WO2014038565A1 - ゴム積層体及びその製造方法 - Google Patents

ゴム積層体及びその製造方法 Download PDF

Info

Publication number
WO2014038565A1
WO2014038565A1 PCT/JP2013/073743 JP2013073743W WO2014038565A1 WO 2014038565 A1 WO2014038565 A1 WO 2014038565A1 JP 2013073743 W JP2013073743 W JP 2013073743W WO 2014038565 A1 WO2014038565 A1 WO 2014038565A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
polyurethane resin
aqueous
weight
content
Prior art date
Application number
PCT/JP2013/073743
Other languages
English (en)
French (fr)
Inventor
中野 博之
敦史 森上
文夫 足立
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2014534375A priority Critical patent/JP6187465B2/ja
Publication of WO2014038565A1 publication Critical patent/WO2014038565A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6625Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to a rubber laminate comprising a coating layer formed from an aqueous coating agent containing an aqueous polyurethane resin dispersion and a rubber substrate, and a method for producing the same.
  • Patent Document 1 a solvent-based coating agent containing a polyurethane resin and a silicone compound has been often used as a coating agent for a weather strip of a vehicle or a coating agent for a wiper blade.
  • Patent Document 2 a coating agent for a weather strip of a vehicle or a coating agent for a wiper blade.
  • VOC volatile organic compounds
  • Water-based coating agents generally have poor adhesion to the rubber surface, and therefore, solvent treatment and primer treatment have been performed on the rubber surface prior to application of the coating agent.
  • the manufacturing process is increased by one, which is complicated. Therefore, by adding a reactive additive such as a silane coupling agent or carbodiimide to the aqueous coating agent containing the aqueous polyurethane resin dispersion, the adhesion to the rubber surface is improved without any primer treatment.
  • a reactive additive such as a silane coupling agent or carbodiimide
  • JP-A-8-109349 Japanese Patent Laid-Open No. 2004-083641 JP 2002-030247 A JP 2007-167704 A
  • Rubber base coatings often require slipperiness, as represented by wiper blades and weatherstrips. Even if an aqueous coating agent that forms a coating layer having a high modulus of elasticity is applied to the rubber surface to obtain a surface with a low coefficient of friction and good slipperiness, such a coating layer may be made of chloroprene rubber, natural rubber, etc. There is a problem of poor adhesion to a rubber substrate, and it has been difficult to achieve both good adhesion to a rubber substrate and a low coefficient of static friction in a coating layer formed using an aqueous coating agent.
  • the present invention is a coating layer formed from an aqueous coating agent containing an aqueous polyurethane resin dispersion, and has a coating layer having sufficient adhesion to a rubber surface such as chloroprene and natural rubber and having a low static friction coefficient. It is an object of the present invention to provide a rubber laminate and a method for producing the same.
  • a rubber laminate comprising a coating layer formed from an aqueous coating agent containing an aqueous polyurethane resin dispersion and a rubber substrate, wherein the aqueous polyurethane resin dispersion is derived from a polycarbonate polyol.
  • a rubber laminate comprising a polyurethane resin having units, having a content of an alicyclic structure of 43% by weight or less on a solid content basis, and having an isocyanate group bound to a blocking agent.
  • the aqueous polyurethane resin dispersion is (a) a polyisocyanate compound, (b) a polycarbonate polyol having a number average molecular weight of 400 to 4000, (c) an acidic group-containing polyol compound, and (d) a blocking agent for an isocyanate group. (A) obtained by reacting any other polyol compound (A) with a polyurethane prepolymer and (B) a chain extender having reactivity with the isocyanate group of the polyurethane prepolymer.
  • the aqueous coating agent further contains inorganic particles and / or resin beads.
  • any of the above [1] to [11], comprising a coating layer formed by applying an aqueous coating agent to the surface of a rubber substrate or a rubber substrate treated with a primer composition, and then heating. This is a rubber laminate.
  • Coating layer and vulcanization formed by applying an aqueous coating agent to the surface of a base material made of unvulcanized rubber or a base material made of unvulcanized rubber treated with a primer composition, and then heating A rubber laminate according to any one of [1] to [11], comprising the rubber base.
  • An aqueous coating agent containing an aqueous polyurethane resin dispersion on the surface of the rubber base or the surface of the rubber base treated with a primer (wherein the aqueous polyurethane resin dispersion has units derived from polycarbonate polyol)
  • the coating layer is formed by applying a polyurethane resin, having an alicyclic structure content of 43% by weight or less on a solid basis, and having an isocyanate group to which a blocking agent is bonded, followed by heating. This is a method for producing a rubber laminate.
  • An aqueous coating agent containing an aqueous polyurethane resin dispersion (here, aqueous polyurethane resin dispersion) on the surface of a base material made of unvulcanized rubber or a base material made of unvulcanized rubber treated with a primer composition
  • the body includes a polyurethane resin having a unit derived from a polycarbonate polyol, has a content of an alicyclic structure of 43% by weight or less, and has an isocyanate group to which a blocking agent is bound, based on solid content)
  • the method is a method for producing a rubber laminate, in which a coating layer and a vulcanized rubber substrate are simultaneously formed by heating.
  • a coating layer formed from an aqueous coating agent containing an aqueous polyurethane resin dispersion, the coating layer having sufficient adhesion to a rubber surface such as chloroprene and natural rubber and having a low static friction coefficient The rubber laminated body which has this, and its manufacturing method can be provided.
  • an additive such as a silane coupling agent
  • the coating layer in the present invention is formed from an aqueous coating agent containing an aqueous polyurethane resin dispersion.
  • the aqueous polyurethane resin dispersion includes a polyurethane resin having a unit derived from a polycarbonate polyol, has an alicyclic structure content of 43% by weight or less based on solid content, and isocyanato group to which a blocking agent is bound.
  • the content of the alicyclic structure is preferably 5 to 43% by weight, more preferably 7 to 40% by weight, and still more preferably 7 to 35% from the viewpoint of adhesion to natural rubber, based on the solid content. % By weight.
  • the content ratio of the isocyanate group to which the blocking agent is bonded is preferably 0.1 to 3.0% by weight, more preferably 0.1 to 3.0% by weight in terms of adhesion to natural rubber on a solid basis and in terms of isocyanato group. Is 0.4 to 2.5% by weight, more preferably 0.6 to 2.0% by weight.
  • the cycloaliphatic structure (excluding two hydrogen atoms from cyclohexane) or cyclopentane residue (excluding two hydrogen atoms from cyclopentane) corresponds to the alicyclic structure. Assuming that the content ratio is calculated.
  • the aqueous polyurethane resin dispersion comprises (a) a polyisocyanate compound, (b) a polycarbonate polyol compound having a number average molecular weight of 400 to 4000, (c) an acidic group-containing polyol compound, and (d) a block of isocyanate groups.
  • the polyurethane resin obtained by reacting at least the agent can be dispersed in an aqueous medium.
  • the aqueous polyurethane resin dispersion includes (a) a polyisocyanate compound, (b) a polycarbonate polyol having a number average molecular weight of 400 to 4000, (c) an acidic group-containing polyol compound, and (d) a block of an isocyanate group.
  • a polyurethane prepolymer is obtained by reacting an optional agent and (e) another polyol compound, and (A) a chain extender having reactivity with the isocyanate group of the (A) polyurethane prepolymer.
  • the polyurethane resin obtained by the reaction may be dispersed in an aqueous medium.
  • the isocyanate group to which the blocking agent is bonded can also be introduced by blending an isocyanate compound to which the blocking agent is bonded.
  • an isocyanate compound having a blocking agent bonded thereto may be blended with an aqueous dispersion of a polyurethane resin having no isocyanate group bonded to a blocking agent.
  • the (a) polyisocyanate compound (hereinafter also referred to as (a)) is not particularly limited, and examples thereof include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
  • aromatic polyisocyanate examples include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, 4,4′-.
  • Diphenylmethane diisocyanate (MDI), 2,4-diphenylmethane diisocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4 Examples include '-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, 4,4', 4 ''-triphenylmethane triisocyanate, m-isocyanatophenylsulfonyl isocyanate, p-isocyanatophenylsulfonyl isocyanate.
  • aliphatic polyisocyanate examples include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate. Lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexano Eate.
  • alicyclic polyisocyanate examples include isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis (2 -Isocyanatoethyl) -4-dichlorohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate and the like.
  • IPDI isophorone diisocyanate
  • MDI 4,4′-dicyclohexylmethane diisocyanate
  • TDI methylcyclohexylene diisocyanate
  • bis (2 -Isocyanatoethyl) -4-dichlorohexene-1,2-dicarboxylate 2,5-norbornane diisocyan
  • the above polyisocyanates may be used alone or in combination of two or more.
  • the number of isocyanato groups per molecule of the polyisocyanate is usually two, but a polyisocyanate having three or more isocyanato groups such as triphenylmethane triisocyanate is also used as long as the polyurethane resin in the present invention does not gel. be able to.
  • polyisocyanates alicyclic polyisocyanates having an alicyclic structure are preferable from the viewpoint of high adhesion to rubber, and isophorone diisocyanate (IPDI) and 4,4′- are preferable because the reaction can be easily controlled.
  • IPDI isophorone diisocyanate
  • 4,4′- is preferable because the reaction can be easily controlled.
  • One or more selected from the group consisting of dicyclohexylmethane diisocyanate (hydrogenated MDI) is particularly preferable.
  • the polycarbonate polyol (b) having a number average molecular weight of 400 to 4000 is particularly limited except that the number average molecular weight is 400 to 4000 and the polycarbonate polyol is used.
  • it is at least one selected from the group consisting of polycarbonate diol, polycarbonate triol, and polycarbonate tetraol, and more preferably polycarbonate diol.
  • the number average molecular weight of (b) is preferably 500 to 3500, more preferably 800 to 3000, and particularly preferably 800 to 2000.
  • the number average molecular weight is a value derived by the following method. Using GPC (gel permeation chromatography) method, create a calibration curve using standard polystyrene sample with known molecular weight at room temperature using tetrahydrofuran solvent as eluent and measure with GPC using the same method The retention time of the polycarbonate polyol is applied to a calibration curve to derive the number average molecular weight.
  • GPC gel permeation chromatography
  • the production method of the polycarbonate polyol is not particularly limited, and examples thereof include a known production method such as a method of producing using a polyol monomer and phosgene and a method of producing using a polyol monomer and a carbonate ester. Among these, a method of producing using a polyol monomer and a carbonate ester is preferable because a chlorine-based compound or chlorine ion is not mixed therein.
  • polyol monomer used as a raw material for the polycarbonate polyol examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-pentanediol, , 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, 1,3-butanediol, 3-methylpentane-1,5-diol, 2-ethyl Aliphatic diols such as hexane-1,6-diol, 2-methyl-1,3-pentanediol, neopentyl glycol, 2-methyl-1,8-octanediol; 1,3-cyclohexanediol, 1,4- Cyclohexanedio
  • (b) is preferably a polycarbonate polyol having an alicyclic structure.
  • the elastic modulus can be improved and the static friction coefficient can be lowered even for nitrile rubber (NBR), which is difficult to lower the static friction coefficient.
  • NBR nitrile rubber
  • the content of the alicyclic structure (b) is preferably 5 to 40% by weight, more preferably 5 to 25% by weight, and particularly preferably 5 to 20% by weight. .
  • polycarbonate polyol containing an alicyclic structure and the polycarbonate polyol which does not contain an alicyclic structure can also be used together as (b).
  • polycarbonate polyol not containing an alicyclic structure can be used as (b), and in this case, combined with (a) a polyisocyanate compound having an alicyclic structure.
  • the content of the alicyclic structure refers to a cyclohexane residue (excluding two hydrogen atoms from cyclohexane) or a cyclopentane residue (two from cyclopentane) in the weight average molecular weight of the polycarbonate polyol. % Of the hydrogen atom excluding hydrogen atoms).
  • the polycarbonate polyol containing an alicyclic structure is, for example, a polycarbonate diol in which the polyol monomer contains an alicyclic diol, such as a polycarbonate diol having a 1,4-cyclohexanedimethanol unit, or a 1,4-cyclohexanedimethanol unit. And polycarbonate diols having 1,6-hexanediol units.
  • the polycarbonate polyol not containing an alicyclic structure is, for example, a polycarbonate diol in which the polyol monomer is an aliphatic diol, a polycarbonate diol having a 1,6-hexanediol unit, a 1,5-pentanediol unit, and 1, A polycarbonate diol having 6-hexanediol units can be mentioned.
  • the weight average molecular weight is a value derived from a standard polystyrene sample having a known molecular weight, similar to the number average molecular weight.
  • the (c) acidic group-containing polyol compound (hereinafter also referred to as (c)) is not particularly limited as long as it is a compound having two or more hydroxyl groups and one or more acidic groups in one molecule.
  • a compound having two hydroxyl groups and one acidic group in one molecule is preferable.
  • the acidic group include functional groups showing acidity such as a carboxyl group, a sulfonyl group, a phosphoric acid group, and a phenolic hydroxyl group, and among them, a carboxyl group is preferable.
  • (c) examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine, 3,4 -Dihydroxybutanesulfonic acid, 3,6-dihydroxy-2-toluenesulfonic acid and the like. These may be used alone or in combination of two or more. Among these, 2,2-dimethylolpropionic acid is preferable from the viewpoint of availability.
  • the blocking agent for the isocyanato group (hereinafter also referred to as (d)) is not particularly limited, and those that dissociate from the isocyanato group at 80 to 180 ° C. can be used.
  • the blocking agent that dissociates from an isocyanato group at 80 to 180 ° C. include, for example, malonic acid diester compounds such as dimethyl malonate and diethyl malonate; pyrazole compounds such as 1,2-pyrazole and 3,5-dimethylpyrazole Oxime compounds such as 1,2,4-triazole and methyl ethyl ketoxime; diisopropylamine, caprolactam and the like.
  • oxime compounds pyrazole compounds and malonic acid diester compounds
  • 3,5-dimethylpyrazole and methyl ethyl ketoxime are preferable and preserved.
  • 3,5-dimethylpyrazole is particularly preferable.
  • the other polyol compound (hereinafter also referred to as (e)) is an optional component and not an essential component.
  • (e) is not particularly limited, and examples thereof include polyester polyols, polycarbonate polyols having a number average molecular weight other than 400 to 4000, aliphatic diols, alicyclic diols, aromatic diols, polyfunctional polyols, and the like. It is done.
  • the (A) polyurethane prepolymer (hereinafter also referred to as (A)) is obtained by reacting (a) to (e).
  • the manufacturing method of a polyurethane prepolymer is not specifically limited, For example, the following methods are mentioned. First, in the presence or absence of a urethanization catalyst, (a) a polyisocyanate compound, (b) a polyol compound, and (c) an acidic group-containing polyol compound in the presence or absence of a urethanization catalyst.
  • the second is to synthesize a partially blocked polyisocyanate compound by reacting (a) a polyisocyanate compound with (d) a blocking agent in the presence or absence of a blocking catalyst.
  • (B) a polyol compound and (c) an acidic group-containing polyol compound are reacted in the presence or absence of a urethanization catalyst to urethanize and (A) a polyurethane prepolymer.
  • the urethanization catalyst is not particularly limited.
  • a salt of a metal such as a tin catalyst (trimethyltin laurate, dibutyltin dilaurate, etc.) or a lead catalyst (lead octylate, etc.) and an organic or inorganic acid.
  • organic metal derivatives organic metal derivatives, amine catalysts (triethylamine, N-ethylmorpholine, triethylenediamine, etc.), diazabicycloundecene catalysts, and the like.
  • dibutyltin dilaurate is preferable from the viewpoint of reactivity.
  • the blocking catalyst is not particularly limited, and examples thereof include alkali catalysts such as dibutyltin dilaurate and sodium methoxide.
  • the acidic group of the polyurethane prepolymer can be neutralized, and neutralization can be performed using a neutralizing agent.
  • neutralizing agents organic amines such as trimethylamine, triethylamine, triisopropylamine, tributylamine, triethanolamine, N-methyldiethanolamine, N-phenyldiethanolamine, dimethylethanolamine, diethylethanolamine, N-methylmorpholine, pyridine, etc. ; Inorganic alkalis such as sodium hydroxide and potassium hydroxide, ammonia and the like.
  • organic amines are preferable, more preferably tertiary amines, and most preferably triethylamine. These may be used alone or in combination of two or more.
  • Chain extender examples include compounds having reactivity with an isocyanato group.
  • diol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, polyalkylene glycols typified by polyethylene glycol, water, etc., among which primary di
  • the amount of the chain extender can be appropriately selected.
  • the isocyanate group in the chain extender other than water and the group having reactivity with the isocyanate group in the prepolymer are in a molar ratio. It can be used in an amount of 2: 1 or less.
  • the molar ratio is more preferably 1: 1 to 0.8: 1.
  • the polyurethane resin is dispersed in an aqueous medium.
  • the aqueous medium include water and a mixed medium of water and a hydrophilic organic solvent.
  • water include clean water, ion-exchanged water, distilled water, and ultrapure water.
  • particles are preferably ion-exchanged water.
  • hydrophilic organic solvents include lower monohydric alcohols such as methanol, ethanol and propanol; polyhydric alcohols such as ethylene glycol and glycerin; N-methylmorpholine, dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone and N-ethyl.
  • Examples include aprotic hydrophilic organic solvents such as pyrrolidone.
  • the amount of the hydrophilic organic solvent in the aqueous medium is preferably 0 to 20% by weight, more preferably 0 to 15% by weight, and particularly preferably 0 to 10% by weight.
  • the manufacturing method of the water-based polyurethane resin dispersion of this invention is not specifically limited, For example, the following manufacturing methods are mentioned.
  • the first production method is a so-called one-shot method in which all raw materials are mixed, reacted, and dispersed in an aqueous medium to obtain an aqueous polyurethane resin dispersion.
  • a polyisocyanate compound (b) a polycarbonate polyol compound, (c) an acidic group-containing polyol compound, (d) a blocking agent and any (e) other polyol are reacted ( A) A so-called prepolymer method in which a polyurethane prepolymer is produced, neutralized with an acidic group of the prepolymer, then dispersed in an aqueous medium, and (B) an aqueous polyurethane resin dispersion is obtained by reacting with a chain extender. It is.
  • the second manufacturing method is preferable from the viewpoint of dispersibility.
  • the aqueous polyurethane resin dispersion of the present invention can be obtained by a method including the following steps. (1) After reacting (a) a polyisocyanate compound, (b) a polycarbonate polyol compound, (c) an acidic group-containing polyol compound, and any (e) other polyol compound, (d) a blocking agent is added to the isocyanato group.
  • aqueous polyurethane resin dispersion After dispersing the prepolymer in a solvent other than water, it is further mixed with water, and then the solvent is distilled off to obtain a desired aqueous polyurethane resin dispersion.
  • water also functions as a chain extender.
  • Reaction of (A) polyurethane prepolymer and (B) chain extender can be performed in an organic solvent.
  • the (A) polyurethane prepolymer neutralized with acidic groups or the (A) polyurethane prepolymer not neutralized with acidic groups and the chain extender are dissolved in an organic solvent and reacted. Thereafter, an aqueous medium is added with appropriate stirring, and the organic solvent is removed under reduced pressure, whereby an aqueous polyurethane resin dispersion in which the polyurethane resin is dispersed in the aqueous medium can be obtained.
  • the organic solvent is not particularly limited as long as it is substantially non-reactive with the isocyanato group and is hydrophilic (water-miscible) organic solvent.
  • ketones such as acetone and ethyl methyl ketone
  • esters such as tetrahydrofuran and N-methylmorpholine
  • amides such as dimethylformamide, N-methylpyrrolidone and N-ethylpyrrolidone, and alcohols. These may be used independently and may use multiple types together.
  • the reaction between (A) the polyurethane prepolymer and (B) the chain extender can be performed in the presence of a catalyst.
  • the catalyst is not particularly limited, and salts of metals and organic and inorganic acids such as tin catalysts (trimethyltin laurate, dibutyltin dilaurate, etc.) and lead catalysts (lead octylate, etc.), organometallic derivatives, amine catalysts (Triethylamine, N-ethylmorpholine, triethylenediamine, etc.), diazabicycloundecene catalysts, and the like.
  • dibutyltin dilaurate is preferable from the viewpoint of reactivity.
  • a resin dispersion can be prepared and used in an aqueous coating agent.
  • the solid content concentration of the aqueous polyurethane resin dispersion in the aqueous coating agent is preferably 15 to 40% by weight, and more preferably 20 to 35% by weight.
  • the content of the alicyclic structure in the aqueous polyurethane resin dispersion is 43% by weight or less based on the solid content. If it is 43 weight% or less, the adhesiveness to natural rubber can be expressed.
  • the content of the alicyclic structure of the polyurethane resin is 5 to 43% by weight, more preferably 7 to 40% by weight, and still more preferably 7 to 35% by weight. Particularly preferred is 20 to 35% by weight.
  • the content ratio of the isocyanate group blocked by the blocking agent in the aqueous polyurethane resin dispersion is preferably 0.1 to 3.0% by weight based on the solid content and converted to the isocyanate group, and is 0.4 to 2%. 0.5% by weight is more preferable, and 0.6 to 2.0% by weight is particularly preferable. Particularly when the content ratio of the blocked isocyanate group is 0.4 to 2.5% by weight, the adhesion to the natural rubber is good.
  • the aqueous polyurethane resin dispersion is mixed with an aqueous dispersion of a polyurethane resin containing an isocyanate group blocked with a plurality of types of blocking agents, and is blocked with an alicyclic structure content ratio and a blocking agent.
  • the content ratio of the isocyanato group may be adjusted.
  • the isocyanate group to which the blocking agent is bonded can be introduced by blending an isocyanate compound to which the blocking agent is bonded.
  • an isocyanate compound having a blocking agent bonded thereto may be blended with an aqueous dispersion of a polyurethane resin having no isocyanate group bonded to a blocking agent.
  • the isocyanate compound to which the blocking agent is bonded include water-dispersed polyisocyanates, and those obtained by dispersing polyisocyanates imparted with hydrophilicity by polyethylene oxide chains in water with an anionic dispersant or a nonionic dispersant, etc. Is mentioned.
  • polyisocyanates examples include diisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate; derivatives (modified products) of polyisocyanates such as trimethylolpropane adducts, burettes, and isocyanurates of these diisocyanates.
  • diisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate
  • derivatives (modified products) of polyisocyanates such as trimethylolpropane adducts, burettes, and isocyanurates of these diisocyanates.
  • the present invention is not limited to such examples.
  • These polyisocyanates may be used alone or in combination of two or more.
  • the water-dispersed block polyisocyanate is obtained by blocking the isocyanate group of the water-dispersed polyisocyanate with a blocking agent.
  • blocking agent examples include diethyl malonate, ethyl acetoacetate, ⁇ -caprolactam, butanone oxime, cyclohexanone oxime, 1,2,4-triazole, dimethyl-1,2,4-triazole, 3,5-dimethylpyrazole , Imidazole and the like can be mentioned, but the present invention is not limited to such examples.
  • These blocking agents may be used alone or in combination of two or more. Among these blocking agents, those that cleave at a temperature of 160 ° C. or lower, preferably 150 ° C. or lower are desirable.
  • Suitable blocking agents include, for example, butanone oxime, cyclohexanone oxime, 3,5-dimethylpyrazole and the like. Of these, 3,5-dimethylpyrazole is more preferable.
  • Water-dispersed block polyisocyanates are, for example, manufactured by Mitsui Takeda Chemical Co., Ltd., trade names: Takenate WB-720, Takenate WB-730, Takenate WB-920, etc .; manufactured by Sumika Bayer Urethane Co., Ltd., trade name: Bihijur BL116, Bihijoule BL5140, Bihijoule BL5235, Bihijoule TPLS2186, Death Module VPLS2310, etc. can be easily obtained commercially.
  • the isocyanate compound to which the blocking agent is bound is blended, from the viewpoint of adhesion to natural rubber, it is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight based on the solid content.
  • an aqueous polyurethane resin dispersion containing a polyurethane resin having an isocyanato group to which a blocking agent is bonded and the content ratio of the isocyanate group to which the blocking agent of the polyurethane resin is bonded is based on solid content and in terms of isocyanato group.
  • the content is preferably 0.1 to 3.0% by weight, more preferably 0.3 to 2.5% by weight, and particularly preferably 0.5 to 2.0% by weight.
  • the total content of urethane bonds and urea bonds in the polyurethane resin is preferably 7 to 18% by weight based on the solid content.
  • the coating film has no tack and good adhesion to rubber.
  • the total content of urethane bonds and urea bonds is preferably 7 to 15% by weight, more preferably 8 to 14% by weight.
  • the content of carbonate bonds in the polyurethane resin is preferably 15 to 40% by weight based on the solid content. Adhesiveness to natural rubber is good when the content of carbonate bonds is within this range.
  • the content of carbonate bonds is preferably 15 to 35% by weight, more preferably 18 to 30% by weight.
  • the acid value of the aqueous polyurethane resin dispersion is preferably 10 to 40 mg KOH / g based on the solid content. When the acid value is within this range, the dispersibility of the resin in water is good.
  • the acid value is preferably 14 to 30 mg KOH / g, more preferably 15 to 26 mg KOH / g.
  • the weight average molecular weight of the polyurethane resin is preferably 15,000 to 80,000. When the weight average molecular weight is within this range, the coating film is not sticky and the adhesion to rubber is good.
  • the weight average molecular weight is preferably 20,000 to 70,000, more preferably 25,000 to 60,000.
  • Additives include cross-linking agents, plasticizers, antifoaming agents, leveling agents, fungicides, rust inhibitors, matting agents, flame retardants, thixotropic agents, lubricants (eg silicone oil), antistatic agents (eg carbon black) ), Conductive additives, thickeners, thickeners, diluents, pigments, dyes, fragrances, UV absorbers, light stabilizers (eg hindered amine light stabilizers (HALS)), antioxidants, organic fillers (For example, resin beads), inorganic fillers (for example, inorganic particles), pH adjusters, fusion aids, rheology modifiers, surfactants, freeze-thaw additives, wetting agents, wet edge aids and the like.
  • additives include cross-linking agents, plasticizers, antifoaming agents, leveling agents, fungicides, rust inhibitors, matting agents, flame retardants, thixotropic agents, lubricants (eg silicone oil),
  • inorganic particles and resin beads can be blended at 90% by weight or less, preferably 0.1 to 50% by weight when the resin is 100% by weight.
  • the inorganic particles include silica fine particles and pigments.
  • the silica fine particles are not particularly limited, and known silica fine particles such as powdered silica and colloidal silica can be used.
  • commercially available powdered silica fine particles include Acemat TS100 and OK607 manufactured by Evonik Degussa, Aerosil 50 and 200 manufactured by Nippon Aerosil Co., Ltd., Sildex H31, H32, H51, H52, H121 and H122 manufactured by Asahi Glass Co., Ltd.
  • the pigment include organic pigments and inorganic pigments, and these may be used alone or in combination of two or more.
  • organic pigment examples include azo pigments such as benzidine and hansa yellow, azomethine pigments, methine pigments, anthraquinone pigments, phthalocyanine pigments such as phthalocyanine blue, perinone pigments, perylene pigments, diketopyrrolopyrrole pigments, thioindigo pigments, and iminoisoindoline.
  • azo pigments such as benzidine and hansa yellow
  • azomethine pigments methine pigments, anthraquinone pigments
  • phthalocyanine pigments such as phthalocyanine blue
  • perinone pigments perylene pigments
  • diketopyrrolopyrrole pigments diketopyrrolopyrrole pigments
  • thioindigo pigments examples of the organic pigment
  • Pigments iminoisoindolinone pigments, quinacridone pigments such as quinacridone red and quinacridone violet, flavantron pigments, indanthrone pigments, anthrapyrimidine pigments, carbazole pigments, monoarylide yellow, diaryride yellow, benzimidazolone yellow, tolyl orange , Naphthol orange, quinophthalone pigment, and the like, but are not limited thereto.
  • These organic pigments may be used alone or in combination of two or more.
  • inorganic pigments include titanium dioxide, antimony trioxide, zinc white, lithopone, lead white, red iron oxide, black iron oxide, iron oxide, chromium oxide green, carbon black, yellow lead, molybdenum red, ferrocyanide Pigment with flat shape such as ferric (Prussian blue), ultramarine, lead chromate, mica, clay, aluminum powder, talc, aluminum silicate, calcium carbonate, magnesium hydroxide, aluminum hydroxide And extender pigments such as barium sulfate and magnesium carbonate, but are not limited thereto. These inorganic pigments may be used alone or in combination of two or more.
  • Resin beads include polystyrene, polyamides, polyvinyl chloride, polyolefins, polyurethanes, polyesters, polyacrylic acids, polyacrylic esters, polyacrylonitriles, and a mixture of one or more of epoxy resins. Formed from some organic polymer.
  • the polystyrenes include polystyrene homopolymer, polybutadiene rubber or impact strength-modified polystyrene obtained by blending or grafting styrene butadiene rubber and polystyrene, and ABS copolymer polymers.
  • polyamides include nylon 6 and nylon 66 polymers.
  • polyolefins examples include low density polyethylene, high density polyethylene, linear low density polyethylene, and polypropylene.
  • polyesters include polyethylene terephthalate.
  • polyacrylic acids include polyacrylic acid. Examples include acids, polymethacrylic acid and copolymers thereof, and copolymers of these with polyacrylic acid esters.
  • polyacrylic acid esters include polymethyl ester Methacrylic acid, poly ethyl methacrylate and the like, and the polyacrylonitriles, polyacrylonitrile Troll, acrylonitrile and methacrylonitrile, and a copolymer of methyl acrylate.
  • the shape of the resin beads may be any of a spherical shape, a disk shape, a shape having a fracture surface and a protrusion, and other indefinite shapes, and a spherical shape is preferable from the viewpoint of ease of manufacture with a constant shape.
  • a surfactant from the viewpoint of wettability. These can be blended at 5 wt% or less, preferably 0.05 to 3 wt% when the resin is 100 wt%.
  • the surfactant include silicon surfactants, and polysiloxane compounds are preferably used, and examples thereof include polyether-modified organosiloxane.
  • the silicon additives BYK-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-348, etc. can be used from BYK Japan.
  • crosslinking agent carbodiimide, melamine, epoxy, oxazoline and the like can be used.
  • the addition amount of the crosslinking agent is preferably 0.3 to 15% by weight, more preferably 1 to 10% by weight, based on the solid content. By setting it as these preferable addition amount, adhesiveness with a base material can be improved, suppressing the tack property of the coating layer surface.
  • resin emulsions and dispersions can be added.
  • other resins include polyester resins, polyether resins, polycarbonate resins, alkyd resins, polyolefin resins, silicone resins, (meth) acrylic resins, epoxy resins, cellulose resins, carboxy-modified styrene-butadiene latex, and ethylene-vinyl acetate.
  • examples thereof include a resin or a partially saponified product thereof and a total saponified product.
  • the other resin preferably has one or more hydrophilic groups.
  • hydrophilic group include a hydroxyl group, a carboxy group, a sulfonic acid group, and a polyethylene glycol group.
  • the other resin is preferably at least one selected from the group consisting of a polyester resin, an acrylic resin, and a polyolefin resin.
  • the polyester resin can be usually produced by an esterification reaction or an ester exchange reaction between an acid component and an alcohol component.
  • an acid component the compound normally used as an acid component at the time of manufacture of a polyester resin can be used.
  • an acid component an aliphatic polybasic acid, an alicyclic polybasic acid, an aromatic polybasic acid, etc. can be used, for example.
  • the hydroxyl value of the polyester resin is preferably about 10 to 300 mgKOH / g, more preferably about 50 to 250 mgKOH / g, and still more preferably about 80 to 180 mgKOH / g.
  • the acid value of the polyester resin is preferably about 1 to 200 mgKOH / g, more preferably about 15 to 100 mgKOH / g, and further preferably about 25 to 60 mgKOH / g.
  • the weight average molecular weight of the polyester resin is preferably 500 to 500,000, more preferably 1,000 to 300,000, and still more preferably 1,500 to 200,000.
  • a hydroxyl group-containing acrylic resin is preferable.
  • Hydroxyl group-containing acrylic resin is a hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomer copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer, for example, in a solution polymerization method in an organic solvent, in water It can manufacture by making it copolymerize by known methods, such as an emulsion polymerization method.
  • the hydroxyl group-containing polymerizable unsaturated monomer is a compound having at least one hydroxyl group and one polymerizable unsaturated bond in one molecule.
  • (meth) acrylic acid such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc., and 2 to 8 carbon atoms.
  • the hydroxyl group-containing acrylic resin preferably has an anionic functional group.
  • a polymerizable unsaturated monomer having an anionic functional group such as a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group is used as one kind of the polymerizable unsaturated monomer. It can be manufactured by using.
  • the hydroxyl value of the hydroxyl group-containing acrylic resin is preferably about 1 to 200 mgKOH / g, more preferably about 2 to 100 mgKOH / g, from the viewpoint of storage stability of the aqueous polyurethane resin dispersion and water resistance of the resulting coating layer.
  • the hydroxyl group-containing acrylic resin has an acid group such as a carboxyl group
  • the acid value of the hydroxyl group-containing acrylic resin is preferably about 1 to 200 mgKOH / g, from the viewpoint of water resistance of the resulting coating layer, and 2 to 150 mgKOH / g g is more preferable, and about 5 to 100 mgKOH / g is more preferable.
  • the weight average molecular weight of the hydroxyl group-containing acrylic resin is preferably 1,000 to 200,000, more preferably 2,000 to 100,000, and still more preferably within the range of 3,000 to 50,000. is there.
  • polyether resin examples include polymers or copolymers having an ether bond, and examples include aromatics such as polyoxyethylene-based polyether, polyoxypropylene-based polyether, polyoxybutylene-based polyether, bisphenol A or bisphenol F. And polyethers derived from group polyhydroxy compounds.
  • polycarbonate resin examples include polymers produced from bisphenol compounds, such as bisphenol A / polycarbonate.
  • polyurethane resin examples include resins having a urethane bond obtained by reacting various polyol components such as acrylic, polyester, polyether, and polycarbonate with polyisocyanate.
  • Examples of the epoxy resin include a resin obtained by a reaction between a bisphenol compound and epichlorohydrin.
  • Examples of bisphenol include bisphenol A and bisphenol F.
  • Alkyd resins include polybasic acids such as phthalic acid, terephthalic acid and succinic acid and polyhydric alcohols, as well as fats and oils and fatty acids (soybean oil, linseed oil, coconut oil, stearic acid, etc.) and natural resins (rosin, succinic acid).
  • Alkyd resin obtained by reacting a modifier such as
  • the polyolefin resin a polyolefin resin obtained by polymerizing or copolymerizing an olefin monomer with another monomer in accordance with a normal polymerization method is dispersed in water using an emulsifier, or the olefin monomer is appropriately replaced with another monomer. And a resin obtained by emulsion polymerization. In some cases, a so-called chlorinated polyolefin-modified resin in which the polyolefin resin is chlorinated may be used.
  • olefin monomers examples include ethylene, propylene, 1-butene, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-hexene, 1-hexene, Examples include ⁇ -olefins such as decene and 1-dodecene; conjugated dienes such as butadiene, ethylidene norbornene, dicyclopentadiene, 1,5-hexadiene, styrenes, and the like, and these monomers are used alone. It may also be used in combination.
  • Examples of other monomers copolymerizable with olefinic monomers include vinyl acetate, vinyl alcohol, maleic acid, citraconic acid, itaconic acid, maleic anhydride, citraconic anhydride, itaconic anhydride, and the like. May be used alone or in combination of two or more.
  • the carboxy-modified styrene-butadiene latex is obtained by copolymerizing a monomer composition containing styrene and a butadiene monomer as main components and containing a vinyl monomer having a carboxyl group such as (meth) acrylic acid or fumaric acid. Synthetic latex obtained.
  • the aqueous coating agent can be prepared by blending an arbitrary additive into the aqueous polyurethane resin dispersion.
  • the rubber laminate of the present invention includes a coating layer formed from the above aqueous coating agent and a rubber base material.
  • the coating layer should just be laminated
  • the rubber constituting the rubber substrate includes ethylene-propylene-diene rubber (EPDM), styrene-butadiene rubber (SBR), nitrile rubber (NBR), butyl rubber (BR), chloroprene rubber (CR), natural rubber (NR), etc. And at least one selected from ethylene-propylene-diene rubber (EPDM), nitrile rubber (NBR), chloroprene rubber (CR) and natural rubber (NR), more preferably chloroprene rubber (CR). And one or more selected from natural rubber (NR).
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene-butadiene rubber
  • NBR nitrile rubber
  • BR butyl rubber
  • NR natural rubber
  • NR natural rubber
  • the rubber substrate on which the coating layer is provided may have any shape, and examples thereof include a sheet-like substrate and a rod-like substrate. Specific examples include rubber rollers, automobile tires, weather strips and wiper blades, shoes, sandals, rubber boots, rubber gloves, and vibration-proof members for machines and buildings.
  • the rubber base material may contain various additives such as an anti-aging agent, a vulcanization accelerator, an ultraviolet absorber, and a lubricant.
  • the rubber base material may be any of unvulcanized rubber, primary vulcanized rubber vulcanized halfway, and vulcanized rubber vulcanized to the desired crosslinking density.
  • vulcanization or secondary vulcanization may be performed simultaneously with the formation of the coating layer by applying an aqueous coating agent and then heating. .
  • the molding method of the rubber base material is not particularly limited, and can be molded using various methods such as press molding, injection molding, and extrusion molding.
  • the rubber laminate of the present invention can be produced by applying the above aqueous coating agent to the surface of a rubber substrate and then heating to form a coating layer.
  • the surface of the rubber substrate may be treated with a primer composition containing a silicone-modified (meth) acrylic emulsion or chlorinated polyolefin, and an aqueous coating agent is applied to the treated surface.
  • a primer composition containing a silicone-modified (meth) acrylic emulsion or chlorinated polyolefin
  • an aqueous coating agent is applied to the treated surface.
  • the above aqueous coating agent is applied to the surface and then heated to vulcanize at the same time as forming the coating layer.
  • the surface may be treated with a primer composition.
  • the surface to which the aqueous coating agent is applied is not particularly limited, but is preferably a degreased surface.
  • the degreasing method is not particularly limited, and a known method can be used.
  • aqueous coating agent As a method for applying the aqueous coating agent, known methods such as spray coating, spin coating, dipping, roll coating, reverse roll coating, and gravure coating can be used.
  • the coating layer can be formed by heating.
  • the heating process can also serve as a drying process.
  • a drying step may be separately provided, and a room temperature drying method or a reduced pressure drying method can be employed.
  • Heating can be performed at 40 to 250 ° C, preferably 80 to 200 ° C.
  • the heating time can be appropriately selected and can be, for example, 1 to 60 minutes.
  • the heating process can also serve as a drying process.
  • a drying step may be separately provided, and a room temperature drying method or a reduced pressure drying method can be employed.
  • a rubber laminate can be obtained by applying a coating agent to an unvulcanized rubber molded body and vulcanizing the rubber molded body after drying the coating agent or simultaneously with drying. Furthermore, a rubber laminate can also be obtained by applying a coating agent to a rubber molded body that has undergone primary vulcanization, and secondary vulcanizing the rubber molded body after drying or simultaneously with drying of the coating agent.
  • the primary vulcanization is performed at a lower temperature or a shorter time than the secondary vulcanization.
  • the temperature of primary vulcanization is not particularly limited, but is preferably performed at a relatively low temperature such as 150 ° C. or lower.
  • the time for primary vulcanization is not particularly limited, but is preferably 1 to 30 minutes.
  • the primary vulcanization method after molding by injection molding method, heat vulcanize in the mold, after molding by extrusion molding method, heat vulcanize in a heating furnace, after molding by hot press method
  • a method of heat vulcanization in a mold can be used.
  • the thickness of the coating layer is not particularly limited and can be 1 to 300 ⁇ m, preferably 2 to 100 ⁇ m, and more preferably 3 to 40 ⁇ m.
  • aqueous polyurethane resin dispersion (0.3 g) was applied to a glass substrate with a thickness of 0.2 mm, and the weight remaining after heating and drying at 140 ° C. for 4 hours was measured. The partial concentration was used. The weight fraction was calculated using the product of the total weight of the aqueous polyurethane resin dispersion and the solid content concentration as the solid content weight.
  • (4) Content ratio of carbonate bond based on solid content The molar concentration (mol / g) of carbonate bond was calculated from the charged ratio of each raw material of the aqueous polyurethane resin dispersion and expressed as a weight fraction.
  • the weight fraction was calculated based on the solid content of the aqueous polyurethane resin dispersion by the same method as the content ratio of the urethane bond based on the solid content.
  • (5) Content ratio based on solid content of alicyclic structure The weight fraction of the alicyclic structure calculated from the charged ratio of each raw material of the aqueous polyurethane resin dispersion was described. The weight fraction was calculated based on the solid content of the aqueous polyurethane resin dispersion by the same method as the content ratio of the urethane bond based on the solid content.
  • Acid value The molar concentration (mol / g) of the carboxyl group is calculated from the charge ratio of each raw material of the aqueous polyurethane resin dispersion, and the weight of potassium hydroxide (mgKOH / mg) required to neutralize 1 g of the sample. The value converted into g) is shown. The sample weight was calculated based on the solid content of the aqueous polyurethane resin dispersion by the same method as the content ratio of the urethane bond based on the solid content.
  • Weight average molecular weight of polyurethane resin in aqueous polyurethane resin dispersion Measured by gel permeation chromatography (GPC), and a conversion value obtained from a standard curve prepared in advance for standard polystyrene is described.
  • Content ratio of isocyanate group to which blocking agent based on solid content in aqueous polyurethane resin dispersion is bound (in terms of isocyanate group): The molar amount of the blocking agent charged is converted to the weight of isocyanate group, and aqueous polyurethane resin The ratio divided by the solid content weight of the dispersion was expressed.
  • the solid content weight of the aqueous polyurethane resin dispersion was calculated by the same method as the content ratio of the urethane bond based on the solid content.
  • the adhesion of the coating layer was evaluated as follows. 100 g of aqueous polyurethane resin dispersion of Examples / Comparative Examples ACEMATT TS100 (dry silica, median diameter 10 ⁇ m, manufactured by Evonik) 1.5 g, BYK-345 (surfactant (polyether-modified siloxane), manufactured by BYK Chemie) 0.1 g was added to obtain an aqueous coating agent.
  • each rubber sheet was degreased by wiping with a cotton wool soaked with acetone, and the prepared aqueous coating agent was applied with a bar coater.
  • the vulcanized rubber and unvulcanized rubber were 20 at 150 ° C. Rubber dried for 1 minute, before primary vulcanization and before secondary vulcanization (in the middle of vulcanization), after vulcanization at 150 ° C for 5 minutes, apply aqueous coating agent and heat dry at 150 ° C for 20 minutes.
  • a cross-cut peel test was conducted using the coating layer (dry coating layer thickness 6 ⁇ m).
  • the coating layer was cut at an interval of 20 mm ⁇ 20 mm at intervals of 2 mm in length and width, and after sticking an adhesive tape, the number of cells remaining on the surface of the rubber sheet when peeled was visually evaluated. The case where 15 out of 100 remained was described as 15/100. (10)
  • the surface of each rubber sheet was degreased by wiping with an absorbent cotton soaked with acetone, and then an aqueous coating agent was applied with a bar coater, dried by heating at 150 ° C. for 20 minutes, and allowed to stand for 48 hours.
  • the coefficient of static friction was measured at room temperature using "Muse TYPE: 37" (manufactured by Shinto Kagaku Co., Ltd.).
  • Example 1 [Production of aqueous polyurethane resin dispersion (1)]
  • ETERNCOLL registered trademark
  • UH-200 Ube Industries' polycarbonate diol; number average molecular weight 2000; hydroxyl value 56.1 mgKOH / g; 1,6-hexanediol and (Polycarbonate diol obtained by reacting with dimethyl carbonate) (272 g), 2,2-dimethylolpropionic acid (DMPA) (18.5 g) and N-methylpyrrolidone (NMP) (176 g) were charged under a nitrogen stream.
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • aqueous polyurethane resin dispersion (1) 564 g was extracted from the mixture obtained by adding and mixing 13.9 g of triethylamine to the reaction mixture, and added to 870 g of water under strong stirring. Subsequently, 36.5 g of 35% by weight 2-methyl-1,5-pentanediamine aqueous solution was added to carry out a chain extension reaction to obtain an aqueous polyurethane resin dispersion (1).
  • the content ratio of the structure is shown in Table 1.
  • Example 2 [Production of aqueous polyurethane resin dispersion (3)]
  • ETERNACOLL UM90 (1/3) registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 894; hydroxyl value 125.5 mgKOH / g; 1,4-cyclohexanedimethanol and 1,4 210 g of polycarbonate diol obtained by reacting 6-hexanediol (molar ratio 1: 3) with dimethyl carbonate, 31.6 g of 2,2-dimethylolpropionic acid (DMPA) and N-methylpyrrolidone (NMP) 149 g was charged under a nitrogen stream.
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • aqueous polyurethane resin dispersion (2) 603 g was extracted from the mixture obtained by adding and mixing 24.0 g of triethylamine to the reaction mixture, and added to 835 g of water under strong stirring. Subsequently, 65.1 g of 35% by weight 2-methyl-1,5-pentanediamine aqueous solution was added to carry out a chain extension reaction to obtain an aqueous polyurethane resin dispersion (2).
  • the solid content based urethane bond content is 11.7% by weight
  • the solid content based urea bond content is 5.1% by weight
  • the solid content based carbonate bond 603 g was extracted from the mixture obtained by adding and mixing 24.0 g of triethylamine to the reaction mixture, and added to 835 g of water under strong stirring. Subsequently, 65.1 g of 35% by weight 2-methyl-1,5-pentanediamine aqueous solution was added to carry out a chain extension reaction to obtain an aqueous polyurethane
  • the content ratio of the blocked isocyanate group based on the solid content (in terms of isocyanate group) is 1.6% by weight, the acid value is 27.9 mgKOH / g, and the weight average molecular weight is 28 ⁇ 10 3.
  • the content of the alicyclic structure based on the solid content was 33.7% by weight.
  • 80 g of the aqueous polyurethane resin dispersion (1) obtained in Example 1 and 20 g of the aqueous polyurethane resin dispersion (2) were mixed with a disperser to obtain an aqueous polyurethane resin dispersion (3).
  • Example 3 [Production of aqueous polyurethane resin dispersion (5)]
  • ETERNACOLL registered trademark
  • UC-100 polycarbonate diol manufactured by Ube Industries; number average molecular weight 1000; hydroxyl value 112.2 mgKOH / g; 1,4-cyclohexanedimethanol and dimethyl carbonate were added.
  • Polycarbonate diol obtained by the reaction 153 g, polytetramethylene glycol ether 27 g, 2,2-dimethylolpropionic acid (DMPA) 22.4 g and N-ethylpyrrolidone (NEP) 116 g were charged under a nitrogen stream.
  • DMPA 2,2-dimethylolpropionic acid
  • NEP N-ethylpyrrolidone
  • aqueous polyurethane resin dispersion (4) 34.5 g of a 35% by weight 2-methyl-1,5-pentanediamine aqueous solution was added to carry out a chain extension reaction to obtain an aqueous polyurethane resin dispersion (4).
  • the content ratio of the urethane bond based on the solid content of the obtained aqueous coating agent is 10.6% by weight
  • the content ratio of the urea bond based on the solid content is 6.5% by weight
  • the content ratio of the carbonate bond based on the solid content is 14%.
  • aqueous polyurethane resin dispersion (8) 100 g of aqueous polyurethane resin dispersion (6) and 2 g of bihydule BL5140 (blocked polyisocyanate, manufactured by Sumika Bayer Urethane Co., Ltd.) are mixed to form an aqueous polyurethane resin comprising aqueous polyurethane resin dispersion (6) and aqueous blocked polyisocyanate.
  • 1,450 g of 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI) and 2.6 g of dibutyltin dilaurate (catalyst) were added and heated to 90 ° C. to carry out a urethanization reaction over 5 hours.
  • the free NCO group content at the end of the urethanization reaction was 3.97% by weight.
  • 4340 g was extracted from the mixture obtained by adding and mixing 149 g of triethylamine to the reaction mixture, and added to a mixed solution of 6900 g of water and 15 g of triethylamine under strong stirring.
  • aqueous polyurethane resin dispersion 9
  • the content rate of an alicyclic structure is described in Table 1.
  • Example 5 [Production of aqueous polyurethane resin dispersion (11)]
  • ETERRNACOLL® UH-200 Ube Industries polycarbonate diol; number average molecular weight 2007; hydroxyl value 55.9 mgKOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • Polycarbonate diol obtained in this manner, 2,2-dimethylolpropionic acid (DMPA) 8.88 g and N-methylpyrrolidone (NMP) 63.4 g were charged under a nitrogen stream.
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • 570 g was extracted from the mixture obtained by adding and mixing 24.3 g of triethylamine to the reaction mixture, and added to 807 g of water under strong stirring.
  • 59.5 g of a 35% by weight 2-methyl-1,5-pentanediamine aqueous solution was added to carry out a chain extension reaction to obtain an aqueous polyurethane resin dispersion (12).
  • the content rate of an alicyclic structure is described in Table 1.
  • Example 6 [Production of aqueous polyurethane resin dispersion (13)]
  • the aqueous polyurethane resin dispersion (2) obtained in Example 2 was used as the aqueous polyurethane resin dispersion (13).
  • the content ratio of the structure is shown in Table 1.
  • Example 7 [Production of aqueous polyurethane resin dispersion (14)]
  • ETERNACOLL UH-300 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 2906; hydroxyl value 38.6 mgKOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • Polycarbonate diol thus obtained, 2,2-dimethylolpropionic acid (DMPA) 21.6 g and N-methylpyrrolidone (NMP) 159 g were charged under a nitrogen stream.
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • Example 8 [Production of aqueous polyurethane resin dispersion (15)]
  • ETERNACOLL UH-300 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 2906; hydroxyl value 38.6 mgKOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • Polycarbonate diol 330 g, 2,2-dimethylolpropionic acid (DMPA) 20.3 g and N-methylpyrrolidone (NMP) 151 g were charged under a nitrogen stream.
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • IPDI isophorone diisocyanate
  • catalyst dibutyltin dilaurate
  • DMPZ 3,5-dimethylpyrazole
  • the content of free isocyanate groups at the end of the urethanization reaction was 1.21% by weight. 585 g was extracted from the mixture obtained by adding and mixing 15.3 g of triethylamine to the reaction mixture, and added to 830 g of water under strong stirring.
  • Example 9 [Production of aqueous polyurethane resin dispersion (16)]
  • ETERRNACOLL UH-100 registered trademark; polycarbonate diol manufactured by Ube Industries; number average molecular weight 1000; hydroxyl value 112.2 mgKOH / g; 1,6-hexanediol and dimethyl carbonate were reacted.
  • Polycarbonate diol 250 g, 2,2-dimethylolpropionic acid (DMPA) 21.0 g and N-methylpyrrolidone (NMP) 149 g were charged under a nitrogen stream.
  • DMPA 2,2-dimethylolpropionic acid
  • NMP N-methylpyrrolidone
  • H12-MDI 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI)
  • IPDI Isophorone diisocyanate
  • UH-100 ETERNACOLL UH-100 manufactured by Ube Industries
  • UC100 ETERNACOLL UC100 manufactured by Ube Industries
  • UH-200 Ube Industries' ETERNACOLL UH-200 PH-200: ETERNACOLL PH-200 manufactured by Ube Industries
  • UH-300 Ube Industries' ETERNACOLL UH-300 UM90 (3/1): ETERNACOLL UM90 (3/1) manufactured by Ube Industries UM90 (1/3): ETERNACOLL UM90 (1/3) manufactured by Ube Industries BI: Baihijoule BL5140 manufactured by Sumika Bayer Urethane Co., Ltd.
  • each aqueous coating agent as described in the evaluation of adhesion of the coating layer, EPDM, NBR, CR
  • the surface of the rubber sheet made of NR is degreased by wiping with an absorbent cotton soaked with acetone, and each aqueous coating agent is applied using a bar coater so that the coating layer after drying is about 6 ⁇ m, and 150 ° C. And dried for 20 minutes to obtain a rubber laminate.
  • the adhesion between the coating layer of the aqueous coating agent and the rubber sheet was evaluated.
  • the static friction coefficient of the coating layer surface was measured. The results are also shown in Table 2.
  • NBR Nitrile rubber (Coefficient of static friction without coating layer: 0.787)
  • CR Chloroprene rubber (Coefficient of static friction without coating layer: 0.462)
  • NR natural rubber (coefficient of static friction without coating layer: 0.439)
  • EPDM ethylene-propylene-diene rubber (Coefficient of static friction without coating layer: 1.190 or more)
  • Example 1 the timing of providing the coating layer was changed to evaluate the adhesion between ethylene-propylene-diene rubber (EPDM) and natural rubber (NR).
  • EPDM ethylene-propylene-diene rubber
  • NR natural rubber
  • the rubber laminate of the present invention can be used for rubber rollers, tires, wiper blades, weatherstrips, shoes (shoe soles, etc.), sandals, rubber boots, rubber gloves, machine and building anti-vibration members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Paints Or Removers (AREA)

Abstract

 クロロプレン、天然ゴムといったゴム表面と十分な密着性を有し、かつ静摩擦係数が小さいコーティング層を備えたゴム積層体、及びその製造方法を提供することを課題とする。 水性ポリウレタン樹脂分散体を含有する水性コーティング剤から形成されるコーティング層と、ゴム基材とを備える、ゴム積層体であって、ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で、43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する、ゴム積層体、及びその製造方法である。

Description

ゴム積層体及びその製造方法
 本発明は、水性ポリウレタン樹脂分散体を含有する水性コーティング剤から形成されるコーティング層とゴム基材とを備えるゴム積層体、及びその製造方法に関する。
 従来、ゴム用コーティング剤としては、車輌のウェザーストリップ用コーティング剤や、ワイパーブレード用コーティング剤として、ポリウレタン樹脂とシリコーン系化合物とを含有する溶剤系のコーティング剤が多く用いられてきた(特許文献1、特許文献2参照)。しかし、VOC(揮発性有機化合物)の排出規制に伴い、水性コーティング剤への置き換えが検討されている。
 水性コーティング剤は、一般的にゴム表面との密着性に劣るため、コーティング剤の適用に先立ち、ゴム表面の溶剤処理やプライマー処理が行われてきた。しかし、この場合、製造工程が1つ増えることになり、煩雑である。そこで、水性ポリウレタン樹脂分散体を含有する水性コーティング剤中に、シランカップリング剤やカルボジイミド等の反応性添加剤を配合することによって、プライマー処理等を行うことなく、ゴム表面との密着性を向上させる技術が提案されている(特許文献3、特許文献4参照)。
特開平8-109349号公報 特開2004-083641号公報 特開2002-030247号公報 特開2007-167704号公報
 ゴム基材のコーティングには、ワイパーブレードやウェザーストリップに代表されるとおり、滑り性が要求されることが多い。弾性率の高いコーティング層を形成する水性コーティング剤をゴム表面に適用して、摩擦係数が小さく、滑り性が良好な表面を得ようとしても、このようなコーティング層は、クロロプレンゴム、天然ゴムといったゴム基材に対して密着性が悪いという問題があり、水性コーティング剤を用いて形成されるコーティング層において、ゴム基材への良好な密着性と低い静摩擦係数とを両立するのは難しかった。
 本発明は、水性ポリウレタン樹脂分散体を含有する水性コーティング剤から形成されるコーティング層であって、クロロプレン、天然ゴムといったゴム表面と十分な密着性を有し、かつ静摩擦係数が小さいコーティング層を備えたゴム積層体、及びその製造方法を提供することを課題とする。
 本発明は、上記課題を解決するためになされたものであり、具体的には以下の構成を有する。
〔1〕水性ポリウレタン樹脂分散体を含有する水性コーティング剤から形成されるコーティング層と、ゴム基材とを備える、ゴム積層体であって、ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で、43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する、ゴム積層体である。
〔2〕水性ポリウレタン樹脂分散体が、固形分基準かつイソシアナト基換算で、0.1~3.0重量%のブロック化剤が結合したイソシアナト基を有する、上記〔1〕のゴム積層体である。
〔3〕ブロック化剤が、オキシム系化合物、ピラゾール系化合物及びマロン酸ジエステル系化合物からなる群より選ばれる一種以上である、上記〔1〕又は〔2〕のゴム積層体である。
〔4〕ポリウレタン樹脂が、15,000~80,000の重量平均分子量を有する、上記〔1〕~〔3〕のいずれかのゴム積層体である。
〔5〕ポリウレタン樹脂が、固形分基準で、7~35重量%の脂環構造の含有割合を有する、上記〔1〕~〔4〕のいずれかのゴム積層体である。
〔6〕ポリウレタン樹脂が、固形分基準で、7~18重量%のウレタン結合の含有割合とウレア結合の含有割合の合計値を有する、上記〔1〕~〔5〕のいずれかのゴム積層体である。
〔7〕ポリウレタン樹脂が、固形分基準で、15~40重量%のカーボネート結合の含有割合を有する、上記〔1〕~〔6〕のいずれかのゴム積層体である。
〔8〕ポリウレタン樹脂が、10~40mgKOH/gの酸価を有する、上記〔1〕~〔7〕のいずれかのゴム積層体である。
〔9〕水性ポリウレタン樹脂分散体が、(a)ポリイソシアネート化合物、(b)数平均分子量が400~4000であるポリカーボネートポリオール、(c)酸性基含有ポリオール化合物、(d)イソシアナト基のブロック化剤、任意の(e)その他のポリオール化合物、を反応させて得られる(A)ポリウレタンプレポリマーと、前記ポリウレタンプレポリマーのイソシアナト基との反応性を有する(B)鎖延長剤とを反応させて得られるポリウレタン樹脂が、水系媒体中に分散されたものである、上記〔1〕~〔8〕のいずれかのゴム積層体である。
〔10〕(a)ポリイソシアネート化合物が脂環式ジイソシアネートである、上記〔9〕のゴム積層体である。
〔11〕水性コーティング剤が、さらに無機粒子又は/及び樹脂ビーズを含有する、上記〔1〕~〔10〕のいずれかのゴム積層体である。
〔12〕コーティング層とゴム基材の間にプライマー層が存在する、上記〔1〕~〔11〕のいずれかのゴム積層体である。
〔13〕ゴム基材又はプライマー組成物で処理されたゴム基材の表面に、水性コーティング剤を適用した後、加熱して形成されたコーティング層を備える、上記〔1〕~〔11〕のいずれかのゴム積層体である。
〔14〕未加硫ゴムからなる基材又はプライマー組成物で処理された未加硫ゴムからなる基材の表面に、水性コーティング剤を適用した後、加熱して形成されたコーティング層及び加硫されたゴム基材を備える、〔1〕~〔11〕のいずれかのゴム積層体である。
〔15〕ゴム基材の表面又はプライマーで処理されたゴム基材の表面に、水性ポリウレタン樹脂分散体を含有する水性コーティング剤(ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で、43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する)を適用した後、加熱して、コーティング層を形成する、ゴム積層体の製造方法である。
〔16〕未加硫ゴムからなる基材又はプライマー組成物で処理された未加硫ゴムからなる基材の表面に、水性ポリウレタン樹脂分散体を含有する水性コーティング剤(ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で、43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する)を適用した後、加熱して、コーティング層及び加硫されたゴム基材を同時に形成する、ゴム積層体の製造方法である。
 本発明によれば、水性ポリウレタン樹脂分散体を含有する水性コーティング剤から形成されるコーティング層であって、クロロプレン、天然ゴムといったゴム表面と十分な密着性を有し、かつ静摩擦係数が小さいコーティング層を有するゴム積層体、及びその製造方法を提供することができる。
 本発明の目的は、水性コーティング剤にシランカップリング剤等の添加剤を添加しなくても、水性コーティング剤からゴム表面との十分な密着性を有するコーティング層が形成され、これを備えたゴム積層体を提供することではあるが、シランカップリング剤等の添加剤を用いることを除外するものではない。
[コーティング層]
 本発明におけるコーティング層は、水性ポリウレタン樹脂分散体を含有する水性コーティング剤から形成される。ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する。脂環構造の含有割合は、固形分基準で、天然ゴムへの密着性の点から、好ましくは5~43重量%であり、より好ましくは7~40重量%であり、さらに好ましくは7~35重量%である。また、ブロック化剤が結合したイソシアナト基の含有割合は、固形分基準かつイソシアナト基換算で、天然ゴムへの密着性の点から、好ましくは0.1~3.0重量%であり、より好ましくは0.4~2.5重量%であり、さらに好ましくは0.6~2.0重量%である。なお、本発明において、脂環構造には、シクロヘキサン残基(シクロヘキサンから2個の水素原子を除いたもの)やシクロペンタン残基(シクロペンタンから2個の水素原子を除いたもの)が相当するとして、含有割合の計算を行なうこととする。
 本発明において水性ポリウレタン樹脂分散体は、(a)ポリイソシアネート化合物、(b)数平均分子量が400~4000であるポリカーボネートポリオール化合物、(c)酸性基含有ポリオール化合物、及び(d)イソシアナト基のブロック化剤を少なくとも反応させて得られるポリウレタン樹脂が、水系媒体に分散されたものであることができる。
 また、本発明において水性ポリウレタン樹脂分散体は、(a)ポリイソシアネート化合物、(b)数平均分子量が400~4000であるポリカーボネートポリオール、(c)酸性基含有ポリオール化合物、(d)イソシアナト基のブロック化剤、及び任意の(e)その他のポリオール化合物を反応させて(A)ポリウレタンプレポリマーを得て、この(A)ポリウレタンプレポリマーのイソシアナト基との反応性を有する(B)鎖延長剤を反応させて得られるポリウレタン樹脂が、水系媒体中に分散されたものであってもよい。
 水性ポリウレタン樹脂分散体において、ブロック化剤が結合したイソシアナト基は、ブロック化剤が結合したイソシアネート化合物を配合することによって導入することもできる。例えば、ブロック化剤が結合したイソシアナト基を有しないポリウレタン樹脂の水性分散体に、ブロック化剤が結合したイソシアネート化合物を配合してもよい。
<(a)ポリイソシアネート化合物>
 本発明において(a)ポリイソシアネート化合物(以下、(a)ともいう)としては、特に限定されず、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 芳香族ポリイソシアネートとしては、具体的には、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート(TDI)、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-ジフェニルメタンジイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート、4,4’,4’’-トリフェニルメタントリイソシアネート、m-イソシアナトフェニルスルホニルイソシアネート、p-イソシアナトフェニルスルホニルイソシアネート等が挙げられる。
 脂肪族ポリイソシアネートとしては、具体的には、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等が挙げられる。
 脂環式ポリイソシアネートとしては、具体的には、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水素添加TDI)、ビス(2-イソシアナトエチル)-4-ジクロヘキセン-1,2-ジカルボキシレート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネート等が挙げられる。
 上記のポリイソシアネートは、単独で用いてもよいし、複数種を併用してもよい。
 ポリイソシアネートの1分子当たりのイソシアナト基は通常2個であるが、本発明におけるポリウレタン樹脂がゲル化をしない範囲で、トリフェニルメタントリイソシアネートのようなイソシアナト基を3個以上有するポリイソシアネートも使用することができる。
 ポリイソシアネートの中でも、ゴムとの密着性が高いという観点から、脂環構造を有する脂環式ポリイソシアネートが好ましく、反応の制御が行いやすいという点から、イソホロンジイソシアネート(IPDI)及び4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)からなる群から選ばれる1種以上が特に好ましい。
<(b)数平均分子量が400~4000であるポリカーボネートポリオール>
 本発明において(b)数平均分子量が400~4000であるポリカーボネートポリオール(以下、(b)ともいう)としては、数平均分子量が400~4000にあり、かつポリカーボネートポリオールであること以外は特に限定されず、好ましくはポリカーボネートジオール、ポリカーボネートトリオール及びポリカーボネートテトラオールからなる群から選ばれる1種以上であり、より好ましくはポリカーボネートジオールである。
 (b)の数平均分子量は、500~3500であることが好ましく、800~3000であることがより好ましく、800~2000であることが特に好ましい。
 本発明において、数平均分子量は、以下の方法で導き出した値である。GPC(ゲルパーミエーションクロマトグラフィー)法により、室温下、テトラヒドロフラン溶媒を溶離液として用い、分子量が既知の標準ポリスチレン試料を用いて得られた検量線を作成し、同様の方法を用いてGPCで測定したポリカーボネートポリオールのリテンションタイムを検量線に当てはめて数平均分子量を導き出す。
 ポリカーボネートポリオールの製造方法としては、特に限定されず、ポリオールモノマーとホスゲンとを用いて製造する方法や、ポリオールモノマーと炭酸エステルとを用いて製造する方法等の公知の製造方法が挙げられる。中でも、ポリオールモノマーと炭酸エステルとを用いて製造する方法は、塩素系化合物や塩素イオン等が混入することがないため好ましい。
 ポリカーボネートポリオールの原料となるポリオールモノマーとしては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等や、1,3-ブタンジオール、3-メチルペンタン-1,5-ジオール、2-エチルヘキサン-1,6-ジオール、2-メチル-1,3-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,8-オクタンジオール等の脂肪族ジオール;1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、1,4-シクロヘキサンジメタノール等の脂環式ジオール;1,4-ベンゼンジメタノール等の芳香族ジオール;トリメチロールプロパン、ペンタエリスリトール等の多官能ポリオール等が挙げられる。ポリオールモノマーは、1種のみを用いてポリカーボネートポリオールとすることもできるし、複数種を併用してポリカーボネートポリオールとすることもできる。
 本発明において、コーティング層の弾性率の点から、(b)としては、脂環構造を有するポリカーボネートポリオールが好ましい。特に主鎖に脂環構造を含有するポリカーボネートポリオールを用いることにより、弾性率を向上させることができ、静摩擦係数を下げにくいニトリルゴム(NBR)に対しても静摩擦係数を下げることができる。本発明において、(b)の脂環構造の含有割合は、5~40重量%であることが好ましく、5~25重量%であることがより好ましく、5~20重量%であることが特に好ましい。また、(b)として脂環構造を含有するポリカーボネートポリオールと脂環構造を含有しないポリカーボネートポリオールとを併用することもできる。さらに、ゴム基材との密着性の点から、(b)として、脂環構造を含有しないポリカーボネートポリオールを使用することができ、この場合、脂環構造を有する(a)ポリイソシアネート化合物と組み合わせることが好ましい。なお、本発明において、脂環構造の含有割合とは、ポリカーボネートポリオールの重量平均分子量中のシクロヘキサン残基(シクロヘキサンから2個の水素原子を除いたもの)やシクロペンタン残基(シクロペンタンから2個の水素原子を除いたもの)の重量%をいう。
 脂環構造を含有するポリカーボネートポリオールとしては、例えば、ポリオールモノマーが脂環式ジオールを含むポリカーボネートジオールであり、例えば、1,4-シクロヘキサンジメタノール単位を有するポリカーボネートジオール、1,4-シクロヘキサンジメタノール単位及び1,6-ヘキサンジオール単位を有するポリカーボネートジオールが挙げられる。また、脂環構造を含有しないポリカーボネートポリオールとしては、例えば、ポリオールモノマーが脂肪族ジオールであるポリカーボネートジオールであり、1,6-ヘキサンジオール単位を有するポリカーボネートジオール、1,5-ペンタンジオール単位及び1,6-ヘキサンジオール単位を有するポリカーボネートジオールが挙げられる。
 本発明において、重量平均分子量は、上記数平均分子量と同様に、分子量が既知の標準ポリスチレン試料を用いて導き出した値である。
<(c)酸性基含有ポリオール化合物>
 本発明において(c)酸性基含有ポリオール化合物(以下、(c)ともいう)としては、1分子中に2個以上の水酸基と1個以上の酸性基を有する化合物であれば、特に限定されず、1分子中に2個の水酸基と1個の酸性基を有する化合物が好ましい。
 酸性基としては、カルボキシル基、スルホニル基、リン酸基、フェノール性水酸基等の酸性を示す官能基が挙げられ、中でもカルボキシル基が好ましい。
 (c)としては、具体的には、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン、3,4-ジヒドロキシブタンスルホン酸、3,6-ジヒドロキシ-2-トルエンスルホン酸等が挙げられる。これらは単独で用いてもよいし、複数種を併用してもよい。中でも、入手の容易さの観点から、2,2-ジメチロールプロピオン酸が好ましい。
<(d)イソシアナト基のブロック化剤>
 本発明において(d)イソシアナト基のブロック化剤(以下、(d)ともいう)としては、特に限定されず、80~180℃でイソシアナト基から解離するものを使用することができる。80~180℃でイソシアナト基から解離するブロック化剤としては、例えば、マロン酸ジメチル、マロン酸ジエチル等のマロン酸ジエステル系化合物;1,2-ピラゾール、3,5-ジメチルピラゾール等のピラゾール系化合物;1,2,4-トリアゾール、メチルエチルケトオキシム等のオキシム系化合物;ジイソプロピルアミン、カプロラクタム等が挙げられる。これらは、単独で用いてもよいし、複数種を併用してもよい。中でも、解離温度の観点から、オキシム系化合物、ピラゾール系化合物及びマロン酸ジエステル系化合物から選ばれる1種以上が好ましく、3,5-ジメチルピラゾール及びメチルエチルケトオキシムからなる選ばれる1種以上が好ましく、保存安定性の観点から3,5-ジメチルピラゾールが特に好ましい。
<(e)その他のポリオール化合物>
 本発明において、(e)その他のポリオール化合物(以下、(e)ともいう)は、任意成分であり、必須成分ではない。
 本発明において、(e)は、特に限定されず、例えば、ポリエステルポリオール、数平均分子量が400~4000以外のポリカーボネートポリオール、脂肪族ジオール、脂環式ジオール、芳香族ジオール、多官能ポリオール等が挙げられる。
<(A)ポリウレタンプレポリマー>
 本発明において、(A)ポリウレタンプレポリマー(以下、(A)ともいう)は、(a)~(e)を反応させて得られたものである。
 (A)ポリウレタンプレポリマーの製造方法は、特に限定されず、例えば、以下のような方法が挙げられる。
 一つ目は、ウレタン化触媒存在下又は不存在下で、(a)ポリイソシアネート化合物と、(b)ポリオール化合物と、(c)酸性基含有ポリオール化合物とをウレタン化触媒の存在下又は不存在下で反応させてウレタン化し、その後ブロック化触媒の存在下又は不存在下で(d)ブロック化剤を反応させて、末端イソシアナト基の一部がブロック化された(A)ポリウレタンプレポリマーを合成する方法である。
 二つ目は、ブロック化触媒存在下又は不存在下で、(a)ポリイソシアネート化合物と、(d)ブロック化剤とを反応させて、一部をブロック化したポリイソシアネート化合物を合成し、これにウレタン化触媒存在下又は不存在下で(b)ポリオール化合物と、(c)酸性基含有ポリオール化合物とを反応させてウレタン化し、(A)ポリウレタンプレポリマーを合成する方法である。
<ウレタン化触媒>
 本発明において、ウレタン化触媒としては、特に限定されず、例えば、スズ系触媒(トリメチルスズラウレート、ジブチルスズジラウレート等)や鉛系触媒(オクチル酸鉛等)等の金属と有機及び無機酸の塩、及び有機金属誘導体、アミン系触媒(トリエチルアミン、N-エチルモルホリン、トリエチレンジアミン等)、ジアザビシクロウンデセン系触媒等が挙げられる。中でも、反応性の観点から、ジブチルスズジラウレートが好ましい。
 本発明において、ブロック化触媒としては、特に限定されず、例えば、ジブチルスズジラウレートやナトリウムメトキシド等のアルカリ触媒が挙げられる。
<中和剤>
 (A)ポリウレタンプレポリマーの酸性基は中和することができ、中和は、中和剤を用いて行うことができる。中和剤としては、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-フェニルジエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、N-メチルモルホリン、ピリジン等の有機アミン類;水酸化ナトリウム、水酸化カリウム等の無機アルカリ類、アンモニア等が挙げられる。中でも、有機アミン類が好ましく、より好ましくは3級アミンであり、最も好ましくはトリエチルアミンである。これらは、単独で用いてもよいし、複数種を併用してもよい。
<(B)鎖延長剤>
 鎖延長剤としては、イソシアナト基と反応性を有する化合物が挙げられる。例えば、エチレンジアミン、1,4-テトラメチレンジアミン、2-メチル-1,5-ペンタンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン、1,4-ヘキサメチレンジアミン、3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン、1,3-ビス(アミノメチル)シクロヘキサン、キシリレンジアミン、ピペラジン、アジポイルヒドラジド、ヒドラジン、2,5-ジメチルピペラジン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等のジオール化合物、ポリエチレングリコールに代表されるポリアルキレングリコール類、水等が挙げられ、中でも、1級ジアミン化合物が好ましい。これらは単独で用いてもよいし、複数種を併用してもよい。
 (B)鎖延長剤の量は、適宜、選択することができる。下記の第2の製造方法により、水性ポリウレタン樹脂分散体を製造する場合、水以外の鎖延長剤中のイソシアナト基と反応性を有する基と、プレポリマー中のイソシアナト基とが、モル比で、2:1以下となる量で使用することができる。モル比は、1:1~0.8:1であることがより好ましい。
<水系媒体>
 本発明において、ポリウレタン樹脂は水系媒体中に分散されている。水系媒体としては、水や水と親水性有機溶媒との混合媒体等が挙げられる。
 水としては、例えば、上水、イオン交換水、蒸留水、超純水等が挙げられるが、入手の容易さや塩の影響で粒子が不安定になることを考慮して、好ましくはイオン交換水が挙げられる。
 親水性有機溶媒としては、メタノール、エタノール、プロパノール等の低級1価アルコール;エチレングリコール、グリセリン等の多価アルコール;N-メチルモルホリン、ジメチルスルホキサイド、ジメチルホルムアミド、N-メチルピロリドン、N-エチルピロリドン等の非プロトン性の親水性有機溶媒等が挙げられる。
 水系媒体中の親水性有機溶媒の量としては、0~20重量%が好ましく、0~15重量%がより好ましく、0~10重量%が特に好ましい。
<水性ポリウレタン樹脂分散体>
 本発明の水性ポリウレタン樹脂分散体の製造方法は、特に限定されず、例えば、以下のような製造方法が挙げられる。
 第1の製造方法は、原料を全て混合し、反応させて、水系媒体中に分散させることにより水性ポリウレタン樹脂分散体を得る、いわゆるワンショット法である。
 第2の製造方法は、(a)ポリイソシアネート化合物、(b)ポリカーボネートポリオール化合物、(c)酸性基含有ポリオール化合物、(d)ブロック化剤及び任意の(e)その他のポリオールを反応させて(A)ポリウレタンプレポリマーを製造し、プレポリマーの酸性基を中和した後、水系媒体中に分散させ、(B)鎖延長剤を反応させることにより水性ポリウレタン樹脂分散体を得る、いわゆるプレポリマー法である。本発明の水性ポリウレタン樹脂分散体の製造方法としては、分散性の観点から、第2の製造方法が好ましい。
 具体的には、本発明の水性ポリウレタン樹脂分散体は、下記工程を含む方法により得ることができる。
 (1)(a)ポリイソシアネート化合物、(b)ポリカーボネートポリオール化合物、(c)酸性基含有ポリオール化合物、任意の(e)その他のポリオール化合物を反応させた後、イソシアナト基に(d)ブロック化剤を結合させ、(A)ポリウレタンプレポリマーを得る工程;
 (3)(A)ポリウレタンプレポリマーの酸性基を中和剤で中和する工程;並びに
 (4)酸性基が中和された(A)ポリウレタンプレポリマーを水系媒体中に分散させる工程
 (5)(A)ポリウレタンプレポリマーと(B)鎖延長剤とを反応させて、水性ポリウレタン樹脂分散体を得る工程。
 工程(4)及び(5)は、同時に行ってもよい。また、プレポリマーを水以外の溶媒に分散した後、さらに水と混合し、次いで溶媒を留去して、所望の水性ポリウレタン樹脂分散体を得ることもできる。この場合、水が鎖延長剤としても機能する。
 (A)ポリウレタンプレポリマーと(B)鎖延長剤との反応は、有機溶媒中で行うことができる。この場合、酸性基を中和した(A)ポリウレタンプレポリマー又は酸性基を中和していない(A)ポリウレタンプレポリマーと、鎖延長剤とを有機溶媒に溶かして反応させる。その後、適宜撹拌等しながら、水系媒体を加え、減圧下で有機溶媒を除去することにより、ポリウレタン樹脂が水系媒体中に分散した水性ポリウレタン樹脂分散体を得ることができる。
 有機溶媒としては、イソシアナト基と実質的に非反応性であって、かつ親水性(水混和性)の有機溶媒であれば、特に限定されず、例えば、アセトン、エチルメチルケトン等のケトン類、エステル類、テトラヒドロフラン、N-メチルモルホリン等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン、N―エチルピロリドン等のアミド類、アルコール類が挙げられる。これらは単独で用いてもよく、複数種を併用してもよい。
 また、(A)ポリウレタンプレポリマーと(B)鎖延長剤との反応は、触媒の存在下で行うことができる。触媒は、特に限定されず、スズ系触媒(トリメチルスズラウレート、ジブチルスズジラウレート等)や鉛系触媒(オクチル酸鉛等)等の金属と有機及び無機酸の塩、並びに有機金属誘導体、アミン系触媒(トリエチルアミン、N-エチルモルホリン、トリエチレンジアミン等)、ジアザビシクロウンデセン系触媒等が挙げられる。中でも、反応性の観点から、ジブチルスズジラウレートが好ましい。
 上記のようにして、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する水性ポリウレタン樹脂分散体を調製し、これを水性コーティング剤に使用することができる。製膜性の点から、水性コーティング剤中、水性ポリウレタン樹脂分散体の固形分濃度は、15~40重量%であることが好ましく、より好ましくは、20~35重量%である。
 水性ポリウレタン樹脂分散体中の脂環構造の含有割合は、固形分基準で43重量%以下である。43重量%以下であれば、天然ゴムへの密着性を発現できる。好ましくは、水性ポリウレタン樹脂分散体において、ポリウレタン樹脂の脂環構造の含有割合が、5~43重量%であり、より好ましくは7~40重量%であり、さらに好ましくは7~35重量%であり、特に好ましくは20~35重量%である。
 水性ポリウレタン樹脂分散体中のブロック化剤でブロック化されているイソシアナト基の含有割合は、固形分基準かつイソシアナト基換算で好ましくは0.1~3.0重量%であり、0.4~2.5重量%がより好ましく、0.6~2.0重量%が特に好ましい。特にブロック化されているイソシアナト基の含有割合が0.4~2.5重量%であると、天然ゴムへの密着性が良好である。
 水性ポリウレタン樹脂分散体は、複数種のブロック化剤でブロック化されているイソシアナト基を含有するポリウレタン樹脂の水性分散体を混合して、脂環構造の含有割合、ブロック化剤でブロック化されているイソシアナト基の含有割合等を調整してもよい。
 さらに、水性ポリウレタン樹脂分散体において、ブロック化剤が結合したイソシアナト基は、ブロック化剤が結合したイソシアネート化合物を配合することによって導入することもできる。例えば、ブロック化剤が結合したイソシアナト基を有しないポリウレタン樹脂の水性分散体に、ブロック化剤が結合したイソシアネート化合物を配合してもよい。ブロック化剤が結合したイソシアネート化合物としては、水分散型ポリイソシアネートが挙げられ、ポリエチレンオキシド鎖によって親水性が付与されたポリイソシアネートをアニオン性分散剤又はノニオン性分散剤で水に分散させたもの等が挙げられる。
 ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等のジイソシアネート;これらのジイソシアネートのトリメチロールプロパンアダクト体、ビューレット体、イソシアヌレート体等のポリイソシアネートの誘導体(変性物)等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのポリイソシアネートは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。水分散型ブロックポリイソシアネートは、水分散型ポリイソシアネートのイソシアネート基をブロック化剤でブロックさせたものである。ブロック化剤としては、例えば、マロン酸ジエチル、アセト酢酸エチル、ε-カプロラクタム、ブタノンオキシム、シクロヘキサノンオキシム、1,2,4-トリアゾール、ジメチル-1,2,4-トリアゾール、3,5-ジメチルピラゾール、イミダゾール等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのブロック化剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらのブロック化剤中、160℃以下の温度、好ましくは150℃以下の温度で開裂するものが望ましい。好適なブロック化剤としては、例えば、ブタノンオキシム、シクロへキサノンオキシム、3,5-ジメチルピラゾール等が挙げられる。これらの中では、3,5-ジメチルピラゾールがより好ましい。水分散型ブロックポリイソシアネートは、例えば、三井武田ケミカル(株)製、商品名:タケネートWB-720、タケネートWB-730、タケネートWB-920等;住化バイエルウレタン(株)製、商品名:バイヒジュールBL116、バイヒジュールBL5140、バイヒジュールBL5235、バイヒジュールTPLS2186、デスモジュールVPLS2310等として商業的に容易に入手することができる。ブロック化剤が結合したイソシアネート化合物を配合する場合、天然ゴムへの密着性の点から、好ましくは、固形分基準で0.1~30重量%であり、1~10重量%がより好ましい。
 ブロック化剤が結合したイソシアナト基を有するポリウレタン樹脂を含む水性ポリウレタン樹脂分散体を使用することが好ましく、ポリウレタン樹脂のブロック化剤が結合したイソシアナト基の含有割合が、固形分基準かつイソシアナト基換算で0.1~3.0重量%であることが好ましく、0.3~2.5重量%がより好ましく、0.5~2.0重量%が特に好ましい。
 水性ポリウレタン樹脂分散体において、ポリウレタン樹脂のウレタン結合とウレア結合の含有割合の合計は、固形分基準で7~18重量%であることが好ましい。ウレタン結合とウレア結合の含有割合の合計がこの範囲であると、塗膜にタックがなく、ゴムへの密着性も良好である。ウレタン結合とウレア結合の含有割合の合計は、好ましくは7~15重量%であり、より好ましくは8~14重量%である。
 水性ポリウレタン樹脂分散体において、ポリウレタン樹脂のカーボネート結合の含有割合は、固形分基準で15~40重量%であることが好ましい。カーボネート結合の含有割合がこの範囲であると、天然ゴムへの密着性が良好である。カーボネート結合の含有割合は、好ましくは15~35重量%であり、より好ましくは18~30重量%である。
 水性ポリウレタン樹脂分散体の酸価は、固形分基準で10~40mgKOH/gであることが好ましい。酸価がこの範囲であると、樹脂の水への分散性が良好である。酸価は、好ましくは14~30mgKOH/gであり、より好ましくは15~26mgKOH/gである。
 水性ポリウレタン樹脂分散体において、ポリウレタン樹脂の重量平均分子量は、15,000~80,000が好ましい。重量平均分子量がこの範囲であると、塗膜のべたつきがなく、ゴムへの密着性も良好である。重量平均分子量は、好ましくは20,000~70,000であり、より好ましくは25,000~60,000である。
<その他の添加剤>
 本発明の水性コーティング剤には、水性ポリウレタン樹脂分散体に加えて、種々の添加剤を添加することもできる。添加剤としては、架橋剤、可塑剤、消泡剤、レベリング剤、防かび剤、防錆剤、つや消し剤、難燃剤、揺変剤、滑剤(例えばシリコーンオイル)、帯電防止剤(例えばカーボンブラック)、導電性添加剤、減粘剤、増粘剤、希釈剤、顔料、染料、香料、紫外線吸収剤、光安定剤(例えばヒンダードアミン系光安定剤(HALS))、酸化防止剤、有機充填剤(例えば樹脂ビーズ)、無機充填材(例えば無機粒子)、pH調整剤、融合助剤、レオロジー変性剤、界面活性剤、凍結融解添加剤、湿潤剤、ウェットエッジ助剤等が挙げられる。
 摩擦の点から、無機粒子及び樹脂ビーズの1種以上を添加することが好ましい。これらは、樹脂を100重量%とした場合、90重量%以下で配合することができ、好ましくは0.1~50重量%である。無機粒子としては、シリカ微粒子や顔料が挙げられる。シリカ微粒子としては、特に限定はなく、粉末状のシリカ、コロイダルシリカ等の公知のシリカ微粒子を使用することができる。市販の粉末状のシリカ微粒子としては、例えば、エボニックデグサ製エースマットTS100、OK607、日本アエロジル(株)製アエロジル50、200、旭硝子(株)製シルデックスH31、H32、H51、H52、H121、H122、日本シリカ工業(株)製E220A、E220、富士シリシア(株)製SYLYSIA470、日本板硝子(株)製SGフレ-ク等を挙げることができる。
 顔料としては、有機顔料及び無機顔料が挙げられ、これらは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。有機顔料としては、例えば、ベンジジン、ハンザイエロー等のアゾ顔料、アゾメチン顔料、メチン顔料、アントラキノン顔料、フタロシアニンブルー等のフタロシアニン顔料、ペリノン顔料、ペリレン顔料、ジケトピロロピロール顔料、チオインジゴ顔料、イミノイソインドリン顔料、イミノイソインドリノン顔料、キナクリドンレッドやキナクリドンバイオレット等のキナクリドン顔料、フラバントロン顔料、インダントロン顔料、アントラピリミジン顔料、カルバゾール顔料、モノアリーライドイエロー、ジアリーライドイエロー、ベンゾイミダゾロンイエロー、トリルオレンジ、ナフトールオレンジ、キノフタロン顔料等が挙げられるが、これらに限定されるものではない。これらの有機顔料は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 無機顔料としては、例えば、二酸化チタン、三酸化アンチモン、亜鉛華、リトポン、鉛白、赤色酸化鉄、黒色酸化鉄、酸化鉄、酸化クロムグリーン、カーボンブラック、黄鉛、モリブデン赤、フェロシアン化第二鉄(プルシアンブルー)、ウルトラマリン、クロム酸鉛等をはじめ、雲母(マイカ)、クレー、アルミニウム粉末、タルク、ケイ酸アルミニウム等の扁平形状を有する顔料、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム等の体質顔料等が挙げられるが、これらに限定されるものではない。これらの無機顔料は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 樹脂ビーズとしては、ポリスチレン類、ポリアミド類、ポリ塩化ビニル、ポリオレフィン類、ポリウレタン類、ポリエステル類、ポリアクリル酸類、ポリアクリル酸エステル類、ポリアクリロニトリル類及びエポキシ樹脂の1種又は2種以上の混合物である有機ポリマーから形成される。ポリスチレン類としては、例えばポリスチレンホモポリマー、ポリブタジエンゴム又はスチレンブタジエンゴムとポリスチレンとをブレンド又はグラフトした衝撃強度改良ポリスチレン、ABS共重合ポリマーが挙げられ、ポリアミド類としては、例えばナイロン6、ナイロン66ポリマーが挙げられ、ポリオレフィン類としては、例えば低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレンが挙げられ、ポリエステル類としては、例えばポリエチレンテレフタレートが挙げられ、ポリアクリル酸類としては、例えばポリアクリル酸、ポリメタクリル酸及びこれらの共重合体、さらにはこれらとポリアクリル酸エステル類との共重合体等が挙げられ、ポリアクリル酸エステル類としては、例えばポリメチルメタクリル酸、ポリエチルメタクリル酸等が挙げられ、ポリアクリロニトリル類としては、ポリアクリロニトロル、アクリロニトリルとメタクリロニトリル、アクリル酸メチル等との共重合体等が挙げられる。低価格性の面からは、特にポリウレタン、ポリアクリル酸エステル、ポリアミドが好ましく、ポリウレタンがより好ましい。樹脂ビーズの形状は、球状、円盤状、破断面や突起を有する形状、その他の不定形状のいずれであってもよく、一定形状で製造の容易さから、球形が好ましい。
 濡れ性の点から、界面活性剤を添加することが好ましい。これらは、樹脂を100重量%とした場合、5重量%以下で配合することができ、好ましくは0.05~3重量%である。界面活性剤としては、シリコン系界面活性剤が挙げられ、ポリシロキサン系化合物等が好ましく用いられ、例えば、ポリエーテル変性オルガノシロキサン等が挙げられる。好ましくはビックケミー・ジャパン株式会社より、シリコン系添加剤BYK-306、BYK-307、BYK-333、BYK-341、BYK-345、BYK-346、BYK-348等が利用可能である。
 架橋剤としては、カルボジイミド、メラミン、エポキシ、オキサゾリン等が使用できる。架橋剤の添加量としては、固形分に対して、0.3~15重量%であることが好ましく、1~10重量%であることがより好ましい。これらの好ましい添加量とすることにより、コーティング層表面のタック性を抑制しながら、基材との密着性を向上させることができる。
 また、その他の樹脂のエマルジョンやディスパージョンを添加することもできる。その他の樹脂としては、例えば、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、アルキド樹脂、ポリオレフィン樹脂、シリコーン樹脂、(メタ)アクリル樹脂、エポキシ樹脂、セルロース樹脂、カルボキシ変性スチレン-ブタジエンラテックス、エチレン-酢酸ビニル樹脂又はその部分鹸化物や全鹸化物等が挙げられる。
 また、その他の樹脂は、1種以上の親水性基を有することが好ましい。親水性基としては、水酸基、カルボキシ基、スルホン酸基、ポリエチレングリコール基等が挙げられる。
 その他の樹脂は、ポリエステル樹脂、アクリル樹脂、ポリオレフィン樹脂からなる群より選ばれる少なくとも1種であることが好ましい。
 ポリエステル樹脂は、通常、酸成分とアルコ-ル成分とのエステル化反応又はエステル交換反応によって製造することができる。酸成分としては、ポリエステル樹脂の製造に際して酸成分として通常使用される化合物を使用することができる。酸成分としては、例えば、脂肪族多塩基酸、脂環族多塩基酸、芳香族多塩基酸等を使用することができる。
 ポリエステル樹脂の水酸基価は、10~300mgKOH/g程度が好ましく、50~250mgKOH/g程度がより好ましく、80~180mgKOH/g程度が更に好ましい。ポリエステル樹脂の酸価は、1~200mgKOH/g程度が好ましく、15~100mgKOH/g程度がより好ましく、25~60mgKOH/g程度が更に好ましい。
 ポリエステル樹脂の重量平均分子量は、500~500,000が好ましく、1,000~300,000がより好ましく、1,500~200,000が更に好ましい。
 アクリル樹脂としては、水酸基含有アクリル樹脂が好ましい。水酸基含有アクリル樹脂は、水酸基含有重合性不飽和モノマー及び該水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーとを、例えば、有機溶媒中での溶液重合法、水中でのエマルション重合法等の既知の方法によって共重合させることにより製造できる。
 水酸基含有重合性不飽和モノマーは、1分子中に水酸基及び重合性不飽和結合をそれぞれ1個以上有する化合物である。例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物;これらのモノエステル化物のε-カプロラクトン変性体;N-ヒドロキシメチル(メタ)アクリルアミド;アリルアルコール;分子末端が水酸基であるポリオキシエチレン鎖を有する(メタ)アクリレート等を挙げることができる。
 水酸基含有アクリル樹脂は、アニオン性官能基を有することが好ましい。アニオン性官能基を有する水酸基含有アクリル樹脂については、例えば、重合性不飽和モノマーの1種として、カルボン酸基、スルホン酸基、リン酸基等のアニオン性官能基を有する重合性不飽和モノマーを用いることにより製造できる。
 水酸基含有アクリル樹脂の水酸基価は、水性ポリウレタン樹脂分散体の貯蔵安定性や得られるコーティング層の耐水性等の観点から、1~200mgKOH/g程度が好ましく、2~100mgKOH/g程度がより好ましく、3~60mgKOH/g程度が更に好ましい。
 水酸基含有アクリル樹脂がカルボキシル基等の酸基を有する場合、該水酸基含有アクリル樹脂の酸価は、得られるコーティング層の耐水性等の観点から、1~200mgKOH/g程度が好ましく、2~150mgKOH/g程度がより好ましく、5~100mgKOH/g程度が更に好ましい。
 水酸基含有アクリル樹脂の重量平均分子量は、1,000~200,000が好ましく、2,000~100,000がより好ましく、更に好ましくは3,000~50,000の範囲内であることが好適である。
 ポリエーテル樹脂としては、エーテル結合を有する重合体又は共重合体が挙げられ、例えばポリオキシエチレン系ポリエーテル、ポリオキシプロピレン系ポリエーテル、ポリオキシブチレン系ポリエーテル、ビスフェノールA又はビスフェノールF等の芳香族ポリヒドロキシ化合物から誘導されるポリエーテル等が挙げられる。
 ポリカーボネート樹脂としては、ビスフェノール化合物から製造された重合体が挙げられ、例えばビスフェノールA・ポリカーボネート等が挙げられる。
 ポリウレタン樹脂としては、アクリル、ポリエステル、ポリエーテル、ポリカーボネート等の各種ポリオール成分とポリイソシアネートとの反応によって得られるウレタン結合を有する樹脂が挙げられる。
 エポキシ樹脂としては、ビスフェノール化合物とエピクロルヒドリンの反応によって得られる樹脂等が挙げられる。ビスフェノールとしては、例えば、ビスフェノールA、ビスフェノールFが挙げられる。
 アルキド樹脂としては、フタル酸、テレフタル酸、コハク酸等の多塩基酸と多価アルコールに、更に油脂・油脂脂肪酸(大豆油、アマニ油、ヤシ油、ステアリン酸等)、天然樹脂(ロジン、コハク等)等の変性剤を反応させて得られたアルキド樹脂が挙げられる。
 ポリオレフィン樹脂としては、オレフィン系モノマーを適宜他のモノマーと通常の重合法に従って重合又は共重合することにより得られるポリオレフィン樹脂を、乳化剤を用いて水分散するか、あるいはオレフィン系モノマーを適宜他のモノマーと共に乳化重合することにより得られる樹脂が挙げられる。また、場合により、前記のポリオレフィン樹脂が塩素化されたいわゆる塩素化ポリオレフィン変性樹脂を用いてもよい。
 オレフィン系モノマーとしては、例えば、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-ヘキセン、1-デセン、1-ドデセン等のα-オレフィン;ブタジエン、エチリデンノルボルネン、ジシクロペンタジエン、1,5-ヘキサジエン、スチレン類、等の共役ジエン又は非共役ジエン等が挙げられ、これらのモノマーは、単独で用いてもよいし、複数種を併用してもよい。
 オレフィン系モノマーと共重合可能な他のモノマーとしては、例えば、酢酸ビニル、ビニルアルコール、マレイン酸、シトラコン酸、イタコン酸、無水マレイン酸、無水シトラコン酸、無水イタコン酸等が挙げられ、これらのモノマーは、単独で用いてもよいし、複数種を併用してもよい。
 カルボキシ変性スチレン-ブタジエンラテックスとは、スチレン、ブタジエンモノマーを主成分とし、これに(メタ)アクリル酸やフマール酸等のカルボキシル基を有するビニルモノマーを数%含有するモノマー組成物を共重合することによって得られる合成ラテックスである。
 水性コーティング剤は、水性ポリウレタン樹脂分散体に、任意の添加剤を配合することによって調製することができる。
 本発明のゴム積層体は、上記の水性コーティング剤から形成されるコーティング層とゴム基材とを備えている。コーティング層は、ゴム基材の少なくとも一部に積層されていればよい。例えば、ゴム基材の片面又は両面に積層されていることができ、これらの面の全面積を覆っていても、一部を覆っていてもよい。
 ゴム基材を構成するゴムとしては、エチレン-プロピレン-ジエンゴム(EPDM)、スチレン-ブタジエンゴム(SBR)、ニトリルゴム(NBR)、ブチルゴム(BR)、クロロプレンゴム(CR)、天然ゴム(NR)等が挙げられ、エチレン-プロピレン-ジエンゴム(EPDM)、ニトリルゴム(NBR)、クロロプレンゴム(CR)及び天然ゴム(NR)から選ばれる1種以上であることが好ましく、より好ましくはクロロプレンゴム(CR)及び天然ゴム(NR)から選ばれる1種以上である。
 コーティング層を設けるゴム基材は、どのような形状のものでもよく、シート状基材、棒状基材等が挙げられる。具体的には、ゴムローラ、自動車のタイヤ、ウェザーストリップやワイバープレード、靴、サンダル、ゴム長靴、ゴム手袋、機械や建築物の防振部材等が挙げられる。ゴム基材は、老化防止剤、加硫促進剤、紫外線吸収剤、滑剤等の種々の添加剤を含んでいてもよい。
 ゴム基材は、未加硫ゴム、途中まで加硫した一次加硫ゴム、目的の架橋密度まで加硫した加硫ゴムのいずれでもよい。ゴム基材として、未加硫ゴムや一次加硫ゴムを用いる場合は、水性コーティング剤を塗布した後、加熱することにより、コーティング層の形成と同時に加硫や二次加硫を行ってもよい。
 ゴム基材の成形方法は、特に限定されず、プレス成形や射出成形、押出成形等の種々の方法を用いて成形することができる。
 本発明のゴム積層体は、ゴム基材の表面に、上記の水性コーティング剤を適用した後、加熱してコーティング層を形成することにより製造することができる。
 ゴム基材の表面には、シリコーン変性(メタ)アクリル系エマルジョンや塩素化ポリオレフィン等を含むプライマー組成物で処理されていてもよく、このような処理をされた表面に水性コーティング剤を適用して、コーティング層を形成することにより、ゴム基材とコーティング層との間にプライマー層を備えたゴム積層体を製造することができる。
 基材として未加硫ゴムを用いる場合、その表面に、上記の水性コーティング剤を適用した後、加熱して、コーティング層を形成するのと同時に加硫させることもできる。表面は、プライマー組成物で処理されていてもよい。
 水性コーティング剤を適用する表面としては、特に限定されないが、脱脂された表面であることが好ましい。脱脂の方法は、特に限定されず、公知の方法を用いることができる。
 水性コーティング剤の適用方法としては、スプレーコーティング、スピンコーティング、ディッピング、ロールコーティング、リバースロールコーティング、グラビアコーティング等の公知の方法を用いることができる。
 水性コーティング剤を適用した後、加熱してコーティング層を形成することができる。加熱工程は、乾燥工程を兼ねることができる。あるいは、加熱に先立ち、乾燥工程を別途設けてもよく、常温乾燥法や減圧乾燥法を採用することができる。
 加熱は、40~250℃で行なうことができ、好ましくは80~200℃である。加熱時間は、適宜、選択することができ、例えば、1~60分とすることができる。加熱により、水性コーティング剤中のイソシアナト基に結合したブロック化剤が外れ、架橋反応を進行させて、硬度に優れたコーティング層を得ることができる。加熱工程は、乾燥工程を兼ねることができる。あるいは、加熱に先立ち、乾燥工程を別途設けてもよく、常温乾燥法や減圧乾燥法を採用することができる。
 また、未加硫ゴム成形体にコーティング剤を塗布し、コーティング剤の乾燥後又は乾燥と同時にゴム成形体を加硫させて、ゴム積層体を得ることもできる。
 さらに、一次加硫を行ったゴム成形体にコーティング剤を塗布し、コーティング剤の乾燥後又は乾燥と同時にゴム成形体を二次加硫させて、ゴム積層体を得ることもできる。
 通常、一次加硫は、二次加硫よりも低い温度又は短い時間で行われる。一次加硫の温度は特に制限されないが、150℃以下等の比較的低い温度で行われることが好ましい。また、一次加硫の時間も特に制限されないが、1~30分間が好ましい。
 一次加硫の方法としては、射出成形法により成形した後に型内で加熱加硫する方法や、押出成形法により成形した後に加熱炉中で加熱加硫する方法や、熱プレス法により成形した後に型内で加熱加硫する方法等が挙げられる。
 コーティング層の厚さは、特に限定されず、1~300μmとすることができ、好ましくは2~100μmであり、より好ましくは3~40μmである。
 次に、実施例及び比較例を挙げて、本発明を更に詳細に説明するが、本発明はこれらに限られるものではない。
 なお、物性の測定は、以下の通り行った。
(1)水酸基価:JIS K 1557のB法に準拠して測定した。
(2)遊離イソシアナト基含有割合:ウレタン化反応終了後の反応混合物を0.5gサンプリングして、0.1モル/L(リットル)のジブチルアミン-テトラヒドロフラン(THF)溶液10mLとTHF20mLの混合溶液に加えて、0.1モル/Lの塩酸で未消費のジブチルアミンを滴定した。この滴定値とブランク実験との差より反応混合物中に残存するイソシアナト基のモル濃度を算出した。モル濃度をイソシアナト基の重量分率に換算して遊離イソシアナト基含有割合とした。なお、滴定に使用した指示薬はブロモフェノールブルーである。
(3)ウレタン結合の固形分基準の含有割合、ウレア結合の固形分基準の含有割合:水性ポリウレタン樹脂分散体の各原料の仕込み割合からウレタン結合及びウレア結合のモル濃度(モル/g)を算出し、重量分率に換算したものを表記した。重量分率は水性ポリウレタン樹脂分散体の固形分を基準とする。水性ポリウレタン樹脂分散体0.3gを厚さ0.2mmでガラス基板上に塗布し、140℃で4時間加熱乾燥した後に残った重量を測定し、これを乾燥前の重量で割ったものを固形分濃度とした。水性ポリウレタン樹脂分散体の全重量と固形分濃度の積を固形分重量として、前記重量分率を算出した。
(4)カーボネート結合の固形分基準の含有割合:水性ポリウレタン樹脂分散体の各原料の仕込み割合からカーボネート結合のモル濃度(モル/g)を算出し重量分率に換算したものを表記した。重量分率は水性ポリウレタン樹脂分散体の固形分を基準とし、前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(5)脂環構造の固形分基準の含有割合:水性ポリウレタン樹脂分散体の各原料の仕込み割合から算出した脂環構造の重量分率を表記した。重量分率は水性ポリウレタン樹脂分散体の固形分を基準とし、前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(6)酸価:水性ポリウレタン樹脂分散体の各原料の仕込み割合からカルボキシル基のモル濃度(モル/g)を算出し、サンプル1gを中和するのに必要な水酸化カリウムの重量(mgKOH/g)に換算したものを表記した。サンプル重量は水性ポリウレタン樹脂分散体の固形分を基準とし、前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(7)水性ポリウレタン樹脂分散体中のポリウレタン樹脂の重量平均分子量:ゲルパーミエーションクロマトグラフィー(GPC)により測定したものであり、予め作成した標準ポリスチレンの検量線から求めた換算値を記した。
(8)水性ポリウレタン樹脂分散体中の固形分基準のブロック化剤が結合したイソシアナト基の含有割合(イソシアナト基換算):ブロック化剤の仕込みモル量をイソシアナト基の重量に換算し、水性ポリウレタン樹脂分散体の固形分重量で割った割合を表記した。水性ポリウレタン樹脂分散体の固形分重量は前記ウレタン結合の固形分基準の含有割合と同様の方法で算出した。
(9)コーティング層の密着性は、次のようにして評価した。実施例・比較例の水性ポリウレタン樹脂分散体 100gにACEMATT TS100(乾式シリカ、メジアン径10μm、エボニック製) 1.5g、BYK-345(界面活性剤(ポリエーテル変性シロキサン)、ビックケミー製) 0.1gを添加し、水性コーティング剤とした。各ゴムシートの表面を、アセトンをしみこませた脱脂綿で拭いて脱脂した後、調製した水性コーティング剤をバーコーターで塗布し、加硫ゴムと未加硫ゴム(加硫前)は150℃で20分間加熱乾燥し、一次加硫後二次加硫前のゴム(加硫途中)は150℃で5分間の加硫後、水性コーティング剤を塗布し、150℃で20分間加熱乾燥し、得られたコーティング層(乾燥コーティング層の厚さ6μm)を用いて碁盤目剥離試験を行った。コーティング層に20mm×20mmの面積に縦横2mm間隔で切り目を入れ、粘着テープを貼った後、剥がしたときにゴムシートの表面に残っているマスの数を目視で数えて評価した。100個中15個が残っていた場合を15/100と記載した。
(10)各ゴムシートの表面を、アセトンをしみこませた脱脂綿で拭いて脱脂した後、水性コーティング剤をバーコーターで塗布し、150℃で20分間加熱乾燥し、48時間放置後に「HEIDON トライボギア 3Dミューズ TYPE:37」(新東科学社製)を用いて室温で静摩擦係数を測定した。
[実施例1]
〔水性ポリウレタン樹脂分散体(1)の製造〕
攪拌機、還流冷却管及び温度計を挿入した反応容器に、ETERNACOLL(登録商標) UH-200(宇部興産製ポリカーボネートジオール;数平均分子量2000;水酸基価56.1mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)272g、2,2-ジメチロールプロピオン酸(DMPA)18.5g及びN-メチルピロリドン(NMP)176gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を125g、ジブチルスズジラウリレート(触媒)を0.33g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)10.4gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含量は1.78重量%であった。反応混合物にトリエチルアミン13.9gを添加・混合したものの中から564gを抜き出して、強攪拌下のもと水870gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液36.5gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(1)を得た。水性ポリウレタン樹脂分散体(1)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例2]
〔水性ポリウレタン樹脂分散体(3)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UM90(1/3)(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量894;水酸基価125.5mgKOH/g;1,4-シクロヘキサンジメタノール及び1,6-ヘキサンジオール(モル比で1:3)と炭酸ジメチルとを反応させて得られたポリカーボネートジオール)210g、2,2-ジメチロールプロピオン酸(DMPA)31.6g及びN-メチルピロリドン(NMP)149gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を208g、ジブチルスズジラウリレート(触媒)を0.34g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後メチルエチルケトンオキシム(MEKO)15.9gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含量は3.01重量%であった。反応混合物にトリエチルアミン24.0gを添加・混合したものの中から603gを抜き出して、強攪拌下のもと水835gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液65.1gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(2)を得た。得られた水性ポリウレタン樹脂分散体(2)の固形分基準のウレタン結合の含有割合は11.7重量%、固形分基準のウレア結合の含有割合は5.1重量%、固形分基準のカーボネート結合の含有割合は15.2重量%、固形分基準のブロック化イソシアナト基の含有割合(イソシアナト基換算)は1.6重量%、酸価は27.9mgKOH/g、重量平均分子量は28×10、固形分基準の脂環構造の含有割合は33.7重量%であった。
 実施例1で得られた水性ポリウレタン樹脂分散体(1)80gと、上記水性ポリウレタン樹脂分散体(2)20gをディスパーサーにて混合して、水性ポリウレタン樹脂分散体(3)を得た。得られた水性ポリウレタン樹脂分散体(3)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例3]
〔水性ポリウレタン樹脂分散体(5)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL(登録商標) UC-100(宇部興産製ポリカーボネートジオール;数平均分子量1000;水酸基価112.2mgKOH/g;1,4-シクロヘキサンジメタノールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)153g、ポリテトラメチレングリコールエーテル27g、2,2-ジメチロールプロピオン酸(DMPA)22.4g及びN-エチルピロリドン(NEP)116gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を144g、ジブチルスズジラウリレート(触媒)を0.3g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。ウレタン化反応終了時の遊離イソシアナト基含量は3.93重量%であった。反応混合物にトリエチルアミン16.8gを添加・混合したものの中から436gを抜き出して、強攪拌下のもと水750gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液34.5gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(4)を得た。得られた水性コーティング剤の固形分基準のウレタン結合の含有割合は10.6重量%、固形分基準のウレア結合の含有割合は6.5重量%、固形分基準のカーボネート結合の含有割合は14.9重量%、固形分基準のブロック化イソシアナト基の含有割合(イソシアナト基換算)は0.0重量%、酸価は25mgKOH/g、重量平均分子量は200×10、固形分基準の脂環構造の含有割合は44.8重量%であった。
 実施例1で得られた水性ポリウレタン樹脂分散体(1)80gと、上記水性ポリウレタン樹脂分散体(4)20gをディスパーサーにて混合して、水性ポリウレタン樹脂分散体(5)を得た。得られた水性ポリウレタン樹脂分散体(5)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[比較例1]
〔水性ポリウレタン樹脂分散体(6)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL(登録商標) UH-200(宇部興産製ポリカーボネートジオール;数平均分子量2011;水酸基価55.8mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)301g、2,2-ジメチロールプロピオン酸(DMPA)16.5g及びN-エチルピロリドン(NEP)135gを窒素気流下で仕込んだ。イソホロンジイソシアネート(IPDI)を92.0g、ジブチルスズジラウリレート(触媒)を0.31g加えて80℃まで加熱し、5時間かけてウレタン化反応を行った。ウレタン化反応終了時の遊離NCO基含量は1.67重量%であった。反応混合物にトリエチルアミン12.4gを添加・混合したものの中から495gを抜き出して、強攪拌下のもと水745gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液29.4gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(6)を得た。得られた水性ポリウレタン樹脂分散体(6)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[比較例2]
〔水性ポリウレタン樹脂分散体(7)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL(登録商標) PH-200(宇部興産製ポリカーボネートジオール;数平均分子量2000;水酸基価56.1mgKOH/g;1,5-ペンタンジオール及び1,6-ヘキサンジオール(モル比で1:1)と炭酸ジメチルとを反応させて得られたポリカーボネートジオール)301g、2,2-ジメチロールプロピオン酸(DMPA)16.3g及びN-エチルピロリドン(NEP)132gを窒素気流下で仕込んだ。イソホロンジイソシアネート(IPDI)を90.0g、ジブチルスズジラウリレート(触媒)を0.30g加えて80℃まで加熱し、5時間かけてウレタン化反応を行った。ウレタン化反応終了時の遊離NCO基含量は1.74重量%であった。反応混合物にトリエチルアミン12.0gを添加・混合したものの中から506gを抜き出して、強攪拌下のもと水758gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液31.3gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(7)を得た。得られた水性コーティング剤(水性ポリウレタン樹脂分散体(7))のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例4]
〔水性ポリウレタン樹脂分散体(8)の製造〕
 水性ポリウレタン樹脂分散体(6)100gとバイヒジュールBL5140(ブロック化ポリイソシアネート、住化バイエルウレタン社製)2gを混合して水性ポリウレタン樹脂分散体(6)と水性ブロック化ポリイソシアネートとからなる水性ポリウレタン樹脂分散体(8)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[比較例3]
〔水性ポリウレタン樹脂分散体(9)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL(登録商標) UM-90(3/1)(宇部興産製ポリカーボネートジオール;数平均分子量916;水酸基価122.5mgKOH/g;1,4-シクロヘキサンジメタノール及び1,6-ヘキサンジオール(モル比で3:1)と炭酸ジメチルとを反応させて得られたポリカーボネートジオール)1500g、2,2-ジメチロールプロピオン酸(DMPA)220g及びN-メチルピロリドン(NMP)1350gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を1450g、ジブチルスズジラウリレート(触媒)を2.6g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。ウレタン化反応終了時の遊離NCO基含量は3.97重量%であった。反応混合物にトリエチルアミン149gを添加・混合したものの中から4340gを抜き出して、強攪拌下のもと水6900g及びトリエチルアミン15gの混合溶液の中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液626gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(9)を得た。得られた水性ポリウレタン樹脂分散体(9)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[比較例4]
〔水性ポリウレタン樹脂分散体(10)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL(登録商標) UM-90(1/3)(宇部興産製ポリカーボネートジオール;数平均分子量894;水酸基価125.5mgKOH/g;1,4-シクロヘキサンジメタノール及び1,6-ヘキサンジオール(モル比で1:3)と炭酸ジメチルとを反応させて得られたポリカーボネートジオール)180g、2,2-ジメチロールプロピオン酸(DMPA)27.1g及びN-メチルピロリドン(NMP)163gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を177g、ジブチルスズジラウリレート(触媒)を0.3g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。ウレタン化反応終了時の遊離NCO基含量は3.73重量%であった。反応混合物にトリエチルアミン20.7gを添加・混合したものの中から523gを抜き出して、強攪拌下のもと水915gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液73.2gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(10)を得た。得られた水性ポリウレタン樹脂分散体(10)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例5]
〔水性ポリウレタン樹脂分散体(11)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL(登録商標) UH-200(宇部興産製ポリカーボネートジオール;数平均分子量2007;水酸基価55.9mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)128g、2,2-ジメチロールプロピオン酸(DMPA)8.88g及びN-メチルピロリドン(NMP)63.4gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を58.6g、ジブチルスズジラウリレート(触媒)を0.18g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)2.06gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含量は2.38重量%であった。反応混合物にトリエチルアミン6.55gを添加・混合したものの中から232gを抜き出して、強攪拌下のもと水305gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液20.0gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(11)を得た。得られた水性ポリウレタン樹脂分散体(11)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[比較例5]
〔水性ポリウレタン樹脂分散体(12)の製造〕
実施例1と同様の反応容器に、ETERNACOLL(登録商標) UM90(3/1)(宇部興産製ポリカーボネートジオール;数平均分子量897;水酸基価125.1mgKOH/g;1,4-シクロヘキサンジメタノール及び1,6-ヘキサンジオール(モル比で3:1)と炭酸ジメチルとを反応させて得られたポリカーボネートジオール)211g、2,2-ジメチロールプロピオン酸(DMPA)31.8g及びN-メチルピロリドン(NMP)149gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を207g、ジブチルスズジラウリレート(触媒)を0.36g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後メチルエチルケトンオキシム(MEKO)16.2gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含量は2.79重量%であった。反応混合物にトリエチルアミン24.3gを添加・混合したものの中から570gを抜き出して、強攪拌下のもと水807gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液59.5gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(12)を得た。得られた水性ポリウレタン樹脂分散体(12)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例6]
〔水性ポリウレタン樹脂分散体(13)の製造〕
 水性ポリウレタン樹脂分散体(13)として、実施例2で得た水性ポリウレタン樹脂分散体(2)を用いた。水性ポリウレタン樹脂分散体(2)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例7]
〔水性ポリウレタン樹脂分散体(14)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-300(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量2906;水酸基価38.6mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)330g、2,2-ジメチロールプロピオン酸(DMPA)21.6g及びN-メチルピロリドン(NMP)159gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を125g、ジブチルスズジラウリレート(触媒)を0.35g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)10.9gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含量は1.85重量%であった。反応混合物にトリエチルアミン16.3gを添加・混合したものの中から600gを抜き出して、強攪拌下のもと水850gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液41.7gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(14)を得た。得られた水性ポリウレタン樹脂分散体(14)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例8]
〔水性ポリウレタン樹脂分散体(15)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-300(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量2906;水酸基価38.6mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)330g、2,2-ジメチロールプロピオン酸(DMPA)20.3g及びN-メチルピロリドン(NMP)151gを窒素気流下で仕込んだ。イソホロンジイソシアネート(IPDI)を102g、ジブチルスズジラウリレート(触媒)を0.35g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)6.76gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含量は1.21重量%であった。反応混合物にトリエチルアミン15.3gを添加・混合したものの中から585gを抜き出して、強攪拌下のもと水830gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液26.7gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(15)を得た。得られた水性ポリウレタン樹脂分散体(15)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
[実施例9]
〔水性ポリウレタン樹脂分散体(16)の製造〕
 実施例1と同様の反応容器に、ETERNACOLL UH-100(登録商標;宇部興産製ポリカーボネートジオール;数平均分子量1000;水酸基価112.2mgKOH/g;1,6-ヘキサンジオールと炭酸ジメチルとを反応させて得られたポリカーボネートジオール)250g、2,2-ジメチロールプロピオン酸(DMPA)21.0g及びN-メチルピロリドン(NMP)149gを窒素気流下で仕込んだ。4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)を176g、ジブチルスズジラウリレート(触媒)を0.35g加えて90℃まで加熱し、5時間かけてウレタン化反応を行った。その後3,5-ジメチルピラゾール(DMPZ)9.34gを注入し、同温度で1.5時間攪拌を続けて、ポリウレタンプレポリマーを得た。ウレタン化反応終了時の遊離イソシアナト基含量は2.92重量%であった。反応混合物にトリエチルアミン15.8gを添加・混合したものの中から590gを抜き出して、強攪拌下のもと水840gの中に加えた。次いで35重量%の2-メチル-1,5-ペンタンジアミン水溶液64.6gを加えて鎖延長反応を行い、水性ポリウレタン樹脂分散体(16)を得た。得られた水性ポリウレタン樹脂分散体(16)のウレタン結合の含有割合、ウレア結合の含有割合、カーボネート結合の含有割合、ブロック化イソシアナト基の含有割合(イソシアナト基換算)、酸価、重量平均分子量、及び脂環構造の含有割合を表1に記す。
Figure JPOXMLDOC01-appb-T000001
 表1中、各略語は、下記のものを表す。
H12-MDI:4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)
IPDI:イソホロンジイソシアネート
UH-100:宇部興産製 ETERNACOLL UH-100
UC100:宇部興産製 ETERNACOLL UC100
UH-200:宇部興産製 ETERNACOLL UH-200
PH-200:宇部興産製 ETERNACOLL PH-200
UH-300:宇部興産製 ETERNACOLL UH-300
UM90(3/1):宇部興産製 ETERNACOLL UM90(3/1)
UM90(1/3):宇部興産製 ETERNACOLL UM90(1/3)
BI:住化バイエルウレタン社製 バイヒジュールBL5140
 各実施例及び比較例で得られた水性ポリウレタン樹脂分散体を用いて、(9)コーティング層の密着性の評価で記載したようにして、各水性コーティング剤を調製し、EPDM、NBR、CR、NRからなるゴムシートの表面を、アセトンをしみこませた脱脂綿で拭いて脱脂し、乾燥後のコーティング層が約6μmとなるように、各水性コーティング剤を、バーコーターを用いて塗布し、150℃で20分乾燥させ、ゴム積層体を得た。
 得られたゴム積層体において、水性コーティング剤のコーティング層と、ゴムシートとの密着性を評価した。また、コーティング層表面の静摩擦係数を測定した。結果を併せて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2中、各略語は、下記のものを表す。
NBR:ニトリルゴム(コーティング層なしの静摩擦係数:0.787)
CR:クロロプレンゴム(コーティング層なしの静摩擦係数:0.462)
NR:天然ゴム(コーティング層なしの静摩擦係数:0.439)
EPDM:エチレン-プロピレン-ジエンゴム(コーティング層なしの静摩擦係数:1.190以上)
 実施例1、4及び6において、コーティング層を設ける時期を変更して、エチレン-プロピレン-ジエンゴム(EPDM)と、天然ゴム(NR)との密着性を評価した。結果を表3に示す。条件は、上記の密着性評価方法に記載したとおりである。
Figure JPOXMLDOC01-appb-T000003
 本発明のゴム積層体は、ゴムローラ、タイヤ、ワイパーブレード、ウェザーストリップ、靴(靴底等)、サンダル、ゴム長靴、ゴム手袋、機械や建築物の防振部材等に使用できる。

Claims (16)

  1.  水性ポリウレタン樹脂分散体を含有する水性コーティング剤から形成されるコーティング層と、ゴム基材とを備える、ゴム積層体であって、ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で、43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する、ゴム積層体。
  2.  水性ポリウレタン樹脂分散体が、固形分基準かつイソシアナト基換算で、0.1~3.0重量%のブロック化剤が結合したイソシアナト基を有する、請求項1記載のゴム積層体。
  3.  ブロック化剤が、オキシム系化合物、ピラゾール系化合物及びマロン酸ジエステル系化合物からなる群より選ばれる一種以上である、請求項1又は2記載のゴム積層体。
  4.  ポリウレタン樹脂が、15,000~80,000の重量平均分子量を有する、請求項1~3のいずれか1項記載のゴム積層体。
  5.  ポリウレタン樹脂が、固形分基準で、7~35重量%の脂環構造の含有割合を有する、請求項1~4のいずれか1項記載のゴム積層体。
  6.  ポリウレタン樹脂が、固形分基準で、7~18重量%のウレタン結合の含有割合とウレア結合の含有割合の合計値を有する、請求項1~5のいずれか1項記載のゴム積層体。
  7.  ポリウレタン樹脂が、固形分基準で、15~40重量%のカーボネート結合の含有割合を有する、請求項1~6のいずれか1項記載のゴム積層体。
  8.  ポリウレタン樹脂が、10~40mgKOH/gの酸価を有する、請求項1~7のいずれか1項記載のゴム積層体。
  9.  水性ポリウレタン樹脂分散体が、(a)ポリイソシアネート化合物、(b)数平均分子量が400~4000であるポリカーボネートポリオール、(c)酸性基含有ポリオール化合物、(d)イソシアナト基のブロック化剤、任意の(e)その他のポリオール化合物、を反応させて得られる(A)ポリウレタンプレポリマーと、前記ポリウレタンプレポリマーのイソシアナト基との反応性を有する(B)鎖延長剤とを反応させて得られるポリウレタン樹脂が、水系媒体中に分散されたものである、請求項1~8のいずれか1項記載のゴム積層体。
  10.  (a)ポリイソシアネート化合物が脂環式ジイソシアネートである、請求項9記載のゴム積層体。
  11.  水性コーティング剤が、さらに無機粒子又は/及び樹脂ビーズを含有する、請求項1~10のいずれか1項記載のゴム積層体。
  12.  コーティング層とゴム基材の間にプライマー層が存在する、請求項1~11のいずれか1項記載のゴム積層体。
  13.  ゴム基材又はプライマー組成物で処理されたゴム基材の表面に、水性コーティング剤を適用した後、加熱して形成されたコーティング層を備える、請求項1~11のいずれか1項記載のゴム積層体。
  14.  未加硫ゴムからなる基材又はプライマー組成物で処理された未加硫ゴムからなる基材の表面に、水性コーティング剤を適用した後、加熱して形成されたコーティング層及び加硫されたゴム基材を備える、請求項1~11のいずれか1項記載のゴム積層体。
  15.  ゴム基材の表面又はプライマーで処理されたゴム基材の表面に、水性ポリウレタン樹脂分散体を含有する水性コーティング剤(ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で、43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する)を適用した後、加熱して、コーティング層を形成する、ゴム積層体の製造方法。
  16.  未加硫ゴムからなる基材又はプライマー組成物で処理された未加硫ゴムからなる基材の表面に、水性ポリウレタン樹脂分散体を含有する水性コーティング剤(ここで、水性ポリウレタン樹脂分散体は、ポリカーボネートポリオール由来の単位を有するポリウレタン樹脂を含み、固形分基準で、43重量%以下の脂環構造の含有割合を有し、かつブロック化剤が結合したイソシアナト基を有する)を適用した後、加熱して、コーティング層及び加硫されたゴム基材を同時に形成する、ゴム積層体の製造方法。
PCT/JP2013/073743 2012-09-06 2013-09-04 ゴム積層体及びその製造方法 WO2014038565A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014534375A JP6187465B2 (ja) 2012-09-06 2013-09-04 ゴム積層体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012196302 2012-09-06
JP2012-196302 2012-09-06

Publications (1)

Publication Number Publication Date
WO2014038565A1 true WO2014038565A1 (ja) 2014-03-13

Family

ID=50237174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073743 WO2014038565A1 (ja) 2012-09-06 2013-09-04 ゴム積層体及びその製造方法

Country Status (3)

Country Link
JP (1) JP6187465B2 (ja)
TW (1) TW201418381A (ja)
WO (1) WO2014038565A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080202A1 (ja) * 2013-11-27 2015-06-04 株式会社フコク ワイパーブレードゴム用コーティング剤及びそれを用いたワイパーブレードゴム
WO2016076402A1 (ja) * 2014-11-12 2016-05-19 横浜ゴム株式会社 空気入りタイヤ、空気入りタイヤの製造装置及び製造方法
JP2016203514A (ja) * 2015-04-23 2016-12-08 横浜ゴム株式会社 空気入りタイヤの製造装置及び製造方法
WO2017104315A1 (ja) * 2015-12-15 2017-06-22 Dic株式会社 水性樹脂組成物、及び手袋
JP2017137440A (ja) * 2016-02-04 2017-08-10 宇部興産株式会社 水性ポリウレタン樹脂分散体
JP2019035040A (ja) * 2017-08-17 2019-03-07 日本カーバイド工業株式会社 インキ及び積層体
EP3875680A1 (en) * 2020-02-28 2021-09-08 Ichikawa Co., Ltd. Shoe press belt and method for producing a shoe press belt
EP3892144A4 (en) * 2018-12-07 2022-01-26 DIC Corporation GLOVE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034734B1 (fr) * 2015-04-10 2018-09-07 Valeo Systemes D'essuyage Lame d'essuyage pour balai d'essuie-glace
EP3670556A1 (de) * 2018-12-18 2020-06-24 Covestro Deutschland AG Wässrige primerbeschichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277420A (ja) * 2006-04-07 2007-10-25 Inoac Corp 表面改質されたゴム成形品、コーティング剤および表面改質方法
WO2012005351A1 (ja) * 2010-07-08 2012-01-12 宇部興産株式会社 水性ポリウレタン樹脂分散体組成物及びその製造方法
WO2012108492A1 (ja) * 2011-02-10 2012-08-16 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその使用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109349A (ja) * 1994-10-12 1996-04-30 Yokohama Rubber Co Ltd:The 自動車用グラスランのコーティング剤
JP3727010B2 (ja) * 2000-07-14 2005-12-14 西川ゴム工業株式会社 自動車用ウエザーストリップ及びグラスランの製造方法
JP3965094B2 (ja) * 2002-08-23 2007-08-22 鬼怒川ゴム工業株式会社 表面処理組成物及びウェザーストリップ
JP4684879B2 (ja) * 2005-12-19 2011-05-18 オキツモ株式会社 ゴム製パーツの表面にスリップコーティングを形成する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277420A (ja) * 2006-04-07 2007-10-25 Inoac Corp 表面改質されたゴム成形品、コーティング剤および表面改質方法
WO2012005351A1 (ja) * 2010-07-08 2012-01-12 宇部興産株式会社 水性ポリウレタン樹脂分散体組成物及びその製造方法
WO2012108492A1 (ja) * 2011-02-10 2012-08-16 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその使用

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071711B2 (en) 2013-11-27 2018-09-11 Fukoku Co., Ltd. Coating agent for wiper blade rubber and wiper blade rubber using same
WO2015080202A1 (ja) * 2013-11-27 2015-06-04 株式会社フコク ワイパーブレードゴム用コーティング剤及びそれを用いたワイパーブレードゴム
WO2016076402A1 (ja) * 2014-11-12 2016-05-19 横浜ゴム株式会社 空気入りタイヤ、空気入りタイヤの製造装置及び製造方法
US11702555B2 (en) 2014-11-12 2023-07-18 The Yokohama Rubber Co., Ltd. Pneumatic tire, manufacturing device for pneumatic tire, and method of manufacturing pneumatic tire
CN107074028A (zh) * 2014-11-12 2017-08-18 横滨橡胶株式会社 充气轮胎、充气轮胎的制造装置及制造方法
US20170334243A1 (en) * 2014-11-12 2017-11-23 The Yokohama Rubber Co., Ltd. Pneumatic Tire, Manufacturing Device for Pneumatic Tire, and Method of Manufacturing Pneumatic Tire
JP2016203514A (ja) * 2015-04-23 2016-12-08 横浜ゴム株式会社 空気入りタイヤの製造装置及び製造方法
WO2017104315A1 (ja) * 2015-12-15 2017-06-22 Dic株式会社 水性樹脂組成物、及び手袋
JP2017137440A (ja) * 2016-02-04 2017-08-10 宇部興産株式会社 水性ポリウレタン樹脂分散体
JP2019035040A (ja) * 2017-08-17 2019-03-07 日本カーバイド工業株式会社 インキ及び積層体
EP3892144A4 (en) * 2018-12-07 2022-01-26 DIC Corporation GLOVE
US12082634B2 (en) 2018-12-07 2024-09-10 Dic Corporation Glove
EP3875680A1 (en) * 2020-02-28 2021-09-08 Ichikawa Co., Ltd. Shoe press belt and method for producing a shoe press belt

Also Published As

Publication number Publication date
JP6187465B2 (ja) 2017-08-30
TW201418381A (zh) 2014-05-16
JPWO2014038565A1 (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
JP6187465B2 (ja) ゴム積層体及びその製造方法
TWI491634B (zh) 水性聚脲烷樹脂分散體及其製造方法
JP5697225B2 (ja) 水性ポリウレタン樹脂分散体及びその製造方法
JP6597624B2 (ja) 水性ポリウレタン樹脂分散体及びその使用
CN102333803B (zh) 聚氨酯分散体及其制造方法
KR101731127B1 (ko) 수성 폴리우레탄 수지 분산체 및 그의 제조 방법
JP5457039B2 (ja) 塗膜の柔軟性と耐性バランスが改良された水系ソフトフィール塗料用硬化性組成物
JP5668690B2 (ja) 水性ポリウレタン樹脂分散体、その製造方法及びその使用
KR101747982B1 (ko) 수성 폴리우레탄 수지 분산체 및 그의 제조 방법
JP6555262B2 (ja) 水性ポリウレタン樹脂分散体
JPWO2010098318A1 (ja) 水性ポリウレタン樹脂分散体及びその製造方法
JP6705445B2 (ja) 水性ポリウレタン樹脂分散体、その製造方法及びその使用
TW201348278A (zh) 水性聚胺酯樹脂分散體
WO2012005351A1 (ja) 水性ポリウレタン樹脂分散体組成物及びその製造方法
WO2015033939A1 (ja) 水性ポリウレタン樹脂分散体及びその使用
JP2018177861A (ja) 水蒸気ガスバリアコート用水性ポリウレタン樹脂分散体
JP7151184B2 (ja) エマルジョン組成物
JP6943082B2 (ja) 水性ポリウレタン樹脂分散体及びその使用
JP2019044073A (ja) エマルジョン組成物
JP7500996B2 (ja) ポリウレタン樹脂水性分散体を含む接着剤組成物
JP2019059864A (ja) 水性ポリウレタン樹脂分散体及びその使用
JP7363923B2 (ja) 水性樹脂組成物、水性表面処理剤、及び、物品
JP7516778B2 (ja) ポリウレタン樹脂水性分散体を含む接着剤組成物
JP7077558B2 (ja) 水性ポリウレタン樹脂分散体およびその使用
JP2017186432A (ja) 水性ポリウレタン樹脂分散体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835420

Country of ref document: EP

Kind code of ref document: A1