤を添加すると、鎖延長されたウレタンポリマーの分子量が低下してしまう場合があり、得られた水性ポリウレタン樹脂分散体を使用して形成した塗膜の強度が低下する場合がある。
〔水性ポリウレタン樹脂分散体〕
 本発明の水性ポリウレタン樹脂分散体の製造方法は、特に制限されないが、例えば、以下の方法により製造することができる。
 前述のように、(a)ポリイソシアネート化合物、(b)ポリオール化合物、(c)酸性基含有ポリオール化合物、(d)ブロック化剤を反応させてポリウレタンプレポリマーを得る工程の後、前記ポリウレタンプレポリマー中の酸性基を中和する工程、前記ポリウレタンプレポリマーを水系媒体中に分散させる工程を経て、前記ポリウレタンプレポリマーに鎖延長剤(B)を反応させて水性ポリウレタン樹脂分散体を得る工程により水性ポリウレタン樹脂分散体を製造することができる。
 また、前記製造方法において、鎖延長剤の添加はポリウレタンプレポリマーの水系媒体への分散後でもよく、分散中でもよい。
 前記の各工程は、不活性ガス雰囲気下で行ってもよく、大気中で行ってもよい。
 本発明の水性ポリウレタン樹脂分散体は、前記水性ポリウレタン樹脂分散体中のウレタン結合とウレア結合の合計が、固形分基準で7~15重量%である必要があり、9~13重量%であることが特に好ましい。
 前記ウレタン結合とウレア結合の合計の含有割合が少なすぎると、塗膜を形成できず、乾燥後にも塗膜表面がべたつく等の問題がある。また、前記ウレタン結合とウレア結合の合計の含有割合が多すぎると、水性ポリウレタン樹脂分散体を基材に塗布した場合に、乾燥塗膜の水系洗浄液への膨潤率が低下するために除去が難しくなり、塗り直しを施すことができなくなる。
 ウレタン結合の含有割合は、得られる塗膜の引張破断エネルギー及び水系洗浄液への膨潤率の点から、好ましくは5~11重量%であり、さらに好ましくは6~10重量%であり、ウレア結合の含有割合は、塗膜の水膨潤率及び塗膜乾燥性の点から、好ましくは1.5~6重量%であり、さらに好ましくは2~5重量%である。
 本発明の水性ポリウレタン樹脂分散体は、前記水性ポリウレタン樹脂分散体中のカーボネート結合の含有割合が、固形分基準で15~40重量%である必要があり、18~35重量%であることがより好ましく、20~30重量%であることが特に好ましい。
 前記カーボネート結合の含有割合が少なすぎると、得られる塗膜の破断点伸度が小さく、衝撃に弱い塗膜しか得られないという問題がある。また、前記カーボネート結合の含有割合が多すぎると、塗膜を形成できず、乾燥後にも塗膜表面がべたつく等の問題がある。
 本発明の水性ポリウレタン樹脂分散体は、前記水性ポリウレタン樹脂分散体中のエーテル結合の含有割合が、固形分基準で0.5~5重量%である必要がある。前記エーテル結合の含有割合が多すぎると、塗膜の弾性率が低下し、得られる塗膜の水への膨潤率が高くなる傾向にある。一方、エーテル結合の含有割合が少なすぎると、乾燥塗膜の水系洗浄液への膨潤率が低く、塗料やコーティング材の塗り直しが不可能になる。エーテル結合の含有割合は、1~3重量%であることがさらに好ましい。
 エーテル結合の含有割合は、エーテル結合を含む原料の量を通じて制御することができ、(b)ポリオール化合物中の(b-2)ポリエーテルポリオールの量、エーテル結合を有するポリカーボネートポリオールの量、エーテル結合を有するポリエステルポリオールの量、エーテル結合を有する低分子量ポリオールの量を調整することにより、制御することができる。エーテル結合を含有するポリカーボネートポリオール及びポリエステルポリオールは、例えば、エーテル基含有ジオールを原料として用いることにより得られる。
 本発明の水性ポリウレタン樹脂分散体において、ブロック化剤でブロック化されているイソシアナト基の含有割合は、固形分基準かつイソシアナト基換算で0.2~2.0重量%である必要があり、0.5~1.5重量%であることが特に好ましい。
 前記ブロック化されているイソシアナト基の含有割合が少なすぎると、得られる塗膜の電着塗装板表面への密着性が悪いという問題がある。また、前記ブロック化されているイソシアナト基の含有割合が多すぎると、得られる塗膜の破断点伸度が小さく、衝撃に弱い塗膜しか得られないという問題がある。
 ブロック化剤でブロック化されているイソシアナト基の含有割合は、(a)ポリイソシアネート化合物に含まれるイソシアナト基のモル数から(b)ポリオール化合物に含まれるヒドロキシ基のモル数及び(c)酸性基含有ポリオール化合物に含まれるヒドロキシ基のモル数を差し引いた残存イソシアナト基のモル数を(X)として、(X)より少ないモル数の(d)ブロック化剤を使用する場合には、水性ポリウレタン樹脂分散体における固形分基準での(d)ブロック化剤の使用割合によって制御可能である。(d)ブロック化剤の使用量が(X)より多い場合には、ブロック化剤でブロック化されているイソシアナト基の含有割合は、水性ポリウレタン樹脂分散体における固形分基準での(X)の値により決定することができる。
 前記水性ポリウレタン樹脂分散体中のポリウレタン樹脂の重量平均分子量としては、25,000~60,000である必要があり、28,000~50,000であることがより好ましく、30,000~45,000であることが特に好ましい。前記水性ポリウレタン樹脂分散体中のポリウレタン樹脂の重量平均分子量が25,000未満である場合には、得られる塗膜の引張強度が小さくなり、衝撃に弱い塗膜となる場合がある。また、前記水性ポリウレタン樹脂分散体中のポリウレタン樹脂の重量平均分子量が60,000を超える場合は、得られる水性ポリウレタン樹脂分散体を基材に塗布した場合に、乾燥塗膜の水系洗浄液への膨潤率が低下するために除去が難しくなり、塗り直しを施すことが困難になる場合がある。
 本発明において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定したものであり、予め作成した標準ポリスチレンの検量線から求めた換算値である。
 前記水性ポリウレタン樹脂分散体の酸価としては、10~16mgKOH/gである必要があり、12~16mgKOH/gであることがより好ましく、14~16mgKOH/gであることが特に好ましい。前記水性ポリウレタン樹脂分散体の酸価が16mgKOH/gを超えると塗膜の水への膨潤率が高くなり、10mgKOH/g未満であると、水系媒体中への分散性が悪くなる傾向がある。酸価は、JIS K 1557の指示薬滴定法に準拠して測定することができる。ただし、酸性基を中和するために使用した中和剤を取り除いて測定することとする。例えば、有機アミン類を中和剤として用いた場合には、水性ポリウレタン樹脂分散体をガラス板上に塗布し、温度60℃、20mmHgの減圧下で24時間乾燥して得られた塗膜をN-メチルピロリドン(NMP)に溶解させて、JIS K 1557の指示薬滴定法に準拠して酸価を測定することができる。
 前記水性ポリウレタン樹脂分散体中のポリウレタン樹脂は脂環構造を含むことが好ましく、その場合、前記水性ポリウレタン樹脂分散体中の脂環構造の含有割合は、特に制限されないが、固形分基準で10~40重量%であることが好ましく、12~30重量%であることがより好ましく、14~25重量%であることが特に好ましい。前記水性ポリウレタン樹脂分散体中の脂環構造の含有割合が少なすぎると、得られる塗膜の弾性率が低くなる場合があり、塗膜の硬度が低くなる場合がある。また、前記水性ポリウレタン樹脂分散体中の脂環構造の含有割合が多すぎると、得られる水性ポリウレタン樹脂分散体を基材に塗布した場合に、乾燥塗膜の水系洗浄液への膨潤率が低下するために除去が難しくなり、塗り直しを施すことが困難になる場合がある。
〔中和剤〕
 本発明の水性ポリウレタン樹脂分散体は、プレポリマーの酸性基を中和剤で中和した後に水系媒体中に分散するのが好ましい。
 前記中和剤としては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリブチルアミン、トリエタノールアミン、アミノメチルプロパノール、アミノメチルプロパンジオール、アミノエチルプロパンジオール、トリハイドロキシメチルアミノメタン、モノエタノールアミン、トリイソプロパノールアミン等の有機アミン類、例えば、水酸化カリウム、水酸化ナトリウム等の無機アルカリ塩、さらには、アンモニア等が挙げられる。これらは、単独で使用してもよいし、複数種を併用してもよい。
 前記中和剤の中でも、作業性の観点から、有機アミン類が好ましく、トリエチルアミンがより好ましい。
 中和剤の添加量は、酸性基1当量あたり、例えば、0.4~1.2当量、好ましくは、0.6~1.0当量である。
〔水系媒体〕
 本発明において、ポリウレタン樹脂は水系媒体中に分散されている。前記水系媒体としては、水や水と親水性有機溶媒との混合媒体等が挙げられる。
 前記水としては、例えば、上水、イオン交換水、蒸留水、超純水等が挙げられるが、入手の容易さや塩の影響で粒子が不安定になることを考慮して、好ましくはイオン交換水が挙げられる。
 前記親水性有機溶媒としては、メタノール、エタノール、プロパノール等の低級1価アルコール;エチレングリコール、グリセリン等の多価アルコール;N-メチルモルホリン、ジメチルスルホキサイド、ジメチルホルムアミド、N-メチルピロリドン、N-エチルピロリドン等の非プロトン性の親水性有機溶媒等が挙げられる。
 前記水系媒体中の前記親水性有機溶媒の量としては、0~20重量%が好ましい。
 本発明の水性ポリウレタン樹脂分散体を塗布して得られる塗膜は、耐水性及び耐溶剤性に優れ、電着塗膜への密着性にも優れる。
 前記電着塗膜としては、アニオン型とカチオン型の2通りがある。一般的にカチオン型は基体樹脂に変性エポキシ樹脂を用い、イソシアネートで架橋させるのに対し、アニオン型は酸化重合で架橋させている。カチオン型にはエポキシ基の開環によって生成した2級水酸基が残存しており、アニオン型にはカルボキシル基が導入されているので、本発明の水性ポリウレタン樹脂分散体の加熱乾燥工程においてブロック化剤が解離して生成する遊離イソシアナト基と架橋反応を起こすと考えられる。このような電着塗膜は重機、農業機械等の産業機械、自動車、自転車等の車両、プレハブ鉄骨、防火ドア、サッシ等の建材、配電盤、エレベーター、電子レンジ等の電気機器等に利用されている。
 本発明の水性ポリウレタン樹脂分散体は、例えば前記電着塗膜が形成されている基材上に塗布装置等を用いて塗布し、80~250℃の温度で焼き付けることができる。焼き付け工程の前に、乾燥工程を設けることもできるし、水性ポリウレタン樹脂分散体を塗布して乾燥させ、他の塗料等を塗布して乾燥させた後に一度に焼き付けを行うこともできる。
 塗布された水性ポリウレタン樹脂分散体が焼き付けられることにより、ブロック化されたイソシアナト基のブロック化剤が解離し、酸性基や他のイソシアナト基等と架橋構造を形成し、より強固な密着性やより高い硬度を有する塗膜を形成することができる。
 前記焼き付け工程や前記乾燥工程は、一般的な方法を用いることができる。
〔コーティング用組成物〕
 本発明のコーティング用組成物としては、前記水性ポリウレタン樹脂分散体をそのまま用いてもよいし、前記水性ポリウレタン樹脂分散体に各種添加剤を添加してもよい。
 前記添加剤としては、可塑剤、消泡剤、レベリング剤、防かび剤、防錆剤、つや消し剤、難燃剤、粘着性付与剤、揺変剤、滑剤、帯電防止剤、減粘剤、増粘剤、希釈剤、顔料、染料、紫外線吸収剤、光安定剤、酸化防止剤、充填剤等が挙げられる。
 本発明のコーティング用組成物は、金属、セラミック、合成樹脂、不織布、織布、編布、紙等の種々の基材にコーティングすることができる。
〔ポリウレタン樹脂フィルム〕
 本発明のポリウレタン樹脂フィルムとしては、前記水性ポリウレタン樹脂分散体を含む組成物を加熱乾燥することによって製造される。
 前記水性ポリウレタン樹脂分散体を含む組成物としては、上述した水性ポリウレタン樹脂分散体をそのまま用いてもよいし、前記水性ポリウレタン樹脂分散体に各種添加剤を添加してもよい。
 前記添加剤としては、可塑剤、消泡剤、レベリング剤、防かび剤、防錆剤、つや消し剤、難燃剤、粘着性付与剤、揺変剤、滑剤、帯電防止剤、減粘剤、増粘剤、希釈剤、顔料、染料、紫外線吸収剤、光安定剤、酸化防止剤、充填剤等が挙げられる。
 前記ポリウレタン樹脂フィルムの製造方法は、特に制限されないが、例えば、離型性基材上に、上述した水性ポリウレタン樹脂分散体を各種塗布装置を用いて塗布した後、乾燥させ、前記離型性基材と前記ポリウレタン樹脂フィルムとを剥離する方法が挙げられる。
 前記剥離性基材は、特に制限されないが、例えば、ガラス基材、ポリエチレンテレフタレートやポリテトラフルオロエチレン等のプラスチック基材、金属基材等が挙げられる。前記各基材は、その表面を剥離剤処理されていてもよい。
 前記塗布装置は、特に制限されないが、例えば、バーコーター、ロールコーター、グラビアロールコーター、エアスプレー等が挙げられる。
 本発明のポリウレタン樹脂フィルムの厚さは、特に制限されないが、0.01~0.5mmが好ましい。
 次に、実施例及び比較例を挙げて、本発明を更に詳細に説明する。
 なお、物性の測定は、以下の通り行った。
(1)水酸基価:JIS K 1557のB法に準拠して測定した。
(2)遊離イソシアナト基含有割合:ウレタン化反応終了後の反応混合物を0.5gサンプリングして、0.1モル/L(リットル)のジブチルアミン-テトラヒドロフラン(THF)溶液10mLとTHF20mLの混合溶液に加えて、0.1モル/Lの塩酸で未消費のジブチルアミンを滴定した。この滴定値とブランク実験との差より反応混合物中に残存するイソシアナト基のモル濃度を算出した。モル濃度をイソシアナト基の重量分率に換算して遊離イソシアナト基含有割合とした。なお、滴定に使用した指示薬はブロモフェノールブルーである。
(3)ウレタン結合の固形分基準の含有割合、ウレア結合の固形分基準の含有割合:水性ポリウレタン樹脂分散体の各原料の仕込み割合からウレタン結合及びウレア結合のモル濃度(モル/g)を算出し、重量分率に換算したものを表記した。重量分率は水性ポリウレタン樹脂分散体の固形分を基準とする。水性ポリウレタン樹脂分散体0.3gを厚さ0.2mmでガラス基板上に塗布し、140℃で4時間加熱乾燥した後に残った重量を測定し、これを乾燥前の重量で割ったものを固形分濃度とした。水性ポリウレタン樹脂分散体の全重量と固形分濃度の積を固形分重量として、前記重量分率を算出した。
(4)カーボネート結合の固形分基準の含有割合:水性ポリウレタン樹脂分散体の各原料の仕込み割合からカーボネート結合のモル濃度(モル/g)を算出し重量分率に換算したものを表記した。重量分率は水性ポリウレタン樹脂分散体の固形分を基準とし、前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(5)エーテル結合の固形分基準の含有割合:水性ポリウレタン樹脂分散体の各原料の仕込み割合からエーテル結合のモル濃度(モル/g)を算出し重量分率に換算したものを表記した。重量分率は水性ポリウレタン樹脂分散体の固形分を基準とし、前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(6)脂環構造の固形分基準の含有割合:水性ポリウレタン樹脂分散体の各原料の仕込み割合から算出した脂環構造の重量分率を表記した。重量分率は水性ポリウレタン樹脂分散体の固形分を基準とし、前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(7)酸価:水性ポリウレタン樹脂分散体の各原料の仕込み割合からカルボキシル基のモル濃度(モル/g)を算出し、サンプル1gを中和するのに必要な水酸化カリウムの重量(mgKOH/g)に換算したものを表記した。サンプル重量は水性ポリウレタン樹脂分散体の固形分を基準とし、前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(8)水性ポリウレタン樹脂分散体中のポリウレタン樹脂の重量平均分子量:ゲルパーミエーションクロマトグラフィー(GPC)により測定したものであり、予め作成した標準ポリスチレンの検量線から求めた換算値を記した。
(9)水性ポリウレタン樹脂分散体中の固形分基準のブロック化剤が結合したイソシアナト基の含有割合(イソシアナト基換算):ブロック化剤の仕込みモル量をイソシアナト基の重量に換算し、水性ポリウレタン樹脂分散体の固形分重量で割った割合を表記した。水性ポリウレタン樹脂分散体の固形分重量は前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(10)分散安定性:製造した水性ポリウレタン樹脂分散体のうち1kgを25℃で1日間保存後に120メッシュの濾布上を通した。このとき濾過残渣が残って目詰まりを起こした場合を「×」、全ての分散体が通過した場合を「○」と表記した。
(11)塗膜の水への膨潤率及び溶解率(耐水性):ガラス板上に水性ポリウレタン樹脂分散体0.3mLを厚さ0.2mmで塗布し、塗膜の固形分濃度が90%になるまで40℃で加熱乾燥した。この塗膜を27℃のイオン交換水に8時間浸漬し、浸漬前後の塗膜重量を測定した。浸漬後の塗膜をさらに140℃で4時間乾燥させ、塗膜重量を測定した。塗膜の水への膨潤率と溶解率を下式により算出した。乾燥塗膜の固形分濃度は前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(膨潤率)=〔(水浸漬後の塗膜重量)-(水浸漬前の塗膜重量)〕/(水浸漬前の塗膜重量)×100
(溶解率)=〔(塗布後の塗膜重量)×(固形分濃度)-(水浸漬後に140℃で乾燥した塗膜の重量)〕/〔(塗布後の塗膜重量)×(固形分濃度)〕x100
(12)乾燥塗膜の水系洗浄液への膨潤率及び溶解率:ブチルセルソルブ、イソプロパノール、ジメチルエタノールアミン及びイオン交換水をそれぞれ重量基準で5%、4%、1%及び90%含有する水系洗浄液を調整した。ガラス板上に水性ポリウレタン樹脂分散体0.3mLを厚さ0.2mmで塗布し、塗膜の固形分濃度が90%になるまで40℃で加熱乾燥した。この塗膜を27℃の水系洗浄液に3分間浸漬し、浸漬前後の塗膜重量を測定した。浸漬後の塗膜をさらに140℃で4時間乾燥させ、塗膜重量を測定した。塗膜の水系洗浄液への膨潤率と溶解率を下式により算出した。乾燥塗膜の固形分濃度は前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(膨潤率)=〔(水系洗浄液浸漬後の塗膜重量)-(水系洗浄液浸漬前の塗膜重量)〕/(水系洗浄液浸漬前の塗膜重量)×100
(溶解率)=〔(塗布後の塗膜重量)×(固形分濃度)-(水系洗浄液浸漬後に140℃で乾燥した塗膜の重量)〕/〔(塗布後の塗膜重量)×(固形分濃度)〕x100
 水系洗浄液に浸漬させた塗膜がガラス板から剥離して水系洗浄液中に散在し、膜として残らない場合を「*」と記した。
(13)ポリウレタン樹脂フィルムの弾性率、引張強度、破断点伸度:JIS K 7311に準拠する方法で測定した。なお、測定条件は、測定温度23℃、湿度50%、引張速度100mm/分とした。
(14)破断エネルギー:伸度-応力曲線の伸度ゼロから破断点伸度までの応力を積分して求めた。
(15)電着層表面への密着性:自動車鋼板カチオン電着塗板(日本テストパネル社製)上に水性ポリウレタン樹脂分散体を厚さ0.2mmで塗布し、120℃で3時間、140℃で30分間加熱乾燥し、得られた塗膜を用いて碁盤目剥離試験を行った。塗膜に5mm×5mmの面積に縦横1mm間隔で切り目を入れ、粘着テープを貼った後、剥がしたときに電着層表面に残っているマスの数を目視で数えて評価した。25個中15個が残っていた場合を15/25と記載した。
[実施例1]
〔水性ポリウレタン樹脂分散体(1)の製造〕
 攪拌機、還流冷却管及び温度計を挿入した反応容器に、ETERNACOLL UH-200(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1961;水酸基価57.2mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)178g、ETERNACOLL UH-100(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1004;水酸基価111.8mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)51.6g、ポリプロピレングリコール(PPG-1000;数平均分子量1000)25.3g、2,2-ジメチロールプロピオン酸(DMPA)15.6g及びN-メチルピロリドン(NMP)130gを窒素気流下で仕込んだ。その後60℃で加熱攪拌しDMPAが溶解したのを確認した。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を128g、ジブチルスズジラウリレート(触媒)を0.33g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)10.7gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含有割合は1.18重量%であった。反応混合物を80℃まで冷却しこれにトリエチルアミン11.6gを添加・混合したものの中から516gを抜き出して、強攪拌下のもと水730gの中に加えた。35重量%のヒドラジン水溶液16.1gを加えて鎖延長反応を行い水性ポリウレタン樹脂分散体を得た。得られた水性ポリウレタン樹脂分散体(1)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、エーテル結合の含有割合、酸価、重量平均分子量、脂環構造の含有割合及びブロック化イソシアナト基の含有割合(イソシアナト基換算)を表1に記す。水性ポリウレタン樹脂分散体(1)の分散安定性、塗膜水膨潤率及び電着表面への密着性試験の結果を表2に記す。
〔ポリウレタンフィルム(A)の製造〕
 水性ポリウレタン樹脂分散体(1)をコーティング用組成物としてガラス板上に塗布し、60℃で2時間、120℃で2時間乾燥させることにより、良好なコーティング層が得られた。得られたコーティング層を剥離して、ポリウレタンフィルム(A)を作成した。得られたポリウレタンフィルム(A)の膜厚は0.08mmであり、引張特性を表2に記す。
[実施例2]
〔水性ポリウレタン樹脂分散体(2)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-200(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1961;水酸基価57.2mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)180g、ETERNACOLL UH-100(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1004;水酸基価111.8mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)52.9g、ポリプロピレングリコール(PPG-1000;数平均分子量1000)26.3g、2,2-ジメチロールプロピオン酸(DMPA)13.3g及びN-メチルピロリドン(NMP)129gを窒素気流下で仕込んだ。その後60℃で加熱攪拌しDMPAが溶解したのを確認した。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を123g、ジブチルスズジラウリレート(触媒)を0.33g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)10.2gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含有割合は1.13重量%であった。反応混合物を80℃まで冷却しこれにトリエチルアミン10.0gを添加・混合したものの中から502gを抜き出して、強攪拌下のもと水700gの中に加えた。35重量%のヒドラジン水溶液15.2gを加えて鎖延長反応を行い水性ポリウレタン樹脂分散体を得た。得られた水性ポリウレタン樹脂分散体(2)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、エーテル結合の含有割合、酸価、重量平均分子量、脂環構造の含有割合及びブロック化イソシアナト基の含有割合(イソシアナト基換算)を表1に記す。水性ポリウレタン樹脂分散体(2)の分散安定性、塗膜水膨潤率及び電着表面への密着性試験の結果を表2に記す。
〔ポリウレタンフィルム(B)の製造〕
 水性ポリウレタン樹脂分散体(2)をコーティング用組成物としてガラス板上に塗布し、60℃で2時間、120℃で2時間乾燥させることにより、良好なコーティング層が得られた。得られたコーティング層を剥離して、ポリウレタンフィルム(B)を作成した。得られたポリウレタンフィルム(B)の膜厚は0.08mmであり、引張特性を表2に記す。
[実施例3]
〔水性ポリウレタン樹脂分散体(3)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-200(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1982;水酸基価56.6mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)190g、ETERNACOLL UH-100(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1004;水酸基価111.8mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)54.6g、ポリプロピレングリコール(PPG-1000;数平均分子量1000)27.2g、2,2-ジメチロールプロピオン酸(DMPA)11.7g及びN-メチルピロリドン(NMP)133.3gを窒素気流下で仕込んだ。その後60℃で加熱攪拌しDMPAが溶解したのを確認した。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を120g、ジブチルスズジラウリレート(触媒)を0.33g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)9.97gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含有割合は1.09重量%であった。反応混合物を80℃まで冷却しこれにトリエチルアミン8.76gを添加・混合したものの中から513gを抜き出して、強攪拌下のもと水721gの中に加えた。35重量%のヒドラジン水溶液14.4gを加えて鎖延長反応を行い水性ポリウレタン樹脂分散体を得た。得られた水性ポリウレタン樹脂分散体(3)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、エーテル結合の含有割合、酸価、重量平均分子量、脂環構造の含有割合及びブロック化イソシアナト基の含有割合(イソシアナト基換算)を表1に記す。水性ポリウレタン樹脂分散体(3)の分散安定性、塗膜水膨潤率及び電着表面への密着性試験の結果を表2に記す。
〔ポリウレタンフィルム(C)の製造〕
 水性ポリウレタン樹脂分散体(3)をコーティング用組成物としてガラス板上に塗布し、60℃で2時間、120℃で2時間乾燥させることにより、良好なコーティング層が得られた。得られたコーティング層を剥離して、ポリウレタンフィルム(C)を作成した。得られたポリウレタンフィルム(C)の膜厚は0.08mmであり、引張特性を表2に記す。
[実施例4]
〔水性ポリウレタン樹脂分散体(4)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-200(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1979;水酸基価56.7mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)230g、ETERNACOLL UH-100(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1010;水酸基価111.1mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)68.7g、ポリプロピレングリコール(PPG-1000;数平均分子量1000)34.2g、2,2-ジメチロールプロピオン酸(DMPA)11.7g及びN-メチルピロリドン(NMP)152gを窒素気流下で仕込んだ。その後60℃で加熱攪拌しDMPAが溶解したのを確認した。イソホロンジイソシアネート(IPDI)を114g、ジブチルスズジラウリレート(触媒)を0.36g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)11.3gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含有割合は1.80重量%であった。反応混合物を80℃まで冷却しこれにトリエチルアミン9.93gを添加・混合したものの中から598gを抜き出して、強攪拌下のもとトリエチルアミン3.12g及び水876gの混合溶液中に加えた。35重量%のヒドラジン水溶液9.43gを加えて鎖延長反応を行い水性ポリウレタン樹脂分散体を得た。得られた水性ポリウレタン樹脂分散体(4)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、エーテル結合の含有割合、酸価、重量平均分子量、脂環構造の含有割合及びブロック化イソシアナト基の含有割合(イソシアナト基換算)を表1に記す。水性ポリウレタン樹脂分散体(4)の分散安定性、塗膜水膨潤率及び電着表面への密着性試験の結果を表2に記す。
〔ポリウレタンフィルム(D)の製造〕
 水性ポリウレタン樹脂分散体(4)をコーティング用組成物としてガラス板上に塗布し、60℃で2時間、120℃で2時間乾燥させることにより、良好なコーティング層が得られた。得られたコーティング層を剥離して、ポリウレタンフィルム(D)を作成した。得られたポリウレタンフィルム(D)の膜厚は0.08mmであり、引張特性を表2に記す。
[比較例1]
〔水性ポリウレタン樹脂分散体(5)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-200(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量2000;水酸基価56.1mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)272g、2,2-ジメチロールプロピオン酸(DMPA)18.5g及びN-メチルピロリドン(NMP)176gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を125g、ジブチルスズジラウリレート(触媒)を0.33g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)10.4gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含有割合は1.78重量%であった。反応混合物にトリエチルアミン13.9gを添加・混合したものの中から564gを抜き出して、強攪拌下のもと水870gの中に加えた。ついで35重量%の2-メチル-1,5-ペンタンジアミン水溶液36.5gを加えて鎖延長反応を行い水性ポリウレタン樹脂分散体を得た。得られた水性ポリウレタン樹脂分散体(5)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、エーテル結合の含有割合、酸価、重量平均分子量、脂環構造の含有割合及びブロック化イソシアナト基の含有割合(イソシアナト基換算)を表1に記す。水性ポリウレタン樹脂分散体(5)の分散安定性、塗膜水膨潤率及び電着表面への密着性試験の結果を表2に記す。
〔ポリウレタンフィルム(E)の製造〕
 水性ポリウレタン樹脂分散体(5)をコーティング用組成物としてガラス板上に塗布し、60℃で2時間、120℃で2時間乾燥させることにより、良好なコーティング層が得られた。得られたコーティング層を剥離して、ポリウレタンフィルム(E)を作成した。得られたポリウレタンフィルム(E)の膜厚は0.08mmであり、引張特性を表2に記す。
[比較例2]
〔水性ポリウレタン樹脂分散体(6)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-200(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1972;水酸基価56.9mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)200g、ETERNACOLL UH-100(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1004;水酸基価111.8mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)58.0g、ポリプロピレングリコール(PPG-1000;数平均分子量1000)29.3g、2,2-ジメチロールプロピオン酸(DMPA)20.4g及びN-メチルピロリドン(NMP)153gを窒素気流下で仕込んだ。その後60℃で加熱攪拌しDMPAが溶解したのを確認した。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を154g、ジブチルスズジラウリレート(触媒)を0.33g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)12.9gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含有割合は2.15重量%であった。反応混合物を80℃まで冷却しこれにトリエチルアミン15.2gを添加・混合したものの中から592gを抜き出して、強攪拌下のもと水841gの中に加えた。35重量%のヒドラジン水溶液12.3gを加えて鎖延長反応を行い水性ポリウレタン樹脂分散体を得た。得られた水性ポリウレタン樹脂分散体(6)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、エーテル結合の含有割合、酸価、重量平均分子量、脂環構造の含有割合及びブロック化イソシアナト基の含有割合(イソシアナト基換算)を表1に記す。水性ポリウレタン樹脂分散体(6)の分散安定性、塗膜水膨潤率及び電着表面への密着性試験の結果を表2に記す。
〔ポリウレタンフィルム(F)の製造〕
 水性ポリウレタン樹脂分散体(6)をコーティング用組成物としてガラス板上に塗布し、60℃で2時間、120℃で2時間乾燥させることにより、良好なコーティング層が得られた。得られたコーティング層を剥離して、ポリウレタンフィルム(F)を作成した。得られたポリウレタンフィルム(F)の膜厚は0.08mmであり、引張特性を表2に記す。
[比較例3]
〔水性ポリウレタン樹脂分散体(7)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-200(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1979;水酸基価56.7mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)230g、ETERNACOLL UH-100(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1010;水酸基価111.1mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)68.9g、ポリプロピレングリコール(PPG-1000;数平均分子量1000)33.9g、2,2-ジメチロールプロピオン酸(DMPA)8.29g及びN-メチルピロリドン(NMP)148gを窒素気流下で仕込んだ。その後60℃で加熱攪拌しDMPAが溶解したのを確認した。イソホロンジイソシアネート(IPDI)を105g、ジブチルスズジラウリレート(触媒)を0.36g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)10.3gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含有割合は1.67重量%であった。反応混合物を80℃まで冷却しこれにトリエチルアミン7.07gを添加・混合したものの中から589gを抜き出して、強攪拌下のもと水866gの中に加えた。35重量%のヒドラジン水溶液8.31gを加えて鎖延長反応を行い水性ポリウレタン樹脂分散体を得た。得られた水性ポリウレタン樹脂分散体(7)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、エーテル結合の含有割合、酸価、重量平均分子量、脂環構造の含有割合及びブロック化イソシアナト基の含有割合(イソシアナト基換算)を表1に記す。水性ポリウレタン樹脂分散体(7)の分散安定性を表2に記す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例の各水性ポリウレタン樹脂分散体は、得られた塗膜の水への膨潤率及び溶解率が小さく耐水性に優れる一方、水系洗浄液に対して、得られた塗膜の高い膨潤率を示し、塗り直しが可能なことがわかる。
 一方、比較例1は、塗膜の耐水性には優れるものの、塗膜の水系洗浄液への膨潤率が小さく、塗り直しが困難である。比較例2は、塗膜の耐水性の点で劣り、比較例3は、分散安定性に欠け、水性ポリウレタン樹脂分散体の使用自体が困難である。
 本発明の水性ポリウレタン樹脂分散体は、塗料やコーティング剤の原料等として広く利用できる。

Claims (10)

  1.  (a)ポリイソシアネート化合物、(b)数平均分子量が400~3000であるポリカーボネートポリオールを含むポリオール化合物、(c)酸性基含有ポリオール化合物、及び(d)イソシアナト基のブロック化剤を反応させて得られる(A)ポリウレタンプレポリマーと、前記ポリウレタンプレポリマーのイソシアナト基との反応性を有する(B)鎖延長剤とを反応させて得られるポリウレタン樹脂が、水系媒体中に分散されており、
     それぞれ固形分基準で、ウレタン結合の含有割合とウレア結合の含有割合の合計が7~15重量%であり、カーボネート結合の含有割合が15~40重量%であり、エーテル結合の含有割合が0.5~5重量%であり、前記ブロック化剤が結合したイソシアナト基のイソシアナト基換算での含有割合が0.2~2.0重量%であり、酸価が10~16mgKOH/gである、
     水性ポリウレタン樹脂分散体。
  2.  (b)ポリオール化合物が、ポリエーテルポリオールを含む、請求項1記載の水性ポリウレタン樹脂分散体。
  3.  (b)ポリオール化合物100重量%中、ポリエーテルポリオールが5~30重量%である、請求項2記載の水性ポリウレタン樹脂分散体。
  4.  重量平均分子量が25,000~60,000である、請求項1~3のいずれか一項に記載の水性ポリウレタン樹脂分散体。
  5.  ポリウレタン樹脂が脂環構造を含み、かつ脂環構造の含有割合が固形分基準で10~40重量%である、請求項1~4のいずれか一項に記載の水性ポリウレタン樹脂分散体。
  6.  (a)ポリイソシアネート化合物が脂環式ジイソシアネートである、請求項1~5のいずれか一項に記載の水性ポリウレタン樹脂分散体。
  7.  (a)ポリイソシアネート化合物が4,4’-ジシクロヘキシルメタンジイソシアネート及び/又はイソホロンジイソシアネートである、請求項1~6のいずれか一項に記載の水性ポリウレタン樹脂分散体。
  8.  (d)ブロック化剤がオキシム系化合物、ピラゾール系化合物及びマロン酸ジエステル系化合物からなる群より選ばれる一種以上である、請求項1~7のいずれか一項に記載の水性ポリウレタン樹脂分散体。
  9.  請求項1~8のいずれか一項に記載の水性ポリウレタン樹脂分散体を含むコーティング用組成物。
  10.  請求項1~8のいずれか一項に記載の水性ポリウレタン樹脂分散体を含む組成物を加熱乾燥して得られるポリウレタン樹脂フィルム。
PCT/JP2012/052941 2011-02-10 2012-02-09 水性ポリウレタン樹脂分散体及びその使用 WO2012108492A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137023796A KR20140012659A (ko) 2011-02-10 2012-02-09 수성 폴리우레탄 수지 분산체 및 그 사용
US13/984,789 US20130317171A1 (en) 2011-02-10 2012-02-09 Aqueous polyurethane resin dispersion and use thereof
CN2012800084504A CN103347923A (zh) 2011-02-10 2012-02-09 水性聚氨酯树脂分散体及其用途
JP2012556924A JP5870939B2 (ja) 2011-02-10 2012-02-09 水性ポリウレタン樹脂分散体及びその使用
EP12744180.6A EP2674443A4 (en) 2011-02-10 2012-02-09 AQUEOUS POLYURETHANE-DISPERSION AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011027926 2011-02-10
JP2011-027926 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108492A1 true WO2012108492A1 (ja) 2012-08-16

Family

ID=46638704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052941 WO2012108492A1 (ja) 2011-02-10 2012-02-09 水性ポリウレタン樹脂分散体及びその使用

Country Status (6)

Country Link
US (1) US20130317171A1 (ja)
EP (1) EP2674443A4 (ja)
JP (1) JP5870939B2 (ja)
KR (1) KR20140012659A (ja)
CN (1) CN103347923A (ja)
WO (1) WO2012108492A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038565A1 (ja) * 2012-09-06 2014-03-13 宇部興産株式会社 ゴム積層体及びその製造方法
WO2015033939A1 (ja) * 2013-09-03 2015-03-12 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその使用
CN104995224A (zh) * 2013-01-07 2015-10-21 宇部兴产株式会社 水性树脂分散体及其使用
WO2015194671A1 (ja) * 2014-06-20 2015-12-23 宇部興産株式会社 水性ポリウレタン樹脂分散体
JP2018003004A (ja) * 2016-06-23 2018-01-11 宇部興産株式会社 ポリカーボネートポリオール、及び水性ポリウレタン樹脂分散体
JP2020537035A (ja) * 2017-10-16 2020-12-17 ロケット フレールRoquette Freres オリゴカーボネートポリオールを使用して合成したマルチブロックポリマー
CN112300355A (zh) * 2020-10-30 2021-02-02 徐州永泽新材料科技有限公司 一种双组分水性聚氨酯、其用途、由其形成的聚氨酯复合抛光垫及制备方法
JP2021066782A (ja) * 2019-10-21 2021-04-30 Dic株式会社 ブロックイソシアネートプレポリマー、硬化性組成物、硬化物及び接着剤
WO2022097333A1 (ja) * 2020-11-05 2022-05-12 Dic株式会社 積層体、及び、合成皮革

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980451B (zh) * 2014-06-10 2016-02-03 山东省农业科学院农业质量标准与检测技术研究所 羟烃基封端聚硅氧烷改性阳离子水性聚氨酯的制备方法
KR20170072893A (ko) * 2014-10-24 2017-06-27 도레이 카부시키가이샤 시트 형상물
WO2017058504A1 (en) * 2015-10-02 2017-04-06 Resinate Materials Group, Inc. High performance coatings
KR101714740B1 (ko) * 2016-05-17 2017-03-09 주식회사 노루알앤씨 폴리우레탄 수분산액을 포함하는 수성 박리성 도료 조성물
CN105885664A (zh) * 2016-07-02 2016-08-24 安徽中恩化工有限公司 一种高回弹浸胶劳保手套涂层的制备方法
CN106010209A (zh) * 2016-07-02 2016-10-12 安徽中恩化工有限公司 一种pvc手套涂层用自消光水性聚氨酯的制备方法
JP6891701B2 (ja) * 2017-07-26 2021-06-18 日油株式会社 ウレタン塗料組成物、硬化塗膜、および樹脂部材
KR102276125B1 (ko) * 2017-10-19 2021-07-13 한국조선해양 주식회사 우레아 변성 폴리우레탄 수분산액을 포함하는 박리성 도료 조성물 및 이의 제조방법
KR102212843B1 (ko) * 2018-10-30 2021-02-05 한국조선해양 주식회사 우레아변성 폴리우레탄 수분산액을 포함하는 lng선 화물창 전용 박리성 도료 조성물 및 그 제조방법
KR102374579B1 (ko) * 2021-11-26 2022-03-17 주식회사 유상 수성 플렉소 인쇄용 잉크 조성물 및 그의 제조 방법
CN114108334A (zh) * 2021-11-26 2022-03-01 旭川化学(苏州)有限公司 一种高剥离耐丁酮水性聚氨酯树脂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120757A (ja) 1996-10-21 1998-05-12 Nikka Chem Co Ltd ポリカーボネート系ポリウレタン樹脂組成物
JP2000104015A (ja) 1998-09-30 2000-04-11 Dai Ichi Kogyo Seiyaku Co Ltd 熱硬化性水系防錆塗料
JP2002128851A (ja) 2000-10-30 2002-05-09 Dai Ichi Kogyo Seiyaku Co Ltd 熱架橋性水系ポリウレタン樹脂組成物及び該組成物を含有する不織布補強剤
JP2005220255A (ja) 2004-02-06 2005-08-18 Asahi Denka Kogyo Kk 水分散型ポリウレタン組成物
JP2007092195A (ja) * 2005-09-27 2007-04-12 Dai Ichi Kogyo Seiyaku Co Ltd 繊維積層体表皮層用水系樹脂組成物、繊維積層体の製造方法及び合成皮革
WO2009145242A1 (ja) * 2008-05-29 2009-12-03 宇部興産株式会社 水性ポリウレタン樹脂分散体、その製造方法、及びそれを含有する塗料組成物
WO2010098318A1 (ja) * 2009-02-26 2010-09-02 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
WO2010098317A1 (ja) * 2009-02-26 2010-09-02 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
WO2010098316A1 (ja) 2009-02-26 2010-09-02 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
WO2011010719A1 (ja) * 2009-07-23 2011-01-27 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936794A1 (de) * 1989-11-04 1991-05-08 Bayer Ag Waessriges ueberzugsmittel und die verwendung von in wasser dispergierbaren polyurethanpolyharnstoffen als bindemittel
JPH06248046A (ja) * 1993-02-23 1994-09-06 Toagosei Chem Ind Co Ltd 水性ポリウレタン組成物
DE19548030A1 (de) * 1995-12-21 1997-06-26 Bayer Ag Verwendung wässriger Dispersionen nachvernetzbarer Beschichtungsmittel zur Textil- und Lederbeschichtung
CA2612889C (en) * 2005-07-01 2011-06-28 The Sherwin-Williams Company Multi-layer coating system including a hydroxyl modified polyurethane dispersion binder
GB2492934B (en) * 2010-07-02 2018-07-25 Kansai Paint Co Ltd Method for forming multilayer coating film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120757A (ja) 1996-10-21 1998-05-12 Nikka Chem Co Ltd ポリカーボネート系ポリウレタン樹脂組成物
JP2000104015A (ja) 1998-09-30 2000-04-11 Dai Ichi Kogyo Seiyaku Co Ltd 熱硬化性水系防錆塗料
JP2002128851A (ja) 2000-10-30 2002-05-09 Dai Ichi Kogyo Seiyaku Co Ltd 熱架橋性水系ポリウレタン樹脂組成物及び該組成物を含有する不織布補強剤
JP2005220255A (ja) 2004-02-06 2005-08-18 Asahi Denka Kogyo Kk 水分散型ポリウレタン組成物
JP2007092195A (ja) * 2005-09-27 2007-04-12 Dai Ichi Kogyo Seiyaku Co Ltd 繊維積層体表皮層用水系樹脂組成物、繊維積層体の製造方法及び合成皮革
WO2009145242A1 (ja) * 2008-05-29 2009-12-03 宇部興産株式会社 水性ポリウレタン樹脂分散体、その製造方法、及びそれを含有する塗料組成物
WO2010098318A1 (ja) * 2009-02-26 2010-09-02 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
WO2010098317A1 (ja) * 2009-02-26 2010-09-02 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
WO2010098316A1 (ja) 2009-02-26 2010-09-02 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
WO2011010719A1 (ja) * 2009-07-23 2011-01-27 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Comprehensive Materials and Technology for a Novel Polyurethane Production", CMC PUBLISHING CO., LTD., pages: 43
See also references of EP2674443A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038565A1 (ja) * 2012-09-06 2014-03-13 宇部興産株式会社 ゴム積層体及びその製造方法
JPWO2014038565A1 (ja) * 2012-09-06 2016-08-12 宇部興産株式会社 ゴム積層体及びその製造方法
CN104995224A (zh) * 2013-01-07 2015-10-21 宇部兴产株式会社 水性树脂分散体及其使用
CN104995224B (zh) * 2013-01-07 2017-09-01 宇部兴产株式会社 水性树脂分散体及其使用
WO2015033939A1 (ja) * 2013-09-03 2015-03-12 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその使用
JPWO2015033939A1 (ja) * 2013-09-03 2017-03-02 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその使用
JPWO2015194671A1 (ja) * 2014-06-20 2017-06-01 宇部興産株式会社 水性ポリウレタン樹脂分散体
WO2015194671A1 (ja) * 2014-06-20 2015-12-23 宇部興産株式会社 水性ポリウレタン樹脂分散体
JP2018003004A (ja) * 2016-06-23 2018-01-11 宇部興産株式会社 ポリカーボネートポリオール、及び水性ポリウレタン樹脂分散体
JP2020537035A (ja) * 2017-10-16 2020-12-17 ロケット フレールRoquette Freres オリゴカーボネートポリオールを使用して合成したマルチブロックポリマー
JP7328233B2 (ja) 2017-10-16 2023-08-16 ロケット フレール オリゴカーボネートポリオールを使用して合成したマルチブロックポリマー
JP2021066782A (ja) * 2019-10-21 2021-04-30 Dic株式会社 ブロックイソシアネートプレポリマー、硬化性組成物、硬化物及び接着剤
CN112300355A (zh) * 2020-10-30 2021-02-02 徐州永泽新材料科技有限公司 一种双组分水性聚氨酯、其用途、由其形成的聚氨酯复合抛光垫及制备方法
WO2022097333A1 (ja) * 2020-11-05 2022-05-12 Dic株式会社 積層体、及び、合成皮革
JP7148023B1 (ja) * 2020-11-05 2022-10-05 Dic株式会社 積層体、及び、合成皮革

Also Published As

Publication number Publication date
KR20140012659A (ko) 2014-02-03
US20130317171A1 (en) 2013-11-28
EP2674443A4 (en) 2014-06-25
EP2674443A1 (en) 2013-12-18
CN103347923A (zh) 2013-10-09
JP5870939B2 (ja) 2016-03-01
JPWO2012108492A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5870939B2 (ja) 水性ポリウレタン樹脂分散体及びその使用
JP5697225B2 (ja) 水性ポリウレタン樹脂分散体及びその製造方法
JP5716661B2 (ja) 水性ポリウレタン樹脂分散体及びその製造方法
JP5870938B2 (ja) 水性ポリウレタン樹脂分散体及びその使用
JP5716662B2 (ja) 水性ポリウレタン樹脂分散体及びその製造方法
JP5928459B2 (ja) 水性ポリウレタン樹脂分散体及びそれを含有するコーティング用組成物
JP6015747B2 (ja) 水性ポリウレタン樹脂分散体
WO2015194671A1 (ja) 水性ポリウレタン樹脂分散体
WO2015033939A1 (ja) 水性ポリウレタン樹脂分散体及びその使用
JP6183124B2 (ja) 水性ポリウレタン樹脂分散体
JP7487524B2 (ja) 耐破壊特性材料用の水性アクリル・ウレタン組成物
JP7484331B2 (ja) 耐破壊特性材料用の水性ポリウレタン樹脂分散体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556924

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13984789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012744180

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137023796

Country of ref document: KR

Kind code of ref document: A