WO2012105704A1 - 水系顔料分散物、その製造方法及びインクジェット記録用インク - Google Patents

水系顔料分散物、その製造方法及びインクジェット記録用インク Download PDF

Info

Publication number
WO2012105704A1
WO2012105704A1 PCT/JP2012/052554 JP2012052554W WO2012105704A1 WO 2012105704 A1 WO2012105704 A1 WO 2012105704A1 JP 2012052554 W JP2012052554 W JP 2012052554W WO 2012105704 A1 WO2012105704 A1 WO 2012105704A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
water
pigment dispersion
acid
azo
Prior art date
Application number
PCT/JP2012/052554
Other languages
English (en)
French (fr)
Inventor
立石 桂一
慎也 林
美彰 永田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP12741914.1A priority Critical patent/EP2671926B1/en
Priority to CN201280007450.2A priority patent/CN103354828B/zh
Publication of WO2012105704A1 publication Critical patent/WO2012105704A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/003Pigment pastes, e.g. for mixing in paints containing an organic pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B33/00Disazo and polyazo dyes of the types A->K<-B, A->B->K<-C, or the like, prepared by diazotising and coupling
    • C09B33/02Disazo dyes
    • C09B33/12Disazo dyes in which the coupling component is a heterocyclic compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • C09B67/0028Crystal modifications; Special X-ray patterns of azo compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0046Mixtures of two or more azo dyes
    • C09B67/0055Mixtures of two or more disazo dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks

Definitions

  • the present invention relates to a water-based pigment dispersion useful for water-based coloring liquids such as water-based paints, water-based inks, printing agents, color filters, water-based recording liquids, and production methods thereof, and water-based color inks using water-based pigment dispersions, particularly
  • the present invention relates to an ink for ink jet recording.
  • Patent Document 1 discloses a method for producing an aqueous pigment dispersion that improves redispersibility and the like of drying at the nozzle tip of an inkjet.
  • a resin having both a carboxyl group, a functional group capable of reacting with a crosslinking agent and / or a functional group capable of self-crosslinking, and a pigment are kneaded into a finely dispersed aqueous dispersion,
  • the resin is strongly fixed (acid precipitation), then neutralized again with a basic compound and redispersed in water.
  • it is a novel method for producing an aqueous pigment dispersion obtained by crosslinking a resin at an arbitrary time.
  • the aqueous pigment dispersion is produced through steps of acid precipitation and redispersion. For this reason, the production process is longer than that of a normal aqueous pigment dispersion, which causes a problem that it takes more energy and labor than necessary.
  • a hydrophobic resin having a crosslinkable functional group and an acidic group, or a hydrophobic resin having a self-crosslinkable functional group and an acidic group is introduced into an aqueous medium at the stage before crosslinking.
  • the acidic groups dissolves, but after crosslinking, the acidic groups are neutralized with an amount of base precipitated in the aqueous medium to form a water-soluble resin, and this water-soluble resin, pigment, and, if necessary, the crosslinking agent are dissolved and dispersed in the aqueous medium.
  • the aqueous dispersion in which the water-soluble resin is dissolved and the pigment is dispersed is obtained, and then the water-soluble resin is crosslinked while maintaining the dispersion of the pigment to precipitate a cross-linked product of the water-soluble resin around the pigment.
  • Patent Document 2 describes a method in which a water-based pigment dispersion can be easily produced by fixing a cross-linked product of a water-soluble resin to the surface of a pigment without steps of acid precipitation and redispersion.
  • Patent Document 1 uses a relatively high temperature (95 ° C.), and Patent Document 2 applies pressure using an autoclave to perform crosslinking at 140 ° C., which is not preferable as a process.
  • Patent Document 3 describes an example in which a crosslinking reaction using isocyanate / amine is performed
  • Patent Document 4 describes an example in which a crosslinking reaction using isocyanate / hydroxyl is performed at 100 ° C. or less.
  • Patent Document 5 International Publication No. 06/064193
  • C.I. which is a pigment specifically described in the patent document.
  • suitable dispersions can be obtained, but yellow pigments, particularly yellow azo pigments known in the art (for example, CI Pigment Yellow 74, CI Pigment Yellow 128, C.I.
  • the present invention provides a pigment dispersion of a good yellow azo pigment, and provides a method for dispersing a yellow azo pigment, and particularly has a suitable print density and glossiness when an ink for inkjet recording is used. It is an object of the present invention to provide a pigment dispersion of a yellow azo pigment and a method for producing the same.
  • a pigment dispersion containing a colorant, a dispersant and water The colorant is (1) characteristic X-ray diffraction peaks at CuK ⁇ characteristic X-ray diffraction with Bragg angles (2 ⁇ ⁇ 0.2 °) of 7.2 °, 13.4 °, 15.0 ° and 25.9 °.
  • An azo pigment which is an assembly of molecules represented by the following formula (1) having the following formula or a tautomer thereof; or Characterized in that it contains an azo pigment that is an assembly of molecules represented by the following formula (2) or a tautomer thereof having characteristic X-ray diffraction peaks at 8 °, 7.2 °, and 9.7 °.
  • Aqueous pigment dispersion [2] The aqueous pigment dispersion according to [1], wherein the dispersant is a water-soluble polymer. [3] The water-based pigment dispersion as set forth in [2], wherein the water-soluble polymer dispersant has a weight average molecular weight of 10,000 to 200,000. [4] The water-based pigment dispersion according to [2] or [3], wherein the water-soluble polymer dispersant has at least one carboxy group and has an acid value of at least 50 mg KOH / g or more. [5] [4] The aqueous pigment dispersion according to [4], wherein the water-soluble polymer dispersant has an acid value of 70 to 160 mg KOH / g.
  • the D / P value is 0.
  • the primary particle diameter before dispersion of the azo pigment which is an aggregate of molecules represented by the formula (1) or a tautomer thereof is 0.01 to 10 ⁇ m.
  • the primary particle diameter before dispersion of the azo pigment which is an aggregate of molecules represented by the formula (2) or a tautomer thereof is 0.01 to 20 ⁇ m.
  • [9] [8] The aqueous pigment dispersion according to [8], wherein the primary particle size before dispersion is 0.01 to 0.2 ⁇ m.
  • the present invention it is possible to provide a yellow azo pigment pigment dispersion having excellent liquid properties and storage stability, and a method for producing a yellow azo pigment pigment dispersion.
  • the azo pigment dispersion of the present invention is suitable for use as a pigment ink for inkjet recording.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (1) -1.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (1) -2.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (1) -3.
  • FIG. 4 is an X-ray diffraction pattern of an azo pigment (1) -4.
  • FIG. 6 is an X-ray diffraction pattern of an amorphous azo pigment (2) -10.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (2) -10.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (2) -2.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (2) -7.
  • FIG. 2 is an X-ray diffraction pattern of (2) - ⁇ type crystal form azo pigment (2) -8.
  • FIG. 2 is an X-ray diffraction pattern of (2) - ⁇ type crystal form azo pigment (2) -11.
  • FIG. 2 is an X-ray diffraction pattern of (2) - ⁇ crystal form azo pigment (2) -12.
  • One preferred embodiment of the present invention is a pigment dispersion containing a colorant, a dispersant, and water, wherein the colorant has (1) a Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 7;
  • An azo pigment which is an aggregate of molecules represented by the following formula (1) or a tautomer thereof having characteristic X-ray diffraction peaks at .2 °, 13.4 °, 15.0 ° and 25.9 ° Or
  • Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction have characteristic X-ray diffraction peaks at 4.8 °, 7.2 °, and 9.7 °
  • an azo pigment which is an aggregate of molecules represented by tautomers thereof.
  • the azo pigment used in the aqueous pigment dispersion of the present invention is represented by the above formula (1) or formula (2).
  • the azo pigment may be a salt, hydrate or solvate thereof.
  • the azo pigment which is an aggregate of molecules represented by the formula (1) or a tautomer thereof, which is the colorant of the present invention, has been confirmed to have a plurality of crystal forms having characteristic peaks by CuK ⁇ characteristic X-ray diffraction. Yes. Examples thereof include the crystal forms described below.
  • the X-ray diffraction peaks characteristic of Bragg angles (2 ⁇ ⁇ 0.2 °) of 7.2 °, 13.4 °, 15.0 °, and 25.9 ° in CuK ⁇ characteristic X-ray diffraction are as follows.
  • An azo pigment that is an assembly of molecules represented by the formula (1) having the following formula or a tautomer thereof is referred to as (1) - ⁇ -type crystal form azo pigment.
  • An azo pigment that is an aggregate of molecules represented by a natural substance is referred to as a (1) - ⁇ type crystal form azo pigment.
  • the X-ray diffraction measurement of the (1) - ⁇ -type, (1) - ⁇ -type and (1) - ⁇ -type crystal form azo pigments of the above formula (1) was conducted using Japanese Industrial Standards JISK0131 (X-ray diffraction pattern).
  • JISK0131 X-ray diffraction pattern
  • a powder X-ray diffractometer RINT2500 manufactured by Rigaku Corporation
  • the azo pigment represented by the formula (1) and its tautomer have Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 7.2 °, 13.4 °, 15.0
  • An azo pigment having a crystalline form having characteristic X-ray diffraction peaks at ° and 25.9 ° is preferred.
  • Crystal forms having characteristic X-ray diffraction peaks at 7.2 °, 13.4 °, 15.0 °, and 25.9 ° are 7.2 °, 13.4 °, 15.0 °
  • Crystal forms having characteristic X-ray diffraction peaks at 19.8 ° and 25.9 ° are more preferred.
  • the azo pigment of the formula (1) having the (1) - ⁇ type crystal form as the colorant of the present invention has an ⁇ type crystal form content of 1 or more when the total weight of the colorant is 100. 100 or less is preferable, 50 or more and 100 or less are more preferable, and 80 or more and 100 or less are more preferable.
  • crystal forms that may exist in addition to the ⁇ -type crystal form include (1) - ⁇ -type, (1) - ⁇ -type, and amorphous, and these crystal forms may or may not be included. May be. Two or more crystal forms may exist.
  • the azo pigment may be a salt, hydrate or solvate thereof.
  • a hydrate containing water molecules in the crystal or a solvent (for example, alcohols such as methanol, ethanol, 2-propanol, t-butyl alcohol, acetone, methyl ethyl ketone, etc. Or aprotic solvents such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, etc.).
  • a solvent for example, alcohols such as methanol, ethanol, 2-propanol, t-butyl alcohol, acetone, methyl ethyl ketone, etc.
  • aprotic solvents such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, etc.
  • tautomers such as scheme (1) (for example, azo-hydrazone tautomers) and geometric isomers represented by scheme (2) ) are also included in these general formulas in the present invention.
  • Primary particle size of azo pigment represented by formula (1) When the primary particle of the azo pigment represented by the formula (1) is observed with a transmission microscope and the length in the major axis direction is 0.01 ⁇ m or less, the specific surface area of the particle increases, In some cases, fastness to ozone and ozone is remarkably reduced, or the specific surface area is further increased, whereby primary particles are strongly aggregated and become difficult to disperse. On the other hand, when the particle size is 10 ⁇ m or more, it becomes an overdispersed state when dispersed to obtain a desired volume average particle diameter, and the active surface is exposed and the pigment particle surface becomes unstable, so that it tends to aggregate. In some cases, the storage stability of the pigment dispersion may deteriorate.
  • the length of the primary particle in the major axis direction is within the above range, it exhibits high fastness to light and ozone, excellent dispersibility, and the pigment dispersion has excellent storage stability and is preferable. .
  • the length in the major axis direction is 0.01 ⁇ m or more and 10 ⁇ m or less.
  • it is 0.01 ⁇ m or more and 3 ⁇ m or less, and more preferably 0.02 ⁇ m or more and 0.5 ⁇ m or less.
  • 0.02 to 0.2 ⁇ m is particularly preferable, and 0.02 to 0.15 ⁇ m is most preferable.
  • the azo pigment may be a salt, hydrate or solvate thereof.
  • the azo pigment which is an aggregate of molecules represented by the formula (2) or its tautomer, which is the colorant of the present invention, has been confirmed to have a plurality of crystal forms having characteristic peaks by CuK ⁇ characteristic X-ray diffraction. Yes. Examples thereof include the crystal forms described below.
  • the following formula (2) has characteristic X-ray diffraction peaks when the Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction is 4.8 °, 7.2 °, and 9.7 °. ) Or an aggregate of molecules represented by tautomers thereof is referred to as (2) - ⁇ type crystal form azo pigment.
  • the following formula (2) has characteristic X-ray diffraction peaks at the Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 6.5 °, 7.1 °, and 21.8 °. ) Or an aggregate of molecules represented by tautomers thereof is referred to as (2) - ⁇ type crystal form azo pigment.
  • An azo pigment represented by Formula (2) having characteristic X-ray diffraction peaks at Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 6.3 °, 6.4 ° and 22.3 ° Is referred to as (2) - ⁇ type crystal form azo pigment.
  • Molecule represented by Formula (2) having a characteristic X-ray diffraction peak at Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 5.9 ° and 7.0 ° or a tautomer thereof
  • the azo pigment that is an aggregate of (2) - ⁇ type crystal form azo pigment is referred to.
  • Formula (2) having a characteristic X-ray diffraction peak at a Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 4.9 °, 8.9 ° and 13.1 ° or a tautomer thereof
  • An azo pigment that is an aggregate of molecules represented by the formula (2) is referred to as a ( ⁇ ) -type crystal form azo pigment.
  • An azo pigment that is an assembly of molecules represented by the formula (2) or a tautomer thereof is referred to as a (2) - ⁇ type crystal form azo pigment.
  • (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ X-ray diffraction measurement of type and (2) - ⁇ -type crystal form azo pigments was performed in accordance with Japanese Industrial Standards JISK0131 (general rules for X-ray diffraction analysis), powder X-ray diffraction measurement apparatus RINT2500 (manufactured by Rigaku Corporation) Can be done.
  • the azo pigment represented by the formula (2) and its tautomer have Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 4.8 °, 7.2 ° and 9.7.
  • An azo pigment having a crystalline form having a characteristic X-ray diffraction peak at 0 ° is preferable.
  • Crystal forms with characteristic X-ray diffraction peaks at 4.8 °, 7.2 ° and 9.7 ° are further 4.8 °, 7.2 °, 9.5 °, 9.7 °, And a crystalline form having a characteristic X-ray diffraction peak at 20.0 °.
  • the azo pigment of formula (2) having a ⁇ -type crystal form as the colorant of the present invention preferably has a ⁇ -type crystal form content of 1 or more and 100 or less when the total weight of the colorant is 100. 50 or more and 100 or less is more preferable, and 80 or more and 100 or less is more preferable.
  • crystal forms that may exist in addition to the (2) - ⁇ type crystal form include (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ type, (2) - ⁇ type, Examples include (2) - ⁇ type, (2) - ⁇ type, and amorphous, and these crystal forms may or may not be included. Two or more crystal forms may exist.
  • a hydrate containing water molecules in the crystal or a solvent (for example, alcohols such as methanol, ethanol, 2-propanol, t-butyl alcohol, acetone, methyl ethyl ketone, etc. Or aprotic solvents such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, etc.).
  • a solvent for example, alcohols such as methanol, ethanol, 2-propanol, t-butyl alcohol, acetone, methyl ethyl ketone, etc.
  • aprotic solvents such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, etc.
  • tautomers such as scheme (1) (for example, azo-hydrazone tautomers) and geometric isomers represented by scheme (2) ) are also included in these general formulas in the present invention.
  • Primary particle diameter of azo pigment represented by formula (2) When the primary particle of the azo pigment represented by the formula (2) is observed with a transmission microscope and the length in the major axis direction is 0.01 ⁇ m or less, the specific surface area of the particle increases, In some cases, fastness to ozone and ozone is remarkably reduced, or the specific surface area is further increased, whereby primary particles are strongly aggregated and become difficult to disperse. On the other hand, when the particle size is 20 ⁇ m or more, it becomes an overdispersed state when dispersed to a desired volume average particle diameter, and the active surface is exposed and the pigment particle surface becomes unstable, so it tends to aggregate. In some cases, the storage stability of the pigment dispersion may deteriorate.
  • the length of the primary particle in the major axis direction is within the above range, it exhibits high fastness to light and ozone, excellent dispersibility, and the pigment dispersion has excellent storage stability and is preferable. .
  • the length in the major axis direction is 0.01 ⁇ m or more and 20 ⁇ m or less.
  • it is 0.01 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • 0.01 ⁇ m or more and 0.2 ⁇ m or less is particularly preferable, and 0.03 ⁇ m or more and 0.15 ⁇ m or less is most preferable.
  • the (1) - ⁇ type crystal form azo pigment represented by the formula (1) (hereinafter sometimes simply referred to as “azo pigment” or “pigment”) can be synthesized by the production method of the present invention.
  • the production method of the present invention includes a step of subjecting a diazonium salt derived from a heterocyclic amine represented by the following formula (1) -1 to an azo coupling reaction with a compound represented by the following formula (3).
  • Preparation of the diazonium salt and the coupling reaction between the diazonium salt and the compound represented by the formula (3) can be carried out by conventional methods.
  • Preparation of a diazonium salt of a heterocyclic amine represented by the formula (1) -1 is carried out in a reaction medium containing, for example, an acid (for example, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, propionic acid, methanesulfonic acid, trifluoromethanesulfonic acid, etc.)
  • a reaction medium containing, for example, an acid (for example, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, propionic acid, methanesulfonic acid, trifluoromethanesulfonic acid, etc.)
  • a conventional diazonium salt preparation method using a nitrosonium ion source such as nitrous acid, nitrite or nitrosylsulfuric acid can be applied.
  • Examples of more preferred acids include the case where acetic acid, propionic acid, methanesulfonic acid, phosphoric acid and sulfuric acid are used alone or in combination, among which phosphoric acid or a combined system of acetic acid and sulfuric acid, acetic acid and propion A combined system of acid, a combined system of acetic acid, propionic acid and sulfuric acid is more preferable, and a combined system of acetic acid and propionic acid and a combined system of acetic acid, propionic acid and sulfuric acid are particularly preferable.
  • reaction medium organic acids and inorganic acids are preferably used, and phosphoric acid, sulfuric acid, acetic acid, propionic acid, and methanesulfonic acid are particularly preferable. Among these, acetic acid and propionic acid are preferable.
  • nitrosonium ion sources examples include nitrites, nitrites, nitrosylsulfuric acid and the like. Among them, isopentyl nitrite, sodium nitrite, potassium nitrite, and nitrosylsulfuric acid are more preferable, and sodium nitrite and nitrosylsulfuric acid are particularly preferable. For example, nitrosylsulfuric acid is used in the preferable acid-containing reaction medium. A diazonium salt can be prepared stably and efficiently.
  • the amount of the solvent used with respect to the diazo component of the formula (1) -1 is preferably 0.5 to 50 times by mass, more preferably 1 to 20 times by mass, and particularly preferably 3 to 15 times by mass.
  • the diazo component of the formula (1) -1 may be in a state of being dispersed in a solvent, or may be in a solution state depending on the kind of the diazo component.
  • the amount of the nitrosonium ion source used is preferably 0.95 to 5.0 equivalents, more preferably 1.00 to 3.00 equivalents, particularly 1.00 to 1.10 equivalents, relative to the diazo component. Is preferred.
  • the reaction temperature is preferably ⁇ 15 ° C. to 40 ° C., more preferably ⁇ 5 ° C. to 35 ° C., and still more preferably 0 ° C. to 30 ° C. Below -15 ° C, the reaction rate is remarkably slow and the time required for the synthesis is remarkably long, which is not economical. When synthesis is performed at a high temperature exceeding 40 ° C, the amount of by-products increases, which is preferable. Absent.
  • the reaction time is preferably 30 minutes to 300 minutes, more preferably 30 minutes to 200 minutes, and still more preferably 30 minutes to 150 minutes.
  • the compound represented by the formula (3) can be produced using, for example, a method described in JP-A-2006-265185.
  • the step of coupling reaction can be carried out in an acidic reaction medium to a basic reaction medium, but the azo pigment of the present invention is preferably carried out in an acidic to neutral reaction medium, particularly in an acidic reaction medium. Implementation in the process can suppress the decomposition of the diazonium salt and can efficiently lead to the azo pigment.
  • reaction medium water, organic acid, inorganic acid, and organic solvent can be used.
  • organic solvent is particularly preferable, and does not cause a liquid separation phenomenon during the reaction and presents a uniform solution with the solvent.
  • a solvent is preferred.
  • alcoholic organic solvents such as water, methanol, ethanol, propanol, isopropanol, butanol, t-butyl alcohol, amyl alcohol, ketone organic solvents such as acetone, methyl ethyl ketone, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol
  • diol organic solvents such as dipropylene glycol and 1,3-propanediol
  • ether organic solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol diethyl ether, tetrahydrofuran, dioxane, acetonitrile, and the like.
  • the solvent may be a mixture of two or more.
  • the organic solvent has a polarity parameter (ET) value of 40 or more.
  • ET polarity parameter
  • a glycol solvent having two or more hydroxyl groups in a solvent molecule an alcohol solvent having 3 or less carbon atoms, a ketone solvent having a total carbon number of 5 or less, preferably an alcohol having 2 or less carbon atoms.
  • Solvents for example, methanol, ethylene glycol
  • ketone solvents having a total carbon number of 4 or less for example, acetone, methyl ethyl ketone
  • the amount of the solvent used is preferably 1 to 100 times by mass of the coupling component represented by the above formula (3), more preferably 1 to 50 times by mass, and even more preferably 2 to 30 times by mass.
  • the coupling component of the formula (3) may be dispersed in a solvent, or may be in a solution state depending on the type of coupling component.
  • the amount of the coupling component used is preferably from 0.95 to 5.0 equivalents, more preferably from 1.00 to 3.00 equivalents, particularly from 1.00 to 1.50, based on the azo coupling site. It is preferable that it is equivalent.
  • the reaction temperature is preferably ⁇ 30 ° C. to 50 ° C., more preferably ⁇ 15 ° C. to 45 ° C., still more preferably ⁇ 10 ° C. to 40 ° C. Less than ⁇ 30 ° C. is not economical because the reaction rate is remarkably slow and the time required for the synthesis is remarkably increased, and it is preferable to synthesize at a high temperature exceeding 50 ° C. because the amount of by-products increases. Absent. Further, when the reaction temperature is low, the primary particle size becomes small, but problems such as filtration leakage may occur during filtration, making isolation difficult. On the other hand, when the reaction temperature is high, the primary particle size becomes large and isolation is easy without causing problems such as filtration leakage. However, since the pigment dispersion tends to aggregate, post-treatment such as salt milling A process may be required.
  • the reaction time is preferably 30 minutes to 300 minutes, more preferably 30 minutes to 200 minutes, and still more preferably 30 minutes to 150 minutes.
  • the product (crude azo pigment) obtained by these reactions may be subjected to a normal organic synthesis reaction post-treatment method and then purified or used without purification. it can.
  • the product liberated from the reaction system can be used without being purified, or can be purified by recrystallization, salt formation or the like alone or in combination.
  • reaction solvent is distilled off, or it is poured into water or ice without being distilled off, and the liberated product is extracted with neutralization or without neutralization, or extracted with an organic solvent / aqueous solution. It can also be used after purification or refining by recrystallization, crystallization, salt formation or the like, either alone or in combination.
  • reaction solvent was not distilled off and poured into water or ice, and the operation was performed by precipitating the precipitated solid and neutralizing or purifying by decantation. It can also be served later.
  • the method for producing an azo pigment of the present invention includes a coupling reaction between a diazonium compound obtained by diazonium-izing a heterocyclic amine represented by the above formula (1) -1 and a compound represented by the above formula (3).
  • a coupling reaction is performed after dissolving or suspending the compound of the formula (3) in an organic solvent.
  • the diazoniumation reaction of the heterocyclic amine represented by the above formula (1) -1 can be carried out, for example, in an acidic solvent such as sulfuric acid, phosphoric acid and acetic acid with a reagent such as sodium nitrite and nitrosylsulfuric acid at a temperature of 30 ° C. or lower.
  • the reaction can be carried out for about 6 minutes to 6 hours.
  • the coupling reaction can be performed by reacting the diazonium salt obtained by the above-described method with the compound represented by the above formula (3) at 50 ° C. or less, preferably 40 ° C. or less for about 10 minutes to 12 hours. preferable.
  • the above-described tautomerization and / or crystal polymorphism can be controlled by the production conditions in the coupling reaction.
  • the compound represented by the above formula (3) is once dissolved in an organic solvent and then subjected to a coupling reaction. It is preferred to use the method of the invention.
  • the organic solvent that can be used at this time include alcohol solvents and ketone solvents.
  • the alcohol solvent methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol and the like are preferable, and methanol is particularly preferable among them.
  • ketone solvent acetone, methyl ethyl ketone, cyclohexanone and the like are preferable, and acetone is particularly preferable among them.
  • a mixed solvent with water may be used.
  • Another method for producing an azo pigment of the present invention is a coupling reaction between a diazonium compound obtained by diazonium-izing a heterocyclic amine represented by the formula (1) -1 and a compound represented by the formula (3).
  • the coupling reaction is performed in the presence of a polar aprotic solvent.
  • (1) - ⁇ type crystals can also be efficiently produced by a method in which a coupling reaction is carried out in the presence of a polar aprotic solvent.
  • polar aprotic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetramethylurea, acetone, methyl ethyl ketone, acetonitrile, and mixed solvents thereof Etc.
  • these solvents acetone, methyl ethyl ketone, N, N-dimethylacetamide, and acetonitrile are particularly preferable.
  • the compound of the above formula (3) may or may not be completely dissolved in the solvent.
  • the compound obtained by the above production method may or may not be adjusted to pH by adding a base as a purification step.
  • the pH is preferably 4 to 10.
  • the pH is more preferably 4.5 to 8, and particularly preferably 5.5 to 7.
  • the hue does not increase reddish, which is preferable from the viewpoint of hue.
  • the pH is 4 or more, for example, when used as an ink for ink jet recording, problems such as corroding the nozzle hardly occur, which is preferable.
  • the compound represented by the above formula (1) is obtained as a crude azo pigment (crude) by the above production method.
  • the method for producing an azo pigment of the present invention comprises (1)-(a) a step of mixing a diazotizing agent and an amino compound, (1)-(b) a reaction product obtained in steps (1)-(a), A step of performing a reaction by mixing with a coupling component and obtaining a solution in which at least a part of an azo compound represented by the following general formula (1) produced by the reaction is dissolved, (1)-(c) Mixing the solution obtained in (1)-(b) with a poor solvent for the azo compound represented by formula (1) to crystallize the pigment represented by formula (1). It is characterized by.
  • step (1)-(a) the diazotizing compound and amino compound (1) -1 are mixed to induce a diazonium compound by the reaction of amino compound (1) -1 and the diazotizing agent.
  • This reaction is preferably carried out in a medium containing an acid.
  • a liquid containing this diazonium compound is referred to as a “diazonium compound preparation liquid”.
  • the method for mixing the amino compound (1) -1, the acid and the diazotizing agent is not particularly limited, but it is preferable to add the diazotizing agent to the solution of the amino compound (1) -1 and the acid.
  • the diazotizing agent in step (1)-(a) is used for deriving amino compound (1) -1 to a diazonium compound, and is not limited as long as it has such an action.
  • Representative examples of the diazotizing agent include nitrites (for example, sodium nitrite and potassium nitrite), isoamyl nitrite, and nitrosylsulfuric acid, and more preferably sodium nitrite, potassium nitrite, and nitrosylsulfuric acid. Of these, nitrosylsulfuric acid is particularly preferred.
  • the acid used in the step (1)-(a) means an acid that can be dissolved even slightly even if the amino compound (1) -1 is not completely dissolved, and preferably the amino compound (1) -1 is completely dissolved.
  • Acid an inorganic acid and an organic acid can be used, and examples of the inorganic acid include hydrochloric acid, phosphoric acid, and sulfuric acid, preferably phosphoric acid and sulfuric acid, and more preferably sulfuric acid.
  • the organic acid include formic acid, acetic acid, propionic acid, and methanesulfonic acid, preferably acetic acid, propionic acid, and methanesulfonic acid, and more preferably acetic acid and propionic acid. These acids may be used alone or in combination.
  • Examples of the mixed acid include phosphoric acid / acetic acid, sulfuric acid / acetic acid, methanesulfonic acid / acetic acid, acetic acid / propionic acid, and preferably phosphoric acid / acetic acid, sulfuric acid / acetic acid, sulfuric acid / acetic acid / propionic acid, acetic acid / propionic acid.
  • sulfuric acid / acetic acid and acetic acid / propionic acid are particularly preferred.
  • the mass ratio of these mixed acids is preferably 1 / (0.1 to 20), more preferably 1 / (0.5 to 10), and still more preferably 1 / (1 to 10).
  • the amount of acid added to amino compound (1) -1 is 1 to 100 times, more preferably 2 to 50 times, and even more preferably 3 to 25 times in terms of mass ratio. .
  • the mass ratio is less than 1 time, the stirring ability is deteriorated and the diazonium compound cannot be induced.
  • the mass ratio is 100 times or more, the productivity becomes poor and uneconomical.
  • the addition amount of the diazotizing agent with respect to the amino compound (1) -1 in the step (1)-(a) is 1.0 to 20 times in molar ratio, more preferably 1.0 to 10 times. Yes, 1.0 to 5 times is more preferable.
  • a diazotizing agent having a molar ratio of at least 1 is necessary to induce a diazonium compound, and if it is 20 times or more, the diazonium compound is decomposed by a side reaction.
  • the mixing of the diazotizing agent and the amino compound (1) -1 in step (1)-(a) is preferably performed at 50 ° C. or less, more preferably at 40 ° C. or less, and still more preferably. It is desirable to carry out at 30 degrees C or less.
  • the stirring time for inducing the diazonium compound is preferably 0.3 to 10 hours, more preferably 0.5 to 5 hours, and further preferably 1 to 3 hours. In 0.3 hours or less, it is difficult to induce completely, and in 10 hours or more, there is a concern about the decomposition of the diazonium compound.
  • a normal stirrer is used for mixing, and there is no limitation in particular.
  • the preferable rotation speed of stirring is preferably 30 to 300 rpm, more preferably 40 to 200 rpm, and still more preferably 50 to 200 rpm.
  • the stirring speed is 30 rpm or less, the stirring efficiency of the diazonium compound preparation liquid is deteriorated, and there is a concern that the desired reaction proceeds.
  • the solvent that can be mixed in the steps (1) to (a) is not particularly limited as long as the derived diazonium compound is not decomposed.
  • solvents that can be mixed include hydrocarbon solvents such as hexane, benzene, and toluene, ether solvents such as diethyl ether and tetrahydrofuran, ketone solvents such as acetone and methyl ethyl ketone, dimethylformamide, dimethylacetamide, pyrrolidone, and N-methyl- Examples thereof include amide solvents such as 2-pyrrolidone, dimethyl sulfoxide, sulfolane, acetonitrile, and water.
  • the preferred pH of the diazonium compound preparation solution in the steps (1) to (a) is preferably 7 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the pH of the diazonium compound preparation solution in step (1)-(a) is 7 or more, there is a concern about the decomposition of the induced diazonium compound.
  • the diazonium compound in the diazonium compound preparation liquid obtained in the step (1)-(a) is mixed with the coupling component (3) to obtain the step (1)-(a
  • a solution in which at least a part of the azo compound represented by the formula (1) is obtained by coupling the diazonium compound and the coupling components (1) to (3) in the diazonium compound preparation solution obtained in (1) It is the process of obtaining.
  • a solution in which at least a part of the azo compound is dissolved is referred to as an “azo compound solution”.
  • the coupling component may be partially or wholly dissolved in the solvent, or It is preferable to add as a solid without using a solvent, and the solution of the coupling component is added to the diazonium compound preparation liquid obtained in step (1)-(a), or step (1)-(a More preferably, the coupling component is added as a solid to the diazonium compound preparation solution obtained in (1).
  • the amount of the diazonium compound in the diazonium compound preparation liquid obtained in the step (1)-(a) with respect to the coupling component in the step (1)-(b) is from 0.8 to the coupling position of the coupling component. 3 equivalents are preferred, more preferably 0.9 to 2 equivalents relative to the coupling position, and even more preferably 0.95 to 1.5 equivalents relative to the coupling position. If it is 0.8 equivalent or less, a large amount of coupling component having an unreacted coupling position remains, and if it is 3 equivalents or more, a large amount of unreacted diazonium compound remains, which is uneconomical in any case. .
  • the coupling component (3) may be added without using a solvent, but it is preferable to add it by mixing with a solvent.
  • a solvent is used for the coupling component (3) in the steps (1)-(b), as long as a solution in which at least a part of the azo compound represented by the formula (1) generated after the reaction is dissolved is obtained. There is no particular limitation.
  • the solvent examples include alcohol solvents such as methanol, isopropanol and ethylene glycol; ketone solvents such as acetone and methyl ethyl ketone; organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid; inorganic solvents such as sulfuric acid, hydrochloric acid and phosphoric acid Examples include acid solvents, amide solvents such as dimethylformamide, dimethylacetamide, pyrrolidone, N-methyl-2-pyrrolidone, and other dimethyl sulfoxide, sulfolane, and acetonitrile.
  • alcohol solvents such as methanol, isopropanol and ethylene glycol
  • ketone solvents such as acetone and methyl ethyl ketone
  • organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid
  • inorganic solvents such as sulfuric acid, hydrochloric acid and phosphoric acid
  • ketone solvents such as acetone and methyl ethyl ketone
  • organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid
  • inorganic acid solvents such as sulfuric acid, hydrochloric acid and phosphoric acid
  • organic acids or inorganic acids are preferred.
  • Acidic acid solvents most preferably acetic acid, methanesulfonic acid, phosphoric acid, and sulfuric acid.
  • the mixed solvent of the solvent shown above is also suitable. That is, in step (1)-(b), it is preferable to mix an acidic solution obtained by dissolving the coupling component in an acidic solvent and the reaction product obtained in step (1)-(a).
  • the acidic solvent is preferably at least one of acetic acid and sulfuric acid.
  • the amount of the solvent added to the coupling component is preferably 0.5 to 200 times, more preferably 1 to 100 times, and still more preferably 1 to 50 times in terms of mass ratio.
  • mass ratio is 0.5 times or less, stirring in the production machine of the coupling component and the solvent becomes difficult, and the desired reaction does not proceed. Moreover, it becomes uneconomical at 200 times or more.
  • An azo compound solution obtained by mixing the diazonium compound preparation solution of step (1)-(a) and the coupling component in step (1)-(b) was produced by steps (1)-(b).
  • Azo compound relative to the total amount of azo compound total of azo compound represented by formula (1) dissolved in azo compound solution and azo pigment represented by formula (1) precipitated from azo compound solution
  • the proportion of the azo compound represented by formula (1) dissolved in the compound solution is preferably 50% by mass or more, preferably 75% by mass or more, and preferably 90% by mass or more. 100% by mass (the state in which the azo compound produced in steps (1) to (b) is completely dissolved in the reaction solution) is most preferable.
  • the mixing temperature of the diazonium compound preparation liquid and the coupling component in step (1)-(a) in step (1)-(b) is preferably 50 ° C. or less, and preferably 30 ° C. or less. More preferably, it is desirable to carry out at 25 ° C. or lower. Above 50 ° C., there is a concern about the decomposition of the diazonium compound derived in steps (1) to (a) and the azo compound represented by formula (1). Moreover, a normal stirrer is used for mixing, and there is no limitation in particular. Although depending on the production equipment, the preferable rotation speed of stirring is preferably 30 to 300 rpm, more preferably 40 to 200 rpm, and still more preferably 50 to 200 rpm.
  • the stirring time in step (1)-(b) is preferably 0.1 to 10 hours, more preferably 0.3 to 5 hours, and further preferably 0.3 to 3 hours. If it is 0.1 hours or less, it is difficult to induce the pigment completely into the pigment, and if it is 10 hours or more, the azo compound represented by the formula (1) may be decomposed.
  • the ⁇ -type crystal form azo pigment represented by the formula (2) (hereinafter sometimes simply referred to as “azo pigment” or “pigment”) is, for example, from a heterocyclic amine represented by the following formula (2) -1 It can be synthesized by a method in which the derived diazonium salt and a compound represented by the following formula (3) are subjected to an azo coupling reaction.
  • Preparation of the diazonium salt and the coupling reaction between the diazonium salt and the compound represented by the formula (3) can be carried out by conventional methods.
  • the above-described tautomerism and / or crystal polymorphism can be controlled by production conditions during the coupling reaction or crystal conversion.
  • a solvent in which the solubility of the azo pigment represented by the formula (2) after crystal conversion is low is preferable from the viewpoint of suppressing crystal growth during crystal conversion.
  • Water, organic acid, inorganic acid, and organic solvent can be used, but water and organic solvent are preferable. More preferable solvents include water, methanol, ethanol, isopropanol, isobutanol, ethylene glycol, diethylene glycol, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, dipropylene glycol, acetic acid, propionic acid, sulfuric acid, or a mixed solvent thereof. More preferred is ethylene glycol, water, acetic acid, sulfuric acid, or a mixed solvent thereof, and most preferred is ethylene glycol.
  • the amount of the solvent used in the solvent heat treatment is preferably 1 to 100 times, more preferably 5 to 50 times, and more preferably 8 to 30 times that of the azo pigment represented by the formula (2). More preferably. If it is 1 time or more, it is preferable because agitation can be secured. Moreover, if it is 100 times or less, productivity becomes high and it is preferable from economical.
  • the temperature of heating and stirring in the solvent heat treatment varies depending on the desired primary particle size of the pigment, but is preferably 15 to 150 ° C, more preferably 20 to 120 ° C, and still more preferably 20 to 100 ° C.
  • the temperature is 15 ° C. or higher, crystal conversion occurs, and it is efficient without requiring a long time.
  • it is 150 degrees C or less, since it can suppress that a part of azo pigment of Formula (2) decomposes
  • the stirring time for crystal conversion may be any number as long as crystal conversion is occurring, but is preferably 5 to 1500 minutes, more preferably 10 to 600 minutes, and more preferably 30 to 300 minutes. If it is 5 minutes or more, it can suppress that a partially amorphous location remains, which is preferable. On the other hand, if it is 1500 minutes or less, it is efficient and preferable.
  • the method for producing an azo compound represented by the formula (2) used for crystal conversion comprises a step of mixing (2)-(a) a diazotizing agent and an amino compound represented by the formula (2) -1, )-(B)
  • the reaction product obtained in the step (a) is mixed with the coupling component represented by the formula (3), and the reaction is represented by the following formula (2) produced by the reaction.
  • step (2)-(a) the diazonium compound is derived by the reaction of the amino compound and the diazotizing agent by mixing the diazotizing agent and the amino compound. This reaction is preferably carried out in a medium containing an acid.
  • a liquid containing this diazonium compound is referred to as a “diazonium compound preparation liquid”.
  • the method for mixing the amino compound, the acid and the diazotizing agent is not particularly limited, but it is preferable to add the diazotizing agent to the amino compound and acid solution.
  • the diazotizing agent in the step (2)-(a) is used to derive an amino compound into a diazonium compound, and is not limited as long as it has such an action.
  • diazotizing agent examples include nitrites (for example, isopentyl nitrite), nitrites (for example, sodium nitrite and potassium nitrite), isoamyl nitrite, and nitrosyl sulfate. More preferred are sodium nitrite, potassium nitrite, and nitrosylsulfuric acid. Among them, nitrosylsulfuric acid is particularly preferred from the viewpoint that a diazonium compound can be stably and efficiently prepared.
  • the acid used in the step (2)-(a) means an acid that can be dissolved even slightly even if the amino compound represented by the formula (2) -1 is not completely dissolved. Preferably, the amino compound is completely dissolved. Acid.
  • an inorganic acid and an organic acid can be used, and examples of the inorganic acid include hydrochloric acid, phosphoric acid, and sulfuric acid, preferably phosphoric acid and sulfuric acid, and more preferably sulfuric acid.
  • the organic acid include formic acid, acetic acid, propionic acid, and methanesulfonic acid, preferably acetic acid, propionic acid, and methanesulfonic acid, and more preferably acetic acid and propionic acid. These acids may be used alone or in combination.
  • Examples of the mixed acid include phosphoric acid / acetic acid, sulfuric acid / acetic acid, methanesulfonic acid / acetic acid, acetic acid / propionic acid, and preferably phosphoric acid / acetic acid, sulfuric acid / acetic acid, sulfuric acid / acetic acid / propionic acid, acetic acid / propionic acid.
  • sulfuric acid / acetic acid and acetic acid / propionic acid are particularly preferred.
  • the mass ratio of these mixed acids is preferably 1 / (0.1 to 20), more preferably 1 / (0.5 to 10), and still more preferably 1 / (1 to 10).
  • step (2)-(a) the amount of acid added to the amino compound is 1 to 100 times, more preferably 2 to 50 times, and further preferably 3 to 25 times in terms of mass ratio.
  • the mass ratio is 1 or more, the stirring property is improved, and the diazonium compound can be more reliably induced.
  • productivity becomes economical for improvement.
  • the addition amount of the diazotizing agent with respect to the amino compound is 1.0 to 20 times, more preferably 1.0 to 10 times, and 1.0. More preferably, it is 5 times.
  • the diazotizing agent has a molar ratio of 1 or more with respect to the amino compound, the diazonium compound can be more reliably induced, and when the diazotizing agent is 20 or less, decomposition of the diazonium compound due to side reactions can be suppressed.
  • the mixing of the diazotizing agent and the amino compound in step (2)-(a) is preferably performed at 50 ° C. or less, more preferably at 40 ° C. or less, and further preferably at 30 ° C. or less. It is desirable to do.
  • the stirring time for inducing the diazonium compound is preferably 0.3 to 10 hours, more preferably 0.5 to 5 hours, and further preferably 1 to 3 hours. When the stirring time is 0.3 hours or longer, the diazonium compound is easily induced completely, and when it is 10 hours or shorter, the diazonium compound is hardly decomposed.
  • a normal stirrer is used for mixing, and there is no particular limitation.
  • the preferable rotation speed of stirring is preferably 30 to 300 rpm, more preferably 40 to 200 rpm, and still more preferably 50 to 200 rpm. Since the stirring efficiency of the diazonium compound preparation liquid is good when the stirring speed is 30 rpm or more, the progress of a desired reaction can be reliably performed.
  • the solvent that can be mixed in the steps (2) to (a) is not particularly limited as long as the derived diazonium compound is not decomposed.
  • miscible solvents include hydrocarbon solvents such as hexane, benzene, and toluene, ether solvents such as diethyl ether and tetrahydrofuran, ketone solvents such as acetone and methyl ethyl ketone, dimethylformamide, dimethylacetamide, pyrrolidone, and N-methyl- Examples thereof include amide solvents such as 2-pyrrolidone, dimethyl sulfoxide, sulfolane, acetonitrile, and water.
  • the preferred pH of the diazonium compound preparation solution in step (2)-(a) is preferably 7 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the pH of the diazonium compound preparation solution in step (2)-(a) is 7 or more, there is a concern about the decomposition of the induced diazonium compound.
  • Steps (2)-(b) are carried out by mixing the reaction product obtained in steps (2)-(a) and the coupling component, and are represented by the formula (2) generated by the reaction.
  • This is a step of obtaining a solution in which at least a part of the azo compound is dissolved.
  • a solution in which at least a part of the azo compound is dissolved is referred to as an “azo compound solution”.
  • a coupling reaction is carried out by mixing the reaction product obtained in steps (2)-(a) and a coupling component, and as a result of the reaction, an azo pigment represented by the formula (2) is precipitated.
  • a method obtained by dissolving in a solvent and (Ii) The coupling reaction is performed so that at least a part of the compound represented by the formula (2) obtained by the coupling reaction is dissolved in the reaction solution, and the reaction solution is dissolved as it is in the azo compound.
  • the azo pigment obtained (crystallized) by applying the azo compound solution thus obtained to the steps (2) to (c) described in detail below, Further, there is a method obtained by dissolving in a solvent.
  • any of the above forms (i) and (ii) there is no particular limitation on the method of mixing the diazonium compound preparation liquid obtained in step (2)-(a) and the coupling component. It is preferable to add a part or all of them dissolved in a solvent, or add them as a solid without using a solvent, and add the solution of the coupling component to the diazonium compound preparation solution obtained in step (a). More preferably, the coupling component is added as a solid to the diazonium compound preparation liquid obtained in step (a).
  • the amount of the diazonium compound in the diazonium compound preparation liquid obtained in the step (2)-(a) relative to the coupling component in the step (2)-(b) is 0. 0 relative to the coupling position of the coupling component.
  • 8 to 3 equivalents are preferable, more preferably 0.9 to 2 equivalents with respect to the coupling position, and still more preferably 0.95 to 1.5 equivalents with respect to the coupling position.
  • 0.8 equivalents or more the remaining of the coupling component having an unreacted coupling position can be suppressed, and by being 3 equivalents or less, the remaining of the unreacted diazonium compound can be suppressed. Economical.
  • the coupling component may be added without using a solvent, but may be added by mixing with a solvent, but it is preferable to add without using a solvent.
  • a solvent is used as a coupling component in steps (2)-(b)
  • the solvent is represented by the general formula (2) generated after the reaction so as to be in the above form (ii).
  • the solvent is preferably such that a solution in which at least a part of the azo compound is dissolved is obtained.
  • water, organic acid, inorganic acid, and organic solvent can be used as examples of the solvent.
  • a solvent that does not cause a separation phenomenon and presents a uniform solution with the solvent is preferable.
  • diol organic solvents such as dipropylene glycol and 1,3-propanediol
  • ether organic solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol diethyl ether, tetrahydrofuran, dioxane, acetonitrile, and the like.
  • the solvent may be a mixture of two or more.
  • the organic solvent has a polarity parameter (ET) value of 40 or more.
  • ET polarity parameter
  • a glycol solvent having two or more hydroxyl groups in a solvent molecule an alcohol solvent having 3 or less carbon atoms, a ketone solvent having a total carbon number of 5 or less, preferably an alcohol having 2 or less carbon atoms.
  • Solvents for example, methanol, ethylene glycol
  • ketone solvents having a total carbon number of 4 or less for example, acetone, methyl ethyl ketone
  • examples of the solvent include water, methanol, Alcohol solvents such as isopropanol and ethylene glycol, ketone solvents such as acetone and methyl ethyl ketone, organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid, inorganic acid solvents such as sulfuric acid, hydrochloric acid and phosphoric acid, dimethylformamide and dimethylacetamide Amide solvents such as pyrrolidone and N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane and acetonitrile.
  • Alcohol solvents such as isopropanol and ethylene glycol
  • ketone solvents such as acetone and methyl ethyl ketone
  • organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid
  • inorganic acid solvents such as sulfuric acid, hydrochloric acid and phosphoric acid
  • ketone solvents such as acetone and methyl ethyl ketone
  • organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid
  • inorganic acid solvents such as sulfuric acid, hydrochloric acid and phosphoric acid
  • organic acids or inorganic acids are preferred.
  • Acidic acid solvents most preferably acetic acid, methanesulfonic acid, phosphoric acid, and sulfuric acid.
  • the mixed solvent of the solvent shown above is also suitable.
  • an acidic solution in which the coupling component is dissolved or suspended in an acidic solvent and the reaction product obtained in steps (2)-(a) It is preferable to add a coupling component to the reaction product obtained in step (a) without using a solvent.
  • the acidic solvent is preferably a solvent containing at least one of acetic acid and sulfuric acid.
  • the amount of the solvent added to the coupling component is preferably 0.5 to 200 times, more preferably 1 to 100 times, and more preferably 1 to 50 times in terms of mass ratio. Further preferred. As a preferable addition amount of the solvent with respect to the coupling component, if the mass ratio is 0.5 times or less, stirring in the production machine of the coupling component and the solvent becomes difficult, and the desired reaction does not proceed. Moreover, it becomes uneconomical at 200 times or more.
  • the solvent for dissolving the obtained azo pigment is as follows:
  • the solvent is not particularly limited as long as at least a part of the azo pigment can be dissolved, but examples of the solvent mentioned above as preferable in the above-described form (ii) can be similarly exemplified.
  • the azo compound solution finally obtained in steps (2) to (b) is preferably an acidic solution, especially acetic acid. And a solution containing at least one of sulfuric acid.
  • the azo compound solution obtained in step (2)-(b) is the total amount of the azo compound produced in steps (2)-(b) (represented by the formula (2) dissolved in the azo compound solution).
  • Ratio of the azo compound represented by formula (2) dissolved in the azo compound solution to the azo compound and the azo pigment represented by formula (2) precipitated from the azo compound solution It is preferably 50% by mass or more, preferably 75% by mass or more, preferably 90% by mass or more, and 100% by mass (the azo compound produced by the step (b) is completely dissolved in the reaction solution) In this case, the pigment particle diameter tends to be further reduced.
  • the mixing temperature of the diazonium compound preparation liquid and the coupling component in step (2)-(a) in step (2)-(b) is preferably 50 ° C. or less, and preferably 30 ° C. or less. More preferably, it is desirable to carry out at 25 ° C. or lower. Above 50 ° C., there is concern about the decomposition of the diazonium compound derived in steps (2)-(a) and the azo compound represented by formula (2). Moreover, a normal stirrer is used for mixing, and there is no particular limitation. Although depending on the production equipment, the preferable rotation speed of stirring is preferably 30 to 300 rpm, more preferably 40 to 200 rpm, and still more preferably 50 to 200 rpm.
  • the stirring time in the step (b) is preferably from 0.1 to 10 hours, more preferably from 0.3 to 5 hours, still more preferably from 0.3 to 3 hours. In 0.1 hours or less, it is difficult to induce into the pigment completely, and in 10 hours or more, there is a concern about the decomposition of the azo compound represented by the formula (2).
  • steps (1)-(c) and (2)-(c) the azo compound solution obtained in step (1)-(b) or (2)-(b) is dissolved in the azo compound.
  • This is a step of crystallizing a pigment by mixing with a poor solvent having low properties.
  • the method of mixing the azo compound solution obtained in the step (1)-(b) or (2)-(b) and the poor solvent but the azo compound solution obtained in the step (b) It is preferable to add in a poor solvent, and it is preferable that the poor solvent is in the state stirred.
  • the stirring speed is preferably 100 to 10,000 rpm, more preferably 150 to 8000 rpm, and particularly preferably 200 to 6000 rpm.
  • a pump or the like can be used for the addition. At this time, it may be added in the liquid or outside the liquid, but the addition in the liquid is more preferable. Further, it is preferable to continuously supply the liquid by a pump through a supply pipe.
  • the poor solvent is not particularly limited, but the solubility of the azo compound is preferably 1 g / L or less, more preferably 0.1 g / L or less. This solubility may be the solubility when dissolved in the presence of an acid or alkali.
  • the compatibility or uniform mixing property of the azo compound solution obtained in the step (1)-(b) or (2)-(b) and the poor solvent is such that the dissolved amount of the good solvent in the poor solvent is 30%. % Or more, and more preferably 50% by mass.
  • solubility refers to solubility at 25 ° C.
  • the poor solvent examples include water, hydrochloric acid, aqueous ammonia, aqueous solvents such as aqueous sodium hydroxide, alcohol solvents such as methanol, ethanol, isopropyl alcohol, and 1-methoxy-2-propanol, and glycols such as ethylene glycol and diethylene glycol.
  • Solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ether solvents such as diethyl ether and tetrahydrofuran, hydrocarbon solvents such as hexane, benzene and toluene, nitrile solvents such as acetonitrile, dichloromethane, trichloroethylene And halogen-based solvents such as ethyl acetate, ethyl lactate, ester solvents such as 2- (1-methoxy) propyl acetate and the like, preferably water, hydrochloric acid, aqueous ammonia, hydroxy acid Aqueous solvents such as aqueous sodium, alcoholic solvents such as methanol, ethanol, isopropyl alcohol, 1-methoxy-2-propanol, glycolic solvents such as ethylene glycol and diethylene glycol, ketone compounds such as acetane,
  • the mixing ratio of the azo compound solution obtained in the step (1)-(b) or (2)-(b) and the poor solvent is preferably 1/50 to 2/3 in volume ratio, and preferably 1/40 to 1 /. 2 is more preferable, and 1/20 to 1/2 is particularly preferable.
  • the volume ratio is larger than 2/3, the crystallization of the pigment becomes insufficient, so that the reaction yield is lowered, and when the volume ratio is smaller than 1/20, the productivity is deteriorated and uneconomical.
  • the mixing temperature of the azo compound solution obtained in steps (1)-(b) and the poor solvent is not particularly limited, but is preferably -10 to 50 ° C, preferably -5 to 30 ° C. More preferably, it is most preferably carried out at -5 to 15 ° C.
  • the mixing temperature of the azo compound solution obtained in steps (2)-(b) and the poor solvent is not particularly limited, but is preferably -10 to 50 ° C, preferably -5 to 30 ° C. More preferably, it is carried out at ⁇ 5 to 15 ° C., particularly preferably 10 to 25 ° C.
  • the particle size of the organic nanoparticles to be deposited is controlled by adjusting the Reynolds number.
  • the Reynolds number is a dimensionless number representing the state of fluid flow and is represented by the following equation.
  • Re represents the Reynolds number
  • represents the density [kg / m 3 ] of the azo compound solution obtained in the step (1)-(b) or (2)-(b)
  • U represents the relative speed [m / s] when the azo compound solution and the poor solvent meet
  • L represents the equivalent diameter [m] of the flow path or supply port where the azo compound solution and the poor solvent meet.
  • represents the viscosity coefficient [Pa ⁇ s] of the azo compound solution.
  • the equivalent diameter L refers to the diameter of the equivalent circular pipe when assuming an opening diameter of a pipe having an arbitrary cross-sectional shape or a circular pipe equivalent to the flow path.
  • the equivalent diameter L is expressed by the following formula (2), where A is the cross-sectional area of the pipe, p is the wetted length (circumferential length) of the pipe, or p is the outer periphery of the flow path.
  • the relative speed U when the azo compound solution and the poor solvent meet is defined by the relative speed in the direction perpendicular to the surface of the part where both meet. That is, for example, when the azo compound solution is injected and mixed in a stationary poor solvent, the speed of injection from the supply port becomes equal to the relative speed U.
  • the value of the relative speed U is not particularly limited, but is preferably 0.5 to 100 m / s, and more preferably 1.0 to 50 m / s.
  • the density ⁇ of the azo compound solution is a value determined by the type of material selected, but is practically, for example, 0.8 to 2.0 kg / m 3 .
  • the viscosity coefficient ⁇ of the azo compound solution is also a value determined by the material used, the ambient temperature, and the like, and is preferably 0.5 to 100 mPa ⁇ s, for example, 1.0 to 50.0 mPa ⁇ s. More preferably, it is s.
  • it can be obtained by adjusting the Reynolds number to 60 or more to control the particle diameter of the pigment nanoparticles, preferably 100 or more, and more preferably 150 or more.
  • the Reynolds number there is no particular upper limit to the Reynolds number, for example, pigment particles having a desired average particle diameter can be controlled and obtained by adjusting and controlling within a range of 100,000 or less. At this time, within the above range, it is possible to control and obtain pigment particles having a smaller particle size by increasing the Reynolds number.
  • the average particle diameter of the pigment particles obtained by using the above method is preferably 1 nm to 1 ⁇ m, more preferably 5 to 500 nm, still more preferably 10 to 200 nm, and more preferably 10 to 100 nm. It is particularly preferred.
  • the preferred average particle size of the pigment particles is (1) the temperature in steps (1)-(c) and (2)-(c), (2) the solubility of the azo compound in the poor solvent, and (3) This is achieved by appropriately adjusting the stirring speed (or Reynolds number).
  • the product obtained by the above steps (1)-(a) to (c) and steps (2)-(a) to (c) is subjected to a normal organic synthesis reaction.
  • a normal organic synthesis reaction After processing according to the processing method, it can be used with or without purification. That is, for example, the product liberated from the reaction system can be used without being purified, or can be purified by recrystallization, salt formation or the like alone or in combination.
  • reaction solvent is distilled off, or it is poured into water or ice without being distilled off, and the liberated product is extracted with neutralization or without neutralization, or extracted with an organic solvent / aqueous solution. It can also be used after purification or refining by recrystallization, crystallization, salt formation or the like, either alone or in combination.
  • pigment particles obtained by the production method of the present invention that is, the azo pigments represented by the formulas (1) and (2) obtained by the above method will be described.
  • the volume average particle diameter of the azo pigment particles represented by the formulas (1) and (2) obtained by the production method of the present invention is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 3 ⁇ m. More preferably, the thickness is 0.02 to 0.5 ⁇ m. Among these, 0.02 to 0.2 ⁇ m is particularly preferable, and 0.02 to 0.15 ⁇ m is most preferable.
  • the volume average particle diameter of the pigment particles refers to the particle diameter of the pigment itself, or the particle diameter to which the additive has adhered when an additive such as a dispersant is attached to the colorant.
  • a Nanotrac UPA particle size analyzer (UPA-EX150; manufactured by Nikkiso Co., Ltd.) can be used as a measuring device for the volume average particle diameter of pigment particles. The measurement can be performed according to a predetermined measurement method by placing 3 ml of the pigment dispersion in a measurement cell. As parameters input at the time of measurement, the ink viscosity is used as the viscosity, and the pigment density is used as the density of the dispersed particles.
  • the azo pigments represented by formula (1) and formula (2) produced by the method of the present invention may be post-treated as necessary.
  • post-treatment methods include solvent salt milling, salt milling, dry milling, solvent milling, pigment particle control step by grinding treatment such as acid pasting, solvent heating treatment, resin, surfactant and dispersant.
  • solvent salt milling such as acid pasting, solvent heating treatment, resin, surfactant and dispersant.
  • pigment particle control step by grinding treatment such as acid pasting, solvent heating treatment, resin, surfactant and dispersant.
  • the surface treatment process by etc. is mentioned.
  • the primary particle size can be reduced by performing post-treatments such as solvent salt milling and salt milling. Therefore, in order to make the pigment particles into a more preferable form, it is preferable from the viewpoint of dispersibility to perform solvent salt milling, salt milling or dry milling.
  • solvent salt milling for example, a crude azo pigment, an inorganic salt, and an organic solvent that does not dissolve the crude azo pigment are charged into a kneader and kneaded and ground therein.
  • water-soluble inorganic salt can be used conveniently,
  • inorganic salts such as sodium chloride, potassium chloride, sodium sulfate.
  • the amount of the inorganic salt used is preferably 3 to 20 times by mass, more preferably 5 to 15 times by mass with respect to the crude azo pigment.
  • the organic solvent a water-soluble organic solvent can be suitably used, and the solvent easily evaporates due to a temperature rise during kneading. Therefore, a high boiling point solvent is preferable from the viewpoint of safety.
  • organic solvents examples include diethylene glycol, glycerin, ethylene glycol, propylene glycol, liquid polyethylene glycol, liquid polypropylene glycol, 2- (methoxymethoxy) ethanol, 2-butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monomethyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol , Dipropylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipro Glycol or mixtures thereof.
  • the amount of the water-soluble organic solvent used is preferably 0.1 to 5 times by mass with respect to the crude azo pigment.
  • the kneading temperature is preferably 20 to 130 ° C, particularly preferably 40 to 110 ° C.
  • a kneader for example, a kneader or a mix muller can be used.
  • the dispersant can be arbitrarily selected from a low molecular weight polymer and a high molecular weight material, and further water-soluble and water-insoluble. From the viewpoint of the image quality of the printed material, a high molecular weight material is preferable. Furthermore, since the dispersion is carried out in an aqueous system, it is preferably water-soluble from the viewpoint of dispersibility and dispersion stability. In the present invention, the dispersant is particularly preferably a water-soluble polymer. Further, in the present invention, the “dispersing agent” means one that has been crosslinked with a crosslinking agent. In the pigment dispersion of the present invention, it is desirable that the dispersant is adsorbed on the pigment.
  • the dispersant Since the dispersant has an effect due to charge repulsion in the molecule, it preferably has 1 or more, preferably 10 or more carboxy groups from the viewpoint of the storage stability of the dispersion.
  • the cross-linking agent When the cross-linking agent has two epoxy groups, the epoxy group and the carboxy group are cross-linked by the cross-linking reaction, so that the carboxy group is reduced. Therefore, the polymer preferably has 10 or more carboxy groups.
  • the carboxy group in the polymer may be in the acid (—COOH) form or the salt form.
  • the salt include metal ions, ammonium, substituted ammonium, quaternary ammonium, and pyridinium salts. Preferred are metal ions and ammonium, and more preferred are potassium ions and sodium ions.
  • the polymer dispersant of the present invention includes polyurethane, polyester, and polyvinyl, more preferably polyurethane, polyester, and polyvinyl, and most preferably polyvinyl (vinyl polymer).
  • polyvinyl more preferably polyurethane, polyester, and polyvinyl, and most preferably polyvinyl (vinyl polymer).
  • two or more kinds of polymers may be combined.
  • Introduction of carboxy groups into the polymer is obtained by copolymerization of monomers containing at least one carboxy group.
  • Preferred polyvinyls use itaconic acid, maleic acid, fumaric acid, crotonic acid, methacrylic acid, acrylic acid, and ⁇ -carboxyethyl acrylate, but preferably methacrylic acid, acrylic acid, and ⁇ -carboxyethyl acrylate.
  • the carboxyl group in the polymer first has a function of crosslinking with the crosslinkable group in the crosslinking agent.
  • the crosslinkable group include acid anhydrides and epoxy groups, and epoxy groups are particularly desirable. This is because the reactivity is high so that crosslinking can be performed under mild conditions.
  • the unreacted carboxyl group is effective for the stability of the final fine particle dispersion against sedimentation and aggregation.
  • the carboxyl group is effective as a stable group in a polar solvent, particularly an aqueous solvent. If the carboxyl group is the only group that contributes to stability in the pigment dispersion, the stability of the dispersion will be significantly reduced if all carboxy groups are cross-linked with the cross-linking agent.
  • the molar excess of the carboxyl group with respect to the epoxy group so that the unreacted carboxyl group remains after the crosslinking reaction is completed, and the molar ratio of the carboxyl group to the epoxy group is 30: 1 to 1. It is desirable that the ratio is 1: 1, more preferably 25: 1 to 1.1: 1, particularly preferably 20: 1 to 2: 1.
  • the polymer may have other stability groups. The choice of the stabilizing group and its amount is highly dependent on the nature of the solvent. The stability group actually depends on whether it is hydrophilic (eg, polar solvent) or hydrophobic (eg, nonpolar solvent). Preferred polymer dispersants are obtained from both hydrophilic and hydrophobic monomers.
  • the hydrophilic monomer is a monomer containing hydrophilicity which is an ionic group or a nonionic group.
  • the ionic group may be a cation, but is preferably an anion. Both cationic and anionic groups impart amphoteric stability to the dispersant.
  • Preferred anionic groups are phenoxy, sulfonic acid, sulfuric acid, phosphonic acid, polyphosphoric acid, phosphoric acid groups (which may be salts).
  • Preferred cationic groups are quaternary ammonium, benzalkonium, guanidine, biguanidine, and pyridinium.
  • nonionic groups are glucooxide, saccharides, pyrrolidone, acrylamide, and especially hydroxyl and poly (alkylene oxide) groups, more preferably poly (ethylene oxide) or poly (propylene oxide) groups, especially — (CH 2 CH 2 O) n H or - (CH 2 CH 2 O) n C 1 - 4 - alkyl.
  • n represents 3 to 200 (preferably 4 to 20).
  • C 1 - 4 - representation represents a "C 1 -C 4".
  • the polymer may contain only nonionic groups, a plurality of nonionic groups throughout the polymer, and one or more polymer chains containing nonionic groups. Hydroxyl groups are inserted using polyvinyl alcohol, polyhydroxyl functional acrylics and cellulose. The ethyleneoxy group is inserted using a polymer chain such as polyethylene oxide.
  • a hydrophobic monomer is a monomer containing a hydrophobic group. Typical having a hydrophobic group is preferably 3 or less with a hydrophilic group 0, hydrocarbons, fluorocarbons, poly C 3 - a 4 alkyleneoxy acids and alkyl siloxanes.
  • the hydrophobic group is preferably a C 3 - a 50 strand, also may have a propylene oxide in the hydrophobic monomer in the side chain or straight chain.
  • the polymer may be a homopolymer, but is preferably a copolymer.
  • the polymer includes random polymers (statistically short blocks or segments), but preferably includes graft polymers (long blocks or segments).
  • the polymer may also be an alternating polymer.
  • the polymer may be branched but is preferably linear.
  • the polymer may have more than one segment (eg, block and graft, copolymer) but is preferably random.
  • the polymer has two or more segments, it is preferred that at least one segment is hydrophobic and at least one segment is hydrophilic relative to each other.
  • a preferred method of creating hydrophobic and hydrophilic segments is by copolymerization of hydrophobic and hydrophilic monomers, respectively. If the polymer has at least one hydrophobic segment and at least one hydrophilic segment, the carboxyl group may be in the hydrophobic segment, in the hydrophilic segment, or in both segments.
  • the vinyl polymer may be produced by any suitable means.
  • a preferred method for producing vinyl polymers is free radical polymerization, particularly using vinyl monomers such as (meth) acrylates and vinyl naphthalene (especially styrene monomers). Suitable free radical polymerization is not limited to suspension polymerization, solution polymerization, dispersion polymerization and emulsion polymerization, but is preferably solution polymerization.
  • the vinyl polymer is preferably a (meth) acrylate monomer.
  • the vinyl polymer is preferably a copolymer. Copolyvinyl dispersants derived from hydrophobic monomers and hydrophilic monomers are preferably substantially free of segments.
  • copolyvinyl polymers are produced by free radical polymerization such that the segment length is very short or absent. Such cases are often referred to as “random” polymerization.
  • Copolyvinyl polymers with segments are produced by living polymerization, particularly polymerization methods such as group transfer polymerization, atom transfer polymerization, macromonomer polymerization, graft polymerization, anionic or cationic polymerization.
  • the Suitable hydrophilic vinyl monomers are nonionic and ionic monomers.
  • Preferred nonionic monomers are sugars, glucose, amides, pyrrolidones, especially those having hydroxy and ethoxy groups.
  • nonionic monomers examples include hydroxy ethyl acrylate, hydroxy ethyl methacrylate, vinyl pyrrolidone, ethoxylated (meth) acrylate and (meth) acrylamide.
  • Suitable ionic vinyl monomers may be cationic but are preferably anionic.
  • Preferred anionic vinyl monomers are those containing carboxy groups and / or phosphoric acid groups and / or sulfonic acid groups (these acids may be free or salts).
  • Preferred examples include (meth) acrylic acid, styrene sulfonic acid, vinyl benzyl sulfonic acid, vinyl sulfonic acid, (meth) acryloyloxyalkyl sulfonic acid (for example, acryloyloxymethyl sulfonic acid, acryloyloxyethyl sulfonic acid, acryloyloxypropyl sulfone).
  • Preferred cationic vinyl monomers are those containing quaternary amine, pyridine, guanidine and biguanidine groups.
  • Preferred hydrophobic vinyl monomers do not have hydrophilic groups.
  • Polyesters having at least one carboxyl group are also produced by the reaction of a diol monomer with an excess of dicarboxylic acid monomer.
  • the carboxyl group can also be introduced by copolymerization of a diol having a carboxyl group and a dicarboxylic acid monomer.
  • Polyesters are typically made by esterification of a dicarboxylic acid and a diol.
  • a polyester having a carboxyl group can be produced, for example, by subjecting a carboxyl group-containing compound and a hydroxyl group-containing compound to a dehydration condensation reaction by a known method such as a melting method or a solvent method so that the carboxyl group remains. it can.
  • polyesters examples include those obtained by appropriately selecting and dehydrating and condensing a compound having a carboxyl group such as a monobasic acid and a polybasic acid and a compound having a hydroxyl group such as a diol and a polyol. Or the thing using fatty acids becomes alkyd resin.
  • the carboxyl group possessed by the polyester used in the present invention is mainly an unreacted carboxyl group derived from a polybasic acid having a dibasic acid or higher constituting the polyester.
  • polybasic acids examples include adipic acid, (anhydrous) succinic acid, sebacic acid, dimer acid, (anhydrous) maleic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, tetrahydro (anhydride) phthalic acid, hexahydro ( Anhydrous) phthalic acid, hexahydroterephthalic acid, 2,6-naphthalenedicarboxylic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid and the like.
  • Examples of compounds having a carboxyl group that can be used in addition to polybasic acids include lower alkyl esters of acids such as dimethyl terephthalate; monobasic acids such as benzoic acid, p-tertiarybutylbenzoic acid, rosin, and hydrogenated rosin.
  • Examples include acids; fatty acids and fats; macromonomers having one or two carboxyl groups at the molecular terminals; 5-sodium sulfoisophthalic acid and dimethyl esters thereof.
  • Examples of the compound having a hydroxyl group include ethylene glycol, neopentyl glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1 , 4-butanediol, 1,3-propanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,5-pentanediol, alkylene oxide adduct of bisphenol A, hydrogenated bisphenol A, hydrogenated Dialkylene adducts of bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; glycerin, trimethylolpropane, trimethylolethane, diglycerin, pentae Polyols such as sitolitol and trishydroxyethyl isocyanurate; monoglycidyl compounds such
  • hydroxyl group-containing fatty acids or fats such as castor oil and 12-hydroxystearic acid; compounds having a carboxyl group and a hydroxyl group such as dimethylolpropionic acid, p-hydroxybenzoic acid and ⁇ -caprolactone Can also be used.
  • a part of the dibasic acid can be replaced with a diisocyanate compound.
  • a polyester having a carboxyl group can also be produced by a method in which an anhydride such as maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride is added to a hydroxyl group-containing polyester. be able to.
  • an anhydride such as maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride is added to a hydroxyl group-containing polyester.
  • a polyester having a hydroxyl group and a carboxyl group can be easily produced by, for example, reacting a polyester resin in a dehydration condensation reaction so that the hydroxyl group and the carboxyl group remain in accordance with a known method.
  • a polyester having a tertiary amino group and a carboxyl group is obtained by, for example, converting a compound having a tertiary amino group and a hydroxyl group such as triethanolamine, N-methyldiethanolamine, or N, N-dimethylethanolamine into a polyester resin. It can manufacture easily by using as an alcohol component at the time of manufacture.
  • polyester having a radical polymerizable unsaturated group and a carboxyl group examples include [1] radical polymerizable unsaturated group-containing monomers having an isocyanate group such as 2-methacryloyloxyethyl isocyanate to a polyester having a hydroxyl group and a carboxyl group.
  • a method of adding an anhydride having a radically polymerizable unsaturated group such as maleic anhydride [2] a method of adding a polymerizable monomer having an epoxy group to a polyester resin having a carboxyl group, [ 3] It can be easily produced by a method of synthesizing a polyester resin using a radical polymerizable unsaturated group-containing monomer such as maleic anhydride as an acid component.
  • Polyurethane is preferably produced by a condensation reaction of a polyol component (eg, di-isocyanate) and a polyol component (eg, diol).
  • a polyol component eg, di-isocyanate
  • a polyol component eg, diol
  • Polyurethane having a carboxyl group can be easily obtained by reacting a polyisocyanate component with a polyol component containing a compound having a carboxyl group and a hydroxyl group such as dimethylolpropionic acid as a component for introducing a carboxyl group. Can be manufactured.
  • polystyrene resin in addition to the diol component listed in the polyester production method, a tri- or higher functional polyol compound may be used as necessary.
  • polyisocyanate component examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, phenylene diisocyanate, 1,5-naphthalene diisocyanate, and metaxylylene diisocyanate.
  • diisocyanate compounds such as isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate, hydrogenated metaxylylene diisocyanate, crude 4,4′-diphenylmethane diisocyanate, and polymethylene polyphenyl isocyanate Isocyanate compounds can also be used.
  • Polyurethane can be produced according to conventional methods.
  • the addition reaction is preferably performed at room temperature or a temperature of about 40 to 100 ° C. in an inert organic solvent solution that does not react with isocyanate groups.
  • a known catalyst such as dibutyltin dilaurate may be used.
  • chain extenders such as diamines, polyamines, N-alkyl dialkanolamines such as N-methyldiethanolamine and dihydrazide compounds can also be used.
  • a polyurethane having a hydroxyl group and a carboxyl group can be easily produced, for example, by reacting at a ratio of hydroxyl groups larger than isocyanate groups when producing polyurethane.
  • it can also be easily produced by subjecting a polyisocyanate having a carboxyl group and a terminal isocyanate group to an addition reaction with a compound having two or more hydroxyl groups in one molecule.
  • a polyurethane having a tertiary amino group and a carboxyl group can be easily produced, for example, by using an N-alkyl dialkanolamine such as N-methyldiethanolamine as a part of the polyol component.
  • a polyurethane having a blocked isocyanate group and a carboxyl group can be easily produced by, for example, subjecting a polyisocyanate having a carboxyl group and a terminal isocyanate group to a known blocking agent.
  • a polyurethane having an epoxy group and a carboxyl group can be easily produced by, for example, adding a compound having a hydroxyl group and an epoxy group to a polyisocyanate having a carboxyl group and a terminal isocyanate group.
  • Examples of the compound having a hydroxyl group and an epoxy group include glycidol, glycerin diglycidyl ether, trimethylolpropane diglycidyl ether, and diglycidyl ether of bisphenol A.
  • Polyurethane having a radical polymerizable unsaturated group and a carboxyl group as an acidic group is, for example, a polyisocyanate having a terminal isocyanate group, a polymerizable monomer having a hydroxyl group as described above, glycerol mono (meth) acrylate, and trimethylol. It can be easily produced by a method in which a compound having a hydroxyl group and a radically polymerizable unsaturated group such as propanedi (meth) acrylate and pentaerythritol triacrylate is subjected to an addition reaction.
  • a polyurethane having a hydrolyzable alkoxysilane group and a carboxyl group as an acidic group is, for example, a polyisocyanate having a terminal isocyanate group, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethyl. It can be easily produced by a method in which a silane coupling agent having an active hydrogen capable of reacting with an isocyanate group such as methoxysilane or ⁇ -aminopropyltriethoxysilane is subjected to an addition reaction.
  • the polymer is selected to match the liquid medium used in the process of producing the fine particle dispersion and to match the liquid color developer (vehicle) in the final composition (eg, ink) used in the fine particle dispersion.
  • the polymer is preferably hydrophilic.
  • the weight average molecular weight of the dispersant is preferably 10,000 or more and 200,000 or less, more preferably 15,000 or more and 150,000 or less, and particularly preferably 20,000 or more and 100,000 or less. When it is 10,000 or more, the image quality of the printed matter is excellent and preferable, while when it is 200,000 or less, it is possible to suppress an increase in viscosity, and further, it is preferable to prevent a decrease in storage stability.
  • the content of the dispersant is preferably in the range of 20 to 100 parts by weight, more preferably in the range of 25 to 90 parts by weight, and still more preferably in the range of 30 to 70 parts by weight with respect to 100 parts by weight of the pigment. It is. Moreover, a dispersing agent may be used independently or may be used in combination of multiple things. When content of a dispersing agent is 20 mass parts or less, the quantity of a dispersing agent becomes inadequate with respect to a pigment, and storage stability becomes inadequate. On the other hand, when the amount is 100 parts by mass or more, the viscosity is high, and the storage stability is further deteriorated.
  • the D / P value is 0. It is preferably 15 or more and 1.0 or less, more preferably 0.16 or more and 0.8 or less, and further preferably 0.17 or more and 0.7 or less. .
  • the dispersant must have a sufficient acid value for crosslinking with the crosslinking agent, and preferably has a acid value of at least 50 mg KOH / g or more. More preferably, the dispersant is a water-soluble polymer dispersant, and the water-soluble polymer dispersant has at least one carboxy group and has an acid value of at least 50 mg KOH / g or more. In all embodiments, the acid value is preferably 70 to 200 mg KOH / g, more preferably 70 to 160 mg KOH / g. A dispersant having such an acid number provides improved storage stability. On the other hand, if it is lower than 50 mgKOH / g, the solubility in aqueous solvents is low, which is not suitable.
  • the dispersant may be either water-insoluble or water-soluble, but the solubility in water is preferably 1 g / 100 mL or more, more preferably 3 g / 100 mL or more, and particularly preferably 5 g / 100 mL or more. is there. If it is 1 g / (100 m) L or less, the solubility in water is low, so that it is difficult to adsorb to the pigment particles, and the dispersibility may be lowered.
  • the aqueous dispersion is crosslinked with a crosslinking agent.
  • the dispersant adsorbs to the pigment surface before crosslinking to form a relatively stable dispersion, and this dispersion step is followed by a step of crosslinking with the crosslinking agent.
  • the crosslinking agent may or may not have an oligomer dispersing group.
  • oligomer is used in the sense that there is no upper limit for the molecular weight and no upper limit for the repeating unit.
  • Crosslinkers having one or more oligomeric dispersing groups increase the stability of the resulting fine particle dispersion. This increased stability is particularly useful in liquid colorants (vehicles) used for ink jet recording. This is because dispersion is difficult with a dispersant having an acid value of 50 mg / KOH or less.
  • Oligomeric dispersing groups are preferably polyalkylene oxide, more preferably poly C 2 - 4 - an alkylene oxide, particularly preferably polyethylene oxide.
  • the polyalkylene oxide improves the stability of the resulting fine particle dispersion.
  • the polyalkylene oxide preferably has 3 to 200, more preferably 5 to 50, particularly preferably 5 to 20 alkylene oxide repeating units.
  • the crosslinking agent preferably has two or more epoxy groups.
  • a preferred cross-linking agent having at least two epoxy groups is an epichlorohydrin derivative.
  • Crosslinkers with two or more epoxy groups and no oligomer dispersing groups are ethylene glycol diglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, halogenated Bisphenol A diglycidyl ether, trimethylolpropane polyglycidyl ether, polyglycerol polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, and polybutadiene diglycidyl ether.
  • a preferred crosslinker having two epoxy groups and having one or more oligomeric dispersing groups is diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, or dipropylene glycol diglycidyl ether.
  • acid anhydrides such as phthalic anhydride and succinic anhydride can also be used as a crosslinking agent.
  • the crosslinking reaction is preferably performed at 100 ° C. or lower and pH 6 or higher.
  • a more preferred crosslinking reaction is 30 ° C to 90 ° C, more preferably 40 ° C to 85 ° C.
  • a preferred pH for the crosslinking reaction is 7 to 10, more preferably 8 to 9.5.
  • the crosslinking reaction between the carboxy group and the epoxy group is preferably performed at 100 ° C. or lower and pH 6 or higher.
  • the temperature is preferably 100 ° C. or lower. On the contrary, since the progress of the crosslinking reaction is slow at low temperatures, it is not preferred, preferably 30 ° C. or higher, and more preferably 40 ° C. or higher.
  • the pH is 10 or more, there is a possibility that the polymer is hydrolyzed when heat is applied in the crosslinking reaction. On the other hand, a pH of 6 or less is not preferable because the pigment dispersion tends to aggregate and becomes unstable.
  • NF membranes reverse osmosis membranes
  • UF membranes ultrafiltration membranes
  • the UF membrane preferably has a molecular weight cut-off of 10,000 to 150,000, more preferably 20,000 to 100,000. If it is 10,000 or less, the purification time becomes long, which is inefficient. On the other hand, if it is 200,000 or more, the dispersant may flow out, which is not preferable.
  • a method for producing an aqueous pigment dispersion characterized in that the following components (a) to (d) are mixed to carry out a crosslinking reaction is preferable.
  • the sum of (a) + (b) + (c) + (d) is 100 parts by mass or less.
  • the ratio (b) / (c) is preferably 10/2 to 1/1, and the ratio (c) / (d) is preferably 100/1 to 5/1.
  • the azo pigment, water and vinyl polymer may be mixed simultaneously or in any order. The remaining ingredients are then added to the mixture. Further membrane purification is preferably performed.
  • the pigment used in the present invention preferably has an average primary particle size of 0.01 ⁇ m or more and 20 ⁇ m or less, more preferably 0.01 ⁇ m or more and 5 ⁇ m or less, and 0.02 ⁇ m or more and 0.5 ⁇ m or less. Is more preferable. Among these, 0.02 to 0.2 ⁇ m is particularly preferable, and 0.03 to 0.15 ⁇ m is most preferable.
  • the average particle diameter (Mv) of the resin adsorbing the pigment is preferably in the range of 20 to 250 nm, and more preferably in the range of 40 to 100 nm. If it is smaller than 20 nm, the particles are small and white spots are formed in the printed material, which is not preferable. If it is larger than 250 nm, the nozzle may be clogged and ejection failure may occur. Further, since the specific surface area of the particles becomes small, it is difficult to obtain the concentration, which is not preferable.
  • the coloring composition of the present invention contains at least one azo pigment, salt, hydrate or solvate of the present invention described above.
  • the coloring composition of the present invention can contain a medium, but when a solvent is used as the medium, it is particularly suitable as an ink for inkjet recording.
  • the coloring composition of the present invention can be prepared by using a lipophilic medium or an aqueous medium as a medium and dispersing the pigment of the present invention in them. Preferably, an aqueous medium is used.
  • the coloring composition of the present invention includes an ink composition excluding a medium.
  • the coloring composition of the present invention may contain other additives as necessary within a range that does not impair the effects of the present invention.
  • additives include, for example, anti-drying agents (wetting agents), anti-fading agents, emulsion stabilizers, penetration enhancers, UV absorbers, preservatives, anti-fungal agents, pH adjusters, surface tension adjusters, Examples thereof include known additives (described in JP-A No. 2003-306623) such as foaming agents, viscosity modifiers, dispersants, dispersion stabilizers, rust preventives, chelating agents.
  • foaming agents such as foaming agents, viscosity modifiers, dispersants, dispersion stabilizers, rust preventives, chelating agents.
  • these various additives are directly added to the ink liquid in the case of water-soluble ink.
  • oil-soluble ink it is common to add to the dispersion after preparation of the azo pigment dispersion, but it may be added to the oil phase or water phase at the time of preparation.
  • Examples of the aqueous coloring liquid using the pigment dispersion obtained in the present invention include water-based paints such as automobiles, coated steel sheets, building materials, and cans, printing agents for dyeing fibers, water-based inks such as gravure inks and flexographic inks, water-based inks, and the like.
  • Water-based paints such as automobiles, coated steel sheets, building materials, and cans
  • printing agents for dyeing fibers water-based inks such as gravure inks and flexographic inks, water-based inks, and the like.
  • the dispersion liquid for color filters etc. which are used for a personal computer etc. are mentioned, it is not limited to these uses.
  • the aqueous coloring liquid is a pigment dispersion obtained by the present invention, a film-forming resin, its curing agent, various auxiliary agents, an organic solvent, water, a basic substance, various pigments, etc. To be prepared.
  • the content ratio of the pigment dispersion obtained by the present invention in the aqueous coloring liquid is preferably 50% by mass or less, particularly preferably in the range of 0.1 to 40% by mass in terms of pigment.
  • the proportion of the pigment exceeds 50% by mass, the viscosity in the aqueous coloring liquid tends to be high, and the object to be coated tends not to be colored.
  • the film-forming resin examples include natural proteins such as glue, gelatin, casein, albumin, gum arabic, and fish mulberry, alginic acid, methyl cellulose, carboxymethyl cellulose, polyethylene oxide, hydroxyethyl cellulose, polyvinyl alcohol, polyacrylamide, and aromatic amide.
  • Synthetic polymers such as polyacrylic acid, polyvinyl ether, polyvinyl pyrrolidone, acrylic, polyester, alkyd, urethane, amide resin, melamine resin, ether resin, fluororesin, styrene acrylic resin, styrene maleic resin, photosensitive resin, heat Common materials such as a curable resin, an ultraviolet curable resin, and an electron beam curable resin are exemplified, but the invention is not particularly limited thereto. These are selected and used depending on the use of the aqueous coloring liquid.
  • the ratio of these coating film-forming resins in the aqueous coloring liquid is preferably in the range of 0 to 50% by mass.
  • the resin used in the pigment dispersion acts as a resin for forming a coating film, or does not require a resin for forming a coating film, such as a recording liquid, in an aqueous colored liquid It is not always necessary to use a film-forming resin.
  • curing agent for the film-forming resin examples include amino resins such as melamine resin, benzoguanamine resin and urea resin, phenol resins such as trimethylolphenol and its condensate, tetramethylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI).
  • amino resins such as melamine resin, benzoguanamine resin and urea resin
  • phenol resins such as trimethylolphenol and its condensate
  • TDI tetramethylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • the curing agent is appropriately selected and used depending on the application and suitability, but may not be used.
  • the use ratio of the curing agent is preferably in the range of 0 to 50% by mass, particularly preferably in the range of 0 to 40% by mass with respect to 100% by mass of the film-forming resin.
  • organic solvent examples include alcohols such as methyl alcohol, ethyl alcohol, n-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, n-propyl alcohol, and isopropyl alcohol; amides such as dimethylformaldehyde and dimethylacetamide; acetone, Ketones such as methyl ethyl ketone; Ethers such as tetrahydrofuran, dioxane, ethylene glycol methyl ether, ethylene glycol ethyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether; ethylene glycol, propylene glycol , Butylene glycol, triethylene glycol, 1,2, - hexane triol, thiodiglycol, diethylene glycol, polyethylene glycol, polypropylene glycol, polyhydric alcohols such as glycerin
  • the content of the organic solvent in the aqueous coloring liquid is preferably 50% by mass or less, and particularly preferably in the range of 0 to 30% by mass. Needless to say, it is preferable that the aqueous coloring liquid is not inferior in terms of environmental problems unless the performance of the aqueous coloring liquid is inferior.
  • Auxiliaries used as necessary include dispersion wetting agents, anti-skinning agents, UV absorbers, antioxidants, preservatives, fungicides, pH adjusters, viscosity adjusters, chelating agents, surfactants And various auxiliary materials and stabilizers such as, but not limited to.
  • Examples of the basic substance include inorganic compounds such as sodium hydroxide and potassium hydroxide; ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-ethyldiethanolamine, 2-amino-2-methylpropanol, 2 Examples include, but are not limited to, organic amine compounds such as ethyl-2-amino-1,3-propanediol, 2- (aminoethyl) ethanolamine, tris (hydroxymethyl) aminomethane, ammonia, piperidine, and morpholine. Is not to be done.
  • a simple known dispersing machine such as a disper is sufficient, but is not limited thereto.
  • the pigment dispersion, the film-forming resin, its effector, various auxiliary agents, organic solvents, water, various pigment compositions, and the like can be produced simply by mixing,
  • a method of stirring the pigment dispersion and sequentially adding the resin, effect agent, organic solvent, and various auxiliary agents therein is more preferable.
  • the aqueous coloring liquid containing the pigment dispersion obtained by the present invention can be produced in accordance with its use.
  • storage stability solvent stability required for aqueous coloring liquid
  • performance such as hydrophilicity to prevent clogging of nozzles at pen tips such as writing instruments, water resistance, weather resistance, transparency, sharpness, etc. It is possible to provide the performance of the coating film excellent in various aptitudes.
  • Ink jet recording ink (composition) to which the pigment dispersion of the present invention is applied preferably has an average particle diameter (Mv) of the resin adsorbing the pigment in the range of 20 to 250 nm, preferably in the range of 20 to 100 nm. More preferably. If the average particle size of the resin adsorbing the pigment is 20 nm or more, the dispersion stability is improved, so that good storage stability and ejection stability can be obtained, and a high OD value of the recorded matter can be secured. it can. Further, if the average particle diameter of the resin having adsorbed pigment is 250 nm or less, nozzle clogging can be prevented, and sedimentation of the resin having adsorbed pigment can be suppressed.
  • Mv average particle diameter of the resin adsorbing the pigment in the range of 20 to 250 nm, preferably in the range of 20 to 100 nm. More preferably. If the average particle size of the resin adsorbing the pigment is 20 nm or more, the
  • the ink composition for ink jet recording is produced using the pigment dispersion, and the content of the pigment with respect to the total amount of the ink composition is in the range of 2 to 15% by mass.
  • the pigment content is 2% by mass, a high OD value of the recorded matter can be secured.
  • the pigment content is 15% by mass or less, it is easy to match the ink jet proper physical property value, and it is possible to secure better storage stability and ejection stability.
  • the ink composition for ink jet recording can be used in combination with an organic solvent in addition to water.
  • an organic solvent has compatibility with water, improves the permeability of the ink composition to the recording medium and the nozzle clogging, and dissolves the components in the ink composition such as a penetrant described later.
  • alkyl alcohols having 1 to 4 carbon atoms such as ethanol, methanol, butanol, propanol, isopropanol, etc., alkyl alcohols having 1 to 4 carbon atoms, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether Acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, ethylene glycol mono-iso-propyl ether, diethylene glycol mono iso-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol mono-t-butyl ether, 1-methyl-1-methoxybutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol
  • Examples include glycol ethers
  • the ink composition for inkjet recording preferably contains a surfactant from the viewpoint of improving the printing quality.
  • the surfactant can be selected from commonly used anionic surfactants, cationic surfactants, amphoteric surfactants and nonionic surfactants, and among these, nonionic surfactants are particularly preferred.
  • Specific examples of nonionic surfactants include acetylene glycol surfactants, acetylene alcohol surfactants, polyoxyethylene alkyl ethers, polyoxyethylene phenyl ethers, and the like.
  • acetylene glycol surfactants are particularly preferable when used in ink jet recording because an ink composition with almost no foaming can be obtained.
  • examples of such acetylene glycol surfactants include 2,4,7,9-tetramethyl-5-decyne-4,7-diol and 3,6-dimethyl-4-octyne-3,6-diol. 3,5-dimethyl-1-hexyn-3-ol, or substances obtained by adding an average of 1 to 30 ethyleneoxy groups or propyleneoxy groups to each of a plurality of hydroxyl groups in each of these substances.
  • acetylene glycol type surfactant a commercial item can also be used, for example, "Orphine E1010” and “Orphine STG” (above, Nissin Chemical Industry Co., Ltd. product) etc. are mentioned. These 1 type (s) or 2 or more types can be used.
  • the content of the acetylene glycol surfactant in the ink composition of the present invention is preferably 0.1 to 3% by mass, more preferably 0.5 to 1.5% by mass.
  • the ink composition for ink jet recording preferably contains a penetrating agent in order to further improve the fixing property to the recording medium and increase the abrasion resistance of the recorded image.
  • penetrants include glycols such as diethylene glycol mono-n-butyl ether, diethylene glycol mono-t-butyl ether, triethylene glycol mono-n-butyl ether, propylene glycol mono-n-butyl ether, and dipropylene glycol mono-n-butyl ether.
  • the content of the penetrant is preferably 1 to 20% by mass in the ink composition of the present invention in that it can improve the penetrability and quick-drying property of the ink composition to effectively prevent the occurrence of ink bleeding.
  • the content is preferably 2 to 10% by mass.
  • the ink composition for ink jet recording preferably contains water-soluble glycols in order to prevent nozzle clogging and improve reliability.
  • water-soluble glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol having a molecular weight of 2000 or less, and 1,3-propylene glycol.
  • Dihydric alcohols such as isobutylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, glycerin, mesoerythritol And trivalent or higher alcohols such as pentaerythritol, and one or more of these can be used.
  • the content of the water-soluble glycol is preferably 1 to 30% by mass in the ink composition of the present invention.
  • the ink composition for ink jet recording may contain an antifungal agent or an antiseptic agent to prevent clogging of the nozzle.
  • an antifungal agent or an antiseptic agent for example, sodium benzoate, sodium pentachlorophenol, sodium 2-pyridinethiol-1-oxide, sodium sorbate, sodium dehydroacetate, 1,2-dibenzisothiazolin-3-one (AVECIA's Proxel CRL, Proxel BDN , Proxel GXL, Proxel XL-2, Proxel TN) and the like, and one or more of these are preferably used in the ink composition of the present invention in an amount of 0.01 to 0.5% by mass. it can.
  • the pH of the ink composition for ink jet recording is preferably 6 to 11, more preferably 7 to 10, from the viewpoints of improvement in printing density and liquid stability.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, triethanolamine, ethyldiethanolamine, diethylethanolamine, It is preferable to contain tertiary amines having 6 to 10 carbon atoms such as tripropanolamine.
  • One or more pH adjusting agents can be used in the ink composition of the present invention, preferably at 0.01 to 2% by mass.
  • the ink jet recording method of the present invention can use any method in which ink is ejected as droplets from a fine nozzle and the droplets are attached to a recording medium.
  • an electrostatic suction method In this method, a strong electric field is applied between the nozzle and the acceleration electrode placed in front of the nozzle, ink is continuously ejected from the nozzle in the form of droplets, and a print information signal is output while the ink droplets fly between the deflection electrodes.
  • a method of recording by applying to the deflection electrode, or a method of ejecting ink droplets corresponding to the print information signal without deflecting the ink droplets.
  • the second method is a method in which ink droplets are forcibly ejected by applying pressure to the ink liquid with a small pump and mechanically vibrating the nozzle with a crystal resonator or the like.
  • the ejected ink droplet is charged simultaneously with the ejection, and a printing information signal is given to the deflection electrode and recorded while the ink droplet flies between the deflection electrodes.
  • the third method is a method using a piezoelectric element, in which pressure and a print information signal are simultaneously applied to ink with a piezoelectric element, and ink droplets are ejected and recorded.
  • the fourth method is a method in which the volume of ink is rapidly expanded by the action of heat energy, and the ink is heated and foamed with a microelectrode in accordance with a print information signal to eject and record ink droplets.
  • any of the above methods can be used for an ink jet recording method using an ink composition.
  • the ink composition for ink jet recording of the present invention excellent ejection stability and nozzle clogging can be realized in any ink jet recording system.
  • the recorded matter of the present invention is obtained by inkjet recording using at least the above ink composition.
  • the recorded matter improves the fixability of the ink, particularly the pigment in the ink, and prints images such as letters and figures with excellent density, scratch resistance, and glossiness. Can be formed.
  • Synthesis Example (1) -4 The azo pigment (1) -1 obtained in Synthesis Example (1) -1 was subjected to salt milling to obtain an azo pigment (1) -4 having a primary particle length of 0.03 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 7.2 °, 13.4 °, 15.0 °.
  • characteristic X-ray diffraction peaks at 25.9 °.
  • a CuK ⁇ characteristic X-ray diffraction pattern of the resulting azo pigment (1) -4 is shown in FIG.
  • Synthesis Example (1) -5 The azo pigment (1) -1 obtained in Synthesis Example (1) -1 is subjected to salt milling, and (1) an azo pigment in which the primary particles in the ⁇ -type crystal form have a length in the major axis direction of 0.08 ⁇ m.
  • (1) -5 and an azo pigment (1) -6 in which the length of the primary particles in the major axis direction was 0.15 ⁇ m were obtained.
  • a dispersant methyl methacrylate (47.8 mol%), methacrylic acid (31.8 mol%), 2-ethylhexyl methacrylate (20.4 mol%)
  • the resulting preliminary dispersion was dispersed for 14 hours at 4200 rpm using a Netzch Minicer with recirculation, washed with water, and a crude pigment dispersion (1) having a pigment concentration of 15.6% by weight. 457 g of -1 was obtained. To 457 g of the obtained crude pigment dispersion (1) -1 was added 0.9 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 6.4 g of a 6.18% boric acid aqueous solution, and 230 g of water. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 520 g of pigment dispersion (1) -1 having a pigment concentration of 9.9%. Viscosity: 2.9 mPa ⁇ S.
  • a dispersant methyl methacrylate (47.8 mol%), methacrylic acid (31.8 mol%), 2-ethylhexyl methacrylate (20.4 mol%)
  • the resulting preliminary dispersion was dispersed for 14 hours at 4200 rpm using a Netzch Minicer with recirculation, washed with water, and a crude pigment dispersion (1) having a pigment concentration of 15.6% by weight. -457 g of -2 was obtained.
  • 0.4 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 3.2 g of a 6.18% boric acid aqueous solution 230 g of water were added to 457 g of the obtained crude pigment dispersion (1) -2. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 510 g of pigment dispersion (1) -2 having a pigment concentration of 9.8%. Viscosity: 2.9 mPa ⁇ S.
  • a dispersant methyl methacrylate (47.8 mol%), methacrylic acid (31.8 mol%), 2-ethylhexyl methacrylate (20.4 mol%)
  • the resulting preliminary dispersion was dispersed for 7 hours at 4200 rpm using a Netzch Minicer with recirculation, washed with water, and a crude pigment dispersion (1) having a pigment concentration of 15.5% by weight. 950 g of -3 was obtained.
  • a crude pigment dispersion (1) having a pigment concentration of 15.5% by weight 950 g of -3 was obtained.
  • 1.5 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 11.0 g of a 6.18% boric acid aqueous solution 11.0 g of a 6.18% boric acid aqueous solution, and 230 g of water were added, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 620 g of pigment dispersion (1) -3 having a pigment concentration of 9.9%. Viscosity: 1.7 mPa ⁇ S.
  • Example (1) -4 0.8 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.), 5.5 g of a 6.18% boric acid aqueous solution, and 230 g of water were added to 475 g of the crude pigment dispersion (1) -3, and 5 g at 70 ° C. Stir for hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • a dispersant methyl methacrylate (47.8 mol%), methacrylic acid (31.8 mol%), 2-ethylhexyl methacrylate (20.4 mol%)
  • the resulting preliminary dispersion was dispersed for 7 hours at 4200 rpm using a Netzch Minicer with recirculation, washed with water, and a crude pigment dispersion (1) having a pigment concentration of 8.7% by weight.
  • 770 g of -4 was obtained.
  • Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 5.0 g of 6.18% boric acid aqueous solution were added to 770 g of the obtained crude pigment dispersion (1) -4 and 770 g at 70 ° C. Stir for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was thoroughly washed with water using a filter having a molecular weight cut off of 50,000 to obtain 710 g of pigment dispersion (1) -5 having a pigment concentration of 9.0%. Viscosity: 2.8 mPa ⁇ S.
  • a dispersant methyl methacrylate (47.8 mol%), methacrylic acid (31.8 mol%), 2-ethylhexyl methacrylate (20.4 mol%)
  • the resulting pre-dispersion was dispersed at 4200 rpm for 12 hours using a Netzch Minicer with recirculation, washed with water, and a crude pigment dispersion (1) having a pigment concentration of 14.5% by weight. 469 g of -5 was obtained.
  • 469 g, 0.9 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 6.1 g of a 6.18% boric acid aqueous solution and 180 g of water were added.
  • Stir 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 590 g of pigment dispersion (1) -6 having a pigment concentration of 9.2%. Viscosity: 1.6 mPa ⁇ S.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 620 g of pigment dispersion (1) -7 having a pigment concentration of 9.9%. Viscosity: 1.8 mPa ⁇ S.
  • the resulting preliminary dispersion was dispersed for 3 hours at 4200 rpm using a Netzch Minicer with recirculation, washed with water, and a crude pigment dispersion (1) having a pigment concentration of 13.2% by weight.
  • 0.8 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 5.8 g of a 6.18% boric acid aqueous solution and 180 g of water were added to 583 g of the obtained crude pigment dispersion (1) -7.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 560 g of a pigment dispersion (1) -8 having a pigment concentration of 11.0%. Viscosity: 2.4 mPa ⁇ S.
  • Example (1) -9 Powdered azo pigments (1) -4, 80.0 g of the dispersants (benzyl methacrylate (66.7 mol%), methacrylic acid (33.3 mol%) obtained in Synthesis Example (1) -6
  • Pre-dispersion was performed at 2400 rpm for 1 hour using a Netzch agitator bead mill mini-zeta (MiniZeta) filled with beads.
  • the resulting pre-dispersion was dispersed for 5 hours at 4200 rpm using a Minizer (MiniCer) with recycle and washed with water to give a crude pigment dispersion (1) having a pigment concentration of 12.0% by weight. 518 g of -8 was obtained.
  • 1.3 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 9.4 g of a 6.18% boric acid aqueous solution were added to 518 g of the obtained crude pigment dispersion (1) -8. Stir for hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 580 g of pigment dispersion (1) -9 having a pigment concentration of 9.9%. Viscosity: 2.5 mPa ⁇ S.
  • Pre-dispersion was performed at 2400 rpm for 1 hour using an agitator bead mill mini-zeta (MiniZeta) manufactured by Netzch filled with beads.
  • 150 g of water was added to 520 g of the obtained crude pigment dispersion (1) -10, and after removing coarse particles through a filter having a pore size of 1.0 ⁇ m, the coarse particles were further precipitated with a centrifuge (7000 rpm, 10 minutes). ).
  • the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 650 g of a pigment dispersion (1) -11 having a pigment concentration of 10.3%. Viscosity: 2.7 mPa ⁇ S.
  • Example (1) 120.0 g of powdered azo pigment (1) -4 was added to the dispersants (benzyl methacrylate (66.7 mol%), methacrylic acid (33.3 mol%) obtained in Synthesis Example (1) -6.
  • Pre-dispersion was performed at 2400 rpm for 1 hour using an agitator bead mill mini-zeta (MiniZeta) manufactured by Netzch filled with beads.
  • 0.3 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 2.3 g of a 6.18% boric acid aqueous solution and 60 g of water were added to the obtained crude pigment dispersion (1) -11,225 g. Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 270 g of pigment dispersion (1) -12 having a pigment concentration of 10.6%. Viscosity: 2.5 mPa ⁇ S.
  • Example (1) -13 2.0 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 14.3 g of a 6.18% boric acid aqueous solution, and 60 g of water were added to the crude pigment dispersion (1) -1133 g at 70 ° C. Stir for 5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • Example (1) -14 3.0 g of Denacol EX-521 (manufactured by Nagase ChemteX Corp.), 13.9 g of 6.18% boric acid aqueous solution and 50 g of water were added to the crude pigment dispersion (1) -11,292 g at 70 ° C. Stir for 5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • 0.4 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 3.2 g of a 6.18% boric acid aqueous solution and 80 g of water were added to 320 g of the obtained crude pigment dispersion (1) -12.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After removing the precipitated solid, it was thoroughly washed with water using a filter having a molecular weight cut off of 50,000, and 320 g of pigment dispersion (1) -15 having a pigment concentration of 10.3% was obtained. Viscosity: 2.2 mPa ⁇ S.
  • Copolymer dipropylene glycol solution, Mw 41,000, acid value 135 mg KOH) 201 g (solid content 25.0%, solid content 60.3 g) and water 300 g were mixed, and 1 mm ⁇ polycarbonate beads were mixed.
  • Pre-dispersion was carried out for 1 hour at 2,400 rpm using a filled Netzch agitator bead mill mini-zeta (MiniZeta).
  • To 417 g of the obtained crude pigment dispersion (1) -13 0.5 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 3.9 g of a 6.18% boric acid aqueous solution, and 30 g of water were added. Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 430 g of pigment dispersion (1) -16 having a pigment concentration of 10.4%. Viscosity: 2.0 mPa ⁇ S.
  • a copolymer of dipropylene glycol, Mw 83,000, acid value 195 mg KOH) 116.7 g (solid content 30.0%, solid content 35.0 g) and 150 g of water were mixed, and 1 mm ⁇ made of polycarbonate.
  • Pre-dispersion was performed at 2,400 rpm for 1 hour using an agitator bead mill mini-zeta (MiniZeta) manufactured by Netzch filled with beads.
  • 2.8 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 2.0 g of 6.18% boric acid aqueous solution and 70 g of water were added to 435 g of the obtained crude pigment dispersion (1) -14.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 530 g of a pigment dispersion (1) -17 having a pigment concentration of 9.3%. Viscosity: 2.9 mPa ⁇ S.
  • Example (1) -18 90.0 g of powdered azo pigment (1) -1 was added to the dispersants (benzyl methacrylate (66.7 mol%), methacrylic acid (33.3 mol%) obtained in Synthesis Example (1) -6.
  • Pre-dispersion was performed at 2400 rpm for 1 hour using an agitator bead mill mini-zeta (MiniZeta) manufactured by Netzch filled with beads.
  • 590 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 24.8 g of 6.18% boric acid aqueous solution were added to 590 g of the obtained crude pigment dispersion (1) -15, and 70 ° C. Stir for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was sufficiently washed with water using a filter having a molecular weight cut off of 50,000, and 620 g of pigment dispersion (1) -18 having a pigment concentration of 9.9% was obtained. Viscosity: 2.6 mPa ⁇ S.
  • Copolymer dipropylene glycol solution, Mw 83,000, acid value 140 mg KOH) 292.0 g (solid content 30.8%, solid content 90.0 g) and water 200 g were mixed and made of 1 mm ⁇ polycarbonate.
  • Pre-dispersion was performed at 2400 rpm for 1 hour using an agitator bead mill mini-zeta (MiniZeta) manufactured by Netzch filled with beads.
  • 595 g, 6.8 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 48.3 g of 6.18% boric acid aqueous solution and 40 g of water were added. Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 530 g of pigment dispersion (1) -19 having a pigment concentration of 10.3%. Viscosity: 2.9 mPa ⁇ S.
  • Copolymer dipropylene glycol solution, Mw 150,000, acid value 142 mgKOH) 180.0 g (solid content 25%, solid content 45.0 g) and 200 g of water were mixed, and 1 mm ⁇ polycarbonate beads were mixed.
  • Pre-dispersion was performed at 2400 rpm for 1 hour using a Netzch agitator bead mill mini-zeta (MiniZeta).
  • 680 g of the obtained crude pigment dispersion (1) -18 4.0 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 28.8 g of a 6.18% boric acid aqueous solution and 150 g of water were added, and 70 g Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 10,000 to obtain 620 g of pigment dispersion (1) -25 having a pigment concentration of 9.6%. Viscosity: 1.5 mPa ⁇ S.
  • the dispersants benzyl methacrylate (70.2 mol%), methacrylic acid (29.8 mol%) obtained in Synthesis Example (1) -8 were added.
  • a copolymer of dipropylene glycol, Mw 31,000, acid value 106 mgKOH) 165.0 g (solid content 20.0%
  • 0.5 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 3.6 g of a 6.18% boric acid aqueous solution 260 g of water were added to 526 g of the obtained crude pigment dispersion (1) -19.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 650 g of a pigment dispersion (1) -26 having a pigment concentration of 10.3%. Viscosity: 2.0 mPa ⁇ S.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was thoroughly washed with water using a filter having a molecular weight cut off of 50,000 to obtain 580 g of a pigment dispersion (1) -27 having a pigment concentration of 11.5%. Viscosity: 2.4 mPa ⁇ S.
  • Example (1) -28 Dispersant (benzyl methacrylate (28.8 mol%), methacrylic acid (71.2 mol%) obtained in Synthesis Example (1) -15 to a solid content of 70.0 g of powdered azo pigment (1) -4 )
  • Mw 56,000, acid value 343 mg KOH) 116.7 g (solid content 30.0%, solid content 35.0 g) and 200 g of water were mixed, and 1 mm ⁇ polycarbonate
  • Pre-dispersion was performed at 2,400 rpm for 1 hour using a Netzch agitator bead mill mini-zeta (MiniZeta) filled with beads.
  • the obtained pre-dispersed liquid was dispersed at 4200 rpm for 18 hours using a Netzch minicer (MiniCer) with recirculation filled with 0.2 to 0.3 mm ⁇ polystyrene beads, washed with water, 460 g of a crude pigment dispersion (1) -21 having a pigment concentration of 12.5% by weight was obtained.
  • Pre-dispersion was performed at 2,400 rpm for 1 hour using an agitator bead mill mini-zeta (MiniZeta) manufactured by Netzch filled with beads.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 490 g of pigment dispersion (1) -29 having a pigment concentration of 10.0%. Viscosity: 2.5 mPa ⁇ S.
  • Example (1) -I (Pigment dispersion) Table 4 summarizes the evaluation results of the pigment dispersions obtained from Examples (1) -1 to (1) -29, (1) -31 to (1) -34, and Comparative Example (1) -1.
  • the dispersibility of the present invention is that when the pigment dispersion is carried out, ⁇ indicates that the volume average particle diameter is 100 nm or less within 15 hours, and ⁇ indicates that the volume average particle size is 100 nm or less within 20 hours. The evaluation was evaluated as ⁇ when it took longer than time but became 100 nm or less, and x when it did not become 100 nm or less.
  • the initial viscosity of the pigment dispersions prepared in Examples (1) -1 to (1) -29, (1) -31 to (1) -34, and Comparative Example (1) -1 is 3.0 or less. Are evaluated as ⁇ , and those larger than 3.0 are evaluated as ⁇ .
  • Example (1) -II Examples of the pigment ink for inkjet recording of the present invention are shown below.
  • the pigment ink for inkjet recording of the present invention was prepared and evaluated under the following conditions.
  • [Pigment ink] To 27.78 g of the pigment dispersion (1) -1 prepared in Example (1) -1, 12.10 g of water, 1.65 g of 2-pyrrolidinone, 8.25 g of glycerol, 2.20 g of 1,2-hexanediol, A mixed solution of 2.75 g of ethylene glycol, surfinol 465, and 0.28 g was added and stirred sufficiently to obtain 55 g of pigment ink (1) -1 having a pigment concentration of 5 wt%.
  • Examples (1) -1 to (1) -32, (1) -34 and Comparative Examples (1) -1 to (1) -2 were prepared so that the pigment concentration was 5 wt%.
  • the pigment inks of Examples (1) -1 to (1) -32, (1) -34 and Comparative Examples (1) -1 to (1) -2 were obtained.
  • Epson pigment ink ICY-42 is used as comparative pigment ink (1) -3
  • Canon pigment ink PGI-2Y is used as comparative pigment ink (1) -4.
  • Table 5 summarizes the evaluation of pigment inks using the pigment dispersions of Examples and Comparative Examples.
  • ⁇ concentration ⁇ The optical density of the sample solid-printed on Canon PT-101 was measured. The evaluation is evaluated as ⁇ when the number is 2.2 or more, ⁇ when the value is 2.0 or more, and x when the value is less than 2.0.
  • Synthesis Example (2) -4 By performing the same operation as in Synthesis Example (2) -1, except that ethylene glycol was increased from 30 mL to 80 mL, an azo pigment (2) -5 having a primary particle length of 2 ⁇ m was obtained. . Further, the amorphous azo compound (2) obtained in Synthesis Example (2) -1 was dried, 50 mL of ethylene glycol was added, and the subsequent operation was the same as in Synthesis Example (2) -1. An azo pigment (2) -6 having a primary particle length of 10 ⁇ m was obtained. All azo pigments have Bragg angles (2 ⁇ ⁇ 0.2 °) of 4.8 °, 7.2 °, 9.7 °, 20.0 ° 17.3 °, 26.0 ° and 26.7 °. A characteristic X-ray diffraction peak was exhibited.
  • the obtained (2) - ⁇ -type crystal form azo pigment (2) -9 was visually observed with a transmission microscope (manufactured by JEOL Ltd .: JEM-1010 electron microscope). The length in the direction was about 0.5 ⁇ m.
  • the X-ray diffraction of the - ⁇ -type crystal form pigment was measured under the above conditions. The Bragg angle (2 ⁇ ⁇ 0.2 °) was 5.9 °, 7.0 °, 10.4 ° and A characteristic X-ray diffraction peak at 23.5 ° was exhibited.
  • the obtained (2) - ⁇ type crystal form azo pigment (2) -8 was visually observed with a transmission microscope (manufactured by JEOL Ltd .: JEM-1010 electron microscope). The length in the direction was about 10 ⁇ m.
  • the X-ray diffraction of the - ⁇ type crystal form pigment (2) -8 was measured under the above conditions. The Bragg angles (2 ⁇ ⁇ 0.2 °) were 6.3 °, 6.4 ° and A characteristic X-ray diffraction peak at 22.3 ° was exhibited.
  • the obtained (2) - ⁇ type crystal form azo pigment (2) -7 was visually observed with a transmission microscope (manufactured by JEOL Ltd .: JEM-1010 electron microscope). The length in the direction was about 10 ⁇ m.
  • the X-ray diffraction measurement of the ⁇ -type crystal form pigment (2) -7 was carried out under the above conditions. The Bragg angle (2 ⁇ ⁇ 0.2 °) was 6.5 °, 7.1 °, Characteristic X-ray diffraction peaks were shown at 14.4 °, 21.8 ° and 23.6 °.
  • a CuK ⁇ characteristic X-ray diffraction diagram of (2) - ⁇ type crystal form azo pigment (2) -7 is shown in FIG.
  • a CuK ⁇ characteristic X-ray diffraction diagram of (2) - ⁇ type crystal form azo pigment (2) -8 is shown in FIG.
  • FIG. 10 shows a CuK ⁇ characteristic X-ray diffraction pattern of (2) - ⁇ type crystal form azo pigment (2) -9.
  • the internal temperature was cooled to 0 ° C. with ice cooling, and the above-described diazonium salt solution was added thereto over 30 minutes so that the internal temperature became 10 ° C. or lower.
  • the mixture was added to 1.6 L of water and stirred for 30 minutes.
  • the precipitated crystals were separated by filtration and washed with 1 L of water.
  • the obtained crystals were suspended in 2.5 L of water, and 28% aqueous ammonia was added to adjust the pH to 6.1.
  • the crystals were separated by filtration, thoroughly washed with water, dried at 60 ° C. for 24 hours, and a (2) - ⁇ -type crystal form azo pigment (2) -2 represented by the following formula (2) was obtained.
  • the obtained (2) - ⁇ type crystal form azo pigment (2) -2 was suspended in 1.5 L of acetone, heated up and stirred for 2 hours under reflux. The crystals were filtered off while hot and sufficiently washed with acetone to obtain (2) - ⁇ type crystal form azo pigment (2) -12.
  • the obtained ⁇ -type crystal form azo pigment (2) -12 was dried at 80 ° C. for 15 hours to obtain 98.5 g of an ⁇ -type crystal form azo pigment (2) -10 represented by the following formula (2). .
  • the obtained (2) - ⁇ type crystal form azo pigment (2) -2 was visually observed with a transmission microscope (manufactured by JEOL Ltd .: JEM-1010 electron microscope). The length in the direction was about 2 ⁇ m.
  • the X-ray diffraction measurement of the - ⁇ -type crystal form pigment (2) -2 was carried out under the above conditions. The Bragg angles (2 ⁇ ⁇ 0.2 °) were 5.9 °, 7.0 ° and A characteristic X-ray diffraction peak was observed at 8.9 °.
  • the obtained (2) - ⁇ -type crystal form azo pigment (2) -12 was visually observed with a transmission microscope (manufactured by JEOL Ltd .: JEM-1010 electron microscope). The length in the direction was about 15 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction has characteristic X-ray diffraction peaks at 4.9 °, 8.9 °, and 13.1 °, and the length of primary particles in the long axis direction
  • a CuK ⁇ characteristic X-ray diffraction pattern of (2) - ⁇ -type crystal form azo pigment (2) -10 having a thickness of 10 ⁇ m is shown in FIG.
  • Precipitated crystals were separated by filtration and thoroughly washed with water to obtain 19.8 g of azo pigment (2) -11 having (2) - ⁇ type crystal form.
  • the obtained (2) - ⁇ type crystal form azo pigment (2) -11 was visually observed with a transmission microscope (manufactured by JEOL Ltd .: JEM-1010 electron microscope). The length in the direction was 0.5 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 6.6 °, 9.2 °, 10.3 °.
  • Characteristic X-ray diffraction peaks were shown at 21.4 ° and 25.6 °.
  • a CuK ⁇ characteristic X-ray diffraction diagram of (2) - ⁇ type crystal form pigment (2) -11 is shown in FIG.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%)
  • Mw 25,000
  • the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 680 g of pigment dispersion (2) -2 having a pigment concentration of 9.9%. Viscosity: 1.9 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -6. 0.7 mol%)
  • a copolymer of methacrylic acid (33.3 mol%) in dipropylene glycol, Mw 83,000, acid value 140 mg KOH)
  • 8.5 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 60.3 g of a 6.18% boric acid aqueous solution and 234.6 g of water were added to 928 g of the obtained crude pigment dispersion (2) -3.
  • Example (2) -4 597.7 g (solid content 26.5%, solid content 158.4 g) of paste-like azo pigment (2) -2 was added to the dispersant (methyl methacrylate (47) obtained in Synthesis Example (1) -17. 8 mol%), a copolymer of methacrylic acid (31.8 mol%), 2-ethylhexyl methacrylate (20.4 mol%) in a dipropylene glycol solution, Mw 83,000, acid value 154 mg KOH) 0 g (solid content 35.2%, solid content 79.2 g) and water 57.3 g were mixed, and a 1 mm ⁇ polycarbonate bead filled Netzch agitator bead mill mini-zeta (MiniZeta) was used.
  • Preliminary dispersion was performed at 2400 rpm for 1 hour.
  • the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 1190 g of a pigment dispersion (2) -4 having a pigment concentration of 8.7%. Viscosity: 2.3 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -6. 7 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 83,000, acid
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the settled solid, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 520 g of pigment dispersion (2) -5 having a pigment concentration of 9.9%. Viscosity: 2.0 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -6. 7 mol%)
  • 3.6 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 25.5 g of 6.18% boric acid aqueous solution and 61.0 g of water were added to 606 g of the obtained crude pigment dispersion (2) -6.
  • Example (2) -7 311.3 g (solid content 25.7%, solid content 80.0 g) of paste-like azo pigment (2) -2 was added to the dispersant (benzyl methacrylate (66) obtained in Synthesis Example (1) -6. 7 mol%), dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 83,000, acid value 140 mg KOH) 103.9 g (solid content 30.8%, solid content 32.0 g) was mixed and pre-dispersed at 2400 rpm for 1 hour using a Netzch agitator bead mill mini-zeta (MiniZeta) filled with 1 mm ⁇ polycarbonate beads.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -6. 7 mol%)
  • dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 83,000, acid value 140 mg KOH) 103.9 g (solid content 30.8%,
  • 656 g of the obtained crude pigment dispersion (2) -7 2.7 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.), 19.3 g of 6.18% boric acid aqueous solution and 10 g of water were added, and 70 g Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 615 g of pigment dispersion (2) -7 having a pigment concentration of 10.9%. Viscosity: 2.2 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%)
  • Mw 25,000
  • To 550 g of the obtained crude pigment dispersion (2) -8 3.50 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.), 25.03 g of a 6.18% boric acid aqueous solution and 150 of water were added. Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the settled solid, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 700 g of a pigment dispersion (2) -8 having a pigment concentration of 10.2%. Viscosity: 1.6 mPa ⁇ S.
  • Example (2) -9 550 g of the crude pigment dispersion (2) -8 (pigment concentration 13 wt%) obtained in Example (2) -8 was added to 0.75 g and 6.18% of Denacol EX-321 (manufactured by Nagase ChemteX Corporation). Were added with 5.36 g of an aqueous boric acid solution and 150 g of water, followed by stirring at 70 ° C. for 5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and the coarse particles were further precipitated with a centrifuge (7000 rpm, 10 minutes).
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was thoroughly washed with water using a filter having a molecular weight cut off of 50,000 to obtain 290 g of pigment dispersion (2) -10 having a pigment concentration of 10.1%. Viscosity: 2.4 mPa ⁇ S.
  • Example (2) -11 To 280 g of the crude pigment dispersion (2) -9, 2.0 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 14.3 g of a 6.18% boric acid aqueous solution and 15 g of water were added, and the mixture was stirred at 70 ° C. for 5 Stir for hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • Example (2) -12 To 350.8 g of crude pigment dispersion (2) -9, 3.0 g of Denacol EX-521 (manufactured by Nagase ChemteX Corporation), 13.9 g of 6.18% boric acid aqueous solution and 20 g of water were added, and the mixture was heated to 70 ° C. And stirred for 5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 320 g of a pigment dispersion (2) -12 having a pigment concentration of 10.8%. Viscosity: 2.8 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%)
  • dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 25,000, acid value 128 mg KOH) 182.9 g (solid
  • To 700 g of the obtained crude pigment dispersion (2) -10 2.9 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 21.0 g of a 6.18% boric acid aqueous solution, and 15 g of water were added. Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 630 g of pigment dispersion (2) -13 having a pigment concentration of 11.4%. Viscosity: 1.6 mPa ⁇ S.
  • Example (2) -14 0.6 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 4.2 g of a 6.18% boric acid aqueous solution, and 30 g of water were added to 655 g of the obtained crude pigment dispersion (2) -10. Stir at 5 ° C. for 5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • Example (2) -15 Paste azo pigment (2) -2 in 622.6 g (solid content 25.7%, solid content 160.0 g) was dispersed in the dispersant (benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%), a copolymer of methacrylic acid (33.3 mol%) in a dipropylene glycol solution, Mw 25,000, acid value 128 mg KOH) 139.1 g (solid content 35.0%, solid content 48.0 g) was mixed, and pre-dispersion was performed at 2400 rpm for 1 hour using an agitator bead mill mini-zeta (MiniZeta) manufactured by Netzch filled with 1 mm ⁇ polycarbonate beads.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%)
  • a copolymer of methacrylic acid (33.3 mol%) in a dipropylene glycol solution
  • Mw 25,000
  • To 707 g of the obtained crude pigment dispersion (2) -11 2.4 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation), 17.1 g of 6.18% boric acid aqueous solution, and 60 g of water were added, and 70 g Stir at 5 ° C. for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 690 g of a pigment dispersion (2) -15 having a pigment concentration of 10.5%. Viscosity: 1.6 mPa ⁇ S.
  • Example (2) -16 To 700 g of crude pigment dispersion (2) -11, 1.0 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.), 7.2 g of 6.18% boric acid aqueous solution, and 60 g of water were added, and the temperature was 70 ° C. Stir for 5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • a centrifuge 7000 rpm, 10 minutes
  • the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 750 g of a pigment dispersion (2) -16 having a pigment concentration of 9.8%. Viscosity: 1.5 mPa ⁇ S.
  • a Netzch agitator bead mill mini-zeta MiniZeta
  • To 900 g of the obtained crude pigment dispersion (2) -12 0.5 g of Denacol EX-321 (manufactured by Nagase Chemtex Co., Ltd.) and 3.7 g of a 6.18% boric acid aqueous solution were added, and the mixture was added at 70 ° C Stir for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 410 g of pigment dispersion (2) -17 having a pigment concentration of 10.6%. Viscosity: 2.0 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -6. 0.7 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 61,000, acid value 136 mg KOH
  • 0.4 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 3.2 g of a 6.18% boric acid aqueous solution were added to 400 g of the obtained crude pigment dispersion (2) -13, and the mixture was added at 70 ° C. Stir for 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 380 g of pigment dispersion (2) -18 having a pigment concentration of 8.7%. Viscosity: 1.9 mPa ⁇ S.
  • Example (2) -19 To 400 g of the crude pigment dispersion (2) -13, 2.1 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation) and 14.8 g of a 6.18% boric acid aqueous solution were added, and the mixture was stirred at 70 ° C. for 5 hours. did. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000, washed with water, and 350 g of pigment dispersion (2) -19 having a pigment concentration of 10.5% was obtained. Obtained. Viscosity: 2.4 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -10. 0.7 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 41,000, acid value 135
  • 0.5 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 3.9 g of 6.18% boric acid aqueous solution were added to 370 g of the obtained crude pigment dispersion (2) -14, and 5 ° C. at 70 ° C. Stir for hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 410 g of a pigment dispersion (2) -20 having a pigment concentration of 10.9%. Viscosity: 2.1 mPa ⁇ S.
  • Example (2) -21 2.5 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.) and 17.8 g of 6.18% boric acid aqueous solution were added to 365 g of the crude pigment dispersion (2) -14, and the mixture was stirred at 70 ° C. for 5 hours. did. After completion of the reaction, the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes).
  • the dispersant benzyl methacrylate (70 .2 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid 29.8 mol%
  • Mw 31,000
  • acid value 106 mg KOH) 175.5 g solid content 20.0%, solid content
  • a g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 3.9 g of 6.18% boric acid aqueous solution were added to 501 g of the obtained crude pigment dispersion (2) -15, and the mixture was stirred at 70 ° C. for 5 hours. Stir for hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 420 g of a pigment dispersion (2) -22 having a pigment concentration of 10.9%. Viscosity: 2.2 mPa ⁇ S.
  • the dispersant benzyl methacrylate (52 .4 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid 47.6 mol%)
  • Mw 83,000
  • acid value 195 mg KOH 116.7 g (solid content 30.0%, solid
  • Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 2.0 g of 6.18% boric acid aqueous solution and 70 g of water were added, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 480 g of pigment dispersion (2) -23 having a pigment concentration of 10.2%. Viscosity: 2.8 mPa ⁇ S.
  • 680 g of the obtained crude pigment dispersion (2) -17 3.5 g of Denacol EX-321 (manufactured by Nagase ChemteX Corporation) and 24.8 g of 6.18% boric acid aqueous solution were added, and the mixture was stirred at 70 ° C. for 5 Stir for hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 610 g of a pigment dispersion (2) -24 having a pigment concentration of 10.1%. Viscosity: 2.5 mPa ⁇ S.
  • 7.2 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 51.2 g of a 6.18% boric acid aqueous solution and 300 g of water were added to 1150 g of the obtained crude pigment dispersion (2) -18, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the settled solid, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 1320 g of pigment dispersion (2) -25 having a pigment concentration of 10.1%. Viscosity: 1.6 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -6. 0.7 mol%)
  • 580 g of the obtained crude pigment dispersion (2) -19 6.8 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.), 48.3 g of 6.18% boric acid aqueous solution and 50 g of water were added, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 540 g of a pigment dispersion (2) -26 having a pigment concentration of 10.1%. Viscosity: 2.9 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -13. 7 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 150,000, acid value 142 mg KOH) 18
  • 3.3 g of Denacol EX-321 manufactured by Nagase ChemteX Corporation
  • 23.6 g of 6.18% boric acid aqueous solution and 80 g of water were added to 558 g of the obtained crude pigment dispersion (2) -20, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the precipitated solid, it was sufficiently washed with water using a filter having a molecular weight cut off of 150,000 to obtain 580 g of a pigment dispersion (2) -38 having a pigment concentration of 9.8%. Viscosity: 2.9 mPa ⁇ S.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -14. 7 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid 33.3 mol%)
  • Mw 15,000
  • 4.0 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 28.8 g of 6.18% boric acid aqueous solution and 150 g of water were added to 614 g of the obtained crude pigment dispersion (2) -21, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the settled solid, the filter was sufficiently washed with water using a filter having a molecular weight cut-off of 10,000 to obtain 740 g of a pigment dispersion (2) -39 having a pigment concentration of 9.6%. Viscosity: 1.4 mPa ⁇ S.
  • Example (2) -40 273.1 g of paste pigment (2) -2 (solid content 25.7%, solid content 70.0 g) was added to the dispersant (benzyl methacrylate (28) obtained in Synthesis Example (1) -15. 8 mol%), a dipropylene glycol solution of a copolymer of methacrylic acid (71.2 mol%), Mw 56,000, acid value 343 mgKOH) 116.7 g (solid content 30.0%, solid content 35.0 g) was mixed, and pre-dispersion was performed at 2,400 rpm for 1 hour using a Netzch agitator bead mill mini-zeta (MiniZeta) filled with 1 mm ⁇ polycarbonate beads.
  • the dispersant benzyl methacrylate (28) obtained in Synthesis Example (1) -15. 8 mol%)
  • a dipropylene glycol solution of a copolymer of methacrylic acid (71.2 mol%), Mw 56,000, acid value 343 mgKOH) 116.7 g (solid content 30
  • the obtained pre-dispersed liquid was dispersed at 4200 rpm for 15 hours using a Minizer (MiniCer) manufactured by Netzch with recirculation filled with 0.2-0.3 mm ⁇ polystyrene beads, washed with water, 490 g of crude pigment dispersion (2) -40 having a pigment concentration of 11.8% by weight was obtained.
  • (Average volume particle diameter Mv 92.8 nm)
  • To 490 g of the obtained crude pigment dispersion (2) -40 2.8 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.), 20.2 g of 6.18% boric acid aqueous solution and 50 g of water were added, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After removing the precipitated solid, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 530 g of a pigment dispersion (2) -40 having a pigment concentration of 9.8%. Viscosity: 3.2 mPa ⁇ S.
  • the dispersant benzyl methacrylate (91 .6 mol%)
  • dipropylene glycol solution of a copolymer of methacrylic acid (8.4 mol%), Mw 83,000
  • acid value 27 mg KOH) 175.0 g solid content 20.0%, solid content 35.0 g
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated with a centrifuge (7,000 rpm, 10 minutes). After removing the settled solid, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 500 g of a pigment dispersion (2) -41 having a pigment concentration of 10.1%. Viscosity: 2.2 mPa ⁇ S.
  • Example (2) -47 An attempt was made to prepare the pigment dispersion (2) -47 by replacing the azo pigment of Example (2) -6 with the azo pigment (2) -13, but the average volume particle diameter did not become 180 nm or less. Viscosity: 2.7 mPa ⁇ S.
  • Example (2) -48 Paste azo pigment (2) -2 in 622.6 g (solid content 25.7%, solid content 160.0 g) was dispersed in the dispersant (benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%), a dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 25,000, acid value 128 mgKOH) 68.6 g (solid content 35%, solid content 24. 0 g) was mixed, and pre-dispersion was performed at 2400 rpm for 1 hour using a Netzch agitator bead mill mini-zeta (MiniZeta) filled with 1 mm ⁇ polycarbonate beads.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%)
  • Mw 25,000
  • acid value 128 mgKOH) 68.6 g solid content 35%, solid content 24. 0 g
  • 980 g of the obtained crude pigment dispersion (2) -48 0.5 g of Denacol EX-321 (manufactured by Nagase ChemteX Corp.), 3.2 g of 6.18% boric acid aqueous solution and 400 g of water were added, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 1100 g of a pigment dispersion (2) -48 having a pigment concentration of 9.6%. Viscosity: 1.5 mPa ⁇ S.
  • Example (2) -49 Paste azo pigment (2) -2 in 622.6 g (solid content 25.7%, solid content 160.0 g) was dispersed in the dispersant (benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%), a dipropylene glycol solution of a copolymer of methacrylic acid (33.3 mol%), Mw 25,000, acid value 128 mg KOH) 114.3 g (solid content 35%, solid content 40. 0 g) was mixed, and pre-dispersion was performed at 2400 rpm for 1 hour using a Netzch agitator bead mill mini-zeta (MiniZeta) filled with 1 mm ⁇ polycarbonate beads.
  • the dispersant benzyl methacrylate (66) obtained in Synthesis Example (1) -7. 7 mol%)
  • Mw 25,000
  • 0.8 g of Denacol EX-321 manufactured by Nagase ChemteX Corp.
  • 5.4 g of 6.18% boric acid aqueous solution and 350 g of water were added to 1050 g of the obtained crude pigment dispersion (2) -49, and 70 ° C. For 5 hours.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the settled solid, it was washed thoroughly with water using a filter having a molecular weight cut off of 50,000 to obtain 1090 g of a pigment dispersion (2) -49 having a pigment concentration of 10.5%. Viscosity: 1.6 mPa ⁇ S.
  • Table 7 summarizes the evaluation results of the pigment dispersions obtained from Examples (2) -1 to (2) -49 and Comparative Examples (2) -1, and (2) -2.
  • the dispersibility of the present invention is that when the pigment dispersion is performed, ⁇ when the volume average particle size is 100 nm or less within 25 hours, ⁇ when the volume average particle size is 100 nm or less within 35 hours, 35 Evaluation was made with ⁇ for those that took more than a hour but less than 100 nm and x for those that did not become less than 100 nm.
  • Example (2) -II Examples of the pigment ink for inkjet recording of the present invention are shown below.
  • the pigment ink for inkjet recording of the present invention was prepared and evaluated under the following conditions.
  • Pigment ink Add a mixed solution of 10.3 g of water, 8.25 g of ethylene glycol, 5.50 g of triethylene glycol monobutyl ether, Surfynol 485, 0.39 g to 30.6 g of pigment dispersion (2) -1 and stir well. 55 g of pigment ink (2) -1 having a pigment concentration of 5 wt% was obtained.
  • -2 was used to obtain pigment inks (2) -1 to (2) -44, (2) -46 to (2) -49, and comparative examples (2) -1 and (2) -2, respectively.
  • Table 8 summarizes the evaluation of pigment inks using the pigment dispersions of Examples and Comparative Examples.
  • a coated product having an image density of 1.0 was prepared on a photographic paper Krispia manufactured by Seiko Epson Co., Ltd., and irradiated with xenon light (170000 lux; in the presence of a TAC filter) for 28 days using a fade meter.
  • the image density before and after is measured using a reflection densitometer, and the dye residual ratio [(post-irradiation density / pre-irradiation density) ⁇ 100%] is 95% or more, ⁇ , 90% or more is ⁇ , 80% or more When the case is ⁇ and the case of less than 70% is ⁇ , the pigment ink is evaluated.
  • the present invention it is possible to provide a yellow azo pigment pigment dispersion having excellent liquid properties and storage stability, and a method for producing a yellow azo pigment pigment dispersion.
  • the azo pigment dispersion of the present invention is suitable for use as a pigment ink for inkjet recording.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Ink Jet (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 インクジェット記録用インク使用した際に、好適な印字濃度及び光沢性を有するイエローアゾ顔料の顔料分散物、分散方法を提供すること。 着色剤、分散剤、水を含む顔料分散物であって、前記着色剤が(1)CuKα特性X線回折における特定位置に特徴的X線回折ピークを有する、下記式(1)のアゾ顔料、又は下記式(2)のアゾ顔料を含むことを特徴とする水系顔料分散物。

Description

水系顔料分散物、その製造方法及びインクジェット記録用インク
 本発明は、水系塗料、水系インク、捺染剤、カラーフィルター、水系記録液、の如き水系着色液に有用な水系顔料分散物及びその製造方法、更に水系顔料分散物を使用した水系着色インク、特にインクジェット記録用インクに関する。
 公害防止や労働衛生の面から、塗料、印刷インクの如き着色剤を使用する業界では水系化指向が強い。また、情報の記録に用いられるボールペン、サインペン等の文具やインキジェットに代表されるプリンターやプロッター等の記録液は、毒性や衛生の面から水系化が進んでいる。
 これらの用途の要求性能、例えば塗料、インク、記録液等を作成した場合の顔料の微分散物や長期の貯蔵安定性、塗膜にした場合の耐水性、耐久性や堅牢性、記録液のインクジェットのノズル先での乾燥に対する再分散性等を、改良する水系顔料分散物の製造方法として、特許文献1が開示されている。この製造方法は、カルボキシル基と架橋剤と反応しうる官能基及び/又は自己架橋しうる官能基とを併有する樹脂と、顔料とを混練して微細に分散された水系分散体とし、次いで、酸性化合物でもってPHを中性又は酸性にして樹脂を疎水性化することによって顔料に強く固着せしめ(酸析)、次いで、再度塩基性化合物でもってカルボキシル基を中和して水に再分散し、更に、任意の時期に樹脂を架橋してなる斬新な水系顔料分散体の製造方法である。
 しかし、上記水系顔料分散体の製造方法としては、水系分散体を製造した後、酸析、再分散という工程を通って製造されている。そのため、製造工程が通常の水系顔料分散体に比べ長く、必要以上にエネルギーや手間がかかるという問題点を生じている。
 更に上記の改良方法として、まず、架橋性官能基と酸性基とを有する疎水性樹脂、又は、自己架橋性官能基と酸性基とを有する疎水性樹脂を、架橋前の段階では水性媒体中に溶解するが、架橋後には水性媒体中に析出する量の塩基で酸性基を中和して水溶性樹脂とし、この水溶性樹脂と顔料と、必要により架橋剤とを水性媒体中に溶解・分散させて、水溶性樹脂が溶解し、顔料が分散した水系分散体を得た後、顔料の分散を維持しつつ水溶性樹脂を架橋反応させて顔料の周囲に水溶性樹脂の架橋物を析出させることにより、酸析、再分散という工程がなくとも、顔料の表面に水溶性樹脂の架橋物が固着し、容易に水系顔料分散体が製造できる方法が、特許文献2に記載されている。
 上記の方法では架橋剤を用いる際に特許文献1では比較的高温(95℃)で、また特許文献2ではオートクレーブを用い圧力をかけ、140℃で架橋しており、工程としても好ましくない。また、特許文献3ではイソシアネート/アミンを用いた架橋反応、特許文献4ではイソシアネート/ヒドロキシルを用いた架橋反応が100℃以下で行われる例が記載されている。
 上記いずれの分散方法で製造された分散物もインクジェット記録用インクに用いた場合、分散物の安定性がまだ不十分でノズルを詰まらせる等の欠点があることが判明している。
 また、国際公開第06/064193号パンフレット(特許文献5)には、上記特許文献1~4より改良された分散方法が記載されている。しかしながら、同特許文献に記載の方法は、同特許文献に具体的に記載された顔料であるC.IPigment Blue 15:3、C.IPigment Black 7 等については好適な分散物が得られるが、イエローの顔料、特に従来知られているイエローアゾ顔料(例えばC.I. Pigment Yellow 74、C.I. Pigment Yellow 128、C.I. Pigment Yellow 155、C.I. Pigment Yellow 150、C.I. Pigment Yellow 180、C.I. Pigment Yellow 213)に適用した場合には、十分な印画濃度が得られなかったり、印画物の画質(特に光沢性)やインクの貯蔵安定性が不十分であったりする場合が多く、その改良が強く望まれていた。
日本国特開平9-104834号公報 日本国特開平11-152424号公報 欧州特許第732381号明細書 国際公開第00/020520号パンフレット 国際公開第06/064193号パンフレット
 本発明は、良好なイエローアゾ顔料の顔料分散物を提供すること、またイエローアゾ顔料の分散方法を提供すること、特に、インクジェット記録用インク使用した際に、好適な印字濃度及び光沢性を有することを特長とする、イエローアゾ顔料の顔料分散物及びその製造方法を提供することである。
 本発明は下記の手段により達成された。
〔1〕
 着色剤、分散剤、水を含む顔料分散物であって、
前記着色剤が(1)CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が7.2°、13.4°、15.0°及び25.9°に特徴的X線回折ピークを有する下記式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料、又は
(2)CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が、4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する下記式(2)若しくはその互変異性体で表される分子の集合体であるアゾ顔料
を含むことを特徴とする水系顔料分散物。
Figure JPOXMLDOC01-appb-C000002

〔2〕
 前記分散剤が水溶性高分子であることを特徴とする〔1〕に記載の水系顔料分散物。
〔3〕
 前記水溶性高分子分散剤の重量平均分子量が10000以上200000以下であることを特徴とする〔2〕に記載の水系顔料分散物。
〔4〕
 前記水溶性高分子分散剤が少なくとも1つのカルボキシ基を有し、少なくとも50mgKOH/g以上の酸価を有することを特徴とする〔2〕又は〔3〕に記載の水系顔料分散物。
〔5〕
 前記水溶性高分子分散剤が70~160mgKOH/gの酸価を有することを特徴とする〔4〕に記載の水系顔料分散物。
〔6〕
 前記顔料分散物中の着色剤の含有量をP、分散剤の含有量をDとし、含有量Dと含有量Pとの比をD/P値としたときに、D/P値が0.15以上1.0以下であることを特徴とする〔1〕~〔5〕のいずれか1項に記載の水系顔料分散物。
〔7〕
 前記式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料の分散前の一次粒子径が、0.01~10μmであることを特徴とする〔1〕~〔6〕のいずれか1項に記載の水系顔料分散物。
〔8〕
 前記式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料の分散前の一次粒子径が、0.01~20μmであることを特徴とする〔1〕~〔6〕のいずれか1項に記載の水系顔料分散物。
〔9〕
 前記分散前の一次粒子径が、0.01~0.2μmであることを特徴とする〔8〕記載の水系顔料分散物。
〔10〕
 前記水系分散物が、架橋剤により架橋されていることを特徴とする〔1〕~〔9〕のいずれか1項に記載の水系顔料分散物。
〔11〕
 前記架橋剤が少なくとも2つのエポキシ基を含むことを特徴とする〔10〕に記載の水系顔料分散物。
〔12〕
 カルボキシ基とエポキシ基の間の架橋反応を100℃以下、pH6以上で行うことを特徴とする〔11〕に記載の水系顔料分散物。
〔13〕
 架橋反応を40~85℃で行うことを特徴とする〔12〕に記載の水系顔料分散物。
〔14〕
 架橋反応をpH7~10で行うことを特徴とする〔12〕又は〔13〕のいずれか1項に記載の水系顔料分散物。
〔15〕
 以下の(a)~(d)の成分を混合して、架橋反応を行うことを特徴とする〔1〕~〔14〕のいずれか1項に記載の水系顔料分散物の製造方法。
(a)30~99.7部の水
(b)0.1~50部の前記式(1)で表される分子の集合体であるアゾ顔料又は式(2)で表される分子の集合体であるアゾ顔料
(c)0.1~40部のビニルポリマー
(d)0.00001~10部の架橋剤
部は質量を表し、顔料分散物の総重量を100質量部とした際に(a)+(b)+(c)+(d)の和は100質量部以下である。
〔16〕
 前記架橋反応を100℃以下、pH6以上で行うことを特徴とする〔15〕に記載の水系顔料分散物の製造方法。
〔17〕
 更に膜精製を行うことを特徴とする〔15〕記載の水系顔料分散物の製造方法。
〔18〕
 〔1〕~〔14〕のいずれか1項に記載の水系顔料分散物を含有するインクジェット記録用インク。
 本発明により、良好な液物性と貯蔵安定性に優れたイエローアゾ顔料の顔料分散物、またイエローアゾ顔料の顔料分散物製造方法を提供できる。特に、本発明のアゾ顔料分散物は、インクジェット記録用顔料インク用途に好適である。
アゾ顔料(1)-1のX線回折の図である。 アゾ顔料(1)-2のX線回折の図である。 アゾ顔料(1)-3のX線回折の図である。 アゾ顔料(1)-4のX線回折の図である。 非結晶なアゾ顔料(2)-10のX線回折の図である。 アゾ顔料(2)-10のX線回折の図である。 アゾ顔料(2)-2のX線回折の図である。 アゾ顔料(2)-7のX線回折の図である。 (2)-β型結晶形態アゾ顔料(2)-8のX線回折の図である。 (2)-γ型結晶形態アゾ顔料(2)-9のX線回折の図である。 (2)-ε型結晶形態アゾ顔料(2)-10のX線回折の図である。 (2)-ζ型結晶形態アゾ顔料(2)-11のX線回折の図である。 (2)-η型結晶形態アゾ顔料(2)-12のX線回折の図である。 (2)-δ型結晶形態アゾ顔料(2)-13のX線回折の図である。
 本発明の実施の形態について説明する。
 本発明の1つの好ましい態様は、着色剤、分散剤、水を含む顔料分散物であって、前記着色剤が
(1)CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が7.2°、13.4°、15.0°及び25.9°に特徴的X線回折ピークを有する下記式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料、又は
(2)CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が、4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する下記式(2)若しくはその互変異性体で表される分子の集合体であるアゾ顔料
を含むことを特徴とする水系顔料分散物である。
Figure JPOXMLDOC01-appb-C000003
〔アゾ顔料〕
 本発明の水系顔料分散物に用いられるアゾ顔料は上記式(1)又は式(2)で表される。
 以下、本発明における式(1)で表されるアゾ化合物及びアゾ顔料について詳細に説明する。なお当該アゾ顔料は、その塩、水和物又は溶媒和物であってもよい。
 本発明の着色剤である式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料は、CuKα特性X線回折で特徴的なピークを有する結晶形が複数確認されている。例えば、以下に記載する結晶形が挙げられる。
 本明細書においては以下、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が7.2°、13.4°、15.0°及び25.9°に特徴的X線回折ピークを有する式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料を(1)-α型結晶形態アゾ顔料と称する。
 本明細書においては以下、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が6.6°及び25.7°に特徴的X線回折ピークを有する式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料を(1)-β型結晶形態アゾ顔料と称する。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が7.5°、25.8°及び26.9°に特徴的X線回折ピークを有する式(1)で表されるアゾ顔料を(1)-γ型結晶形態アゾ顔料と称する。
Figure JPOXMLDOC01-appb-T000004
 本発明において、上記式(1)の(1)-α型、(1)-β型及び(1)-γ型結晶形態アゾ顔料のX線回折の測定は、日本工業規格JISK0131(X線回析分析通則)に準じて、粉末X線回折測定装置RINT2500(株式会社リガク製)にて行うことができる。
 単一の結晶形態である場合、分子間が密になり、分子間相互作用が強くなる。その結果、耐溶剤性、熱安定性、耐光性、耐ガス性、印画濃度があがり、更には色再現域が広がる。そのため、式(1)で表されるアゾ顔料及びその互変異性体は、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が7.2°、13.4°、15.0°及び25.9°に特徴的なX線回折ピークを有する結晶形態のアゾ顔料であることが好ましい。
 7.2°、13.4°、15.0°及び25.9°に特徴的なX線回折ピークを有する結晶形態は、更に、7.2°、13.4°、15.0°、19.8°及び25.9°に特徴的なX線回折ピークを有する結晶形態がより好ましい。その中でも特に、7.2°、8.2°、10.0°、13.4°、15.0°、19.8°及び25.9°に特徴的なX線回折ピークを有する結晶形態が最も好ましい。
〔(1)-α型の割合〕
 本発明の着色剤として(1)-α型の結晶形態を有する式(1)のアゾ顔料は、着色剤の総重量を100とした場合にα型の結晶形態の含有量としては、1以上100以下が好ましく、50以上100以下が更に好ましく、80以上100以下がより好ましい。α型の結晶形以外に存在しても良い結晶形としては、例えば(1)-β型、(1)-γ型、非晶質が挙げられ、これらの結晶形を含んでいても含まなくても良い。また、2種類以上の結晶形が存在していても良い。
〔式(1)で表されるアゾ顔料〕
 以下、本発明における式(1)で表されるアゾ化合物及びアゾ顔料について詳細に説明する。なお当該アゾ顔料は、その塩、水和物又は溶媒和物であってもよい。
Figure JPOXMLDOC01-appb-C000005
 式(1)で表される顔料において、結晶中に水分子を含む水和物、あるいは、溶媒(例えば、メタノール,エタノール,2-プロパノール,t-ブチルアルコール等のアルコール類や、アセトン、メチルエチルケトン等のケトン類や、アセトニトリル、ジメチルスルホキシド,ジメチルホルムアミド,ジメチルアセトアミド,N-メチルピロリドン、トルエン等の非プロトン性溶媒など)を含む溶媒和物であっても良い。
 また、式(1)で示される顔料に関しては、スキーム(1)のような互変異性体(例えば、アゾ-ヒドラゾンの互変異性体)やスキーム(2)で表されるような幾何異性体)も、本発明においては、これらの一般式に含まれるものとする。
Figure JPOXMLDOC01-appb-C000006
〔式(1)で表されるアゾ顔料の一次粒子径〕
 式(1)で表されるアゾ顔料の1次粒子を透過型顕微鏡で観察した際の長軸方向の長さが0.01μm以下である場合には、粒子の比表面積が大きくなるため、光やオゾンに対する堅牢性が著しく低下する場合や、更に比表面積が大きくなることで一次粒子が強固に凝集して難分散性になる場合がある。一方、10μm以上である場合には、分散して所望の体積平均粒子径にした際に過分散状態になり、活性面が露出することで顔料粒子表面が不安定になるために凝集しやすくなり、顔料分散物の保存安定性が悪くなる場合がある。
 すなわち、1次粒子の長軸方向の長さが、上記の範囲内ならば、光やオゾンに対して高い堅牢性を示し、分散性に優れ、その顔料分散物は保存安定性に優れ、好ましい。
 そのため、上記式(1)で表される(1)-α型結晶形態アゾ顔料の1次粒子を、透過型顕微鏡で観察した際の長軸方向の長さは、0.01μm以上10μm以下であることが好ましく、0.01μm以上3μm以下であることが更に好ましく、0.02μm以上0.5μm以下であることがより好ましい。中でも、0.02μm以上0.2μm以下が特に好ましく、0.02μm以上0.15μm以下が最も好ましい。
〔式(2)で表されるアゾ顔料〕
 以下、本発明における式(2)で表されるアゾ化合物及びアゾ顔料について詳細に説明する。なお当該アゾ顔料は、その塩、水和物又は溶媒和物であってもよい。
Figure JPOXMLDOC01-appb-C000007
 本発明の着色剤である式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料は、CuKα特性X線回折で特徴的なピークを有する結晶形が複数確認されている。例えば、以下に記載する結晶形が挙げられる。
 本明細書においては以下、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料を(2)-δ型結晶形態アゾ顔料と称する。
 本明細書においては以下、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が6.5°、7.1°及び21.8°に特徴的X線回折ピークを有する式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料を(2)-α型結晶形態アゾ顔料と称する。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が6.3°、6.4°及び22.3°に特徴的X線回折ピークを有する式(2)で表されるアゾ顔料を(2)-β型結晶形態アゾ顔料と称する。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が5.9°及び7.0°に特徴的X線回折ピークを有する式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料を(2)-γ型結晶形態アゾ顔料と称する。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.9°、8.9°及び13.1°に特徴的X線回折ピークを有する式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料を(2)-ε型結晶形態アゾ顔料と称する。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が6.6°、9.2°、10.3°、21.4°及び25.6°に特徴的X線回折ピークを有する式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料を(2)-ζ型結晶形態アゾ顔料と称する。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、9.2°及び13.0°に特徴的X線回折ピークを有する式(2)で表されるアゾ顔料を(2)-η型結晶形態アゾ顔料と称する。
Figure JPOXMLDOC01-appb-T000008
 本発明において、上記式(2)の(2)-α型、(2)-β型、(2)-γ型、(2)-δ型、(2)-ε型、(2)-ζ型、及び(2)-η型結晶形態アゾ顔料のX線回折の測定は、日本工業規格JISK0131(X線回析分析通則)に準じて、粉末X線回折測定装置RINT2500(株式会社リガク製)にて行うことができる。
 単一の結晶形態である場合、分子間が密になり、分子間相互作用が強くなる。その結果、耐溶剤性、熱安定性、耐光性、耐ガス性、印画濃度があがり、更には色再現域が広がる。そのため、式(2)で表されるアゾ顔料及びその互変異性体は、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的なX線回折ピークを有する結晶形態のアゾ顔料であることが好ましい。
 4.8°、7.2°及び9.7°に特徴的なX線回折ピークを有する結晶形態は、更に、4.8°、7.2°、9.5°、9.7°、及び20.0°に特徴的なX線回折ピークを有する結晶形態がより好ましい。その中でも特に、4.8°、7.2°、9.5°、9.7°、20.0°、24.1°及び26.8°に特徴的なX線回折ピークを有する結晶形態が最も好ましい。
〔(2)-δ型の割合〕
 本発明の着色剤としてδ型の結晶形態を有する式(2)のアゾ顔料は、着色剤の総重量を100とした場合にδ型の結晶形態の含有量としては、1以上100以下が好ましく、50以上100以下が更に好ましく、80以上100以下がより好ましい。(2)-δ型の結晶形以外に存在しても良い結晶形としては、例えば(2)-α型、(2)-β型、(2)-γ型、(2)-ε型、(2)-ζ型、(2)-η型、非晶質が挙げられ、これらの結晶形を含んでいても含まなくても良い。また、2種類以上の結晶形が存在していても良い。
Figure JPOXMLDOC01-appb-C000009
 式(2)で表される顔料において、結晶中に水分子を含む水和物、あるいは、溶媒(例えば、メタノール,エタノール,2-プロパノール,t-ブチルアルコール等のアルコール類や、アセトン、メチルエチルケトン等のケトン類や、アセトニトリル、ジメチルスルホキシド,ジメチルホルムアミド,ジメチルアセトアミド,N-メチルピロリドン、トルエン等の非プロトン性溶媒など)を含む溶媒和物であっても良い。
 また、式(2)で示される顔料に関しては、スキーム(1)のような互変異性体(例えば、アゾ-ヒドラゾンの互変異性体)やスキーム(2)で表されるような幾何異性体)も、本発明においては、これらの一般式に含まれるものとする。
Figure JPOXMLDOC01-appb-C000010

〔式(2)で表されるアゾ顔料の一次粒子径〕
 式(2)で表されるアゾ顔料の1次粒子を透過型顕微鏡で観察した際の長軸方向の長さが0.01μm以下である場合には、粒子の比表面積が大きくなるため、光やオゾンに対する堅牢性が著しく低下する場合や、更に比表面積が大きくなることで一次粒子が強固に凝集して難分散性になる場合がある。一方、20μm以上である場合には、分散して所望の体積平均粒子径にした際に過分散状態になり、活性面が露出することで顔料粒子表面が不安定になるために凝集しやすくなり、顔料分散物の保存安定性が悪くなる場合がある。
 すなわち、1次粒子の長軸方向の長さが、上記の範囲内ならば、光やオゾンに対して高い堅牢性を示し、分散性に優れ、その顔料分散物は保存安定性に優れ、好ましい。
 そのため、上記式(2)で表される(2)-δ型結晶形態アゾ顔料の1次粒子を、透過型顕微鏡で観察した際の長軸方向の長さは、0.01μm以上20μm以下であることが好ましく、0.01μm以上5μm以下であることが更に好ましく、0.01μm以上0.5μm以下であることがより好ましい。中でも、0.01μm以上0.2μm以下が特に好ましく、0.03μm以上0.15μm以下が最も好ましい。
〔式(1)で表される(1)-α型結晶形態アゾ顔料の合成〕
 以下に、式(1)で表される(1)-α型結晶形態アゾ顔料の合成に関して詳細に説明する。
 式(1)で表される(1)-α型結晶形態アゾ顔料(以下、単に「アゾ顔料」又は「顔料」と称する場合がある)は、本発明の製造方法により合成することができる。
 本発明の製造方法は下記式(1)-1で表されるヘテロ環アミンから誘導したジアゾニウム塩と、下記式(3)で表される化合物とをアゾカップリング反応させる工程を含む。
Figure JPOXMLDOC01-appb-C000011
 ジアゾニウム塩の調製及びジアゾニウム塩と式(3)で表される化合物とのカップリング反応は、慣用法によって実施できる。
 式(1)-1で表されるヘテロ環アミンのジアゾニウム塩調製は、例えば酸(例えば、塩酸、硫酸、リン酸、酢酸、プロピオン酸、メタンスルホン酸、トリフルオロメタンスルホン酸等)含有反応媒質中で、ニトロソニウムイオン源、例えば亜硝酸、亜硝酸塩又はニトロシル硫酸を用いる慣用のジアゾニウム塩調整方法が適用できる。
 より好ましい酸の例としては、酢酸、プロピオン酸、メタンスルホン酸、リン酸、硫酸を単独又は併用して用いる場合が挙げられ、その中でリン酸、又は酢酸と硫酸の併用系、酢酸とプロピオン酸の併用系、酢酸とプロピオン酸と硫酸の併用系が更に好ましく、酢酸とプロピオン酸の併用系、酢酸とプロピオン酸と硫酸の併用系が特に好ましい。
 反応媒質(溶媒)の好ましい例としては、有機酸、無機酸を用いることが好ましく、特にリン酸、硫酸、酢酸、プロピオン酸、メタンスルホン酸が好ましく、その中でも酢酸及び又はプロピオン酸が好ましい。
 好ましいニトロソニウムイオン源の例としては、亜硝酸エステル類、亜硝酸塩類、ニトロシル硫酸等が挙げられる。その中でも、亜硝酸イソペンチル、亜硝酸ナトリウム、亜硝酸カリウム、ニトロシル硫酸がより好ましく、亜硝酸ナトリウム、ニトロシル硫酸を用いることが特に好ましく、例えば、上記の好ましい酸含有反応媒質中でニトロシル硫酸を用いることが安定にかつ効率的にジアゾニウム塩を調製できる。
 式(1)-1のジアゾ成分に対する溶媒の使用量は、0.5~50質量倍が好ましく、より好ましくは1~20質量倍であり、特に3~15質量倍が好ましい。
 本発明において、式(1)-1のジアゾ成分は溶媒に分散している状態であっても、ジアゾ成分の種類によっては溶解液の状態になっていてもどちらでも良い。
 ニトロソニウムイオン源の使用量はジアゾ成分に対して0.95~5.0当量が好ましく、より好ましくは1.00~3.00当量であり、特に1.00~1.10当量であることが好ましい。
 反応温度は、-15℃~40℃が好ましく、より好ましくは-5℃~35℃であり、更に好ましくは0℃~30℃である。-15℃未満では反応速度が顕著に遅くなり合成に要する時間が著しく長くなるため経済的でなく、また40℃を超える高温で合成する場合には、副生成物の生成量が増加するため好ましくない。
 反応時間は、30分から300分が好ましく、より好ましくは30分から200分であり、更に好ましくは30分から150分である。
 式(3)で表される化合物は例えば特開2006-265185公報等に記載の方法を用いて製造することができる。
〔カップリング反応工程〕
 カップリング反応する工程は、酸性反応媒質中~塩基性反応媒質中で実施することができるが、本発明のアゾ顔料は酸性~中性反応媒質中で実施することが好ましく、特に酸性反応媒質中で実施することがジアゾニウム塩の分解を抑制し効率良くアゾ顔料に誘導することができる。
 反応媒質(溶媒)の好ましい例としては、水、有機酸、無機酸、有機溶媒を用いることができるが、特に有機溶媒が好ましく、反応時に液体分離現象を起こさず、溶媒と均一な溶液を呈する溶媒が好ましい。例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブチルアルコール、アミルアルコール等のアルコール性有機溶媒、アセトン、メチルエチルケトン等のケトン系有機溶媒、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール等のジオール系有機溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル等のエーテル系有機溶媒、テトラヒドロフラン、ジオキサン、アセトニトリル等が挙げられる、これらの溶媒は2種類以上の混合液であってもよい。
 好ましくは、極性パラメータ(ET)の値が40以上の有機溶媒である。なかでも溶媒分子中に水酸基を2個以上有するグリコール系の溶媒、あるいは炭素原子数が3個以下のアルコール系溶媒、総炭素数5以下のケトン系溶媒、好ましくは炭素原子数が2以下のアルコール溶媒(例えば、メタノール、エチレングリコール)、総炭素数4以下のケトン系溶媒(例えばアセトン、メチルエチルケトン)が好ましい。またこれらの混合溶媒も含まれる。
 溶媒の使用量は上記式(3)で表されるカップリング成分の1~100質量倍が好ましく、より好ましくは1~50質量倍であり、更に好ましくは2~30質量倍である。
 本発明において、式(3)のカップリング成分は溶媒に分散している状態であっても、カップリング成分の種類によっては溶解液の状態になっていてもどちらでも良い。
 カップリング成分の使用量は、アゾカップリング部位あたり、ジアゾ成分が0.95~5.0当量が好ましく、より好ましくは1.00~3.00当量であり、特に1.00~1.50当量であることが好ましい。
 反応温度は、-30℃~50℃が好ましく、より好ましくは-15℃~45℃であり、更に好ましくは-10℃~40℃である。-30℃未満では反応速度が顕著に遅くなり合成に要する時間が著しく長くなるため経済的でなく、また50℃を超える高温で合成する場合には、副生成物の生成量が増加するため好ましくない。また、反応温度が低いと、一次粒子径が小さくなるが、濾過の際に濾過漏れ等の問題を生じることがあり、単離が困難になる。一方、反応温度が高いと、一次粒子径が大きくなり、濾過漏れ等の問題を生じることなく、単離が容易になるが、その顔料分散物は凝集しやすくなるため、ソルトミリング等の後処理工程を要する場合がある。
 反応時間は、30分から300分が好ましく、より好ましくは30分から200分であり、更に好ましくは30分から150分である。
 本発明のアゾ顔料の合成方法においては、これらの反応によって得られる生成物(粗アゾ顔料)は通常の有機合成反応の後処理方法に従って処理した後、精製してあるいは精製せずに供することができる。
 すなわち、例えば、反応系から遊離したものを精製せずに、あるいは再結晶、造塩等にて精製する操作を単独、あるいは組み合わせて行ない、供することができる。
 また、反応終了後、反応溶媒を留去して、あるいは留去せずに水、又は氷にあけ、中和してあるいは中和せずに、遊離したものをあるいは有機溶媒/水溶液にて抽出したものを、精製せずにあるいは再結晶、晶析、造塩等にて精製する操作を単独に又は組み合わせて行なった後、供することもできる。
 また、反応終了後、反応溶媒を留去せずに水、又は氷にあけ、中和してあるいは中和せずに、析出している固体を沈降させ、デカンテーションにより精製する操作を行った後、供することもできる。
 更に詳細に本発明のアゾ顔料の合成方法について説明する。
 本発明のアゾ顔料の製造方法は、上記式(1)-1で表されるヘテロ環アミンをジアゾニウム化したジアゾニウム化合物と、上記式(3)で表される化合物とのカップリング反応において、該式(3)の化合物を有機溶媒に溶解又は懸濁させた後カップリング反応を行うことを特徴とする。
 上記式(1)-1で表されるヘテロ環アミンのジアゾニウム化反応は例えば、硫酸、リン酸、酢酸などの酸性溶媒中、亜硝酸ナトリウム、ニトロシル硫酸等の試薬と30℃以下の温度で10分~6時間程度反応させることで行うことができる。カップリング反応は、上述の方法で得られたジアゾニウム塩と上記式(3)で表される化合物とを50℃以下、好ましくは40℃以下で10分~12時間程度反応させることで行うことが好ましい。
 上述した互変異性及び/又は結晶多形の制御は、カップリング反応の際の製造条件で制御することができる。より好ましい形態である本発明の(1)-α型の結晶を製造する方法としては、例えば、上記式(3)で表される化合物を有機溶媒に一度溶解させた後カップリング反応を行う本発明の方法を用いるのが好ましい。このとき使用できる有機溶媒としては、例えば、アルコール溶媒、ケトン系溶媒が挙げられる。アルコール溶媒の例としては、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール等が好ましく、その中でもメタノールが特に好ましい。ケトン系溶媒の例としては、アセトン、メチルエチルケトン、シクロヘキサノン等が好ましく、その中でもアセトンが特に好ましい。これらの溶媒を用いる場合、水との混合溶媒であってもよい。
 本発明の別のアゾ顔料の製造方法は、前記式(1)-1で表されるヘテロ環アミンをジアゾニウム化したジアゾニウム化合物と、前記式(3)で表される化合物とのカップリング反応において、極性非プロトン性溶媒の存在下カップリング反応を行うことを特徴とする。
 極性非プロトン性溶媒の存在下カップリング反応を行う方法によっても、(1)-α型の結晶を効率よく製造することができる。極性非プロトン性溶媒の例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、アセトニトリル、及びこれらの混合溶媒等が挙げられる。これらの溶媒の中でも、アセトン、メチルエチルケトン、N,N-ジメチルアセトアミド、アセトニトリルが特に好ましい。これらの溶媒を用いる場合、上記式(3)の化合物は溶媒に完溶していても完溶していなくてもよい。
 上記の製造方法によって得られた化合物を用途に応じて、精製工程として塩基を加えてpHを調整してもしなくても良い。pHを調整する場合、pHは4~10が好ましい。その中でも、pHが4.5~8がより好ましく、5.5~7が特に好ましい。
 pHが10以下であれば、色相が赤味を増すこともなく、色相の観点から好ましい。pHが4以上の場合には、例えば、インクジェット記録用インクとして用いた場合、ノズルを腐食してしまう等の問題が生じ難く、好ましい。
 上記の製造方法によって、上記式(1)で表される化合物は粗アゾ顔料(クルード)として得られる。
 以下に、本発明の製造方法に関して詳細に説明する。
 本発明のアゾ顔料の製造方法は、(1)-(a)ジアゾ化剤とアミノ化合物を混合させる工程、(1)-(b)工程(1)-(a)で得た反応生成物とカップリング成分とを混合することにより反応を行い、該反応により生成した下記一般式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程、(1)-(c)工程(1)-(b)で得た溶液と、式(1)で表されるアゾ化合物に対する貧溶媒とを混合して、式(1)で表される顔料を晶析させる工程、を含むことを特徴とする。
 本発明に係わる工程(1)-(a)について詳細を説明する。
 工程(1)-(a)では、ジアゾ化剤とアミノ化合物(1)-1とを混合させることで、アミノ化合物(1)-1とジアゾ化剤との反応によりジアゾニウム化合物が誘導される。この反応は酸を含む媒質中で行うことが好ましい。本明細書では、このジアゾニウム化合物を含む液を「ジアゾニウム化合物調製液」と呼ぶ。アミノ化合物(1)-1と酸とジアゾ化剤の混合の方法に特に限定はないが、アミノ化合物(1)-1と酸の溶液中にジアゾ化剤を添加することが好ましい。工程(1)-(a)におけるジアゾ化剤とは、アミノ化合物(1)-1をジアゾニウム化合物に誘導するために使用されるものであり、そのような作用を持つものであれば限定はされない。ジアゾ化剤として代表的なものには、亜硝酸塩(例えば亜硝酸ナトリウムや亜硝酸カリウムが挙げられる)、亜硝酸イソアミル、ニトロシル硫酸が挙げられ、更に好ましくは亜硝酸ナトリウム、亜硝酸カリウム、ニトロシル硫酸であり、その中でもニトロシル硫酸が特に好ましい。
 工程(1)-(a)で使用する酸とは、アミノ化合物(1)-1を完溶させないまでも、わずかでも溶解できる酸を意味し、好ましくはアミノ化合物(1)-1を完溶させる酸である。酸には無機酸及び有機酸が使用でき、無機酸としては塩酸、リン酸、硫酸が挙げられ、好ましくはリン酸、硫酸であり、更に好ましくは硫酸である。有機酸には蟻酸、酢酸、プロピオン酸、メタンスルホン酸が挙げられ、好ましくは酢酸、プロピオン酸、メタンスルホン酸であり、更に好ましくは酢酸、プロピオン酸である。また、これらの酸は単独で用いても良いし、混合して用いても良い。混合酸としては、リン酸/酢酸、硫酸/酢酸、メタンスルホン酸/酢酸、酢酸/プロピオン酸が挙げられ、好ましくは、リン酸/酢酸、硫酸/酢酸、硫酸/酢酸/プロピオン酸、酢酸/プロピオン酸であり、その中でも、硫酸/酢酸、酢酸/プロピオン酸が特に好ましい。これら混合酸の質量比は1/(0.1~20)が好ましく、1/(0.5~10)がより好ましく、更に好ましくは1/(1~10)である。
 工程(1)-(a)における、アミノ化合物(1)-1に対する酸の添加量は質量比で1~100倍であり、より好ましくは2~50倍であり、3~25倍が更に好ましい。質量比が1倍よりも小さいと攪拌性が悪化しジアゾニウム化合物を誘導できない。一方、質量比が100倍以上になると生産性が悪くなり不経済となる。
 また、工程(1)-(a)における、アミノ化合物(1)-1に対するジアゾ化剤の添加量は、モル比で1.0~20倍であり、より好ましくは1.0~10倍であり、1.0~5倍が更に好ましい。少なくともモル比で1倍のジアゾ化剤は、ジアゾニウム化合物に誘導するのに必要であり、20倍以上では副反応によりジアゾニウム化合物が分解する。
 工程(1)-(a)のジアゾ化剤とアミノ化合物(1)-1の混合では、50℃以下で実施されることが好ましく、40℃以下で実施されることがより好ましく、更に好ましくは30℃以下で実施することが望ましい。50℃以上におけるジアゾ液の調製ではジアゾ化剤の分解が懸念される。ジアゾニウム化合物へ誘導する攪拌時間は0.3~10時間が好ましく、0.5~5時間がより好ましく、更に好ましくは1~3時間である。0.3時間以下では完全に誘導することが難しく、10時間以上ではジアゾニウム化合物の分解が懸念される。また、混合には通常の攪拌機が用いられ、特に限定はない。製造設備に依存することはあるが、好ましい攪拌の回転数は、30~300rpmが好ましく、40~200rpmがより好ましく、更に好ましくは50~200rpmである。攪拌速度が回転数で30rpm以下となるとジアゾニウム化合物調製液の攪拌効率が悪くなり所望の反応の進行が懸念される。
 工程(1)-(a)で混合することのできる溶媒は、誘導されるジアゾニウム化合物が分解を受けなければ特に限定はない。混合可能な溶媒として例えば、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチル-2-ピロリドン等のアミド系溶媒、他ジメチルスルホキシド、スルホラン、アセトニトリル、水が挙げられる。
 工程(1)-(a)におけるジアゾニウム化合物調製液の好ましいpHは、7以下が好ましく、5以下がより好ましく、3以下が更に好ましい。工程(1)-(a)におけるジアゾニウム化合物調製液のpHが7以上になると、誘導されるジアゾニウム化合物の分解が懸念される。
 次に、本発明に係わる工程(b)について詳細を説明する。
 工程(1)-(b)は、工程(1)-(a)で得たジアゾニウム化合物調製液中のジアゾニウム化合物とカップリング成分(3)とを混合させて、前記工程(1)-(a)で得たジアゾニウム化合物調製液中のジアゾニウム化合物とカップリング成分(1)-(3)とをカップリングさせてできた前記式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程である。
 本明細書では、このアゾ化合物の少なくとも一部が溶解した溶液を「アゾ化合物溶解液」と呼ぶ。工程(1)-(a)で得たジアゾニウム化合物調製液とカップリング成分との混合の方法に特に制限はないが、該カップリング成分を溶媒に一部又は全部溶解させて添加すること、あるいは溶媒を用いずに固体で添加することが好ましく、工程(1)-(a)で得たジアゾニウム化合物調製液の中に、カップリング成分の溶液を添加すること、あるいは工程(1)-(a)で得たジアゾニウム化合物調製液の中に、カップリング成分を固体で添加することが更に好ましい。
 工程(1)-(b)におけるカップリング成分に対する前記工程(1)-(a)で得たジアゾニウム化合物調製液中のジアゾニウム化合物の量は、カップリング成分のカップリング位に対し0.8~3当量が好ましく、より好ましくはカップリング位に対し0.9~2当量であり、更に好ましくはカップリング位に対し0.95~1.5当量である。0.8当量以下では未反応のカップリング位をもつカップリング成分が多量に残存し、また、3当量以上では、未反応のジアゾニウム化合物が多量に残存するため、いずれもの場合も不経済である。
 なお、本発明の製造方法では、工程(1)-(b)において式(1)で表されるアゾ化合物の少なくとも一部が溶解しているため、カップリング反応がよりスムーズに進行してより高純度のアゾ化合物を製造することができる。この理由は以下のように推測される。カップリング位が2個以上あるため、例えば1個のカップリング位のみが反応した反応中間体を経由する。この反応中間体が反応系で析出してしまうと、2個目以降のカップリング反応の反応速度が遅くなる。一方、ジアゾニウム化合物は不安定であるため、長時間経過すると分解が起こる懸念がある。したがって、カップリング反応は早く進行させてやることが重要であり、工程(1)-(b)において析出物を生成させない本発明の製造方法は、結果として、高純度の顔料を製造するのに好適である。
 工程(1)-(b)においては溶媒を使用せずにカップリング成分(3)を添加しても良いが、溶媒と混合して添加することが好ましい。工程(1)-(b)においてカップリング成分(3)に溶媒を使用する場合、反応後に生成した前記式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液が得られる限り、特に限定はされない。溶媒の例としては、メタノール、イソプロパノール、エチレングリコール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸、プロピオン酸、メタンスルホン酸等の有機酸溶媒、硫酸、塩酸、リン酸等の無機酸溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチル-2-ピロリドン等のアミド系溶媒、他ジメチルスルホキシド、スルホラン、アセトニトリル、が挙げられる。中でも、好ましくは、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸、プロピオン酸、メタンスルホン酸等の有機酸溶媒、硫酸、塩酸、リン酸等の無機酸溶媒であり、更に好ましくは、有機酸又は無機酸の酸性溶媒であり、最も好ましくは、酢酸、メタンスルホン酸、リン酸、硫酸である。また、上記で示した溶媒の混合溶媒も好適である。
 すなわち、工程(1)-(b)においては、カップリング成分を酸性溶媒に溶解させた酸性溶液と、工程(1)-(a)で得た反応生成物とを混合するのが好ましい。とりわけ、酸性溶媒は、酢酸及び硫酸の少なくとも一方であることが好ましい。
 カップリング成分に対する好ましい溶媒の添加量は、質量比で0.5~200倍が好ましく、1~100倍がより好ましく、1~50倍が更に好ましい。カップリング成分に対する好ましい溶媒量の添加量として、質量比で0.5倍以下ではカップリング成分と溶媒の製造機における攪拌が困難になり、所望の反応が進行しない。また、200倍以上では不経済となる。
 工程(1)-(b)において工程(1)-(a)のジアゾニウム化合物調製液とカップリング成分を混合した結果得られるアゾ化合物溶解液としては、工程(1)-(b)によって生成したアゾ化合物の全量(アゾ化合物溶解液に溶解している式(1)で表されるアゾ化合物と、アゾ化合物溶解液から析出した式(1)で表されるアゾ顔料との総和)に対する、アゾ化合物溶解液に溶解している式(1)で表されるアゾ化合物の割合が50質量%以上であることが好ましく、75質量%以上であることが好ましく、90質量%以上であることが好ましく、100質量%(工程(1)-(b)によって生成したアゾ化合物が反応液に完全に溶解している状態)であることが最も好ましい。
 工程(1)-(b)における工程(1)-(a)のジアゾニウム化合物調製液とカップリング成分の混合温度は50℃以下で実施されることが好ましく、30℃以下で実施されることがより好ましく、更に好ましくは25℃以下で実施することが望ましい。50℃以上では工程(1)-(a)で誘導されたジアゾニウム化合物、並びに生成した式(1)で表されるアゾ化合物の分解が懸念される。また、混合には通常の攪拌機が用いられ、特に限定はない。製造設備に依存することはあるが、好ましい攪拌の回転数は、30~300rpmが好ましく、40~200rpmがより好ましく、更に好ましくは50~200rpmである。攪拌速度が回転数で30rpm以下となると混合液の攪拌効率が悪くなり所望の反応の進行が懸念される。工程(1)-(b)における攪拌時間は0.1~10時間が好ましく、0.3~5時間がより好ましく、更に好ましくは0.3~3時間である。0.1時間以下では完全に顔料へ誘導することが難しく、10時間以上では式(1)で表されるアゾ化合物の分解が懸念される。
〔式(2)で表されるδ型結晶形態アゾ顔料の合成〕
 以下に、式(2)で表されるδ型結晶形態アゾ顔料の合成に関して詳細に説明する。
 式(2)で表されるδ型結晶形態アゾ顔料(以下、単に「アゾ顔料」又は「顔料」と称する場合がある)は、例えば下記式(2)-1で表されるヘテロ環アミンから誘導したジアゾニウム塩と、下記式(3)で表される化合物とをアゾカップリング反応させる方法により合成することができる。
Figure JPOXMLDOC01-appb-C000012
 ジアゾニウム塩の調製及びジアゾニウム塩と式(3)で表される化合物とのカップリング反応は、慣用法によって実施できる。
 更に上述した互変異性及び/又は結晶多形の制御は、カップリング反応の際の製造条件あるいは結晶変換により制御することができる。
〔結晶変換〕
 結晶変換に用いることのできる溶媒としては、結晶変換をする際に結晶成長を抑制させる点から、結晶変換した後の式(2)で表されるアゾ顔料の溶解性が低い溶媒が好ましい。水、有機酸、無機酸、有機溶媒を用いることができるが、水及び有機溶媒が好ましい。より好ましい溶媒としては、水、メタノール、エタノール、イソプロパノール、イソブタノール、エチレングリコール、ジエチレングリコール、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコール、酢酸、プロピオン酸、硫酸、又はそれらの混合溶媒が挙げられ、エチレングリコール、水、酢酸、硫酸、あるいはそれらの混合溶媒である場合が更に好ましく、エチレングリコールであることが最も好ましい。
 溶媒加熱処理に使用する溶媒の量は、式(2)で表されるアゾ顔料に対して1~100倍であることが好ましく、5~50倍であることが更に好ましく、8~30倍であることがより好ましい。1倍以上であれば、攪拌性を確保できるため好ましい。また、100倍以下であれば、生産性が高くなり、経済的なため好ましい。
 溶媒加熱処理における加熱攪拌の温度は、所望する顔料の一次粒子径の大きさによって異なるが、15~150℃が好ましく、20~120℃であることがより好ましく、20~100℃が更に好ましい。15℃以上であれば、結晶変換が起こるために長時間を要することなく、効率的である。一方、150℃以下であれば、式(2)のアゾ顔料の一部が分解するのを抑制できるため好ましい。
 結晶変換のための撹拌時間は結晶変換が起こっていれば何分でも良いが、5~1500分が好ましく、10~600分が更に好ましく、30~300分がより好ましい。5分以上であれば、部分的に非晶質な箇所が残存するのを抑制できるため好ましい。一方、1500分以下であれば、効率的であり好ましい。
〔均一反応系〕
 以下に、結晶変換工程に供する非晶質な式(2)で表されるアゾ化合物の製造方法に関して詳細に説明する。
 結晶変換に用いる式(2)で表されるアゾ化合物の製造方法は、(2)-(a)ジアゾ化剤と式(2)-1で表されるアミノ化合物とを混合させる工程、(2)-(b)前記工程(a)で得た反応生成物と式(3)で表されるカップリング成分とを混合することにより反応を行い、該反応により生成した下記式(2)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程、(2)-(c)前記工程(b)で得た溶液と、前記アゾ化合物に対する貧溶媒とを混合して、式(2)で表される非晶質なアゾ化合物を晶析させる工程、を含むことが好ましい。
 工程(2)-(a)について詳細を説明する。
 工程(2)-(a)では、ジアゾ化剤とアミノ化合物とを混合させることで、アミノ化合物とジアゾ化剤との反応によりジアゾニウム化合物が誘導される。この反応は酸を含む媒質中で行うことが好ましい。本明細書では、このジアゾニウム化合物を含む液を「ジアゾニウム化合物調製液」と呼ぶ。アミノ化合物と酸とジアゾ化剤の混合の方法に特に限定はないが、アミノ化合物と酸の溶液中にジアゾ化剤を添加することが好ましい。工程(2)-(a)におけるジアゾ化剤とは、アミノ化合物をジアゾニウム化合物に誘導するために使用されるものであり、そのような作用を持つものであれば限定はされない。ジアゾ化剤として代表的なものには、亜硝酸エステル類(例えば亜硝酸イソペンチルが挙げられる)、亜硝酸塩(例えば亜硝酸ナトリウムや亜硝酸カリウムが挙げられる)、亜硝酸イソアミル、ニトロシル硫酸が挙げられ、更に好ましくは亜硝酸ナトリウム、亜硝酸カリウム、ニトロシル硫酸であり、その中でも、ジアゾニウム化合物を安定かつ効率的に調製できる観点から、ニトロシル硫酸が特に好ましい。
 工程(2)-(a)で使用する酸とは、式(2)-1で表されるアミノ化合物を完溶させないまでも、わずかでも溶解できる酸を意味し、好ましくはアミノ化合物を完溶させる酸である。酸には無機酸及び有機酸が使用でき、無機酸としては塩酸、リン酸、硫酸が挙げられ、好ましくはリン酸、硫酸であり、更に好ましくは硫酸である。有機酸には蟻酸、酢酸、プロピオン酸、メタンスルホン酸が挙げられ、好ましくは酢酸、プロピオン酸、メタンスルホン酸であり、更に好ましくは酢酸、プロピオン酸である。また、これらの酸は単独で用いても良いし、混合して用いても良い。混合酸としては、リン酸/酢酸、硫酸/酢酸、メタンスルホン酸/酢酸、酢酸/プロピオン酸が挙げられ、好ましくは、リン酸/酢酸、硫酸/酢酸、硫酸/酢酸/プロピオン酸、酢酸/プロピオン酸であり、その中でも、硫酸/酢酸、酢酸/プロピオン酸が特に好ましい。これら混合酸の質量比は1/(0.1~20)が好ましく、1/(0.5~10)がより好ましく、更に好ましくは1/(1~10)である。
 工程(2)-(a)における、アミノ化合物に対する酸の添加量は質量比で1~100倍であり、より好ましくは2~50倍であり、3~25倍が更に好ましい。質量比が1倍以上であると、攪拌性が良化し、より確実にジアゾニウム化合物を誘導できる。一方、質量比が100倍以下になると生産性が向上に経済的となる。
 また、工程(2)-(a)における、アミノ化合物に対するジアゾ化剤の添加量は、モル比で1.0~20倍であり、より好ましくは1.0~10倍であり、1.0~5倍が更に好ましい。ジアゾ化剤がアミノ化合物に対してモル比で1倍以上であることにより、ジアゾニウム化合物をより確実に誘導でき、20倍以下であることにより、副反応によりジアゾニウム化合物が分解することを抑制できる。
 工程(2)-(a)のジアゾ化剤とアミノ化合物の混合では、50℃以下で実施されることが好ましく、40℃以下で実施されることがより好ましく、更に好ましくは30℃以下で実施することが望ましい。50℃以上におけるジアゾ液の調製ではジアゾ化剤の分解が懸念される。ジアゾニウム化合物へ誘導する攪拌時間は0.3~10時間が好ましく、0.5~5時間がより好ましく、更に好ましくは1~3時間である。上記攪拌時間が0.3時間以上であることにより、ジアゾニウム化合物に完全に誘導しやすく、10時間以下であることにより、ジアゾニウム化合物の分解が生じにくい。また、混合には通常の攪拌機が用いられ、特に限定はない。製造設備に依存することはあるが、好ましい攪拌の回転数は、30~300rpmが好ましく、40~200rpmがより好ましく、更に好ましくは50~200rpmである。攪拌速度が回転数で30rpm以上であることにより、ジアゾニウム化合物調製液の攪拌効率が良好となるため、所望の反応の進行を確実に実施できる。
 工程(2)-(a)で混合することのできる溶媒は、誘導されるジアゾニウム化合物が分解を受けなければ特に限定はない。混合可能な溶媒として例えば、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチル-2-ピロリドン等のアミド系溶媒、他ジメチルスルホキシド、スルホラン、アセトニトリル、水が挙げられる。
 工程(2)-(a)におけるジアゾニウム化合物調製液の好ましいpHは、7以下が好ましく、5以下がより好ましく、3以下が更に好ましい。工程(2)-(a)におけるジアゾニウム化合物調製液のpHが7以上になると、誘導されるジアゾニウム化合物の分解が懸念される。
 次に、工程(2)-(b)について詳細を説明する。
 工程(2)-(b)は、前記工程(2)-(a)で得た反応生成物とカップリング成分とを混合することにより反応を行い、該反応により生成した式(2)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程である。
 本明細書では、このアゾ化合物の少なくとも一部が溶解した溶液を「アゾ化合物溶解液」と呼ぶ。
 アゾ化合物溶解液の調製方法としては、
(i)工程(2)-(a)で得た反応生成物とカップリング成分とを混合することによりカップリング反応を行い、反応の結果、析出した式(2)で表されるアゾ顔料を、溶剤に溶解させて得る方法、及び、
(ii)上記カップリング反応によって得られる式(2)で表される化合物の少なくとも一部が反応液に溶解するように、該カップリング反応を実施し、その反応液を、そのまま、アゾ化合物溶解液とする方法、又は、このようにして得られたアゾ化合物溶解液を下記に詳述する工程(2)-(c)に適用することにより得られた(晶析された)アゾ顔料を、更に溶剤に溶解させて得る方法、が挙げられる。
 上記形態(i)及び(ii)のいずれにおいても、工程(2)-(a)で得たジアゾニウム化合物調製液とカップリング成分との混合の方法に特に制限はないが、該カップリング成分を溶媒に一部又は全部溶解させて添加すること、あるいは溶媒を用いずに固体で添加することが好ましく、工程(a)で得たジアゾニウム化合物調製液の中に、カップリング成分の溶液を添加すること、あるいは工程(a)で得たジアゾニウム化合物調製液の中に、カップリング成分を固体で添加することが更に好ましい。
 また、工程(2)-(b)におけるカップリング成分に対する前記工程(2)-(a)で得たジアゾニウム化合物調製液中のジアゾニウム化合物の量は、カップリング成分のカップリング位に対し0.8~3当量が好ましく、より好ましくはカップリング位に対し0.9~2当量であり、更に好ましくはカップリング位に対し0.95~1.5当量である。0.8当量以上であることにより、未反応のカップリング位をもつカップリング成分の残存を抑制でき、また、3当量以下であることにより、未反応のジアゾニウム化合物の残存を抑制できるため、より経済的である。
 なお、上記形態(ii)においては、工程(2)-(b)において一般式(2)で表されるアゾ化合物の少なくとも一部が溶解しているため、カップリング反応がよりスムーズに進行してより高純度のアゾ化合物を製造することができる。この理由は以下のように推測される。前記式(3)はカップリング位が2個以上あるため、例えば1個のカップリング位のみが反応した反応中間体を経由する。この反応中間体が反応系で析出してしまうと、2個目以降のカップリング反応の反応速度が遅くなる。一方、ジアゾニウム化合物は不安定であるため、長時間経過すると分解が起こる懸念がある。したがって、カップリング反応は早く進行させてやることが重要であり、工程(2)-(b)において析出物を生成させない上記形態(ii)の製造方法は、結果として、高純度の顔料を製造するのに、より好適である。
 工程(2)-(b)においては溶媒を使用せずにカップリング成分を添加しても良いが、溶媒と混合して添加しても良いが、溶媒を使用せずに添加することが好ましい。工程(2)-(b)においてカップリング成分に溶媒を使用する場合、特に限定はされないが、上記形態(ii)となるように、すなわち、反応後に生成した前記一般式(2)で表されるアゾ化合物の少なくとも一部が溶解した溶液が得られるような溶媒であることが好ましい。
 上記形態(i)の場合、すなわち、顔料を析出させる場合、溶媒の例としては、水、有機酸、無機酸、有機溶媒を用いることができるが、特に水、有機溶媒が好ましく、反応時に液体分離現象を起こさず、溶媒と均一な溶液を呈する溶媒が好ましい。例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブチルアルコール、アミルアルコール等のアルコール性有機溶媒、アセトン、メチルエチルケトン等のケトン系有機溶媒、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール等のジオール系有機溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル等のエーテル系有機溶媒、テトラヒドロフラン、ジオキサン、アセトニトリル等が挙げられる、これらの溶媒は2種類以上の混合液であってもよい。
 好ましくは、極性パラメータ(ET)の値が40以上の有機溶媒である。なかでも溶媒分子中に水酸基を2個以上有するグリコール系の溶媒、あるいは炭素原子数が3個以下のアルコール系溶媒、総炭素数5以下のケトン系溶媒、好ましくは炭素原子数が2以下のアルコール溶媒(例えば、メタノール、エチレングリコール)、総炭素数4以下のケトン系溶媒(例えばアセトン、メチルエチルケトン)が好ましい。またこれらの混合溶媒も含まれる。
 また、上記形態(ii)の場合、すなわち、式(2)で表される化合物の少なくとも一部が反応液に溶解するようにカップリング反応を行う場合、溶媒の例としては、水、メタノール、イソプロパノール、エチレングリコール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸、プロピオン酸、メタンスルホン酸等の有機酸溶媒、硫酸、塩酸、リン酸等の無機酸溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチル-2-ピロリドン等のアミド系溶媒、他ジメチルスルホキシド、スルホラン、アセトニトリル、が挙げられる。中でも、好ましくは、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸、プロピオン酸、メタンスルホン酸等の有機酸溶媒、硫酸、塩酸、リン酸等の無機酸溶媒であり、更に好ましくは、有機酸又は無機酸の酸性溶媒であり、最も好ましくは、酢酸、メタンスルホン酸、リン酸、硫酸である。また、上記で示した溶媒の混合溶媒も好適である。
 特に上記形態(ii)の場合、工程(2)-(b)においては、カップリング成分を酸性溶媒に溶解又は懸濁させた酸性溶液と、工程(2)-(a)で得た反応生成物とを混合する、あるいはカップリング成分を、溶媒を使用せずに、工程(a)で得た反応生成物に添加するのが好ましい。とりわけ、酸性溶媒は、酢酸及び硫酸の少なくとも一方を含む溶媒であることが好ましい。
 上記形態(i)及び(ii)のいずれにおいても、カップリング成分に対する好ましい溶媒の添加量は、質量比で0.5~200倍が好ましく、1~100倍がより好ましく、1~50倍が更に好ましい。カップリング成分に対する好ましい溶媒量の添加量として、質量比で0.5倍以下ではカップリング成分と溶媒の製造機における攪拌が困難になり、所望の反応が進行しない。また、200倍以上では不経済となる。
 アゾ化合物溶解液の調製方法が、上記形態(i)である場合、あるいは、上記形態(ii)であって、かつ、式(2)で表される化合物の少なくとも一部が溶解されたカップリング反応液を工程(2)-(c)に適用して得られるアゾ顔料を、更に溶剤に溶解させてアゾ化合物溶解液を調製する場合において、得られたアゾ顔料を溶解するための溶剤としては、アゾ顔料の少なくとも一部を溶解できれば特に限定されないが、上記形態(ii)において好ましいとして前掲した溶媒の例を同様に挙げることができる。
 上記形態(i)、(ii)のいずれの工程をとるにせよ、工程(2)-(b)において最終的に得られるアゾ化合物溶解液としては、酸性溶液であることが好ましく、とりわけ、酢酸及び硫酸の少なくとも一方を含む溶液であることが好ましい。
 工程(2)-(b)において得られるアゾ化合物溶解液としては、工程(2)-(b)によって生成したアゾ化合物の全量(アゾ化合物溶解液に溶解している式(2)で表されるアゾ化合物と、アゾ化合物溶解液から析出した式(2)で表されるアゾ顔料との総和)に対する、アゾ化合物溶解液に溶解している式(2)で表されるアゾ化合物の割合が50質量%以上であることが好ましく、75質量%以上であることが好ましく、90質量%以上であることが好ましく、100質量%(工程(b)によって生成したアゾ化合物が反応液に完全に溶解している状態)であることが最も好ましく、これにより、顔料の粒子径をより低下できる傾向となる。
 工程(2)-(b)における工程(2)-(a)のジアゾニウム化合物調製液とカップリング成分の混合温度は50℃以下で実施されることが好ましく、30℃以下で実施されることがより好ましく、更に好ましくは25℃以下で実施することが望ましい。50℃以上では工程(2)-(a)で誘導されたジアゾニウム化合物、並びに生成した式(2)で表されるアゾ化合物の分解が懸念される。また、混合には通常の攪拌機が用いられ、特に限定はない。製造設備に依存することはあるが、好ましい攪拌の回転数は、30~300rpmが好ましく、40~200rpmがより好ましく、更に好ましくは50~200rpmである。攪拌速度が回転数で30rpm以下となると混合液の攪拌効率が悪くなり所望の反応の進行が懸念される。工程(b)における攪拌時間は0.1~10時間が好ましく、0.3~5時間がより好ましく、更に好ましくは0.3~3時間である。0.1時間以下では完全に顔料へ誘導することが難しく、10時間以上では式(2)で表されるアゾ化合物の分解が懸念される。
 次に本発明に係わる工程(1)-(c)及び工程(2)-(c)について詳細を説明する。
 工程(1)-(c)及び工程(2)-(c)は、前記工程(1)-(b)又は(2)-(b)で得たアゾ化合物溶解液を、該アゾ化合物の溶解性が低い貧溶媒と混合して、顔料を晶析させる工程である。工程(1)-(b)又は(2)-(b)で得たアゾ化合物溶解液と貧溶媒との混合の方法に特に制限はないが、工程(b)で得たアゾ化合物溶解液を貧溶媒の中に添加することが好ましく、その際に貧溶媒が攪拌された状態であることが好ましい。
 攪拌速度は100~10000rpmとすることが好ましく、150~8000rpmとすることがより好ましく、200~6000rpmとすることが特に好ましい。添加にはポンプ等を用いることもできる。このとき、液中添加でも液外添加でもよいが、液中添加がより好ましい。更に供給管を介してポンプで液中に連続供給することが好ましい。
 貧溶媒は特に限定されないが、アゾ化合物の溶解度が1g/L以下であることが好ましく、0.1g/L以下であることがより好ましい。この溶解度は酸又はアルカリの存在下で溶解された場合の溶解度であってもよい。工程(1)-(b)又は(2)-(b)で得たアゾ化合物溶解液と貧溶媒の相溶性若しくは均一混合性は、該アゾ化合物の良溶媒の貧溶媒に対する溶解量が30質量%以上であることが好ましく、50質量%であることがより好ましい。本明細書において、溶解度は25℃における溶解度を指す。
 貧溶媒としては、例えば、水、塩酸、アンモニア水、水酸化ナトリウム水溶液等の水性溶媒、メタノール、エタノール、イソプロピルアルコール、1-メトキシ-2-プロパノール等のアルコール系溶媒、エチレングリコール、ジエチレングリコール等のグリコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、アセトニトリル等のニトリル系溶媒、ジクロロメタン、トリクロロエチレン等のハロゲン系溶媒、酢酸エチル、乳酸エチル、2-(1-メトキシ)プロピルアセテート等のエステル系溶媒等が挙げられ、好ましくは、水、塩酸、アンモニア水、水酸化ナトリウム水溶液等の水性溶媒、メタノール、エタノール、イソプロピルアルコール、1-メトキシ-2-プロパノール等のアルコール系溶媒、エチレングリコール、ジエチレングリコール等のグリコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物溶媒であり、更に好ましくは、水、アンモニア水等の水性溶媒、炭素数1~3のアルコール溶媒、炭素数1~6のグリコール系溶媒である。また、上記で示した溶媒の混合溶媒も好適である。最も好ましくは、水及び炭素数1~3のアルコール、炭素数1~6のグリコールからなる群から選択される1種以上の溶媒である。
 工程(1)-(b)又は(2)-(b)で得たアゾ化合物溶解液と貧溶媒との混合比は体積比で1/50~2/3が好ましく、1/40~1/2がより好ましく、1/20~1/2が特に好ましい。体積比で2/3より大きいと、顔料の晶析が不十分となるため反応収率が下がり、体積比が1/20より小さいと生産性が悪くなり不経済となる。
 工程(1)-(b)で得たアゾ化合物溶解液と貧溶媒との混合温度には特に制限はないが、-10~50℃で実施されることが好ましく、-5~30℃で実施されることがより好ましく、-5~15℃で実施されることが最も好ましい。
 工程(2)-(b)で得たアゾ化合物溶解液と貧溶媒との混合温度には特に制限はないが、-10~50℃で実施されることが好ましく、-5~30℃で実施されることがより好ましく、-5~15℃で実施されることが特に好ましく、10~25℃で実施されることが最も好ましい。
 工程(1)-(b)又は(2)-(b)で得たアゾ化合物溶解液と貧溶媒との混合にあたり、レイノルズ数を調節することにより、析出生成させる有機ナノ粒子の粒子径を制御することができる。ここでレイノルズ数は流体の流れの状態を表す無次元数であり次式で表される。
 数式(1):Re=ρUL/μ
 (数式(1)中、Reはレイノルズ数を表し、ρは工程(1)-(b)又は(2)-(b)で得たアゾ化合物溶解液の密度[kg/m]を表し、Uはアゾ化合物溶解液と貧溶媒とが出会うときの相対速度[m/s]を表し、Lはアゾ化合物溶解液と貧溶媒が出会う部分の流路若しくは供給口の等価直径[m]を表し、μはアゾ化合物溶解液の粘性係数[Pa・s]を表す。)
 等価直径Lとは、任意断面形状の配管の開口径や流路に対し等価な円管を想定するとき、その等価円管の直径をいう。等価直径Lは、配管の断面積をA、配管のぬれぶち長さ(周長)又は流路の外周をpとすると下記数式(2)で表される。
 数式(2):L=4A/p
 アゾ化合物溶解液と貧溶媒とが出会うときの相対速度Uは、両者が出会う部分の面に対して垂直方向の相対速度で定義される。すなわち、例えば静止している貧溶媒中にアゾ化合物溶解液を注入して混合する場合は、供給口から注入する速度が相対速度Uに等しくなる。相対速度Uの値は特に制限されないが、例えば、0.5~100m/sとすることが好ましく、1.0~50m/sとすることがより好ましい。
 アゾ化合物溶解液の密度ρは、選択される材料の種類により定められる値であるが、例えば、0.8~2.0kg/mであることが実際的である。また、アゾ化合物溶解液の粘性係数μについても用いられる材料や環境温度等により定められる値であるが、例えば、0.5~100mPa・sであることが好ましく、1.0~50.0mPa・sであることがより好ましい。
 レイノルズ数の値は、小さいほど層流を形成しやすく、大きいほど乱流を形成しやすい。例えば、レイノルズ数を60以上で調節して顔料ナノ粒子の粒子径を制御して得ることができ、100以上とすることが好ましく、150以上とすることがより好ましい。レイノルズ数に特に上限はないが、例えば、100000以下の範囲で調節して制御することで所望の平均粒子径を持つ顔料粒子を制御して得ることができる。このとき、上記の範囲内においては、通常レイノルズ数を高めることで、より粒径の小さな顔料粒子を制御して得ることができる。
〔均一反応液から粒子形成させる場合の粒子径〕
 上記の方法を用いることにより得られる顔料粒子の平均粒子径は、1nm~1μmであることが好ましく、5~500nmであることがより好ましく、10~200nmであることが更に好ましく、10~100nmであることが特に好ましい。
 上記の顔料粒子の好ましい平均粒子径は、(1)工程(1)-(c)及び工程(2)-(c)における温度、(2)貧溶媒に対するアゾ化合物の溶解度、及び、(3)攪拌速度(あるいは、レイノルズ数)を、適宜、調整することによって、達成される。
 本発明のアゾ顔料の製造方法においては、上記工程(1)-(a)~(c)及び工程(2)-(a)~(c)によって得られる生成物は通常の有機合成反応の後処理方法に従って処理した後、精製してあるいは精製せずに供することができる。
 すなわち、例えば、反応系から遊離したものを精製せずに、あるいは再結晶、造塩等にて精製する操作を単独、あるいは組み合わせて行ない、供することができる。
 また、反応終了後、反応溶媒を留去して、あるいは留去せずに水、又は氷にあけ、中和してあるいは中和せずに、遊離したものをあるいは有機溶媒/水溶液にて抽出したものを、精製せずにあるいは再結晶、晶析、造塩等にて精製する操作を単独に又は組み合わせて行なった後、供することもできる。
 次に、本発明の製造方法により得られる顔料粒子、すなわち、以上の方法により得られた式(1)及び式(2)で表されるアゾ顔料について述べる。
〔全ての方法を通じての粒子径〕
 本発明の製造方法により得られる式(1)及び式(2)で表されるアゾ顔料粒子の体積平均粒子径は、0.01~10μmであることが好ましく、更に0.01~3μmであることがより好ましく、0.02~0.5μmであることがより好ましい。中でも、0.02~0.2μmであることが特に好ましく、0.02~0.15μmであることが最も好ましい。
 なお、顔料粒子の体積平均粒子径とは、顔料そのものの粒子径、又は色材に分散剤等の添加物が付着している場合には、添加物が付着した粒子径をいう。本発明において、顔料粒子の体積平均粒子径の測定装置には、ナノトラックUPA粒度分析計(UPA-EX150;日機装社製)を用いることができる。その測定は、顔料分散物3mlを測定セルに入れ、所定の測定方法に従って行うことができる。なお、測定時に入力するパラメーターとしては、粘度にはインク粘度を、分散粒子の密度には顔料の密度を用いる。
 本発明の方法で製造された式(1)及び式(2)で表されるアゾ顔料は、必要に応じて後処理を行ってもよい。この後処理の方法としては、例えば、ソルベントソルトミリング、ソルトミリング、ドライミリング、ソルベントミリング、アシッドペースティング等の摩砕処理、溶媒加熱処理などによる顔料粒子制御工程、樹脂、界面活性剤及び分散剤等による表面処理工程が挙げられる。
 ソルベントソルトミリングやソルトミリングに代表される後処理を行うことにより、一次粒子径を小さくすることができる。そのため、顔料粒子をより好ましい形態とするためには、ソルベントソルトミリング、ソルトミリング又はドライミリングを行うことが、分散性の観点で好ましい。
〔ソルベントソルトミリング〕
 ソルベントソルトミリングとしては、例えば、粗アゾ顔料と、無機塩と、それを溶解しない有機溶剤とを混練機に仕込み、その中で混練磨砕を行うことが挙げられる。上記無機塩としては、水溶性無機塩が好適に使用でき、例えば塩化ナトリウム、塩化カリウム、硫酸ナトリウム等の無機塩を用いることが好ましい。また、平均粒子径0.5~50μmの無機塩を用いることがより好ましい。
 当該無機塩の使用量は、粗アゾ顔料に対して3~20質量倍とするのが好ましく、5~15質量倍とするのがより好ましい。有機溶剤としては、水溶性有機溶剤が好適に使用でき、混練時の温度上昇により溶剤が蒸発し易い状態になるため、安全性の点から高沸点溶剤が好ましい。
 このような有機溶剤としては、例えばジエチレングリコール、グリセリン、エチレングリコール、プロピレングリコール、液体ポリエチレングルコール、液体ポリプロピレングリコール、2-(メトキシメトキシ)エタノール、2-ブトキシエタノール、2ー(イソペンチルオキシ)エタノール、2-(ヘキシルオキシ)エタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコール又はこれらの混合物が挙げられる。当該水溶性有機溶剤の使用量は、粗アゾ顔料に対して0.1~5質量倍が好ましい。混練温度は、20~130℃が好ましく、40~110℃が特に好ましい。混練機としては、例えばニーダーやミックスマーラー等が使用できる。
〔分散剤〕
 本発明において分散剤は低分子及び高分子、更に水溶性及び水不溶性の中から任意で選択できるが、印画物の画質の観点から、高分子が好ましい。更に、水系で分散を行うので、分散性、分散物安定性の観点から、水溶性であることが好ましい。本発明において分散剤は、水溶性高分子であることが特に好ましい。
 また、本発明において「分散剤」は、架橋剤で架橋化された状態のものも意味する。本発明の顔料分散物では、この分散剤が顔料に吸着されたものが望ましい。
 分散剤は分子中に、電荷反発による効果があるため、分散物の保存安定性の観点から1以上、好ましくは10以上のカルボキシ基を持つことが好ましい。架橋剤が2つのエポキシ基をもつときは、架橋反応によりエポキシ基とカルボキシ基が架橋するために、カルボキシ基が減るので、ポリマーは10以上のカルボキシ基を持つことが好ましい。
 ポリマー中にあるカルボキシ基は酸(-COOH)の形でも、塩の形でもよい。塩としては、例えば、金属イオン、アンモニウム、置換アンモニウム、4級アンモニウム又はピリジニウム塩などが挙げられる。好ましくは、金属イオン、アンモニウムであり、更に好ましくはカリウムイオン、ナトリウムイオンである。
 本発明の高分子分散剤はポリウレタン、ポリエステル、ポリビニルを含み、より好ましくはポリウレタン、ポリエステル、ポリビニルであり、最も好ましくはポリビニル(ビニルポリマー)である。本発明では2種類以上のポリマーを組み合わせてもよい。
 ポリマーへのカルボキシ基の導入は少なくとも1つのカルボキシ基を含むモノマーの共重合によって得られる。好ましいポリビニルには、モノマーとしてイタコン酸、マレイン酸、フマール酸、クロトン酸、メタクリル酸、アクリル酸、β-カルボキシエチルアクリレートを用いるが、好ましくはメタクリル酸、アクリル酸、β-カルボキシエチルアクリレートを用いる。
 ポリマー中のカルボキシル基は、まず、架橋剤中の架橋性基と架橋する作用をもつ。架橋性基としては酸無水物、エポキシ基が挙げられ、エポキシ基が特に望ましい。反応性が高いので、温和な条件で架橋することができるからである。更に、未反応カルボキシル基は最終微粒子分散物の沈降及び凝集に対する安定性に有効である。カルボキシル基は極性溶媒特に水溶媒中で安定性基として有効である。カルボキシル基が顔料分散物中で安定性に寄与する唯一の基である場合、全てのカルボキシ基が架橋剤と架橋してしまうと、分散物の安定性が著しく低下する。そのため、架橋反応が完結した後に未反応カルボキシル基が残るように、エポキシ基に対してカルボキシル基のモル過剰とすることが好ましく、エポキシ基に対してカルボキシル基をモル比で30:1~1.1:1、より好ましくは25:1~1.1:1、特に好ましくは20:1~2:1とすることが望ましい。
 ポリマーは他の安定性基を持っていてもよい。安定性基の選択及びその量は溶媒の性質に大きく依存する。安定性基は実際、親水性(例えば、極性溶媒)であるか、疎水性(例えば、無極性溶媒)であるかに依存する。
 好ましいポリマー分散剤は親水性モノマー、疎水性モノマーの両方から得られる。
 親水性モノマーはイオン性基又は非イオン性基である親水性を含むモノマーである。イオン性基はカチオンでもよいが、好ましくはアニオンである。カチオン性基も、またアニオン性基も分散剤に両性的安定性(amphotericstabilisation)を与える。好ましいアニオン性基はフェノキシ、スルホン酸、硫酸、ホスホン酸、ポリ燐酸、燐酸の基(塩でもよい)である。好ましいカチオン性基は4級アンモニウム、ベンズアルコニウム、グアニジン、ビグアニジン、及びピリジニウムである。これらは水酸化物、硫酸塩、硝酸塩、塩化物、臭化物、沃化物及び弗化物のような塩の形でもよい。好ましい非イオン性基はグルコキシド、糖類、ピロリドン、アクリルアミド、及び特にヒドロキシル基及びポリ(アルキレンオキシド)基であり、より好ましくはポリ(エチレンオキシド)基又はポリ(プロピレンオキシド)基であり、特に-(CHCHO)H又は-(CHCHO)-アルキルである。ここで、nは3~200(好ましくは4~20)を表す。これ以降、例えばC-の表現は “炭素数1~4の”を表す。ポリマーは非イオン性基のみを、ポリマー全体で複数の非イオン性基を、また非イオン性基を含む1以上のポリマー鎖を含んでいてもよい。ヒドロキシル基はポリビニルアルコール、ポリヒドロキシル機能のアクリリックス及びセルロースを用いて挿入される。エチレンオキシ基はポリエチレンオキシドのようなポリマー鎖を用いて挿入される。
 疎水性モノマーは疎水性基を含むモノマーである。疎水性基を有する代表的なものは3以下で好ましくは0の親水性基を持つ、炭化水素類、フルオロカーボン類、ポリCアルキレンオキシ類及びアルキルシロキサン類である。疎水性基は、好ましくはC50鎖であり、また疎水性モノマー中にプロピレンオキシドを側鎖又は直鎖に有し得る。
 ポリマーは、ホモポリマーでもよいが、好ましくは共重合体(コポリマー)である。ポリマーはランダムポリマー(統計上短いブロック又はセグメント)を含むが、好ましくは、グラフトポリマー(長いブロック又はセグメント)を含む。また、ポリマーは交互(alternating)ポリマーでもよい。ポリマーは分岐していてもよいが、好ましくは直鎖である。ポリマーは2以上のセグメント(例えば、ブロック及びグラフト、コポリマー)を持っていてもよいが好ましくはランダムである。
 ポリマーが2以上のセグメントを持つ場合の態様では、少なくとも1つのセグメントは疎水性であり、少なくとも1つのセグメントは互いに関連性の親水性であることが好ましい。疎水性及び親水性セグメントをつくる好ましい方法はそれぞれ疎水性及び親水性モノマーの共重合による。ポリマーが少なくとも1つの疎水性セグメント及び少なくとも1つの親水性セグメントもつ場合、カルボキシル基は疎水性セグメントにあっても、また親水性セグメントにあっても、また両方のセグメントにあってもよい。
 ビニルポリマー(ポリビニル)はどのような適切な手段によって製造されてもよい。ビニルポリマーの好ましい製造方法は、特に(メタ)アクリレートとビニルナフタレン(特にスチレンモノマー)のようなビニルモノマーを用いるフリーラジカル重合である。適切なフリーラジカル重合は懸濁重合、溶液重合、分散重合、乳化重合に限定されないが、好ましくは溶液重合である。
 ビニルポリマーは(メタ)アクリレートモノマーを用いる場合が好ましい。
 ビニルポリマーは好ましくは共重合体(コポリマー)である。
 疎水性モノマー及び親水性モノマーから導かれるコポリビニル分散剤は好ましくは実質的にセグメントをもたない。例えば、コポリビニルポリマーはセグメント長が非常に短いか存在しないようなフリーラジカル重合によって製造される。かかる場合はしばしば「ランダム」重合と呼ばれる。セグメントをもつコポリビニルポリマーはリビング重合、特に原子団転移(group transfer)重合、原子転移(atom transfer)重合、マクロモノマー(macromonomer)重合、グラフト重合、アニオン又はカチオン重合のような重合方法によって製造される。好適な親水性ビニルモノマーは非イオン性及びイオン性モノマーである。好ましい非イオン性モノマーは糖類、グルコース、アミド、ピロリドンであり、特にヒドロキシ基及びエトキシ基をもつものである。好ましい非イオン性モノマーの例としては、ヒドロキシ エチルアクリレート、ヒドロキシ エチルメタアクリレート、ビニルピロリドン、エトキシ化された(メタ)アクリレート及び(メタ)アクリルアミドが挙げられる。好適なイオン性ビニルモノマーはカチオン性であってもよいが、好ましくはアニオン性である。
 好ましいアニオン性ビニルモノマーはカルボキシ基及び/又は燐酸基及び/又はスルホン酸基(これらの酸はフリーでも塩でもよい)を含むものである。好ましい例として、(メタ)アクリル酸、スチレンスルホン酸、ビニルベンジルスルホン酸、ビニルスルホン酸、(メタ)アクリロイルオキシアルキルスルホン酸(例えば、アクリロイルオキシメチルスルホン酸、アクリロイルオキシエチルスルホン酸、アクリロイルオキシプロピルスルホン酸、アクリロイルオキシブチルスルホン酸、メタクリロイルオキシメチルスルホン酸、メタクリロイルオキシエチルスルホン酸、メタクリロイルオキシプロピルスルホン酸、メタクリロイルオキシブチルスルホン酸)、2-アクリルアミド-2-アルキルアルカンスルホン酸(例えば、2-アクリルアミド-2-メチルエタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルブタンスルホン酸)、2-メタクリルアミド-2-アルキルアルカンスルホン酸(例えば、2-メタクリルアミド-2-メチルエタンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルブタンスルホン酸)、モノ-(アクリロイルオキシアルキル)燐酸塩(例えば、モノ-(アクリロイルオキシエチル)燐酸塩、モノ-(3-アクリロイルオキシプロピル)燐酸塩)、モノ-(メタクリロイルオキシアルキル)燐酸塩(例えば、モノ-(メタクリロイルオキシエチル)燐酸塩、モノ-(3-メタクリロイルオキシプロピル)燐酸塩)が挙げられる。
 好ましいカチオンビニルモノマーは4級アミン、ピリジン、グアニジン及びビグアニジン基を含むものである。
 好ましい疎水性ビニルモノマーは親水性基を持たない。好ましい疎水性ビニルモノマーとしてはC20-ヒドロカルビル(メタ)アクリレート、ブタジエン、スチレン及びビニルナフタレンが挙げられ、C20-ヒドロカルビル(メタ)アクリレート(例、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニルアクリレート、ラウリルアクリレート、ステアリルアクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート)が好ましく、メチルメタクリレート、ベンジルメタクリレート、2-エチルヘキシルメタクリレート、フェノキシエチルメタクリレートが特に好ましい。これらのヒドロカルビル基は分岐でもよいが、好ましくは直鎖である。
 少なくとも1つのカルボキシル基を持つポリエステルはジオールモノマーと過剰量のジカルボン酸モノマーとの反応によっても生成される。カルボキシル基はカルボキシル基を持つジオールとジカルボン酸モノマーとの共重合によっても導入できる。
 ポリエステルはジカルボン酸とジオールとのエステル化で製造されるのが典型的なものである。
 カルボキシル基を有するポリエステルは、例えば、カルボキシル基含有化合物と水酸基含有化合物とを、カルボキシル基が残存するように、溶融法、溶剤法などの公知の方法によって脱水縮合反応を行うことにより製造することができる。
 ポリエステルは、一塩基酸、多塩基酸の如きカルボキシル基を有する化合物と、ジオール、ポリオールの如き水酸基を有する化合物とを適宜選択して脱水縮合させて得られるもの等が挙げられ、更に、油脂類又は脂肪酸類を使用したものがアルキッド樹脂となる。
 本発明で使用するポリエステルが有するカルボキシル基は、主に、ポリエステルを構成する二塩基酸以上の多塩基酸に由来する未反応のカルボキシル基である。
 多塩基酸としては、例えば、アジピン酸、(無水)コハク酸、セバシン酸、ダイマー酸、(無水)マレイン酸、(無水)フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ(無水)フタル酸、ヘキサヒドロ(無水)フタル酸、ヘキサヒドロテレフタル酸、2,6-ナフタレンジカルボン酸、(無水)トリメリット酸、(無水)ピロメリット酸などが挙げられる。
 多塩基酸以外に使用可能なカルボキシル基を有する化合物としては、例えば、テレフタル酸ジメチルの如き酸の低級アルキルエステル類;安息香酸、p-ターシャリブチル安息香酸、ロジン、水添ロジンの如き一塩基酸類;脂肪酸及び油脂類;分子末端に1個又は2個のカルボキシル基を有するマクロモノマー類;5-ソジウムスルフォイソフタル酸及びそのジメチルエステル類などが挙げられる。
 水酸基を有する化合物としては、例えば、エチレングリコール、ネオペンチルグリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-プロパンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,5-ペンタンジオール、ビスフェノールAのアルキレンオキサイド付加物、水添ビスフェノールA、水添ビスフェノールAのアルキレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールの如きジオール類;グリセリン、トリメチロールプロパン、トリメチロールエタン、ジグリセリン、ペンタエリスリトール、トリスヒドロキシエチルイソシアヌレートの如きポリオール類;「カージュラE-10」(シェル化学工業株式会社製の合成脂肪酸のグリシジルエステル)などのモノグリシジル化合物類、分子片末端に水酸基を2個有するマクロモノマー類などが挙げられる。
 また、ポリエステルを合成する際に、ひまし油、12-ヒドロキシステアリン酸などの水酸基含有脂肪酸又は油脂類;ジメチロールプロピオン酸、p-ヒドロキシ安息香酸、ε-カプロラクトンの如きカルボキシル基と水酸基とを有する化合物なども使用できる。
 更に、二塩基酸の一部をジイソシアネート化合物に代えることもできる。
 また、カルボキシル基を有するポリエステルは、水酸基を有するポリエステルに、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸などの無水酸を付加反応せしめる方法によっても製造することができる。
 水酸基とカルボキシル基とを有するポリエステルは、例えば、ポリエステル樹脂の脱水縮合反応において、公知の方法に従って、水酸基とカルボキシル基とが残存するように反応させることによって容易に製造することができる。
 第3級アミノ基とカルボキシル基とを有するポリエステルは、例えば、トリエタノールアミン、N-メチルジエタノールアミン、N,N-ジメチルエタノールアミン等の第3級アミノ基と水酸基とを有する化合物を、ポリエステル樹脂を製造する際のアルコール成分として使用することによって容易に製造することができる。
 ラジカル重合性不飽和基とカルボキシル基を有するポリエステルは、例えば、[1]水酸基とカルボキシル基とを有するポリエステルに、2-メタクリロイルオキシエチルイソシアネートなどのイソシアネート基を有するラジカル重合性不飽和基含有モノマー類、あるいは、無水マレイン酸などのラジカル重合性不飽和基を有する無水酸を付加反応せしめる方法、[2]カルボキシル基を有するポリエステル樹脂に、エポキシ基を有する重合性モノマー類を付加反応せしめる方法、[3]酸成分として無水マレイン酸などのラジカル重合性不飽和基含有モノマーを使用してポリエステル樹脂を合成する方法、等によって容易に製造することができる。
 ポリウレタンはポリオール成分(例えば、ジ-イソシアネート)とポリオール成分(例えば、ジオール)との縮合反応で好ましく製造される。
 カルボキシル基を有するポリウレタンは、例えば、カルボキシル基を導入する成分としてのジメチロールプロピオン酸の如きカルボキシル基と水酸基とを有する化合物を含有するポリオール成分と、ポリイソシアネート成分とを反応させることによって、容易に製造することができる。
 ポリオール成分としては、ポリエステルの製造方法において掲げたジオール成分のほか、必要に応じて、3官能以上のポリオール化合物を使用することもできる。
 ポリイソシアネート成分としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、メタキシリレンジイソシアネート、イソホロンジイソシアネート、水添トリレンジイソシアネート、水添4,4’-ジフェニルメタンジイソシアネート、水添メタキシリレンジイソシアネート、粗製4,4’-ジフェニルメタンジイソシアネートの如きジイソシアネート化合物のほか、ポリメチレンポリフェニルイソシアネートの如きポリイソシアネート化合物も使用できる。
 ポリウレタンの製造は、常法に従えばよい。例えば、イソシアネート基と反応しない不活性な有機溶剤溶液中で、室温又は40~100℃程度の温度で付加反応を行うのが好ましい。その際、ジブチル錫ジラウレート等の公知の触媒を使用しても良い。
 ポリウレタンを製造する際の反応系には、ジアミン、ポリアミン、N-メチルジエタノールアミンの如きN-アルキルジアルカノールアミン;ジヒドラジド化合物などの公知の鎖伸長剤も使用できる。
 水酸基とカルボキシル基とを有するポリウレタンは、例えば、ポリウレタンを製造する際に、イソシアネート基よりも水酸基が多くなる割合で反応させることにより容易に製造することができる。あるいは、カルボキシル基と末端イソシアネート基とを有するポリイソシアネートに、1分子中に水酸基を2個以上有する化合物を付加反応させることによっても容易に製造することができる。
 第3級アミノ基とカルボキシル基とを有するポリウレタンは、例えば、ポリオール成分の一部としてN-メチルジエタノールアミンなどのN-アルキルジアルカノールアミンを使用することにより容易に製造することができる。
 ブロック化イソシアネート基とカルボキシル基とを有するポリウレタンは、例えば、カルボキシル基と末端イソシアネート基とを有するポリイソシアネートに、公知のブロック剤を付加反応させることによって容易に製造することができる。
 エポキシ基とカルボキシル基とを有するポリウレタンは、例えば、カルボキシル基と末端イソシアネート基とを有するポリイソシアネートに、水酸基とエポキシ基とを有する化合物を付加反応させることによって容易に製造することができる。
 水酸基とエポキシ基とを有する化合物としては、例えば、グリシドール、グリセリンジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ビスフェノールAのジグリシジルエーテル等が挙げられる。
 ラジカル重合性不飽和基を、酸性基としてカルボキシル基を有するポリウレタンは、例えば、末端イソシアネート基を有するポリイソシアネートに、前述した如き水酸基を有する重合性モノマー類、及びグリセロールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリアクリレートなどの水酸基とラジカル重合性不飽和基とを有する化合物を付加反応せしめる方法等によって容易に製造することができる。
 加水分解性アルコキシシラン基を、酸性基としてカルボキシル基を有するポリウレタンは、例えば、末端イソシアネート基を有するポリイソシアネートに、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランの如きイソシアネート基と反応しうる活性水素を有するシランカップリング剤を付加反応させる方法等により容易に製造することができる。
 ポリマーは微粒子分散物を製造する過程で用いる液体媒体に合うようにまた微粒子分散物に用いられる最終組成物(例えば、インク)中の液体展色剤(ベヒクル)に合うように選ばれる。例えば、微粒子分散物が水性のインクジェット記録用インクに用いられる場合には、好ましくはポリマーは親水性である。
〔分子量〕
 分散剤の重量平均分子量は10000以上200000以下が好ましく、更に15000以上150000以下であることが好ましく、中でも20000以上100000以下であることがより好ましい。10000以上では印画物の画質が優れ好ましい一方、200000以下では、粘度が高くなるのを抑制でき、更に貯蔵安定性がの低下を防ぎ、好ましい。
〔D/P値〕
 分散剤の含有量は、顔料100質量部に対して20~100質量部の範囲であることが好ましく、より好ましくは25~90質量部の範囲であり、更に好ましくは30~70質量部の範囲である。また、分散剤は、単独で用いても、複数のものを組み合わせて用いてもよい。
 分散剤の含有量が20質量部以下の場合、分散剤の量が顔料に対して不十分になり、貯蔵安定性が不十分になる。一方、100質量部以上の場合、粘度が高くなり、更に貯蔵安定性が低下するため不適である。
 前記顔料分散物中の着色剤の含有量をP、分散剤の含有量をDとし、含有量Dと含有量Pとの比をD/P値としたときに、D/P値が0.15以上1.0以下であることが好ましく、0.16以上0.8以下であることがより好ましく、0.17以上0.7以下であることが更に好ましい。。
〔酸価〕
 分散剤は架橋剤と架橋するために十分な酸価をもつ必要があり、少なくとも50mgKOH/g以上の酸価をもつものが好ましい。分散剤が水溶性高分子分散剤であり、該水溶性高分子分散剤が少なくとも1つのカルボキシ基を有し、少なくとも50mgKOH/g以上の酸価を有することがより好ましい。
 全ての態様において、上記の酸価は好ましくは70~200mgKOH/gであり、より好ましくは70~160mgKOH/gである。係る酸価をもつ分散剤は改良された保存安定性を与える。
 また、50mgKOH/gより低いと、水系溶媒への溶解性が低いため不適である。
〔溶解性〕
 分散剤は水不溶性、水溶性のどちらでも良いが、水への溶解性として、1g/100mL以上であることが好ましく、更に好ましくは、3g/100mL以上であり、特に好ましくは5g/100mL以上である。
1g/(100m)L以下では、水への溶解性が低いために、顔料粒子に吸着しにくくなり、分散性が低下する場合がある。
〔架橋〕
 前記水系分散物が、架橋剤により架橋されていることが好ましい。
 本発明のより好ましい形態は、分散剤は架橋する前に顔料表面に吸着し、相対的に安定な分散物が形成され、そしてこの分散工程に引き続き、架橋剤を用いて架橋する工程を実施することによりより高度な保存安定性を有し、印画物の画質に優れる分散物が得られる。
 少なくとも50mg/KOH以上の酸価をもつ分散剤を用いる場合には、架橋剤はオリゴマー分散基を持っていても、持たなくてもよい。「オリゴマー」という言葉は分子量に上限はないし、また繰り返し単位の上限もない意味で用いる。1以上のオリゴマー分散基を持つ架橋剤は生じた微粒子分散物の安定性を増加させる。この増加された安定性はインクジェット記録に用いる液体展色剤(ビヒクル)において特に有用である。それは50mg/KOH以下の酸価をもつ分散剤では分散が困難であるからである。
 オリゴマー分散基は好ましくはポリアルキレンオキシドであり、より好ましくはポリC-アルキレンオキシドであり、特に好ましくはポリエチレンオキシドである。ポリアルキレンオキシドは生じた微粒子分散物の安定性を改良する。ポリアルキレンオキシドは好ましくは3~200、より好ましくは5~50、特に好ましくは5~20のアルキレンオキシド繰り返し単位を有する。
 架橋剤は2つ以上のエポキシ基を持つことが好ましい。少なくとも2つのエポキシ基を持つ好ましい架橋剤はエピクロロヒドリン誘導体である。2つ以上のエポキシ基を持ち、オリゴマー分散基を持たない架橋剤はエチレングリコールジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ハロゲン化されたビスフェノールAジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、及びポリブタジエンジグリシジルエーテルである。2つのエポキシ基を持ち、かつ1以上のオリゴマー分散基をもつ好ましい架橋剤はジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、又はジプロピレングリコールジグリシジルエーテルである。
 また、無水フタル酸、無水コハク酸等の酸無水物も架橋剤として用いることができる。
〔温度、pH〕
 本発明では架橋反応は100℃以下、pH6以上で行うことが好ましい。更に好ましい架橋反応は30℃~90℃、より好ましくは40℃~85℃である。
 架橋反応の好ましいpHは7~10であり、より好ましくは8~9.5である。
 カルボキシ基とエポキシ基の間の架橋反応を100℃以下、pH6以上で行うことが好ましい。
 架橋反応は水系で行うため、100℃以下が好ましい。逆に、低温では架橋反応の進行が遅くなるため、好ましくなく、30℃以上が好ましく、40℃以上が更に好ましい。
 pHが10以上では、架橋反応で熱を加えるとポリマーが加水分解してしまう可能性がある。一方、pHが6以下では、顔料分散物が凝集を起こしやすくなり不安定になってしまうので、好ましくない。
〔膜精製〕
 膜精製には逆浸透膜(NF膜)、限外ろ過膜(UF膜)を使用することができ、加圧してもしなくても良いが、加圧する場合の方が、精製に要する時間が短くなり、効率的である。UF膜としては、分画分子量10000以上150000以下が好ましく、20000以上100000以下がより好ましい。10000以下では精製するための時間が長くなってしまうため、非効率である。一方、200000以上では、分散剤が流出してしまう可能性があるため、好ましくない。
 本発明では下記(a)~(d)の成分を混合して、架橋反応を行うことを特徴とする水系顔料分散物の製造方法が好ましい。
(a)30~99.7部、好ましくは50~90部の水
(b)0.1~50部、好ましくは1~30部の式(1)又は式(2)で表される顔料
(c)0.1~40部、好ましくは1~30部のビニルポリマー
(d)0.00001~10部、好ましくは0.0001~5部の架橋剤
 上記で、「部」は質量を表し、顔料分散物の総重量を100質量部とした際に(a)+(b)+(c)+(d)の和は100質量部以下である。
 また(b)/(c)=の比は10/2~1/1が好ましく、(c)/(d)の比は100/1~5/1が好ましい。好ましくは上記の方法において、アゾ顔料、水、ビニルポリマーは同時でも、またどのような順でも混合してもよい。それから残りの成分が上記混合物に加えられる。更に膜精製を行うことが好ましい。
 混合し、分散を行う際には、例えば、ボールミル、ロールミル、サンドグラインダミル、グラベルミル、高圧ホモジナイザー、高速撹拌型分散機等を用いることができる。
 本発明で使用する顔料は、その平均一次粒子径が0.01μm以上20μm以下であることが好ましく、0.01μm以上5μm以下であることが更に好ましく、0.02μm以上0.5μm以下であることがより好ましい。中でも、0.02μm以上0.2μm以下が特に好ましく、0.03μm以上0.15μm以下が最も好ましい。
 本発明の顔料分散物は、顔料を吸着した樹脂の平均粒子径(Mv)が20~250nmの範囲であることが好ましく、40~100nmの範囲であることが更に好ましい。20nmより小さいと、粒子が小さいために印画物に白抜けができてしまうため、好ましくない。250nmより大きいと、ノズルに詰まり、吐出不良となる可能性があり、更に粒子の比表面積が小さくなるために濃度が出にくくなるために好ましくない。
[着色組成物]
 本発明の着色組成物は、上記した本発明のアゾ顔料、その塩、水和物又は溶媒和物を少なくとも1種含有する。本発明の着色組成物は、媒体を含有させることができるが、媒体として溶媒を用いた場合は特にインクジェット記録用インクとして好適である。本発明の着色組成物は、媒体として、親油性媒体や水性媒体を用いて、それらの中に、本発明の顔料を分散させることによって作製することができる。好ましくは、水性媒体を用いる場合である。本発明の着色組成物には、媒体を除いたインク用組成物も含まれる。本発明の着色組成物は、必要に応じてその他の添加剤を、本発明の効果を害しない範囲内において含有しうる。その他の添加剤としては、例えば、乾燥防止剤(湿潤剤)、褪色防止剤、乳化安定剤、浸透促進剤、紫外線吸収剤、防腐剤、防黴剤、pH調整剤、表面張力調整剤、消泡剤、粘度調整剤、分散剤、分散安定剤、防錆剤、キレート剤等の公知の添加剤(特開2003-306623号公報に記載)が挙げられる。これらの各種添加剤は、水溶性インクの場合にはインク液に直接添加する。油溶性インクの場合には、アゾ顔料分散物の調製後分散物に添加するのが一般的であるが、調製時に油相又は水相に添加してもよい。
 本発明で得られる顔料分散物を用いた水性着色液としては、例えば、自動車、塗装鋼板、建材、缶等の水性塗料、繊維を染色する捺染剤、グラビアインキ、フレキソインキ等の水性インキ、水性ボールペン、万年筆、水性サインペン、水性マーカー等の筆記具用インキ、バブルジェット(登録商標)方式、サーマルジェット方式、ピエゾ方式等のオンデマンドタイプのインクジェットプリンター用の水性記録液、液晶テレビ、ラップトップ型のパソコン等に使用されるカラーフィルタ用の分散液等が挙げられるが、これらの用途に限定されるものではない。
 上記水性着色液は、本発明によって得られる顔料分散物、塗膜形成性樹脂、その硬化剤、各種助剤、有機溶剤、水、塩基性物質、各種顔料等がその用途に応じて便宜選択混合して、調製される。
 本発明によって得られる顔料分散物の水性着色液中での含有割合は、顔料換算で50質量%以下が好ましく、0.1~40質量%の範囲が特に好ましい。顔料の割合が50質量%を越えると、水性着色液中の粘度が高くなり、被塗物を着色することができなくなる傾向にある。
 塗膜形成性樹脂としては、例えば、にかわ、ゼラチン、カゼイン、アルブミン、アラビアゴム、フィッシュグリューなどの天然タンパク質やアルギン酸、メチルセルロース、カルボキシメチルセルロース、ポリエチレンオキシド、ヒドロキシエチルセルロース、ポリビニルアルコール、ポリアクリルアミド、芳香族アミド、ポリアクリル酸、ポリビニルエーテル、ポリビニルピロリドン、アクリル、ポリエステル、アルキド、ウレタン、アミド樹脂、メラミン樹脂、エーテル樹脂、フッ素樹脂、スチレンアクリル樹脂、スチレンマレイン酸樹脂等の合成高分子、感光性樹脂、熱硬化性樹脂、紫外線硬化樹脂、電子線硬化樹脂等の一般的なものが挙げられるが、特にこれらに限定されない。また、これらは水性着色液の用途によって、選択され使用される。
 これらの塗膜形成性樹脂の水性着色液中の割合は、0~50質量%の範囲が好ましい。用途によって、顔料分散物に使用されている樹脂が塗膜にするための樹脂として作用したり、塗膜化用の樹脂を必要としない用途、例えば記録液等の用途があり、水性着色液中に必ずしも塗膜形成性樹脂を必要とはしない。
 塗膜形成性樹脂の硬化剤としては、例えば、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂等のアミノ樹脂、トリメチロールフェノール、その縮合物等のフェノール樹脂、テトラメチレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、ナフタレンジイソシアネート(NDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、それらの変性イソシアネートやブロックドイソシアネート等のポリイソシアネート、脂肪族アミン、芳香族アミン、N-メチルピペラジン、トリエタノールアミン、モルホリン、ジアルキルアミノエタノール、ベンジルジメチルアミン等のアミン類、ポリカルボン酸、無水フタル酸、無水マレイン酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート等の酸無水物、ビスフェノールA型エポキシ樹脂、フェノール系エポキシ樹脂、グリシジルメタクリレート共重合体、カルボン酸のグリシジルエステル樹脂、脂環式エポキシ等のエポキシ化合物、ポリエーテルポリオール、ポリブタジエングリコール、ポリカプロラクトンポリオール、トリスヒドロキシエチルイソシアネート(THEIC)等のアルコール類、ペルオキシドによるラジカル硬化あるいはUV硬化や電子線硬化に用いる不飽和基含有化合物としてのポリビニル化合物、ポリアリル化合物、グリコールやポリオールとアクリル酸又はメタクリル酸の反応物等のビニル化合物等が挙げられる。
 硬化剤は、用途や適性により適宜選択され使用されるが、使用されないこともある。硬化剤の使用割合は、塗膜形成性樹脂100質量%に対して、0~50質量%の範囲が好ましく、0~40質量%の範囲が特に好ましい。
 有機溶剤としては、例えば、メチルアルコール、エチルアルコール、n-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、n-プロピルアルコール、イソプロピルアルコール等のアルコール類;ジメチルホルムアルデヒド、ジメチルアセトアミド等のアミド類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジオキサン、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール、ブチレングリコール、トリエチレングリコール、1,2,6-ヘキサントリオール、チオジグリコール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類;N-メチル-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。これらの水溶性有機溶剤の中でも、多価アルコール類とエーテル類が好ましい。
 有機溶剤の水性着色液中の含有割合は、50質量%以下が好ましく、0~30質量%の範囲が特に好ましい。特に、水性着色液の性能が劣ることがなければ、環境問題から全く含まないものが好ましいのは言うまでもない。
 必要に応じて使用される助剤としては、分散湿潤剤、皮張り防止剤、紫外線吸収剤、酸化防止剤、防腐剤、防かび剤、pH調製剤、粘度調製剤、キレート剤、界面活性剤等の各種助材や安定剤が挙げられるが、これらに限定されない。塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機化合物;エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルエタノールアミン、N-エチルジエタノールアミン、2-アミノ-2-メチルプロパノール、2-エチル-2-アミノ-1,3-プロパンジオール、2-(アミノエチル)エタノールアミン、トリス(ヒドロキシメチル)アミノメタン、アンモニア、ピペリジン、モルフォリン等の有機アミン化合物が挙げられるが、これらに限定されるものではない。
 これらの水性着色液に本発明の顔料分散物を分散させる分散機としては、ディスパーのような簡単な公知の分散機で十分であるが、これらに限定されるものではない。
 水性着色液を製造する方法としては、上記顔料分散物、塗膜形成性樹脂、その効果剤、各種助剤、有機溶剤、水、各種顔料組成物等を添加攪拌混合するだけで製造できるが、高粘度の樹脂や有機溶剤を添加する場合は、顔料分散物を攪拌し、その中に、上記樹脂や効果剤、有機溶剤、各種助剤を順次添加する方法がより好ましい。
 また、本発明によって得られる顔料分散物を含有する水性着色液は、その用途に合わせて製造することができる。更に、水性着色液に要求される貯蔵安定性、溶剤安定性や筆記具等のペン先でのノズルの詰まりを防止する親水性等の性能や、耐水性、耐候性、透明性や鮮明性等の諸適性に優れた塗膜の性能を提供できる。
[インクジェット記録用インク]
 本発明の前記顔料分散物が適用されるインクジェット記録用インク(組成物)は、顔料を吸着した樹脂の平均粒子径(Mv)が20~250nmの範囲であることが好ましく、20~100nmの範囲であることが更に好ましい。顔料を吸着した樹脂の平均粒子径が20nm以上であれば、分散安定性が向上するため良好な保存安定性や吐出安定性を得ることができ、更に記録物の高いOD値を確保することができる。また、顔料を吸着した樹脂の平均粒子径が250nm以下であれば、ノズル目詰まりを防止することができ、更に顔料を吸着した樹脂の沈降も抑制することができる。
 インクジェット記録用インク組成物は、前記顔料分散物を用いて製造されるものであって、インク組成物全量に対する顔料の含有量が、2~15質量%の範囲であることを特徴とする。顔料含有量が2質量%であれば、記録物の高いOD値を確保することができる。また、顔料含有量が15質量%以下であれば、インクジェット適正物性値に合わせやすく、更に良好な保存安定性や吐出安定性を確保することができる。
 また、インクジェット記録用インク組成物は、溶剤として、水以外に、有機溶剤を併用することもできる。このような有機溶剤としては、水と相溶性を有し、記録媒体へのインク組成物の浸透性及びノズル目詰まり性を向上させると共に、後述する浸透剤等のインク組成物中成分の溶解性を向上させるものが好ましく、例えば、エタノール、メタノール、ブタノール、プロパノール、イソプロパノール等の炭素数1~4のアルキルアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-nプロピルエーテル、エチレングリコールモノ-iso-プロピルエーテル、ジエチレングリコールモノ-iso-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、ジエチレングリコールモノ-t-ブチルエーテル、1-メチル-1-メトキシブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-iso-プロピルエーテル等のグリコールエーテル類、2-ピロリドン、ホルムアミド、アセトアミド、ジメチルスルホキシド、ソルビット、ソルビタン、アセチン、ジアセチン、トリアセチン、スルホラン等が挙げられ、これらの1種又は2種以上を、本発明のインク組成物中に好ましくは0~10質量%で用いることができる。
 インクジェット記録用インク組成物には、印字品質を向上させる点から、界面活性剤を含有させることが好ましい。界面活性剤としては、一般的に使用されるアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤及びノニオン性界面活性剤から選択できるが、この中でもノニオン性界面活性剤が特に好ましい。ノニオン性界面活性剤の具体例としては、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンフェニルエーテル等が挙げられ、これらを用いることにより、イオン性の界面活性剤と比較して発泡の少ないインク組成物を得ることができる。更にノニオン性界面活性剤の中でも、アセチレングリコール系界面活性剤が、発泡がほとんど無いインク組成物を得ることができ、インクジェット記録に用いる場合、特に好ましい。このようなアセチレングリコール系界面活性剤としては、例えば、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオール、3,5-ジメチル-1-ヘキシン-3-オール、又はこれらの物質それぞれにおける複数の水酸基それぞれにエチレンオキシ基若しくはプロピレンオキシ基を平均1~30個付加してなる物質等が挙げられる。また、アセチレングリコール系界面活性剤としては、市販品を用いることもでき、例えば、「オルフィンE1010」及び「オルフィンSTG」(以上、日信化学工業(株)製)等が挙げられる。これらの1種又は2種以上を用いることができる。アセチレングリコール系界面活性剤の含有量は、本発明のインク組成物中、好ましくは0.1~3質量%であり、更に好ましくは0.5~1.5質量%である。
 インクジェット記録用インク組成物には、記録媒体への定着性を更に向上させて、記録する画像の耐擦性を高めるために、浸透剤を含有させることが好ましい。このような浸透剤としては、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-t-ブチルエーテル、トリエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル等のグリコールエーテル類が好ましく、特に、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノ-n-ブチルエーテルが優れた浸透性能と取り扱いが容易であるという点から好ましい。浸透剤の含有量は、インク組成物の浸透性及び速乾性を向上させて、インクの滲み発生を有効に防止できる点で、本発明のインク組成物中、好ましくは1~20質量%、更に好ましくは2~10質量%である。
 インクジェット記録用インク組成物には、ノズル目詰まりを防止して信頼性をより高めるために、水溶性グリコール類を含有させることが好ましい。このような水溶性グリコール類としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、分子量2000以下のポリエチエングリコール、1,3-プロピレングリコール、イソブチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール等の二価のアルコールや、グリセリン、メソエリスリトール、ペンタエリスリトール等の三価以上のアルコール等が挙げられ、これらの1種又は2種以上を用いることができる。水溶性グリコール類の含有量は、本発明のインク組成物中に好ましくは1~30質量%である。
 また、インクジェット記録用インク組成物には、前記水溶性グリコール類と同様に、ノズルの目詰まり防止のために、防黴剤や防腐剤を含有させることもできる。例えば、安息香酸ナトリウム、ペンタクロロフェノールナトリウム、2-ピリジンチオール-1-オキサイドナトリウム、ソルビン酸ナトリウム、デヒドロ酢酸ナトリウム、1,2-ジベンジソチアゾリン-3-オン(AVECIA社のプロキセルCRL、プロキセルBDN、プロキセルGXL、プロキセルXL-2、プロキセルTN)等が挙げられ、これらの1種又は2種以上を、本発明のインク組成物中に好ましくは0.01~0.5質量%で用いることができる。
 インクジェット記録用インク組成物は、印字濃度の向上及び液安定性の観点から、そのpHを6~11とすることが好ましく、7~10とすることが更に好ましい。インク組成物のpHを前記範囲内とするためには、pH調整剤として、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の無機アルカリ類、アンモニア、トリエタノールアミン、エチルジエタノールアミン、ジエチルエタノールアミン、トリプロパノールアミン等の炭素数6~10の3級アミン類等を含有させることが好ましい。pH調整剤は、その1種又は2種以上を、本発明のインク組成物中に好ましくは0.01~2質量%で用いることができる。
 本発明のインクジェット記録方法は、インクを微細なノズルより液滴として吐出して、その液滴を記録媒体に付着させるいかなる方式も使用することができる。
 その幾つかを説明する。先ず静電吸引方式がある。この方式はノズルとノズルの前方に置いた加速電極の間に強電界を印可し、ノズルからインクを液滴状で連続的に噴射させ、インク滴が偏向電極間を飛翔する間に印刷情報信号を偏向電極に与えて記録する方式、あるいはインク滴を偏向することなく印刷情報信号に対応して噴射させる方式がある。
 第二の方式としては、小型ポンプでインク液に圧力を加え、ノズルを水晶振動子等で機械的に振動させることにより、強制的にインク滴を噴射させる方式である。噴射したインク滴は噴射と同時に帯電させ、インク滴が偏向電極間を飛翔する間に印刷情報信号を偏向電極に与えて記録する。
 第三の方式は圧電素子を用いる方式であり、インクに圧電素子で圧力と印刷情報信号を同時に加え、インク滴を噴射・記録させる方式である。
 第四の方式は熱エネルギーの作用によりインクを急激に体積膨張させる方式であり、インクを印刷情報信号に従って微小電極で加熱発泡させ、インク滴を噴射・記録させる方式である。
 以上のいずれの方式もインク組成物を用いたインクジェット記録方法に使用することができる。本発明のインクジェット記録用インク組成物を適用することにより、いずれのインクジェット記録方式であっても、優れた吐出安定性、ノズル目詰まり性を実現し得る。
 本発明の記録物は、少なくとも上記インク組成物を用いてインクジェット記録が行われて得られたものである。この記録物は、本発明のインク組成物を用いることにより、インクの、特にインク中の顔料の定着性が向上し、濃度、耐擦過性、及び光沢性に優れた文字や図形等の画像を形成することができる。
 以下、本発明を合成例、実施例、実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例中、「部」とは質量部を表す。
〔合成例(1)-1〕
 α型結晶形態を有する式(1)のアゾ顔料(1)-1は特開2010-159405記載の方法で合成した。得られたアゾ顔料(1)-1の一次粒子の長軸方向の長さは約0.2μmであった。得られたアゾ顔料(1)-1のCuKα特性X線回折図を図1に示す。
〔合成例(1)-2〕
 β型結晶形態を有する式(1)のアゾ顔料(1)-2は特開2010-138232記載の方法で合成した。得られたアゾ顔料(1)-2の一次粒子の長軸方向の長さは約10μmであった。得られたアゾ顔料(1)-2のCuKα特性X線回折図を図2に示す。
〔合成例(1)-3〕
 γ型結晶形態を有する式(1)のアゾ顔料(1)-3は特開2011-127042号公報記載の方法で合成した。得られたアゾ顔料(1)-3の一次粒子の長軸方向の長さは約0.3μmであった。得られたアゾ顔料(1)-3のCuKα特性X線回折図を図3に示す。
〔合成例(1)-4〕
 合成例(1)-1で得られたアゾ顔料(1)-1をソルトミリングを行い、一次粒子の長軸方向の長さが0.03μmのアゾ顔料(1)-4を得た。得られたアゾ顔料(1)-4のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が7.2°、13.4°、15.0°及び25.9°に特徴的なX線回折ピークを示した。得られたアゾ顔料(1)-4のCuKα特性X線回折図を図4に示す。
〔合成例(1)-5〕
 合成例(1)-1で得られたアゾ顔料(1)-1をソルトミリングに供し、(1)-α型結晶形態である一次粒子の長軸方向の長さが0.08μmのアゾ顔料(1)-5、及び一次粒子の長軸方向の長さが0.15μmのアゾ顔料(1)-6を得た。
(分散剤の合成)
〔合成例(1)-6〕
 窒素雰囲気下、ジプロピレングリコール58.7gを内温70℃に昇温し、ここにメタクリル酸を10.8g、メタクリル酸ベンジルを39.4g、V-601を1.2g、ジプロピレングリコールを58.7gを混合した溶液を3時間かけて滴下した。同温度にて更に1時間攪拌した後、V-601(重合開始剤:和光純薬社製)を0.6g添加し、同温度にて更に2時間攪拌した。同温度にて50%水酸化カリウム水溶液を11.3g滴下した後、同温度で1時間攪拌した。室温にまで冷却し、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=83,000、酸価140mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-7]
 合成例(1)-6のV-601の量を1.2gから2.5gに増量し、更に温度を86℃にし、同様の操作を行うことで、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=25,000、酸価128mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-8]
 合成例(1)-6のメタクリル酸の量を9.0g、メタクリル酸ベンジルの量を43.3gにし、V-601の量を1.2gから2.5gに増量、更に温度を86℃にし、同様の操作を行うことで、メタクリル酸ベンジル(70.2モル%)、メタクリル酸(29.8モル%)の共重合体(Mw=31,000、酸価106mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-9]
 合成例(1)-6のメタクリル酸の量を7.0g、メタクリル酸ベンジルの量を47.3gにし、V-601の量を1.2gから2.5gに増量、更に温度を86℃にし、同様の操作を行うことで、メタクリル酸ベンジル(76.7モル%)、メタクリル酸(23.3モル%)の共重合体(Mw=36,000、酸価81mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-10]
 合成例(1)-6のV-601の量を1.2gから2.5gに増量し、同様の操作を行うことで、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=41,000、酸価135mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-11]
 合成例(1)-6のV-601の量を1.2gから1.7gに増量し、同様の操作を行うことで、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=61,000、酸価136mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-12]
 合成例(1)-6のメタクリル酸の量を14.3g、メタクリル酸ベンジルの量を32.3gにし、同様の操作を行うことで、メタクリル酸ベンジル(52.4モル%)、メタクリル酸(47.6モル%)の共重合体(Mw=83,000、酸価195mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-13]
 合成例(1)-6のV-601の量を1.2gから0.8gに減量し、同様の操作を行うことで、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=150,000、酸価142mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-14]
 合成例(1)-6のV-601の量を1.2gから3.5gに増量し、更に温度を86℃にし、同様の操作を行うことで、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=15,000、酸価123mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-15]
 合成例(1)-6のメタクリル酸の量を21.5g、メタクリル酸ベンジルの量を17.8g、V-601の量を1.2gから1.8gに増量し、同様の操作を行うことで、メタクリル酸ベンジル(28.8モル%)、メタクリル酸(71.2モル%)の共重合体(Mw=56,000、酸価343mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-16]
 合成例(1)-6のメタクリル酸の量を2.5g、メタクリル酸ベンジルの量を56.5gにし、同様の操作を行うことで、メタクリル酸ベンジル(91.6モル%)、メタクリル酸(8.4モル%)の共重合体(Mw=83,000、酸価27mgKOH)のジプロピレングリコール溶液を得た。
[合成例(1)-17]
 窒素雰囲気下、ジプロピレングリコール41.1gを内温70℃に昇温し、ここにメタクリル酸を9.6g、メタクリル酸メチルを16.8g、メタクリル酸2-エチルヘキシルを8.9g、V-601を2.5g、ジプロピレングリコールを41.1gを混合した溶液を3時間かけて滴下した。他の操作は合成例(1)-6と同様に行うことで、メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体(Mw=83,000、酸価154mgKOH)のジプロピレングリコール溶液を得た。
〔実施例(1)-I〕
実施例(1)-1
 粉体のアゾ顔料(1)-4、80.0gに分散剤(メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価154mgKOH)68.1g(固形分含率35.2%、固形分24.0g)、水251.8gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで14時間分散し、水で洗浄して、顔料濃度15.6重量%の粗顔料分散液(1)-1を457g得た。
 得られた粗顔料分散液(1)-1 457gにデナコールEX-321(ナガセケムテックス株式会社製)を0.9g、6.18%のホウ酸水溶液6.4g、水230gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-1を520g得た。粘度:2.9mPa・S。
実施例(1)-2
 粉体のアゾ顔料(1)-4、80.0gに分散剤(メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価154mgKOH)68.1g(固形分含率35.2%、固形分24.0g)、水251.8gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで14時間分散し、水で洗浄して、顔料濃度15.6重量%の粗顔料分散液(1)-2を457g得た。
 得られた粗顔料分散液(1)-2 457gにデナコールEX-321(ナガセケムテックス株式会社製)を0.4g、6.18%のホウ酸水溶液3.2g、水230gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.8%の顔料分散液(1)-2を510g得た。粘度:2.9mPa・S。
実施例(1)-3
 粉体のアゾ顔料(1)-4、160.0gに分散剤(メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価138mgKOH)266.7g(固形分含率30%、固形分80.0g)、水373.4gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで7時間分散し、水で洗浄して、顔料濃度15.5重量%の粗顔料分散液(1)-3を950g得た。
得られた粗顔料分散液(1)-3 475gにデナコールEX-321(ナガセケムテックス株式会社製)を1.5g、6.18%のホウ酸水溶液11.0g、水230gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-3を620g得た。粘度:1.7mPa・S。
実施例(1)-4
 粗顔料分散液(1)-3 475gにデナコールEX-321(ナガセケムテックス株式会社製)を0.8g、6.18%のホウ酸水溶液5.5g、水230gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-4を610g得た。粘度:2.0mPa・S。
実施例(1)-5
 粉体のアゾ顔料(1)-4、80.0gに分散剤(メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価154mgKOH)266.7g(固形分含率35.2%、固形分40.0g)、水206.4gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで7時間分散し、水で洗浄して、顔料濃度8.7重量%の粗顔料分散液(1)-4を770g得た。
 得られた粗顔料分散液(1)-4、770gにデナコールEX-321(ナガセケムテックス株式会社製)を0.7g、6.18%のホウ酸水溶液5.0gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.0%の顔料分散液(1)-5を710g得た。粘度:2.8mPa・S。
実施例(1)-6
 粉体のアゾ顔料(1)-4、80.0gに分散剤(メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価138mgKOH)85.8g(固形分含率30%、固形分24.0g)、水234.9gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで12時間分散し、水で洗浄して、顔料濃度14.5重量%の粗顔料分散液(1)-5を469g得た。
 得られた粗顔料分散液(1)-5、469gにデナコールEX-321(ナガセケムテックス株式会社製)を0.9g、6.18%のホウ酸水溶液6.1g、水180gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.2%の顔料分散液(1)-6を590g得た。粘度:1.6mPa・S。
 実施例(1)-7
 粉体のアゾ顔料(1)-4、90.0gに分散剤(メタクリル酸ベンジル(70.2モル%)、メタクリル酸(29.8モル%)の共重合体のジプロピレングリコール溶液、Mw=31,000、酸価106mgKOH)225.0g(固形分含率20.0%、固形分45.0g)、水94.1gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで3時間分散し、水で洗浄して、顔料濃度12.7重量%の粗顔料分散液(1)-6を518g得た(平均体積粒子径Mv=88.3nm)。
 得られた粗顔料分散液(1)-6 518gにデナコールEX-321(ナガセケムテックス株式会社製)を0.7g、6.18%のホウ酸水溶液4.9g、水140gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-7を620g得た。粘度:1.8mPa・S。
 実施例(1)-8
 粉体のアゾ顔料(1)-4、110.0gに分散剤(メタクリル酸ベンジル(76.7モル%)、メタクリル酸(23.3モル%)の共重合体のジプロピレングリコール溶液、Mw=36,000、酸価81mgKOH)220g(固形分含率25.0%、固形分55.0g)、水170gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで3時間分散し、水で洗浄して、顔料濃度13.2重量%の粗顔料分散液(1)-7を583g得た(平均体積粒子径Mv=89.5nm)。
 得られた粗顔料分散液(1)-7、583gにデナコールEX-321(ナガセケムテックス株式会社製)を0.8g、6.18%のホウ酸水溶液5.8g、水180gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度11.0%の顔料分散液(1)-8を560g得た。粘度:2.4mPa・S。
実施例(1)-9
 粉体のアゾ顔料(1)-4、80.0gに合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)129.8g(固形分含率30.8%、固形分40.0g)、水190.2gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで5時間分散し、水で洗浄して、顔料濃度12.0重量%の粗顔料分散液(1)-8を518g得た。
 得られた粗顔料分散液(1)-8 518gにデナコールEX-321(ナガセケムテックス株式会社製)を1.3g、6.18%のホウ酸水溶液9.4gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-9を580g得た。粘度:2.5mPa・S。
実施例(1)-10
 粉体のアゾ顔料(1)-4を158.4gに合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)257.1g(固形分含率30.8%、固形分79.2g)、水450gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで8時間分散し、水で洗浄して、顔料濃度14.9重量%の粗顔料分散液(1)-9を740g得た(平均体積粒子径Mv=90.8nm)。
 得られた粗顔料分散液(1)-9、740gに水300gを加え、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.3%の顔料分散液(1)-10を950g得た。粘度:2.6mPa・S。
実施例(1)-11
 粉体のアゾ顔料(1)-4を90.0gに合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)128.6g(固形分含率35%、固形分45.0g)、水260gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで7時間分散し水で洗浄して、、顔料濃度14.2重量%の粗顔料分散液(1)-10を520g得た(平均体積粒子径Mv=91.9nm)。
 得られた粗顔料分散液(1)-10、520gに水150gを加え、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.3%の顔料分散液(1)-11を650g得た。粘度:2.7mPa・S。
実施例(1)-12
 粉体のアゾ顔料(1)-4を120.0gに合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)194.8g(固形分含率30.8%、固形分60.0g)、水300gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで12時間分散し、水で洗浄して、顔料濃度13.9重量%の粗顔料分散液(1)-11を750g得た(平均体積粒子径Mv=92.6nm)。
 得られた粗顔料分散液(1)-11、225gにデナコールEX-321(ナガセケムテックス株式会社製)を0.3g、6.18%のホウ酸水溶液2.3g、水60gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.6%の顔料分散液(1)-12を270g得た。粘度:2.5mPa・S。
実施例(1)-13
 粗顔料分散液(1)-11、233gにデナコールEX-321(ナガセケムテックス株式会社製)を2.0g、6.18%のホウ酸水溶液14.3g、水60gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.4%の顔料分散液(1)-13を310g得た。粘度:2.7mPa・S。
実施例(1)-14
 粗顔料分散液(1)-11、292gにデナコールEX-521(ナガセケムテックス株式会社製)を3.0g、6.18%のホウ酸水溶液13.9g、水50gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.3%の顔料分散液(1)-14を340g得た。粘度:2.8mPa・S。
実施例(1)-15
 粉体のアゾ顔料(1)-4を90.0gに合成例(1)-11で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=61,000、酸価136mgKOH)150g(固形分含率30.0%、固形分45.0g)、水200gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで9時間分散し、水で洗浄して、顔料濃度13.1重量%の粗顔料分散液(1)-12を660g得た(平均体積粒子径Mv=96.0nm)。
 得られた粗顔料分散液(1)-12、320gにデナコールEX-321(ナガセケムテックス株式会社製)を0.4g、6.18%のホウ酸水溶液3.2g、水80gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.3%の顔料分散液(1)-15を320g得た。粘度:2.2mPa・S。
実施例(1)-16
 粉体のアゾ顔料(1)-4を120.0gに合成例(1)-10で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=41,000、酸価135mgKOH)201g(固形分含率25.0%、固形分60.3g)、水300gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで4時間分散し、水で洗浄して、顔料濃度12.3重量%の粗顔料分散液(1)-13を830g得た(平均体積粒子径Mv=89.4nm)。
 得られた粗顔料分散液(1)-13、417gにデナコールEX-321(ナガセケムテックス株式会社製)を0.5g、6.18%のホウ酸水溶液3.9g、水30gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.4%の顔料分散液(1)-16を430g得た。粘度:2.0mPa・S。
実施例(1)-17
 粉体のアゾ顔料(1)-4を70.0gに合成例(1)-12で得られた分散剤(メタクリル酸ベンジル(52.4モル%)、メタクリル酸(47.6モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価195mgKOH)116.7g(固形分含率30.0%、固形分35.0g)、水150gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで14時間分散し、水で洗浄して、顔料濃度13.1重量%の粗顔料分散液(1)-14を435g得た(平均体積粒子径Mv=90.6nm)。
 得られた粗顔料分散液(1)-14、435gにデナコールEX-321(ナガセケムテックス株式会社製)を2.8g、6.18%のホウ酸水溶液2.0g、水70gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.3%の顔料分散液(1)-17を530g得た。粘度:2.9mPa・S。
実施例(1)-18
 粉体のアゾ顔料(1)-1を90.0gに合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)146.0g(固形分含率30.8%、固形分45.0g)、水200gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで18時間分散し、水で洗浄して、顔料濃度12.0重量%の粗顔料分散液(1)-15を590g得た(平均体積粒子径Mv=98.9nm)。
 得られた粗顔料分散液(1)-15、590gにデナコールEX-321(ナガセケムテックス株式会社製)を3.5g、6.18%のホウ酸水溶液24.8gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-18を620g得た。粘度:2.6mPa・S。
実施例(1)-19
 粉体のアゾ顔料(1)-4を90.0gに合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)292.0g(固形分含率30.8%、固形分90.0g)、水200gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで10時間分散し、水で洗浄して、顔料濃度11.6重量%の粗顔料分散液(1)-16を595g得た(平均体積粒子径Mv=95.6nm)。
 得られた粗顔料分散液(1)-16、595gにデナコールEX-321(ナガセケムテックス株式会社製)を6.8g、6.18%のホウ酸水溶液48.3g、水40gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.3%の顔料分散液(1)-19を530g得た。粘度:2.9mPa・S。
実施例(1)-20
 実施例(1)-9のアゾ顔料をアゾ顔料(1)-5に変えて顔料分散液(1)-20を作成した。分散に9時間要した(平均体積粒子径Mv=92.6nm)。粘度:2.4mPa・S。
実施例(1)-21
 実施例(1)-9のアゾ顔料をアゾ顔料(1)-6に変えて顔料分散液(1)-21を作成した。分散に12時間要した(平均体積粒子径Mv=95.1nm)。粘度:2.5mPa・S。
実施例(1)-22
 実施例(1)-9のアゾ顔料をアゾ顔料(1)-4とアゾ顔料(1)-2の混合物(混合比:(1)-4/(1)-2=90/10)に変えて顔料分散液(1)-22を作成した。分散に12時間要した(平均体積粒子径Mv=94.3nm)。粘度:2.4mPa・S。
実施例(1)-23
 実施例(1)-9のアゾ顔料をアゾ顔料(1)-4とアゾ顔料(1)-3の混合物(混合比:(1)-4/(1)-3=75/25)に変えて顔料分散液(1)-23を作成した。分散に11時間要した(平均体積粒子径Mv=91.6nm)。粘度:2.6mPa・S。
実施例(1)-24
 粉体のアゾ顔料(1)-4を90.0gに合成例(1)-13で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=150,000、酸価142mgKOH)180.0g(固形分含率25%、固形分45.0g)、水200gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで16時間分散し、水で洗浄して、顔料濃度13.1重量%の粗顔料分散液(1)-17を515g得た(平均体積粒子径Mv=94.5nm)。
 得られた粗顔料分散液(1)-17、515gにデナコールEX-321(ナガセケムテックス株式会社製)を3.3g、6.18%のホウ酸水溶液23.6g、水80gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量150,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-24を520g得た。粘度:2.9mPa・S。
実施例(1)-25
 粉体のアゾ顔料(1)-4を90.0gに合成例(1)-14で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=15,000、酸価123mgKOH)128.6g(固形分含率35%、固形分45.0g)、水200gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで6時間分散し、水で洗浄して、顔料濃度12.6重量%の粗顔料分散液(1)-18を680g得た(平均体積粒子径Mv=91.8nm)。
 得られた粗顔料分散液(1)-18、680gにデナコールEX-321(ナガセケムテックス株式会社製)を4.0g、6.18%のホウ酸水溶液28.8g、水150gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量10,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.6%の顔料分散液(1)-25を620g得た。粘度:1.5mPa・S。
 実施例(1)-26
 粉体のアゾ顔料(1)-4、110.0gに合成例(1)-8で得られた分散剤(メタクリル酸ベンジル(70.2モル%)、メタクリル酸(29.8モル%)の共重合体のジプロピレングリコール溶液、Mw=31,000、酸価106mgKOH)165.0g(固形分含率20.0%、固形分33.0g)、水225gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで3時間分散し、水で洗浄して、顔料濃度15.0重量%の粗顔料分散液(1)-19を526g得た(平均体積粒子径Mv=89.5nm)。
 得られた粗顔料分散液(1)-19、526gにデナコールEX-321(ナガセケムテックス株式会社製)を0.5g、6.18%のホウ酸水溶液3.6g、水260gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.3%の顔料分散液(1)-26を650g得た。粘度:2.0mPa・S。
実施例(1)-27
 粉体のアゾ顔料(1)-4、110.0gに合成例(1)-9で得られた分散剤(メタクリル酸ベンジル(76.7モル%)、メタクリル酸(23.3モル%)の共重合体のジプロピレングリコール溶液、Mw=36,000、酸価81mgKOH)132g(固形分含率25.0%、固形分33.0g)、水260gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで7時間分散し、水で洗浄して、顔料濃度12.0重量%の粗顔料分散液(1)-20を667g得た(平均体積粒子径Mv=91.3nm)。
 得られた粗顔料分散液(1)-20 667gにデナコールEX-321(ナガセケムテックス株式会社製)を0.5g、6.18%のホウ酸水溶液3.6g、水130gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度11.5%の顔料分散液(1)-27を580g得た。粘度:2.4mPa・S。
実施例(1)-28
 粉体のアゾ顔料(1)-4を固形分70.0gに合成例(1)-15で得られた分散剤(メタクリル酸ベンジル(28.8モル%)、メタクリル酸(71.2モル%)の共重合体のジプロピレングリコール溶液、Mw=56,000、酸価343mgKOH)116.7g(固形分含率30.0%、固形分35.0g)、水200gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで18時間分散し、水で洗浄して、顔料濃度12.5重量%の粗顔料分散液(1)-21を460g得た。(平均体積粒子径Mv=97.1nm)
 得られた粗顔料分散液(1)-21、460gにデナコールEX-321(ナガセケムテックス株式会社製)を2.8g、6.18%のホウ酸水溶液20.2g、水50gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(1)-28を520g得た。粘度:3.2mPa・S。
実施例(1)-29
 粉体のアゾ顔料(1)-4を70.0gに合成例(1)-16で得られた分散剤(メタクリル酸ベンジル(91.6モル%)、メタクリル酸(8.4モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価27mgKOH)175.0g(固形分含率20.0%、固形分35.0g)、水200gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで12時間分散し、水で洗浄して、顔料濃度12.6重量%の粗顔料分散液(1)-22を470g得た(平均体積粒子径Mv=91.5nm)。
 得られた粗顔料分散液(1)-22、470gにデナコールEX-321(ナガセケムテックス株式会社製)を0.62g、6.18%のホウ酸水溶液4.4g、水130gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.0%の顔料分散液(1)-29を490g得た。粘度:2.5mPa・S。
実施例(1)-30
 実施例(1)-9の分散剤を、オレイン酸ナトリウム40gに変え、架橋を行わずに顔料分散液(1)-30を作成した(平均体積粒子径Mv=95.1nm)。粘度:1.8mPa・S。
実施例(1)-31
 実施例(1)-9の分散剤の量を26.0gに変えて顔料分散液(1)-31を作成した(平均体積粒子径Mv=95.4nm)。粘度:2.1mPa・S。
実施例(1)-32
 実施例(1)-9の分散剤の量を285gに変えて顔料分散液(1)-32を作成した(平均体積粒子径Mv=97.9nm)。粘度:3.4mPa・S。
実施例(1)-33
 実施例(1)-9の分散剤をメタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=250,000、酸価=146mgKOH/gのポリマー200g(固形分含率20%、固形分40.0g)に変えて顔料分散液(1)-33を作成しようとしたが、架橋反応時にゲル化してしまい、目的の分散物は得られなかった。
実施例(1)-34
 実施例(1)-9の分散剤をメタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=5,000、酸価=120mgKOH/gのポリマー114.3g(固形分含率35%、固形分40.0g)に変えて顔料分散液(1)-34を作成した。分散に5時間要した。(平均体積粒子径Mv=95.1nm)粘度:1.5mPa・S。
比較例(1)-1
 実施例(1)-9のアゾ顔料(1)-4を、P.Y.180の粉体80.0gに変えて比較顔料分散液(1)-1を作成したが、平均体積粒子径Mvは150nm以下にならなかった(平均体積粒子径Mv=154.7nm)。粘度:2.6mPa・S。
比較例(1)-2
 実施例(1)-9のアゾ顔料(1)-4を、P.Y.155の粉体80.0gに変えて顔料分散液(1)-2を作成した(平均体積粒子径Mv=91.0nm)。粘度:2.7mPa・S。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
・数平均分子量(Mw):アジレント社製のGPCで測定した。
・酸価:三菱化学製の自動滴定装置GT-100を用いて測定した。
 (測定条件)
  滴定液:N/100水酸化ナトリウム溶液
  モード:TEST
  検出:mV Sens
  注入速度:100μL/s
  最大的定量:20.0mL
 試料0.5gを100mLビーカーに精秤し、THF55mLを加えて攪拌溶解し、超純水5mLを加える。この溶液について下記滴定条件で測定する。同様にブランク試験を行い、次式より含量を算出する。
Figure JPOXMLDOC01-appb-M000015
・架橋度:〔架橋剤を加えたことによる理論上の酸価の減少量〕を減少酸価として、架橋剤を反応させる前の酸価に対する減少酸価の割合、すなわち、〔減少酸価〕/〔分散剤の酸価〕で算出した。
〔実施例(1)-I〕(顔料分散物)
 実施例(1)-1~(1)-29、(1)-31~(1)-34、及び比較例(1)-1より得られた顔料分散液の評価結果を表4にまとめる。
〔分散性〕
 本発明の分散性は、顔料分散を行った際に、分散時間が15時間以内に体積平均粒子径が100nm以下になったものを◎、20時間以内に100nm以下になったものを○、20時間より長くかかったが100nm以下になったものを△、100nm以下にならなかったものを×として評価した。
〔保存安定性〕
 上記実施例(1)-1~(1)-29、(1)-31~(1)-34、及び比較例(1)-1で作製した顔料分散液をそれぞれ60℃にて2週間静置した後、粘度、粒子径の変化率を測定した。両者の変化率が5%以内のものを◎、片方は5%以内だが片方は10%以内のものを○、両者とも10%以内のものを△、どちらかでも10%より大きいのものを×として評価した。
〔初期粘度〕
 上記実施例(1)-1~(1)-29、(1)-31~(1)-34、及び比較例(1)-1で作製した顔料分散液の初期粘度が、3.0以下のものを○、3.0より大きいのものを×として評価する。
Figure JPOXMLDOC01-appb-T000016
〔実施例(1)-II〕
 以下に本発明のインクジェット記録用顔料インクの実施例を示す。
 本発明のインクジェット記録用顔料インクは、以下の条件で作成して評価した。
〔顔料インク〕
 実施例(1)-1で作製した顔料分散液(1)-1 27.78gに、水12.10g、2-ピロリジノン1.65g、グリセロール8.25g、1,2-ヘキサンジオール2.20g、エチレングリコール2.75g、サーフィノール465、0.28gの混合溶液を加え、十分に攪拌し、顔料濃度5wt%の顔料インク(1)-1を55g得た。
 同様にして顔料濃度が5wt%になるように実施例(1)-1~(1)-32、(1)-34、比較例(1)-1~(1)-2の顔料分散液を用いて、それぞれ実施例(1)-1~(1)-32、(1)-34、比較例(1)-1~(1)-2の顔料インクを得た。
 また、比較顔料インク(1)-3としてエプソン社製顔料インクICY-42、比較顔料インク(1)-4として、キヤノン社製顔料インクPGI-2Yを用いる。
 実施例及び比較例の顔料分散液を用いた顔料インクの評価を表5にまとめる。
 〔評価〕
 上記水系インクをイエローインクとし、市販のセイコーエプソン社製のプリンター(型番:PX-V630)を用い、セイコーエプソン社製写真紙クリスピア、キヤノン社製PT-101、及びHP社製アドバンスフォトペーパーに推奨モードきれいでベタ印字する。
〔印画物の品質〕
 セイコーエプソン社製写真紙クリスピア、キヤノン社製PT-101、及びHP社製アドバンスフォトペーパーにベタ印字したサンプルを目視にて評価を行った。ムラがなく、光沢が良好なものを◎、ムラはないが、光沢が不十分なものを○、ムラがあるが、光沢が良好なものを△、ムラがあり、光沢が不十分なものを×として評価する。
〔保存安定性〕
 顔料インクをそれぞれ60℃にて2週間静置した後、粘度、粒子径の変化率を測定した。両者の変化率が5%以内のものを◎、片方は5%以内だが片方は10%以内のものを○、両者とも10%以内のものを△、どちらかでも10%以上のものを×として評価する。
〔濃度〕
 キヤノン社製PT-101にベタ印字したサンプルの光学濃度を測定した。2.2以上出ているものを○、2.0以上のものを△、2.0未満のものを×として評価する。
〔耐擦過性〕
 セイコーエプソン社製クリスピアにベタ印画した画像を、消しゴムでこすった後の画像を目視にて判断した。前後で大きな変化がないものを○、変化が認められるものを×として評価する。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
〔合成例(2)-1〕
Figure JPOXMLDOC01-appb-C000019
[合成例(2)-1]
 式(2)-1の化合物11.5gを酢酸50gに懸濁させ、内温が20℃~30℃になるように43%ニトロシル硫酸の硫酸溶液を滴下した。内温20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。別に式(2)-1の化合物10gを酢酸100mLに溶解させ、上述のジアゾニウム塩溶液に内温が20℃~25℃になるように滴下した。内温20℃にて1時間攪拌し、アゾ化合物(2)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(2)の均一反応液を滴下した。析出している固体を濾別した後、水で十分にかけ洗いを行い、水200mLに懸濁させ、28%アンモニア水溶液を添加してpHを6.2に調整した。析出している固体を濾別して、水で十分にかけ洗い、非晶質なアゾ化合物(2)を得た。
 得られたアゾ化合物(2)の1次粒子の長軸方向の長さは、約0.2μmであった。
 水分測定を行ったところ、水の含率が68%だった。
 アゾ化合物(2)のX線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 CuKα特性X線回折図を図5に示す。
 得られた非晶質な含水のアゾ化合物(2)40gをエチレングリコール30mLに懸濁させた。内温80℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、析出している固体を濾別し、(2)-δ型結晶形態のアゾ顔料(2)-1を11g得た。
 得られたアゾ顔料(2)-1の1次粒子の長軸方向の長さは、約0.5μmであった。
 得られたアゾ顔料(2)-1のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、20.0°17.3°、26.0°及び26.7°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図6に示す。
[合成例(2)-2]
 得られたアゾ顔料(2)-1についてソルトミリングを行い、一次粒子の長軸方向の長さが0.05μmのアゾ顔料(2)-2を得た。得られたアゾ顔料(2)-2のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、20.0°17.3°、26.0°及び26.7°に特徴的なX線回折ピークを示した。
(2)-α型結晶形態アゾ顔料(2)-2のCuKα特性X線回折図を図7に示す。
[合成例(2)-3]
 アゾ顔料(2)-1をソルトミリングに供し、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、20.0°17.3°、26.0°及び26.7°に特徴的なX線回折ピークを示し、一次粒子の長軸方向の長さが0.1μmのアゾ顔料(2)-3、一次粒子の長軸方向の長さが0.2μmのアゾ顔料(2)-4、が得られた。
[合成例(2)-4]
 合成例(2)-1において、エチレングリコールを30mLから80mLに増量した以外は同じ操作をすることで、一次粒子の長軸方向の長さが2μmのアゾ顔料(2)-5、を得た。更に、合成例(2)-1で得た非晶質なアゾ化合物(2)を乾燥させ、エチレングリコール50mLを加え、その後の操作は合成例(2)-1と同じ操作をすることで、一次粒子の長軸方向の長さが10μmのアゾ顔料(2)-6を得た。いずれのアゾ顔料もブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、20.0°17.3°、26.0°及び26.7°に特徴的なX線回折ピークを示した。
[合成例(2)-5]
 式(2)-1の化合物、67.5gをリン酸530mLに溶解させ、氷冷して内温を3℃まで冷却した。内温が4℃以下になるように15分間かけて亜硝酸ナトリウム26.9gを分割して添加した。添加終了後、同温度にて50分間攪拌し、尿素18.6gを分割して添加し、ジアゾニウム塩溶液を得た。別に式(3)の化合物47.9gをメタノール1680mLに加え、還流下完溶させた。氷冷して内温を0℃まで冷却し、ここに上述のジアゾニウム塩溶液を内温が10℃以下になるように30分かけて添加した。内温5℃にて1時間30分攪拌した後、水1.6Lに添加し、30分間攪拌した。析出している結晶を濾別し、水1Lでかけ洗った。得られた結晶を水2.5Lに懸濁させ、28%アンモニア水を加えてpHが6.1になるように調製した。結晶を濾別し、水で十分にかけ洗いを行い、(2)-γ型結晶形態アゾ顔料(2)-9を得た。得られた結晶をアセトン1.5Lに懸濁させ、昇温して還流下2時間攪拌した。結晶を熱時にて濾別して、アセトンで十分かけ洗いを行い、(2)-β型結晶形態アゾ顔料(2)-8を103.5g得た。
 得られた(2)-β型結晶形態アゾ顔料(2)-8を60℃24時間乾燥させ、α型結晶形態アゾ顔料(2)-7を92.8g(収率88.8%)得た。 
 得られた(2)-γ型結晶形態アゾ顔料(2)-9を透過型顕微鏡(日本電子(株)製:JEM-1010電子顕微鏡)で目視にて観察したところ、1次粒子の長軸方向の長さは、約0.5μmであった。
 (2)-γ型結晶形態顔料のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が5.9°、7.0°、10.4°及び23.5°に特徴的なX線回折ピークを示した。
 得られた(2)-β型結晶形態アゾ顔料(2)-8を透過型顕微鏡(日本電子(株)製:JEM-1010電子顕微鏡)で目視にて観察したところ、1次粒子の長軸方向の長さは、約10μmであった。
 (2)-β型結晶形態顔料(2)-8のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が6.3°、6.4°及び22.3°に特徴的なX線回折ピークを示した。
 得られた(2)-α型結晶形態アゾ顔料(2)-7を透過型顕微鏡(日本電子(株)製:JEM-1010電子顕微鏡)で目視にて観察したところ、1次粒子の長軸方向の長さは、約10μmであった。
 (2)-α型結晶形態顔料(2)-7のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が6.5°、7.1°、14.4°、21.8°及び23.6°に特徴的なX線回折ピークを示した。
 (2)-α型結晶形態アゾ顔料(2)-7のCuKα特性X線回折図を図8に示す。
 (2)-β型結晶形態アゾ顔料(2)-8のCuKα特性X線回折図を図9に示す。
 (2)-γ型結晶形態アゾ顔料(2)-9のCuKα特性X線回折図を図10に示す。
[合成例8](2)-ε型結晶形態アゾ顔料(2)-10の合成
 式(2)-1の化合物67.5gをリン酸530mLに溶解させ、氷冷して内温を3℃まで冷却した。内温が4℃以下になるように15分間かけて亜硝酸ナトリウム26.9gを分割して添加した。添加終了後、同温度にて50分間攪拌し、尿素18.6gを分割して添加し、ジアゾニウム塩溶液を得た。別に式(3)で表される化合物47.9gをメタノール1680mLに加え、還流下完溶させた。氷冷して内温を0℃まで冷却し、ここに上述のジアゾニウム塩溶液を内温が10℃以下になるように30分かけて添加した。内温5℃にて1時間30分攪拌した後、水1.6Lに添加し、30分間攪拌した。析出している結晶を濾別し、水1Lでかけ洗った。得られた結晶を水2.5Lに懸濁させ、28%アンモニア水を加えてpHが6.1になるように調製した。結晶を濾別し、水で十分にかけ洗いを行い、60℃で24時間乾燥させ、下記式(2)で表される(2)-γ型結晶形態アゾ顔料(2)-2を得た。得られた(2)-γ型結晶形態アゾ顔料(2)-2をアセトン1.5Lに懸濁させ、昇温して還流下2時間攪拌した。結晶を熱時にて濾別して、アセトンで十分かけ洗いを行い、(2)-η型結晶形態アゾ顔料(2)-12を得た。得られたη型結晶形態アゾ顔料(2)-12を80℃にて15時間乾燥させ、下記式(2)で表されるε型結晶形態アゾ顔料(2)-10を98.5g得た。
 得られた(2)-γ型結晶形態アゾ顔料(2)-2を透過型顕微鏡(日本電子(株)製:JEM-1010電子顕微鏡)で目視にて観察したところ、1次粒子の長軸方向の長さは、約2μmであった。
 (2)-γ型結晶形態顔料(2)-2のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が5.9°、7.0°及び8.9°に特徴的なX線回折ピークを示した。
 得られた(2)-η型結晶形態アゾ顔料(2)-12を透過型顕微鏡(日本電子(株)製:JEM-1010電子顕微鏡)で目視にて観察したところ、1次粒子の長軸方向の長さは、約15μmであった。
 (2)-η型結晶形態アゾ顔料(2)-12のCuKα特性X線回折図を図13に示す。
 η型結晶形態顔料(2)-12のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、6.5°、9.2°、9.7°、13.0°及び24.4°に特徴的なX線回折ピークを示した。
 得られた(2)-ε型結晶形態アゾ顔料(2)-10を透過型顕微鏡(日本電子(株)製:JE-1010電子顕微鏡)で目視にて観察したところ、1次粒子の長軸方向の長さは、約15μmであった。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.9°、8.9°及び13.1°に特徴的X線回折ピークを有し、一次粒子の長軸方向の長さが10μmの(2)-ε型結晶形態アゾ顔料(2)-10のCuKα特性X線回折図を図11に示す。
[合成例9](2)-ζ型結晶形態アゾ顔料(2)-11の合成
 11.8gの式(2)-1の化合物を酢酸50g、硫酸16gに溶解させ、氷冷して内温を5℃にした。内温が10℃以下になるようにニトロシル硫酸の43%硫酸溶液16.9gを滴下した。内温5℃にて1時間撹拌した後、尿素0.2gを添加し、同温度にて15分間撹拌し、ジアゾニウム塩溶液を得た。別に、10gの式(3)の化合物をメタノール350mLに懸濁させ、昇温して還流下30分間撹拌し、完溶させた。氷冷して内温5℃まで冷却し、上述のジアゾニウム塩溶液を内温が10℃以下になるように10分間かけて添加した。内温10℃にて2時間撹拌した後、析出している結晶を濾別し、メタノール200mLでかけ洗いした。水300mLに懸濁させ、28%アンモニア水を用いてpHを6.2に調整した。析出している結晶を濾別し、水で十分にかけ洗いを行い、(2)-ζ型結晶形態を有するアゾ顔料(2)-11を19.8g得た。
 得られた(2)-ζ型結晶形態アゾ顔料(2)-11を透過型顕微鏡(日本電子(株)製:JEM-1010電子顕微鏡)で目視にて観察したところ、1次粒子の長軸方向の長さが0.5μmであった。
 ζ型結晶形態顔料(2)-11のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が6.6°、9.2°、10.3°、21.4°及び25.6°に特徴的なX線回折ピークを示した。
 (2)-ζ型結晶形態顔料(2)-11のCuKα特性X線回折図を図12に示す。
[合成例11]
 上記(2)-ζ型結晶形態アゾ顔料(2)-11をエチレングリコールを用いて結晶変換することで、一次粒子の長軸方向の長さが80μmの(2)-δ型結晶形態アゾ顔料(2)-13を得た。得られたアゾ顔料(2)-13のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、20.0°17.3°、26.0°及び26.7°に特徴的なX線回折ピークを示した。(2)-δ型結晶形態アゾ顔料(2)-13のCuKα特性X線回折図を図14に示す。
〔実施例(2)-I〕
実施例(2)-1
 ペースト状のアゾ顔料(2)-2を597.7g(固形分含率26.5%、固形分158.4g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)257.1g(固形分含率30.8%、固形分79.2g)、水25.2gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで11時間分散し、水で洗浄して、顔料濃度16.8重量%の粗顔料分散液(2)‐1を657g得た(平均体積粒子径Mv=92.0nm)。
 得られた粗顔料分散液(2)‐1、657gに水400gを加え、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.6%の顔料分散液(2)-1を920g得た。粘度:2.4mPa・S。
実施例(2)-2
 ペースト状のアゾ顔料(2)-2を350.2g(固形分含率25.7%、固形分90.0g)に合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)128.6g(固形分含率35%、固形分45.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで8時間分散し、水で洗浄して、顔料濃度12.6重量%の粗顔料分散液(2)‐2を590g得た(平均体積粒子径Mv=93.9nm)。
 得られた粗顔料分散液(2)‐2、590gに水100gを加え、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(2)‐2を680g得た。粘度:1.9mPa・S。
実施例(2)-3
 ペースト状のアゾ顔料(2)-2を604.0g(固形分含率26.5%、固形分160.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)363.6g(固形分含率30.8%、固形分112.0g)、水2.4gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで15時間分散し、水で洗浄して、顔料濃度13.3重量%の粗顔料分散液(2)‐3を928g得た(平均体積粒子径Mv=91.9nm)。
 得られた粗顔料分散液(2)‐3、928gにデナコールEX-321(ナガセケムテックス株式会社製)を8.5g、6.18%のホウ酸水溶液60.3g、水234.6gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.0%の顔料分散液(2)‐3を1220g得た。粘度:2.7mPa・S。
実施例(2)-4
 ペースト状のアゾ顔料(2)-2を597.7g(固形分含率26.5%、固形分158.4g)に合成例(1)-17で得られた分散剤(メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価154mgKOH)225.0g(固形分含率35.2%、固形分79.2g)、水57.3gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで25時間分散し、水で洗浄して、顔料濃度18.6重量%の粗顔料分散液(2)‐4を657g得た(平均体積粒子径Mv=97.6nm)。
 得られた粗顔料分散液(2)‐4、657gにデナコールEX-321(ナガセケムテックス株式会社製)を6.0g、6.18%のホウ酸水溶液42.7g、水514gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度8.7%の顔料分散液(2)‐4を1190g得た。粘度:2.3mPa・S。
実施例(2)-5
 ペースト状のアゾ顔料(2)-2を389.0g(固形分含率25.7%、固形分100.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)97.3g(固形分含率30.8%、固形分30.0g)、水13.5gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで16時間分散し、水で洗浄して、顔料濃度10.2重量%の粗顔料分散液(2)‐5を550g得た(平均体積粒子径Mv=96.5nm)。
 得られた粗顔料分散液(2)‐5、550gにデナコールEX-321(ナガセケムテックス株式会社製)を1.63g、6.18%のホウ酸水溶液11.67gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.9%の顔料分散液(2)‐5を520g得た。粘度:2.0mPa・S。
実施例(2)-6
 ペースト状のアゾ顔料(2)-2を350.3g(固形分含率25.7%、固形分90.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)146.0g(固形分含率30.8%、固形分45.0g)、水3.8gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで10時間分散し、水で洗浄して、顔料濃度12.0重量%の粗顔料分散液(2)‐6を606g得た(平均体積粒子径Mv=91.9nm)。
 得られた粗顔料分散液(2)‐6 606gにデナコールEX-321(ナガセケムテックス株式会社製)を3.6g、6.18%のホウ酸水溶液25.5g、水61.0gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.8%の顔料分散液(2)‐6を580g得た。粘度:2.2mPa・S。
実施例(2)-7
 ペースト状のアゾ顔料(2)-2を311.3g(固形分含率25.7%、固形分80.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)103.9g(固形分含率30.8%、固形分32.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで23時間分散し、水で洗浄して、顔料濃度10.5重量%の粗顔料分散液(2)‐7を656g得た(平均体積粒子径Mv=93.9nm)。
 得られた粗顔料分散液(2)‐7、656gにデナコールEX-321(ナガセケムテックス株式会社製)を2.7g、6.18%のホウ酸水溶液19.3g、水10gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.9%の顔料分散液(2)-7を615g得た。粘度:2.2mPa・S。
実施例(2)-8
 ペースト状のアゾ顔料(2)-2を622.6g(固形分含率25.7%、固形分160.0g)に合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)228.6g(固形分含率35%、固形分80.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで15時間分散し、水で洗浄して、顔料濃度13.0重量%の粗顔料分散液(2)‐8を1100g得た(平均体積粒子径Mv=89.2nm)。
 得られた粗顔料分散液(2)‐8、550gにデナコールEX-321(ナガセケムテックス株式会社製)を3.50g、6.18%のホウ酸水溶液25.03g、水150を加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.2%の顔料分散液(2)‐8を700g得た。粘度:1.6mPa・S。
実施例(2)-9
 上記実施例(2)-8で得られた粗顔料分散液(2)-8(顔料濃度13wt%)550gにデナコールEX-321(ナガセケムテックス株式会社製)を0.75g、6.18%のホウ酸水溶液5.36g、水150gを加え、70℃5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、更に遠心分離機で粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.2%の顔料分散液(2)‐9を760g得た。粘度:1.5mPa・S。
実施例(2)-10
 ペースト状のアゾ顔料(2)-2を466.9g(固形分含率25.7%、固形分120.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)194.8g(固形分含率30.8%、固形分60.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで18時間分散し、水で洗浄して、顔料濃度11.3重量%の粗顔料分散液(2)‐9を900.8g得た(平均体積粒子径Mv=92.6nm)。
 得られた粗顔料分散液(2)‐9、270gにデナコールEX-321(ナガセケムテックス株式会社製)を0.3g、6.18%のホウ酸水溶液2.3g、水30gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.1%の顔料分散液(2)-10を290g得た。粘度:2.4mPa・S。
実施例(2)-11
 粗顔料分散液(2)‐9 280gにデナコールEX-321(ナガセケムテックス株式会社製)を2.0g、6.18%のホウ酸水溶液14.3g、水15gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.4%の顔料分散液(2)‐11を280g得た。粘度:2.5mPa・S。
実施例(2)-12
 粗顔料分散液(2)‐9 350.8gにデナコールEX-521(ナガセケムテックス株式会社製)を3.0g、6.18%のホウ酸水溶液13.9g、水20gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.8%の顔料分散液(2)‐12を320g得た。粘度:2.8mPa・S。
実施例(2)-13
 ペースト状のアゾ顔料(2)-2を622.6g(固形分含率25.7%、固形分160.0g)に合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)182.9g(固形分含率35.0%、固形分64.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで22時間分散し、水で洗浄して、顔料濃度10.7重量%の粗顔料分散液(2)‐10を1355g得た((平均体積粒子径Mv=90.8nm)。
 得られた粗顔料分散液(2)‐10、700gにデナコールEX-321(ナガセケムテックス株式会社製)を2.9g、6.18%のホウ酸水溶液21.0g、水15gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度11.4%の顔料分散液(2)‐13を630g得た。粘度:1.6mPa・S。
実施例(2)-14
 得られた粗顔料分散液(2)‐10、655gにデナコールEX-321(ナガセケムテックス株式会社製)を0.6g、6.18%のホウ酸水溶液4.2g、水30gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.5%の顔料分散液(2)‐14を610g得た。粘度:1.5mPa・S。
実施例(2)-15
 ペースト状のアゾ顔料(2)-2を622.6g(固形分含率25.7%、固形分160.0g)に合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)139.1g(固形分含率35.0%、固形分48.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで22時間分散し、水で洗浄して、顔料濃度11.3重量%の粗顔料分散液(2)‐11を1407g得た(平均体積粒子径Mv=91.2nm)。
 得られた粗顔料分散液(2)‐11、707gにデナコールEX-321(ナガセケムテックス株式会社製)を2.4g、6.18%のホウ酸水溶液17.1g、水60gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.5%の顔料分散液(2)‐15を690g得た。粘度:1.6mPa・S。
実施例(2)-16
 粗顔料分散液(2)‐11、700gにデナコールEX-321(ナガセケムテックス株式会社製)を1.0g、6.18%のホウ酸水溶液7.2g、水60gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.8%の顔料分散液(2)‐16を750g得た。粘度:1.5mPa・S。
実施例(2)-17
 ペースト状のアゾ顔料(2)-2を350.2g(固形分含率25.7%、固形分90.0g)に合成例(1)-9で得られた分散剤(メタクリル酸ベンジル(76.7モル%)、メタクリル酸(23.3モル%)の共重合体のジプロピレングリコール溶液、Mw=36,000、酸価81mgKOH)180g(固形分含率25.0%、固形分45.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで16時間分散し、水で洗浄して、顔料濃度5.4重量%の粗顔料分散液(2)‐12を930g得た((平均体積粒子径Mv=97.9nm)。
 得られた粗顔料分散液(2)‐12、900gにデナコールEX-321(ナガセケムテックス株式会社製)を0.5g、6.18%のホウ酸水溶液3.7gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.6%の顔料分散液(2)‐17を410g得た。粘度:2.0mPa・S。
実施例(2)-18
 ペースト状のアゾ顔料(2)-2を350.2g(固形分含率25.7%、固形分90.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=61,000、酸価136mgKOH)150g(固形分含率30.0%、固形分45.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで9時間分散し、水で洗浄して、顔料濃度10.5重量%の粗顔料分散液(2)‐13を825g得た(平均体積粒子径Mv=95.2nm)。
 得られた粗顔料分散液(2)‐13、400gにデナコールEX-321(ナガセケムテックス株式会社製)を0.4g、6.18%のホウ酸水溶液3.2gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度8.7%の顔料分散液(2)‐18を380g得た。粘度:1.9mPa・S。
実施例(2)-19
 粗顔料分散液(2)‐13、400gにデナコールEX-321(ナガセケムテックス株式会社製)を2.1g、6.18%のホウ酸水溶液14.8gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、水で洗浄して、顔料濃度10.5%の顔料分散液(2)‐19を350g得た。粘度:2.4mPa・S。
実施例(2)-20
 ペースト状のアゾ顔料(2)-2を469.3g(固形分含率25.7%、固形分120.0g)に合成例(1)-10で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=41,000、酸価135mgKOH)201g(固形分含率25.0%、固形分60.3g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで4時間分散し、水で洗浄して、顔料濃度13.9重量%の粗顔料分散液(2)‐14を736g得た(平均体積粒子径Mv=90.4nm)。
 得られた粗顔料分散液(2)‐14 370gにデナコールEX-321(ナガセケムテックス株式会社製)を0.5g、6.18%のホウ酸水溶液3.9gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.9%の顔料分散液(2)‐20を410g得た。粘度:2.1mPa・S。
実施例(2)-21
 粗顔料分散液(2)‐14、365gにデナコールEX-321(ナガセケムテックス株式会社製)を2.5g、6.18%のホウ酸水溶液17.8gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、水で洗浄して、顔料濃度10.5%の顔料分散液(2)‐21を430g得た。粘度:2.2mPa・S。
実施例(2)-22
 ペースト状のアゾ顔料(2)-2を273.1g(固形分含率25.7%、固形分70.0g)に合成例(1)-8で得られた分散剤(メタクリル酸ベンジル(70.2モル%)、メタクリル酸(29.8モル%)の共重合体のジプロピレングリコール溶液、Mw=31,000、酸価106mgKOH)175.5g(固形分含率20.0%、固形分35.1g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで12時間分散し、水で洗浄して、顔料濃度10.4重量%の粗顔料分散液(2)‐15を501g得た(平均体積粒子径Mv=96.8nm)。
 得られた粗顔料分散液(2)‐15 501gにデナコールEX-321(ナガセケムテックス株式会社製)を0.6g、6.18%のホウ酸水溶液3.9gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.9%の顔料分散液(2)‐22を420g得た。粘度:2.2mPa・S。
実施例(2)-23
 ペースト状のアゾ顔料(2)-2を273.1g(固形分含率25.7%、固形分70.0g)に合成例(1)-12で得られた分散剤(メタクリル酸ベンジル(52.4モル%)、メタクリル酸(47.6モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価195mgKOH)116.7g(固形分含率30.0%、固形分35.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで19時間分散し、水で洗浄して、顔料濃度12.4重量%の粗顔料分散液(2)‐16を460g得た(平均体積粒子径Mv=90.6nm)。
 得られた粗顔料分散液(2)‐16 460gにデナコールEX-321(ナガセケムテックス株式会社製)を2.8g、6.18%のホウ酸水溶液2.0g、水70gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.2%の顔料分散液(2)‐23を480g得た。粘度:2.8mPa・S。
実施例(2)-24
 ペースト状のアゾ顔料(2)-1を295.1g(固形分含率30.5%、固形分90.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)146.0g(固形分含率30.8%、固形分45.0g)、水3.8gを混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで28時間分散し、水で洗浄して、顔料濃度10.4重量%の粗顔料分散液(2)‐17を680g得た(平均体積粒子径Mv=98.9nm)。
 得られた粗顔料分散液(2)‐17 680gにデナコールEX-321(ナガセケムテックス株式会社製)を3.5g、6.18%のホウ酸水溶液24.8gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.1%の顔料分散液(2)‐24を610g得た。粘度:2.5mPa・S。
実施例(2)-25
 ペースト状のアゾ顔料(2)-1を524.6g(固形分含率30.5%、固形分160.0g)に合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)228.6g(固形分含率35%、固形分80.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで24時間分散し、水で洗浄して、顔料濃度12.7重量%の粗顔料分散液(2)‐18を1150g得た(平均体積粒子径Mv=95.4nm)。
 得られた粗顔料分散液(2)‐18 1150gにデナコールEX-321(ナガセケムテックス株式会社製)を7.2g、6.18%のホウ酸水溶液51.2g、水300gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.1%の顔料分散液(2)‐25を1320g得た。粘度:1.6mPa・S。
実施例(2)-26
 ペースト状のアゾ顔料(2)-2を350.3g(固形分含率25.7%、固形分90.0g)に合成例(1)-6で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)292.0g(固形分含率30.8%、固形分90.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで10時間分散し、水で洗浄して、顔料濃度11.9重量%の粗顔料分散液(2)‐19 を580g得た(平均体積粒子径Mv=94.5nm)。
 得られた粗顔料分散液(2)‐19 580gにデナコールEX-321(ナガセケムテックス株式会社製)を6.8g、6.18%のホウ酸水溶液48.3g、水50gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.1%の顔料分散液(2)‐26を540g得た。粘度:2.9mPa・S。
実施例(2)-27
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-3に変えて顔料分散液(2)‐27を作成した。分散に11時間要した(平均体積粒子径Mv=91.3nm)。粘度:2.4mPa・S。
実施例(2)-28
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-4に変えて顔料分散液(2)‐28を作成した。分散に15時間要した(平均体積粒子径Mv=93.6nm)。粘度:2.5mPa・S。
実施例(2)-29
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-5に変えて顔料分散液(2)‐29を作成した。分散に31時間要した(平均体積粒子径Mv=98.4nm)。粘度:2.6mPa・S。
実施例(2)-30
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-6に変えて顔料分散液(2)‐30を作成した。分散に35時間要した(平均体積粒子径Mv=94.8nm)。粘度:2.6mPa・S。
実施例(2)-31
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-2とアゾ顔料(2)-7の混合物(混合比:(2)-2/(2)-7=70/30)に変えて顔料分散液(2)‐31を作成した。分散に15時間要した(平均体積粒子径Mv=92.6nm)。粘度:2.4mPa・S。
実施例(2)-32
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-2とアゾ顔料(2)-8の混合物(混合比:(2)-2/(2)-8=90/10)に変えて顔料分散液(2)‐32を作成した。分散に11時間要した(平均体積粒子径Mv=96.4nm)。粘度:2.4mPa・S。
実施例(2)-33
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-2とアゾ顔料(2)-9の混合物(混合比:(2)-2/(2)-9=80/20)に変えて顔料分散液(2)‐33を作成した。分散に21時間要した(平均体積粒子径Mv=97.5nm)。粘度:2.5mPa・S。
実施例(2)-34
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-2とアゾ顔料(2)-10の混合物(混合比:(2)-2/(2)-10=70/30)に変えて顔料分散液(2)‐34を作成した。分散に22時間要した(平均体積粒子径Mv=94.3nm)。粘度:2.5mPa・S。
実施例(2)-35
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-2とアゾ顔料(2)-11の混合物(混合比:(2)-2/(2)-11=60/40)に変えて顔料分散液(2)‐35を作成した。分散に18時間要した(平均体積粒子径Mv=98.1nm)。粘度:2.4mPa・S。
実施例(2)-36
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-2とアゾ顔料(2)-12の混合物(混合比:(2)-2/(2)-12=90/10)に変えて顔料分散液(2)‐36を作成した。分散に18時間要した(平均体積粒子径Mv=92.1nm)。粘度:2.4mPa・S。
実施例(2)-37
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-2と非晶質なアゾ化合物(2)の混合物(混合比:(2)-2/非晶質(2)=90/10)に変えて顔料分散液(2)‐37を作成した。分散に22時間要した(平均体積粒子径Mv=98.9nm)。粘度:2.6mPa・S。
実施例(2)-38
 ペースト状のアゾ顔料(2)-2を350.3g(固形分含率25.7%、固形分90.0g)に合成例(1)-13で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=150,000、酸価142mgKOH)180.0g(固形分含率25%、固形分45.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで12時間分散し、水で洗浄して、顔料濃度12.1重量%の粗顔料分散液(2)‐20を558g得た(平均体積粒子径Mv=94.5nm)。
 得られた粗顔料分散液(2)‐20 558gにデナコールEX-321(ナガセケムテックス株式会社製)を3.3g、6.18%のホウ酸水溶液23.6g、水80gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量150,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.8%の顔料分散液(2)‐38を580g得た。粘度:2.9mPa・S。
実施例(2)-39
 ペースト状のアゾ顔料(2)-2を350.3g(固形分含率25.7%、固形分90.0g)に合成例(1)-14で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=15,000、酸価123mgKOH)128.6g(固形分含率35%、固形分45.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで8時間分散し、水で洗浄して、顔料濃度13.4重量%の粗顔料分散液(2)‐21を614g得た(平均体積粒子径Mv=91.8nm)。
 得られた粗顔料分散液(2)‐21 614gにデナコールEX-321(ナガセケムテックス株式会社製)を4.0g、6.18%のホウ酸水溶液28.8g、水150gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量10,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.6%の顔料分散液(2)‐39を740g得た。粘度:1.4mPa・S。
実施例(2)‐40
 ペースト状の顔料(2)-2をを273.1g(固形分含率25.7%、固形分70.0g)に合成例(1)-15で得られた分散剤(メタクリル酸ベンジル(28.8モル%)、メタクリル酸(71.2モル%)の共重合体のジプロピレングリコール溶液、Mw=56,000、酸価343mgKOH)116.7g(固形分含率30.0%、固形分35.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで15時間分散し、水で洗浄して、顔料濃度11.8重量%の粗顔料分散液(2)‐40を490g得た。(平均体積粒子径Mv=92.8nm)
 得られた粗顔料分散液(2)‐40 490gにデナコールEX-321(ナガセケムテックス株式会社製)を2.8g、6.18%のホウ酸水溶液20.2g、水50gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.8%の顔料分散液(2)‐40を530g得た。粘度:3.2mPa・S。
実施例(2)‐41
 ペースト状のアゾ顔料(2)-2を273.1g(固形分含率25.7%、固形分70.0g)に合成例(1)-16で得られた分散剤(メタクリル酸ベンジル(91.6モル%)、メタクリル酸(8.4モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価27mgKOH)175.0g(固形分含率20.0%、固形分35.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2,400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで5時間分散し、水で洗浄して、顔料濃度13.4重量%の粗顔料分散液(2)‐41を440g得た(平均体積粒子径Mv=92.0nm)。
 得られた粗顔料分散液(2)-41、440gにデナコールEX-321(ナガセケムテックス株式会社製)を0.62g、6.18%のホウ酸水溶液4.4g、水130gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7,000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.1%の顔料分散液(2)‐41を500g得た。粘度:2.2mPa・S。
実施例(2)-42
 実施例(2)-24の分散剤を、オレイン酸ナトリウム45gに変え、架橋を行わずに顔料分散液(2)-42を作成した(平均体積粒子径Mv=93.2nm)。粘度:1.4mPa・S。
実施例(2)‐43
 実施例(2)-6の分散剤の量を29.2gに変えて顔料分散液(2)‐43を作成した(平均体積粒子径Mv=92.0nm)。粘度:1.4mPa・S。
実施例(2)‐44
 実施例(2)-6の分散剤の量を321gに変えて顔料分散液(2)‐44を作成した(平均体積粒子径Mv=99.2nm)。粘度:3.3mPa・S。
実施例(2)‐45
 実施例(2)-6の分散剤をメタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=250,000、酸価=146mgKOH/gのポリマー225g(固形分含率20%、固形分45g)に変えて顔料分散液(2)‐45を作成しようとしたが、架橋反応時にゲル化してしまい、目的の分散物は得られなかった。
実施例(2)‐46
 実施例(2)-6の分散剤をメタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=5,000、酸価=120mgKOH/gのポリマー128.6g(固形分含率35%、固形分45g)に変えて顔料分散液(2)‐46を作成した。分散に8時間要した。(平均体積粒子径Mv=91.2nm)粘度:1.4mPa・S。
実施例(2)‐47
 実施例(2)-6のアゾ顔料をアゾ顔料(2)-13に変えて顔料分散液(2)‐47を作成しようとしたが、平均体積粒子径が180nm以下にならなかった。粘度:2.7mPa・S。
実施例(2)-48
 ペースト状のアゾ顔料(2)-2を622.6g(固形分含率25.7%、固形分160.0g)に合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)68.6g(固形分含率35%、固形分24.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで22時間分散し、水で洗浄して、顔料濃度14.5重量%の粗顔料分散液(2)‐48を980g得た(平均体積粒子径Mv=91.6nm)。
 得られた粗顔料分散液(2)‐48 980gにデナコールEX-321(ナガセケムテックス株式会社製)を0.5g、6.18%のホウ酸水溶液3.2g、水400gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.6%の顔料分散液(2)‐48を1100g得た。粘度:1.5mPa・S。
実施例(2)-49
 ペースト状のアゾ顔料(2)-2を622.6g(固形分含率25.7%、固形分160.0g)に合成例(1)-7で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)114.3g(固形分含率35%、固形分40.0g)を混合し、1mmφのポリカーボネート製のビーズを充填したネッチ(Netzch)製アジテータービーズミルミニゼータ(MiniZeta)を用いて、2400rpmにて1時間予備分散を行った。得られた予備分散液を0.2~0.3mmφのポリスチレン製のビーズを充填した再循環つきのネッチ(Netzch)製ミニサー(MiniCer)を用いて4200rpmで20時間分散し、水で洗浄して、顔料濃度13.8重量%の粗顔料分散液(2)‐49を1050g得た(平均体積粒子径Mv=91.6nm)。
 得られた粗顔料分散液(2)‐49 1050gにデナコールEX-321(ナガセケムテックス株式会社製)を0.8g、6.18%のホウ酸水溶液5.4g、水350gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.5%の顔料分散液(2)‐49を1090g得た。粘度:1.6mPa・S。
比較例(2)‐1
 実施例(2)-24のアゾ顔料(2)-1を、P.Y.180の粉体90.0gに変えて比較顔料分散液(2)‐1を作成したが、平均体積粒子径Mvは150nm以下にならなかった(平均体積粒子径Mv=153.1nm)。粘度:2.6mPa・S。
比較例(2)‐2
 実施例(2)-24のアゾ顔料(2)-1を、P.Y.155の粉体90.0gに変えて比較顔料分散液(2)‐1を作成した(平均体積粒子径Mv=91.2nm)。粘度:2.4mPa・S。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
・数平均分子量(Mw):アジレント社製のGPCで測定した。
・酸価:三菱化学製の自動滴定装置GT-100を用いて測定した。
 (測定条件)
  滴定液:N/100水酸化ナトリウム溶液
  モード:TEST
  検出:mV Sens
  注入速度:100μL/s
  最大的定量:20.0mL
 試料0.5gを100mLビーカーに精秤し、THF55mLを加えて攪拌溶解し、超純水5mLを加える。この溶液について下記滴定条件で測定する。同様にブランク試験を行い、次式より含量を算出する。
Figure JPOXMLDOC01-appb-M000022
・架橋度:〔架橋剤を加えたことによる理論上の酸価の減少量〕を減少酸価として、架橋剤を反応させる前の酸価に対する減少酸価の割合、すなわち、〔減少酸価〕/〔分散剤の酸価〕で算出した。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 実施例(2)‐1~(2)‐49、比較例(2)‐1,及び(2)‐2より得られた顔料分散液を用いた下記実施例を記載する。
 実施例(2)‐1~(2)‐49、比較例(2)‐1,及び(2)‐2より得られた顔料分散液の評価結果を表7にまとめた。
〔分散性〕
 本発明の分散性は、顔料分散を行った際に、分散時間が25時間以内に体積平均粒子径が100nm以下になったものを◎、35時間以内に100nm以下になったものを○、35時間以上かかったが100nm以下になったものを△、100nm以下にならなかったものを×として評価した。
〔保存安定性〕
 上記実施例(2)‐1~(2)‐41、(2)‐43~(2)‐45、(2)‐47~(2)‐49及び比較例1で作製した顔料分散液をそれぞれ60℃にて2週間静置した後、粘度、粒子径の変化率を測定した。両者の変化率が5%以内のものを◎、片方は5%以内だが片方は10%以内のものを○、両者とも10%以内のものを△、どちらかでも10%より大きいものを×として評価した。
〔初期粘度〕
 顔料分散液の初期粘度が3.0以下のものを○、3.0より大きいのものを×として評価した。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
〔実施例(2)-II〕
 以下に本発明のインクジェット記録用顔料インクの実施例を示す。
 本発明のインクジェット記録用顔料インクは、以下の条件で作成して評価した。
〔顔料インク〕
 顔料分散液(2)‐1 30.6gに、水10.3g、エチレングリコール8.25g、トリエチレングリコールモノブチルエーテル5.50g、サーフィノール485、0.39gの混合溶液を加え、十分に攪拌し、顔料濃度5wt%の顔料インク(2)‐1を55g得た。
 同様にして顔料濃度が5wt%になるように顔料分散液(2)‐1~(2)‐44、(2)‐46~(2)‐49、比較例(2)-1及び(2)-2を用いて、それぞれ顔料インク(2)‐1~(2)‐44、(2)‐46~(2)‐49、比較例(2)-1及び(2)-2を得た。
 実施例及び比較例の顔料分散液を用いた顔料インクの評価を表8にまとめる。
 〔評価〕
 上記水系インクをイエローインクとし、市販のセイコーエプソン社製のプリンター(型番:PX-V630)を用い、セイコーエプソン社製写真紙クリスピア、キヤノン社製PT-101、及びHP社製アドバンスフォトペーパーに推奨モードきれいでベタ印字する。
 〔印画物の品質〕
 セイコーエプソン社製写真紙クリスピア、キヤノン社製PT-101、及びHP社製アドバンスフォトペーパーにベタ印字したサンプルを目視にて評価を行った。ムラがなく、光沢が良好なものを◎、ムラはないが、光沢が不十分なものを○、ムラがあるが、光沢が良好なものを△、ムラがあり、光沢が不十分なものを×として評価する。
 〔吐出安定性〕
 セイコーエプソン社製のプリンター(型番:PX-V630)を用いて、連続的に印字した際に、300枚印字してもかすれ等が見られなかったものを◎、201~300枚を印字している際にかすれ等が見られたものを○、100~200枚を印字している際にかすれ等が見られたものを△、1~99枚を印字している際にかすれ等が見られたものを×として評価する。
 〔保存安定性〕
 顔料インクをそれぞれ60℃にて2週間静置した後、粘度、粒子径の変化率を測定した。両者の変化率が5%以内のものを◎、片方は5%以内だが片方は10%以内のものを○、両者とも10%以内のものを△、どちらかでも10%より大きいのものを×として評価する。
 〔耐光性〕
 上記記載のプリンターを用いてセイコーエプソン社製写真紙クリスピアに画像濃度1.0の塗布物を作成し、フェードメーターを用いてキセノン光(170000lux;TACフィルター存在下)を28日間照射し、キセノン照射前後の画像濃度を反射濃度計を用いて測定し、色素残存率[(照射後濃度/照射前濃度)×100%]が95%以上の場合を◎、90%以上を○、80%以上の場合を△、70%未満の場合を×として、顔料インクを評価する。
〔耐擦過性〕
 セイコーエプソン社製クリスピアにベタ印画した画像を、消しゴムでこすった後の画像を目視にて判断した。前後で大きな変化がないものを○、変化が認められるものを×として評価する。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 本発明により、良好な液物性と貯蔵安定性に優れたイエローアゾ顔料の顔料分散物、またイエローアゾ顔料の顔料分散物製造方法を提供できる。特に、本発明のアゾ顔料分散物は、インクジェット記録用顔料インク用途に好適である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年2月4日出願の日本特許出願(特願2011-023410)及び2012年2月3日出願の日本特許出願(特願2012-021974)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (18)

  1.  着色剤、分散剤、水を含む顔料分散物であって、
     前記着色剤が(1)CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が7.2°、13.4°、15.0°及び25.9°に特徴的X線回折ピークを有する下記式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料、又は
    (2)CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が、4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する下記式(2)若しくはその互変異性体で表される分子の集合体であるアゾ顔料
    を含むことを特徴とする水系顔料分散物。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記分散剤が水溶性高分子であることを特徴とする請求項1記載の水系顔料分散物。
  3.  前記水溶性高分子分散剤の重量平均分子量が10000以上200000以下であることを特徴とする請求項2に記載の水系顔料分散物。
  4.  前記水溶性高分子分散剤が少なくとも1つのカルボキシ基を有し、少なくとも50mgKOH/g以上の酸価を有することを特徴とする請求項2又は3に記載の水系顔料分散物。
  5.  前記水溶性高分子分散剤が70~160mgKOH/gの酸価を有することを特徴とする請求項4に記載の水系顔料分散物。
  6.  前記顔料分散物中の着色剤の含有量をP、分散剤の含有量をDとし、含有量Dと含有量Pとの比をD/P値としたときに、D/P値が0.15以上1.0以下であることを特徴とする請求項1~5のいずれか1項に記載の水系顔料分散物。
  7.  前記式(1)又はその互変異性体で表される分子の集合体であるアゾ顔料の分散前の一次粒子径が、0.01~10μmであることを特徴とする請求項1~6のいずれか1項に記載の水系顔料分散物。
  8.  前記式(2)又はその互変異性体で表される分子の集合体であるアゾ顔料の分散前の一次粒子径が、0.01~20μmであることを特徴とする請求項1~6のいずれか1項に記載の水系顔料分散物。
  9.  前記分散前の一次粒子径が、0.01~0.2μmであることを特徴とする請求項8記載の水系顔料分散物。
  10.  前記水系分散物が、架橋剤により架橋されていることを特徴とする請求項1~9のいずれか1項に記載の水系顔料分散物。
  11.  前記架橋剤が少なくとも2つのエポキシ基を含むことを特徴とする請求項10に記載の水系顔料分散物。
  12.  カルボキシ基とエポキシ基の間の架橋反応を100℃以下、pH6以上で行うことを特徴とする請求項11に記載の水系顔料分散物。
  13.  架橋反応を40~85℃で行うことを特徴とする請求項12に記載の水系顔料分散物。
  14.  架橋反応をpH7~10で行うことを特徴とする請求項12又は13のいずれか1項に記載の水系顔料分散物。
  15.  以下の(a)~(d)の成分を混合して、架橋反応を行うことを特徴とする請求項1~14のいずれか1項に記載の水系顔料分散物の製造方法。
    (a)30~99.7部の水
    (b)0.1~50部の前記式(1)で表される分子の集合体であるアゾ顔料又は式(2)で表される分子の集合体であるアゾ顔料
    (c)0.1~40部のビニルポリマー
    (d)0.00001~10部の架橋剤
    部は質量を表し、顔料分散物の総重量を100質量部とした際に(a)+(b)+(c)+(d)の和は100質量部以下である。
  16.  前記架橋反応を100℃以下、pH6以上で行うことを特徴とする請求項15に記載の水系顔料分散物の製造方法。
  17.  更に膜精製を行うことを特徴とする請求項15記載の水系顔料分散物の製造方法。
  18.  請求項1~14のいずれか1項に記載の水系顔料分散物を含有するインクジェット記録用インク。
PCT/JP2012/052554 2011-02-04 2012-02-03 水系顔料分散物、その製造方法及びインクジェット記録用インク WO2012105704A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12741914.1A EP2671926B1 (en) 2011-02-04 2012-02-03 Aqueous pigment dispersion and process for production thereof, and ink for inkjet recording
CN201280007450.2A CN103354828B (zh) 2011-02-04 2012-02-03 水系颜料分散物及其制造方法以及喷墨记录用墨水

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-023410 2011-02-04
JP2011023410 2011-02-04
JP2012021974A JP5856861B2 (ja) 2011-02-04 2012-02-03 水系顔料分散物、その製造方法及びインクジェット記録用インク
JP2012-021974 2012-02-03

Publications (1)

Publication Number Publication Date
WO2012105704A1 true WO2012105704A1 (ja) 2012-08-09

Family

ID=46602904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052554 WO2012105704A1 (ja) 2011-02-04 2012-02-03 水系顔料分散物、その製造方法及びインクジェット記録用インク

Country Status (5)

Country Link
EP (1) EP2671926B1 (ja)
JP (1) JP5856861B2 (ja)
CN (1) CN103354828B (ja)
TW (1) TWI546345B (ja)
WO (1) WO2012105704A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018488A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 アゾ顔料の製造方法
WO2013018487A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク並びに分散物の製造方法
WO2014045970A1 (ja) * 2012-09-24 2014-03-27 富士フイルム株式会社 インク組成物、インクセット、及び画像形成方法
WO2014084161A1 (ja) * 2012-11-28 2014-06-05 日本化薬株式会社 インク組成物及び捺染方法
JP6313503B1 (ja) * 2017-04-21 2018-04-18 東洋インキScホールディングス株式会社 水性インクジェットインキ、及び、印刷物の製造方法
CN114904681A (zh) * 2017-11-30 2022-08-16 艾仕得涂料系统有限责任公司 利用高转移效率施涂器施加的涂料组合物及其方法和系统
CN115975435A (zh) * 2022-12-27 2023-04-18 广东英科集团股份有限公司 一种高浓度超细色浆及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201117187D0 (en) 2011-10-06 2011-11-16 Fujifilm Imaging Colorants Ltd A process for preparing a dispersion, dispersion, use and method
JP5789541B2 (ja) * 2012-02-27 2015-10-07 富士フイルム株式会社 顔料組成物、顔料分散物、着色組成物、インク、インクジェット記録用インク、インクジェット記録方法及び顔料組成物の製造方法
JP5936188B2 (ja) * 2012-04-06 2016-06-15 イー インク コーポレイション 画像表示用粒子、画像表示用粒子分散液、表示媒体、及び表示装置
JP5894949B2 (ja) * 2013-02-26 2016-03-30 富士フイルム株式会社 水系顔料分散物、その製造方法及びインクジェット記録用インク
JP5894948B2 (ja) * 2013-02-26 2016-03-30 富士フイルム株式会社 水系顔料分散物、その製造方法及びインクジェット記録用インク
CZ2014897A3 (cs) * 2014-12-12 2016-01-20 Synthesia, A.S. Způsob přípravy vodných pigmentových mikrodisperzí
JP2017061662A (ja) * 2015-09-25 2017-03-30 富士フイルム株式会社 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2017061661A (ja) * 2015-09-25 2017-03-30 富士フイルム株式会社 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
WO2017051668A1 (ja) * 2015-09-25 2017-03-30 富士フイルム株式会社 水性顔料分散液及びその製造方法、着色組成物、インク組成物、インクジェット記録用インク組成物、並びに、インクジェット記録方法
WO2018021119A1 (ja) 2016-07-26 2018-02-01 富士フイルム株式会社 顔料分散液及びインクジェット用インク
JPWO2018021120A1 (ja) * 2016-07-26 2019-05-16 富士フイルム株式会社 顔料分散液の製造方法
JP6822637B2 (ja) * 2016-12-28 2021-01-27 花王株式会社 インクジェット記録用水性顔料分散液
JP6813241B2 (ja) * 2016-12-28 2021-01-13 花王株式会社 水系インク
CN113498428A (zh) * 2019-07-24 2021-10-12 惠普发展公司,有限责任合伙企业 标签

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152424A (ja) * 1997-11-25 1999-06-08 Dainippon Ink & Chem Inc 水性顔料分散体の製造方法及び水性着色液
JP2008524369A (ja) * 2004-12-18 2008-07-10 フジフィルム・イメイジング・カラランツ・リミテッド 封入粒状固体の調製方法
WO2010024317A1 (ja) * 2008-08-29 2010-03-04 富士フイルム株式会社 アゾ顔料を含むインクジェット記録用水性インク
JP2010065212A (ja) * 2008-08-14 2010-03-25 Fujifilm Corp インクジェット記録用水性インク
JP2010159405A (ja) * 2008-12-09 2010-07-22 Fujifilm Corp アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、及び着色組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116133B2 (ja) * 2006-08-22 2013-01-09 株式会社ユニバーサルエンターテインメント 紙幣処理装置
JP5111039B2 (ja) * 2007-09-27 2012-12-26 富士フイルム株式会社 重合性化合物、重合開始剤、および染料を含有する光硬化性組成物
JP5376810B2 (ja) * 2008-02-13 2013-12-25 富士フイルム株式会社 インク組成物、インクセット、及び画像形成方法
WO2011027842A1 (ja) * 2009-09-04 2011-03-10 富士フイルム株式会社 インクセット、記録方法、記録物及び印刷物
WO2011027843A1 (ja) * 2009-09-04 2011-03-10 富士フイルム株式会社 アゾ顔料の製造方法、アゾ顔料、及び、着色組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152424A (ja) * 1997-11-25 1999-06-08 Dainippon Ink & Chem Inc 水性顔料分散体の製造方法及び水性着色液
JP2008524369A (ja) * 2004-12-18 2008-07-10 フジフィルム・イメイジング・カラランツ・リミテッド 封入粒状固体の調製方法
JP2010065212A (ja) * 2008-08-14 2010-03-25 Fujifilm Corp インクジェット記録用水性インク
WO2010024317A1 (ja) * 2008-08-29 2010-03-04 富士フイルム株式会社 アゾ顔料を含むインクジェット記録用水性インク
JP2010159405A (ja) * 2008-12-09 2010-07-22 Fujifilm Corp アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、及び着色組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2671926A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018488A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 アゾ顔料の製造方法
WO2013018487A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク並びに分散物の製造方法
JP2013049827A (ja) * 2011-07-29 2013-03-14 Fujifilm Corp アゾ顔料の製造方法
US9359502B2 (en) 2011-07-29 2016-06-07 Fujifilm Corporation Dispersion including azo pigment, coloring composition, inkjet recording ink and method for preparing dispersion
WO2014045970A1 (ja) * 2012-09-24 2014-03-27 富士フイルム株式会社 インク組成物、インクセット、及び画像形成方法
JP5840797B2 (ja) * 2012-09-24 2016-01-06 富士フイルム株式会社 インク組成物、インクセット、及び画像形成方法
JPWO2014045970A1 (ja) * 2012-09-24 2016-08-18 富士フイルム株式会社 インク組成物、インクセット、及び画像形成方法
WO2014084161A1 (ja) * 2012-11-28 2014-06-05 日本化薬株式会社 インク組成物及び捺染方法
JP6313503B1 (ja) * 2017-04-21 2018-04-18 東洋インキScホールディングス株式会社 水性インクジェットインキ、及び、印刷物の製造方法
WO2018194057A1 (ja) * 2017-04-21 2018-10-25 東洋インキScホールディングス株式会社 水性インクジェットインキ、および、印刷物の製造方法
JP2018178054A (ja) * 2017-04-21 2018-11-15 東洋インキScホールディングス株式会社 水性インクジェットインキ、及び、印刷物の製造方法
US11427723B2 (en) 2017-04-21 2022-08-30 Toyo Ink Sc Holdings Co., Ltd. Aqueous inkjet ink and method for producing printed item
CN114904681A (zh) * 2017-11-30 2022-08-16 艾仕得涂料系统有限责任公司 利用高转移效率施涂器施加的涂料组合物及其方法和系统
CN114904681B (zh) * 2017-11-30 2024-01-19 艾仕得涂料系统有限责任公司 利用高转移效率施涂器施加的涂料组合物及其方法和系统
US11945964B2 (en) 2017-11-30 2024-04-02 Axalta Coating Systems Ip Co., Llc Coating compositions for application utilizing a high transfer efficiency applicator and methods and systems thereof
US11965107B2 (en) 2017-11-30 2024-04-23 Axalta Coating Systems Ip Co., Llc System for applying a coating composition
CN115975435A (zh) * 2022-12-27 2023-04-18 广东英科集团股份有限公司 一种高浓度超细色浆及其制备方法
CN115975435B (zh) * 2022-12-27 2024-02-02 广东英科集团股份有限公司 一种高浓度超细色浆及其制备方法

Also Published As

Publication number Publication date
JP2012177110A (ja) 2012-09-13
EP2671926A1 (en) 2013-12-11
EP2671926B1 (en) 2018-07-25
CN103354828A (zh) 2013-10-16
CN103354828B (zh) 2015-04-01
JP5856861B2 (ja) 2016-02-10
TW201239037A (en) 2012-10-01
EP2671926A4 (en) 2015-07-22
TWI546345B (zh) 2016-08-21

Similar Documents

Publication Publication Date Title
JP5856861B2 (ja) 水系顔料分散物、その製造方法及びインクジェット記録用インク
JP5475399B2 (ja) インクジェット記録用水分散体
JP7258285B2 (ja) 印刷方法及び印刷装置
JP2006282760A (ja) インク組成物、これを用いたインクジェット記録方法及び記録物
KR101708783B1 (ko) 아조 안료, 아조 안료의 제조 방법, 아조 안료를 포함하는 분산물, 착색 조성물 및 잉크젯 기록용 잉크
JP5894948B2 (ja) 水系顔料分散物、その製造方法及びインクジェット記録用インク
JP6271751B2 (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、インクジェット記録用インク組成物、並びに、インクジェット記録方法
EP3392321B1 (en) Method for producing aqueous pigment dispersion
WO2012108400A1 (ja) 顔料分散組成物の製造方法
JP5703241B2 (ja) アゾ顔料の製造方法
WO2013013024A2 (en) Inkjet inks and ink sets
US20180208787A1 (en) Aqueous pigment dispersion, method for producing same, coloring composition, ink composition, ink composition for inkjet recording, and inkjet recording method
JP2016199643A (ja) 捺染剤及び布帛物
JP4861810B2 (ja) インクジェット記録用水系インク
JP5894949B2 (ja) 水系顔料分散物、その製造方法及びインクジェット記録用インク
JP6296265B1 (ja) 着色剤分散物、着色剤分散物の製造方法及びインクジェット記録用インク
JP5683143B2 (ja) インクジェット記録用インクセット
JP2017061662A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2016069629A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2013049826A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2017061661A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2017061660A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2005232360A (ja) 水性インク組成物並びにそれを用いたインクジェット記録方法および記録物
WO2014050594A1 (ja) 顔料分散体、インク、インクジェット印刷用インク及び顔料分散体の製造方法
JP2016069630A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012741914

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE