WO2012105535A1 - 光電変換素子および光電変換素子の製造方法 - Google Patents

光電変換素子および光電変換素子の製造方法 Download PDF

Info

Publication number
WO2012105535A1
WO2012105535A1 PCT/JP2012/052093 JP2012052093W WO2012105535A1 WO 2012105535 A1 WO2012105535 A1 WO 2012105535A1 JP 2012052093 W JP2012052093 W JP 2012052093W WO 2012105535 A1 WO2012105535 A1 WO 2012105535A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
type nitride
semiconductor layer
photoelectric conversion
conversion element
Prior art date
Application number
PCT/JP2012/052093
Other languages
English (en)
French (fr)
Inventor
佐野 雄一
上田 吉裕
神川 剛
雅也 上田
誠 澤村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012105535A1 publication Critical patent/WO2012105535A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element and a method for manufacturing the photoelectric conversion element.
  • photoelectric conversion elements are generally made of silicon (for example, amorphous silicon, microcrystalline silicon, or polycrystalline silicon).
  • silicon for example, amorphous silicon, microcrystalline silicon, or polycrystalline silicon.
  • the band gap of silicon is 1.1 eV to 1.8 eV, there is a problem that the sensitivity to light in a short wavelength region of 0.5 ⁇ m or less with high energy is small, and sunlight cannot be effectively used. .
  • the band gap of the nitride semiconductor represented by the formula of Al x In y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) has been discussed for a long time.
  • the nitride semiconductor is generally formed by vapor deposition such as metal organic chemical vapor deposition (MOCVD), hydride vapor deposition (HVPE), molecular beam vapor deposition (MBE), or pulsed laser deposition (PLD). It can be formed on a substrate using a phase growth method.
  • MOCVD metal organic chemical vapor deposition
  • HVPE hydride vapor deposition
  • MBE molecular beam vapor deposition
  • PLD pulsed laser deposition
  • nitride semiconductor is suitable as a material for a light emitting element such as a light emitting diode (LED), it has been actively developed.
  • a light emitting element such as a light emitting diode (LED)
  • LED light emitting diode
  • research on forming a nitride semiconductor using a vapor phase growth method as a material for a next-generation photoelectric conversion element has been actively conducted by elucidating the band gap of the nitride semiconductor.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-288334
  • Patent Document 2 U.S. Patent Application Publication No. 2004/0118451
  • Patent Document 3 U.S. Patent Application Publication No. 7217882
  • the photoelectric conversion element using a nitride semiconductor can be activated by the active layer of the photoelectric conversion element. It is desired to generate a large number of carriers.
  • an object of the present invention is to provide a photoelectric conversion element capable of improving characteristics and a method for manufacturing the photoelectric conversion element.
  • the present invention includes a substrate, a semiconductor laminate provided on the substrate, and a conductive layer provided on the semiconductor laminate, and the semiconductor laminate is an n-type nitride from the substrate side to the conductive layer side.
  • the photoelectric conversion element includes a semiconductor layer, an i-type nitride semiconductor layer, and a p-type nitride semiconductor layer in this order, and the p-type nitride semiconductor layer has irregularities on the surface on the conductive layer side.
  • the surface roughness RMS of the surface of the conductive layer opposite to the p-type nitride semiconductor layer side is preferably 0.003 ⁇ m or more and 0.005 ⁇ m or less.
  • the thickness of the conductive layer is preferably 0.25 ⁇ m or more and 0.5 ⁇ m or less.
  • the conductive layer preferably has a refractive index smaller than that of the p-type nitride semiconductor layer.
  • the conductive layer is preferably a single layer including at least one selected from the group consisting of Zn, In, Sn, and Mg, or a multiple layer in which a plurality of single layers are stacked. .
  • the substrate is made of Al x In y Ga z N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, x + y + z ⁇ 0), GaP, GaAs, NdGaO 3. , LiGaO 2 , Al 2 O 3 , MgAl 2 O 4 , ZnO, Si, SiC, SiGe, or a material represented by the formula ZrB 2 is preferably included.
  • the p-type nitride semiconductor layer preferably includes a plurality of layers.
  • the unevenness includes a convex portion having a trapezoidal cross-sectional shape, the length of the upper base of the trapezoid is 0.3 ⁇ m or more and 0.7 ⁇ m or less, and the length of the lower base of the trapezoid is It is preferable that the height is 1 ⁇ m or more and 1.7 ⁇ m or less and the height of the trapezoid is 1 ⁇ m or more and 1.2 ⁇ m or less.
  • the surface roughness RMS of the p-type nitride semiconductor layer having irregularities is 0.01 ⁇ m or more and 0.02 ⁇ m or less.
  • the n-type nitride semiconductor layer is a stacked body of a first n-type nitride semiconductor layer on the substrate side and a second n-type nitride semiconductor layer on the conductive layer side. And the interface between the first n-type nitride semiconductor layer and the second n-type nitride semiconductor layer is located within a range of 20% to 80% of the total thickness of the stacked body. preferable.
  • the present invention is a method for producing any one of the above photoelectric conversion elements, comprising a step of forming a semiconductor laminate on a substrate, and a step of forming a conductive layer on the semiconductor laminate,
  • the step of forming the semiconductor stacked body includes a step of vapor-phase-growing the nitride semiconductor by supplying at least a group III source gas and a group V source gas, and the step of vapor-phase growth depends on the first growth condition.
  • It is a method for manufacturing a photoelectric conversion element, including a first growth step and a second growth step based on a second growth condition different from the first growth condition.
  • the second growth condition is preferably a condition in which only the supply amount of the group III source gas is reduced as compared with the first growth condition.
  • the present invention is also a method for producing the photoelectric conversion element, comprising a step of forming a semiconductor laminate on a substrate and a step of forming a conductive layer on the semiconductor laminate, the semiconductor laminate Forming a vapor phase growth of the p-type nitride semiconductor layer by supplying at least a group III source gas and a group V source gas, and the step of vapor phase growth depends on the first growth condition A first growth step and a second growth step based on a second growth condition different from the first growth condition, the group III source gas is trimethylgallium, and the group V source gas is ammonia.
  • the M a / M t is the ratio of the supply amount M a of ammonia to supply quantity M t of trimethyl gallium as well as in the 40000 to 100,000, trimethylgallium Ammonia respectively a method of manufacturing a photoelectric conversion element is supplied at a flow rate not less than 1 m / sec or more 1.1 m / sec.
  • the present invention is a method for producing the above photoelectric conversion element, comprising a step of forming a semiconductor laminate on a substrate and a step of forming a conductive layer on the semiconductor laminate, the semiconductor laminate Forming a vapor phase growth of the n-type nitride semiconductor layer by supplying at least a group III source gas and a group V source gas, and the step of vapor phase growth depends on the first growth condition
  • a first growth step and a second growth step based on a second growth condition different from the first growth condition, and a supply amount ratio of a group V source gas to a group III source gas under the first growth condition Is a manufacturing method of a photoelectric conversion element in which the supply amount ratio of the group V source gas to the group III source gas is 3830 or more and 4230 or less in the second growth condition.
  • the present invention it is possible to provide a photoelectric conversion element capable of improving characteristics and a method for manufacturing the photoelectric conversion element.
  • FIG. 3 is a schematic cross-sectional view of the photoelectric conversion element of Embodiment 1.
  • FIG. 3 is a schematic enlarged cross-sectional view in the vicinity of the unevenness of the photoelectric conversion element of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the first embodiment.
  • 6 is a schematic cross-sectional view of a photoelectric conversion element according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the photoelectric conversion element according to the second embodiment.
  • 3 is a SEM (Scanning Electron Microscope) photograph of a cross section of a second p-type nitride semiconductor layer formed on the surface of the first p-type nitride semiconductor layer in Example 1.
  • (A) is a 2 (theta) omega scan measurement result by the X-ray-diffraction method of the i-type nitride semiconductor layer of the photoelectric conversion element of Example 2
  • (b) is the i-type nitride semiconductor layer of the photoelectric conversion element of Comparative Example 2. It is a 2 (theta) omega scan measurement result by a X ray diffraction method.
  • FIG. 1 shows a schematic cross-sectional view of the photoelectric conversion element of Embodiment 1 which is an example of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element of Embodiment 1 includes a substrate 1, a semiconductor stacked body 12 provided on the substrate 1, and a conductive layer 5 provided on the semiconductor stacked body 12.
  • the semiconductor stacked body 12 has an n-type nitride semiconductor layer 2, an i-type nitride semiconductor layer 3, a first p-type nitride semiconductor layer 4, and a convex shape having a trapezoidal cross section from the substrate 1 side.
  • a certain second p-type nitride semiconductor layer 9 has a pin structure laminated in this order.
  • the pin structure includes an n-type nitride semiconductor layer 2 on the substrate 1 side and a first p-type nitride semiconductor layer 4 on the conductive layer 5 side.
  • An i-type nitride semiconductor layer 3 is provided between the p-type nitride semiconductor layer 4 and one p-type nitride semiconductor layer 4.
  • the pin structure includes the n-type nitride semiconductor layer 2 and the i-type nitride semiconductor layer 3 in contact with each other, and the i-type nitride semiconductor layer 3 and the first p-type nitride semiconductor layer 4. Is configured by touching.
  • a plurality of second p-type nitride semiconductor layers 9 each having a trapezoidal cross-sectional shape are arranged on the surface of the first p-type nitride semiconductor layer 4 to form the irregularities 11. Is provided on the surface of the first p-type nitride semiconductor layer 4 on the conductive layer 5 side.
  • n pad electrode 6 is formed on the surface of the n-type nitride semiconductor layer 2, and a p pad electrode 7 is formed on the surface of the conductive layer 5.
  • the n pad electrode 6 and the p pad electrode 7 do not have to be installed, but are preferably installed.
  • the photoelectric conversion element of the first embodiment when light is incident from the substrate 1 side, the light is incident from the substrate 1 side and transmitted through the i-type nitride semiconductor layer 3 and the first p-type nitride semiconductor layer 4.
  • the reflected light can be multiple-reflected by the unevenness 11 in which a plurality of second p-type nitride semiconductor layers 9 having a trapezoidal cross section are arranged.
  • at least part of the light traveling toward the conductive layer 5 can be returned to the first p-type nitride semiconductor layer 4 and incident on the i-type nitride semiconductor layer 3.
  • the optical path length in the layer 3 can be increased, photocarriers generated by light absorption in the i-type nitride semiconductor layer 3 can be increased as compared with the conventional case. As a result, a photoelectric conversion element having excellent characteristics such as high photoelectric conversion efficiency can be obtained.
  • FIG. 2 is a schematic enlarged cross-sectional view in the vicinity of the unevenness 11 of the photoelectric conversion element of the first embodiment.
  • the length W1 of the upper base of the second p-type nitride semiconductor layer 9 having a trapezoidal cross-sectional shape is preferably 0.3 ⁇ m or more and 0.7 ⁇ m or less.
  • the length W1 of the upper base of the second p-type nitride semiconductor layer 9 is not less than 0.3 ⁇ m and not more than 0.7 ⁇ m, the multiples in the unevenness 11 of light traveling from the semiconductor laminate 12 to the conductive layer 5 side Since reflection can be promoted and light confinement in the semiconductor stacked body 12 can be made more effective, characteristics such as photoelectric conversion efficiency of the photoelectric conversion element tend to be further improved.
  • the length W2 of the lower base of the second p-type nitride semiconductor layer 9 is preferably 1 ⁇ m or more and 1.7 ⁇ m or less.
  • the lower base length W2 of the second p-type nitride semiconductor layer 9 is not less than 1 ⁇ m and not more than 1.7 ⁇ m, multiple reflections on the unevenness 11 of light traveling from the semiconductor laminate 12 to the conductive layer 5 side are caused. Since the light confinement in the semiconductor stacked body 12 can be further promoted and promoted, characteristics such as the photoelectric conversion efficiency of the photoelectric conversion element tend to be further improved.
  • the height H of the second p-type nitride semiconductor layer 9 is preferably 1 ⁇ m or more and 1.2 ⁇ m or less.
  • the height H of the second p-type nitride semiconductor layer 9 is not less than 1 ⁇ m and not more than 1.2 ⁇ m, the multiple reflection on the unevenness 11 of light traveling from the semiconductor laminate 12 to the conductive layer 5 side is promoted. Since the light confinement in the semiconductor stacked body 12 can be made more effective, characteristics such as photoelectric conversion efficiency of the photoelectric conversion element tend to be improved.
  • the length W1 of the upper base of the second p-type nitride semiconductor layer 9 is preferably smaller than the length W2 of the lower base of the second p-type nitride semiconductor layer 9. Also in this case, since the multiple reflection in the unevenness 11 of the light traveling from the semiconductor laminate 12 side to the conductive layer 5 side can be promoted, the light confinement in the i-type nitride semiconductor layer 3 can be made more effective. It exists in the tendency which can improve characteristics, such as the photoelectric conversion efficiency of a photoelectric conversion element, more.
  • the shape and size of the irregularities 11 are correlated with the electric field strength and leakage current component in the photoelectric conversion element, but the second p-type nitride semiconductor layer that satisfies all the following conditions (a) to (d)
  • the unevenness 11 having 9 is suitable for multiple reflection of light traveling from the semiconductor laminate 12 side to the conductive layer 5 side.
  • the second p-type nitride semiconductor layer 9 tends to be able to flatten the surface of the second p-type nitride semiconductor layer 9 by satisfying the condition (d).
  • the length W1 of the upper base of the second p-type nitride semiconductor layer 9 is not less than 0.3 ⁇ m and not more than 0.7 ⁇ m.
  • the length W2 of the lower base of the second p-type nitride semiconductor layer 9 is not less than 1 ⁇ m and not more than 1.7 ⁇ m.
  • the height H of the second p-type nitride semiconductor layer 9 is not less than 1 ⁇ m and not more than 1.2 ⁇ m.
  • the length W1 of the upper base of the second p-type nitride semiconductor layer 9 is smaller than the length W2 of the lower base of the second p-type nitride semiconductor layer 9.
  • the unevenness 11 including the second p-type nitride semiconductor layer 9 can increase the area where the semiconductor stacked body 12 and the conductive layer 5 are in contact with each other, and can improve the adhesion at the interface between these layers. F. A decrease in F can be suppressed. Also from this viewpoint, characteristics such as photoelectric conversion efficiency of the photoelectric conversion element tend to be improved.
  • the method for measuring the length W1 of the upper base, the length W2 of the lower base, and the height H of the second p-type nitride semiconductor layer 9 is not particularly limited.
  • an atomic force microscope Atomic
  • Measurement using Force Microscopy or measurement using a contact-type step measuring device can be used.
  • the surface roughness RMS (mean square error) of the surface 5a of the conductive layer 5 on the side opposite to the second p-type nitride semiconductor layer 9 is preferably 0.003 ⁇ m or more and 0.005 ⁇ m or less.
  • the surface roughness RMS of the surface 5a of the conductive layer 5 is 0.003 ⁇ m or more and 0.005 ⁇ m or less, scattering of incident light incident on the conductive layer 5 on the surface 5a is suppressed and enters the conductive layer 5. Since the amount of incident light can be increased, the amount of photocarriers generated in the i-type nitride semiconductor layer 3 can be increased. Thereby, since the amount of short circuit current can be increased, it exists in the tendency which can improve characteristics, such as photoelectric conversion efficiency of a photoelectric conversion element.
  • the surface roughness RMS of the surface 5a of the conductive layer 5 can be calculated by measuring an arbitrary square region having a side of 40 ⁇ m on the surface 5a using an atomic force microscope.
  • the thickness t of the conductive layer 5 is preferably 0.25 ⁇ m or more and 0.5 ⁇ m or less.
  • the conductive layer 5 forms good ohmic contact with the surface of the second p-type nitride semiconductor layer 9 on the unevenness 11 side.
  • F There is a tendency that the characteristics such as the photoelectric conversion efficiency of the photoelectric conversion element can be further improved by suppressing the decrease in F (fill factor).
  • the thickness t of the conductive layer 5 is 0.25 ⁇ m or more and 0.5 ⁇ m or less, the sensitivity to light in a short wavelength region of 0.4 ⁇ m or more and 0.5 ⁇ m or less is increased, and the above-described unevenness 11 is multiplexed.
  • the amount of photocarriers generated in the i-type nitride semiconductor layer 3 can be increased by a synergistic effect with an increase in the light confinement effect due to reflection. Thereby, since the amount of short circuit current can be increased, it exists in the tendency which can improve characteristics, such as photoelectric conversion efficiency of a photoelectric conversion element.
  • the conductive layer 5 preferably has a smaller refractive index than the second p-type nitride semiconductor layer 9.
  • the refractive index of the conductive layer 5 is smaller than the refractive index of the second p-type nitride semiconductor layer 9, the conductive layer 5 of the light incident from the conductive layer 5, the second p-type nitride semiconductor layer 9, It is possible to reduce the amount of reflection at the interface and increase the amount of incident light into the second p-type nitride semiconductor layer 9, so that the amount of photocarriers generated in the i-type nitride semiconductor layer 3 is increased. I can. Thereby, since the amount of short circuit current can be increased, it exists in the tendency which can improve characteristics, such as photoelectric conversion efficiency of a photoelectric conversion element.
  • the refractive index of the second p-type nitride semiconductor layer 9 is 2.3, for example, it is preferable to use a material having a refractive index smaller than 2.3 as the conductive layer 5.
  • the refractive index means an absolute refractive index.
  • a substrate 1 is prepared.
  • Al x In y Ga z N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 1, x + y + z ⁇ 0)
  • GaP GaAs, NdGaO 3, LiGaO 2, Al 2 O 3 , MgAl 2 O 4 , ZnO, Si, SiC, SiGe, or a substrate having at least a material represented by the formula ZrB 2 is preferably used.
  • the n-type nitride semiconductor layer 2 and the i-type nitride semiconductor layer are formed. 3.
  • a semiconductor stacked body 12 having good crystallinity with few crystal defects can be formed. .
  • an n-type nitride semiconductor layer 2 is stacked on the surface of the substrate 1.
  • the n-type nitride semiconductor layer 2 can be laminated by, for example, MOCVD (Metal Organic Chemical Vapor Deposition) method.
  • N-type nitride semiconductor layer 2 can be stacked with a thickness of 0.1 ⁇ m or more and 4 ⁇ m or less, for example.
  • n-type nitride semiconductor layer 2 for example, a nitride semiconductor represented by the formula of Al x1 In y1 Ga z1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ z1 ⁇ 1, x1 + y1 + z1 ⁇ 0)
  • a material doped with an n-type dopant can be used.
  • silicon or the like can be used as the n-type dopant.
  • the i-type nitride semiconductor layer 3 is laminated on the surface of the n-type nitride semiconductor layer 2.
  • the i-type nitride semiconductor layer 3 can be laminated by, for example, the MOCVD method.
  • i-type nitride semiconductor layer 3 can be laminated with a thickness of 0.001 ⁇ m or more and 0.3 ⁇ m or less, for example.
  • a layer having an SQW (Single Quantum Well) structure or an MQW (Multiple Quantum Well) structure can be used as the i-type nitride semiconductor layer 3.
  • the i-type nitride semiconductor layer 3 having the MQW structure is represented by, for example, an expression of Al x2 In y2 Ga z2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ z2 ⁇ 1, x2 + y2 + z2 ⁇ 0).
  • a layer in which barrier layers are alternately stacked can be used.
  • the well layer and / or the barrier layer may be doped with an n-type dopant and / or a p-type dopant.
  • the thickness of the well layer can be, for example, 0.001 ⁇ m or more and 0.02 ⁇ m or less
  • the thickness of the barrier layer can be, for example, 0.001 ⁇ m or more and 0.01 ⁇ m or less.
  • a first p-type nitride semiconductor layer 4 is stacked on the surface of the i-type nitride semiconductor layer 3.
  • the first p-type nitride semiconductor layer 4 can be stacked by, for example, the MOCVD method.
  • the first p-type nitride semiconductor layer 4 can be laminated with a thickness of 0.05 ⁇ m or more and 4 ⁇ m or less, for example.
  • the first p-type nitride semiconductor layer 4 is represented by, for example, an expression of Al x4 In y4 Ga z4 N (0 ⁇ x4 ⁇ 1, 0 ⁇ y4 ⁇ 1, 0 ⁇ z4 ⁇ 1, x4 + y4 + z4 ⁇ 0).
  • a nitride semiconductor doped with a p-type dopant can be used.
  • magnesium etc. can be used, for example.
  • a second p-type nitride semiconductor layer 9 having a trapezoidal cross-sectional shape is grown on the surface of the first p-type nitride semiconductor layer 4 to form irregularities 11.
  • the unevenness 11 is, for example, more than the growth condition (first growth condition) of the first p-type nitride semiconductor layer 4 after vapor-phase growth of the first p-type nitride semiconductor layer 4.
  • the second p-type nitride semiconductor layer 9 can be formed by vapor phase growth under the second growth condition in which only the supply amount of the group source gas is reduced.
  • M a / M t which is the ratio of the NH 3 supply amount M a to the TMG supply amount M t , is set to 40000 to 100,000, and the supply amount of TMG into the crystal growth apparatus Is 0.005 slm or less, the supply amount of NH 3 into the crystal growth apparatus is 10 slm or less, the supply amount of carrier gas into the crystal growth apparatus is 20 slm or less, and TMG, NH 3 and carrier gas Is preferably supplied into the crystal growth apparatus at a flow rate of 1 m / second or more and 1.1 m / second or less.
  • the unevenness 11 having the second p-type nitride semiconductor layer 9 that satisfies all of the above conditions (a) to (d) tends to be formed with good reproducibility.
  • the supply amount M a supply amount M t and NH 3 of TMG, respectively means a number of moles per unit time supplied to the crystal growth apparatus, the unit of each supply, for example, It is expressed in mol / min.
  • the carrier gas for example, hydrogen, nitrogen, or a mixed gas of hydrogen and nitrogen can be used.
  • slm is a unit indicating the flow rate per minute at 1 atm and 0 ° C. in liters. Needless to say, the method of forming the unevenness 11 including the second p-type nitride semiconductor layer 9 is not limited to the above method.
  • the second p-type nitride semiconductor layer 9 is represented by, for example, an expression of Al x5 In y5 Ga z5 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y5 ⁇ 1, 0 ⁇ z5 ⁇ 1, x5 + y5 + z5 ⁇ 0).
  • a nitride semiconductor doped with a p-type dopant can be used.
  • magnesium etc. can be used, for example.
  • the conductive layer 5 is formed on the surface of the second p-type nitride semiconductor layer 9.
  • the method for forming the conductive layer 5 is not particularly limited, but can be formed by a sputtering method such as a magnetron sputtering method, a vacuum deposition method, or an ion plating method, for example.
  • the conductive layer 5 As a method for forming the conductive layer 5, it is preferable to use a magnetron sputtering method.
  • the conductive layer 5 is formed using the magnetron sputtering method, the surface 5a on the opposite side of the conductive layer 5 from the second p-type nitride semiconductor layer 9 side tends to be made flatter.
  • a conductive material can be used, and when light is incident from the conductive layer 5 side, a material capable of transmitting incident light is preferably used.
  • the conductive layer 5 it is preferable to use a single layer including at least one selected from the group consisting of Zn, In, Sn, and Mg, or a plurality of layers in which a plurality of single layers are stacked. In this case, the amount of light transmitted through the conductive layer 5 tends to be increased.
  • Examples of the single layer containing Zn include AZO in which ZnO is doped with Al, and GZO in which ZnO is doped with Ga.
  • Examples of the single layer containing In and the single layer containing Sn include ITO (Indium Tin Oxide) which is a composite oxide of In and Sn.
  • Examples of the single layer containing Mg include MgOH 2 doped with carbon (C).
  • AZO formed by magnetron sputtering using a ZnO target doped with Al and having a partial pressure of oxygen and argon (O 2 / Ar) of 3% to 10% has a conductivity and a light It can be set as the conductive layer 5 excellent in the transmittance
  • the n-type nitride semiconductor layer 2, the i-type nitride semiconductor layer 3, and the first p-type nitride semiconductor layer 4 until the surface of the n-type nitride semiconductor layer 2 is exposed. Then, a part of each of the second p-type nitride semiconductor layer 9 and the conductive layer 5 is removed by etching.
  • the n-pad electrode 6 and the p-pad electrode 7 are formed on the exposed surface of the n-type nitride semiconductor layer 2 and the surface of the conductive layer 5, respectively. Can be manufactured.
  • the first p-type nitride semiconductor layer 4 and the second p-type nitride semiconductor layer 4 and the second p-type nitride semiconductor layer 4 can be obtained without taking out the substrate 1 from a closed crystal growth apparatus such as a vacuum chamber. Since the p-type nitride semiconductor layer 9 can be continuously formed, the tact time and cost of the photoelectric conversion element can be reduced.
  • the manufacturing method of the photoelectric conversion element of said Embodiment 1 since the unevenness
  • the semiconductor stacked body 12 includes one pin structure has been described, but the semiconductor stacked body 12 may include two or more pin structures.
  • a metal layer for reflecting the light from the conductive layer 5 may be provided on the surface of the conductive layer 5 opposite to the unevenness 11 side.
  • a buffer layer between the n-type nitride semiconductor layer 2 and the i-type nitride semiconductor layer 3 for example, a well layer made of In x Ga 1-x N (x ⁇ 0.1) having a thickness of less than 2 nm is used.
  • a buffer layer in which 20 barrier layers made of GaN having a thickness of less than 2 nm are alternately stacked can be used.
  • the buffer layer and the contact layer may be made of a semiconductor other than the nitride semiconductor.
  • n-type and p-type conductivity may be interchanged.
  • a photoelectric conversion module may be formed by electrically connecting the p pad electrode 7 of one photoelectric conversion element and the n pad electrode 6 of another photoelectric conversion element.
  • the photoelectric conversion is performed by electrically connecting the conductive layer 5 of one photoelectric conversion element and the n-pad electrode 6 of another photoelectric conversion element. Modules may be formed.
  • FIG. 10 is a schematic cross-sectional view of the photoelectric conversion element of Embodiment 2, which is another example of the photoelectric conversion element of the present invention.
  • the buffer layer 10 is formed between the n-type nitride semiconductor layer 2 and the i-type nitride semiconductor layer 3, and the conductive layer 5 of the p-type nitride semiconductor layer 4 is used.
  • the surface 11 is formed with unevenness 11 on which incident light from the substrate 1 side is multiply reflected.
  • the photoelectric conversion element of the second embodiment when light is incident from the substrate 1 side, the light incident from the substrate 1 side and transmitted through the i-type nitride semiconductor layer 3 and the p-type nitride semiconductor layer 4 is transmitted. Multiple reflections can be made by the irregularities 11. As a result, at least part of the light traveling toward the conductive layer 5 can be returned to the first p-type nitride semiconductor layer 4 and incident on the i-type nitride semiconductor layer 3. Since the optical path length in the layer 3 can be increased, photocarriers generated by light absorption in the i-type nitride semiconductor layer 3 can be increased as compared with the conventional case. As a result, a photoelectric conversion element having excellent characteristics such as high photoelectric conversion efficiency can be obtained.
  • the surface roughness RMS of the surface of the p-type nitride semiconductor layer 4 having the irregularities 11 is preferably 0.01 ⁇ m or more and 0.02 ⁇ m or less.
  • the unevenness 11 of the p-type nitride semiconductor layer 4 becomes an effective unevenness for having a light confinement effect, it tends to be particularly preferable as the uneven shape of the photoelectric conversion element.
  • the surface roughness RMS of the surface of the p-type nitride semiconductor layer 4 having the irregularities 11 is determined by using an atomic force microscope to scan an arbitrary square region having a side of 40 ⁇ m on the surface of the p-type nitride semiconductor layer 4. It can be calculated by measuring.
  • the height difference of the surface of the p-type nitride semiconductor layer 4 having the irregularities 11 is preferably 0.5 ⁇ m or more and 3 ⁇ m or less. More preferably, it is 1 ⁇ m or more and 3 ⁇ m or less.
  • the height difference is 0.5 ⁇ m or more and 3 ⁇ m or less, it is effective for light confinement with respect to light in a short wavelength region of 0.5 ⁇ m or less, and the coating state of the step portion of the p-type nitride semiconductor layer 4 is It is possible to suppress deterioration in characteristics of the photoelectric conversion element due to deterioration.
  • the step coverage on the surface of the p-type nitride semiconductor layer 4 is excellent. A decrease in F can be suppressed. In this case, since the generation of defects in the p-type nitride semiconductor layer 4 starting from the recesses of the irregularities 11 can also be suppressed, the open-circuit voltage of the photoelectric conversion element tends not to decrease.
  • the above-described height difference measurement method is not particularly limited, and examples thereof include measurement using an atomic force microscope or measurement using a contact-type step measuring device.
  • a substrate 1 is prepared.
  • an n-type nitride semiconductor layer 2 is stacked on the substrate 1.
  • the n-type nitride semiconductor layer 2 is vapor-phase grown on the substrate 1 and stacked by supplying at least a group III source gas and a group V source gas in a crystal growth apparatus such as an MOCVD apparatus. Can do.
  • the ratio of the supply amount of the group V source gas to the supply amount of the group III source gas (the supply amount of the group V source gas / the supply amount of the group III source gas) ) (Hereinafter referred to as “V / III gas supply ratio”) is 2000 to 2100, and the first n-type nitride semiconductor layer 2a is vapor-phase grown on the substrate 1.
  • the group V source gas for example, NH 3 can be used, and as the group III source gas, for example, TMG can be used.
  • the second n-type nitride semiconductor layer 2b is formed on the first n-type nitride semiconductor layer 2a under the condition that the V / III gas supply amount ratio is 3830 or more and 4230 or less. Vapor growth is performed.
  • the first n-type nitride semiconductor layer 2a is vapor-phase grown on the substrate 1 under the first growth condition in which the V / III gas supply ratio is 2000 or more and 2100 or less, and then the V / III gas is supplied.
  • the second n-type nitride semiconductor layer 2b is vapor-phase grown on the first n-type nitride semiconductor layer 2a under the second growth condition where the supply amount ratio is 3830 or more and 4230 or less, and the n-type nitride semiconductor layer is grown.
  • the surface of the n-type nitride semiconductor layer 2 has a structure in which the planes overlap with steps, and n
  • the p-type nitride semiconductor layer 4 stacked on the p-type nitride semiconductor layer 2 is considered to have the effect of forming the irregularities 11 without roughening the surface.
  • the adhesion between the p-type nitride semiconductor layer 4 and the conductive layer 5 can be improved and the leakage current can be suppressed. Therefore, F. of photoelectric conversion elements. It is considered that the decrease in F is suppressed, and the surface roughness of the p-type nitride semiconductor layer 4 of the photoelectric conversion element is particularly preferable.
  • the interface 2c between the first n-type nitride semiconductor layer 2a and the second n-type nitride semiconductor layer 2b is located within a range of 20% to 80% of the total thickness T of the n-type nitride semiconductor layer 2. It is preferable to do. In this case, since the unevenness 11 of the p-type nitride semiconductor layer 4 becomes an effective unevenness for having a light confinement effect, a photoelectric conversion element having excellent characteristics such as high photoelectric conversion efficiency can be obtained. There is a tendency.
  • the first n-type nitride semiconductor layer 2a is vapor grown to a thickness of 1.2 ⁇ m with a V / III gas supply ratio of 2100.
  • the supply amount of the group III source gas is decreased, the V / III gas supply amount ratio is 4200, and the second n-type nitride semiconductor layer 2b is vapor-phase grown to a thickness of 0.3 ⁇ m. Therefore, in this example, a region of 80% of the total thickness T of the n-type nitride semiconductor layer 2 is grown with a V / III gas supply ratio of 2100, and the remaining 20% of the region is grown with the V / III gas. Vapor phase growth is performed with a supply amount ratio of 4200.
  • the supply amount of the group V source gas and the supply amount of the group III source gas in the V / III gas supply ratio means the number of moles per unit time supplied into the crystal growth apparatus, respectively.
  • the unit of the supply amount is represented by, for example, mol / min.
  • FIG. 13 is a schematic cross-sectional view illustrating another example of the step of laminating the n-type nitride semiconductor layer 2 on the substrate 1.
  • the first n-type nitride semiconductor layer 2a is vapor-phase grown to a thickness of 0.75 ⁇ m with the V / III gas supply ratio being 2100 as the first growth condition.
  • the second n-type nitride semiconductor layer 2b is vapor-phase grown to a thickness of 0.75 ⁇ m by reducing the supply amount of the group III source gas and setting the V / III gas supply amount ratio to 4200.
  • a region of 50% of the total thickness T of the n-type nitride semiconductor layer 2 is grown with a V / III gas supply ratio of 2100, and the remaining 50% of the region is grown with the V / III gas.
  • Vapor phase growth is performed with a supply amount ratio of 4200.
  • FIG. 14 is a schematic cross-sectional view illustrating another example of the step of laminating the n-type nitride semiconductor layer 2 on the substrate 1.
  • the first n-type nitride semiconductor layer 2a is vapor-grown to a thickness of 0.3 ⁇ m as a first growth condition with a V / III gas supply ratio of 2100.
  • the second n-type nitride semiconductor layer 2b is vapor-grown to a thickness of 1.2 ⁇ m by reducing the supply amount of the group III source gas and setting the V / III gas supply amount ratio to 4200.
  • a region of 20% of the total thickness T of the n-type nitride semiconductor layer 2 is grown with a V / III gas supply ratio of 2100, and the remaining 80% of the region is grown with the V / III gas.
  • Vapor phase growth is performed with a supply amount ratio of 4200.
  • the buffer layer 10 is stacked on the n-type nitride semiconductor layer 2.
  • Buffer layer 10 is vapor-grown on n-type nitride semiconductor layer 2 by, for example, MOCVD.
  • the buffer layer 10 is provided to alleviate the lattice non-junction between the n-type nitride semiconductor layer 2 and the i-type nitride semiconductor layer 3.
  • a stacked buffer layer or the like can be used.
  • the i-type nitride semiconductor layer 3 is stacked on the surface of the buffer layer 10. Thereafter, as shown in FIG. 17, p-type nitride semiconductor layer 4 having irregularities 11 on the surface is laminated on the surface of i-type nitride semiconductor layer 3.
  • i-type nitride semiconductor layer 3 and p-type nitride semiconductor layer 4 can be formed by vapor phase growth, for example, by MOCVD.
  • a conductive layer 5 is formed on the surface of the p-type nitride semiconductor layer 4.
  • a part of each of the conductive layer 5, the p-type nitride semiconductor layer 4, the i-type nitride semiconductor layer 3 and the buffer layer 10 is removed by etching to thereby remove the n-type nitride semiconductor layer. 2 surface is exposed.
  • the n-pad electrode 6 and the p-pad electrode 7 are formed on the exposed surface of the n-type nitride semiconductor layer 2 and the surface of the conductive layer 5, respectively. Can be manufactured.
  • the unevenness 11 on the surface of the p-type nitride semiconductor layer 4 can be obtained without taking out the substrate 1 from the closed crystal growth apparatus such as a vacuum chamber. Can be formed. Therefore, it is not necessary to provide another processing step to form the unevenness 11 on the surface of the p-type nitride semiconductor layer 4, so that the surface of the p-type nitride semiconductor layer 4 is contaminated and damage is generated during the processing. Can be prevented. Therefore, the F.A. A decrease in F can be suppressed. Moreover, since the manufacturing method of the photoelectric conversion element of said Embodiment 2 also shortens the manufacturing time of a photoelectric conversion element, it is excellent also as a production technique.
  • a template substrate was prepared in which a buffer layer made of non-doped GaN was formed on the c-plane of the sapphire substrate. Then, a template substrate is set in the MOCVD apparatus, the template substrate is heated to 1100 ° C. to 1120 ° C., and in this state, an n-type nitride composed of an n-type GaN layer having a thickness of 1.5 ⁇ m is formed on the template substrate surface.
  • the semiconductor layer was vapor-phase grown by MOCVD.
  • the n-type nitride semiconductor layer was an n-type GaN layer doped with Si at a concentration of 2 ⁇ 10 18 / cm 3 .
  • a well layer made of In 0.2 Ga 0.8 N having a thickness of 3.5 nm and a thickness of 6 nm are formed on the surface of the n-type nitride semiconductor layer.
  • An i-type nitride semiconductor layer having an MQW structure in which six layers of GaN barrier layers were alternately stacked was vapor-grown by MOCVD.
  • a first p-type nitride semiconductor comprising a p-type GaN layer having a thickness of 0.05 ⁇ m on the surface of the i-type nitride semiconductor layer.
  • the layer was vapor grown by MOCVD.
  • the vapor phase growth conditions of the first p-type nitride semiconductor layer are as follows: TMG with a supply amount M t of 125 ( ⁇ mol / min) is used as the group III source gas, and the supply amount M a is as the group V source gas.
  • CP 2 Mg biscyclopentadienylmagnesium
  • a supply amount of 0.26 ( ⁇ mol / min) was used as the p-type impurity gas.
  • the first p-type nitride semiconductor layer made of the p-type GaN layer doped with Mg at a concentration of 4 ⁇ 10 19 atoms / cm 3 was vapor-phase grown.
  • the second p-type nitride semiconductor layer made of p-type GaN having a trapezoidal cross-sectional shape was grown on the surface of the first p-type nitride semiconductor layer to form irregularities.
  • the amount of TMG supplied into the film formation chamber during the growth of the second p-type nitride semiconductor layer is 0.005 slm or less
  • the amount of NH 3 supplied into the film formation chamber is 10 slm or less
  • the carrier gas The amount supplied into the film forming chamber was 20 slm or less, and a mixed gas of TMG, NH 3 and carrier gas was supplied into the film forming chamber at a flow rate of 1 m / sec to 1.1 m / sec.
  • FIG. 20 shows an SEM photograph of a cross section of the second p-type nitride semiconductor layer grown on the surface of the first p-type nitride semiconductor layer.
  • the unevenness on the surface of the second p-type nitride semiconductor layer made of p-type GaN having a trapezoidal cross-sectional shape had a ⁇ 11-22 ⁇ facet plane.
  • the length of the upper base of the trapezoid which is the cross-sectional shape of the convex portion of the second p-type nitride semiconductor layer, is 0.3 to 0.7 ⁇ m, and the length of the lower base is 1 ⁇ m to 1.7 ⁇ m.
  • the height was 1 ⁇ m to 1.2 ⁇ m.
  • the length of the upper base of the trapezoid which is the cross-sectional shape of the convex part of the second p-type nitride semiconductor layer was shorter than the length of the lower base.
  • the template substrate after the growth of the second p-type nitride semiconductor layer is placed in an annealing furnace, and the first p-type nitride semiconductor layer and the second p-type nitride semiconductor layer are heat-treated. It was.
  • the heat treatment was performed by holding the template substrate after the growth of the second p-type nitride semiconductor layer in a nitrogen atmosphere at 800 ° C. for 5 minutes.
  • the heat-treated template substrate was taken out of the annealing furnace, and the template substrate and a ZnO target doped with an Al concentration of 2 atomic% were placed in a magnetron sputtering apparatus. Then, after raising the temperature of the template substrate to 180 ° C., oxygen and argon were introduced into the magnetron sputtering apparatus so that the partial pressure (O 2 / Ar) of oxygen and argon was 3.8%. Then, a conductive layer made of AZO having a thickness of 0.32 ⁇ m was formed on the surface of the second p-type nitride semiconductor layer by magnetron sputtering using the above target.
  • the conductive layer made of AZO has the second p-type nitridation.
  • the refractive index was smaller than that of the physical semiconductor layer.
  • the template substrate is taken out from the magnetron sputtering apparatus and placed in an annealing furnace, and the crystallinity of the conductive layer, the adhesion between the conductive layer and the second p-type nitride semiconductor layer, and the conductive layer and the second
  • the conductive layer was heat-treated for the purpose of improving the contact property with the p-type nitride semiconductor layer.
  • the heat treatment was performed by holding the template substrate after forming the conductive layer for 10 minutes in a vacuum atmosphere at 600 ° C. and an oxygen partial pressure of 2%.
  • the heat-treated template substrate was taken out of the annealing furnace, and a mask having a predetermined shape was placed on the surface of the conductive layer and placed in the etching apparatus.
  • a part of each of the conductive layer, the second p-type nitride semiconductor layer, the first p-type nitride semiconductor layer, the i-type nitride semiconductor layer, and the n-type nitride semiconductor layer from above the mask. was etched to expose the surface of the n-type nitride semiconductor layer.
  • a resist mask having openings of predetermined shapes is formed on the surface of the conductive layer and the exposed surface of the n-type nitride semiconductor layer, respectively, and then in the vacuum deposition apparatus. installed. Then, a Ni film, a Pt film, and an Au film were deposited in this order on the surfaces of the conductive layer and the n-type nitride semiconductor layer on which the resist mask was formed, and then the resist mask was removed by lift-off.
  • a p-pad electrode and an n-pad electrode in which a Ni film, a Pt film, and an Au film were stacked in this order were formed on the surfaces of the conductive layer and the n-type nitride semiconductor layer.
  • the template substrate after the formation of the p-pad electrode and the n-pad electrode was taken out from the vacuum deposition apparatus and placed in a lamp annealing apparatus. Then, the p-pad electrode and the n-pad electrode were heat-treated at 400 ° C. to 600 ° C. with a lamp annealing device, and the template substrate was divided at predetermined locations, whereby the photoelectric conversion element of Example 1 was obtained.
  • the surface roughness RMS of the surface opposite to the second p-type nitride semiconductor layer side of the conductive layer of the photoelectric conversion element of Example 1 was measured to be 0.004 ⁇ m.
  • the surface roughness RMS is determined by measuring an arbitrary square region with a side of 40 ⁇ m on the surface opposite to the second p-type nitride semiconductor layer side of the conductive layer of the photoelectric conversion element of Example 1 using an atomic force microscope. It was calculated by measuring using.
  • a circuit for measuring current and voltage by electrically connecting the p-pad electrode and the n-pad electrode of the photoelectric conversion element of Example 1 to the lead frame with a gold wire, and contacting the probe with the positive electrode and the negative electrode of the lead frame, respectively. Formed.
  • the IV curve of the photoelectric conversion element of Example 1 is obtained by irradiating AM1.5 pseudo-sunlight from the conductive layer side at 25 ° C. with an energy density of 100 mW / cm 2 using a solar simulator.
  • the open circuit voltage (V oc ), short circuit current density (J sc ), fill factor (FF) and photoelectric conversion efficiency (E ff ) of the photoelectric conversion element of Example 1 were calculated from the IV curve.
  • V oc of the photoelectric conversion element of Example 1 is 1.84 V
  • J sc is 1.36 mA / cm 2
  • F.I. F was 0.52
  • E ff was 1.3%.
  • Comparative Example 1 A photoelectric conversion element of Comparative Example 1 was produced in the same manner as in Example 1 except that the second p-type nitride semiconductor layer was not grown on the surface of the first p-type nitride semiconductor layer.
  • V oc of the photoelectric conversion element of Comparative Example 1 is 1.80 V
  • J sc is 0.99 mA / cm 2
  • F.I. F was 0.47 and E ff was 0.84%.
  • the photoelectric conversion element of Example 1 is different from the photoelectric conversion element of Comparative Example 1 in terms of V oc , J sc , F.V. Excellent in all respects of F and E ff .
  • the photoelectric conversion element of Example 1 multi-reflects the light traveling from the second p-type nitride semiconductor layer side to the conductive layer side on the uneven surface of the second p-type nitride semiconductor layer, It is considered that one of the major factors is that more light can be confined in the i-type nitride semiconductor layer.
  • a template substrate was prepared in which a buffer layer made of non-doped GaN was formed on the c-plane of the sapphire substrate. Then, the template substrate is set in the MOCVD apparatus, the template substrate is heated to 1100 ° C. to 1120 ° C., and in this state, a first n-type nitride semiconductor layer (n-type GaN layer) is formed on the surface of the template substrate. Si doping concentration: 2 ⁇ 10 18 / cm 3 ) was vapor-phase grown by MOCVD method.
  • a first n-type nitride semiconductor layer having a thickness of 1.2 ⁇ m was grown.
  • the ratio of V / III gas supply during the growth of the first n-type nitride semiconductor layer was 2100.
  • the V / III gas supply ratio is reduced to 4200 by reducing the supply amount of TMG to 62 ⁇ mol, and the n-type GaN layer having a thickness of 0.3 ⁇ m is formed on the surface of the first n-type nitride semiconductor layer.
  • a second n-type nitride semiconductor layer (Si doping concentration: 2 ⁇ 10 18 / cm 3 ) is grown to form a first n-type nitride semiconductor layer and a second n-type nitride semiconductor layer.
  • An n-type nitride semiconductor layer made of a laminate was grown.
  • the interface between the first n-type nitride semiconductor layer and the second n-type nitride semiconductor layer is a stacked body of the first n-type nitride semiconductor layer and the second n-type nitride semiconductor layer.
  • An n-type nitride semiconductor layer located at 80% of the total thickness was grown.
  • the temperature of the template substrate is lowered to 750 ° C. to 800 ° C., and a well layer made of In 0.11 Ga 0.79 N having a thickness of 3.5 nm is formed on the surface of the n-type nitride semiconductor layer in the temperature state of the template substrate.
  • a well layer made of In 0.11 Ga 0.79 N having a thickness of 3.5 nm is formed on the surface of the n-type nitride semiconductor layer in the temperature state of the template substrate.
  • the temperature of the template substrate is raised to 1000 ° C. to 1070 ° C., and the thickness of p-type GaN doped with Mg at 4 ⁇ 10 19 / cm 3 on the surface of the i-type nitride semiconductor layer.
  • a 0.05 ⁇ m p-type nitride semiconductor layer was grown.
  • the template substrate after the growth of the p-type nitride semiconductor layer was placed in an annealing furnace, and the p-type nitride semiconductor layer was heat-treated.
  • the heat treatment was performed by holding the template substrate after the growth of the p-type nitride semiconductor layer in a nitrogen atmosphere at 800 ° C. for 5 minutes.
  • the heat-treated template substrate was taken out of the annealing furnace, and the template substrate and a ZnO target doped with an Al concentration of 2 atomic% were placed in a magnetron sputtering apparatus. Then, after raising the temperature of the template substrate to 180 ° C., oxygen and argon were introduced into the magnetron sputtering apparatus so that the partial pressure (O 2 / Ar) of oxygen and argon was 3.8%. Then, a conductive layer made of AZO having a thickness of 0.32 ⁇ m was formed on the surface of the p-type nitride semiconductor layer by magnetron sputtering using the above target.
  • the conductive layer made of AZO is 2.0 and the refractive index of the p-type nitride semiconductor layer is 2.3, the conductive layer made of AZO is smaller than the p-type nitride semiconductor layer. It had a refractive index.
  • the template substrate is taken out from the magnetron sputtering apparatus and placed in an annealing furnace, the crystallinity of the conductive layer, the adhesion between the conductive layer and the p-type nitride semiconductor layer, and the conductive layer and the p-type nitride semiconductor layer.
  • the conductive layer was heat-treated for the purpose of improving the contact property with the conductive layer. The heat treatment was performed by holding the template substrate after forming the conductive layer for 10 minutes in a vacuum atmosphere at 600 ° C. and an oxygen partial pressure of 2%.
  • the heat-treated template substrate was taken out of the annealing furnace, and a mask having a predetermined shape was placed on the surface of the conductive layer and placed in the etching apparatus.
  • a part of each of the conductive layer, the p-type nitride semiconductor layer, the i-type nitride semiconductor layer, and the n-type nitride semiconductor layer is etched from above the mask to thereby remove the surface of the n-type nitride semiconductor layer. Exposed.
  • a resist mask having openings of predetermined shapes is formed on the surface of the conductive layer and the exposed surface of the n-type nitride semiconductor layer, respectively, and then in the vacuum deposition apparatus. installed. Then, a Ni film, a Pt film, and an Au film were deposited in this order on the surfaces of the conductive layer and the n-type nitride semiconductor layer on which the resist mask was formed, and then the resist mask was removed by lift-off.
  • a p-pad electrode and an n-pad electrode in which a Ni film, a Pt film, and an Au film were stacked in this order were formed on the surfaces of the conductive layer and the n-type nitride semiconductor layer.
  • the template substrate after the formation of the p-pad electrode and the n-pad electrode was taken out from the vacuum deposition apparatus and placed in a lamp annealing apparatus. Then, the p-pad electrode and the n-pad electrode were heat-treated at 400 ° C. to 600 ° C. with a lamp annealing device, and the template substrate was divided at a predetermined location to obtain the photoelectric conversion element of Example 2.
  • Example 3 Vapor phase growth of a first n-type nitride semiconductor layer composed of an n-type GaN layer (Si doping concentration: 2 ⁇ 10 18 / cm 3 ) having a V / III gas supply ratio of 2100 and a thickness of 0.75 ⁇ m
  • a second n-type nitride semiconductor layer comprising an n-type GaN layer (Si doping concentration: 2 ⁇ 10 18 / cm 3 ) having a V / III gas supply ratio of 4200 and a thickness of 0.75 ⁇ m
  • a photoelectric conversion element of Example 3 was obtained in the same manner as above except that an n-type nitride semiconductor layer positioned at 50% of the total thickness of the laminate
  • Example 4 Vapor phase growth of a first n-type nitride semiconductor layer composed of an n-type GaN layer (Si doping concentration: 2 ⁇ 10 18 / cm 3 ) having a V / III gas supply ratio of 2100 and a thickness of 0.3 ⁇ m Then, a second n-type nitride semiconductor layer made of an n-type GaN layer (Si doping concentration: 2 ⁇ 10 18 / cm 3 ) having a thickness of 1.2 ⁇ m with a V / III gas supply ratio of 4200 Is vapor-phase grown so that the interface between the first n-type nitride semiconductor layer and the second n-type nitride semiconductor layer is the first n-type nitride semiconductor layer and the second n-type nitride semiconductor layer.
  • a photoelectric conversion element of Example 4 was obtained in the same manner as described above except that an n-type nitride semiconductor layer positioned at 20% of the total thickness of the
  • the surface roughness RMS of the uneven surface of the p-type nitride semiconductor layer of the photoelectric conversion elements of Examples 2 to 4 was 0.015 ⁇ m.
  • the surface roughness RMS is measured using an atomic force microscope on an arbitrary square region having a side of 40 ⁇ m on the uneven surface of the p-type nitride semiconductor layer of the photoelectric conversion elements of Examples 2 to 4.
  • the surface roughness RMS of the surface of the photoelectric conversion element of Examples 2 to 4 opposite to the p-type nitride semiconductor layer was measured and found to be 0.004 ⁇ m.
  • the surface roughness RMS is a value obtained by applying an atomic force to an arbitrary square region having a side of 40 ⁇ m on the surface opposite to the second p-type nitride semiconductor layer side of the conductive layers of the photoelectric conversion elements of Examples 2 to 4. It was calculated by measuring using a microscope.
  • the p-pad electrode and n-pad electrode of the photoelectric conversion elements of Examples 2 to 4 were each electrically connected to the lead frame with gold wires, and the probe was brought into contact with the positive and negative electrodes of the lead frame for current and voltage measurement, respectively.
  • the circuit was formed.
  • the AM 1.5 artificial sunlight is irradiated from the conductive layer side at 25 ° C. with an energy density of 100 mW / cm 2 , and the IV of each of the photoelectric conversion elements of Examples 2 to 4 is obtained.
  • a curve is obtained, and from the IV curve, V oc , J sc , F.V. F and E ff were calculated.
  • V oc of the photoelectric conversion elements of Examples 2 to 4 was 1.63 V
  • J sc was 1.14 mA / cm 2
  • F.I. F was 0.52
  • E ff was 0.97%.
  • ⁇ Comparative Example 2> Instead of an n-type nitride semiconductor layer consisting of two layers, a first n-type nitride semiconductor layer and a second n-type nitride semiconductor layer, the V / III gas supply ratio is 2100, and the thickness is 1 Except that a single n-type nitride semiconductor layer composed of a 0.5 ⁇ m n-type GaN layer (Si doping concentration: 2 ⁇ 10 18 / cm 3 ) was formed, the same as the photoelectric conversion elements of Examples 2 to 4. Thus, a photoelectric conversion element of Comparative Example 2 was produced.
  • V oc of the photoelectric conversion element of Comparative Example 2 is 1.59 V
  • J sc is 0.84 mA / cm 2
  • F.I. F was 0.47 and E ff was 0.63%.
  • ⁇ Comparative Example 3> Instead of an n-type nitride semiconductor layer consisting of two layers, a first n-type nitride semiconductor layer and a second n-type nitride semiconductor layer, the V / III gas supply ratio is 4300, and the thickness is 1 Except that a single n-type nitride semiconductor layer composed of a 0.5 ⁇ m n-type GaN layer (Si doping concentration: 2 ⁇ 10 18 / cm 3 ) was formed, the same as the photoelectric conversion elements of Examples 2 to 4. Thus, a photoelectric conversion element of Comparative Example 3 was produced.
  • V oc of the photoelectric conversion element of Comparative Example 3 is 1.09 V
  • J sc is 0.55 mA / cm 2
  • F.I. F was 0.36
  • E ff was 0.22%.
  • the surface of the p-type nitride semiconductor layer of the photoelectric conversion element of Example 2 was formed with scale-like irregularities having a particle diameter of 0.05 ⁇ m to 0.1 ⁇ m. It was done. Further, when the same observation was made on the surface of the p-type nitride semiconductor layer of the photoelectric conversion elements of Examples 3 and 4, the same irregularities as the surface of the p-type nitride semiconductor layer of the photoelectric conversion element of Example 2 were observed. It was confirmed that it was formed.
  • the uneven surface of the p-type nitride semiconductor layer of the photoelectric conversion elements of Examples 2 to 4 is lighter than the uneven surface of the p-type nitride semiconductor layer of the photoelectric conversion element of Comparative Example 2. It is considered that the confinement effect is excellent.
  • FIG. 21A shows the 2 ⁇ scan measurement result by X-ray diffraction of the i-type nitride semiconductor layer of the photoelectric conversion element of Example 2
  • FIG. 21B shows the i of the photoelectric conversion element of Comparative Example 2.
  • the 2 (theta) omega scan measurement result by the X-ray diffraction method of a type nitride semiconductor layer is shown.
  • FIG. 21A and FIG. 21B show 2 ⁇ scan measurements obtained by measuring the i-type nitride semiconductor layer produced in the same manner as in Example 2 and Comparative Example 2 by the X-ray diffraction method, respectively. It is a result.
  • the i-type nitride semiconductor layer of the photoelectric conversion element of Example 2 is the i-type nitride semiconductor layer of the photoelectric conversion element of Comparative Example 2. It was confirmed that the periodicity between the well layer and the barrier layer was maintained. Note that when X-rays are incident on an i-type nitride semiconductor layer having a repeating structure of a well layer and a barrier layer, interference occurs at the interface between the well layer and the barrier layer. It can be confirmed whether periodicity is ensured.
  • the present invention can be used for a photoelectric conversion element and a method for manufacturing the photoelectric conversion element, and particularly for a solar cell using a nitride semiconductor and a method for manufacturing the solar cell.
  • 1 substrate 2 n-type nitride semiconductor layer, 2a first n-type nitride semiconductor layer, 2b second n-type nitride semiconductor layer, 2c interface, 3 i-type nitride semiconductor layer, 4 first p-type Nitride semiconductor layer, 5 conductive layer, 5a surface, 6 n pad electrode, 7 p pad electrode, 9 second p-type nitride semiconductor layer, 10 buffer layer, 11 irregularities, 12 semiconductor stack.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

 基板(1)と、基板(1)上に設けられた半導体積層体(12)と、半導体積層体(12)上に設けられた導電層(5)とを備え、半導体積層体(12)は、基板(1)側から導電層(5)側にかけて、n型窒化物半導体層(2)、i型窒化物半導体層(3)およびp型窒化物半導体層(4)をこの順に含み、p型窒化物半導体層(4)は導電層(5)側の表面に凹凸(11)を有している光電変換素子とその製造方法である。

Description

光電変換素子および光電変換素子の製造方法
 本発明は、光電変換素子および光電変換素子の製造方法に関する。
 現在、光電変換素子は、シリコン(たとえば、非晶質シリコン、微結晶シリコンまたは多結晶シリコン)により作製されるのが一般的である。しかしながら、シリコンのバンドギャップは1.1eV~1.8eVであるため、エネルギの高い0.5μm以下の短波長領域の光に対しての感度が小さく、太陽光を有効活用できないという課題があった。
 これに対し、AlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、0≦x+y≦1)の式で表わされる窒化物半導体のバンドギャップについては長らく議論されてきたが、近年、その組成に対応して、0.7eV~6.0eVという極めて広い範囲で変化することが明らかとなった。これは、0.5μm以下の短波長領域の光に対しても感度を持たせることができる可能性を示唆するものであるため、窒化物半導体は、次世代の光電変換素子として大変注目されている。
 上記の窒化物半導体は、通常、有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)、分子線気相成長法(MBE)、またはパルスレーザデポジション法(PLD)などの気相成長法を用いて基板上に形成することができる。
 上記の窒化物半導体は、発光ダイオード(LED)等の発光素子用の材料として好適であるため、開発が盛んに行なわれてきた経緯がある。また、近年では上記の窒化物半導体のバンドギャップの解明により、次世代の光電変換素子用の材料として、気相成長法を用いて窒化物半導体を形成する研究が盛んに行なわれている。
 光電変換素子では、活性層が光を吸収してフォトキャリアを生成するため、活性層に多くの光を採り入れることが強く望まれる。たとえば、特許文献1(特開平7-288334号公報)、特許文献2(米国特許出願公開第2004/0118451号明細書)および特許文献3(米国特許出願公開第7217882号明細書)には、窒化物半導体を用いた光電変換素子の構造が開示されているが、活性層に多くの光を採り入れることについての議論は存在しない。光電変換素子にとってフォトキャリアを多く生成することは短絡電流を増加させることを意味しているため、光電変換素子の特性を向上させる目的から、窒化物半導体を用いた光電変換素子の活性層でフォトキャリアを多く生成することが要望されている。
 しかしながら、特許文献1~3に記載されているような窒化物半導体を用いた従来の光電変換素子は、格子定数の異なる複数の窒化物半導体層から構成されているため、各々の窒化物半導体層に格子欠陥が形成されることや、圧縮応力または引張応力が発生することに起因する圧電電界により内部電界が減少するため、短絡電流が小さくなるという問題があった。
特開平7-288334号公報 米国特許出願公開第2004/0118451号明細書 米国特許第7217882号明細書
 上記の事情に鑑みて、本発明は、特性を向上することができる光電変換素子および光電変換素子の製造方法を提供することを目的とする。
 本発明は、基板と、基板上に設けられた半導体積層体と、半導体積層体上に設けられた導電層と、を備え、半導体積層体は、基板側から導電層側にかけて、n型窒化物半導体層、i型窒化物半導体層およびp型窒化物半導体層をこの順に含み、p型窒化物半導体層は導電層側の表面に凹凸を有している光電変換素子である。
 ここで、本発明の光電変換素子において、導電層のp型窒化物半導体層側とは反対側の表面の表面粗さRMSは、0.003μm以上0.005μm以下であることが好ましい。
 また、本発明の光電変換素子において、導電層の厚さは、0.25μm以上0.5μm以下であることが好ましい。
 また、本発明の光電変換素子において、導電層は、p型窒化物半導体層よりも小さい屈折率を有することが好ましい。
 また、本発明の光電変換素子において、導電層は、Zn、In、SnおよびMgからなる群から選択される少なくとも1種を含む単層、または単層を複数積層した複数層であることが好ましい。
 また、本発明の光電変換素子において、基板は、AlxInyGazN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z≠0)、GaP、GaAs、NdGaO3、LiGaO2、Al23、MgAl24、ZnO、Si、SiC、SiGe、またはZrB2の式で表わされる材料を含むことが好ましい。
 また、本発明の光電変換素子において、p型窒化物半導体層は、複数層を含むことが好ましい。
 また、本発明の光電変換素子において、凹凸は断面形状が台形である凸部を含み、台形の上底の長さが0.3μm以上0.7μm以下であり、台形の下底の長さが1μm以上1.7μm以下であり、台形の高さが1μm以上1.2μm以下であることが好ましい。
 また、本発明の光電変換素子において、p型窒化物半導体層の凹凸を有する表面の表面粗さRMSが0.01μm以上0.02μm以下であることが好ましい。
 また、本発明の光電変換素子において、n型窒化物半導体層は、基板側の第1のn型窒化物半導体層と、導電層側の第2のn型窒化物半導体層と、の積層体を有しており、第1のn型窒化物半導体層と第2のn型窒化物半導体層との界面が、積層体の総厚の20%以上80%以下の範囲内に位置することが好ましい。
 また、本発明は、上記のいずれかの光電変換素子を製造する方法であって、基板上に半導体積層体を形成する工程と、半導体積層体上に導電層を形成する工程と、を含み、半導体積層体を形成する工程は、少なくともIII族原料ガスとV族原料ガスとを供給することによって窒化物半導体を気相成長させる工程を含み、気相成長させる工程は、第1の成長条件による第1の成長工程と、第1の成長条件とは異なる第2の成長条件による第2の成長工程と、を含む、光電変換素子の製造方法である。
 ここで、本発明の光電変換素子の製造方法において、第2の成長条件は、第1の成長条件よりもIII族原料ガスの供給量のみを低減した条件であることが好ましい。
 また、本発明は、上記の光電変換素子を製造する方法であって、基板上に半導体積層体を形成する工程と、半導体積層体上に導電層を形成する工程と、を含み、半導体積層体を形成する工程は、少なくともIII族原料ガスとV族原料ガスとを供給することによってp型窒化物半導体層を気相成長させる工程を含み、気相成長させる工程は、第1の成長条件による第1の成長工程と、第1の成長条件とは異なる第2の成長条件による第2の成長工程と、を含み、III族原料ガスは、トリメチルガリウムであり、V族原料ガスは、アンモニアであって、第2の成長工程においては、トリメチルガリウムの供給量Mtに対するアンモニアの供給量Maの比であるMa/Mtを40000以上100000以下にするとともに、トリメチルガリウムとアンモニアをそれぞれ1m/秒以上1.1m/秒以下の流速で供給する光電変換素子の製造方法である。
 さらに、本発明は、上記の光電変換素子を製造する方法であって、基板上に半導体積層体を形成する工程と、半導体積層体上に導電層を形成する工程と、を含み、半導体積層体を形成する工程は、少なくともIII族原料ガスとV族原料ガスとを供給することによってn型窒化物半導体層を気相成長させる工程を含み、気相成長させる工程は、第1の成長条件による第1の成長工程と、第1の成長条件とは異なる第2の成長条件による第2の成長工程と、を含み、第1の成長条件におけるIII族原料ガスに対するV族原料ガスの供給量比が2000以上2100以下であって、第2の成長条件におけるIII族原料ガスに対するV族原料ガスの供給量比が3830以上4230以下である光電変換素子の製造方法である。
 本発明によれば、特性を向上することができる光電変換素子および光電変換素子の製造方法を提供することができる。
実施の形態1の光電変換素子の模式的な断面図である。 実施の形態1の光電変換素子の凹凸近傍の模式的な拡大断面図である。 実施の形態1の光電変換素子の製造方法の一例の製造工程の一部について図解する模式的な断面図である。 実施の形態1の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態1の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態1の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態1の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態1の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態1の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施の形態2の光電変換素子の製造方法の一例の製造工程の他の一部について図解する模式的な断面図である。 実施例1において第1のp型窒化物半導体層の表面上に形成された第2のp型窒化物半導体層の断面のSEM(Scanning Electron Microscope)写真である。 (a)は実施例2の光電変換素子のi型窒化物半導体層のX線回折法による2θωスキャン測定結果であり、(b)は比較例2の光電変換素子のi型窒化物半導体層のX線回折法による2θωスキャン測定結果である。
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。また、結晶面および方向を表わす場合に、本来であれば所要の数字の上にバーを付した表現をするべきであるが、表現手段に制約があるため、本明細書においては、所要の数字の上にバーを付す表現の代わりに、所要の数字の前に「-」を付して表現している。
 <実施の形態1>
 図1に、本発明の光電変換素子の一例である実施の形態1の光電変換素子の模式的な断面図を示す。実施の形態1の光電変換素子は、基板1と、基板1上に設けられた半導体積層体12と、半導体積層体12上に設けられた導電層5と、を備えている。
 半導体積層体12は、基板1側から、n型窒化物半導体層2と、i型窒化物半導体層3と、第1のp型窒化物半導体層4と、断面形状が台形の凸部状である第2のp型窒化物半導体層9と、がこの順序で積層されたpin構造体を有している。pin構造体は、基板1側にn型窒化物半導体層2を有し、導電層5側に第1のp型窒化物半導体層4を有しており、n型窒化物半導体層2と第1のp型窒化物半導体層4との間にi型窒化物半導体層3を有している。本実施の形態において、pin構造体は、n型窒化物半導体層2とi型窒化物半導体層3とが接するとともに、i型窒化物半導体層3と第1のp型窒化物半導体層4とが接することによって構成されている。そして、第1のp型窒化物半導体層4の表面上に断面形状が台形の凸部である第2のp型窒化物半導体層9が複数配列して凹凸11が構成されており、凹凸11は、第1のp型窒化物半導体層4の導電層5側の表面に設けられている。
 また、n型窒化物半導体層2の表面上にはnパッド電極6が形成されているとともに、導電層5の表面上にはpパッド電極7が形成されている。なお、nパッド電極6およびpパッド電極7はそれぞれ設置しなくてもよいが、設置しておくことが好ましい。
 実施の形態1の光電変換素子において、基板1側から光が入射された場合には、基板1側から入射してi型窒化物半導体層3および第1のp型窒化物半導体層4を透過した光を台形の断面を有する第2のp型窒化物半導体層9が複数配列されてなる凹凸11で多重反射させることができる。これにより、導電層5側に進行する光の少なくとも一部を第1のp型窒化物半導体層4側に戻してi型窒化物半導体層3内に入射させることができ、i型窒化物半導体層3内での光路長を増加させることができるため、i型窒化物半導体層3での光吸収により発生するフォトキャリアを従来よりも増加させることができる。その結果、高い光電変換効率等の優れた特性を有する光電変換素子を得ることができる。
 図2に、実施の形態1の光電変換素子の凹凸11近傍の模式的な拡大断面図を示す。ここで、断面形状が台形状の凸部である第2のp型窒化物半導体層9の上底の長さW1は、0.3μm以上0.7μm以下であることが好ましい。第2のp型窒化物半導体層9の上底の長さW1が0.3μm以上0.7μm以下である場合には、半導体積層体12から導電層5側に進行する光の凹凸11における多重反射を促進して半導体積層体12内における光閉じ込めをさらに有効にすることができるため、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 第2のp型窒化物半導体層9の下底の長さW2は、1μm以上1.7μm以下であることが好ましい。第2のp型窒化物半導体層9の下底の長さW2が1μm以上1.7μm以下である場合には、半導体積層体12から導電層5側に進行する光の凹凸11における多重反射を促進して半導体積層体12内における光閉じ込めをさらに有効にすることができるため、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 第2のp型窒化物半導体層9の高さHは、1μm以上1.2μm以下であることが好ましい。第2のp型窒化物半導体層9の高さHが1μm以上1.2μm以下である場合には、半導体積層体12から導電層5側に進行する光の凹凸11における多重反射を促進して半導体積層体12内における光閉じ込めをさらに有効にすることができるため、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 第2のp型窒化物半導体層9の上底の長さW1は、第2のp型窒化物半導体層9の下底の長さW2よりも小さいことが好ましい。この場合にも、半導体積層体12側から導電層5側に進行する光の凹凸11における多重反射を促進してi型窒化物半導体層3内における光閉じ込めをさらに有効にすることができるため、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 凹凸11の形状および大きさは、光電変換素子内の電界強度や漏れ電流成分と相関があるが、以下の(a)~(d)のすべての条件を満たす第2のp型窒化物半導体層9を有する凹凸11は、半導体積層体12側から導電層5側に進行する光の多重反射に適している。特に、第2のp型窒化物半導体層9が(d)の条件を満たすことにより、第2のp型窒化物半導体層9の表面を平坦にすることができる傾向にあることから、第2のp型窒化物半導体層9の表面の平坦性により、光電変換素子の開放電圧の低下および曲線因子(F.F)の低下を抑制して光電変換効率を高くすることができる傾向にある。
(a)第2のp型窒化物半導体層9の上底の長さW1が、0.3μm以上0.7μm以下であること。
(b)第2のp型窒化物半導体層9の下底の長さW2が、1μm以上1.7μm以下であること。
(c)第2のp型窒化物半導体層9の高さHが、1μm以上1.2μm以下であること。
(d)第2のp型窒化物半導体層9の上底の長さW1が、第2のp型窒化物半導体層9の下底の長さW2よりも小さいこと。
 また、第2のp型窒化物半導体層9を含む凹凸11は、半導体積層体12と導電層5とが接する面積を増加させ、これらの層の界面における密着性を向上させることができることから、F.Fの低下を抑制することができる。この観点からも、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 なお、第2のp型窒化物半導体層9の上底の長さW1、下底の長さW2および高さHの測定方法はそれぞれ特に限定されないが、たとえば、原子間力顕微鏡(AFM:Atomic Force Microscopy)を用いた測定、または接触式段差測定器を用いた測定などを用いることができる。
 導電層5の第2のp型窒化物半導体層9側と反対側の表面5aの表面粗さRMS(平均二乗誤差)は、0.003μm以上0.005μm以下であることが好ましい。導電層5の表面5aの表面粗さRMSが0.003μm以上0.005μm以下である場合には、導電層5に入射する入射光の表面5aにおける散乱を抑制して導電層5内に入射する入射光量を増大させることができるため、i型窒化物半導体層3内で発生するフォトキャリア量を多くすることできる。これにより、短絡電流量を増大させることができるため、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 なお、導電層5の表面5aの表面粗さRMSは、表面5aにおける1辺40μmの任意の正方形の領域を原子間力顕微鏡を用いて測定することにより算出することができる。
 導電層5の厚さtは、0.25μm以上0.5μm以下であることが好ましい。導電層5の厚さtが0.25μm以上0.5μm以下である場合には、導電層5が第2のp型窒化物半導体層9の凹凸11側の表面と良好なオーミック接触を形成することができるため、F.F(フィルファクタ)の低下を抑制して、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。また、導電層5の厚さtが0.25μm以上0.5μm以下である場合には、0.4μm以上0.5μm以下の短波長領域の光に対する感度の増大と、上述の凹凸11における多重反射による光閉じ込め効果の増大との相乗効果により、i型窒化物半導体層3内で発生するフォトキャリア量を多くすることできる。これにより、短絡電流量を増大させることができるため、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 導電層5は、第2のp型窒化物半導体層9よりも小さい屈折率を有することが好ましい。導電層5の屈折率が第2のp型窒化物半導体層9の屈折率よりも小さい場合には、導電層5から入射する光の導電層5と第2のp型窒化物半導体層9との界面における反射量を低減して、第2のp型窒化物半導体層9内への入射量を増大させることができるため、i型窒化物半導体層3内で発生するフォトキャリア量を多くすることできる。これにより、短絡電流量を増大させることができるため、光電変換素子の光電変換効率等の特性をより高くすることができる傾向にある。
 第2のp型窒化物半導体層9の屈折率がたとえば2.3である場合には、導電層5としては屈折率が2.3よりも小さい材料を用いることが好ましい。なお、本明細書において、屈折率は、絶対屈折率のことを意味する。
 以下、図3~図9の模式的断面図を参照して、実施の形態1の光電変換素子の製造方法の一例について説明する。
 まず、図3に示すように、基板1を用意する。基板1としては、AlxInyGazN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z≠0)、GaP、GaAs、NdGaO3、LiGaO2、Al23、MgAl24、ZnO、Si、SiC、SiGe、またはZrB2の式で表わされる材料を少なくとも表面に有する基板を用いることが好ましい。この場合には、基板1の表面上に、n型窒化物半導体層2との格子不整合を緩和するためのバッファ層を形成した後に、n型窒化物半導体層2、i型窒化物半導体層3、第1のp型窒化物半導体層4および第2のp型窒化物半導体層9を気相成長させることによって結晶欠陥の少ない良好な結晶性を有する半導体積層体12を形成することができる。
 次に、図4に示すように、基板1の表面上にn型窒化物半導体層2を積層する。n型窒化物半導体層2は、たとえば、MOCVD(Metal Organic Chemical Vapor Deposition)法などによって積層することができる。n型窒化物半導体層2は、たとえば0.1μm以上4μm以下の厚さで積層することができる。
 n型窒化物半導体層2としては、たとえば、Alx1Iny1Gaz1N(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1≠0)の式で表わされる窒化物半導体にn型ドーパントをドープさせたものなどを用いることができる。n型ドーパントとしては、たとえば、シリコンなどを用いることができる。
 次に、図5に示すように、n型窒化物半導体層2の表面上にi型窒化物半導体層3を積層する。i型窒化物半導体層3は、たとえば、MOCVD法などによって積層することができる。i型窒化物半導体層3は、たとえば0.001μm以上0.3μm以下の厚さで積層することができる。
 i型窒化物半導体層3としては、たとえば、SQW(Single Quantum Well)構造またはMQW(Multiple Quantum Well)構造を有するものを用いることができる。MQW構造を有するi型窒化物半導体層3としては、たとえば、Alx2Iny2Gaz2N(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2≠0)の式で表わされる窒化物半導体からなる井戸層と、Alx3Iny3Gaz3N(0≦x3≦1、0≦y3≦1、0≦z3≦1、x3+y3+z3≠0)の式で表わされる窒化物半導体からなる障壁層と、が交互に積層されてなるものを用いることができる。なお、井戸層および/または障壁層には、n型ドーパントおよび/またはp型ドーパントがドープされていてもよい。また、井戸層の厚さはたとえば0.001μm以上0.02μm以下とすることができ、障壁層の厚さはたとえば0.001μm以上0.01μm以下とすることができる。
 次に、図6に示すように、i型窒化物半導体層3の表面上に第1のp型窒化物半導体層4を積層する。第1のp型窒化物半導体層4は、たとえば、MOCVD法などによって積層することができる。第1のp型窒化物半導体層4は、たとえば0.05μm以上4μm以下の厚さで積層することができる。
 第1のp型窒化物半導体層4としては、たとえば、Alx4Iny4Gaz4N(0≦x4≦1、0≦y4≦1、0≦z4≦1、x4+y4+z4≠0)の式で表わされる窒化物半導体にp型ドーパントをドープさせたものなどを用いることができる。なお、p型ドーパントとしては、たとえば、マグネシウムなどを用いることができる。
 次に、図7に示すように、第1のp型窒化物半導体層4の表面上に断面形状が台形の第2のp型窒化物半導体層9を成長させて凹凸11を形成する。
 ここで、凹凸11は、たとえば、第1のp型窒化物半導体層4を気相成長させた後に、第1のp型窒化物半導体層4の成長条件(第1の成長条件)よりもIII族原料ガスの供給量のみを低減した第2の成長条件で第2のp型窒化物半導体層9を気相成長させることによって形成することができる。
 第2のp型窒化物半導体層9の気相成長用の成長ガスとして、III族原料ガスにトリメチルガリウム(TMG)を用い、V族原料ガスにアンモニア(NH3)を用いた場合には、第2の成長条件においては、TMGの供給量Mtに対するNH3の供給量Maの比であるMa/Mtを40000以上100000以下にするとともに、TMGの結晶成長装置内への供給量は0.005slm以下であり、NH3の結晶成長装置内への供給量は10slm以下であり、キャリアガスの結晶成長装置内への供給量は20slm以下であって、TMGとNH3とキャリアガスとの混合ガスを1m/秒以上1.1m/秒以下の流速で結晶成長装置内に供給することが好ましい。この場合には、上記の(a)~(d)のすべての条件を満たす第2のp型窒化物半導体層9を有する凹凸11を再現性良く形成することができる傾向にある。なお、TMGの供給量MtおよびNH3の供給量Maは、それぞれ、結晶成長装置内に供給される単位時間当たりのモル数を意味しており、それぞれの供給量の単位は、たとえば、mol/minで表わされる。また、キャリアガスとしては、たとえば、水素、窒素、または水素と窒素との混合ガスなどを用いることができる。また、slmは、1atm、0℃における1分間当たりの流量をリットルで表示した単位である。なお、第2のp型窒化物半導体層9を含む凹凸11の形成方法は上記の方法に限定されないことは言うまでもない。
 第2のp型窒化物半導体層9としては、たとえば、Alx5Iny5Gaz5N(0≦x5≦1、0≦y5≦1、0≦z5≦1、x5+y5+z5≠0)の式で表わされる窒化物半導体にp型ドーパントをドープさせたものなどを用いることができる。なお、p型ドーパントとしては、たとえば、マグネシウムなどを用いることができる。
 次に、図8に示すように、第2のp型窒化物半導体層9の表面上に導電層5を形成する。導電層5の形成方法は特に限定されないが、たとえば、マグネトロンスパッタ法などのスパッタ法、真空蒸着法、またはイオンプレーティング法などの方法により形成することができる。
 導電層5の形成方法としては、なかでも、マグネトロンスパッタ法を用いることが好ましい。マグネトロンスパッタ法を用いて導電層5を形成した場合には、導電層5の第2のp型窒化物半導体層9側とは反対側の表面5aをより平坦にすることができる傾向にある。
 導電層5としては、導電性を有する材料を用いることができ、導電層5側から光を入射させる場合には入射光を透過させることができる材料を用いることが好ましい。なかでも、導電層5としては、Zn、In、SnおよびMgからなる群から選択される少なくとも1種を含む単層、または単層を複数積層した複数層を用いることが好ましい。この場合には、導電層5を透過する透過光量を増大することができる傾向にある。
 なお、Znを含む単層としては、たとえば、ZnOにAlがドープされたAZO、およびZnOにGaがドープされたGZOなどが挙げられる。また、Inを含む単層およびSnを含む単層としては、たとえば、InとSnの複合酸化物であるITO(Indium Tin Oxide)などが挙げられる。また、Mgを含む単層としては、たとえば、炭素(C)がドープされたMgOH2などが挙げられる。たとえば、AlがドープされたZnOターゲットを用いて、酸素とアルゴンとの分圧(O2/Ar)が3%~10%の条件でマグネトロンスパッタ法によって形成されたAZOは、導電率および光の透過率に優れた導電層5とすることができる。
 次に、図9に示すように、n型窒化物半導体層2の表面が露出するまで、n型窒化物半導体層2、i型窒化物半導体層3、第1のp型窒化物半導体層4、第2のp型窒化物半導体層9および導電層5のそれぞれの一部をエッチングにより除去する。
 その後、図1に示すように、n型窒化物半導体層2の露出した表面および導電層5の表面にそれぞれnパッド電極6およびpパッド電極7を形成することによって実施の形態1の光電変換素子を製造することができる。
 以上のような実施の形態1の光電変換素子の製造方法によれば、真空チャンバなどの閉鎖系の結晶成長装置から基板1を取り出すことなく、第1のp型窒化物半導体層4および第2のp型窒化物半導体層9を連続して形成することが可能であるため、光電変換素子のタクトタイムおよびコスト等を低減することが可能となる。
 また、上記の実施の形態1の光電変換素子の製造方法においては、結晶成長装置から基板1を取り出すことなく第1のp型窒化物半導体層4の表面に凹凸11を形成することができるため、結晶成長装置から取り出して外気環境下に置くことによる第1のp型窒化物半導体層4の表面の汚染や基板1の温度低下による反りを抑えることができる。そのため、光電変換素子のF.Fの低下を抑制することができる。また、上記の実施の形態1の光電変換素子の製造方法は、製造時間の短縮にもなるため、生産技術としても優れている。
 なお、上記においては、半導体積層体12がpin構造体を1つ含む場合について説明したが、半導体積層体12はpin構造体を2つ以上含んでいてもよい。
 また、上記の各層の間には他の層が含まれていてもよい。たとえば、基板1側から光を入射させる場合には、導電層5の凹凸11側とは反対側の表面に導電層5からの光を反射するための金属層を備えていてもよい。また、たとえば、基板1とn型窒化物半導体層2との間に基板1とn型窒化物半導体層2との格子不整合を緩和するためのバッファ層、n型窒化物半導体層2とi型窒化物半導体層3との間および/またはi型窒化物半導体層3と第1のp型窒化物半導体層4との間および/または第1のp型窒化物半導体層4と第2のp型窒化物半導体層9との間に半導体層間の格子不整合を緩和するためのバッファ層、ならびに第2のp型窒化物半導体層9と導電層5との間のオーミック接触を得るためのコンタクト層などを含んでいてもよい。n型窒化物半導体層2とi型窒化物半導体層3との間のバッファ層としては、たとえば、厚さ2nm未満のInxGa1-xN(x<0.1)からなる井戸層と、厚さ2nm未満のGaNからなる障壁層とが交互に20層ずつ積層されたバッファ層などを用いることができる。なお、バッファ層およびコンタクト層は窒化物半導体以外の半導体からなっていてもよい。
 また、上記においては、n型とp型の導電型を入れ替えてもよいことは言うまでもない。
 さらに、1つの光電変換素子のpパッド電極7と他の光電変換素子のnパッド電極6とを電気的に接続して光電変換モジュールを形成してもよい。また、導電層5の表面上にpパッド電極7を形成しない場合には、1つの光電変換素子の導電層5と他の光電変換素子のnパッド電極6とを電気的に接続して光電変換モジュールを形成してもよい。
 <実施の形態2>
 図10に、本発明の光電変換素子の他の一例である実施の形態2の光電変換素子の模式的な断面図を示す。実施の形態2の光電変換素子は、n型窒化物半導体層2とi型窒化物半導体層3との間にバッファ層10が形成されているとともに、p型窒化物半導体層4の導電層5側の表面に基板1側からの入射光が多重反射される凹凸11が形成されていることを特徴としている。
 実施の形態2の光電変換素子において、基板1側から光が入射された場合には、基板1側から入射してi型窒化物半導体層3およびp型窒化物半導体層4を透過した光を凹凸11で多重反射させることができる。これにより、導電層5側に進行する光の少なくとも一部を第1のp型窒化物半導体層4側に戻してi型窒化物半導体層3内に入射させることができ、i型窒化物半導体層3内での光路長を増加させることができるため、i型窒化物半導体層3での光吸収により発生するフォトキャリアを従来よりも増加させることができる。その結果、高い光電変換効率等の優れた特性を有する光電変換素子を得ることができる。
 ここで、p型窒化物半導体層4の凹凸11を有する表面の表面粗さRMSが0.01μm以上0.02μm以下であることが好ましい。この場合には、p型窒化物半導体層4の凹凸11が光閉じ込め効果を有するのに効果的な凹凸となるため、光電変換素子の凹凸形状として特に好ましくなる傾向にある。
 なお、p型窒化物半導体層4の凹凸11を有する表面の表面粗さRMSは、p型窒化物半導体層4の当該表面における1辺40μmの任意の正方形の領域を原子間力顕微鏡を用いて測定することにより算出することができる。
 また、p型窒化物半導体層4の凹凸11を有する表面の高低差(凹凸11の最高点と最低点との間の高さ方向の差)は、0.5μm以上3μm以下であることが好ましく、1μm以上3μm以下であることがより好ましい。上記の高低差が0.5μm以上3μm以下である場合には、0.5μm以下の短波長領域の光に対する光閉じ込めに有効であるとともに、p型窒化物半導体層4の段差部分の被膜状態が悪くなることに起因する光電変換素子の特性の低下を抑制することができる。また、上記の高低差が1μm以上3μm以下である場合には、p型窒化物半導体層4の表面のステップカバレッジに優れることから、光電変換素子のF.Fの低下を抑制することができる。また、この場合には、凹凸11の凹部を起点としたp型窒化物半導体層4の欠陥の発生も抑制することができるため、光電変換素子の開放電圧の低下が起こりにくくなる傾向にある。
 上記の高低差の測定手法は、特に限定されるものではないが、たとえば、原子間力顕微鏡を用いた測定または接触式段差測定器を用いた測定などを挙げることができる。
 以下、図11~図19の模式的断面図を参照して、実施の形態2の光電変換素子の製造方法の一例について説明する。
 まず、図11に示すように、基板1を用意する。次に、図12に示すように、基板1上にn型窒化物半導体層2を積層する。ここで、n型窒化物半導体層2は、MOCVD装置などの結晶成長装置内に、少なくともIII族原料ガスとV族原料ガスとを供給することによって基板1上に気相成長させて積層することができる。
 図12に示す例においては、まず、第1の成長条件として、III族原料ガスの供給量に対するV族原料ガスの供給量の比(V族原料ガスの供給量/III族原料ガスの供給量)(以下、「V/IIIガス供給量比」という。)を2000以上2100以下とした条件で、基板1上に第1のn型窒化物半導体層2aを気相成長させる。V族原料ガスとしては、たとえばNH3を用いることができ、III族原料ガスとしては、たとえばTMGを用いることができる。
 次に、第2の成長条件として、V/IIIガス供給量比を3830以上4230以下とした条件で、第1のn型窒化物半導体層2a上に第2のn型窒化物半導体層2bを気相成長させる。
 このように、V/IIIガス供給量比を2000以上2100以下とした第1の成長条件で基板1上に第1のn型窒化物半導体層2aを気相成長させ、その後、V/IIIガス供給量比を3830以上4230以下とした第2の成長条件で第1のn型窒化物半導体層2a上に第2のn型窒化物半導体層2bを気相成長させてn型窒化物半導体層2を積層することによって、半導体積層体12から導電層5側に進行する光の多重反射を促進して半導体積層体12内における光閉じ込めを効果的に行なうことができる凹凸11を容易に形成することができる傾向にある。
 n型窒化物半導体層2の気相成長中にV/IIIガス供給量比を変更することにより、n型窒化物半導体層2の表面が平面が段差を有して重なる構造となって、n型窒化物半導体層2上に積層されるp型窒化物半導体層4の表面が荒れることなく凹凸11が形成される効果があると考えられる。p型窒化物半導体層4の表面がこのような凹凸11を有する場合には、p型窒化物半導体層4と導電層5の密着性を向上して漏れ電流を抑止することができる。そのため、光電変換素子のF.Fの低下を抑制し、光電変換素子のp型窒化物半導体層4の表面の凹凸形状として特に好ましくなるものと考えられる。
 第1のn型窒化物半導体層2aと第2のn型窒化物半導体層2bとの界面2cが、n型窒化物半導体層2の総厚Tの20%以上80%以下の範囲内に位置することが好ましい。この場合には、p型窒化物半導体層4の凹凸11が光閉じ込め効果を有するのに効果的な凹凸となるため、高い光電変換効率等の優れた特性を有する光電変換素子を得ることができる傾向にある。
 なお、図12に示す例においては、第1の成長条件として、V/IIIガス供給量比を2100にして第1のn型窒化物半導体層2aを1.2μmの厚さに気相成長させた後、III族原料ガスの供給量を減少させ、V/IIIガス供給量比を4200にして第2のn型窒化物半導体層2bを0.3μmの厚さに気相成長させている。したがって、この例においては、n型窒化物半導体層2の総厚Tの80%の領域を、V/IIIガス供給量比を2100にして成長させ、残る20%の領域を、V/IIIガス供給量比を4200にして気相成長させている。
 なお、V/IIIガス供給量比におけるV族原料ガスの供給量およびIII族原料ガスの供給量は、それぞれ、結晶成長装置内に供給される単位時間当たりのモル数を意味しており、それぞれの供給量の単位は、たとえば、mol/minで表わされる。
 図13に、基板1上にn型窒化物半導体層2を積層する工程の他の一例を図解する模式的な断面図を示す。図13に示す例においては、第1の成長条件として、V/IIIガス供給量比を2100にして第1のn型窒化物半導体層2aを0.75μmの厚さに気相成長させた後、III族原料ガスの供給量を減少させ、V/IIIガス供給量比を4200にして第2のn型窒化物半導体層2bを0.75μmの厚さに気相成長させている。したがって、この例においては、n型窒化物半導体層2の総厚Tの50%の領域を、V/IIIガス供給量比を2100にして成長させ、残る50%の領域を、V/IIIガス供給量比を4200にして気相成長させている。
 図14に、基板1上にn型窒化物半導体層2を積層する工程の他の一例を図解する模式的な断面図を示す。図14に示す例においては、第1の成長条件として、V/IIIガス供給量比を2100にして第1のn型窒化物半導体層2aを0.3μmの厚さに気相成長させた後、III族原料ガスの供給量を減少させ、V/IIIガス供給量比を4200にして第2のn型窒化物半導体層2bを1.2μmの厚さに気相成長させている。したがって、この例においては、n型窒化物半導体層2の総厚Tの20%の領域を、V/IIIガス供給量比を2100にして成長させ、残る80%の領域を、V/IIIガス供給量比を4200にして気相成長させている。
 次に、図15に示すように、n型窒化物半導体層2上にバッファ層10を積層する。バッファ層10は、たとえばMOCVD法などによってn型窒化物半導体層2上に気相成長する。バッファ層10は、n型窒化物半導体層2とi型窒化物半導体層3との間の格子不接合を緩和するために設けられる。バッファ層10としては、たとえば、厚さ2nm未満のInxGa1-xN(x<0.1)からなる井戸層と、厚さ2nm未満のGaNからなる障壁層とが交互に20層ずつ積層されたバッファ層などを用いることができる。
 次に、図16に示すように、バッファ層10の表面上にi型窒化物半導体層3を積層する。その後、図17に示すように、i型窒化物半導体層3の表面上に、凹凸11を表面に有するp型窒化物半導体層4を積層する。i型窒化物半導体層3およびp型窒化物半導体層4は、それぞれ、たとえばMOCVD法などによって気相成長させることにより形成することができる。
 次に、図18に示すように、p型窒化物半導体層4の表面上に導電層5を形成する。その後、図19に示すように、導電層5、p型窒化物半導体層4、i型窒化物半導体層3およびバッファ層10のそれぞれの一部をエッチングにより除去することによってn型窒化物半導体層2の表面を露出させる。
 その後、図10に示すように、n型窒化物半導体層2の露出した表面および導電層5の表面にそれぞれnパッド電極6およびpパッド電極7を形成することによって実施の形態2の光電変換素子を製造することができる。
 以上のような実施の形態2の光電変換素子の製造方法によれば、真空チャンバなどの閉鎖系の結晶成長装置内から基板1を取り出すことなく、p型窒化物半導体層4の表面の凹凸11を形成することが可能となる。そのため、別の加工工程を設けてp型窒化物半導体層4の表面に凹凸11を形成する必要がないことから、p型窒化物半導体層4の表面の汚染および加工過程でのダメージの発生を防止することができる。したがって、光電変換素子のF.Fの低下を抑制することができる。また、上記の実施の形態2の光電変換素子の製造方法は、光電変換素子の製造時間の短縮にもなるため、生産技術としても優れている。
 本実施の形態における上記以外の説明は、実施の形態1と同様であるため、その説明については省略する。
 <実施例1>
 まず、サファイア基板のc面上にノンドープGaNからなるバッファ層が形成されたテンプレート基板を用意した。そして、MOCVD装置内にテンプレート基板を設置し、テンプレート基板を1100℃~1120℃まで加熱し、その状態でテンプレート基板の表面上に、厚さ1.5μmのn型GaN層からなるn型窒化物半導体層をMOCVD法により気相成長させた。ここで、n型窒化物半導体層は、Siが2×1018個/cm3の濃度でドープされたn型GaN層であった。
 次に、テンプレート基板の温度を750℃~800℃まで低下させた後、n型窒化物半導体層の表面上に、厚さ3.5nmのIn0.2Ga0.8Nからなる井戸層と、厚さ6nmのGaNからなる障壁層とを交互に6層ずつ積層したMQW構造を有するi型窒化物半導体層をMOCVD法により気相成長させた。
 次に、テンプレート基板の温度を1000℃~1070℃まで上昇させた後、i型窒化物半導体層の表面上に、厚さ0.05μmのp型GaN層からなる第1のp型窒化物半導体層をMOCVD法により気相成長させた。ここで、第1のp型窒化物半導体層の気相成長条件は、III族原料ガスとして供給量Mtが125(μmol/min)のTMGを用い、V族原料ガスとして供給量Maが270(mmol/min)のNH3を用いて、p型不純物ガスとして供給量が0.26(μmol/min)の供給量のCP2Mg(ビスシクロペンタジエニルマグネシウム)を用いた。そして、これらのガスをそれぞれMOCVD装置の製膜室内に1.1m/秒以下の流速で供給する条件((Ma/Mt)=280000)で供給した。これにより、Mgが4×1019個/cm3の濃度でドープされたp型GaN層からなる第1のp型窒化物半導体層を気相成長させた。
 次に、第1のp型窒化物半導体層の形成後のテンプレート基板の温度を保持した状態で、TMGの供給量Mtのみを125(μmol/min)から6(μmol/min)まで減少させた((Ma/Mt)=45000)。これにより、断面形状が台形の凸部であるp型GaNからなる第2のp型窒化物半導体層を第1のp型窒化物半導体層の表面上に成長させて凹凸を形成した。
 なお、第2のp型窒化物半導体層の成長時のTMGの製膜室内への供給量は0.005slm以下であり、NH3の製膜室内への供給量は10slm以下であり、キャリアガスの製膜室内への供給量は20slm以下であって、TMGとNH3とキャリアガスとの混合ガスを1m/秒以上1.1m/秒以下の流速で製膜室内に供給した。
 図20に、第1のp型窒化物半導体層の表面上に成長した第2のp型窒化物半導体層の断面のSEM写真を示す。断面形状が台形の凸部であるp型GaNからなる第2のp型窒化物半導体層の表面の凹凸は{11-22}ファセット面を有していた。
 また、第2のp型窒化物半導体層の凸部の断面形状である台形の上底の長さは0.3~0.7μmであり、下底の長さは1μm~1.7μmであって、高さは1μm~1.2μmであった。また、第2のp型窒化物半導体層の凸部の断面形状である台形の上底の長さは下底の長さよりも短かった。
 次に、第2のp型窒化物半導体層の成長後のテンプレート基板をアニール炉内に設置して、第1のp型窒化物半導体層および第2のp型窒化物半導体層の熱処理を行なった。熱処理は、800℃の窒素雰囲気中に第2のp型窒化物半導体層の成長後のテンプレート基板を5分間保持することにより行なった。
 次に、熱処理後のテンプレート基板をアニール炉から取り出し、テンプレート基板およびAl濃度が2原子%でドープされたZnOターゲットをマグネトロンスパッタ装置内に設置した。そして、テンプレート基板の温度を180℃まで上昇させた後、マグネトロンスパッタ装置内に酸素とアルゴンとの分圧(O2/Ar)が3.8%となるように酸素とアルゴンとを導入した。そして、上記のターゲットを用いたマグネトロンスパッタ法によって、第2のp型窒化物半導体層の表面上に厚さ0.32μmのAZOからなる導電層を形成した。なお、AZOからなる導電層の屈折率は2.0であり、第2のp型窒化物半導体層の屈折率は2.3であるため、AZOからなる導電層は、第2のp型窒化物半導体層よりも小さい屈折率を有していた。
 次に、テンプレート基板をマグネトロンスパッタ装置から取り出し、アニール炉内に設置して、導電層の結晶性、導電層と第2のp型窒化物半導体層との密着性、および導電層と第2のp型窒化物半導体層とのコンタクト性の向上を図ることを目的として、導電層の熱処理を行なった。熱処理は、600℃の酸素分圧2%の真空雰囲気中に導電層形成後のテンプレート基板を10分間保持することにより行なった。
 次に、熱処理後のテンプレート基板をアニール炉から取り出し、導電層の表面上に所定の形状のマスクを設置してエッチング装置内に設置した。エッチング装置において、マスクの上方から、導電層、第2のp型窒化物半導体層、第1のp型窒化物半導体層、i型窒化物半導体層およびn型窒化物半導体層のそれぞれの一部をエッチングしてn型窒化物半導体層の表面を露出させた。
 次に、エッチング後のテンプレート基板をエッチング装置から取り出し、導電層の表面およびn型窒化物半導体層の露出した表面にそれぞれ所定の形状の開口部を有するレジストマスクを形成した後に真空蒸着装置内に設置した。そして、レジストマスクが形成された導電層およびn型窒化物半導体層のそれぞれの表面上に、Ni膜、Pt膜およびAu膜をこの順序で堆積した後にリフトオフによりレジストマスクを除去した。これにより、導電層およびn型窒化物半導体層のそれぞれの表面上に、Ni膜、Pt膜およびAu膜がこの順序で積層されたpパッド電極およびnパッド電極が形成された。
 その後、pパッド電極およびnパッド電極の形成後のテンプレート基板を真空蒸着装置から取り出し、ランプアニール装置内に設置した。そして、ランプアニール装置でpパッド電極およびnパッド電極を400℃~600℃で熱処理を行ない、テンプレート基板を所定の箇所で分割することによって、実施例1の光電変換素子を得た。
 実施例1の光電変換素子の導電層の第2のp型窒化物半導体層側と反対側の表面の表面粗さRMSを測定したところ、0.004μmであった。なお、表面粗さRMSは、実施例1の光電変換素子の導電層の第2のp型窒化物半導体層側と反対側の表面における1辺40μmの任意の正方形の領域を原子間力顕微鏡を用いて測定することにより算出した。
 実施例1の光電変換素子のpパッド電極およびnパッド電極をそれぞれ、金線でリードフレームに電気的に接続し、リードフレームの正極と負極にそれぞれプローブを接触して電流および電圧測定用の回路を形成した。
 そして、ソーラシミュレータを用いてAM1.5の擬似太陽光を100mW/cm2のエネルギ密度で25℃のもとで導電層側から照射することによって実施例1の光電変換素子のI-V曲線を求め、そのI-V曲線から実施例1の光電変換素子の開放電圧(Voc)、短絡電流密度(Jsc)、曲線因子(F.F)および光電変換効率(Eff)を算出した。
 その結果、実施例1の光電変換素子のVocは1.84Vであり、Jscは1.36mA/cm2であり、F.Fは0.52であり、Effは1.3%であった。
 <比較例1>
 第1のp型窒化物半導体層の表面上に第2のp型窒化物半導体層を成長させなかったこと以外は実施例1と同様にして比較例1の光電変換素子を作製した。
 そして、実施例1と同様にして、比較例1の光電変換素子のVoc、Jsc、F.FおよびEffを算出した。
 その結果、比較例1の光電変換素子のVocは1.80Vであり、Jscは0.99mA/cm2であり、F.Fは0.47であり、Effは0.84%であった。
 <分析>
 上記のとおり、実施例1の光電変換素子は、比較例1の光電変換素子と比べて、Voc、Jsc、F.FおよびEffのすべての点で優れていた。これは、実施例1の光電変換素子は、第2のp型窒化物半導体層側から導電層側に進行する光を第2のp型窒化物半導体層の凹凸表面で多重反射させることによって、i型窒化物半導体層内により多くの光を閉じ込めることができたことが大きな要因の1つであると考えられる。
 <実施例2>
 まず、サファイア基板のc面上にノンドープGaNからなるバッファ層が形成されたテンプレート基板を用意した。そして、MOCVD装置内にテンプレート基板を設置し、テンプレート基板を1100℃~1120℃まで加熱し、その状態でテンプレート基板の表面上に、n型GaN層からなる第1のn型窒化物半導体層(Siドープ濃度:2×1018個/cm3)をMOCVD法により気相成長させた。
 ここで、III族原料ガスとして270mmol(ミリモル)のNH3を供給するとともに、V族原料ガスとして125μmol(マイクロモル)のTMGを供給し、さらにSiH4からなるドーピングガスと、キャリアガスと、を供給して、厚さ1.2μmの第1のn型窒化物半導体層を成長させた。第1のn型窒化物半導体層の成長時におけるV/IIIガス供給量比は2100であった。
 次に、TMGの供給量を62μmolまで減少させることによりV/IIIガス供給量比を4200にして、第1のn型窒化物半導体層の表面上に厚さ0.3μmのn型GaN層からなる第2のn型窒化物半導体層(Siドープ濃度:2×1018個/cm3)を成長させて、第1のn型窒化物半導体層と第2のn型窒化物半導体層との積層体からなるn型窒化物半導体層を成長させた。
 これにより、第1のn型窒化物半導体層と第2のn型窒化物半導体層との界面が、第1のn型窒化物半導体層と第2のn型窒化物半導体層との積層体の総厚の80%に位置するn型窒化物半導体層を成長させた。
 次に、テンプレート基板の温度を750℃~800℃まで降温させ、そのテンプレート基板の温度状態でn型窒化物半導体層の表面上に、厚さ3.5nmのIn0.11Ga0.79Nからなる井戸層と、厚さ6nmのGaNからなる障壁層と、が交互に6層積層されたMQW構造を有するi型窒化物半導体層を成長させた。
 次に、テンプレート基板の温度を1000℃~1070℃まで昇温し、i型窒化物半導体層の表面上に、Mgが4×1019個/cm3でドープされたp型GaNからなる厚さ0.05μmのp型窒化物半導体層を成長させた。
 次に、p型窒化物半導体層の成長後のテンプレート基板をアニール炉内に設置して、p型窒化物半導体層の熱処理を行なった。熱処理は、800℃の窒素雰囲気中にp型窒化物半導体層の成長後のテンプレート基板を5分間保持することにより行なった。
 次に、熱処理後のテンプレート基板をアニール炉から取り出し、テンプレート基板およびAl濃度が2原子%でドープされたZnOターゲットをマグネトロンスパッタ装置内に設置した。そして、テンプレート基板の温度を180℃まで上昇させた後、マグネトロンスパッタ装置内に酸素とアルゴンとの分圧(O2/Ar)が3.8%となるように酸素とアルゴンとを導入した。そして、上記のターゲットを用いたマグネトロンスパッタ法によって、p型窒化物半導体層の表面上に厚さ0.32μmのAZOからなる導電層を形成した。なお、AZOからなる導電層の屈折率は2.0であり、p型窒化物半導体層の屈折率は2.3であるため、AZOからなる導電層は、p型窒化物半導体層よりも小さい屈折率を有していた。
 次に、テンプレート基板をマグネトロンスパッタ装置から取り出し、アニール炉内に設置して、導電層の結晶性、導電層とp型窒化物半導体層との密着性、および導電層とp型窒化物半導体層とのコンタクト性の向上を図ることを目的として、導電層の熱処理を行なった。熱処理は、600℃の酸素分圧2%の真空雰囲気中に導電層形成後のテンプレート基板を10分間保持することにより行なった。
 次に、熱処理後のテンプレート基板をアニール炉から取り出し、導電層の表面上に所定の形状のマスクを設置してエッチング装置内に設置した。エッチング装置において、マスクの上方から、導電層、p型窒化物半導体層、i型窒化物半導体層およびn型窒化物半導体層のそれぞれの一部をエッチングしてn型窒化物半導体層の表面を露出させた。
 次に、エッチング後のテンプレート基板をエッチング装置から取り出し、導電層の表面およびn型窒化物半導体層の露出した表面にそれぞれ所定の形状の開口部を有するレジストマスクを形成した後に真空蒸着装置内に設置した。そして、レジストマスクが形成された導電層およびn型窒化物半導体層のそれぞれの表面上に、Ni膜、Pt膜およびAu膜をこの順序で堆積した後にリフトオフによりレジストマスクを除去した。これにより、導電層およびn型窒化物半導体層のそれぞれの表面上に、Ni膜、Pt膜およびAu膜がこの順序で積層されたpパッド電極およびnパッド電極が形成された。
 その後、pパッド電極およびnパッド電極の形成後のテンプレート基板を真空蒸着装置から取り出し、ランプアニール装置内に設置した。そして、ランプアニール装置でpパッド電極およびnパッド電極を400℃~600℃で熱処理を行ない、テンプレート基板を所定の箇所で分割することによって、実施例2の光電変換素子を得た。
 <実施例3>
 V/IIIガス供給量比を2100にして厚さ0.75μmのn型GaN層(Siドープ濃度:2×1018個/cm3)からなる第1のn型窒化物半導体層を気相成長させた後、V/IIIガス供給量比を4200にして厚さ0.75μmのn型GaN層(Siドープ濃度:2×1018個/cm3)からなる第2のn型窒化物半導体層を気相成長させて、第1のn型窒化物半導体層と第2のn型窒化物半導体層との界面が、第1のn型窒化物半導体層と第2のn型窒化物半導体層との積層体の総厚の50%に位置するn型窒化物半導体層を成長させたこと以外は上記と同様にして実施例3の光電変換素子を得た。
 <実施例4>
 V/IIIガス供給量比を2100にして厚さ0.3μmのn型GaN層(Siドープ濃度:2×1018個/cm3)からなる第1のn型窒化物半導体層を気相成長させた後、V/IIIガス供給量比を4200にして厚さ1.2μmのn型GaN層(Siドープ濃度:2×1018個/cm3)からなる第2のn型窒化物半導体層を気相成長させて、第1のn型窒化物半導体層と第2のn型窒化物半導体層との界面が、第1のn型窒化物半導体層と第2のn型窒化物半導体層との積層体の総厚の20%に位置するn型窒化物半導体層を成長させたこと以外は上記と同様にして実施例4の光電変換素子を得た。
 実施例2~4の光電変換素子のp型窒化物半導体層の凹凸を有する表面の表面粗さRMSは0.015μmであった。なお、表面粗さRMSは、実施例2~4の光電変換素子のp型窒化物半導体層の凹凸を有する表面における1辺40μmの任意の正方形の領域を原子間力顕微鏡を用いて測定することにより算出した。
 また、実施例2~4の光電変換素子の導電層のp型窒化物半導体層側と反対側の表面の表面粗さRMSを測定したところ、0.004μmであった。なお、表面粗さRMSは、実施例2~4の光電変換素子の導電層の第2のp型窒化物半導体層側と反対側の表面における1辺40μmの任意の正方形の領域を原子間力顕微鏡を用いて測定することにより算出した。
 実施例2~4の光電変換素子のpパッド電極およびnパッド電極をそれぞれ、金線でリードフレームに電気的に接続し、リードフレームの正極と負極にそれぞれプローブを接触して電流および電圧測定用の回路を形成した。
 そして、ソーラシミュレータを用いてAM1.5の擬似太陽光を100mW/cm2のエネルギ密度で25℃のもとで導電層側から照射することによって実施例2~4の光電変換素子のI-V曲線を求め、そのI-V曲線から実施例2~4の光電変換素子のVoc、Jsc、F.FおよびEffを算出した。
 その結果、実施例2~4の光電変換素子のVocは1.63Vであり、Jscは1.14mA/cm2であり、F.Fは0.52であり、Effは0.97%であった。
 <比較例2>
 第1のn型窒化物半導体層と第2のn型窒化物半導体層との2層からなるn型窒化物半導体層の代わりに、V/IIIガス供給量比を2100にして、厚さ1.5μmのn型GaN層(Siドープ濃度:2×1018個/cm3)からなる1層のn型窒化物半導体層を形成したこと以外は実施例2~4の光電変換素子と同様にして比較例2の光電変換素子を作製した。
 そして、実施例2~4の光電変換素子と同様にして、比較例2の光電変換素子のVoc、Jsc、F.FおよびEffを算出した。
 その結果、比較例2の光電変換素子のVocは1.59Vであり、Jscは0.84mA/cm2であり、F.Fは0.47であり、Effは0.63%であった。
 <比較例3>
 第1のn型窒化物半導体層と第2のn型窒化物半導体層との2層からなるn型窒化物半導体層の代わりに、V/IIIガス供給量比を4300にして、厚さ1.5μmのn型GaN層(Siドープ濃度:2×1018個/cm3)からなる1層のn型窒化物半導体層を形成したこと以外は実施例2~4の光電変換素子と同様にして比較例3の光電変換素子を作製した。
 そして、実施例2~4の光電変換素子と同様にして、比較例3の光電変換素子のVoc、Jsc、F.FおよびEffを算出した。
 その結果、比較例3の光電変換素子のVocは1.09Vであり、Jscは0.55mA/cm2であり、F.Fは0.36であり、Effは0.22%であった。
 <分析>
 上記のとおり、実施例2~4の光電変換素子は、比較例2および3の光電変換素子と比べて、Voc、Jsc、F.FおよびEffのすべての点で優れていた。これは、実施例2~4の光電変換素子は、p型窒化物半導体層側から導電層側に進行する光をp型窒化物半導体層の凹凸表面で多重反射させることによって、i型窒化物半導体層内により多くの光を閉じ込めることができたことが大きな要因の1つであると考えられる。
 また、実施例2の光電変換素子の作製途中でp型窒化物半導体層の表面の拡大写真を光学顕微鏡を用いて100倍の倍率で取得した。
 その拡大写真を分析した結果、実施例2の光電変換素子のp型窒化物半導体層の表面は、粒径が0.05μm~0.1μmの鱗状の粒状の凹凸により形成されていることが確認された。また、実施例3および4の光電変換素子のp型窒化物半導体層の表面についても同様の観測をしたところ、実施例2の光電変換素子のp型窒化物半導体層の表面と同様の凹凸が形成されていることが確認された。
 また、比較例2の光電変換素子の作製途中でp型窒化物半導体層の表面の拡大写真を光学顕微鏡を用いて100倍の倍率で取得した。
 その拡大写真を分析した結果、比較例2の光電変換素子のp型窒化物半導体層の表面には鋭角な凹凸が形成されていた。
 したがって、以上の結果から、実施例2~4の光電変換素子のp型窒化物半導体層の凹凸表面は、比較例2の光電変換素子のp型窒化物半導体層の凹凸表面と比べて、光閉じ込め効果に優れていると考えられる。
 また、図21(a)に実施例2の光電変換素子のi型窒化物半導体層のX線回折法による2θωスキャン測定結果を示し、図21(b)に比較例2の光電変換素子のi型窒化物半導体層のX線回折法による2θωスキャン測定結果を示す。図21(a)および図21(b)は、それぞれ、実施例2および比較例2と同様にして作製したi型窒化物半導体層についてX線回折法による測定を行なって取得された2θωスキャン測定結果である。
 図21(a)と図21(b)との比較から明らかなように、実施例2の光電変換素子のi型窒化物半導体層は、比較例2の光電変換素子のi型窒化物半導体層と比べて、井戸層と障壁層との周期性が保たれていることが確認された。なお、井戸層と障壁層との繰り返し構造を有するi型窒化物半導体層にX線を入射した場合には、井戸層と障壁層との界面で干渉が起こるため、井戸層と障壁層との周期性が確保されているかどうかを確認することができる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、光電変換素子および光電変換素子の製造方法に利用することができ、特に窒化物半導体を用いた太陽電池およびその製造方法に利用することができる。
 1 基板、2 n型窒化物半導体層、2a 第1のn型窒化物半導体層、2b 第2のn型窒化物半導体層、2c 界面、3 i型窒化物半導体層、4 第1のp型窒化物半導体層、5 導電層、5a 表面、6 nパッド電極、7 pパッド電極、9 第2のp型窒化物半導体層、10 バッファ層、11 凹凸、12 半導体積層体。

Claims (14)

  1.  基板(1)と、
     前記基板(1)上に設けられた半導体積層体(12)と、
     前記半導体積層体(12)上に設けられた導電層(5)と、を備え、
     前記半導体積層体(12)は、前記基板(1)側から前記導電層(5)側にかけて、n型窒化物半導体層(2)、i型窒化物半導体層(3)およびp型窒化物半導体層(4)をこの順に含み、
     前記p型窒化物半導体層(4)は、前記導電層(5)側の表面に凹凸を有している、光電変換素子。
  2.  前記導電層(5)の前記p型窒化物半導体層(4)側とは反対側の表面の表面粗さRMSが、0.003μm以上0.005μm以下である、請求項1に記載の光電変換素子。
  3.  前記導電層(5)の厚さが、0.25μm以上0.5μm以下である、請求項1に記載の光電変換素子。
  4.  前記導電層(5)は、前記p型窒化物半導体層(4)よりも小さい屈折率を有する、請求項1に記載の光電変換素子。
  5.  前記導電層(5)は、Zn、In、SnおよびMgからなる群から選択される少なくとも1種を含む単層、または前記単層を複数積層した複数層である、請求項1に記載の光電変換素子。
  6.  前記基板(1)は、AlxInyGazN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z≠0)、GaP、GaAs、NdGaO3、LiGaO2、Al23、MgAl24、ZnO、Si、SiC、SiGe、またはZrB2の式で表わされる材料を含む、請求項1に記載の光電変換素子。
  7.  前記p型窒化物半導体層(4)は、複数層を含む、請求項1に記載の光電変換素子。
  8.  前記凹凸(11)は、断面形状が台形(9)である凸部を含み、
     前記台形(9)の上底の長さ(W1)が、0.3μm以上0.7μm以下であり、
     前記台形(9)の下底の長さ(W2)が、1μm以上1.7μm以下であり、
     前記台形(9)の高さ(H)が、1μm以上1.2μm以下である、請求項7に記載の光電変換素子。
  9.  前記p型窒化物半導体層(4)の前記凹凸(11)を有する前記表面の表面粗さRMSが、0.01μm以上0.02μm以下である、請求項1に記載の光電変換素子。
  10.  前記n型窒化物半導体層(2)は、前記基板(1)側の第1のn型窒化物半導体層(2a)と、前記導電層(5)側の第2のn型窒化物半導体層(2b)と、の積層体を有しており、
     前記第1のn型窒化物半導体層(2a)と前記第2のn型窒化物半導体層(2b)との界面が、前記積層体の総厚の20%以上80%以下の範囲内に位置する、請求項9に記載の光電変換素子。
  11.  請求項1に記載の光電変換素子を製造する方法であって、
     前記基板(1)上に前記半導体積層体(12)を形成する工程と、
     前記半導体積層体(12)上に前記導電層(5)を形成する工程と、を含み、
     前記半導体積層体(12)を形成する工程は、少なくともIII族原料ガスとV族原料ガスとを供給することによって窒化物半導体を気相成長させる工程を含み、
     前記気相成長させる工程は、第1の成長条件による第1の成長工程と、前記第1の成長条件とは異なる第2の成長条件による第2の成長工程と、を含む、光電変換素子の製造方法。
  12.  前記第2の成長条件は、前記第1の成長条件よりも前記III族原料ガスの供給量のみを低減した条件である、請求項11に記載の光電変換素子の製造方法。
  13.  請求項7に記載の光電変換素子を製造する方法であって、
     前記基板(1)上に前記半導体積層体(12)を形成する工程と、
     前記半導体積層体(12)上に前記導電層(5)を形成する工程と、を含み、
     前記半導体積層体(12)を形成する工程は、少なくともIII族原料ガスとV族原料ガスとを供給することによって前記p型窒化物半導体層(4)を気相成長させる工程を含み、
     前記気相成長させる工程は、第1の成長条件による第1の成長工程と、前記第1の成長条件とは異なる第2の成長条件による第2の成長工程と、を含み、
     前記III族原料ガスは、トリメチルガリウムであり、
     前記V族原料ガスは、アンモニアであって、
     前記第2の成長工程においては、前記トリメチルガリウムの供給量Mtに対する前記アンモニアの供給量Maの比であるMa/Mtを40000以上100000以下にするとともに、前記トリメチルガリウムと前記アンモニアをそれぞれ1m/秒以上1.1m/秒以下の流速で供給する、光電変換素子の製造方法。
  14.  請求項9に記載の光電変換素子を製造する方法であって、
     前記基板(1)上に前記半導体積層体(12)を形成する工程と、
     前記半導体積層体(12)上に前記導電層(5)を形成する工程と、を含み、
     前記半導体積層体(12)を形成する工程は、少なくともIII族原料ガスとV族原料ガスとを供給することによって前記n型窒化物半導体層(2)を気相成長させる工程を含み、
     前記気相成長させる工程は、第1の成長条件による第1の成長工程と、前記第1の成長条件とは異なる第2の成長条件による第2の成長工程と、を含み、
     前記第1の成長条件における前記III族原料ガスに対する前記V族原料ガスの供給量比が2000以上2100以下であって、
     前記第2の成長条件における前記III族原料ガスに対する前記V族原料ガスの供給量比が3830以上4230以下である、光電変換素子の製造方法。
PCT/JP2012/052093 2011-02-03 2012-01-31 光電変換素子および光電変換素子の製造方法 WO2012105535A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-021804 2011-02-03
JP2011021804A JP5090543B2 (ja) 2011-02-03 2011-02-03 光電変換素子および光電変換素子の製造方法

Publications (1)

Publication Number Publication Date
WO2012105535A1 true WO2012105535A1 (ja) 2012-08-09

Family

ID=46602747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052093 WO2012105535A1 (ja) 2011-02-03 2012-01-31 光電変換素子および光電変換素子の製造方法

Country Status (3)

Country Link
JP (1) JP5090543B2 (ja)
TW (1) TW201236178A (ja)
WO (1) WO2012105535A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713083A (zh) * 2018-12-29 2019-05-03 中国科学院长春光学精密机械与物理研究所 一种原位生长Al等离激元提高AlGaN基PIN型探测器性能的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389462B1 (ko) * 2013-04-10 2014-04-28 주식회사 소프트에피 3족 질화물 반도체 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204544A (ja) * 1992-12-28 1994-07-22 Canon Inc 太陽電池モジュール及び太陽電池
JPH07288334A (ja) * 1994-04-18 1995-10-31 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体受光素子
JP2001320077A (ja) * 2000-05-10 2001-11-16 Nippon Telegr & Teleph Corp <Ntt> 半導体受光器
JP2003298076A (ja) * 2002-03-29 2003-10-17 Tdk Corp 太陽電池およびその製造方法
JP2010098033A (ja) * 2008-10-15 2010-04-30 Stanley Electric Co Ltd 光起電力発生装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204544A (ja) * 1992-12-28 1994-07-22 Canon Inc 太陽電池モジュール及び太陽電池
JPH07288334A (ja) * 1994-04-18 1995-10-31 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体受光素子
JP2001320077A (ja) * 2000-05-10 2001-11-16 Nippon Telegr & Teleph Corp <Ntt> 半導体受光器
JP2003298076A (ja) * 2002-03-29 2003-10-17 Tdk Corp 太陽電池およびその製造方法
JP2010098033A (ja) * 2008-10-15 2010-04-30 Stanley Electric Co Ltd 光起電力発生装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713083A (zh) * 2018-12-29 2019-05-03 中国科学院长春光学精密机械与物理研究所 一种原位生长Al等离激元提高AlGaN基PIN型探测器性能的方法

Also Published As

Publication number Publication date
TW201236178A (en) 2012-09-01
JP5090543B2 (ja) 2012-12-05
JP2012164701A (ja) 2012-08-30

Similar Documents

Publication Publication Date Title
US8329489B2 (en) Method for manufacturing semiconductor light emitting device
TWI462287B (zh) Nitride semiconductor device and manufacturing method thereof
CN109075226B (zh) Iii族氮化物层叠体及iii族氮化物发光元件
JP6573076B2 (ja) 紫外線発光素子
CN103337573B (zh) 半导体发光二极管的外延片及其制造方法
JP2014090169A (ja) 窒化インジウムガリウム発光デバイス
KR20110045056A (ko) Ⅲ족 질화물 반도체 발광 소자의 제조 방법, ⅲ족 질화물 반도체 발광 소자 및 램프
JP5383880B1 (ja) 窒化物半導体層の製造方法及び半導体発光素子の製造方法
US8772800B2 (en) Semiconductor light-emitting device
JP5401145B2 (ja) Iii族窒化物積層体の製造方法
JP5405545B2 (ja) 光電変換素子
JP4668225B2 (ja) 窒化物半導体発光素子の製造方法
JP5090543B2 (ja) 光電変換素子および光電変換素子の製造方法
US8987026B2 (en) Semiconductor light emitting device
JP5931653B2 (ja) 光電変換素子
JP5434343B2 (ja) Ito電極の形成方法、半導体素子のito電極及びito電極を備えた半導体素子
WO2012073941A1 (ja) 光電変換素子
WO2012117871A1 (ja) 光電変換素子および光電変換素子の製造方法
JP2014120666A (ja) 窒化物半導体太陽電池、窒化物光−電気変換素子、窒化物半導体太陽電池を作製する方法
WO2023038129A1 (ja) Iii族窒化物発光デバイス、iii族窒化物エピタキシャルウエハ、iii族窒化物発光デバイスを作製する方法
WO2012090636A1 (ja) 光電変換素子および光電変換素子の製造方法
JP5367780B2 (ja) 光電変換素子
JP5367781B2 (ja) 光電変換素子
WO2013024632A1 (ja) 光電変換素子
JP5265742B2 (ja) 光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741887

Country of ref document: EP

Kind code of ref document: A1