WO2013018488A1 - アゾ顔料の製造方法 - Google Patents

アゾ顔料の製造方法 Download PDF

Info

Publication number
WO2013018488A1
WO2013018488A1 PCT/JP2012/067000 JP2012067000W WO2013018488A1 WO 2013018488 A1 WO2013018488 A1 WO 2013018488A1 JP 2012067000 W JP2012067000 W JP 2012067000W WO 2013018488 A1 WO2013018488 A1 WO 2013018488A1
Authority
WO
WIPO (PCT)
Prior art keywords
azo
pigment
azo pigment
ray diffraction
acid
Prior art date
Application number
PCT/JP2012/067000
Other languages
English (en)
French (fr)
Inventor
慎也 林
美彰 永田
立石 桂一
洋 山田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280033957.5A priority Critical patent/CN103649233B/zh
Publication of WO2013018488A1 publication Critical patent/WO2013018488A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B33/00Disazo and polyazo dyes of the types A->K<-B, A->B->K<-C, or the like, prepared by diazotising and coupling
    • C09B33/02Disazo dyes
    • C09B33/12Disazo dyes in which the coupling component is a heterocyclic compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices

Definitions

  • the present invention relates to a method for producing an azo pigment.
  • Non-Patent Document 1 Various methods for synthesizing azo compounds have been known for a long time, including synthesis by oxidation reaction, synthesis by reduction reaction, synthesis by substitution reaction, synthesis by addition reaction, synthesis by condensation reaction, and other synthesis methods.
  • it is used as an industrial production method of azo dye compounds because of the azo coupling reaction between diazonium compounds and coupling components such as anilines and phenols from the viewpoints of availability of raw materials, cost, and yield.
  • this method also has drawbacks such as the danger of explosion of the diazonium compound and the low yield depending on the type of the diazonium compound and the coupling component. .
  • heterocyclic diazonium compounds are often unstable, and a highly general synthesis method is not known.
  • organic pigments widely used as coloring materials are required to further improve sharpness and transparency, particularly in applications such as color filters for liquid crystal displays and ink jet inks.
  • it is necessary to use a dispersant and a dispersing machine suitable for the organic pigment but it is also necessary as a major premise that the organic pigment itself is fine (fine particles). If the organic pigment is coarse particles, it is difficult to obtain an excellent fine dispersion even if the dispersant and the dispersion method are improved. Therefore, in the production of pigments, it is required to produce them as fine particles in addition to usual requirements such as purity and yield.
  • an azo pigment can be obtained by selecting fine reaction conditions at the time of synthesis to obtain finely sized particles.
  • Others such as copper phthalocyanine green pigment, those that are formed into fine particles by growing and sizing particles in the subsequent process, such as copper phthalocyanine blue pigment, are formed during synthesis.
  • pigments obtained by making coarse and irregular particles fine in a subsequent step and adjusting the size are also pigments obtained by making coarse and irregular particles fine in a subsequent step and adjusting the size.
  • a diketopyrrolopyrrole pigment is generally synthesized as a crude pigment by reacting an oxalic acid diester and an aromatic nitrile in an organic solvent (see, for example, Patent Document 1).
  • the crude diketopyrrolopyrrole pigment is made into a form suitable for use by heat treatment in water or an organic solvent and then powdering such as wet grinding (for example, see Patent Document 2).
  • organic pigments exhibit polymorphism, and it is known that such pigments can take two or more crystalline forms despite having the same chemical composition.
  • C.I. I. As for Pigment Red 254, ⁇ -type and ⁇ -type crystal forms are known (see, for example, Patent Document 3).
  • C.I. which is an azo pigment.
  • I. Pigment Yellow 181 has several known crystal forms (see, for example, Patent Document 4).
  • dispersibility is exhibited by making Pigment Yellow 181 amorphous (Patent Document 5).
  • Patent Document 6 describes a method in which a solution obtained by dissolving a pigment in an amide organic solvent is injected into a poor solvent to obtain nano-sized fine particles. There is a description that the crystal forms of the pigments are different. However, this method is not economical because the concentration of the pigment solution is as low as about 10 mM, and a large amount of solvent is used to obtain the pigment.
  • Patent Document 7 describes a method capable of producing a specific monoazo pigment with high purity. However, it is generally difficult to obtain an azo pigment in high yield and purity by applying this method to a more unstable heterocyclic diazonium compound.
  • Patent Document 8 describes a production method for obtaining an azo compound using a diazonium compound of pyrazole with high yield and high purity. Although this method is effective for the production of dyes, the particle size of the compound produced by this method is not described.
  • Patent Document 9 also describes a production method for obtaining an azo compound using a diazonium compound of pyrazole with high yield and high purity. Although there is a description that uniform fine particles can be obtained by this method, there remains room for further improvement in dispersibility. There is no description regarding the crystal form of the pigment.
  • the present invention relates to a method for producing an azo pigment in which a pyrazole ring having a specific substituent is linked via an azo group and a triazine ring. As described above, there is room for studying both the performance and manufacturability of the azo pigment. It remained.
  • An object of the present invention is to provide an azo pigment production method capable of producing azo pigment fine particles having good dispersibility with high efficiency and low cost.
  • the present inventors can obtain azo pigment fine particles having good dispersibility by crystal conversion of an amorphous compound, and further, a diazonium salt, a coupling component, and When the azo coupling reaction is performed, the azo compound is not completely precipitated in the reaction solution (a part of the azo compound is dissolved in the reaction solution). It was found that the above-mentioned problems can be achieved by injecting into a solvent and obtaining an amorphous compound, and the present invention was completed.
  • the present invention is as follows.
  • the amorphous azo compound represented by the formula (1) has a Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 4.8 °, 7.2 °, 9.7 °, 20
  • the amorphous azo compound represented by the formula (1) has a Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 4.8 °, 7.2 °, 9.5 °, 9 Characterized by crystal transformation into crystal forms having characteristic X-ray diffraction peaks at .7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° [ [1] A process for producing an azo pigment according to any one of [4].
  • the amorphous azo compound represented by the formula (1) has a Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 4.8 °, 7.2 ° and 9.7. And (ii) a mixture containing the azo pigment obtained in the step (i), a water-soluble inorganic salt, and a water-soluble organic solvent.
  • the azo compound represented by the formula (1) obtained in the step (b) is mixed with a poor solvent having a solubility of 1 g / L or less [7] to [10]
  • the poor solvent contains water, one or more solvents selected from the group consisting of alcohols having 1 to 3 carbon atoms and glycols having 1 to 6 carbon atoms.
  • a pigment dispersion comprising the azo pigment according to [13], a dispersant, and water.
  • the present invention it is possible to provide a method for producing an azo pigment capable of producing easily dispersible azo pigment fine particles with high efficiency (purity and productivity) and low cost.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (1) -2 having a ⁇ -type crystal form synthesized according to Example 1.
  • FIG. 4 is an X-ray diffraction pattern of an azo pigment (1) -4 having a ⁇ -type crystal form synthesized according to Example 2.
  • FIG. 4 is an X-ray diffraction pattern of an ⁇ -type crystal form azo pigment (1) -5, which is an intermediate product synthesized according to Example 3.
  • FIG. 4 is an X-ray diffraction pattern of an azo pigment (1) -7 having a ⁇ -type crystal form synthesized according to Example 3.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (1) -2 having a ⁇ -type crystal form synthesized according to Example 1.
  • FIG. 4 is an X-ray diffraction pattern of an azo pigment (1) -4 having a ⁇ -type crystal form synthesized according to Example 2.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (1) -9 having a ⁇ -type crystal form synthesized according to Example 4.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (1) -11 having a ⁇ -type crystal form synthesized according to Example 5.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (1) -13 having a ⁇ -type crystal form synthesized according to Example 6.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (1) -14 having a ⁇ -type crystal form synthesized according to Example 7.
  • FIG. 12 is an X-ray diffraction pattern of an azo pigment (1) -15 in ⁇ -type crystal form synthesized according to Example 8.
  • FIG. 11 is an X-ray diffraction pattern of an azo pigment (1) -16 having a ⁇ -type crystal form synthesized according to Example 9.
  • FIG. 11 is an X-ray diffraction pattern of an azo pigment (1) -17 having a ⁇ -type crystal form synthesized according to Example 10.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (1) -18 having a ⁇ -type crystal form synthesized according to Example 11.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (1) -101 in ⁇ -type crystal form synthesized according to Example 11-2.
  • FIG. 16 is an X-ray diffraction pattern of an amorphous azo pigment (1) -19, which is an intermediate product synthesized according to Example 12.
  • FIG. 12 is an X-ray diffraction pattern of an amorphous azo pigment (1) -19, which is an intermediate product synthesized according to Example 12.
  • FIG. 12 is an X-ray diffraction pattern of an azo pigment (1) -20 in a ⁇ -type crystal form synthesized according to Example 12.
  • FIG. 4 is an X-ray diffraction pattern of an azo pigment (1) -103 having a ⁇ -type crystal form synthesized according to Example 12-2.
  • FIG. 4 is an X-ray diffraction pattern of an azo pigment (1) -21 having a ⁇ -type crystal form synthesized according to Example 13.
  • FIG. 18 is an X-ray diffraction pattern of an azo pigment (1) -22 in ⁇ -type crystal form synthesized according to Example 14.
  • FIG. 16 is an X-ray diffraction pattern of an azo pigment (1) -23 in ⁇ -type crystal form synthesized according to Example 15.
  • FIG. 18 is an X-ray diffraction pattern of an azo pigment (1) -24 in ⁇ -type crystal form synthesized according to Example 16.
  • FIG. 16 is an X-ray diffraction pattern of an azo pigment (1) -25 in ⁇ -type crystal form synthesized according to Example 17.
  • FIG. 14 is an X-ray diffraction pattern of an azo pigment (1) -27 in ⁇ -type crystal form synthesized according to Example 18.
  • FIG. 3 is an X-ray diffraction pattern of an azo pigment (1) -104 having a ⁇ -type crystal form synthesized according to Example 18-2.
  • FIG. 2 is an X-ray diffraction pattern of an azo pigment (1) -26 having a ⁇ -type crystal form synthesized according to Comparative Example 1.
  • FIG. 14 is an X-ray diffraction pattern of an azo pigment (1) -2-A having a ⁇ -type crystal form synthesized according to Example 20.
  • FIG. 4 is an X-ray diffraction pattern of an azo pigment (1) -32-A having a ⁇ -type crystal form synthesized according to Comparative Example 3.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (1) -29-A having a ⁇ -type crystal form synthesized according to Comparative Example 4.
  • FIG. 6 is an X-ray diffraction pattern of an azo pigment (1) -31-A having a ⁇ -type crystal form synthesized according to Comparative Example 5.
  • FIG. 11 is an X-ray diffraction pattern of an azo pigment (1) -30-A having a ⁇ -type crystal form synthesized according to Comparative Example 6.
  • an amorphous solid that does not show a characteristic X-ray diffraction peak in X-ray diffraction as in the present invention has weak intermolecular interaction and high solubility in a solvent. Therefore, for example, when crystal conversion is carried out in a solvent, a large amount of amorphous material dissolves from the solid, but since the crystal has low solubility, it immediately becomes supersaturated and a large number of core crystals are precipitated. Is hard to grow. As a result, a fine pigment is obtained and the dispersibility is considered to be good.
  • amorphous means that there is no long-range order like a crystal, but short-range order indicates the state of a certain substance, and in X-ray diffraction does not show a characteristic X-ray diffraction peak.
  • the azo pigment represented by 1) is referred to as a ⁇ -type crystal form azo pigment.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction is expressed by the formula (1) having characteristic X-ray diffraction peaks at 6.5 °, 7.1 °, and 21.8 °.
  • the azo pigment is an ⁇ -type crystal form azo pigment, and the Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction have characteristic X-ray diffraction peaks at 6.3 °, 6.4 ° and 22.3 °.
  • the azo pigment represented by the formula (1) is a ⁇ -type crystal form azo pigment, and the Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction are 4.9 °, 8.8 ° and 13.1 °.
  • the azo pigment represented by the formula (1) having a characteristic X-ray diffraction peak is an ⁇ -type crystal form azo pigment, and the Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction is 6.6 °, 9.
  • the azo pigment represented by the formula (1) having characteristic X-ray diffraction peaks at 2 ° and 21.5 ° is referred to as ⁇ -type crystal form azo pigment. To do.
  • the X-ray diffraction measurement of the azo compound represented by the above formula (1) and the azo pigment is performed according to Japanese Industrial Standard JISK0131 (general rules for X-ray diffraction analysis), for example, powder X-ray diffraction measurement. This can be done with the apparatus RINT2500 (manufactured by Rigaku Corporation).
  • FIG. 2 shows an X-ray diffraction diagram, and characteristic X-ray diffraction peaks are observed at Bragg angles (2 ⁇ ⁇ 0.2 °) of 4.8 °, 7.2 °, and 9.7 ° in CuK ⁇ characteristic X-ray diffraction.
  • the azo pigment represented by formula (1) will be described in more detail.
  • azo pigment The azo pigment produced by the method for producing an azo pigment of the present invention is represented by the following formula (1).
  • the azo pigment may be a salt, hydrate or solvate thereof.
  • a hydrate containing water molecules in the crystal or a solvent (for example, alcohols such as methanol, ethanol, 2-propanol, t-butyl alcohol, acetone, methyl ethyl ketone, etc. Or aprotic solvents such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, etc.).
  • a solvent for example, alcohols such as methanol, ethanol, 2-propanol, t-butyl alcohol, acetone, methyl ethyl ketone, etc.
  • aprotic solvents such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, etc.
  • the method for producing the azo pigment of the present invention comprises: An amorphous azo compound represented by the following formula (1), a salt, hydrate or solvate thereof is crystallized to produce an azo pigment represented by the following formula (1).
  • crystal conversion means that the crystal form is converted, and the azo compound represented by the above formula (1), its salt, hydrate or solvate, which is amorphous, is converted into a specific crystal form.
  • the crystal conversion method include grinding treatment such as solvent salt milling, salt milling, dry milling, solvent milling, and acid pasting, and solvent heating treatment, preferably solvent heating treatment.
  • the solvent heat treatment specifically refers to heating and stirring an amorphous azo compound represented by the formula (1), a salt, hydrate or solvate thereof. Crystal conversion can be efficiently performed by the solvent heating treatment.
  • an azo pigment having a ⁇ -type crystal form can be obtained by heating and stirring an solvate of an amorphous azo compound.
  • the azo compound represented by the formula (1) is characterized by Bragg angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 4.8 °, 7.2 °, and 9.7 °. It is preferable to convert the crystal into a crystal form having an X-ray diffraction peak. Dispersibility is improved by using the ⁇ -type crystal form azo pigment having the characteristic X-ray diffraction peak as described above, that is, it can be dispersed to a target particle size in a short time.
  • the crystal form having characteristic X-ray diffraction peaks at a Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of 4.8 °, 7.2 °, and 9.7 ° is 4.8 °. More preferred are crystal forms having characteristic X-ray diffraction peaks at 7.2 °, 9.7 °, 20.1 °, and 26.8 °. Among them, in particular, 4.8 °, 7.2 °, 9.5 °, 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° Most preferred is a crystalline form having a characteristic X-ray diffraction peak.
  • the solvent that can be used for the crystal conversion of the present invention water, organic acid, inorganic acid, and organic solvent can be used, and water and organic solvent are preferable.
  • the solvent with low solubility of the azo pigment represented by Formula (1) after crystal conversion from the point which suppresses crystal growth at the time of crystal conversion is preferable.
  • More preferable solvents include water, methanol, ethanol, isopropanol, isobutanol, ethylene glycol, diethylene glycol, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, dipropylene glycol, acetic acid, propionic acid, sulfuric acid, or a mixed solvent thereof. More preferred is ethylene glycol, water, acetic acid, sulfuric acid, or a mixed solvent thereof, and most preferred is ethylene glycol.
  • the amount of the solvent used for the solvent heat treatment is preferably 1 to 100 times, more preferably 5 to 50 times, and more preferably 8 to 30 times that of the azo pigment represented by the formula (1). More preferably. If it is 1 time or more, it is preferable because agitation can be secured. Moreover, if it is 100 times or less, productivity becomes high and it is preferable from economical.
  • the temperature of heating and stirring in the solvent heat treatment varies depending on the desired primary particle size of the pigment, but is preferably 15 to 150 ° C, more preferably 20 to 120 ° C, and still more preferably 20 to 100 ° C.
  • the temperature is 15 ° C. or higher, crystal conversion occurs, and it is efficient without requiring a long time.
  • it is 150 degrees C or less, since it can suppress that a part of azo pigment (1) decomposes
  • the stirring time for crystal conversion is not particularly limited, but is preferably 5 to 1500 minutes, more preferably 10 to 600 minutes, and more preferably 30 to 300 minutes. If it is 5 minutes or more, it can suppress that a partially amorphous location remains, which is preferable. On the other hand, if it is 1500 minutes or less, it is efficient and preferable.
  • the method for producing an azo compound represented by formula (1) used for crystal conversion of the present invention comprises (a) a step of mixing a diazotizing agent and an amino compound represented by formula (2), and (b) the above step.
  • a reaction is performed by mixing the reaction product obtained in (a) with the coupling component represented by formula (3), and at least one of the azo compounds represented by the following formula (1) produced by the reaction.
  • a step of crystallizing the compound comprises
  • the diazonium compound is derived by the reaction of the amino compound and the diazotizing agent by mixing the diazotizing agent and the amino compound. This reaction is preferably carried out in a medium containing an acid.
  • a liquid containing the diazonium compound is referred to as a “diazonium compound preparation liquid”.
  • the method for mixing the amino compound, the acid and the diazotizing agent is not particularly limited, but it is preferable to add the diazotizing agent to the amino compound and acid solution.
  • the diazotizing agent in the step (a) is used to derive an amino compound into a diazonium compound, and is not limited as long as it has such an action.
  • diazotizing agent examples include nitrites (for example, isopentyl nitrite), nitrites (for example, sodium nitrite and potassium nitrite), isoamyl nitrite, and nitrosyl sulfate. More preferred are sodium nitrite, potassium nitrite, and nitrosylsulfuric acid. Among them, nitrosylsulfuric acid is particularly preferred from the viewpoint that a diazonium compound can be stably and efficiently prepared.
  • the acid used in the step (a) means an acid that can be slightly dissolved even if the amino compound represented by the formula (2) is not completely dissolved, and preferably an acid that completely dissolves the amino compound.
  • an inorganic acid and an organic acid can be used, and examples of the inorganic acid include hydrochloric acid, phosphoric acid, and sulfuric acid, preferably phosphoric acid and sulfuric acid, and more preferably sulfuric acid.
  • the organic acid include formic acid, acetic acid, propionic acid, and methanesulfonic acid, preferably acetic acid, propionic acid, and methanesulfonic acid, and more preferably acetic acid and propionic acid. These acids may be used alone or in combination.
  • Examples of the mixed acid include phosphoric acid / acetic acid, sulfuric acid / acetic acid, methanesulfonic acid / acetic acid, acetic acid / propionic acid, and preferably phosphoric acid / acetic acid, sulfuric acid / acetic acid, sulfuric acid / acetic acid / propionic acid, acetic acid / propionic acid.
  • sulfuric acid / acetic acid and acetic acid / propionic acid are particularly preferred.
  • the mass ratio of these mixed acids is preferably 1 / (0.1 to 20), more preferably 1 / (0.5 to 10), and still more preferably 1 / (1 to 10).
  • the amount of acid added to the amino compound is 1 to 100 times, more preferably 2 to 50 times, and further preferably 3 to 25 times in terms of mass ratio.
  • the mass ratio is 1 or more, the stirring property is improved, and the diazonium compound can be more reliably induced.
  • the addition amount of the diazotizing agent with respect to the amino compound in the step (a) is 1.0 to 20 times in molar ratio, more preferably 1.0 to 10 times, and 1.0 to 5 times. Further preferred. When the diazotizing agent has a molar ratio of 1 or more with respect to the amino compound, the diazonium compound can be more reliably induced.
  • the mixing of the diazotizing agent and the amino compound in the step (a) is preferably performed at 50 ° C. or less, more preferably at 40 ° C. or less, and further preferably at 30 ° C. or less. .
  • the stirring time for inducing the diazonium compound is preferably 0.3 to 10 hours, more preferably 0.5 to 5 hours, and further preferably 1 to 3 hours. When the stirring time is 0.3 hours or longer, the diazonium compound is easily induced completely, and when it is 10 hours or shorter, the diazonium compound is hardly decomposed.
  • a normal stirrer is used for mixing, and there is no limitation in particular.
  • the preferable rotation speed of stirring is preferably 30 to 300 rpm, more preferably 40 to 200 rpm, and still more preferably 50 to 200 rpm. Since the stirring efficiency of the diazonium compound preparation liquid is good when the stirring speed is 30 rpm or more, the progress of a desired reaction can be reliably performed.
  • the solvent that can be mixed in the step (a) is not particularly limited as long as the derived diazonium compound is not decomposed.
  • solvents that can be mixed include hydrocarbon solvents such as hexane, benzene, and toluene, ether solvents such as diethyl ether and tetrahydrofuran, ketone solvents such as acetone and methyl ethyl ketone, dimethylformamide, dimethylacetamide, pyrrolidone, and N-methyl- Examples thereof include amide solvents such as 2-pyrrolidone, dimethyl sulfoxide, sulfolane, acetonitrile, and water.
  • the preferred pH of the diazonium compound preparation solution in step (a) is preferably 7 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the pH of the diazonium compound preparation solution in step (a) exceeds 7, there is a concern about the decomposition of the induced diazonium compound.
  • step (b) the reaction product obtained in the step (a) and a coupling component are mixed to react, and at least a part of the azo compound represented by the formula (1) generated by the reaction is used.
  • a step of obtaining a solution in which is dissolved is referred to as an “azo compound solution”.
  • a coupling reaction is performed by mixing the reaction product obtained in step (a) and a coupling component, and as a result of the reaction, A method of obtaining the azo pigment represented by dissolving in a solvent, and (ii) the compound represented by the formula (1) obtained by the coupling reaction so that at least a part of the compound is dissolved in the reaction solution.
  • the method for mixing the diazonium compound preparation liquid obtained in step (a) and the coupling component is not particularly limited, but the coupling component is partly used as a solvent. Alternatively, it is preferable to add all of them after dissolving them, or to add them as a solid without using a solvent, and to add the solution of the coupling component to the diazonium compound preparation solution obtained in step (a), or More preferably, the coupling component is added as a solid to the diazonium compound preparation solution obtained in (a).
  • the amount of the diazonium compound in the diazonium compound preparation liquid obtained in the step (a) with respect to the coupling component in the step (b) is preferably 0.8 to 3 equivalents relative to the coupling position of the coupling component.
  • the amount is preferably 0.9 to 2 equivalents relative to the coupling position, and more preferably 0.95 to 1.5 equivalents relative to the coupling position.
  • the coupling component may be added without using a solvent, or may be added by mixing with a solvent, but it is preferable to add without using a solvent.
  • a solvent used for the coupling component in the step (b)
  • the azo compound represented by the general formula (1) generated after the reaction is formed so as to have the above form (ii).
  • the solvent is preferably such that a solution in which at least a part is dissolved is obtained.
  • water, organic acid, inorganic acid, and organic solvent can be used as examples of the solvent.
  • a solvent that does not cause a separation phenomenon and presents a uniform solution with the solvent is preferable.
  • alcoholic organic solvents such as water, methanol, ethanol, propanol, isopropanol, butanol, t-butyl alcohol, amyl alcohol, ketone organic solvents such as acetone, methyl ethyl ketone, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol
  • diol organic solvents such as dipropylene glycol and 1,3-propanediol
  • ether organic solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol diethyl ether, tetrahydrofuran, dioxane, acetonitrile, and the like.
  • the solvent may be a mixture of two or more.
  • the organic solvent has a polarity parameter (ET) value of 40 or more.
  • ET polarity parameter
  • a glycol solvent having two or more hydroxyl groups in a solvent molecule an alcohol solvent having 3 or less carbon atoms, a ketone solvent having a total carbon number of 5 or less, preferably an alcohol having 2 or less carbon atoms.
  • Solvents for example, methanol, ethylene glycol
  • ketone solvents having a total carbon number of 4 or less for example, acetone, methyl ethyl ketone
  • examples of the solvent include water, methanol, Alcohol solvents such as isopropanol and ethylene glycol, ketone solvents such as acetone and methyl ethyl ketone, organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid, inorganic acid solvents such as sulfuric acid, hydrochloric acid and phosphoric acid, dimethylformamide and dimethylacetamide Amide solvents such as pyrrolidone and N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane and acetonitrile.
  • Alcohol solvents such as isopropanol and ethylene glycol
  • ketone solvents such as acetone and methyl ethyl ketone
  • organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid
  • inorganic acid solvents such as sulfuric acid, hydrochloric acid and phosphoric acid
  • ketone solvents such as acetone and methyl ethyl ketone
  • organic acid solvents such as acetic acid, propionic acid and methanesulfonic acid
  • inorganic acid solvents such as sulfuric acid, hydrochloric acid and phosphoric acid
  • organic acids or inorganic acids are preferred.
  • Acidic acid solvents most preferably acetic acid, methanesulfonic acid, phosphoric acid, and sulfuric acid.
  • the mixed solvent of the solvent shown above is also suitable.
  • an acidic solution obtained by dissolving or suspending the coupling component in an acidic solvent and the reaction product obtained in the step (a) are mixed, or a cup
  • the ring component is preferably added to the reaction product obtained in step (a) without using a solvent.
  • the acidic solvent is preferably a solvent containing at least one of acetic acid and sulfuric acid.
  • the amount of the solvent added to the coupling component is preferably 0.5 to 200 times, more preferably 1 to 100 times, and more preferably 1 to 50 times in terms of mass ratio. Further preferred.
  • the preferred amount of the solvent for the coupling component is less than 0.5 times by mass, stirring in the production machine for the coupling component and the solvent becomes difficult, and the desired reaction does not proceed. Moreover, if it exceeds 200 times, it will become uneconomical.
  • the preparation method of the azo compound solution is the above-mentioned form (i), or a coupling in which at least a part of the compound represented by the formula (1) is dissolved in the above-mentioned form (ii)
  • the solvent for dissolving the obtained azo pigment is:
  • the azo compound solution finally obtained in step (b) is preferably an acidic solution, and in particular, at least acetic acid and sulfuric acid.
  • a solution containing one is preferable.
  • the total amount of the azo compound produced in the step (b) (the azo compound represented by the formula (1) dissolved in the azo compound solution and the azo compound dissolved)
  • the ratio of the azo compound represented by formula (1) dissolved in the azo compound solution to the total of the azo pigments represented by formula (1) precipitated from the liquid is 50% by mass or more.
  • it is preferably 75% by mass or more, preferably 90% by mass or more, and 100% by mass (the state in which the azo compound produced in the step (b) is completely dissolved in the reaction solution). Is most preferable, and this tends to further reduce the particle diameter of the pigment.
  • the mixing temperature of the diazonium compound preparation liquid and the coupling component in the step (a) is preferably 50 ° C. or lower, more preferably 30 ° C. or lower, still more preferably 25 ° C. It is desirable to carry out the following. If it exceeds 50 ° C., the diazonium compound derived in the step (a) and the azo compound represented by the formula (1) produced may be decomposed. Moreover, a normal stirrer is used for mixing, and there is no limitation in particular. Although depending on the production equipment, the preferable rotation speed of stirring is preferably 30 to 300 rpm, more preferably 40 to 200 rpm, and still more preferably 50 to 200 rpm.
  • the stirring time in the step (b) is preferably from 0.1 to 10 hours, more preferably from 0.3 to 5 hours, still more preferably from 0.3 to 3 hours. If it is less than 0.1 hour, it is difficult to induce the pigment completely, and if it exceeds 10 hours, the azo compound represented by formula (1) may be decomposed.
  • Step (c) is a step of crystallizing the pigment by mixing the azo compound solution obtained in step (b) with a poor solvent having low solubility of the azo compound.
  • the method of mixing the azo compound solution obtained in step (b) and the poor solvent is not particularly limited, but it is preferable to add the azo compound solution obtained in step (b) to the poor solvent.
  • the poor solvent is preferably stirred.
  • the stirring speed is preferably 100 to 10,000 rpm, more preferably 150 to 8000 rpm, and particularly preferably 200 to 6000 rpm.
  • a pump or the like can be used for the addition. At this time, it may be added in the liquid or outside the liquid, but the addition in the liquid is more preferable. Furthermore, it is preferable to continuously supply the liquid by a pump through a supply pipe.
  • the poor solvent is not particularly limited, but the solubility of the azo compound is preferably 1 g / L or less, more preferably 0.1 g / L or less. This solubility may be the solubility when dissolved in the presence of an acid or alkali.
  • the compatibility or uniform mixing of the azo compound solution obtained in step (b) and the poor solvent is preferably such that the amount of the good solvent of the azo compound dissolved in the poor solvent is 30% by mass or more, and 50% by mass or more. It is more preferable that In this specification, solubility refers to solubility at 25 ° C.
  • the poor solvent examples include water, hydrochloric acid, aqueous ammonia, aqueous solvents such as aqueous sodium hydroxide, alcohol solvents such as methanol, ethanol, isopropyl alcohol, and 1-methoxy-2-propanol, and glycols such as ethylene glycol and diethylene glycol.
  • Solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ether solvents such as diethyl ether and tetrahydrofuran, hydrocarbon solvents such as hexane, benzene and toluene, nitrile solvents such as acetonitrile, dichloromethane, trichloroethylene And halogen-based solvents such as ethyl acetate, ethyl lactate, ester solvents such as 2- (1-methoxy) propyl acetate and the like, preferably water, hydrochloric acid, aqueous ammonia, hydroxy acid Aqueous solvents such as aqueous sodium, alcoholic solvents such as methanol, ethanol, isopropyl alcohol, 1-methoxy-2-propanol, glycolic solvents such as ethylene glycol and diethylene glycol, ketone compounds such as acetane,
  • the volume ratio of the azo compound solution obtained in step (b) and the poor solvent is preferably 1/50 to 2/3, more preferably 1/40 to 1/2, and 1/20 to 1/2. Is particularly preferred. When the volume ratio is 2/3 or less, the pigment is sufficiently crystallized to increase the reaction yield, and when the volume ratio is 1/50 or more, the productivity is improved and economical.
  • the mixing temperature of the azo compound solution obtained in step (b) and the poor solvent is not particularly limited, but is preferably -10 to 50 ° C, and preferably -5 to 30 ° C. More preferably, it is most preferably carried out at 10 to 25 ° C.
  • the particle size of the organic nanoparticles formed by precipitation can be controlled by adjusting the Reynolds number.
  • the Reynolds number is a dimensionless number representing the state of fluid flow and is represented by the following equation.
  • Re represents the Reynolds number
  • represents the density [kg / m 3 ] of the azo compound solution obtained in step (b)
  • U meets the azo compound solution and the poor solvent.
  • L represents the equivalent diameter [m] of the flow path or supply port of the portion where the azo compound solution meets the poor solvent
  • represents the viscosity coefficient [Pa] of the azo compound solution. Represents s].
  • the equivalent diameter L refers to the diameter of the equivalent circular pipe when assuming an opening diameter of a pipe having an arbitrary cross-sectional shape or a circular pipe equivalent to the flow path.
  • the equivalent diameter L is expressed by the following formula (2), where A is the cross-sectional area of the pipe, p is the wetted length (circumferential length) of the pipe, or p is the outer periphery of the flow path.
  • the relative speed U when the azo compound solution and the poor solvent meet is defined by the relative speed in the direction perpendicular to the surface of the part where both meet. That is, for example, when the azo compound solution is injected and mixed in a stationary poor solvent, the speed of injection from the supply port becomes equal to the relative speed U.
  • the value of the relative speed U is not particularly limited, but is preferably 0.5 to 100 m / s, and more preferably 1.0 to 50 m / s.
  • the density ⁇ of the azo compound solution is a value determined by the type of material selected, but is practically, for example, 0.8 to 2.0 kg / m 3 .
  • the viscosity coefficient ⁇ of the azo compound solution is also a value determined by the material used, the ambient temperature, and the like. More preferably, it is s.
  • it can be obtained by adjusting the Reynolds number to 60 or more to control the particle diameter of the pigment nanoparticles, preferably 100 or more, and more preferably 150 or more.
  • the Reynolds number there is no particular upper limit to the Reynolds number, for example, pigment particles having a desired average particle diameter can be controlled and obtained by adjusting and controlling within a range of 100,000 or less. At this time, within the above range, it is possible to control and obtain pigment particles having a smaller particle size by increasing the Reynolds number.
  • the length in the major axis direction is preferably 1 nm to 1 ⁇ m, more preferably 5 to 500 nm. It is more preferably 10 to 200 nm, and particularly preferably 10 to 100 nm.
  • the particle diameter of pigment particles there is a method of expressing the average size of a group by quantifying by a measurement method, but as a frequently used method, the mode diameter indicating the maximum value of distribution, the integral distribution curve There are median diameter corresponding to the median, various average diameters (number average, length average, area average, mass average, volume average, etc.). In the present invention, unless otherwise specified, the average particle diameter is Number average particle diameter.
  • the method for measuring the particle size of pigment particles include a microscopy method, a mass method, a light scattering method, a light blocking method, an electric resistance method, an acoustic method, and a dynamic light scattering method. Particularly preferred.
  • Examples of the microscope used for the microscopy include a scanning electron microscope and a transmission electron microscope.
  • Examples of the particle measuring apparatus using the dynamic light scattering method include Nikkiso's Nanotrac UPA-EX150 and Otsuka Electronics' dynamic light scattering photometer DLS-7000 series.
  • the preferred average particle diameter of the pigment particles is appropriately adjusted by (1) the temperature in step (c), (2) the solubility of the azo compound in the poor solvent, and (3) the stirring speed (or Reynolds number). To achieve.
  • At least one of the azo compound solution and the poor solvent may contain a dispersant.
  • a dispersant in the azo compound solution.
  • the dispersant has the action of (1) quickly adsorbing to the surface of the deposited pigment to form fine nanoparticles, and (2) preventing these particles from aggregating again.
  • the dispersant for example, anionic, cationic, amphoteric, and nonionic low molecular or high molecular dispersants can be used.
  • the polymer dispersant preferably has a mass average molecular weight of 1,000 to 500,000, more preferably 10,000 to 500,000, and particularly preferably 10,000 to 100,000.
  • polyvinyl pyrrolidone polyvinyl alcohol, polyvinyl methyl ether, polyethylene glycol, polypropylene glycol, polyacrylamide, vinyl alcohol-vinyl acetate copolymer, polyvinyl alcohol-bunformalized product, polyvinyl alcohol-partial butyralized product, vinylpyrrolidone- Vinyl acetate copolymer, polyethylene oxide / propylene oxide block copolymer, polyacrylate, polyvinyl sulfate, poly (4-vinylpyridine) salt, polyamide, polyallylamine salt, condensed naphthalenesulfonate, cellulose derivative, starch Derivatives and the like.
  • polymers such as alginate, gelatin, albumin, casein, gum arabic, tonganto gum and lignin sulfonate can also be used.
  • polyvinylpyrrolidone is preferable.
  • These polymer compounds can be used singly or in combination of two or more, or a low molecular weight dispersant may be used in combination.
  • the dispersant used for dispersing the pigment is described in detail on pages 29 to 46 of “Pigment dispersion stabilization and surface treatment technology / evaluation” (Chemical Information Association, issued in December 2001).
  • Anionic dispersants include N-acyl-N-alkyl taurine salts, fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinates, alkyl phosphorus Examples include acid ester salts, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salts, and the like. Of these, N-acyl-N-alkyltaurine salts are preferred. As the N-acyl-N-alkyl taurine salts, those described in JP-A-3-273067 are preferable. These anionic dispersants can be used alone or in combination of two or more.
  • Cationic dispersants include quaternary ammonium salts, alkoxylated polyamines, aliphatic amine polyglycol ethers, aliphatic amines, diamines and polyamines derived from aliphatic amines and fatty alcohols, fatty acids And imidazolines derived from these and salts of these cationic substances. These cationic dispersants can be used alone or in combination of two or more.
  • the amphoteric dispersant is a dispersant having both an anion group part in the molecule of the anionic dispersant and a cation group part in the molecule of the cationic dispersant.
  • Nonionic dispersants include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine And glycerin fatty acid ester. Of these, polyoxyethylene alkylaryl ether is preferable. These nonionic dispersants can be used alone or in combination of two or more.
  • the content of the dispersant is preferably in the range of 0.1 to 1000 parts by weight, more preferably in the range of 1 to 500 parts by weight, and still more preferably in the range of 5 to 200 parts by weight with respect to 100 parts by weight of the pigment. Range.
  • a dispersing agent may be used independently or may be used in combination of multiple things.
  • the product obtained by the above steps (a) to (c) is treated in accordance with a post-treatment method of a normal organic synthesis reaction, and then purified or purified without purification. It can use for a conversion process. That is, for example, the product liberated from the reaction system can be used without being purified, or can be purified by recrystallization, salt formation, etc., alone or in combination.
  • reaction solvent is distilled off, or it is poured into water or ice without being distilled off, and the liberated product is extracted with neutralization or without neutralization, or extracted with an organic solvent / aqueous solution. It can also be used after purification or refining by recrystallization, crystallization, salt formation or the like, either alone or in combination.
  • the amorphous azo compound obtained in the step (c) may be subjected to crystal conversion without removing the azo compound from the suspension of the azo compound, or may be converted after being taken out.
  • step (c) If the solid obtained in step (c) is not amorphous, the azo compound is dissolved in a good solvent and mixed with a poor solvent from which an amorphous solid can be obtained to obtain an amorphous azo compound. May be.
  • pigment particles obtained by the production method of the present invention that is, the azo pigment represented by the formula (1) obtained by crystal conversion from an amorphous azo compound by the above method will be described.
  • the volume average particle diameter of the pigment particles obtained by the production method of the present invention is preferably 1 nm to 10 ⁇ m, more preferably 5 nm to 5 ⁇ m, still more preferably 10 nm to 1 ⁇ m, and more preferably 10 to 500 nm. It is particularly preferred.
  • the volume average particle diameter of the pigment particles refers to the particle diameter of the pigment itself, or the particle diameter to which the additive has adhered when an additive such as a dispersant is attached to the colorant.
  • a Nanotrac UPA particle size analyzer (UPA-EX150; manufactured by Nikkiso Co., Ltd.) can be used as a measuring device for the volume average particle diameter of pigment particles. The measurement can be performed according to a predetermined measurement method by placing 3 ml of the pigment dispersion in a measurement cell. As parameters input at the time of measurement, the ink viscosity is used as the viscosity, and the pigment density is used as the density of the dispersed particles.
  • the preferred volume average particle diameter of the pigment particles described above suppresses crystal growth when crystal conversion is performed using a solvent having low solubility of the azo pigment represented by the formula (1) after crystal conversion described above. In addition, it is achieved by appropriately adjusting the temperature, time, and amount of solvent for crystal conversion.
  • the BET specific surface area of the ⁇ -type crystal form azo pigment represented by the following formula (1) by the nitrogen adsorption method is 50 m 2 / g or more. Is preferable, and it is particularly preferably 60 m 2 / g or more.
  • the BET specific surface area by the nitrogen adsorption method is the ratio obtained by adsorbing nitrogen gas to the powder particles, obtaining the adsorption equilibrium pressure in the adsorption equilibrium state, and calculating the monomolecular layer adsorption amount by the BET relational expression. It refers to the surface area.
  • the BET specific surface area by the nitrogen adsorption method can be measured, for example, according to “Measurement method of gas adsorption amount by one-point method” defined in Appendix 2 of Japanese Industrial Standard JIS Z8830. Specifically, it can be measured by using a specific surface area measuring apparatus “MONOSORB MS-17” (manufactured by Yuasa Ionics Co., Ltd.).
  • MONOSORB MS-17 manufactured by Yuasa Ionics Co., Ltd.
  • the azo pigment represented by the formula (1) produced by the method of the present invention may be post-treated as necessary.
  • post-treatment methods include solvent salt milling, salt milling, dry milling, solvent milling, pigment particle control step by grinding treatment such as acid pasting, solvent heating treatment, resin, surfactant and dispersant.
  • solvent salt milling such as acid pasting, solvent heating treatment, resin, surfactant and dispersant.
  • pigment particle control step by grinding treatment such as acid pasting, solvent heating treatment, resin, surfactant and dispersant.
  • the surface treatment process by etc. is mentioned.
  • the compound represented by the formula (1) of the present invention is subjected to solvent salt milling as a post-treatment.
  • Solvent salt milling includes, for example, a mixture containing an azo pigment (hereinafter, the azo pigment before kneading and grinding may be referred to as “crude azo pigment”), an inorganic salt, and an organic solvent that does not dissolve the inorganic salt. A kneading and grinding is performed in a kneader.
  • an azo pigment hereinafter, the azo pigment before kneading and grinding may be referred to as “crude azo pigment”
  • an inorganic salt an organic solvent that does not dissolve the inorganic salt.
  • a kneading and grinding is performed in a kneader.
  • water-soluble inorganic salt can be used conveniently, For example, it is preferable to use inorganic salts, such as sodium chloride, potassium chloride, sodium sulfate, potassium sulfate.
  • the particle diameter of the water-soluble inorganic salt is not particularly limited, but from the viewpoint of controlling the particle diameter of the secondary aggregate of the azo pigment, the particle diameter of the water-soluble inorganic salt is 0.5 by volume based median diameter. It is preferably ⁇ 50 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 1 to 10 ⁇ m.
  • the amount of the inorganic salt used can be 1 to 30 times by mass with respect to the crude azo pigment, and is preferably 3 to 20 times by mass from the viewpoint of productivity, and 5 to 15 times by mass. Is more preferable.
  • the organic solvent a water-soluble organic solvent can be suitably used, and the solvent easily evaporates due to a temperature rise during kneading.
  • a high boiling point solvent is preferable from the viewpoint of safety.
  • organic solvents include diethylene glycol, glycerin, ethylene glycol, propylene glycol, liquid polyethylene glycol, liquid polypropylene glycol, 2- (methoxymethoxy) ethanol, 2-butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monomethyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, di Propylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene Glycol or mixtures thereof.
  • water-soluble organic solvents monohydric alcohol solvents such as propyl alcohol, 2-butyl alcohol, tert-butyl alcohol and the like can also be suitably used.
  • the amount of the water-soluble organic solvent used is preferably 0.1 to 5 times by mass, more preferably 2 to 3 times by mass with respect to the crude azo pigment.
  • the kneading temperature is preferably 20 to 130 ° C, particularly preferably 40 to 110 ° C.
  • a kneader or a mix muller can be used as the kneader.
  • a batch kneader such as a kneader, a super mixer (manufactured by Kawata Co., Ltd.) or a trimix (manufactured by Inoue Seisakusho Co., Ltd.). Etc.) and a continuous kneader such as a continuous single-screw kneader KCK mill (manufactured by Asada Tekko Co., Ltd.) can be used.
  • the continuous kneader includes, for example, a fixed blade and a rotating blade that can give the crude pigment three actions of compression, shearing, and mixing (substitution) whose grinding part is an element necessary for kneading and dispersing. It is preferable to have.
  • the crests and crests of the fixed blade and the rotating blade form a gap (gap), and a shearing action occurs in the gap, and the material between the valleys of the rotating blade and the fixed blade mutually forms a cavity slice. It is preferable to have received.
  • the shape of the fixed blade and the rotating blade is not particularly limited, but each of them is preferably selected from three types of chrysanthemum type, fan type and mortar type. It is preferable that the stationary blades and the rotating blades are alternately stacked in multiple stages, whereby cavities can be radially formed on both surfaces of each blade. Further, it is preferable that the rotating blade and the intermediate screw are alternately incorporated on the rotating shaft, and the fixed blade is preferably fixed to the feed cylinder by the tie rod alternately with the shear chamber cylinder. Thus, the kneaded product can be extruded.
  • the continuous kneader has at least six temperature control units in the mixture charging unit, the grinding unit, and the extrusion unit.
  • the treatment temperature in the grinding step is not particularly limited and may be, for example, 5 to 200 ° C., but is preferably 5 to 50 ° C. from the viewpoint of discoloration and particle size distribution of the azo pigment particles. More preferably, it is ⁇ 35 ° C.
  • the continuous kneader can change the discharge amount depending on the mixing ratio of the crude azo pigment, the water-soluble inorganic salt and the water-soluble organic solvent, or the shaft rotation speed. By changing the discharge amount, the ground particle diameter of the azo pigment can be easily controlled to a desired particle diameter.
  • the manufacturing method of the azo pigment ground material of this invention can be equipped with another process as needed in addition to the said grinding process.
  • Other steps include, for example, removing the water-soluble inorganic salt and the water-soluble organic solvent by putting the mixture after the grinding step into water or the like and stirring, and then separating the azo pigment ground product by filtration or the like.
  • a drying step of drying the azo pigment ground product obtained in the cleaning step In these washing steps and drying steps, a method usually used in a so-called solvent salt milling method can be applied without particular limitation in the present invention.
  • the primary particle diameter of the azo pigment ground product in the present invention is preferably 80 nm or less, and more preferably 30 to 50 nm.
  • the particle size of the secondary particles in which the primary particles are aggregated is preferably 120 nm or less, and more preferably 60 to 100 nm.
  • the particle diameters of primary particles and secondary particles of the azo pigment ground product are measured using a transmission electron microscope (TEM).
  • an amorphous azo compound represented by the following formula (1), a salt, hydrate or solvate thereof has a Bragg angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction of ( a) 4.8 °, 7.2 ° and 9.7 °, (b) 4.8 °, 7.2 °, 9.7 °, 20.1 ° and 26.8 ° or (c) 4 Characteristic X-ray diffraction at .8 °, 7.2 °, 9.5 °, 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 °
  • the same ones as described above can be used, and the preferred ranges are also the same.
  • the kneader used for kneading the same one as described above can be used.
  • the (aqueous) pigment dispersion in the present invention contains at least the azo pigment obtained by the above production method, a dispersant and water.
  • the dispersing agent can be arbitrarily selected from low molecules and polymers, and further water-soluble and water-insoluble, but polymers are preferred from the viewpoint of the image quality of printed matter.
  • the dispersant is particularly preferably a water-soluble polymer.
  • the “dispersing agent” means one that has been crosslinked with a crosslinking agent. In the pigment dispersion of the present invention, it is desirable that the dispersant is adsorbed on the pigment.
  • the dispersant Since the dispersant has an effect due to charge repulsion in the molecule, it preferably has 1 or more, preferably 10 or more carboxy groups from the viewpoint of storage stability of the dispersion.
  • the cross-linking agent When the cross-linking agent has two epoxy groups, the epoxy group and the carboxy group are cross-linked by the cross-linking reaction, so that the number of carboxy groups decreases. Therefore, the polymer preferably has 10 or more carboxy groups.
  • the carboxy group in the polymer may be in the acid (—COOH) form or the salt form.
  • the salt include metal ions, ammonium, substituted ammonium, quaternary ammonium, and pyridinium salts. Preferred are metal ion and ammonium, and more preferred are potassium ion and sodium ion.
  • the polymer dispersant of the present invention includes polyurethane, polyester, and polyvinyl, more preferably polyurethane, polyester, and polyvinyl, and most preferably polyvinyl (vinyl polymer).
  • two or more kinds of polymers may be combined.
  • Introduction of carboxy groups into the polymer is obtained by copolymerization of monomers containing at least one carboxy group.
  • itaconic acid, maleic acid, fumaric acid, crotonic acid, methacrylic acid, acrylic acid, and ⁇ -carboxyethyl acrylate are used, and methacrylic acid, acrylic acid, and ⁇ -carboxyethyl acrylate are preferably used.
  • the carboxyl group in the polymer first has a function of crosslinking with the crosslinkable group in the crosslinking agent.
  • the crosslinkable group include acid anhydrides and epoxy groups, and epoxy groups are particularly desirable. This is because the reactivity is high so that crosslinking can be performed under mild conditions.
  • the unreacted carboxyl group is effective for the stability of the final fine particle dispersion against sedimentation and aggregation.
  • the carboxyl group is effective as a stable group in a polar solvent, particularly an aqueous solvent. If the carboxyl group is the only group that contributes to stability in the pigment dispersion, the stability of the dispersion will be significantly reduced if all carboxy groups are cross-linked with the cross-linking agent.
  • the molar excess of the carboxyl group with respect to the epoxy group so that the unreacted carboxyl group remains after the crosslinking reaction is completed, and the molar ratio of the carboxyl group to the epoxy group is 30: 1 to 1. It is desirable that the ratio is 1: 1, more preferably 25: 1 to 1.1: 1, and particularly preferably 20: 1 to 2: 1.
  • the polymer may have other stability groups. The choice of the stabilizing group and its amount is highly dependent on the nature of the solvent. The stability group actually depends on whether it is hydrophilic (eg, polar solvent) or hydrophobic (eg, nonpolar solvent). Preferred polymer dispersants are obtained from both hydrophilic and hydrophobic monomers.
  • the hydrophilic monomer is a monomer containing hydrophilicity which is an ionic group or a nonionic group.
  • the ionic group may be a cation, but is preferably an anion. Both cationic and anionic groups impart amphoteric stability to the dispersant.
  • Preferred anionic groups are phenoxy, sulfonic acid, sulfuric acid, phosphonic acid, polyphosphoric acid, phosphoric acid groups (which may be salts).
  • Preferred cationic groups are quaternary ammonium, benzalkonium, guanidine, biguanidine, and pyridinium.
  • nonionic groups are glucooxide, saccharides, pyrrolidone, acrylamide, and especially hydroxyl and poly (alkylene oxide) groups, more preferably poly (ethylene oxide) groups or poly (propylene oxide) groups, especially — (CH 2 CH 2 O) n H or - (CH 2 CH 2 O) n C 1 - 4 - alkyl.
  • n represents 3 to 200 (preferably 4 to 20).
  • C 1 - 4 - representation represents a "C 1 -C 4".
  • the polymer may contain only nonionic groups, a plurality of nonionic groups throughout the polymer, and one or more polymer chains containing nonionic groups. Hydroxyl groups are inserted using polyvinyl alcohol, polyhydroxyl functional acrylics and cellulose. The ethyleneoxy group is inserted using a polymer chain such as polyethylene oxide.
  • a hydrophobic monomer is a monomer containing a hydrophobic group. Typical having a hydrophobic group is preferably 3 or less with a hydrophilic group 0, hydrocarbons, fluorocarbons, poly C 3 - a 4 alkyleneoxy acids and alkyl siloxanes.
  • the hydrophobic group is preferably a C 3 - a 50 strand, also may have a propylene oxide in the hydrophobic monomer in the side chain or straight chain.
  • the polymer may be a homopolymer, but is preferably a copolymer.
  • the polymer includes random polymers (statistically short blocks or segments), but preferably includes graft polymers (long blocks or segments).
  • the polymer may also be an alternating polymer.
  • the polymer may be branched but is preferably linear.
  • the polymer may have more than one segment (eg, block and graft, copolymer) but is preferably random.
  • the polymer has two or more segments, it is preferred that at least one segment is hydrophobic and at least one segment is hydrophilic relative to each other.
  • a preferred method of creating hydrophobic and hydrophilic segments is by copolymerization of hydrophobic and hydrophilic monomers, respectively. If the polymer has at least one hydrophobic segment and at least one hydrophilic segment, the carboxyl group may be in the hydrophobic segment, in the hydrophilic segment, or in both segments.
  • the vinyl polymer may be produced by any suitable means.
  • a preferred method for producing the vinyl polymer is free radical polymerization using a vinyl monomer such as (meth) acrylate and vinyl naphthalene (especially a styrene monomer). Suitable free radical polymerization is not limited to suspension polymerization, solution polymerization, dispersion polymerization and emulsion polymerization, but is preferably solution polymerization.
  • the vinyl polymer is preferably a (meth) acrylate monomer.
  • the vinyl polymer is preferably a copolymer. Copolyvinyl dispersants derived from hydrophobic monomers and hydrophilic monomers are preferably substantially free of segments.
  • copolyvinyl polymers are produced by free radical polymerization such that the segment length is very short or absent. Such cases are often referred to as “random” polymerization.
  • Copolyvinyl polymers with segments are produced by living polymerization, particularly polymerization methods such as group transfer polymerization, atom transfer polymerization, macromonomer polymerization, graft polymerization, anionic or cationic polymerization.
  • the Suitable hydrophilic vinyl monomers are nonionic and ionic monomers.
  • Preferred nonionic monomers are sugars, glucose, amides, pyrrolidones, especially those having hydroxy and ethoxy groups.
  • nonionic monomers examples include hydroxy ethyl acrylate, hydroxy ethyl methacrylate, vinyl pyrrolidone, ethoxylated (meth) acrylate and (meth) acrylamide.
  • Suitable ionic vinyl monomers may be cationic but are preferably anionic.
  • Preferred anionic vinyl monomers are those containing carboxy groups and / or phosphoric acid groups and / or sulfonic acid groups (these acids may be free or salts).
  • Preferred examples include (meth) acrylic acid, styrene sulfonic acid, vinyl benzyl sulfonic acid, vinyl sulfonic acid, (meth) acryloyloxyalkyl sulfonic acid (for example, acryloyloxymethyl sulfonic acid, acryloyloxyethyl sulfonic acid, acryloyloxypropyl sulfone).
  • Preferred cationic vinyl monomers are those containing quaternary amine, pyridine, guanidine and biguanidine groups.
  • Preferred hydrophobic vinyl monomers do not have hydrophilic groups.
  • Polyesters having at least one carboxyl group are also produced by the reaction of a diol monomer with an excess of dicarboxylic acid monomer.
  • the carboxyl group can also be introduced by copolymerization of a diol having a carboxyl group and a dicarboxylic acid monomer.
  • Polyesters are typically made by esterification of a dicarboxylic acid and a diol.
  • a polyester having a carboxyl group can be produced, for example, by subjecting a carboxyl group-containing compound and a hydroxyl group-containing compound to a dehydration condensation reaction by a known method such as a melting method or a solvent method so that the carboxyl group remains. it can.
  • polyesters examples include those obtained by appropriately selecting and dehydrating and condensing a compound having a carboxyl group such as a monobasic acid and a polybasic acid and a compound having a hydroxyl group such as a diol and a polyol. Or the thing using fatty acids becomes alkyd resin.
  • the carboxyl group possessed by the polyester used in the present invention is mainly an unreacted carboxyl group derived from a polybasic acid having a dibasic acid or higher constituting the polyester.
  • polybasic acids examples include adipic acid, (anhydrous) succinic acid, sebacic acid, dimer acid, (anhydrous) maleic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, tetrahydro (anhydride) phthalic acid, hexahydro ( Anhydrous) phthalic acid, hexahydroterephthalic acid, 2,6-naphthalenedicarboxylic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid and the like.
  • Examples of compounds having a carboxyl group that can be used in addition to polybasic acids include lower alkyl esters of acids such as dimethyl terephthalate; monobasic acids such as benzoic acid, p-tertiarybutylbenzoic acid, rosin, and hydrogenated rosin.
  • Examples include acids; fatty acids and fats; macromonomers having one or two carboxyl groups at the molecular terminals; 5-sodium sulfoisophthalic acid and dimethyl esters thereof.
  • Examples of the compound having a hydroxyl group include ethylene glycol, neopentyl glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1 , 4-butanediol, 1,3-propanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,5-pentanediol, alkylene oxide adduct of bisphenol A, hydrogenated bisphenol A, hydrogenated Dialkylene adducts of bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; glycerin, trimethylolpropane, trimethylolethane, diglycerin, pentae Polyols such as sitolitol and trishydroxyethyl isocyanurate; monoglycidyl compounds such
  • hydroxyl group-containing fatty acids or fats such as castor oil and 12-hydroxystearic acid; compounds having a carboxyl group and a hydroxyl group such as dimethylolpropionic acid, p-hydroxybenzoic acid and ⁇ -caprolactone Can also be used.
  • a part of the dibasic acid can be replaced with a diisocyanate compound.
  • a polyester having a carboxyl group can also be produced by a method in which an anhydride such as maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride is added to a hydroxyl group-containing polyester. be able to.
  • an anhydride such as maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride is added to a hydroxyl group-containing polyester.
  • a polyester having a hydroxyl group and a carboxyl group can be easily produced by, for example, reacting a polyester resin in a dehydration condensation reaction so that the hydroxyl group and the carboxyl group remain according to a known method.
  • a polyester having a tertiary amino group and a carboxyl group is obtained by, for example, converting a compound having a tertiary amino group and a hydroxyl group such as triethanolamine, N-methyldiethanolamine, or N, N-dimethylethanolamine into a polyester resin. It can manufacture easily by using as an alcohol component at the time of manufacture.
  • polyester having a radical polymerizable unsaturated group and a carboxyl group examples include [1] radical polymerizable unsaturated group-containing monomers having an isocyanate group such as 2-methacryloyloxyethyl isocyanate to a polyester having a hydroxyl group and a carboxyl group.
  • a method of adding an anhydride having a radically polymerizable unsaturated group such as maleic anhydride [2] a method of adding a polymerizable monomer having an epoxy group to a polyester resin having a carboxyl group, [ 3] It can be easily produced by a method of synthesizing a polyester resin using a radical polymerizable unsaturated group-containing monomer such as maleic anhydride as an acid component.
  • Polyurethane is preferably produced by a condensation reaction of a polyol component (eg, di-isocyanate) and a polyol component (eg, diol).
  • a polyol component eg, di-isocyanate
  • a polyol component eg, diol
  • Polyurethane having a carboxyl group can be easily obtained by reacting a polyisocyanate component with a polyol component containing a compound having a carboxyl group and a hydroxyl group such as dimethylolpropionic acid as a component for introducing a carboxyl group. Can be manufactured.
  • polystyrene resin in addition to the diol component listed in the polyester production method, a tri- or higher functional polyol compound may be used as necessary.
  • polyisocyanate component examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, phenylene diisocyanate, 1,5-naphthalene diisocyanate, and metaxylylene diisocyanate.
  • Diisocyanate compounds such as isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate, hydrogenated metaxylylene diisocyanate, crude 4,4′-diphenylmethane diisocyanate, and polymethylene polyphenyl isocyanate Isocyanate compounds can also be used.
  • Polyurethane can be produced according to conventional methods.
  • the addition reaction is preferably performed at room temperature or a temperature of about 40 to 100 ° C. in an inert organic solvent solution that does not react with isocyanate groups.
  • a known catalyst such as dibutyltin dilaurate may be used.
  • chain extenders such as diamines, polyamines, N-alkyl dialkanolamines such as N-methyldiethanolamine and dihydrazide compounds can also be used.
  • Polyurethane having a hydroxyl group and a carboxyl group can be easily produced by, for example, reacting at a ratio of hydroxyl groups larger than isocyanate groups when producing polyurethane. Alternatively, it can also be easily produced by subjecting a polyisocyanate having a carboxyl group and a terminal isocyanate group to an addition reaction with a compound having two or more hydroxyl groups in one molecule.
  • a polyurethane having a tertiary amino group and a carboxyl group can be easily produced, for example, by using an N-alkyl dialkanolamine such as N-methyldiethanolamine as a part of the polyol component.
  • a polyurethane having a blocked isocyanate group and a carboxyl group can be easily produced by, for example, subjecting a polyisocyanate having a carboxyl group and a terminal isocyanate group to a known blocking agent.
  • a polyurethane having an epoxy group and a carboxyl group can be easily produced by, for example, adding a compound having a hydroxyl group and an epoxy group to a polyisocyanate having a carboxyl group and a terminal isocyanate group.
  • Examples of the compound having a hydroxyl group and an epoxy group include glycidol, glycerin diglycidyl ether, trimethylolpropane diglycidyl ether, and diglycidyl ether of bisphenol A.
  • Polyurethane having a radical polymerizable unsaturated group and a carboxyl group as an acidic group is, for example, a polyisocyanate having a terminal isocyanate group, a polymerizable monomer having a hydroxyl group as described above, glycerol mono (meth) acrylate, and trimethylol. It can be easily produced by a method in which a compound having a hydroxyl group and a radically polymerizable unsaturated group such as propanedi (meth) acrylate or pentaerythritol triacrylate is subjected to an addition reaction.
  • a compound having a hydroxyl group and a radically polymerizable unsaturated group such as propanedi (meth) acrylate or pentaerythritol triacrylate is subjected to an addition reaction.
  • a polyurethane having a hydrolyzable alkoxysilane group and a carboxyl group as an acidic group is, for example, a polyisocyanate having a terminal isocyanate group, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethyl. It can be easily produced by a method in which a silane coupling agent having an active hydrogen capable of reacting with an isocyanate group such as methoxysilane or ⁇ -aminopropyltriethoxysilane is subjected to an addition reaction.
  • the polymer is selected to match the liquid medium used in the process of producing the fine particle dispersion and to match the liquid color developer (vehicle) in the final composition (eg, ink) used in the fine particle dispersion.
  • the polymer is preferably hydrophilic.
  • the weight average molecular weight of the dispersant is preferably 10,000 or more and 200,000 or less, more preferably 15,000 or more and 150,000 or less, and particularly preferably 20,000 or more and 100,000 or less. If it is 10,000 or more, the image quality of the printed matter is excellent and preferable. On the other hand, if it is 200,000 or less, it is possible to suppress an increase in viscosity, and further, it is preferable to prevent a decrease in storage stability.
  • the content of the dispersant is preferably in the range of 20 to 100 parts by weight, more preferably in the range of 25 to 90 parts by weight, and still more preferably in the range of 30 to 70 parts by weight with respect to 100 parts by weight of the pigment. It is. Moreover, a dispersing agent may be used independently or may be used in combination of multiple things. When content of a dispersing agent is less than 20 mass parts, the quantity of a dispersing agent will become inadequate with respect to a pigment, and storage stability will become inadequate. On the other hand, when the amount exceeds 100 parts by mass, the viscosity becomes high and the storage stability is further lowered, which is not suitable.
  • the D / P value is 0. It is preferably 15 or more and 1.0 or less, more preferably 0.16 or more and 0.8 or less, and further preferably 0.17 or more and 0.7 or less.
  • the dispersant must have a sufficient acid value for crosslinking with the crosslinking agent, and preferably has a acid value of at least 50 mg KOH / g or more.
  • the acid value is preferably 70 to 200 mg KOH / g, more preferably 70 to 160 mg KOH / g.
  • a dispersant having such an acid number provides improved storage stability.
  • it is lower than 50 mgKOH / g, the solubility in aqueous solvents is low, which is not suitable.
  • the dispersant may be either water-insoluble or water-soluble, but the solubility in water is preferably 1 g / 100 mL or more, more preferably 3 g / 100 mL or more, and particularly preferably 5 g / 100 mL or more. is there. If it is less than 1 g / (100 m) L, the solubility in water is low, so that it is difficult to adsorb to the pigment particles, and the dispersibility may be lowered.
  • the aqueous (pigment) dispersion is preferably crosslinked with a crosslinking agent.
  • the dispersant adsorbs to the pigment surface before crosslinking to form a relatively stable dispersion, and this dispersion step is followed by a step of crosslinking with the crosslinking agent.
  • the crosslinking agent may or may not have an oligomer dispersing group.
  • oligomer is used in the sense that there is no upper limit for the molecular weight and no upper limit for the repeating unit.
  • Crosslinkers having one or more oligomeric dispersing groups increase the stability of the resulting fine particle dispersion. This increased stability is particularly useful in liquid colorants (vehicles) used for ink jet recording. This is because dispersion is difficult with a dispersant having an acid value of less than 50 mg / KOH.
  • Oligomeric dispersing groups are preferably polyalkylene oxide, more preferably poly C 2 - 4 - an alkylene oxide, particularly preferably polyethylene oxide.
  • the polyalkylene oxide improves the stability of the resulting fine particle dispersion.
  • the polyalkylene oxide preferably has 3 to 200, more preferably 5 to 50, particularly preferably 5 to 20 alkylene oxide repeating units.
  • the crosslinking agent preferably has two or more epoxy groups.
  • a preferred cross-linking agent having at least two epoxy groups is an epichlorohydrin derivative.
  • Crosslinkers with two or more epoxy groups and no oligomer dispersing groups are ethylene glycol diglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, halogenated Bisphenol A diglycidyl ether, trimethylolpropane polyglycidyl ether, polyglycerol polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, and polybutadiene diglycidyl ether.
  • Preferred crosslinking agents having two epoxy groups and having one or more oligomeric dispersing groups are diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, or dipropylene glycol diglycidyl ether.
  • acid anhydrides such as phthalic anhydride and succinic anhydride can also be used as a crosslinking agent.
  • the crosslinking reaction is preferably performed at 100 ° C. or lower and pH 6 or higher.
  • a more preferred crosslinking reaction is 30 ° C to 90 ° C, more preferably 40 ° C to 85 ° C.
  • the preferred pH for the crosslinking reaction is 7 to 10, more preferably 8 to 9.5.
  • the crosslinking agent further contains a carboxy group, and the crosslinking reaction between the carboxy group and the epoxy group is performed at 100 ° C. or lower and pH 6 or higher.
  • the crosslinking reaction is carried out in an aqueous system, it is preferably 100 ° C. or lower. On the contrary, since the progress of the crosslinking reaction is slow at low temperatures, it is not preferred, preferably 30 ° C. or higher, more preferably 40 ° C. or higher.
  • the polymer may be hydrolyzed when heat is applied in the crosslinking reaction.
  • a pH of less than 6 is not preferable because the pigment dispersion tends to aggregate and becomes unstable.
  • NF membranes reverse osmosis membranes
  • UF membranes ultrafiltration membranes
  • the UF membrane preferably has a molecular weight cut-off of 10,000 to 150,000, more preferably 20,000 to 100,000. If it is less than 10,000, the time required for purification becomes long, so it is inefficient. On the other hand, if it exceeds 150,000, the dispersant may flow out, which is not preferable.
  • azo pigments of the present invention include image recording materials for forming images, particularly color images.
  • image recording materials for forming images, particularly color images.
  • thermal recording materials described in detail below, thermal recording materials, Pressure recording material, recording material using an electrophotographic method, transfer type silver halide photosensitive material, printing ink, recording pen, etc., preferably an ink jet recording material, a thermal recording material, a recording material using an electrophotographic method, More preferred are ink jet recording materials.
  • a solid-state image pickup device such as a CCD
  • a color filter for recording / reproducing a color image used in a display such as an LCD or a PDP
  • a dyeing solution for dyeing various fibers.
  • step (b) since at least a part of the azo compound represented by the formula (1) is dissolved in the reaction solution, in particular, when the adjustment method of the azo compound solution is the above form (ii), the coupling reaction proceeds more smoothly, and a higher purity azo compound can be obtained. This contributes to highly efficient production of the finally obtained azo pigment.
  • the present invention after completion of the step (b), it is possible to obtain a solution in which at least a part of the target azo compound is dissolved without using a large amount of organic solvent (at a high concentration). This contributes to the highly efficient production of the finally obtained azo pigment. Further, the azo pigment can be precipitated as fine particles by mixing the azo compound solution obtained in the step (b) with a poor solvent for the azo compound.
  • the coloring composition of the present invention contains at least one azo pigment, salt, hydrate or solvate of the present invention described above.
  • the coloring composition of the present invention can contain a medium, but when a solvent is used as the medium, it is particularly suitable as an ink for inkjet recording.
  • the coloring composition of the present invention can be prepared by using a lipophilic medium or an aqueous medium as a medium and dispersing the pigment of the present invention in them. Preferably, an aqueous medium is used.
  • the coloring composition of the present invention includes an ink composition excluding a medium.
  • the coloring composition of the present invention may contain other additives as necessary within a range that does not impair the effects of the present invention.
  • additives include, for example, anti-drying agents (wetting agents), anti-fading agents, emulsion stabilizers, penetration enhancers, ultraviolet absorbers, preservatives, anti-fungal agents, pH adjusters, surface tension adjusters, Known additives (described in JP-A No. 2003-306623) such as foaming agents, viscosity modifiers, dispersants, dispersion stabilizers, rust preventives, chelating agents and the like can be mentioned. These various additives are directly added to the ink liquid in the case of water-soluble ink. In the case of oil-soluble ink, it is common to add to the dispersion after preparation of the azo pigment dispersion, but it may be added to the oil phase or water phase at the time of preparation.
  • the primary particle diameter of the azo compound obtained in the following examples was visually observed using a transmission microscope (manufactured by JEOL Ltd .: JEM-1010 electron microscope).
  • X-ray diffraction measurement of azo compounds and azo pigments was performed using CuK ⁇ rays with a powder X-ray diffraction measurement apparatus RINT2500 (manufactured by Rigaku Corporation) in accordance with Japanese Industrial Standard JISK0131 (general rules for X-ray diffraction analysis). This was done under the conditions of
  • Measuring instrument Automatic X-ray diffractometer RINT2500 manufactured by Rigaku X-ray tube: Cu Tube voltage: 55KV Tube current: 280 mA Scanning method: 2 ⁇ / ⁇ scan Scanning speed: 6 deg. / Min Sampling interval: 0.100 deg. Start angle (2 ⁇ ): 5 deg. Stop angle (2 ⁇ ): 55 deg. Divergence slit: 2 deg. Scattering slit: 2 deg. Receiving slit: 0.6mm Using vertical goniometer
  • Example 1 2.2 g of sodium nitrite was dissolved in 50 mL of water. Separately, 5.8 g of the amino compound represented by the formula (2) was dissolved in 50 mL of concentrated hydrochloric acid and then cooled to an internal temperature of ⁇ 10 ° C. The above-mentioned aqueous sodium nitrite solution was added dropwise so that the internal temperature was 0 ° C. or lower. After stirring at an internal temperature of ⁇ 10 ° C. to 0 ° C. for 1 hour, 1.8 g of urea was added at an internal temperature of 0 ° C. or lower. After completion of the addition, the mixture was stirred at the same temperature for 15 minutes to obtain a diazonium salt solution.
  • amorphous azo compound (1) -1 The length of the primary particles of the obtained amorphous azo compound (1) -1 in the major axis direction was about 0.5 ⁇ m.
  • a characteristic X-ray diffraction peak was not observed.
  • Example 2 2.2 g of sodium nitrite was dissolved in 50 mL of water. Separately, 5.8 g of the amino compound represented by the formula (2) was dissolved in 50 mL of concentrated hydrochloric acid and then cooled to an internal temperature of ⁇ 10 ° C. The above-mentioned aqueous sodium nitrite solution was added dropwise so that the internal temperature was 0 ° C. or lower. After stirring at an internal temperature of ⁇ 10 ° C. to 0 ° C. for 1 hour, 1.8 g of urea was added at an internal temperature of 0 ° C. or lower. After completion of the addition, the mixture was stirred at the same temperature for 15 minutes to obtain a diazonium salt solution.
  • Example 3 34.6 g of the compound of formula (2) was suspended in 150 g of acetic acid, and 24 g of sulfuric acid was added dropwise so that the internal temperature became 20 ° C. to 30 ° C. Further, 48.6 g of sulfuric acid solution of 43% nitrosylsulfuric acid was added dropwise so that the internal temperature became 20 ° C. to 30 ° C., stirred for 1 hour at an internal temperature of 20 ° C., and 0.28 g of urea was added to prepare a diazonium salt solution. Obtained. To this diazonium salt solution, 30 g of the compound of formula (3) was added in portions so that the internal temperature was 20 ° C.
  • the length of the primary particles of the obtained azo pigment (1) -5 in the major axis direction was about 2 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 6.5 °, 6.7 °, 9.1 °.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Example 4 5 g of the azo pigment (1) -5 obtained in Example 3 was dissolved in 50 mL of phosphoric acid and added to 300 mL of water so that the internal temperature was 15 ° C. or lower. The precipitated solid was separated by filtration, sufficiently washed with water, suspended in 300 mL of water, and adjusted to pH 7.2 by adding 28% aqueous ammonia solution. The solid was separated by filtration, thoroughly washed with water, and dried at 60 ° C. to obtain 4.2 g of amorphous azo compound (1) -8. The length of the primary particles of the obtained azo compound (1) -8 in the major axis direction was about 0.2 ⁇ m. When the X-ray diffraction measurement of the azo compound (1) -8 was performed under the above conditions, a characteristic X-ray diffraction peak was not observed.
  • Example 5 11.5 g of the compound of formula (2) was suspended in 50 g of acetic acid, and 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid was added dropwise so that the internal temperature was 20 ° C. to 30 ° C. After stirring for 1 hour at an internal temperature of 20 ° C., 0.1 g of urea was added to obtain a diazonium salt solution. Separately, 10 g of the compound of formula (3) was dissolved in 100 mL of acetic acid and added dropwise to the diazonium salt solution so that the internal temperature was 20 ° C. to 25 ° C. The mixture was stirred at an internal temperature of 20 ° C.
  • a uniform reaction solution of the azo compound (1) Separately, 150 g of water was prepared, and the above homogeneous reaction solution of the azo compound (1) was added dropwise at an internal temperature of 20 ° C. to 25 ° C. The precipitated solid was separated by filtration, washed thoroughly with water, suspended in 200 mL of water, and adjusted to pH 6.2 by adding 28% aqueous ammonia solution. The solid was filtered off and thoroughly washed with water to obtain an amorphous azo compound (1) -10. The primary particles of the obtained azo compound (1) -10 had a length in the major axis direction of about 0.2 ⁇ m. When the water content was measured, the water content was 68%. A part of the azo compound (1) -10 was dried, and X-ray diffraction measurement was performed under the above conditions. As a result, a characteristic X-ray diffraction peak was not observed.
  • Example 6 The amorphous water-containing azo compound (1) -10 obtained in Example 5 was dried to obtain azo compound (1) -12. 10 g of azo compound (1) -12 was suspended in 100 mL of ethylene glycol, heated to an internal temperature of 120 ° C., and then stirred at the same temperature for 2 hours. After cooling to an internal temperature of 30 ° C., the solid was filtered off to obtain 9.1 g of azo pigment (1) -13 in the ⁇ -type crystal form. The length of primary particles of the obtained azo pigment (1) -13 in the major axis direction was about 0.2 ⁇ m.
  • Example 7 10 g of the azo compound (1) -12 was suspended in a mixed solvent of 50 mL of ethylene glycol and 50 mL of water, heated to an internal temperature of 95 ° C., and stirred at the same temperature for 2 hours. After cooling to an internal temperature of 30 ° C., the solid was separated by filtration to obtain 9.3 g of azo pigment (1) -14 in the ⁇ -type crystal form. The length of the primary particles of the obtained azo pigment (1) -14 in the major axis direction was about 0.2 ⁇ m. When the X-ray diffraction of the obtained azo pigment (1) -14 was measured under the above conditions, the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °.
  • Example 8 10 g of the azo compound (1) -12 was suspended in a mixed solvent of 5 mL of ethylene glycol and 95 mL of water, heated to an internal temperature of 85 ° C., and then stirred at the same temperature for 2 hours. After cooling to an internal temperature of 30 ° C., the solid was separated by filtration to obtain 9.5 g of azo pigment (1) -15 in the ⁇ -type crystal form. The length of the primary particles of the obtained azo pigment (1) -15 in the major axis direction was about 0.15 ⁇ m.
  • Example 9 Azo compound (1) -12 (10 g) was suspended in a mixed solvent of 40 mL isopropanol and 60 mL water, heated to an internal temperature of 80 ° C., and stirred at the same temperature for 2 hours. After cooling to an internal temperature of 30 ° C., the solid was separated by filtration to obtain 8.2 g of azo pigment (1) -16 in the ⁇ -type crystal form. The length of the primary particles of the obtained azo pigment (1) -16 in the major axis direction was about 5 ⁇ m. The X-ray diffraction of the obtained azo pigment (1) -16 was measured under the above conditions. The Bragg angles (2 ⁇ ⁇ 0.2 °) were 4.8 °, 7.2 °, 9.5 °.
  • Example 10 Azo compound (1) -12 (10 g) was suspended in isobutyl alcohol (100 mL) and water (10 mL), heated to an internal temperature of 80 ° C., and stirred at the same temperature for 2 hours. After cooling to an internal temperature of 30 ° C., the solid was filtered off to obtain 7.9 g of azo pigment (1) -17 in the ⁇ -type crystal form. The length of primary particles of the obtained azo pigment (1) -17 in the major axis direction was about 15 ⁇ m. When the X-ray diffraction of the obtained azo pigment (1) -17 was measured under the above conditions, the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °.
  • Example 11 10 g of the azo compound (1) -12 was suspended in 100 mL of butyl acetate, heated to an internal temperature of 90 ° C., and stirred at the same temperature for 2 hours. After cooling to an internal temperature of 30 ° C., the solid was filtered off to obtain 8.5 g of azo pigment (1) -18 in the ⁇ -type crystal form. The length of primary particles of the obtained azo pigment (1) -18 in the major axis direction was about 20 ⁇ m. When the X-ray diffraction of the obtained azo pigment (1) -18 was measured under the above conditions, the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °.
  • Example 11-2 10 g of the azo compound (1) -12 was suspended in 100 mL of methanol. After stirring for 2 hours at room temperature, the solid was separated by filtration to obtain 9.4 g of azo pigment (1) -101 in the ⁇ -type crystal form. The length of the primary particles of the obtained azo pigment (1) -101 in the major axis direction was about 10 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 6.5 °, 6.7 °, 9.1 °.
  • characteristic X-ray diffraction peaks at 21.3 °.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG. 13.
  • Example 12 11.5 g of the compound of formula (2) was suspended in 50 g of acetic acid, and 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid was added dropwise so that the internal temperature was 20 ° C. to 30 ° C. After stirring for 1 hour at an internal temperature of 20 ° C., 0.1 g of urea was added to obtain a diazonium salt solution. Separately, 10 g of the compound of formula (3) was dissolved in 100 mL of acetic acid and added dropwise to the diazonium salt solution so that the internal temperature was 20 ° C. to 25 ° C. The mixture was stirred at an internal temperature of 20 ° C.
  • the obtained amorphous azo compound (1) -19 was suspended in a mixed solvent of 120 mL of water and 180 mL of ethylene glycol. After adjusting the pH to 6.28 with 28% ammonia aqueous solution, the temperature was raised to an internal temperature of 85 ° C., and the mixture was stirred at the same temperature for 2 hours. After cooling to an internal temperature of 30 ° C., the crystals were filtered off and sufficiently washed with water to obtain 19.5 g of azo pigment (1) -20 in the ⁇ -type crystal form. The length of the primary particles of the obtained azo pigment (1) -20 in the major axis direction was about 0.3 ⁇ m.
  • Example 12-2 an amorphous azo compound (1) -102 was obtained in the same manner as in Example 12 except that the homogeneous reaction solution of the azo compound (1) was added dropwise to 150 g of ethylene glycol.
  • the length of the primary particles of the obtained azo compound (1) -102 in the major axis direction was about 0.7 ⁇ m.
  • crystal conversion was performed in the same manner as in Example 12 to obtain 19.1 g of azo pigment (1) -103 having a ⁇ -type crystal form.
  • the length of primary particles of the obtained azo pigment (1) -103 in the major axis direction was about 0.7 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °. , 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° showed characteristic X-ray diffraction peaks.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Example 13 11.5 g of the compound of formula (2) was suspended in 50 g of acetic acid, and 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid was added dropwise so that the internal temperature was 20 ° C. to 30 ° C. After stirring for 1 hour at an internal temperature of 20 ° C., 0.1 g of urea was added to obtain a diazonium salt solution. Separately, 10 g of the compound of formula (3) was dissolved in 100 mL of acetic acid and added dropwise to the diazonium salt solution so that the internal temperature was 20 ° C. to 25 ° C. The mixture was stirred at an internal temperature of 20 ° C.
  • the length of the primary particles of the obtained azo pigment (1) -21 in the major axis direction was about 0.2 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °. , 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° showed characteristic X-ray diffraction peaks.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Example 14 11.5 g of the compound of formula (2) was suspended in 50 g of acetic acid, and 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid was added dropwise so that the internal temperature was 20 ° C. to 30 ° C. After stirring for 1 hour at an internal temperature of 20 ° C., 0.1 g of urea was added to obtain a diazonium salt solution. Separately, 10 g of the compound of formula (3) was dissolved in 100 mL of acetic acid and added dropwise to the diazonium salt solution so that the internal temperature was 20 ° C. to 25 ° C. The mixture was stirred at an internal temperature of 20 ° C.
  • reaction solution of the azo compound (1) 150 g of water was prepared, and the above homogeneous reaction solution of the azo compound (1) was added dropwise at an internal temperature of 20 ° C. to 25 ° C. The suspension in which the solid (amorphous azo compound) was precipitated was stirred at the same temperature for 30 minutes, and then 20 mL of ethylene glycol was added. A 28% aqueous ammonia solution was added to adjust the pH to 4.01 so that the internal temperature was 30 ° C. or lower, and then the temperature was raised to an internal temperature of 85 ° C. and stirred at the same temperature for 2 hours.
  • the precipitated crystals were separated by filtration and thoroughly washed with water to obtain 19.9 g of azo pigment (1) -22 in the ⁇ -type crystal form.
  • the length of primary particles of the obtained azo pigment (1) -22 in the major axis direction was about 0.5 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °. , 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° showed characteristic X-ray diffraction peaks.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Example 15 11.5 g of the compound of formula (2) was suspended in 50 g of acetic acid, and 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid was added dropwise so that the internal temperature was 20 ° C. to 30 ° C. After stirring for 1 hour at an internal temperature of 20 ° C., 0.1 g of urea was added to obtain a diazonium salt solution. Separately, 10 g of the compound of formula (3) was dissolved in 100 mL of acetic acid and added dropwise to the diazonium salt solution so that the internal temperature was 20 ° C. to 25 ° C. The mixture was stirred at an internal temperature of 20 ° C.
  • the precipitated crystals were separated by filtration and sufficiently washed with water to obtain 19.9 g of azo pigment (1) -23 in the form of ⁇ -type crystals.
  • the length of the primary particles of the obtained azo pigment (1) -23 in the major axis direction was about 0.4 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °. , 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° showed characteristic X-ray diffraction peaks.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Example 16 11.5 g of the compound of formula (2) was suspended in 50 g of acetic acid, and 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid was added dropwise so that the internal temperature was 20 ° C. to 30 ° C. After stirring for 1 hour at an internal temperature of 20 ° C., 0.1 g of urea was added to obtain a diazonium salt solution. Separately, 10 g of the compound of formula (3) was dissolved in 100 mL of acetic acid and added dropwise to the diazonium salt solution so that the internal temperature was 20 ° C. to 25 ° C. The mixture was stirred at an internal temperature of 20 ° C.
  • Example 17 10 g of the azo compound (1) -12 obtained in Example 6 was suspended in 100 mL of ethylene glycol and stirred at room temperature for 24 hours. The solid was filtered off to obtain 9.5 g of azo pigment (1) -25 in the ⁇ -type crystal form. The length of primary particles of the obtained azo pigment (1) -25 in the major axis direction was about 0.2 ⁇ m. When the X-ray diffraction of the obtained azo pigment (1) -25 was measured under the above conditions, the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °.
  • Example 18 11.4 g of the compound of the formula (2) was suspended in 50 g of 90% acetic acid and cooled until the internal temperature became 10 to 20 ° C. In this temperature range, 4 g of sulfuric acid was added dropwise followed by 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid. After stirring at an internal temperature of 10 to 20 ° C. for 1 hour, 0.1 g of urea was added to obtain a diazonium salt solution. To this diazonium salt solution, 10 g of the compound of formula (3) was added in portions so that the internal temperature would be 10 to 20 ° C. The mixture was stirred at an internal temperature of 10 to 20 ° C.
  • the length of primary particles of the obtained azo pigment (1) -27 in the major axis direction was about 0.5 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °. , 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° showed characteristic X-ray diffraction peaks.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Example 18-2 11.4 g of the compound of the formula (2) was suspended in 50 g of 90% acetic acid and cooled until the internal temperature became 10 to 20 ° C. In this temperature range, 4 g of sulfuric acid was added dropwise followed by 16.2 g of a 43% sulfuric acid solution of nitrosylsulfuric acid. After stirring at an internal temperature of 10 to 20 ° C. for 1 hour, 0.1 g of urea was added to obtain a diazonium salt solution. To this diazonium salt solution, 10 g of the compound of formula (3) was added in portions so that the internal temperature would be 10 to 20 ° C. The mixture was stirred at an internal temperature of 10 to 20 ° C.
  • the length of primary particles of the obtained azo pigment (1) -104 in the major axis direction was about 0.4 ⁇ m.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °, 9.5 °. , 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° showed characteristic X-ray diffraction peaks.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Zirconia beads having a diameter of 0.1 mm were prepared by mixing 2.5 parts of the ⁇ -type crystal form azo pigment (1) -2 synthesized in Example 1 above, 0.5 parts of sodium oleate, 5 parts of glycerin, and 42 parts of water. Dispersion was performed at 300 rpm for 3 hours using a planetary ball mill with 100 parts. After completion of the dispersion, the zirconia beads were separated to obtain a yellow pigment dispersion 1. The same operations were carried out for the ⁇ -type crystal form azo pigments synthesized in Examples 2 to 17 to obtain yellow pigment dispersions 2 to 17, respectively.
  • the volume average particle diameter of the pigment in the pigment dispersion was measured using Nanotrac 150 (UPA-EX150) manufactured by Nikkiso Co., Ltd. The measurement results are shown in Table 1.
  • the azo pigment having a specific crystal structure obtained by the production method of the present invention can prepare a dispersion having a small volume average particle diameter (nm) in a shorter time. .
  • the crystals were filtered off while hot and thoroughly washed with acetone to obtain 103.5 g of ⁇ -type crystal form azo pigment (1) -28.
  • the obtained ⁇ -type crystal form azo pigment (1) -28 was dried at 60 ° C. for 24 hours to obtain 92.8 g (yield 88.8%) of ⁇ -type crystal form azo pigment (1) -29.
  • the crystals of the obtained ⁇ -type crystal form azo pigment (1) -30 were suspended in 200 mL of water, and 28% aqueous ammonia was added to adjust the pH to 6.0. Precipitated crystals (type ⁇ ) were separated by filtration, thoroughly washed with water, and dried at 60 ° C. for 24 hours. The obtained crystals ( ⁇ type) were suspended in 200 mL of acetone, heated up and stirred under reflux for 2 hours. The mixture was cooled to room temperature, and the crystals were separated by filtration to obtain an azo pigment having the ⁇ -type crystal form represented by the formula (1). The obtained crystals were thoroughly washed with acetone and dried at 60 ° C. for 24 hours to obtain 18.9 g of an ⁇ -type crystal form azo pigment (1) -31 represented by the formula (1).
  • the precipitated solid was separated by filtration to obtain an azo pigment represented by the formula (1).
  • the length of primary particles of the obtained azo pigment in the major axis direction was about 2 ⁇ m.
  • the Bragg angles (2 ⁇ ⁇ 0.2 °) were 6.5 °, 6.7 °, 9.1 ° and 21.3 °. Showed a characteristic X-ray diffraction peak and was found to have a ⁇ -type crystal form.
  • 5 g of the ⁇ -type crystal form azo pigment obtained above was suspended in 50 mL of ethylene glycol, heated to an internal temperature of 120 ° C., and then stirred at the same temperature for 2 hours.
  • the precipitated solid was separated by filtration to obtain 3.9 g of the ⁇ -type crystal form azo pigment (1) -32 represented by the formula (1).
  • the obtained ⁇ -type crystal form azo pigment (1) -32 was visually observed with an optical microscope (Nikon Corporation: ECLIPSE LV150). The length of primary particles in the major axis direction was about 80 ⁇ m. Met.
  • Measurement of X-ray diffraction of the obtained ⁇ -type crystal form azo pigment (1) -32 under the above conditions revealed that the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2 °. , 9.5 °, 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 ° showed characteristic X-ray diffraction peaks.
  • Example 19 ⁇ Milling> Example 19 and Comparative Example 2
  • the azo pigment of Example 19 was used without milling the azo pigment (1) -2 obtained in Example 1.
  • the azo pigment (1) -30 produced in the middle of Synthesis Example 2 was used as it was without being milled as the azo pigment of Comparative Example 2.
  • Example 20 The crude azo pigment and sodium chloride were added to a supermixer and mixed so as to have the following composition. Diethylene glycol was added little by little while rotating the supermixer to prepare a mixture (hereinafter sometimes referred to as “preliminary mixture”).
  • -Azo pigment (1) -2 obtained in Example 1 150 g ⁇ Salt (Nakuru UM-05, manufactured by Naikai salt industry) 1500g ⁇ Diethylene glycol: 300g Subsequently, the temperature at the five points of the grinding part and the extrusion part of the continuous single-screw kneader (Miracle KCK-L, manufactured by Asada Tekko Co., Ltd.) was set to 15 to 20 ° C. and the shaft rotation speed was set to 50 rpm. The preliminary mixture obtained in (1) was added to obtain a kneaded product. At this time, the current value (load) was about 4 A, the discharge rate was 50 g / min, and the temperature of the discharged material was 16 ° C.
  • the current value (load) was about 4 A
  • the discharge rate was 50 g / min
  • the temperature of the discharged material was 16 ° C.
  • the kneaded material thus obtained was added to 5000 g of 1% dilute hydrochloric acid and stirred, and then filtered and sufficiently washed with water to remove sodium chloride and diethylene glycol, followed by drying.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.2
  • Characteristic X-ray diffraction peaks were exhibited at °, 9.6 °, 10.7 °, 17.3 °, 18.9 °, 20.0 °, and 26.7 °.
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Comparative Example 3 Azo pigment (1) -32 of Synthesis Example 3 Bragg angles (2 ⁇ ⁇ 0.2 °) of 4.8 °, 7.1 °, 9.6 °, 10.7 °, 17.3 °, 18.9 °, 20.0 °, and 26.7
  • a CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Comparative Example 4 Azo pigment (1) -29 of Synthesis Example 1 Bragg angles (2 ⁇ ⁇ 0.2 °) of 4.8 °, 7.2 °, 9.7 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 A ⁇ -type azo pigment (1) -29-A having a characteristic X-ray diffraction peak at 0 ° was obtained. A CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG.
  • Comparative Example 5 Azo pigment (1) -31 of Synthesis Example 2 Bragg angles (2 ⁇ ⁇ 0.2 °) of 4.8 °, 7.2 °, 9.5 °, 10.7 °, 17.4 °, 19.0 °, 20.1 °, and 26.8 A ⁇ -type azo pigment (1) -31-A showing a characteristic X-ray diffraction peak at 0 ° was obtained. A CuK ⁇ characteristic X-ray diffraction diagram is shown in FIG. 28.
  • Example 21 In Example 20, a ⁇ -type crystal azo pigment (1) -2-B was obtained in the same manner as in Example 6 except that the amount of sodium chloride used was changed to 750 g.
  • the Bragg angle (2 ⁇ ⁇ 0.2 °) was 4.8 °, 7.1 °, 9 Characteristic X-ray diffraction peaks were exhibited at .5 °, 10.7 °, 17.3 °, 18.9 °, 20.0 °, and 26.7 °.
  • Example 22 a ⁇ -type crystalline azo pigment (1) -2-C was obtained in the same manner as in Example 6 except that the amount of diethylene glycol used was changed to 400 g.
  • the Bragg angles (2 ⁇ ⁇ 0.2 °) were 4.8 °, 7.1 °, 9 Characteristic X-ray diffraction peaks were exhibited at .5 °, 10.7 °, 17.3 °, 18.9 °, 20.0 °, and 26.7 °.
  • ⁇ Measurement of BET specific surface area> 0.1 g of a pigment previously vacuum-dried at 80 ° C. was added to the sample cell, and measurement was performed using a specific surface area measurement apparatus “MONOSORB MS-17” (manufactured by Yuasa Ionics Co., Ltd.). For the measurement, a mixed gas of He: N 2 7: 3 was used.
  • a pigment dispersion was obtained in the same manner for the azo pigments of Example 19 and Comparative Example 2 that were not milled and the azo pigments synthesized in Comparative Examples 3 to 6.
  • the following evaluation of the pigment dispersions of Example 20 and Comparative Examples 2 to 6 was performed by relative evaluation with the pigment dispersion of Example 19.
  • ⁇ Dispersibility evaluation> The dispersibility was evaluated by the time until the volume average particle diameter Mv became 100 nm or less in the production of the pigment dispersion (measured using Nanotrac 150 (UPA-EX150) manufactured by Nikkiso Co., Ltd.). A further superior to the ⁇ -type crystal azo pigment before milling was designated as A, B was comparable to the ⁇ -type crystal azo pigment before milling, and C was inferior to the ⁇ -type crystal azo pigment before milling. The results are shown in Table 2.
  • Example 23 The dispersant (benzyl methacrylate (66.7 mol%), methacrylic acid (33.3) obtained in Synthesis Example 4 was added to 20 g of the ⁇ -type crystal form azo pigment (1) -2-A synthesized in Example 20 above.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 149 g of a pigment dispersion (2) having a pigment concentration of 9.7%.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After the precipitated solid was removed, the filter was sufficiently washed with water using a filter having a molecular weight cut off of 50,000 to obtain 127 g of a pigment dispersion (3) having a pigment concentration of 10.4%.
  • the reaction mixture was cooled to room temperature, coarse particles were removed through a filter having a pore size of 1.0 ⁇ m, and then coarse particles were further precipitated by a centrifuge (7000 rpm, 10 minutes). After removing the settled solid, it was sufficiently washed with water using a filter having a molecular weight cut off of 50,000, and 115 g of a comparative pigment dispersion (4) having a pigment concentration of 10.2% was obtained.
  • Example 27 The pigment dispersion (1) obtained in Example 23 was 5% by mass in solid content, 10% by mass of glycerin, 5% by mass of 2-pyrrolidone, 2% by mass of 1,2-hexanediol, and 2% by mass of triethylene glycol monobutyl ether. %, Propylene glycol 0.5 mass%, Surfynol 465 1 mass%, ion-exchanged water 74.5 mass%, each component was added, and the resulting mixture was filtered through a 1.2 ⁇ m filter (acetylcellulose).
  • the pigment ink (1) was obtained by filtering with a 20 mL capacity
  • Example 28 and 29 instead of the pigment dispersion (1) in Example 27 above, the pigment dispersion (2) obtained in Example 24 and the pigment dispersion (3) obtained in Example 25, respectively, pigment ink (2) And pigment ink (3) was obtained.
  • the ink liquid is mounted on a yellow ink liquid cartridge of an ink-jet printer PX-V630 manufactured by Seiko Epson Corporation, and the image-receiving sheet is color set on photographic paper Krispia ⁇ high gloss> manufactured by Seiko Epson Corporation: no color correction.
  • Print quality In photo, yellow O.D. D. Were printed so as to be 1.0 and solid were printed, and the light resistance and density were evaluated.
  • the azo pigment production method of the present invention can produce azo pigment fine particles having good dispersibility with high efficiency and low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Optical Filters (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 易分散なアゾ顔料微粒子を、高効率(純度および生産性)かつ低コストで製造することのできるアゾ顔料の製造方法を提供することを目的とする。 非晶質な下記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を結晶変換することにより、下記式(1)で表されるアゾ顔料を製造する。

Description

アゾ顔料の製造方法
 本発明は、アゾ顔料の製造方法に関する。
 アゾ化合物の合成法については古くから種々の方法が知られており、酸化反応による合成、還元反応による合成、置換反応による合成、付加反応による合成、縮合反応による合成、その他の合成法などがあった(たとえば非特許文献1参照)。しかしながらアゾ色素化合物の工業的製造法として利用されているのは、原料の入手性、コスト、収率などの点からジアゾニウム化合物と、アニリン、フェノール類などのカップリング成分とをアゾカップリング反応させて合成する方法がほとんどであり、また、この方法もジアゾニウム化合物の爆発の危険性があったり、ジアゾニウム化合物やカップリング成分の種類によっては低収率であったりするなどの欠点を有していた。特に複素環ジアゾニウム化合物はジアゾニウム化合物が不安定である場合が多く、一般性の高い合成法は知られていない。
 また、色材として広く利用されている有機顔料には、特に液晶ディスプレー用カラーフィルターやインクジェット用インク等の用途において、鮮明性や透明性などをより向上させることが求められている。鮮明性や透明性を向上させるためには、有機顔料を微細に分散させることが効果的なことが知られている。有機顔料を微細分散させるには、それに適した分散剤や分散機械を用いることが必要であるが、更には有機顔料自身が微細(微粒子)であるということも大前提として必要である。有機顔料が粗大な粒子であると、分散剤や分散方法を改良しても優れた微細分散体を得ることは困難である。したがって、顔料の製造にあっては、純度や収率等の通常の要求項目に加えて微粒子として製造することが求められている。
 有機顔料微粒子の製造方法としては、例えばアゾ顔料のように、合成時に適切な反応条件を選択することにより、微細で整粒された粒子を得ることができるものがある。その他、銅フタロシアニングリーン顔料のように、合成時に生成する極めて微細で凝集した粒子を、後工程で粒子成長、整粒させることにより顔料化するもの、銅フタロシアニンブルー顔料のように、合成時に生成する粗大で不揃いな粒子を後工程で微細化し、整粒させることにより顔料化を行うものもある。例えば、ジケトピロロピロール顔料は、一般的には、琥珀酸ジエステルと芳香族ニトリルとを有機溶媒中で反応させることにより粗製顔料として合成される(例えば、特許文献1参照)。そして、粗製ジケトピロロピロール顔料は、水又は有機溶剤中で熱処理し、次に湿式摩砕のごとき粉末化を行うことにより、使用に適する形態にされる(例えば、特許文献2参照)。
 更に、有機顔料には多形性を示すものがあり、このような顔料は、同一の化学組成を有するにもかかわらず2つ以上の結晶形態をとりうることが知られている。
 例えば、C.I.ピグメントレッド254は、α型とβ型の結晶形態が知られている(例えば、特許文献3参照)。また、アゾ顔料であるC.I.ピグメントイエロー181は、数種の結晶形態が知られている(例えば、特許文献4参照)。
 上記のように、特定の結晶構造を持つことを特徴とする知見がある一方、非晶質であることに特徴を持たせた顔料も知られており、C.I.ピグメントイエロー181を非晶質とすることで分散性を発揮させるといった例もある(特許文献5)。
 微細な有機顔料を得る方法として、特許文献6には顔料をアミド系の有機溶媒に溶解した溶液を貧溶媒に注入してナノサイズの微粒子を得る方法が記載されており、貧溶媒種により得られる顔料の結晶形態が異なる旨の記述がある。しかしながら、この方法では顔料溶液の濃度が10mM程度と低く、顔料を得るのに大量の溶媒を使用するため経済的ではない。
 特許文献7には、特定のモノアゾ顔料を高純度で製造できる方法が記載されている。しかしながら、より不安定な複素環ジアゾニウム化合物にこの方法を適用して高収率及び高純度でアゾ顔料を得ることは一般的に困難である。
 特許文献8には、ピラゾールのジアゾニウム化合物を用いたアゾ化合物を、高収率及び高純度で得る製造方法が記載されている。この方法は染料の製造には有効であるが、この方法で製造される化合物の粒子の大きさについては記載がない。
 特許文献9にも、ピラゾールのジアゾニウム化合物を用いたアゾ化合物を、高収率及び高純度で得る製造方法が記載されている。この方法により均一な微粒子が得られる旨の記載があるが、分散性に更なる改良の余地を残していた。なお、顔料の結晶形態に関する記述はない。
日本国特開昭58-210084号公報 日本国特開平5-222314号公報 日本国特開平8-48908号公報 米国特許出願公開第2008/0058531号明細書 日本国特開2003-261792号公報 日本国特開2004-91560号公報 日本国特開2008-63524号公報 日本国特開2007-217681号公報 日本国特開2011-74375号公報
新実験化学講座(丸善株式会社)14-III巻、1516~1534頁
 本発明は特定の置換基を有するピラゾール環をアゾ基及びトリアジン環を介して連結したアゾ顔料の製造方法に関するが、上記のように、アゾ顔料の性能と製造性の両立には検討の余地が残っていた。
 本発明は、分散性が良好なアゾ顔料微粒子を高効率かつ低コストで製造することのできるアゾ顔料の製造方法を提供することを目的とする。
 本発明者等は前記した実情に鑑みて鋭意検討した結果、非晶質な化合物を結晶変換することで分散性が良好なアゾ顔料微粒子を得ることができ、更にはジアゾニウム塩とカップリング成分とをアゾカップリング反応させたときに、反応液中においてアゾ化合物が完全に析出していない状態(アゾ化合物の一部が反応液に溶解している状態)とし、この反応液をアゾ化合物の貧溶媒に注入し、非晶質な化合物を得ることで、上記課題が達成できることを見出し、本発明を完成した。
 即ち、本発明は、以下のとおりである。
〔1〕
 非晶質な下記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を結晶変換することを特徴とする下記式(1)で表されるアゾ顔料の製造方法。
Figure JPOXMLDOC01-appb-C000005
〔2〕
 非晶質の前記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を溶媒中で加熱攪拌することにより結晶変換することを特徴とする〔1〕に記載のアゾ顔料の製造方法。
〔3〕
 非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する結晶形に結晶変換することを特徴とする〔1〕又は〔2〕に記載のアゾ顔料の製造方法。
〔4〕
 非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、20.1°、及び26.8°に特徴的X線回折ピークを有する結晶形に結晶変換することを特徴とする〔1〕~〔3〕のいずれか一項に記載のアゾ顔料の製造方法。
〔5〕
 非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的X線回折ピークを有する結晶形に結晶変換することを特徴とする〔1〕~〔4〕のいずれか一項に記載のアゾ顔料の製造方法。
〔6〕
 (i)非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する結晶形に結晶変換する工程、及び、(ii)前記工程(i)で得たアゾ顔料と、水溶性無機塩と、水溶性有機溶剤とを含む混合物を混練して、窒素吸着法によるBET比表面積を50m/g以上の結晶にする工程、を含むことを特徴とする、〔3〕~〔5〕のいずれか一項に記載のアゾ顔料、又はその互変異性体の製造方法。
〔7〕
 (a)ジアゾ化剤と下記式(2)で表されるアミノ化合物とを混合させる工程、(b)前記工程(a)で得た反応生成物と下記式(3)で表されるカップリング成分とを混合することにより反応を行い、該反応により生成した下記式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程、(c)前記工程(b)で得た溶液と、前記アゾ化合物に対する貧溶媒とを混合して、下記式(1)で表される非晶質なアゾ化合物を晶析させる工程、を含むことを特徴とする〔1〕~〔6〕のいずれか一項に記載のアゾ顔料の製造方法。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
〔8〕
 前記工程(b)において、得られた溶液が酸性溶液であることを特徴とする〔7〕に記載のアゾ顔料の製造方法。
〔9〕
 前記酸性溶液が、酢酸及び硫酸の少なくとも一方を含むことを特徴とする〔8〕に記載のアゾ顔料の製造方法。
〔10〕
 前記工程(b)において、得られた溶液が、カップリング反応により生成した前記式(1)で表されるアゾ化合物が完全に溶解した溶液であることを特徴とする〔7〕~〔9〕のいずれか一項に記載のアゾ顔料の製造方法。
〔11〕
 前記(c)工程において、前記工程(b)で得られた前記式(1)で表されるアゾ化合物の溶解度が1g/L以下である貧溶媒と混合することを特徴とする〔7〕~〔10〕のいずれか一項に記載のアゾ顔料の製造方法。
〔12〕
 前記貧溶媒が、水及び、炭素数1~3のアルコール、炭素数1~6のグリコールからなる群から選ばれる1種以上の溶媒を含むことを特徴とする〔7〕~〔11〕のいずれか一項に記載のアゾ顔料の製造方法。
〔13〕
 〔1〕~〔12〕のいずれか一項に記載の製造方法により得られるアゾ顔料。
〔14〕
 〔13〕に記載のアゾ顔料、分散剤、及び水を含む顔料分散物。
〔15〕
 分散剤が水溶性高分子であることを特徴とする〔14〕に記載の水系顔料分散物。
〔16〕
 前記水溶性高分子分散剤が少なくとも1つのカルボキシ基を有し、少なくとも50mgKOH/g以上の酸価を有することを特徴とする〔15〕に記載の水系顔料分散物。
〔17〕
 前記水系顔料分散物が、架橋剤により架橋されていることを特徴とする〔15〕又は〔16〕に記載の水系顔料分散物。
 本発明によれば、易分散なアゾ顔料微粒子を、高効率(純度及び生産性)かつ低コストで製造することのできるアゾ顔料の製造方法を提供することができる。
実施例1に従って合成されたδ型結晶形態のアゾ顔料(1)-2のX線回折の図である。 実施例2に従って合成されたδ型結晶形態のアゾ顔料(1)-4のX線回折の図である。 実施例3に従って合成された中間生成物であるζ型結晶形態のアゾ顔料(1)-5のX線回折の図である。 実施例3に従って合成されたδ型結晶形態のアゾ顔料(1)-7のX線回折の図である。 実施例4に従って合成されたδ型結晶形態のアゾ顔料(1)-9のX線回折の図である。 実施例5に従って合成されたδ型結晶形態のアゾ顔料(1)-11のX線回折の図である。 実施例6に従って合成されたδ型結晶形態のアゾ顔料(1)-13のX線回折の図である。 実施例7に従って合成されたδ型結晶形態のアゾ顔料(1)-14のX線回折の図である。 実施例8に従って合成されたδ型結晶形態のアゾ顔料(1)-15のX線回折の図である。 実施例9に従って合成されたδ型結晶形態のアゾ顔料(1)-16のX線回折の図である。 実施例10に従って合成されたδ型結晶形態のアゾ顔料(1)-17のX線回折の図である。 実施例11に従って合成されたδ型結晶形態のアゾ顔料(1)-18のX線回折の図である。 実施例11-2に従って合成されたζ型結晶形態のアゾ顔料(1)-101のX線回折の図である。 実施例12に従って合成された中間生成物である非晶質なアゾ顔料(1)-19のX線回折の図である。 実施例12に従って合成されたδ型結晶形態のアゾ顔料(1)-20のX線回折の図である。 実施例12-2に従って合成されたδ型結晶形態のアゾ顔料(1)-103のX線回折の図である。 実施例13に従って合成されたδ型結晶形態のアゾ顔料(1)-21のX線回折の図である。 実施例14に従って合成されたδ型結晶形態のアゾ顔料(1)-22のX線回折の図である。 実施例15に従って合成されたδ型結晶形態のアゾ顔料(1)-23のX線回折の図である。 実施例16に従って合成されたδ型結晶形態のアゾ顔料(1)-24のX線回折の図である。 実施例17に従って合成されたδ型結晶形態のアゾ顔料(1)-25のX線回折の図である。 実施例18に従って合成されたδ型結晶形態のアゾ顔料(1)-27のX線回折の図である。 実施例18-2に従って合成されたδ型結晶形態のアゾ顔料(1)-104のX線回折の図である。 比較例1に従って合成されたδ型結晶形態のアゾ顔料(1)-26のX線回折の図である。 実施例20に従って合成されたδ型結晶形態のアゾ顔料(1)-2-AのX線回折の図である。 比較例3に従って合成されたδ型結晶形態のアゾ顔料(1)-32-AのX線回折の図である。 比較例4に従って合成されたδ型結晶形態のアゾ顔料(1)-29-AのX線回折の図である。 比較例5に従って合成されたδ型結晶形態のアゾ顔料(1)-31-AのX線回折の図である。 比較例6に従って合成されたζ型結晶形態のアゾ顔料(1)-30-AのX線回折の図である。
 本発明の製造方法により製造された顔料の分散性が良好となる理由に関して、以下に推察を述べる。X線回折において、特徴的X線回折ピークを示す結晶は、分子が一定の規則性を持って配列し、分子間の相互作用が強固に結ばれている。その結果、溶媒に対する溶解性が低くなる。そのため例えば溶媒中で、このような結晶から別の結晶形に変換すると、少しずつ溶解しつつ結晶変換が進行するため、核となる結晶が少なく、結晶は大きく成長してしまう。一方、本発明のようにX線回折において、特徴的なX線回折ピークを示さない非晶質な固体は、分子間の相互作用が弱く、溶媒に対する溶解性が高い。そのため、例えば溶媒中で結晶変換を行うと、非晶質は固体からは多くが溶け出すが、結晶は溶解性が低いため、即座に過飽和状態になり、核となる結晶が多数析出し、結晶は成長しにくい。結果、微細な顔料が得られ、分散性が良好となると考えている。
 以下、本発明について詳細に説明する。
 本発明において非晶質とは、結晶のような長距離秩序は無いが、短距離秩序はある物質の状態を示し、X線回折において、特徴的X線回折ピークを示さないことを表す。
  本明細書においては以下、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する下記式(1)で表されるアゾ顔料をδ型結晶形態アゾ顔料と称する。
 また、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が6.5°、7.1°及び21.8°に特徴的X線回折ピークを有する式(1)で表されるアゾ顔料をα型結晶形態アゾ顔料、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が6.3°、6.4°及び22.3°に特徴的X線回折ピークを有する式(1)で表されるアゾ顔料をβ型結晶形態アゾ顔料、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.9°、8.8°及び13.1°に特徴的X線回折ピークを有する式(1)で表されるアゾ顔料をε型結晶形態アゾ顔料、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が6.6°、9.2°及び21.5°に特徴的X線回折ピークを有する式(1)で表されるアゾ顔料をζ型結晶形態アゾ顔料と称する。
Figure JPOXMLDOC01-appb-C000009
 本発明において、上記式(1)で表されるアゾ化合物、及びアゾ顔料のX線回折の測定は、日本工業規格JISK0131(X線回析分析通則)に準じて、例えば、粉末X線回折測定装置RINT2500(株式会社リガク製)にて行うことができる。
 図2にX線回折図を示して、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する式(1)で表されるアゾ顔料について更に詳細に説明する。
 〔アゾ顔料〕
 本発明のアゾ顔料の製造方法によって製造されるアゾ顔料は下記式(1)で表される。
 以下、本発明における式(1)で表されるアゾ化合物及びアゾ顔料について詳細に説明する。なお当該アゾ顔料は、その塩、水和物又は溶媒和物であってもよい。
Figure JPOXMLDOC01-appb-C000010
 式(1)で表される顔料において、結晶中に水分子を含む水和物、あるいは、溶媒(例えば、メタノール,エタノール,2-プロパノール,t-ブチルアルコール等のアルコール類や、アセトン、メチルエチルケトン等のケトン類や、アセトニトリル、ジメチルスルホキシド,ジメチルホルムアミド,ジメチルアセトアミド,N-メチルピロリドン、トルエン等の非プロトン性溶媒など)を含む溶媒和物であっても良い。
 また、式(1)で示される顔料に関しては、その互変異性体(例えば、アゾ-ヒドラゾンの互変異性体や式(4)で表されるような幾何異性体)も、本発明においては、これらの一般式に含まれるものとする。
式(4):
Figure JPOXMLDOC01-appb-C000011
 〔アゾ顔料の製造方法〕
 以下に、本発明の製造方法に関して詳細に説明する。本発明のアゾ顔料の製造方法は、
 非晶質な下記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を結晶変換する下記式(1)で表されるアゾ顔料の製造方法である。
Figure JPOXMLDOC01-appb-C000012
 本発明における結晶変換とは、結晶形態を変換することを表し、非晶質である上記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を、特定の結晶形態を有するアゾ顔料に変換することを言う。結晶変換の方法としては、ソルベントソルトミリング、ソルトミリング、ドライミリング、ソルベントミリング、アシッドペースティング等の磨砕処理、溶媒加熱処理が挙げられ、好ましくは溶媒加熱処理である。
 (溶媒加熱処理)
 本発明において溶媒加熱処理とは、具体的には、非晶質な式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を溶媒中で加熱撹拌することをいう。
 溶媒加熱処理によって、効率よく結晶変換をすることができる。例えば、非晶質なアゾ化合物の溶媒和物を加熱攪拌することでδ型結晶形態のアゾ顔料を得ることができる。
 本発明において、式(1)で表されるアゾ化合物をCuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的なX線回折ピークを有する結晶形態に結晶変換することが好ましい。
 上記のような特徴的X線回折ピークを有するδ型結晶形態アゾ顔料とすることにより分散性が向上する、すなわち、短時間で目標の粒子径まで分散できるようになる。
 CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的なX線回折ピークを有する結晶形態は、更に4.8°、7.2°、9.7°、20.1°、及び26.8°に特徴的なX線回折ピークを有する結晶形態がより好ましい。その中でも特に、4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを有する結晶形態が最も好ましい。
 本発明の結晶変換に用いることのできる溶媒としては、水、有機酸、無機酸、有機溶媒を用いることができるが、水及び有機溶媒が好ましい。また、結晶変換をする際に結晶成長を抑制させる点から、結晶変換した後の式(1)で表されるアゾ顔料の溶解性が低い溶媒が好ましい。より好ましい溶媒としては、水、メタノール、エタノール、イソプロパノール、イソブタノール、エチレングリコール、ジエチレングリコール、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコール、酢酸、プロピオン酸、硫酸、又はそれらの混合溶媒が挙げられ、エチレングリコール、水、酢酸、硫酸、あるいはそれらの混合溶媒である場合が更に好ましく、エチレングリコールであることが最も好ましい。
 溶媒加熱処理に使用する溶媒の量は、式(1)で表されるアゾ顔料に対して1~100倍であることが好ましく、5~50倍であることが更に好ましく、8~30倍であることがより好ましい。1倍以上であれば、攪拌性を確保できるため好ましい。また、100倍以下であれば、生産性が高くなり、経済的なため好ましい。
 溶媒加熱処理における加熱攪拌の温度は、所望する顔料の一次粒子径の大きさによって異なるが、15~150℃が好ましく、20~120℃であることがより好ましく、20~100℃が更に好ましい。15℃以上であれば、結晶変換が起こるために長時間を要することなく、効率的である。一方、150℃以下であれば、アゾ顔料(1)の一部が分解するのを抑制できるため好ましい。
 結晶変換のための撹拌時間は特に制限はないが、5~1500分が好ましく、10~600分が更に好ましく、30~300分がより好ましい。5分以上であれば、部分的に非晶質な箇所が残存するのを抑制できるため好ましい。一方、1500分以下であれば、効率的であり好ましい。
 以下に、結晶変換工程に供する非晶質な下記式(1)で表されるアゾ化合物の製造方法に関して詳細に説明する。
 本発明の結晶変換に用いる式(1)で表されるアゾ化合物の製造方法は、(a)ジアゾ化剤と式(2)で表されるアミノ化合物とを混合させる工程、(b)前記工程(a)で得た反応生成物と式(3)で表されるカップリング成分とを混合することにより反応を行い、該反応により生成した下記式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程、(c)前記工程(b)で得た溶液と、前記アゾ化合物に対する貧溶媒とを混合して、下記一般式(1)で表される非晶質なアゾ化合物を晶析させる工程、を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 本発明に係わる工程(a)について詳細を説明する。
 工程(a)では、ジアゾ化剤とアミノ化合物とを混合させることで、アミノ化合物とジアゾ化剤との反応によりジアゾニウム化合物が誘導される。この反応は酸を含む媒質中で行うことが好ましい。本明細書では、このジアゾニウム化合物を含む液を「ジアゾニウム化合物調製液」と呼ぶ。アミノ化合物と酸とジアゾ化剤の混合の方法に特に限定はないが、アミノ化合物と酸の溶液中にジアゾ化剤を添加することが好ましい。工程(a)におけるジアゾ化剤とは、アミノ化合物をジアゾニウム化合物に誘導するために使用されるものであり、そのような作用を持つものであれば限定はされない。ジアゾ化剤として代表的なものには、亜硝酸エステル類(例えば亜硝酸イソペンチルが挙げられる)、亜硝酸塩(例えば亜硝酸ナトリウムや亜硝酸カリウムが挙げられる)、亜硝酸イソアミル、ニトロシル硫酸が挙げられ、更に好ましくは亜硝酸ナトリウム、亜硝酸カリウム、ニトロシル硫酸であり、その中でも、ジアゾニウム化合物を安定かつ効率的に調製できる観点から、ニトロシル硫酸が特に好ましい。
 工程(a)で使用する酸とは、式(2)で表されるアミノ化合物を完溶させないまでも、わずかでも溶解できる酸を意味し、好ましくはアミノ化合物を完溶させる酸である。酸には無機酸及び有機酸が使用でき、無機酸としては塩酸、リン酸、硫酸が挙げられ、好ましくはリン酸、硫酸であり、更に好ましくは硫酸である。有機酸には蟻酸、酢酸、プロピオン酸、メタンスルホン酸が挙げられ、好ましくは酢酸、プロピオン酸、メタンスルホン酸であり、更に好ましくは酢酸、プロピオン酸である。また、これらの酸は単独で用いても良いし、混合して用いても良い。混合酸としては、リン酸/酢酸、硫酸/酢酸、メタンスルホン酸/酢酸、酢酸/プロピオン酸が挙げられ、好ましくは、リン酸/酢酸、硫酸/酢酸、硫酸/酢酸/プロピオン酸、酢酸/プロピオン酸であり、その中でも、硫酸/酢酸、酢酸/プロピオン酸が特に好ましい。これら混合酸の質量比は1/(0.1~20)が好ましく、1/(0.5~10)がより好ましく、更に好ましくは1/(1~10)である。
 工程(a)における、アミノ化合物に対する酸の添加量は質量比で1~100倍であり、より好ましくは2~50倍であり、3~25倍が更に好ましい。質量比が1倍以上であると、攪拌性が良化し、より確実にジアゾニウム化合物を誘導できる。一方、質量比が100倍以下になると生産性が向上に経済的となる。
 また、工程(a)における、アミノ化合物に対するジアゾ化剤の添加量は、モル比で1.0~20倍であり、より好ましくは1.0~10倍であり、1.0~5倍が更に好ましい。ジアゾ化剤がアミノ化合物に対してモル比で1倍以上であることにより、ジアゾニウム化合物をより確実に誘導でき、20倍以下であることにより、副反応によりジアゾニウム化合物が分解することを抑制できる。
 工程(a)のジアゾ化剤とアミノ化合物の混合では、50℃以下で実施されることが好ましく、40℃以下で実施されることがより好ましく、更に好ましくは30℃以下で実施することが望ましい。50℃超過におけるジアゾ液の調製ではジアゾ化剤の分解が懸念される。ジアゾニウム化合物へ誘導する攪拌時間は0.3~10時間が好ましく、0.5~5時間がより好ましく、更に好ましくは1~3時間である。上記攪拌時間が0.3時間以上であることにより、ジアゾニウム化合物に完全に誘導しやすく、10時間以下であることにより、ジアゾニウム化合物の分解が生じにくい。また、混合には通常の攪拌機が用いられ、特に限定はない。製造設備に依存することはあるが、好ましい攪拌の回転数は、30~300rpmが好ましく、40~200rpmがより好ましく、更に好ましくは50~200rpmである。攪拌速度が回転数で30rpm以上であることにより、ジアゾニウム化合物調製液の攪拌効率が良好となるため、所望の反応の進行を確実に実施できる。
 工程(a)で混合することのできる溶媒は、誘導されるジアゾニウム化合物が分解を受けなければ特に限定はない。混合可能な溶媒として例えば、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチル-2-ピロリドン等のアミド系溶媒、他ジメチルスルホキシド、スルホラン、アセトニトリル、水が挙げられる。
 工程(a)におけるジアゾニウム化合物調製液の好ましいpHは、7以下が好ましく、5以下がより好ましく、3以下が更に好ましい。工程(a)におけるジアゾニウム化合物調製液のpHが7超過になると、誘導されるジアゾニウム化合物の分解が懸念される。
 次に、本発明に係わる工程(b)について詳細を説明する。
 工程(b)は、前記工程(a)で得た反応生成物とカップリング成分とを混合することにより反応を行い、該反応により生成した式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程である。
 本明細書では、このアゾ化合物の少なくとも一部が溶解した溶液を「アゾ化合物溶解液」と呼ぶ。
 アゾ化合物溶解液の調製方法としては、(i)工程(a)で得た反応生成物とカップリング成分とを混合することによりカップリング反応を行い、反応の結果、析出した式(1)で表されるアゾ顔料を、溶剤に溶解させて得る方法、及び、(ii)上記カップリング反応によって得られる式(1)で表される化合物の少なくとも一部が反応液に溶解するように、該カップリング反応を実施し、その反応液を、そのまま、アゾ化合物溶解液とする方法、又は、このようにして得られたアゾ化合物溶解液を下記に詳述する工程(c)に適用することにより得られた(晶析された)アゾ顔料を、更に溶剤に溶解させて得る方法、が挙げられる。
 上記形態(i)及び(ii)のいずれにおいても、工程(a)で得たジアゾニウム化合物調製液とカップリング成分との混合の方法に特に制限はないが、該カップリング成分を溶媒に一部又は全部溶解させて添加すること、あるいは溶媒を用いずに固体で添加することが好ましく、工程(a)で得たジアゾニウム化合物調製液の中に、カップリング成分の溶液を添加すること、あるいは工程(a)で得たジアゾニウム化合物調製液の中に、カップリング成分を固体で添加することが更に好ましい。
 また、工程(b)におけるカップリング成分に対する前記工程(a)で得たジアゾニウム化合物調製液中のジアゾニウム化合物の量は、カップリング成分のカップリング位に対し0.8~3当量が好ましく、より好ましくはカップリング位に対し0.9~2当量であり、更に好ましくはカップリング位に対し0.95~1.5当量である。0.8当量以上であることにより、未反応のカップリング位をもつカップリング成分の残存を抑制でき、また、3当量以下であることにより、未反応のジアゾニウム化合物の残存を抑制できるため、より経済的である。
 なお、上記形態(ii)においては、工程(b)において一般式(1)で表されるアゾ化合物の少なくとも一部が溶解しているため、カップリング反応がよりスムーズに進行してより高純度のアゾ化合物を製造することができる。この理由は以下のように推測される。前記式(3)はカップリング位が2個以上あるため、例えば1個のカップリング位のみが反応した反応中間体を経由する。この反応中間体が反応系で析出してしまうと、2個目以降のカップリング反応の反応速度が遅くなる。一方、ジアゾニウム化合物は不安定であるため、長時間経過すると分解が起こる懸念がある。したがって、カップリング反応は早く進行させてやることが重要であり、工程(b)において析出物を生成させない上記形態(ii)の製造方法は、結果として、高純度の顔料を製造するのに、より好適である。
 工程(b)においては溶媒を使用せずにカップリング成分を添加しても良いが、溶媒と混合して添加しても良いが、溶媒を使用せずに添加することが好ましい。工程(b)においてカップリング成分に溶媒を使用する場合、特に限定はされないが、上記形態(ii)となるように、すなわち、反応後に生成した前記一般式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液が得られるような溶媒であることが好ましい。
 上記形態(i)の場合、すなわち、顔料を析出させる場合、溶媒の例としては、水、有機酸、無機酸、有機溶媒を用いることができるが、特に水、有機溶媒が好ましく、反応時に液体分離現象を起こさず、溶媒と均一な溶液を呈する溶媒が好ましい。例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブチルアルコール、アミルアルコール等のアルコール性有機溶媒、アセトン、メチルエチルケトン等のケトン系有機溶媒、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール等のジオール系有機溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル等のエーテル系有機溶媒、テトラヒドロフラン、ジオキサン、アセトニトリル等が挙げられる、これらの溶媒は2種類以上の混合液であってもよい。
 好ましくは、極性パラメータ(ET)の値が40以上の有機溶媒である。なかでも溶媒分子中に水酸基を2個以上有するグリコール系の溶媒、あるいは炭素原子数が3個以下のアルコール系溶媒、総炭素数5以下のケトン系溶媒、好ましくは炭素原子数が2以下のアルコール溶媒(例えば、メタノール、エチレングリコール)、総炭素数4以下のケトン系溶媒(例えばアセトン、メチルエチルケトン)が好ましい。またこれらの混合溶媒も含まれる。
 また、上記形態(ii)の場合、すなわち、式(1)で表される化合物の少なくとも一部が反応液に溶解するようにカップリング反応を行う場合、溶媒の例としては、水、メタノール、イソプロパノール、エチレングリコール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸、プロピオン酸、メタンスルホン酸等の有機酸溶媒、硫酸、塩酸、リン酸等の無機酸溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチル-2-ピロリドン等のアミド系溶媒、他ジメチルスルホキシド、スルホラン、アセトニトリル、が挙げられる。中でも、好ましくは、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸、プロピオン酸、メタンスルホン酸等の有機酸溶媒、硫酸、塩酸、リン酸等の無機酸溶媒であり、更に好ましくは、有機酸又は無機酸の酸性溶媒であり、最も好ましくは、酢酸、メタンスルホン酸、リン酸、硫酸である。また、上記で示した溶媒の混合溶媒も好適である。
 特に上記形態(ii)の場合、工程(b)においては、カップリング成分を酸性溶媒に溶解又は懸濁させた酸性溶液と、工程(a)で得た反応生成物とを混合する、あるいはカップリング成分を、溶媒を使用せずに、工程(a)で得た反応生成物に添加するのが好ましい。とりわけ、酸性溶媒は、酢酸及び硫酸の少なくとも一方を含む溶媒であることが好ましい。
 上記形態(i)及び(ii)のいずれにおいても、カップリング成分に対する好ましい溶媒の添加量は、質量比で0.5~200倍が好ましく、1~100倍がより好ましく、1~50倍が更に好ましい。カップリング成分に対する好ましい溶媒量の添加量として、質量比で0.5倍未満ではカップリング成分と溶媒の製造機における攪拌が困難になり、所望の反応が進行しない。また、200倍超過では不経済となる。
 アゾ化合物溶解液の調製方法が、上記形態(i)である場合、あるいは、上記形態(ii)であって、かつ、式(1)で表される化合物の少なくとも一部が溶解されたカップリング反応液を工程(c)に適用して得られるアゾ顔料を、更に溶剤に溶解させてアゾ化合物溶解液を調製する場合において、得られたアゾ顔料を溶解するための溶剤としては、アゾ顔料の少なくとも一部を溶解できれば特に限定されないが、上記形態(ii)において好ましいとして前掲した溶媒の例を同様に挙げることができる。
 上記形態(i)、(ii)のいずれの工程をとるにせよ、工程(b)において最終的に得られるアゾ化合物溶解液としては、酸性溶液であることが好ましく、とりわけ、酢酸及び硫酸の少なくとも一方を含む溶液であることが好ましい。
 工程(b)において得られるアゾ化合物溶解液としては、工程(b)によって生成したアゾ化合物の全量(アゾ化合物溶解液に溶解している式(1)で表されるアゾ化合物と、アゾ化合物溶解液から析出した式(1)で表されるアゾ顔料との総和)に対する、アゾ化合物溶解液に溶解している式(1)で表されるアゾ化合物の割合が50質量%以上であることが好ましく、75質量%以上であることが好ましく、90質量%以上であることが好ましく、100質量%(工程(b)によって生成したアゾ化合物が反応液に完全に溶解している状態)であることが最も好ましく、これにより、顔料の粒子径をより低下できる傾向となる。
 工程(b)における工程(a)のジアゾニウム化合物調製液とカップリング成分の混合温度は50℃以下で実施されることが好ましく、30℃以下で実施されることがより好ましく、更に好ましくは25℃以下で実施することが望ましい。50℃超過では工程(a)で誘導されたジアゾニウム化合物、並びに生成した式(1)で表されるアゾ化合物の分解が懸念される。また、混合には通常の攪拌機が用いられ、特に限定はない。製造設備に依存することはあるが、好ましい攪拌の回転数は、30~300rpmが好ましく、40~200rpmがより好ましく、更に好ましくは50~200rpmである。攪拌速度が回転数で30rpm未満となると混合液の攪拌効率が悪くなり所望の反応の進行が懸念される。工程(b)における攪拌時間は0.1~10時間が好ましく、0.3~5時間がより好ましく、更に好ましくは0.3~3時間である。0.1時間未満では完全に顔料へ誘導することが難しく、10時間超過では式(1)で表されるアゾ化合物の分解が懸念される。
 次に本発明に係わる工程(c)について詳細を説明する。
 工程(c)は、前記工程(b)で得たアゾ化合物溶解液を、該アゾ化合物の溶解性が低い貧溶媒と混合して、顔料を晶析させる工程である。工程(b)で得たアゾ化合物溶解液と貧溶媒との混合の方法に特に制限はないが、工程(b)で得たアゾ化合物溶解液を貧溶媒の中に添加することが好ましく、その際に貧溶媒が攪拌された状態であることが好ましい。
 攪拌速度は100~10000rpmとすることが好ましく、150~8000rpmとすることがより好ましく、200~6000rpmとすることが特に好ましい。添加にはポンプ等を用いることもできる。このとき、液中添加でも液外添加でもよいが、液中添加がより好ましい。更に供給管を介してポンプで液中に連続供給することが好ましい。
 貧溶媒は特に限定されないが、アゾ化合物の溶解度が1g/L以下であることが好ましく、0.1g/L以下であることがより好ましい。この溶解度は酸又はアルカリの存在下で溶解された場合の溶解度であってもよい。工程(b)で得たアゾ化合物溶解液と貧溶媒の相溶性若しくは均一混合性は、該アゾ化合物の良溶媒の貧溶媒に対する溶解量が30質量%以上であることが好ましく、50質量%以上であることがより好ましい。本明細書において、溶解度は25℃における溶解度を指す。
 貧溶媒としては、例えば、水、塩酸、アンモニア水、水酸化ナトリウム水溶液等の水性溶媒、メタノール、エタノール、イソプロピルアルコール、1-メトキシ-2-プロパノール等のアルコール系溶媒、エチレングリコール、ジエチレングリコール等のグリコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、アセトニトリル等のニトリル系溶媒、ジクロロメタン、トリクロロエチレン等のハロゲン系溶媒、酢酸エチル、乳酸エチル、2-(1-メトキシ)プロピルアセテート等のエステル系溶媒等が挙げられ、好ましくは、水、塩酸、アンモニア水、水酸化ナトリウム水溶液等の水性溶媒、メタノール、エタノール、イソプロピルアルコール、1-メトキシ-2-プロパノール等のアルコール系溶媒、エチレングリコール、ジエチレングリコール等のグリコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物溶媒であり、更に好ましくは、水、アンモニア水等の水性溶媒、炭素数1~3のアルコール溶媒、炭素数1~6のグリコール系溶媒、である。また、上記で示した溶媒の混合溶媒も好適である。最も好ましくは、水及び炭素数1~3のアルコール、炭素数1~6のグリコールからなる群から選択される1種以上の溶媒である。
 工程(b)で得たアゾ化合物溶解液と貧溶媒との混合比は体積比で1/50~2/3が好ましく、1/40~1/2がより好ましく、1/20~1/2が特に好ましい。体積比で2/3以下であると、顔料の晶析が充分に起こって反応収率が上がり、体積比が1/50以上であると、生産性が向上して経済的となる。
 工程(b)で得たアゾ化合物溶解液と貧溶媒との混合温度には特に制限はないが、-10~50℃で実施されることが好ましく、-5~30℃で実施されることがより好ましく、10~25℃で実施されることが最も好ましい。
 工程(b)で得たアゾ化合物溶解液と貧溶媒との混合にあたり、レイノルズ数を調節することにより、析出生成させる有機ナノ粒子の粒子径を制御することができる。ここでレイノルズ数は流体の流れの状態を表す無次元数であり次式で表される。
 数式(1):Re=ρUL/μ
(数式(1)中、Reはレイノルズ数を表し、ρは工程(b)で得たアゾ化合物溶解液の密度[kg/m]を表し、Uはアゾ化合物溶解液と貧溶媒とが出会うときの相対速度[m/s]を表し、Lはアゾ化合物溶解液と貧溶媒が出会う部分の流路若しくは供給口の等価直径[m]を表し、μはアゾ化合物溶解液の粘性係数[Pa・s]を表す。)
 等価直径Lとは、任意断面形状の配管の開口径や流路に対し等価な円管を想定するとき、その等価円管の直径をいう。等価直径Lは、配管の断面積をA、配管のぬれぶち長さ(周長)又は流路の外周をpとすると下記数式(2)で表される。
 数式(2):L=4A/p
 アゾ化合物溶解液と貧溶媒とが出会うときの相対速度Uは、両者が出会う部分の面に対して垂直方向の相対速度で定義される。すなわち、例えば静止している貧溶媒中にアゾ化合物溶解液を注入して混合する場合は、供給口から注入する速度が相対速度Uに等しくなる。相対速度Uの値は特に制限されないが、例えば、0.5~100m/sとすることが好ましく、1.0~50m/sとすることがより好ましい。
 アゾ化合物溶解液の密度ρは、選択される材料の種類により定められる値であるが、例えば、0.8~2.0kg/mであることが実際的である。また、アゾ化合物溶解液の粘性係数μについても用いられる材料や環境温度等により定められる値であるが、例えば、0.5~100mPa・sであることが好ましく、1.0~50.0mPa・sであることがより好ましい。
 レイノルズ数の値は、小さいほど層流を形成しやすく、大きいほど乱流を形成しやすい。例えば、レイノルズ数を60以上で調節して顔料ナノ粒子の粒子径を制御して得ることができ、100以上とすることが好ましく、150以上とすることがより好ましい。レイノルズ数に特に上限はないが、例えば、100000以下の範囲で調節して制御することで所望の平均粒子径を持つ顔料粒子を制御して得ることができる。このとき、上記の範囲内においては、通常レイノルズ数を高めることで、より粒径の小さな顔料粒子を制御して得ることができる。
 本発明の製造方法により得られる顔料粒子の1次粒子を、透過型顕微鏡で観察した際の長軸方向の長さは、1nm~1μmであることが好ましく、5~500nmであることがより好ましく、10~200nmであることが更に好ましく、10~100nmであることが特に好ましい。
 なお、顔料粒子の粒子径に関しては、計測法により数値化して集団の平均の大きさを表現する方法があるが、よく使用されるものとして、分布の最大値を示すモード径、積分分布曲線の中央値に相当するメジアン径、各種の平均径(数平均、長さ平均、面積平均、質量平均、体積平均等)などがあり、本発明においては、特に断りのない限り、平均粒子径とは数平均粒子径をいう。
 顔料粒子の粒径の測定方法としては、顕微鏡法、質量法、光散乱法、光遮断法、電気抵抗法、音響法、動的光散乱法が挙げられ、顕微鏡法、動的光散乱法が特に好ましい。顕微鏡法に用いられる顕微鏡としては、例えば、走査型電子顕微鏡、透過型電子顕微鏡などが挙げられる。動的光散乱法による粒子測定装置として、例えば、日機装社製ナノトラックUPA-EX150、大塚電子社製ダイナミック光散乱光度計DLS-7000シリーズなどが挙げられる。
 上記の顔料粒子の好ましい平均粒子径は、(1)工程(c)における温度、(2)貧溶媒に対するアゾ化合物の溶解度、及び、(3)攪拌速度(あるいは、レイノルズ数)を、適宜、調整することによって、達成される。
 顔料微粒子を析出させ分散液を調製するにあたり、アゾ化合物溶解液及び貧溶媒の少なくとも一方に分散剤を含有させてもよい。このとき、アゾ化合物溶解液に分散剤を含有させることが好ましい。分散剤は(1)析出した顔料表面に素早く吸着して、微細なナノ粒子を形成し、かつ(2)これらの粒子が再び凝集することを防ぐ作用を有するものである。
 分散剤としては、例えば、アニオン性、カチオン性、両イオン性、ノニオン性の低分子又は高分子分散剤を使用することができる。
 高分子分散剤としては、その質量平均分子量が1000~500000であることが好ましく、10000~500000であることがより好ましく、10000~100000であることが特に好ましい。
 具体的には、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド、ビニルアルコール-酢酸ビニル共重合体、ポリビニルアルコール-ブブンホルマール化物、ポリビニルアルコール-部分ブチラール化物、ビニルピロリドン-酢酸ビニル共重合体、ポリエチレンオキシド/プロピレンオキシドブロック共重合体、ポリアクリル酸塩、ポリビニル硫酸塩、ポリ(4-ビニルピリジン)塩、ポリアミド、ポリアリルアミン塩、縮合ナフタレンスルホン酸塩、セルロース誘導体、澱粉誘導体などが挙げられる。その他、アルギン酸塩、ゼラチン、アルブミン、カゼイン、アラビアゴム、トンガントゴム、リグニンスルホン酸塩などの天然高分子類も使用できる。なかでも、ポリビニルピロリドンが好ましい。これら高分子化合物は、1種単独であるいは2種以上を組み合わせて用いることができ、また、低分子量の分散剤を組み合わせて用いてもよい。顔料の分散に用いる分散剤に関しては、「顔料分散安定化と表面処理技術・評価」(化学情報協会、2001年12月発行)の29~46頁に詳しく記載されている。
 アニオン性分散剤(アニオン性界面活性剤)としては、N-アシル-N-アルキルタウリン塩、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。なかでも、N-アシル-N-アルキルタウリン塩が好ましい。N-アシル-N-アルキルタウリン塩としては、特開平3-273067号明細書に記載されているものが好ましい。これらアニオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
 カチオン性分散剤(カチオン性界面活性剤)には、四級アンモニウム塩、アルコキシル化ポリアミン、脂肪族アミンポリグリコールエーテル、脂肪族アミン、脂肪族アミンと脂肪族アルコールから誘導されるジアミン及びポリアミン、脂肪酸から誘導されるイミダゾリン及びこれらのカチオン性物質の塩が含まれる。これらカチオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
 両イオン性分散剤は、前記アニオン性分散剤が分子内に有するアニオン基部分とカチオン性分散剤が分子内に有するカチオン基部分をともに分子内に有する分散剤である。
 ノニオン性分散剤(ノニオン性界面活性剤)としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチエレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステルなどを挙げることができる。なかでも、ポリオキシエチレンアルキルアリールエーテルが好ましい。これらノニオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
 分散剤の含有量は、顔料100質量部に対して0.1~1000質量部の範囲であることが好ましく、より好ましくは1~500質量部の範囲であり、更に好ましくは5~200質量部の範囲である。また、分散剤は、単独で用いても、複数のものを組み合わせて用いてもよい。
 本発明の顔料の製造方法においては、上記工程(a)~(c)によって得られる生成物は通常の有機合成反応の後処理方法に従って処理した後、精製してあるいは精製せずに次の結晶変換工程に供することができる。
 すなわち、例えば、反応系から遊離したものを精製せずに、あるいは再結晶、造塩等にて精製する操作を単独、あるいは組み合わせて行ない、供することができる。
 また、反応終了後、反応溶媒を留去して、あるいは留去せずに水、又は氷にあけ、中和してあるいは中和せずに、遊離したものをあるいは有機溶媒/水溶液にて抽出したものを、精製せずにあるいは再結晶、晶析、造塩等にて精製する操作を単独に又は組み合わせて行なった後、供することもできる。
 工程(c)で得られた非晶質アゾ化合物は、アゾ化合物の懸濁液からアゾ化合物を取り出さずに結晶変換をおこなっても良いし、取り出してから結晶変換を行ってもよい。
 工程(c)で得られた固体が非晶質ではない場合、アゾ化合物を良溶媒に溶解させて、非晶質な固体が得られる貧溶媒と混合することで非晶質なアゾ化合物を得てもよい。
 次に、本発明の製造方法により得られる顔料粒子、すなわち、以上の方法により非晶質なアゾ化合物から結晶変換して得られた式(1)で表されるアゾ顔料について述べる。
 本発明の製造方法により得られる顔料粒子の体積平均粒子径は、1nm~10μmであることが好ましく、5nm~5μmであることがより好ましく、10nm~1μmであることが更に好ましく、10~500nmであることが特に好ましい。
 なお、顔料粒子の体積平均粒子径とは、顔料そのものの粒子径、又は色材に分散剤等の添加物が付着している場合には、添加物が付着した粒子径をいう。本発明において、顔料粒子の体積平均粒子径の測定装置には、ナノトラックUPA粒度分析計(UPA-EX150;日機装社製)を用いることができる。その測定は、顔料分散物3mlを測定セルに入れ、所定の測定方法に従って行うことができる。なお、測定時に入力するパラメーターとしては、粘度にはインク粘度を、分散粒子の密度には顔料の密度を用いる。
 上記の顔料粒子の好ましい体積平均粒子径は、既述の結晶変換した後の式(1)で表されるアゾ顔料の溶解性が低い溶媒を用いて結晶変換をする際に結晶成長を抑制させることや、結晶変換の温度、時間、溶媒量を、適宜、調整することで達成される。
 顔料の分散性を更に好ましくし、着色力を更に向上させる観点から、下記式(1)で表されるδ型結晶形態アゾ顔料の窒素吸着法によるBET比表面積は50m/g以上であることが好ましく、60m/g以上であることが特に好ましい。
 ここで、窒素吸着法によるBET比表面積とは、窒素ガスを粉体粒子に吸着させ、吸着平衡状態における吸着平衡圧を求め、BETの関係式により単分子層吸着量を算出し求められた比表面積をいう。窒素吸着法によるBET比表面積は、例えば、日本工業規格JIS Z8830の付属書2に規定される「1点法による気体吸着量の測定方法」に従って測定することができる。具体的には、比表面積測定装置「MONOSORB MS-17」(ユアサアイオニクス(株)製)等を用いることにより測定することができる。
 窒素吸着法によるBET比表面積を上記の範囲とすることにより顔料の一次粒子が十分微細化されるが、微細化された状態においても、式(1)で表されるδ型結晶形態アゾ顔料は耐光性を落とすことなく分散性及び着色力が更に向上する。
 窒素吸着法によるBET比表面積が50m/g以上である下記式(1)で表されるδ型結晶形態アゾ顔料は、好ましくは、後述するソルベントソルトミリングを含む工程により製造することができる。
 本発明の方法で製造された式(1)で表されるアゾ顔料は、必要に応じて後処理を行ってもよい。この後処理の方法としては、例えば、ソルベントソルトミリング、ソルトミリング、ドライミリング、ソルベントミリング、アシッドペースティング等の摩砕処理、溶媒加熱処理などによる顔料粒子制御工程、樹脂、界面活性剤及び分散剤等による表面処理工程が挙げられる。
 また、本発明の式(1)で表される化合物は後処理としてソルベントソルトミリングを行うことが好ましい。
 (ソルベントソルトミリング)
 ソルベントソルトミリングとしては、例えば、アゾ顔料(以下、混練磨砕する前のアゾ顔料を「粗アゾ顔料」ということがある。)と、無機塩と、それを溶解しない有機溶剤とを含む混合物を混練機に仕込み、その中で混練磨砕を行うことが挙げられる。上記無機塩としては、水溶性無機塩が好適に使用でき、例えば塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム等の無機塩を用いることが好ましい。また、前記水溶性無機塩の粒子径としては特に制限はないが、アゾ顔料の2次凝集体の粒子径制御の観点から、水溶性無機塩の粒子径が体積基準のメディアン径で0.5~50μmであることが好ましく、1~20μmであることがより好ましく、1~10μmであることが更に好ましい。当該無機塩の使用量は、粗アゾ顔料に対して、1~30質量倍とすることができ、生産性の観点から、3~20質量倍とするのが好ましく、5~15質量倍とするのがより好ましい。有機溶剤としては、水溶性有機溶剤が好適に使用でき、混練時の温度上昇により溶剤が蒸発し易い状態になるため、安全性の点から高沸点溶剤が好ましい。このような有機溶剤としては、例えばジエチレングリコール、グリセリン、エチレングリコール、プロピレングリコール、液体ポリエチレングルコール、液体ポリプロピレングリコール、2-(メトキシメトキシ)エタノール、2-ブトキシエタノール、2ー(イソペンチルオキシ)エタノール、2-(ヘキシルオキシ)エタノール、ジエチレングリコールモノメチルエーテル、ジエチレングルコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコール又はこれらの混合物が挙げられる。また、その他の水溶性有機溶剤として、プロピルアルコール、2-ブチルアルコール、tert-ブチルアルコールなどの1価アルコール系溶剤も好適に使用することができる。当該水溶性有機溶剤の使用量は、粗アゾ顔料に対して0.1~5質量倍が好ましく、更に好ましくは2~3質量倍である。混練温度は、20~130℃が好ましく、40~110℃が特に好ましい。混練機としては、例えばニーダーやミックスマーラー等を使用することができ、具体的には、ニーダー等のバッチ式混練機、スーパーミキサー((株)カワタ製)やトリミックス((株)井上製作所製)等のバッチ式混練機、連続式1軸混練機KCKミル(浅田鉄工(株)製)等の連続式混練機を用いることができる。
 前記連続式混練機としては、例えば、その磨砕部分が混練分散に必要な要素である圧縮・せん断・混合(置換)の三つの作用を粗顔料に与えることができる固定ブレードと回転ブレードとを有していることが好ましい。また前記固定ブレードと回転ブレードとの山と山は隙間(ギャップ)を形成し、せん断作用はこのギャップにおいて発生し、また、前記回転ブレードと固定ブレードとの谷間の材料がお互いにキャビティースライスを受けていることが好ましい。
 前記固定ブレードと回転ブレードの形状には特に制限はないが、それぞれ、菊型、扇型及び臼状型の3種類から選ばれることが好ましい。固定ブレードと回転ブレードとを交互に多段に重なっていることが好ましく、これにより各々のブレードの両面にキャビティーを放射状に形成することができる。また、回転ブレードと中間スクリューが回転軸上に交互に組み込まれ、固定ブレードはせん断室シリンダーと交互にタイロッドによってフィードシリンダーに固定されていることが好ましい、これにより固定ブレードと回転ブレードとスクリューの組合せにより混練物を押し出すことができる。
 更に連続式混練機は、混合物の投入部、磨砕部及び押出部に少なくとも6箇所の温度調節部を有していることが好ましい。これにより、粗アゾ顔料の磨砕工程における温度範囲を幅広く設定できる。
 前記磨砕工程における処理温度としては、特に制限はなく、例えば5~200℃とすることができるが、アゾ顔料粒子の変色、粒度分布の観点から、5~50℃であることが好ましく、10~35℃であることがより好ましい。
 また、前記連続混練機は、粗アゾ顔料、水溶性無機塩及び水溶性有機溶剤の混合割合、又は軸回転数により、吐出量を変えることが可能であることが好ましい。吐出量を変えることで、アゾ顔料の磨砕粒径を所望の粒径に容易に制御することができる。
 本発明のアゾ顔料磨砕物の製造方法は、前記磨砕工程に加え、必要に応じてその他の工程を備えることができる。その他の工程としては、例えば、磨砕工程後の前記混合物を、水等に投入して攪拌した後、アゾ顔料磨砕物をろ過等で分離することで水溶性無機塩及び水溶性有機溶剤を除去する洗浄工程、前記洗浄工程で得られたアゾ顔料磨砕物を乾燥する乾燥工程等を挙げることができる。
 これら洗浄工程及び乾燥工程は、いわゆるソルベントソルトミリング法で通常用いられる方法を本発明においても特に制限なく適用することができる。
 本発明におけるアゾ顔料磨砕物の1次粒子の粒径としては、80nm以下であることが好ましく、30~50nmであることがより好ましい。また1次粒子が凝集した2次粒子の粒径としては、120nm以下であることが好ましく、60~100nmであることがより好ましい。
 前記アゾ顔料磨砕物の1次粒子及び2次粒子の粒径は、透過型電子顕微鏡(TEM)を用いて測定される。
 本発明は、非晶質な下記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が(a)4.8°、7.2°及び9.7°、(b)4.8°、7.2°、9.7°、20.1°、及び26.8°又は(c)4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的X線回折ピークを有する結晶形に結晶変換することを特徴とする下記式(1)で表されるアゾ顔料の製造方法であって、(i)非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する結晶形に結晶変換する工程、及び、(ii)前記工程(i)で得たアゾ顔料と、水溶性無機塩と、水溶性有機溶剤とを含む混合物を混練して、比表面積を50m/g以上の結晶にする工程、を含むアゾ顔料、又はその互変異性体の製造方法にも関する。
 上記水溶性無機塩及び水溶性有機溶剤としては上述のものと同様のものを使用することができ、好ましい範囲もまた同様である。混練に使用する混練機も、上述のものと同様のものを使用することができる。
 本発明における(水系)顔料分散物は、少なくとも前記製造方法により得られたアゾ顔料、分散剤及び水を含む。前記分散剤は低分子及び高分子、更に水溶性及び水不溶性の中から任意で選択できるが、印画物の画質の観点から、高分子が好ましい。更に、水系で分散を行うので、分散性、分散物安定性の観点から、水溶性であることが好ましい。本発明において分散剤は、水溶性高分子であることが特に好ましい。
 また、本発明において「分散剤」は、架橋剤で架橋化された状態のものも意味する。本発明の顔料分散物では、この分散剤が顔料に吸着されたものが望ましい。
 分散剤は分子中に、電荷反発による効果があるため、分散物の保存安定性の観点から1以上、好ましくは10以上のカルボキシ基を持つことが好ましい。架橋剤が2つのエポキシ基をもつときは、架橋反応によりエポキシ基とカルボキシ基が架橋するために、カルボキシ基が減るので、ポリマーは10以上のカルボキシ基を持つことが好ましい。
 ポリマー中にあるカルボキシ基は酸(-COOH)の形でも、塩の形でもよい。塩としては、例えば、金属イオン、アンモニウム、置換アンモニウム、4級アンモニウム又はピリジニウム塩などが挙げられる。好ましくは、金属イオン、アンモニウムであり、更に好ましくはカリウムイオン、ナトリウムイオンである。
 本発明の高分子分散剤はポリウレタン、ポリエステル、ポリビニルを含み、より好ましくはポリウレタン、ポリエステル、ポリビニルであり、最も好ましくはポリビニル(ビニルポリマー)である。本発明では2種類以上のポリマーを組み合わせてもよい。
 ポリマーへのカルボキシ基の導入は少なくとも1つのカルボキシ基を含むモノマーの共重合によって得られる。好ましいポリビニルには、モノマーとしてイタコン酸、マレイン酸、フマール酸、クロトン酸、メタクリル酸、アクリル酸、β-カルボキシエチルアクリレートを用いるが、好ましくはメタクリル酸、アクリル酸、β-カルボキシエチルアクリレートを用いる。
 ポリマー中のカルボキシル基は、まず、架橋剤中の架橋性基と架橋する作用をもつ。架橋性基としては酸無水物、エポキシ基が挙げられ、エポキシ基が特に望ましい。反応性が高いので、温和な条件で架橋することができるからである。更に、未反応カルボキシル基は最終微粒子分散物の沈降及び凝集に対する安定性に有効である。カルボキシル基は極性溶媒特に水溶媒中で安定性基として有効である。カルボキシル基が顔料分散物中で安定性に寄与する唯一の基である場合、全てのカルボキシ基が架橋剤と架橋してしまうと、分散物の安定性が著しく低下する。そのため、架橋反応が完結した後に未反応カルボキシル基が残るように、エポキシ基に対してカルボキシル基のモル過剰とすることが好ましく、エポキシ基に対してカルボキシル基をモル比で30:1~1.1:1、より好ましくは25:1~1.1:1、特に好ましくは20:1~2:1とすることが望ましい。
 ポリマーは他の安定性基を持っていてもよい。安定性基の選択及びその量は溶媒の性質に大きく依存する。安定性基は実際、親水性(例えば、極性溶媒)であるか、疎水性(例えば、無極性溶媒)であるかに依存する。
 好ましいポリマー分散剤は親水性モノマー、疎水性モノマーの両方から得られる。
 親水性モノマーはイオン性基又は非イオン性基である親水性を含むモノマーである。イオン性基はカチオンでもよいが、好ましくはアニオンである。カチオン性基も、またアニオン性基も分散剤に両性的安定性(amphotericstabilisation)を与える。好ましいアニオン性基はフェノキシ、スルホン酸、硫酸、ホスホン酸、ポリ燐酸、燐酸の基(塩でもよい)である。好ましいカチオン性基は4級アンモニウム、ベンズアルコニウム、グアニジン、ビグアニジン、及びピリジニウムである。これらは水酸化物、硫酸塩、硝酸塩、塩化物、臭化物、沃化物及び弗化物のような塩の形でもよい。好ましい非イオン性基はグルコキシド、糖類、ピロリドン、アクリルアミド、及び特にヒドロキシル基及びポリ(アルキレンオキシド)基であり、より好ましくはポリ(エチレンオキシド)基又はポリ(プロピレンオキシド)基であり、特に-(CHCHO)H又は-(CHCHO)-アルキルである。ここで、nは3~200(好ましくは4~20)を表す。これ以降、例えばC-の表現は “炭素数1~4の”を表す。ポリマーは非イオン性基のみを、ポリマー全体で複数の非イオン性基を、また非イオン性基を含む1以上のポリマー鎖を含んでいてもよい。ヒドロキシル基はポリビニルアルコール、ポリヒドロキシル機能のアクリリックス及びセルロースを用いて挿入される。エチレンオキシ基はポリエチレンオキシドのようなポリマー鎖を用いて挿入される。
 疎水性モノマーは疎水性基を含むモノマーである。疎水性基を有する代表的なものは3以下で好ましくは0の親水性基を持つ、炭化水素類、フルオロカーボン類、ポリCアルキレンオキシ類及びアルキルシロキサン類である。疎水性基は、好ましくはC50鎖であり、また疎水性モノマー中にプロピレンオキシドを側鎖又は直鎖に有し得る。
 ポリマーは、ホモポリマーでもよいが、好ましくは共重合体(コポリマー)である。ポリマーはランダムポリマー(統計上短いブロック又はセグメント)を含むが、好ましくは、グラフトポリマー(長いブロック又はセグメント)を含む。また、ポリマーは交互(alternating)ポリマーでもよい。ポリマーは分岐していてもよいが、好ましくは直鎖である。ポリマーは2以上のセグメント(例えば、ブロック及びグラフト、コポリマー)を持っていてもよいが好ましくはランダムである。
 ポリマーが2以上のセグメントを持つ場合の態様では、少なくとも1つのセグメントは疎水性であり、少なくとも1つのセグメントは互いに関連性の親水性であることが好ましい。疎水性及び親水性セグメントをつくる好ましい方法はそれぞれ疎水性及び親水性モノマーの共重合による。ポリマーが少なくとも1つの疎水性セグメント及び少なくとも1つの親水性セグメントもつ場合、カルボキシル基は疎水性セグメントにあっても、また親水性セグメントにあっても、また両方のセグメントにあってもよい。
 ビニルポリマー(ポリビニル)はどのような適切な手段によって製造されてもよい。ビニルポリマーの好ましい製造方法は、特に(メタ)アクリレートとビニルナフタレン(特にスチレンモノマー)のようなビニルモノマーを用いるフリーラジカル重合である。適切なフリーラジカル重合は懸濁重合、溶液重合、分散重合、乳化重合に限定されないが、好ましくは溶液重合である。
 ビニルポリマーは(メタ)アクリレートモノマーを用いる場合が好ましい。
 ビニルポリマーは好ましくは共重合体(コポリマー)である。
 疎水性モノマー及び親水性モノマーから導かれるコポリビニル分散剤は好ましくは実質的にセグメントをもたない。例えば、コポリビニルポリマーはセグメント長が非常に短いか存在しないようなフリーラジカル重合によって製造される。かかる場合はしばしば「ランダム」重合と呼ばれる。セグメントをもつコポリビニルポリマーはリビング重合、特に原子団転移(group transfer)重合、原子転移(atom transfer)重合、マクロモノマー(macromonomer)重合、グラフト重合、アニオン又はカチオン重合のような重合方法によって製造される。好適な親水性ビニルモノマーは非イオン性及びイオン性モノマーである。好ましい非イオン性モノマーは糖類、グルコース、アミド、ピロリドンであり、特にヒドロキシ基及びエトキシ基をもつものである。好ましい非イオン性モノマーの例としては、ヒドロキシ エチルアクリレート、ヒドロキシ エチルメタアクリレート、ビニルピロリドン、エトキシ化された(メタ)アクリレート及び(メタ)アクリルアミドが挙げられる。好適なイオン性ビニルモノマーはカチオン性であってもよいが、好ましくはアニオン性である。
 好ましいアニオン性ビニルモノマーはカルボキシ基及び/又は燐酸基及び/又はスルホン酸基(これらの酸はフリーでも塩でもよい)を含むものである。好ましい例として、(メタ)アクリル酸、スチレンスルホン酸、ビニルベンジルスルホン酸、ビニルスルホン酸、(メタ)アクリロイルオキシアルキルスルホン酸(例えば、アクリロイルオキシメチルスルホン酸、アクリロイルオキシエチルスルホン酸、アクリロイルオキシプロピルスルホン酸、アクリロイルオキシブチルスルホン酸、メタクリロイルオキシメチルスルホン酸、メタクリロイルオキシエチルスルホン酸、メタクリロイルオキシプロピルスルホン酸、メタクリロイルオキシブチルスルホン酸)、2-アクリルアミド-2-アルキルアルカンスルホン酸(例えば、2-アクリルアミド-2-メチルエタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルブタンスルホン酸)、2-メタクリルアミド-2-アルキルアルカンスルホン酸(例えば、2-メタクリルアミド-2-メチルエタンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルブタンスルホン酸)、モノ-(アクリロイルオキシアルキル)燐酸塩(例えば、モノ-(アクリロイルオキシエチル)燐酸塩、モノ-(3-アクリロイルオキシプロピル)燐酸塩)、モノ-(メタクリロイルオキシアルキル)燐酸塩(例えば、モノ-(メタクリロイルオキシエチル)燐酸塩、モノ-(3-メタクリロイルオキシプロピル)燐酸塩)が挙げられる。
 好ましいカチオンビニルモノマーは4級アミン、ピリジン、グアニジン及びビグアニジン基を含むものである。
 好ましい疎水性ビニルモノマーは親水性基を持たない。好ましい疎水性ビニルモノマーとしてはC20-ヒドロカルビル(メタ)アクリレート、ブタジエン、スチレン及びビニルナフタレンが挙げられ、C20-ヒドロカルビル(メタ)アクリレート(例、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニルアクリレート、ラウリルアクリレート、ステアリルアクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート)が好ましく、メチルメタクリレート、ベンジルメタクリレート、2-エチルヘキシルメタクリレート、フェノキシエチルメタクリレートが特に好ましい。これらのヒドロカルビル基は分岐でもよいが、好ましくは直鎖である。
 少なくとも1つのカルボキシル基を持つポリエステルはジオールモノマーと過剰量のジカルボン酸モノマーとの反応によっても生成される。カルボキシル基はカルボキシル基を持つジオールとジカルボン酸モノマーとの共重合によっても導入できる。
 ポリエステルはジカルボン酸とジオールとのエステル化で製造されるのが典型的なものである。
 カルボキシル基を有するポリエステルは、例えば、カルボキシル基含有化合物と水酸基含有化合物とを、カルボキシル基が残存するように、溶融法、溶剤法などの公知の方法によって脱水縮合反応を行うことにより製造することができる。
 ポリエステルは、一塩基酸、多塩基酸の如きカルボキシル基を有する化合物と、ジオール、ポリオールの如き水酸基を有する化合物とを適宜選択して脱水縮合させて得られるもの等が挙げられ、更に、油脂類又は脂肪酸類を使用したものがアルキッド樹脂となる。
 本発明で使用するポリエステルが有するカルボキシル基は、主に、ポリエステルを構成する二塩基酸以上の多塩基酸に由来する未反応のカルボキシル基である。
 多塩基酸としては、例えば、アジピン酸、(無水)コハク酸、セバシン酸、ダイマー酸、(無水)マレイン酸、(無水)フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ(無水)フタル酸、ヘキサヒドロ(無水)フタル酸、ヘキサヒドロテレフタル酸、2,6-ナフタレンジカルボン酸、(無水)トリメリット酸、(無水)ピロメリット酸などが挙げられる。
 多塩基酸以外に使用可能なカルボキシル基を有する化合物としては、例えば、テレフタル酸ジメチルの如き酸の低級アルキルエステル類;安息香酸、p-ターシャリブチル安息香酸、ロジン、水添ロジンの如き一塩基酸類;脂肪酸及び油脂類;分子末端に1個又は2個のカルボキシル基を有するマクロモノマー類;5-ソジウムスルフォイソフタル酸及びそのジメチルエステル類などが挙げられる。
 水酸基を有する化合物としては、例えば、エチレングリコール、ネオペンチルグリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-プロパンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,5-ペンタンジオール、ビスフェノールAのアルキレンオキサイド付加物、水添ビスフェノールA、水添ビスフェノールAのアルキレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールの如きジオール類;グリセリン、トリメチロールプロパン、トリメチロールエタン、ジグリセリン、ペンタエリスリトール、トリスヒドロキシエチルイソシアヌレートの如きポリオール類;「カージュラE-10」(シェル化学工業株式会社製の合成脂肪酸のグリシジルエステル)などのモノグリシジル化合物類、分子片末端に水酸基を2個有するマクロモノマー類などが挙げられる。
 また、ポリエステルを合成する際に、ひまし油、12-ヒドロキシステアリン酸などの水酸基含有脂肪酸又は油脂類;ジメチロールプロピオン酸、p-ヒドロキシ安息香酸、ε-カプロラクトンの如きカルボキシル基と水酸基とを有する化合物なども使用できる。
 更に、二塩基酸の一部をジイソシアネート化合物に代えることもできる。
 また、カルボキシル基を有するポリエステルは、水酸基を有するポリエステルに、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸などの無水酸を付加反応せしめる方法によっても製造することができる。
 水酸基とカルボキシル基とを有するポリエステルは、例えば、ポリエステル樹脂の脱水縮合反応において、公知の方法に従って、水酸基とカルボキシル基とが残存するように反応させることによって容易に製造することができる。
 第3級アミノ基とカルボキシル基とを有するポリエステルは、例えば、トリエタノールアミン、N-メチルジエタノールアミン、N,N-ジメチルエタノールアミン等の第3級アミノ基と水酸基とを有する化合物を、ポリエステル樹脂を製造する際のアルコール成分として使用することによって容易に製造することができる。
 ラジカル重合性不飽和基とカルボキシル基を有するポリエステルは、例えば、[1]水酸基とカルボキシル基とを有するポリエステルに、2-メタクリロイルオキシエチルイソシアネートなどのイソシアネート基を有するラジカル重合性不飽和基含有モノマー類、あるいは、無水マレイン酸などのラジカル重合性不飽和基を有する無水酸を付加反応せしめる方法、[2]カルボキシル基を有するポリエステル樹脂に、エポキシ基を有する重合性モノマー類を付加反応せしめる方法、[3]酸成分として無水マレイン酸などのラジカル重合性不飽和基含有モノマーを使用してポリエステル樹脂を合成する方法、等によって容易に製造することができる。
 ポリウレタンはポリオール成分(例えば、ジ-イソシアネート)とポリオール成分(例えば、ジオール)との縮合反応で好ましく製造される。
 カルボキシル基を有するポリウレタンは、例えば、カルボキシル基を導入する成分としてのジメチロールプロピオン酸の如きカルボキシル基と水酸基とを有する化合物を含有するポリオール成分と、ポリイソシアネート成分とを反応させることによって、容易に製造することができる。
 ポリオール成分としては、ポリエステルの製造方法において掲げたジオール成分のほか、必要に応じて、3官能以上のポリオール化合物を使用することもできる。
 ポリイソシアネート成分としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、メタキシリレンジイソシアネート、イソホロンジイソシアネート、水添トリレンジイソシアネート、水添4,4’-ジフェニルメタンジイソシアネート、水添メタキシリレンジイソシアネート、粗製4,4’-ジフェニルメタンジイソシアネートの如きジイソシアネート化合物のほか、ポリメチレンポリフェニルイソシアネートの如きポリイソシアネート化合物も使用できる。
 ポリウレタンの製造は、常法に従えばよい。例えば、イソシアネート基と反応しない不活性な有機溶剤溶液中で、室温又は40~100℃程度の温度で付加反応を行うのが好ましい。その際、ジブチル錫ジラウレート等の公知の触媒を使用しても良い。
 ポリウレタンを製造する際の反応系には、ジアミン、ポリアミン、N-メチルジエタノールアミンの如きN-アルキルジアルカノールアミン;ジヒドラジド化合物などの公知の鎖伸長剤も使用できる。
 水酸基とカルボキシル基とを有するポリウレタンは、例えば、ポリウレタンを製造する際に、イソシアネート基よりも水酸基が多くなる割合で反応させることにより容易に製造することができる。あるいは、カルボキシル基と末端イソシアネート基とを有するポリイソシアネートに、1分子中に水酸基を2個以上有する化合物を付加反応させることによっても容易に製造することができる。
 第3級アミノ基とカルボキシル基とを有するポリウレタンは、例えば、ポリオール成分の一部としてN-メチルジエタノールアミンなどのN-アルキルジアルカノールアミンを使用することにより容易に製造することができる。
 ブロック化イソシアネート基とカルボキシル基とを有するポリウレタンは、例えば、カルボキシル基と末端イソシアネート基とを有するポリイソシアネートに、公知のブロック剤を付加反応させることによって容易に製造することができる。
 エポキシ基とカルボキシル基とを有するポリウレタンは、例えば、カルボキシル基と末端イソシアネート基とを有するポリイソシアネートに、水酸基とエポキシ基とを有する化合物を付加反応させることによって容易に製造することができる。
 水酸基とエポキシ基とを有する化合物としては、例えば、グリシドール、グリセリンジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ビスフェノールAのジグリシジルエーテル等が挙げられる。
 ラジカル重合性不飽和基を、酸性基としてカルボキシル基を有するポリウレタンは、例えば、末端イソシアネート基を有するポリイソシアネートに、前述した如き水酸基を有する重合性モノマー類、及びグリセロールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリアクリレートなどの水酸基とラジカル重合性不飽和基とを有する化合物を付加反応せしめる方法等によって容易に製造することができる。
 加水分解性アルコキシシラン基を、酸性基としてカルボキシル基を有するポリウレタンは、例えば、末端イソシアネート基を有するポリイソシアネートに、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランの如きイソシアネート基と反応しうる活性水素を有するシランカップリング剤を付加反応させる方法等により容易に製造することができる。
 ポリマーは微粒子分散物を製造する過程で用いる液体媒体に合うようにまた微粒子分散物に用いられる最終組成物(例えば、インク)中の液体展色剤(ベヒクル)に合うように選ばれる。例えば、微粒子分散物が水性のインクジェット記録用インクに用いられる場合には、好ましくはポリマーは親水性である。
〔分子量〕
 分散剤の重量平均分子量は10000以上200000以下が好ましく、更に15000以上150000以下であることが好ましく、中でも20000以上100000以下であることがより好ましい。10000以上では印画物の画質が優れ好ましい一方、200000以下では、粘度が高くなるのを抑制でき、更に貯蔵安定性の低下を防ぎ、好ましい。
〔D/P値〕
 分散剤の含有量は、顔料100質量部に対して20~100質量部の範囲であることが好ましく、より好ましくは25~90質量部の範囲であり、更に好ましくは30~70質量部の範囲である。また、分散剤は、単独で用いても、複数のものを組み合わせて用いてもよい。
 分散剤の含有量が20質量部未満の場合、分散剤の量が顔料に対して不十分になり、貯蔵安定性が不十分になる。一方、100質量部超過の場合、粘度が高くなり、更に貯蔵安定性が低下するため不適である。
 前記顔料分散物中の着色剤の含有量をP、分散剤の含有量をDとし、含有量Dと含有量Pとの比をD/P値としたときに、D/P値が0.15以上1.0以下であることが好ましく、0.16以上0.8以下であることがより好ましく、0.17以上0.7以下であることが更に好ましい。
〔酸価〕
 分散剤は架橋剤と架橋するために十分な酸価をもつ必要があり、少なくとも50mgKOH/g以上の酸価をもつものが好ましい。
 全ての態様において、上記の酸価は好ましくは70~200mgKOH/gであり、より好ましくは70~160mgKOH/gである。係る酸価をもつ分散剤は改良された保存安定性を与える。
 また、50mgKOH/gより低いと、水系溶媒への溶解性が低いため不適である。
〔溶解性〕
 分散剤は水不溶性、水溶性のどちらでも良いが、水への溶解性として、1g/100mL以上であることが好ましく、更に好ましくは、3g/100mL以上であり、特に好ましくは5g/100mL以上である。
 1g/(100m)L未満では、水への溶解性が低いために、顔料粒子に吸着しにくくなり、分散性が低下する場合がある。
〔架橋〕
 前記水系(顔料)分散物が、架橋剤により架橋されていることが好ましい。
 本発明のより好ましい形態は、分散剤は架橋する前に顔料表面に吸着し、相対的に安定な分散物が形成され、そしてこの分散工程に引き続き、架橋剤を用いて架橋する工程を実施することにより、より高度な保存安定性を有し、印画物の画質に優れる分散物が得られる。
 少なくとも50mg/KOH以上の酸価をもつ分散剤を用いる場合には、架橋剤はオリゴマー分散基を持っていても、持たなくてもよい。「オリゴマー」という言葉は分子量に上限はないし、また繰り返し単位の上限もない意味で用いる。1以上のオリゴマー分散基を持つ架橋剤は生じた微粒子分散物の安定性を増加させる。この増加された安定性はインクジェット記録に用いる液体展色剤(ビヒクル)において特に有用である。それは50mg/KOH未満の酸価をもつ分散剤では分散が困難であるからである。
 オリゴマー分散基は好ましくはポリアルキレンオキシドであり、より好ましくはポリC-アルキレンオキシドであり、特に好ましくはポリエチレンオキシドである。ポリアルキレンオキシドは生じた微粒子分散物の安定性を改良する。ポリアルキレンオキシドは好ましくは3~200、より好ましくは5~50、特に好ましくは5~20のアルキレンオキシド繰り返し単位を有する。
 架橋剤は2つ以上のエポキシ基を持つことが好ましい。少なくとも2つのエポキシ基を持つ好ましい架橋剤はエピクロロヒドリン誘導体である。2つ以上のエポキシ基を持ち、オリゴマー分散基を持たない架橋剤はエチレングリコールジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ハロゲン化されたビスフェノールAジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、及びポリブタジエンジグリシジルエーテルである。2つのエポキシ基を持ち、かつ1以上のオリゴマー分散基をもつ好ましい架橋剤はジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、又はジプロピレングリコールジグリシジルエーテルである。
 また、無水フタル酸、無水コハク酸等の酸無水物も架橋剤として用いることができる。
〔温度、pH〕
 本発明では架橋反応は100℃以下、pH6以上で行うことが好ましい。更に好ましい架橋反応は30℃~90℃、より好ましくは40℃~85℃である。
 架橋反応の好ましいpHは7~10であり、より好ましくは8~9.5である。
 架橋剤が更にカルボキシ基を含み、カルボキシ基とエポキシ基の間の架橋反応を100℃以下、pH6以上で行うことが好ましい。
 架橋反応は水系で行うため、100℃以下が好ましい。逆に、低温では架橋反応の進行が遅くなるため、好ましくなく、30℃以上が好ましく、40℃以上が更に好ましい。
 pHが10超過では、架橋反応で熱を加えるとポリマーが加水分解してしまう可能性がある。一方、pHが6未満では、顔料分散物が凝集を起こしやすくなり不安定になってしまうので、好ましくない。
〔膜精製〕
 膜精製には逆浸透膜(NF膜)、限外ろ過膜(UF膜)を使用することができ、加圧してもしなくても良いが、加圧する場合の方が、精製に要する時間が短くなり、効率的である。UF膜としては、分画分子量10000以上150000以下が好ましく、20000以上100000以下がより好ましい。10000未満では精製するための時間が長くなってしまうため、非効率である。一方、150000超過では、分散剤が流出してしまう可能性があるため、好ましくない。
 本発明のアゾ顔料の用途としては、画像、特にカラー画像を形成するための画像記録材料が挙げられ、具体的には、以下に詳述するインクジェット方式記録材料を始めとして、感熱記録材料、感圧記録材料、電子写真方式を用いる記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等があり、好ましくはインクジェット方式記録材料、感熱記録材料、電子写真方式を用いる記録材料であり、更に好ましくはインクジェット方式記録材料である。
 また、CCDなどの固体撮像素子やLCD、PDP等のディスプレーで用いられるカラー画像を記録・再現するためのカラーフィルター、各種繊維の染色の為の染色液にも適用できる。
 以上に説明した本発明の製造方法によれば、非晶質なアゾ化合物から結晶変換することで、結晶成長をコントロールし、易分散なアゾ顔料を製造することができる。
 工程(b)において式(1)で表されるアゾ化合物が反応液中の少なくとも一部が溶解しているため、特に、アゾ化合物溶解液の調整方法が上記形態(ii)である場合は、カップリング反応がよりスムーズに進行してより高純度のアゾ化合物を得ることができる。このことは、最終的に得られるアゾ顔料の高効率な製造に寄与する。
 ところで、上記したように、カップリング反応後の反応液中で析出した特許文献6の顔料(一度、粒子として得られた顔料)を有機溶媒に溶解させることは困難である。すなわち、顔料の粒子径をより微細なものにするべく、特許文献6の顔料を有機溶剤に溶解させようとする場合、大量の有機溶媒が使用する必要があり、製造コストが増大する上、大量の有機溶媒を使用したとしても溶解させられない場合も多く、ましてや完全に溶解させることは非常に難しい。
 一方、本発明によれば、工程(b)の終了後には、大量の有機溶媒を使用することなく(高濃度で)、目的とするアゾ化合物の少なくとも一部が溶解した溶解液を得ることができ、このことは、最終的に得られるアゾ顔料の高効率な製造に寄与する。また、工程(b)で得られたアゾ化合物溶解液と、このアゾ化合物に対する貧溶媒とを混合することにより、アゾ顔料を微粒子として、析出させることができる。
 以上のように、本発明のアゾ顔料の製造方法によれば、易分散なアゾ顔料微粒子を高効率かつ低コストで製造することができる。
 [着色組成物]
 本発明の着色組成物は、上記した本発明のアゾ顔料、その塩、水和物又は溶媒和物を少なくとも1種含有する。本発明の着色組成物は、媒体を含有させることができるが、媒体として溶媒を用いた場合は特にインクジェット記録用インクとして好適である。本発明の着色組成物は、媒体として、親油性媒体や水性媒体を用いて、それらの中に、本発明の顔料を分散させることによって作製することができる。好ましくは、水性媒体を用いる場合である。本発明の着色組成物には、媒体を除いたインク用組成物も含まれる。本発明の着色組成物は、必要に応じてその他の添加剤を、本発明の効果を害しない範囲内において含有しうる。その他の添加剤としては、例えば、乾燥防止剤(湿潤剤)、褪色防止剤、乳化安定剤、浸透促進剤、紫外線吸収剤、防腐剤、防黴剤、pH調整剤、表面張力調整剤、消泡剤、粘度調整剤、分散剤、分散安定剤、防錆剤、キレート剤等の公知の添加剤(特開2003-306623号公報に記載)が挙げられる。これらの各種添加剤は、水溶性インクの場合にはインク液に直接添加する。油溶性インクの場合には、アゾ顔料分散物の調製後分散物に添加するのが一般的であるが、調製時に油相又は水相に添加してもよい。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例中、「部」とは質量部を表す。
 <アゾ化合物、アゾ顔料の製造>
 以下の実施例にて得られたアゾ化合物の1次粒子径については、透過型顕微鏡(日本電子(株)製:JEM-1010電子顕微鏡)を用いて目視にて観察した。
 アゾ化合物、アゾ顔料のX線回折の測定は、日本工業規格JISK0131(X線回析分析通則)に準じて、粉末X線回折測定装置RINT2500(株式会社リガク製)にてCuKα線を用い、次の条件で行ったものである。
 使用測定器:Rigaku社製 自動X線回折装置RINT2500
 X線管球:Cu
 管電圧:55KV
 管電流:280mA
 スキャン方法:2θ/θスキャン
 スキャン速度:6deg./min
 サンプリング間隔:0.100deg.
 スタート角度(2θ):5deg.
 ストップ角度(2θ):55deg.
 ダイバージェンススリット:2deg.
 スキャッタリングスリット:2deg.
 レシービングスリット:0.6mm
 縦型ゴニオメータ使用
 [実施例1]
 亜硝酸ナトリウム2.2gを水50mLに溶解させた。別に式(2)で表されるアミノ化合物5.8gを濃塩酸50mLに溶解させた後、内温-10℃まで冷却した。この中に内温が0℃以下になるように先述の亜硝酸ナトリウム水溶液を滴下した。内温-10℃~0℃にて1時間攪拌した後、内温0℃以下にて尿素1.8gを加えた。添加終了後15分間同温度にて攪拌し、ジアゾニウム塩溶液を得た。別に式(3)の化合物5gをメタノール175mLに加えた後昇温し、還流下溶解させた。この溶液を内温0℃まで冷却し、先述のジアゾニウム塩溶液を内温が10℃以下になるように添加した。内温10℃にて1時間攪拌した後、析出している固体を濾別した。メタノール、水で十分にかけ洗いを行った後、水300mLに懸濁させ、28%アンモニア水溶液を添加してpHを6.0に調整した。析出している固体を濾別して水で十分にかけ洗いを行い、60℃にて乾燥後、非晶質なアゾ化合物(1)-1を9.8g得た。
 得られた非晶質なアゾ化合物(1)-1の1次粒子の長軸方向の長さは、約0.5μmであった。
 非晶質なアゾ化合物(1)-1のX線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 得られた非晶質なアゾ化合物(1)-1 5gをエチレングリコール50mLに懸濁させた。内温100℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、析出している固体を濾別し、δ型結晶形態のアゾ顔料(1)-2を4.5g得た。
 得られたδ型結晶形態のアゾ顔料(1)-2の1次粒子の長軸方向の長さは、約0.6μmであった。
 得られたδ型結晶形態のアゾ顔料(1)-2のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図1に示す。
 [実施例2]
 亜硝酸ナトリウム2.2gを水50mLに溶解させた。別に式(2)で表されるアミノ化合物5.8gを濃塩酸50mLに溶解させた後、内温-10℃まで冷却した。この中に内温が0℃以下になるように先述の亜硝酸ナトリウム水溶液を滴下した。内温-10℃~0℃にて1時間攪拌した後、内温0℃以下にて尿素1.8gを加えた。添加終了後15分間同温度にて攪拌し、ジアゾニウム塩溶液を得た。このジアゾニウム塩溶液に式(3)の化合物5gを内温が5℃以下になるように少しずつ加えた。添加終了後、内温10℃まで昇温し、同温度にて3時間攪拌した後、析出している固体を濾別した。水で十分にかけ洗いを行った後、水200mLに懸濁させ、28%アンモニア水溶液を添加してpHを6.0に調整した。固体を濾別して水で十分にかけ洗いを行い、60℃にて乾燥後、非晶質なアゾ化合物(1)-3を9.9g得た。
 得られたアゾ化合物(1)-3の1次粒子の長軸方向の長さは、約0.3μmであった。
 アゾ化合物(1)-3のX線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 得られた非晶質なアゾ化合物(1)-3 5gをエチレングリコール50mLに懸濁させた。内温120℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-4を4.5g得た。
 得られたアゾ顔料(1)-4の1次粒子の長軸方向の長さは、約0.5μmであった。
 得られたアゾ顔料(1)-4のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図2に示す。
 [実施例3]
 式(2)の化合物34.6gを酢酸150gに懸濁し、硫酸24gを内温が20℃~30℃になるように滴下した。更に内温が20℃~30℃になるように43%ニトロシル硫酸の硫酸溶液48.6gを滴下し、内温20℃にて1時間攪拌後、尿素0.28gを添加してジアゾニウム塩溶液を得た。このジアゾニウム塩溶液に式(3)の化合物30gを内温が20℃~30℃になるように分割して添加し、内温25℃にて1時間攪拌し、アゾ化合物の均一反応液を得た。別に360gのメタノールを内温25℃にて用意し、上述のアゾ化合物の均一反応液を内温が30℃以下になるように添加し、10分間攪拌した後、析出している固体を濾別した。300mLのメタノールでかけ洗いした後、水900mLに懸濁させ、28%アンモニウム水溶液を添加してpHを6.0に調整した。固体を濾別し、ζ型結晶形態のアゾ顔料(1)-5を得た。
 得られたアゾ顔料(1)-5の1次粒子の長軸方向の長さは、約2μmであった。
 得られたアゾ顔料(1)-5のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が6.5°、6.7°、9.1°及び21.3°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図3に示す。
 得られたアゾ顔料(1)-5 5gを硫酸50mLに溶解させ、水300mLに内温が15℃以下になるように添加した。析出している固体を濾別し、十分に水でかけ洗いした後、水300mLに懸濁させ、28%アンモニア水溶液を添加してpHを6.1に調整した。固体を濾別して、水で十分にかけ洗いを行い、60℃にて乾燥後、非晶質なアゾ化合物(1)-6を3.9g得た。
 得られたアゾ化合物(1)-6の1次粒子の長軸方向の長さは、約0.2μmであった。
 アゾ化合物(1)-6のX線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 得られた非晶質なアゾ化合物(1)-6 3gをエチレングリコール30mLに懸濁させた。内温120℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-7を2.4g得た。
 得られたアゾ顔料(1)-7の1次粒子の長軸方向の長さは、約0.3μmであった。
 得られたアゾ顔料(1)-7のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図4に示す。
 [実施例4]
 実施例3で得られたアゾ顔料(1)-5 5gをリン酸50mLに溶解させ、水300mLに内温が15℃以下になるように添加した。析出している固体を濾別し、十分に水でかけ洗いした後、水300mLに懸濁させ、28%アンモニア水溶液を添加してpHを7.2に調整した。固体を濾別して、水で十分にかけ洗いを行い、60℃にて乾燥後、非晶質なアゾ化合物(1)-8を4.2g得た。
 得られたアゾ化合物(1)-8の1次粒子の長軸方向の長さは、約0.2μmであった。
 アゾ化合物(1)-8のX線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 得られた非晶質なアゾ化合物(1)-8 3gをエチレングリコール30mLに懸濁させた。内温120℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-9を2.4g得た。
 得られたアゾ顔料(1)-9の1次粒子の長軸方向の長さは、約0.2μmであった。
 得られたアゾ顔料(1)-9のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図5に示す。
 [実施例5]
 式(2)の化合物11.5gを酢酸50gに懸濁させ、内温が20℃~30℃になるようにニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。別に式(3)の化合物10gを酢酸100mLに溶解させ、上述のジアゾニウム塩溶液に内温が20℃~25℃になるように滴下した。内温20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(1)の均一反応液を滴下した。析出している固体を濾別した後、水で十分にかけ洗いを行い、水200mLに懸濁させ、28%アンモニア水溶液を添加してpHを6.2に調整した。固体を濾別して、水で十分にかけ洗い、非晶質なアゾ化合物(1)-10を得た。
 得られたアゾ化合物(1)-10の1次粒子の長軸方向の長さは、約0.2μmであった。
 水分測定を行ったところ、水の含率が68%だった。
 アゾ化合物(1)-10の一部を乾燥し、X線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 得られた非晶質な含水のアゾ化合物(1)-10 10gをエチレングリコール30mLに懸濁させた。内温95℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-11を2.9g得た。
 得られたアゾ顔料(1)-11の1次粒子の長軸方向の長さは、約0.15μmであった。
 得られたアゾ顔料(1)-11のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図6に示す。
 [実施例6]
 実施例5で得られた非晶質な含水のアゾ化合物(1)-10を乾燥し、アゾ化合物(1)-12を得た。アゾ化合物(1)-12、10gをエチレングリコール100mLに懸濁させ、内温120℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-13を9.1g得た。
 得られたアゾ顔料(1)-13の1次粒子の長軸方向の長さは、約0.2μmであった。
 得られたアゾ顔料(1)-13のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図7に示す。
 [実施例7]
 アゾ化合物(1)-12、10gをエチレングリコール50mL、水50mLの混合溶媒に懸濁させ、内温95℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-14を9.3g得た。
 得られたアゾ顔料(1)-14の1次粒子の長軸方向の長さは、約0.2μmであった。
 得られたアゾ顔料(1)-14のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図8に示す。
 [実施例8]
 アゾ化合物(1)-12、10gをエチレングリコール5mL、水95mLの混合溶媒に懸濁させ、内温85℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-15を9.5g得た。
 得られたアゾ顔料(1)-15の1次粒子の長軸方向の長さは、約0.15μmであった。
 得られたアゾ顔料(1)-15のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図9に示す。
 [実施例9]
 アゾ化合物(1)-12、10gをイソプロパノール40mL、水60mLの混合溶媒に懸濁させ、内温80℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-16を8.2g得た。
 得られたアゾ顔料(1)-16の1次粒子の長軸方向の長さは、約5μmであった。
 得られたアゾ顔料(1)-16のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図10に示す。
 [実施例10]
 アゾ化合物(1)-12、10gをイソブチルアルコール100mL、水10mLに懸濁させ、内温80℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-17を7.9g得た。
 得られたアゾ顔料(1)-17の1次粒子の長軸方向の長さは、約15μmであった。
 得られたアゾ顔料(1)-17のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図11に示す。
 [実施例11]
 アゾ化合物(1)-12、10gを酢酸ブチル100mLに懸濁させ、内温90℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、固体を濾別し、δ型結晶形態のアゾ顔料(1)-18を8.5g得た。
 得られたアゾ顔料(1)-18の1次粒子の長軸方向の長さは、約20μmであった。
 得られたアゾ顔料(1)-18のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図12に示す。
 [実施例11-2]
 アゾ化合物(1)-12、10gをメタノール100mLに懸濁させた。室温にて2時間攪拌した後に固体を濾別しζ型結晶形態のアゾ顔料(1)-101を9.4g得た。
 得られたアゾ顔料(1)-101の1次粒子の長軸方向の長さは約10μmであった。
 得られたアゾ顔料(1)-101のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が6.5°、6.7°、9.1°、及び21.3°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図13に示す。
 [実施例12]
 式(2)の化合物11.5gを酢酸50gに懸濁させ、内温が20℃~30℃になるようにニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。別に式(3)の化合物10gを酢酸100mLに溶解させ、上述のジアゾニウム塩溶液に内温が20℃~25℃になるように滴下した。内温20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(1)の均一反応液を滴下した。析出している固体を濾別した後、水で十分にかけ洗いを行い、非晶質なアゾ化合物(1)-19を得た。
 得られたアゾ化合物(1)-19の1次粒子の長軸方向の長さは、約0.2μmであった。
 CuKα特性X線回折図を図14に示す。
 アゾ化合物(1)-19のX線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 得られた非晶質なアゾ化合物(1)-19を水120mL、エチレングリコール180mLの混合溶媒に懸濁させた。28%アンモニア水溶液でpHを6.28に調整した後、内温85℃まで昇温し、同温度にて2時間攪拌した。内温30℃まで冷却した後、結晶を濾別し、水で十分にかけ洗いを行い、δ型結晶形態のアゾ顔料(1)-20を19.5g得た。
 得られたアゾ顔料(1)-20の1次粒子の長軸方向の長さは、約0.3μmであった。
 得られたアゾ顔料(1)-20のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図15に示す。
 [実施例12-2]
 実施例12において、アゾ化合物(1)の均一反応液をエチレングリコール150gに滴下すること以外は実施例12と同様にして、非晶質なアゾ化合物(1)-102を得た。得られたアゾ化合物(1)-102の1次粒子の長軸方向の長さは約0.7μmであった。
 アゾ化合物(1)-102のX線回折の測定を上記の条件により行ったところ、特徴的なX線回折ピークが見られなかった。
 続いて、実施例12と同様の操作で結晶変換を行い、δ型結晶形態のアゾ顔料(1)-103を19.1g得た。
 得られたアゾ顔料(1)-103の1次粒子の長軸方向の長さは、約0.7μmであった。
 得られたアゾ顔料(1)-103のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図16に示す。
 [実施例13]
 式(2)の化合物11.5gを酢酸50gに懸濁させ、内温が20℃~30℃になるようにニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。別に式(3)の化合物10gを酢酸100mLに溶解させ、上述のジアゾニウム塩溶液に内温が20℃~25℃になるように滴下した。内温20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(1)の均一反応液を滴下した。固体(非晶質なアゾ化合物)が析出した懸濁液を同温度にて30分間攪拌した後、エチレングリコール20mLを添加し、内温85℃まで昇温し、同温度にて2時間攪拌した。内温30℃まで冷却した後、析出している結晶を濾別し、水で十分にかけ洗いを行い、δ型結晶形態のアゾ顔料(1)-21を19.9g得た。
 得られたアゾ顔料(1)-21の1次粒子の長軸方向の長さは、約0.2μmであった。
 得られたアゾ顔料(1)-21のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図17に示す。
 [実施例14]
 式(2)の化合物11.5gを酢酸50gに懸濁させ、内温が20℃~30℃になるようにニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。別に式(3)の化合物10gを酢酸100mLに溶解させ、上述のジアゾニウム塩溶液に内温が20℃~25℃になるように滴下した。内温20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(1)の均一反応液を滴下した。固体(非晶質なアゾ化合物)が析出した懸濁液を同温度にて30分間攪拌した後、エチレングリコール20mLを添加した。内温30℃以下になるように28%アンモニア水溶液を添加してpHを4.01に調整した後、内温85℃まで昇温し、同温度にて2時間攪拌した。内温30℃まで冷却した後、析出している結晶を濾別し、水で十分にかけ洗いを行い、δ型結晶形態のアゾ顔料(1)-22を19.9g得た。
 得られたアゾ顔料(1)-22の1次粒子の長軸方向の長さは、約0.5μmであった。
 得られたアゾ顔料(1)-22のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図18に示す。
 [実施例15]
 式(2)の化合物11.5gを酢酸50gに懸濁させ、内温が20℃~30℃になるようにニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。別に式(3)の化合物10gを酢酸100mLに溶解させ、上述のジアゾニウム塩溶液に内温が20℃~25℃になるように滴下した。内温20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(1)の均一反応液を滴下した。固体(非晶質なアゾ化合物)が析出した懸濁液を同温度にて30分間攪拌した後、エチレングリコール20mLを添加し、内温85℃まで昇温し、同温度にて2時間攪拌した。内温30℃まで冷却した後、内温が30℃以下になるように28%アンモニア水溶液を添加してpHを6.50に調整した。析出している結晶を濾別し、水で十分にかけ洗いを行い、δ型結晶形態のアゾ顔料(1)-23を19.9g得た。
 得られたアゾ顔料(1)-23の1次粒子の長軸方向の長さは、約0.4μmであった。
 得られたアゾ顔料(1)-23のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図19に示す。
 [実施例16]
 式(2)の化合物11.5gを酢酸50gに懸濁させ、内温が20℃~30℃になるようにニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。別に式(3)の化合物10gを酢酸100mLに溶解させ、上述のジアゾニウム塩溶液に内温が20℃~25℃になるように滴下した。内温20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(1)の均一反応液を滴下した。固体(非晶質なアゾ化合物)が析出した懸濁液を同温度にて30分間攪拌した後、エチレングリコール20mLを添加し、内温85℃まで昇温し、同温度にて2時間攪拌した。内温30℃まで冷却した後、析出している結晶を濾別し、水で十分にかけ洗いを行い、1%炭酸水素ナトリウム水溶液100mLでかけ洗いを行った。更に水で十分にかけ洗いを行い、δ型結晶形態のアゾ顔料(1)-24を19.8g得た。
 得られたアゾ顔料(1)-24の1次粒子の長軸方向の長さは、約0.15μmであった。
 得られたアゾ顔料(1)-24のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図20に示す。
 [実施例17]
 実施例6で得られたアゾ化合物(1)-12、10gをエチレングリコール100mLに懸濁させ、室温にて24時間攪拌した。固体を濾別し、δ型結晶形態のアゾ顔料(1)-25を9.5g得た。
 得られたアゾ顔料(1)-25の1次粒子の長軸方向の長さは、約0.2μmであった。
 得られたアゾ顔料(1)-25のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図21に示す。
 [実施例18]
 式(2)の化合物11.4gを90%酢酸50gに懸濁させ、内温が10~20℃となるまで冷却した。この温度範囲で、硫酸4g、続いてニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温10~20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。このジアゾニウム塩溶液の中に、式(3)の化合物10gを内温が10~20℃になるように分割添加した。内温10~20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温20℃~25℃にて上述のアゾ化合物(1)の均一反応液を滴下した。固体(非晶質なアゾ化合物)が析出した懸濁液を同温度にて15分間攪拌した後、エチレングリコール20gを添加した。続いて、内温70℃まで昇温し、同温度にて1時間攪拌して結晶変換を行った。内温30℃まで冷却した後、析出している結晶を濾別し、水及びメタノールで十分にかけ洗いを行い、δ型結晶形態のアゾ顔料(1)-27を19.9g得た。
 得られたアゾ顔料(1)-27の1次粒子の長軸方向の長さは、約0.5μmであった。
 得られたアゾ顔料(1)-27のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図22に示す。
 [実施例18-2]
 式(2)の化合物11.4gを90%酢酸50gに懸濁させ、内温が10~20℃となるまで冷却した。この温度範囲で、硫酸4g、続いてニトロシル硫酸の43%硫酸溶液16.2gを滴下した。内温10~20℃にて1時間攪拌した後、尿素0.1gを添加してジアゾニウム塩溶液を得た。このジアゾニウム塩溶液の中に、式(3)の化合物10gを内温が10~20℃になるように分割添加した。内温10~20℃にて1時間攪拌し、アゾ化合物(1)の均一反応液を得た。別に水150gを用意し、内温40℃~45℃にて上述のアゾ化合物(1)の均一反応液を滴下した。固体(非晶質なアゾ化合物)が析出した懸濁液を同温度にて15分間攪拌した後、エチレングリコール20gを添加した。同温度にて16時間攪拌して結晶変換を行った。内温30℃まで冷却した後、析出している結晶を濾別し、水及びメタノールで十分にかけ洗いを行い、δ型結晶形態のアゾ顔料(1)-104を19.9g得た。
 得られたアゾ顔料(1)-104の1次粒子の長軸方向の長さは、約0.4μmであった。
 得られたアゾ顔料(1)-104のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図23に示す。
 [比較例1]
 実施例3で得られたアゾ顔料(1)-5 5gをエチレングリコール50mLに懸濁させ、内温120℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、析出している固体を濾別し、δ型結晶形態のアゾ顔料(1)-26を3.9g得た。
 得られたアゾ顔料(1)-26を光学顕微鏡(ニコン(株)製:ECLIPSE LV150)で目視にて観察したところ、1次粒子の長軸方向の長さは、約80μmであった。
 得られたアゾ顔料(1)-26のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図24に示す。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
<顔料分散物の作製>
 上記実施例1で合成したδ型結晶形態アゾ顔料(1)-2を2.5部、オレイン酸ナトリウム0.5部、グリセリン5部、水42部を混合し、直径0.1mmのジルコニアビーズ100部とともに遊星型ボールミルを用いて毎分300回転、3時間分散を行った。分散終了後、ジルコニアビーズを分離し、黄色の顔料分散物1を得た。
 上記実施例2~17で合成したδ型結晶形態アゾ顔料についてもそれぞれ同様の操作を行い、黄色の顔料分散物2~17を得た。
 比較のために、上記比較例1で合成したδ型結晶形態アゾ顔料(1)-26を2.5部、オレイン酸ナトリウム0.5部、グリセリン5部、水42部を混合し、直径0.1mmのジルコニアビーズ100部とともに遊星型ボールミルを用いて毎分300回転、8時間分散を行った。分散終了後、ジルコニアビーズを分離し、黄色の比較顔料分散物1を得た。
 更に上記実施例1にて合成した非晶質なアゾ化合物(1)-1を2.5部、オレイン酸ナトリウム0.5部、グリセリン5部、水42部を混合し、直径0.1mmのジルコニアビーズ100部とともに遊星型ボールミルを用いて毎分300回転、7時間分散を行った。分散終了後、ジルコニアビーズを分離し、黄色の比較顔料分散物2を得た。
 顔料分散物中の顔料の体積平均粒子径を、日機装(株)製Nanotrac150(UPA-EX150)を用いて測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000019
 以上の結果より、本発明の製造方法により得られる特定の結晶構造を有するアゾ顔料は、より短時間で体積平均粒子径(nm)の小さな分散物を調製することが可能であることが分かった。
 〔比表面積が50m/g以上の顔料を含有する顔料分散物の製造方法と性能評価〕
 <非晶質なアゾ顔料の結晶変換工程を含まないアゾ顔料(1)の製造>
[合成例1]α型結晶形態アゾ顔料(1)-29の製造
 前記式(2)で表される化合物67.5gをリン酸530mLに溶解させ、氷冷して内温を3℃まで冷却した。内温が4℃以下になるように15分間かけて亜硝酸ナトリウム26.9gを分割して添加した。添加終了後、同温度にて50分間攪拌し、尿素18.6gを分割して添加し、ジアゾニウム塩溶液を得た。別に前記式(3)で表される化合物47.9gをメタノール1680mLに加え、還流下完溶させた。氷冷して内温を0℃まで冷却し、ここに上述のジアゾニウム塩溶液を内温が10℃以下になるように30分かけて添加した。内温5℃にて1時間30分攪拌した後、水1.6Lに添加し、30分間攪拌した。析出している結晶を濾別し、水1Lでかけ洗った。得られた結晶を水2.5Lに懸濁させ、28%アンモニア水を加えてpHが6.1になるように調製した。結晶を濾別し、水で十分にかけ洗いを行い、γ型結晶形態アゾ顔料を得た。得られた結晶をアセトン1.5Lに懸濁させ、昇温して還流下2時間攪拌した。結晶を熱時にて濾別して、アセトンで十分かけ洗いを行い、β型結晶形態アゾ顔料(1)-28を103.5g得た。
 得られたβ型結晶形態アゾ顔料(1)-28を60℃24時間乾燥させ、α型結晶形態アゾ顔料(1)-29を92.8g(収率88.8%)得た。
[合成例2]ε型結晶形態アゾ顔料(1)-31の製造 
 50gの酢酸、8gの硫酸からなる混合溶媒にニトロシル硫酸の43%硫酸溶液16.2gを20分かけて加えた。この溶液を3℃まで冷却し、前記式(2)で表される化合物11.55gを粉末で添加しジアゾ化反応を行った。同温度で1時間攪拌後、余分のニトロシル硫酸を尿素0.094gで失活させ、ジアゾニウム化合物調製液を得た。
 この上述のジアゾニウム化合物調製液の中に前記式(3)で表される化合物10gを粉体にて5℃以下で分割添加した。添加終了後、20℃へ昇温し2時間反応させてアゾ化合物溶解液を得た。なお、カップリング反応中、顔料の析出は見られず、アゾ化合物溶解液は、得られたアゾ化合物を完全に溶解している状態であった。
 メタノール150mLからなる貧溶媒を用意し5℃、200rpmで攪拌した。この貧溶媒中に上述のアゾ化合物溶解液を滴下した。
 そのまま15分攪拌後、生成した結晶を濾別し、前記式(1)で表されるζ型結晶形態のアゾ顔料(1)-30を得た。
 得られたζ型結晶形態のアゾ顔料(1)-30の結晶を水200mLに懸濁させ、28%アンモニア水を加えてpHを6.0に調製した。析出している結晶(ζ型)を濾別し、水で十分にかけ洗いを行い、60℃で24時間乾燥させた。得られた結晶(ζ型)をアセトン200mLに懸濁させ、昇温して還流下2時間攪拌した。室温まで冷却し、結晶を濾別し、前記式(1)で表されるη型結晶形態のアゾ顔料を得た。得られた結晶をアセトンで十分にかけ洗いを行い、60℃にて24時間乾燥させて前記式(1)で表されるε型結晶形態アゾ顔料(1)-31を18.9g得た。
 [合成例3]δ型結晶形態のアゾ顔料(1)-32の合成
 前記式(2)の化合物34.6gを酢酸150gに懸濁し、硫酸24gを内温が20℃~30℃になるように滴下した。更に内温が20℃~30℃になるように43%ニトロシル硫酸の硫酸溶液48.6gを滴下し、内温20℃にて1時間攪拌後、尿素0.28gを添加してジアゾニウム塩溶液を得た。このジアゾニウム塩溶液に前記式(3)の化合物30gを内温が20℃~30℃になるように分割して添加し、内温25℃にて1時間攪拌し、アゾ化合物の均一反応液を得た。別に360gのメタノールを内温25℃にて用意し、上述のアゾ化合物の均一反応液を内温が30℃以下になるように添加し、10分間攪拌した後、析出している固体を濾別した。300mLのメタノールでかけ洗いした後、水900mLに懸濁させ、28%アンモニウム水溶液を添加してpHを6.0に調整した。析出している固体を濾別し、前記式(1)で表されるアゾ顔料を得た。
 得られたアゾ顔料の1次粒子の長軸方向の長さは、約2μmであった。
 得られたアゾ顔料のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が6.5°、6.7°、9.1°及び21.3°に特徴的なX線回折ピークを示し、ζ型結晶形態を有することが判明した。
 上記で得られたζ型結晶形態アゾ顔料 5gをエチレングリコール50mLに懸濁させ、内温120℃まで昇温した後、同温度にて2時間攪拌した。内温30℃まで冷却した後、析出している固体を濾別し、前記式(1)で表されるδ型結晶形態のアゾ顔料(1)-32を3.9g得た。
 得られたδ型結晶形態のアゾ顔料(1)-32を光学顕微鏡(ニコン(株)製:ECLIPSE LV150)で目視にて観察したところ、1次粒子の長軸方向の長さは、約80μmであった。
 得られたδ型結晶形態のアゾ顔料(1)-32のX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示した。
 <ミリング>
〔実施例19及び比較例2〕
 実施例19のアゾ顔料は、実施例1で得られたアゾ顔料(1)-2をミリングすることなく用いた。同様に、比較例2のアゾ顔料は、合成例2の途中で生成するアゾ顔料(1)-30をミリングすることなくそのまま用いた。
 その他の実施例20及び比較例3~6のアゾ顔料は、下記のとおりミリングしたものを用いた。
〔実施例20〕
 以下の組成となるように、スーパーミキサーに粗アゾ顔料及び食塩を投入して混合した。スーパーミキサーを回転させながらジエチレングリコールを少しずつ添加して混合物(以下、「予備混合物」ということがある)を調製した。
 ・実施例1で得られたアゾ顔料(1)-2 ・・・150g
 ・食塩(ナイカイ塩業(株)製 ナクルUM-05) ・・・1500g
 ・ジエチレングリコール ・・・300g
 続いて、連続式1軸混練機(浅田鉄工(株)製、ミラクルKCK-L)の磨砕部及び押し出し部の5箇所の温度を15~20℃に、軸回転数50rpmに設定し、上記で得られた予備混合物を投入し、混練物を得た。この時、電流値(負荷)は約4Aで、吐出量は50g/分、吐出物の温度は16℃であった。
 こうして得られた混練物を1%希塩酸5000gへ投入して攪拌処理を行った後、濾過及び十分に水洗をして食塩及びジエチレングリコールを除去し、乾燥した。得られたδ型結晶形態アゾ顔料(1)-2-AのX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.6°、10.7°、17.3°、18.9°、20.0°、及び26.7°に特徴的なX線回折ピークを示した。
 CuKα特性X線回折図を図25に示す。
〔比較例3~6〕
・比較例3:合成例3のアゾ顔料(1)-32
 ブラッグ角(2θ±0.2°)が4.8°、7.1°、9.6°、10.7°、17.3°、18.9°、20.0°、及び26.7°に特徴的なX線回折ピークを示すδ型アゾ顔料(1)-32-Aを得た。
 CuKα特性X線回折図を図26に示す。
・比較例4:合成例1のアゾ顔料(1)-29
 ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示すδ型アゾ顔料(1)-29-Aを得た。
 CuKα特性X線回折図を図27に示す。
・比較例5:合成例2のアゾ顔料(1)-31
 ブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的なX線回折ピークを示すδ型アゾ顔料(1)-31-Aを得た。
 CuKα特性X線回折図を図28に示す。
・比較例6:合成例2の途中で生成するアゾ顔料(1)-30
 ブラッグ角(2θ±0.2°)が6.6°、9.2°、10.3°及び21.4°に特徴的なX線回折ピークを示すζ型アゾ顔料(1)-30-Aを得た。
 CuKα特性X線回折図を図29に示す。
〔実施例21〕
 実施例20において、食塩の使用量を750gに変えたこと以外は実施例6と同様にして、δ型結晶アゾ顔料(1)-2-Bを得た。δ型結晶形態アゾ顔料(1)-2-BのX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.1°、9.5°、10.7°、17.3°、18.9°、20.0°、及び26.7°に特徴的なX線回折ピークを示した。
〔実施例22〕
 実施例20において、ジエチレングリコールの使用量を400gに変えたこと以外は実施例6と同様にして、δ型結晶アゾ顔料(1)-2-Cを得た。δ型結晶形態アゾ顔料(1)-2-CのX線回折の測定を上記の条件により行ったところ、ブラッグ角(2θ±0.2°)が4.8°、7.1°、9.5°、10.7°、17.3°、18.9°、20.0°、及び26.7°に特徴的なX線回折ピークを示した。
 <BET比表面積の測定>
 あらかじめ80℃において真空乾燥した顔料0.1gを試料セルに加え、比表面積測定装置「MONOSORB MS-17」(ユアサアイオニクス(株)製)を用いて測定を行った。なお、測定には、He:N=7:3の混合ガスを用いた。
<顔料分散物の製造>
 上記実施例20で合成したδ型結晶形態アゾ顔料(1)-2-Aを10g、オレイン酸ナトリウム5g、グリセリン10g、水75gを混合し、直径0.1mmのジルコニアビーズ375gとともにサンドグラインダミルTSG1(アイメックス社製)を用いて毎分1500回転、45℃で分散を行った。体積平均粒子径Mvが100nm以下となるまで分散を行った後、ジルコニアビーズを分離し、顔料分散物を得た。
 実施例19及び比較例2のミリングしなかったアゾ顔料、及び、比較例3~6で合成した各アゾ顔料についても同様の方法により、顔料分散物を得た。
 実施例20及び比較例2~6の顔料分散物の下記評価は、実施例19の顔料分散物との相対的な評価により行った。
<分散性評価>
 分散性は、上記顔料分散物の製造において、体積平均粒子径Mvが100nm以下となるまでの時間で評価した(日機装(株)製Nanotrac150(UPA-EX150)を用いて測定)。ミリング前のδ型結晶系アゾ顔料より更に優れるものをA、ミリング前のδ型結晶系アゾ顔料と同程度のものをB、ミリング前のδ型結晶系アゾ顔料より劣るものをCとした。結果を表2に示す。
<着色力評価>
 上記実施例及び比較例で得られた顔料分散物を水で10質量倍に希釈してからNo.3のバーコーターを用いてエプソン社製フォトマット紙に塗布した。得られた塗布物の画像濃度を反射濃度計(X-Rite社製X-Rite938)を用いて測定し、「着色力(OD:Optical Density)」を以下の基準で評価した。ODがミリング前のδ型結晶系アゾ顔料より更に優れるものをA、ミリング前のδ型結晶系アゾ顔料と同程度のものをB、ミリング前のδ型結晶系アゾ顔料より劣るものをCとした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000020
[合成例4]
 窒素雰囲気下、ジプロピレングリコール58.7gを内温70℃に昇温し、ここにメタクリル酸を10.8g、メタクリル酸ベンジルを39.4g、V-601を1.2g、ジプロピレングリコールを58.7gを混合した溶液を3時間かけて滴下した。同温度にて更に1時間攪拌した後、V-601(重合開始剤:和光純薬社製)を0.6g添加し、同温度にて更に2時間攪拌した。同温度にて50%水酸化カリウム水溶液を11.3g滴下した後、同温度で1時間攪拌した。室温にまで冷却し、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=83,000、酸価140mgKOH)のジプロピレングリコール溶液を得た。
[合成例5]
 合成例4のV-601の量を1.2gから2.5gに増量し、更に温度を86℃にし、同様の操作を行うことで、メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体(Mw=25,000、酸価128mgKOH)のジプロピレングリコール溶液を得た。
[合成例6]
 窒素雰囲気下、ジプロピレングリコール41.1gを内温70℃に昇温し、ここにメタクリル酸を9.6g、メタクリル酸メチルを16.8g、メタクリル酸2-エチルヘキシルを8.9g、V-601を2.5g、ジプロピレングリコールを41.1gを混合した溶液を3時間かけて滴下した。他の操作は合成例4と同様に行うことで、メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体(Mw=83,000、酸価154mgKOH)のジプロピレングリコール溶液を得た。
〔実施例23〕
 上記実施例20で合成したδ型結晶形態アゾ顔料(1)-2-Aを20gに合成例4で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)32.2g(固形分含率30.8%、固形分9.9g)、水58gを混合し、直径0.1mmφのジルコニアビーズ375gとともにサンドグラインダミルTSG1(アイメックス社製)を用いて毎分1500回転、45℃で分散を3時間行った後、ジルコニアビーズを分離し、水で洗浄して、顔料濃度15.4重量%の粗顔料分散液(1)を99g得た(平均体積粒子径Mv=91.7nm)。
 得られた粗顔料分散液(1)99gにデナコールEX-321(ナガセケムテックス株式会社製)を0.43g、6.18%のホウ酸水溶液3.02g、水40gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.8%の顔料分散液(1)を121g得た。
〔実施例24〕
 上記実施例6で合成したδ型結晶形態アゾ顔料(1)-3-Aを20gに合成例5で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=25,000、酸価128mgKOH)28.6g(固形分含率35%、固形分10.0g)、水58gを混合し、直径0.1mmφのジルコニアビーズ375gとともにサンドグラインダミルTSG1(アイメックス社製)を用いて毎分1500回転、45℃で分散を2時間行った後、ジルコニアビーズを分離し、水で洗浄して、顔料濃度14.6重量%の粗顔料分散液(2)を109g得た(平均体積粒子径Mv=89.6nm)。
 得られた粗顔料分散液(2)109gにデナコールEX-321(ナガセケムテックス株式会社製)を0.17g、6.18%のホウ酸水溶液1.19g、水50gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.7%の顔料分散液(2)を149g得た。
〔実施例25〕
 上記実施例6で合成したδ型結晶形態アゾ顔料(1)-3-Aを20gに合成例6で得られた分散剤(メタクリル酸メチル(47.8モル%)、メタクリル酸(31.8モル%)、メタクリル酸2-エチルヘキシル(20.4モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価154mgKOH)28.4g(固形分含率35.2%、固形分10.0g)、水62gを混合し、直径0.1mmφのジルコニアビーズ375gとともにサンドグラインダミルTSG1(アイメックス社製)を用いて毎分1500回転、45℃で分散を3時間行った後、ジルコニアビーズを分離し、水で洗浄して、顔料濃度13.9重量%の粗顔料分散液(3)を112g得た(平均体積粒子径Mv=96.7nm)。
 得られた粗顔料分散液(3)112gにデナコールEX-321(ナガセケムテックス株式会社製)を0.77g、6.18%のホウ酸水溶液5.4g、水30gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.4%の顔料分散液(3)を127g得た。
〔実施例26〕
 上記合成例2で合成したδ型結晶形態アゾ顔料(1)-2を20gに合成例4で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)32.4g(固形分含率30.8%、固形分10.0g)、水46gを混合し、直径0.1mmφのジルコニアビーズ375gとともにサンドグラインダミルTSG1(アイメックス社製)を用いて毎分1500回転、45℃で分散を9時間行った後、ジルコニアビーズを分離し、水で洗浄して、顔料濃度15.3重量%の粗顔料分散液(4)を98g得た(平均体積粒子径Mv=98.2nm)。
 得られた粗顔料分散液(4)98gにデナコールEX-321(ナガセケムテックス株式会社製)を0.75g、6.18%のホウ酸水溶液5.3g、水50gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度9.4%の顔料分散液(4)を145g得た。
〔比較例7〕
 P.Y.128(Cromophtal Yellow 8GN、チバ社製)を20gに合成例5で得られた分散剤(メタクリル酸ベンジル(66.7モル%)、メタクリル酸(33.3モル%)の共重合体のジプロピレングリコール溶液、Mw=83,000、酸価140mgKOH)32.4g(固形分含率30.8%、固形分10.0g)、水46gを混合し、直径0.1mmφのジルコニアビーズ375gとともにサンドグラインダミルTSG1(アイメックス社製)を用いて毎分1500回転、45℃で分散を6時間行った後、ジルコニアビーズを分離し、水で洗浄して、顔料濃度16.3重量%の比較粗顔料分散液(1)を81g得た(平均体積粒子径Mv=93.4nm)。
 得られた比較粗顔料分散液(1)81gにデナコールEX-321(ナガセケムテックス株式会社製)を0.66g、6.18%のホウ酸水溶液4.7g、水45gを加え、70℃にて5時間攪拌した。反応終了後、室温まで冷却し、孔径1.0μmのフィルターを通して粗大粒子を除去した後、遠心分離機で更に粗大粒子を沈降させた(7000rpm、10分間)。沈降した固体を除去した後、分画分子量50,000のフィルターを用いて、水で十分に洗浄し、顔料濃度10.2%の比較顔料分散液(4)を115g得た。
 <着色力評価>
 上記実施例23~26で得られた顔料分散物を水で10質量倍に希釈してからNo.3のバーコーターを用いてエプソン社製フォトマット紙に塗布した。得られた塗布物の画像濃度を反射濃度計(X-Rite社製X-Rite938)を用いて測定し、「着色力(OD:Optical Density)」を以下の基準で評価した。ODが実施例20より更に優れるものをA、実施例20と同程度のものをB、実施例20より劣るが、実施例19より優れるものをC、実施例19と同程度のものをD、実施例19より劣るものをEとした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000021
〔実施例27〕
 実施例23で得られた顔料分散液(1)を固形分で5質量%、グリセリン10質量%、2-ピロリドン5質量%、1,2-ヘキサンジオール2質量%、トリエチレングリコールモノブチルエーテル2質量%、プロピレングリコール0.5質量%、サーフィノール465を1質量%、イオン交換水74.5質量%になるように各成分を加えて、得られた混合液を1.2μmのフィルター(アセチルセルロース膜、外径:25mm、富士フイルム(株)社製)を取り付けた容量20mLのシリンジで濾過し、粗大粒子を除去することにより顔料インク(1)を得た。
〔実施例28、29〕
 上記実施例27における顔料分散液(1)を、実施例24で得られた顔料分散液(2)及び実施例25で得られた顔料分散液(3)に代えて、それぞれ顔料インク(2)及び顔料インク(3)を得た。
〔比較例8〕
 セイコーエプソン(株)社製ICY-42を用いて、下記評価を行った。
<評価>
 インク液をセイコーエプソン(株)社製インクジェットプリンターPX-V630のイエローインク液のカートリッジに装てんし、受像シートはセイコーエプソン(株)社製写真用紙クリスピア<高光沢>にカラー設定:色補正なし、印刷品質:フォトで、イエローのO.D.が1.0となるように印画したもの及びベタ印画したものを作製し、耐光性及び濃度を評価した。
<着色力評価>
 ベタ印画したものの画像濃度を反射濃度計(X-Rite社製X-Rite938)を用いて測定し、「着色力(OD:Optical Density)」を以下の基準で評価した。ODが比較例8より優れるものをA、比較例8と同程度のものをB、比較例8より劣るものをCとした。結果を表4に示す。
<耐光性評価>
 O.D.が1.0となるように印画したものを、フェードメーターを用いてキセノン光(99000lux;TACフィルター存在下)を28日間照射し、キセノン照射前後の画像濃度を反射濃度計を用いて測定し、色素残存率[(照射後濃度/照射前濃度)×100%]が90%以上の場合をA、90%未満の場合をBとして評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000022
 本発明のアゾ顔料の製造方法は、分散性が良好なアゾ顔料微粒子を高効率かつ低コストで製造することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年7月29日出願の日本特許出願(特願2011-167831)及び2012年2月17日出願の日本特許出願(特願2012-33394)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (17)

  1.  非晶質な下記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を結晶変換することを特徴とする下記式(1)で表されるアゾ顔料の製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  非晶質の前記式(1)で表されるアゾ化合物、その塩、水和物又は溶媒和物を溶媒中で加熱攪拌することにより結晶変換することを特徴とする請求項1に記載のアゾ顔料の製造方法。
  3.  非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する結晶形に結晶変換することを特徴とする請求項1又は2に記載のアゾ顔料の製造方法。
  4.  非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°、9.7°、20.1°、及び26.8°に特徴的X線回折ピークを有する結晶形に結晶変換することを特徴とする請求項1~3のいずれか一項に記載のアゾ顔料の製造方法。
  5.  非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°、9.5°、9.7°、10.7°、17.4°、19.0°、20.1°、及び26.8°に特徴的X線回折ピークを有する結晶形に結晶変換することを特徴とする請求項1~4のいずれか一項に記載のアゾ顔料の製造方法。
  6.  (i)非晶質な前記式(1)で表されるアゾ化合物を、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)が4.8°、7.2°及び9.7°に特徴的X線回折ピークを有する結晶形に結晶変換する工程、及び、(ii)前記工程(i)で得たアゾ顔料と、水溶性無機塩と、水溶性有機溶剤とを含む混合物を混練して、窒素吸着法によるBET比表面積を50m/g以上の結晶にする工程、を含むことを特徴とする、請求項3~5のいずれか一項に記載のアゾ顔料、又はその互変異性体の製造方法。
  7.  (a)ジアゾ化剤と下記式(2)で表されるアミノ化合物とを混合させる工程、(b)前記工程(a)で得た反応生成物と下記式(3)で表されるカップリング成分とを混合することにより反応を行い、該反応により生成した下記式(1)で表されるアゾ化合物の少なくとも一部が溶解した溶液を得る工程、(c)前記工程(b)で得た溶液と、前記アゾ化合物に対する貧溶媒とを混合して、下記式(1)で表される非晶質なアゾ化合物を晶析させる工程、を含むことを特徴とする請求項1~6のいずれか一項に記載のアゾ顔料の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004
  8.  前記工程(b)において、得られた溶液が酸性溶液であることを特徴とする請求項7に記載のアゾ顔料の製造方法。
  9.  前記酸性溶液が、酢酸及び硫酸の少なくとも一方を含むことを特徴とする請求項8に記載のアゾ顔料の製造方法。
  10.  前記工程(b)において、得られた溶液が、カップリング反応により生成した前記式(1)で表されるアゾ化合物が完全に溶解した溶液であることを特徴とする請求項7~9のいずれか一項に記載のアゾ顔料の製造方法。
  11.  前記(c)工程において、前記工程(b)で得られた前記式(1)で表されるアゾ化合物の溶解度が1g/L以下である貧溶媒と混合することを特徴とする請求項7~10のいずれか一項に記載のアゾ顔料の製造方法。
  12.  前記貧溶媒が、水及び、炭素数1~3のアルコール、炭素数1~6のグリコールからなる群から選ばれる1種以上の溶媒を含むことを特徴とする請求項7~11のいずれか一項に記載のアゾ顔料の製造方法。
  13.  請求項1~12のいずれか一項に記載の製造方法により得られるアゾ顔料。
  14.  請求項13に記載のアゾ顔料、分散剤、及び水を含む顔料分散物。
  15.  分散剤が水溶性高分子であることを特徴とする請求項14に記載の水系顔料分散物。
  16.  前記水溶性高分子分散剤が少なくとも1つのカルボキシ基を有し、少なくとも50mgKOH/g以上の酸価を有することを特徴とする請求項15に記載の水系顔料分散物。
  17.  前記水系顔料分散物が、架橋剤により架橋されていることを特徴とする請求項15又は16に記載の水系顔料分散物。
PCT/JP2012/067000 2011-07-29 2012-07-03 アゾ顔料の製造方法 WO2013018488A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280033957.5A CN103649233B (zh) 2011-07-29 2012-07-03 偶氮颜料的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-167831 2011-07-29
JP2011167831 2011-07-29
JP2012033394A JP5703241B2 (ja) 2011-07-29 2012-02-17 アゾ顔料の製造方法
JP2012-033394 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013018488A1 true WO2013018488A1 (ja) 2013-02-07

Family

ID=47629020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067000 WO2013018488A1 (ja) 2011-07-29 2012-07-03 アゾ顔料の製造方法

Country Status (4)

Country Link
JP (1) JP5703241B2 (ja)
CN (1) CN103649233B (ja)
TW (1) TW201313838A (ja)
WO (1) WO2013018488A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589648B (zh) 2011-07-29 2017-07-01 富士軟片股份有限公司 偶氮顏料及其互變異構物、該些的製造方法、含有偶氮顏料及其互變異構物的分散物、著色組成物及噴墨記錄用墨水
JP5712166B2 (ja) 2011-07-29 2015-05-07 富士フイルム株式会社 アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク並びに分散物の製造方法
JP2013049826A (ja) * 2011-07-29 2013-03-14 Fujifilm Corp アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2017061662A (ja) * 2015-09-25 2017-03-30 富士フイルム株式会社 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2017061661A (ja) * 2015-09-25 2017-03-30 富士フイルム株式会社 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
CN108026402A (zh) * 2015-09-30 2018-05-11 富士胶片株式会社 颜料分散物的制造方法、固化性组合物的制造方法、固化膜的制造方法、具备固化膜的固体摄像元件的制造方法、具备固化膜的滤色器的制造方法及具备固化膜的图像显示装置的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027843A1 (ja) * 2009-09-04 2011-03-10 富士フイルム株式会社 アゾ顔料の製造方法、アゾ顔料、及び、着色組成物
WO2011027842A1 (ja) * 2009-09-04 2011-03-10 富士フイルム株式会社 インクセット、記録方法、記録物及び印刷物
WO2012105704A1 (ja) * 2011-02-04 2012-08-09 富士フイルム株式会社 水系顔料分散物、その製造方法及びインクジェット記録用インク

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2772684C (en) * 2009-09-04 2016-03-22 Fujifilm Corporation Aqueous pigment dispersion and aqueous ink for inkjet recording

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027843A1 (ja) * 2009-09-04 2011-03-10 富士フイルム株式会社 アゾ顔料の製造方法、アゾ顔料、及び、着色組成物
WO2011027842A1 (ja) * 2009-09-04 2011-03-10 富士フイルム株式会社 インクセット、記録方法、記録物及び印刷物
WO2012105704A1 (ja) * 2011-02-04 2012-08-09 富士フイルム株式会社 水系顔料分散物、その製造方法及びインクジェット記録用インク

Also Published As

Publication number Publication date
CN103649233A (zh) 2014-03-19
JP2013049827A (ja) 2013-03-14
JP5703241B2 (ja) 2015-04-15
TW201313838A (zh) 2013-04-01
CN103649233B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5856861B2 (ja) 水系顔料分散物、その製造方法及びインクジェット記録用インク
WO2013018680A1 (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP5703241B2 (ja) アゾ顔料の製造方法
JP5712166B2 (ja) アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク並びに分散物の製造方法
JP5481062B2 (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、及び着色組成物
JP5789541B2 (ja) 顔料組成物、顔料分散物、着色組成物、インク、インクジェット記録用インク、インクジェット記録方法及び顔料組成物の製造方法
JP5146720B2 (ja) 水性顔料分散液及びインクジェット記録用インク
JP2013049826A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
WO2017051668A1 (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、インクジェット記録用インク組成物、並びに、インクジェット記録方法
JP2010100796A (ja) 顔料組成物、顔料分散物、着色組成物、インク、インクジェット記録用インク、インクジェット記録用カートリッジ、インクジェット記録方法及び記録物
JP2012001627A (ja) 顔料組成物、顔料分散物、着色組成物、インク、インクジェット記録用インク、インクジェット記録用カートリッジ、インクジェット記録方法及び記録物
JP2017061662A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
WO2012011500A1 (ja) アゾ顔料分散物及びそれを用いたインク組成物、インクジェット記録用インク、記録方法、記録物並びにインクジェット記録用インクの貯蔵安定化法
JP2013032410A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2017061661A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2017061660A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2013032415A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2013032412A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2013032414A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2013032411A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2017061659A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、並びに、インクジェット記録方法
JP2017061658A (ja) 水性顔料分散液及びその製造方法、着色組成物、インク組成物、インクジェット記録用インク組成物、並びに、インクジェット記録方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820541

Country of ref document: EP

Kind code of ref document: A1