WO2012105450A1 - 搬送用走行体の走行制御方法 - Google Patents

搬送用走行体の走行制御方法 Download PDF

Info

Publication number
WO2012105450A1
WO2012105450A1 PCT/JP2012/051835 JP2012051835W WO2012105450A1 WO 2012105450 A1 WO2012105450 A1 WO 2012105450A1 JP 2012051835 W JP2012051835 W JP 2012051835W WO 2012105450 A1 WO2012105450 A1 WO 2012105450A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling body
transport
transport traveling
travel
speed
Prior art date
Application number
PCT/JP2012/051835
Other languages
English (en)
French (fr)
Inventor
敏明 横田
三好 和彦
雅嗣 亀井
厚延 井関
Original Assignee
株式会社ダイフク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイフク filed Critical 株式会社ダイフク
Priority to BR112013010514-3A priority Critical patent/BR112013010514B1/pt
Priority to CN201280004317.1A priority patent/CN103270461B/zh
Publication of WO2012105450A1 publication Critical patent/WO2012105450A1/ja
Priority to US13/923,107 priority patent/US8825205B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/18Transportation, conveyor or haulage systems specially adapted for motor vehicle or trailer assembly lines

Definitions

  • the present invention relates to a travel control method for a transporting traveling body when a self-propelled transporting traveling body having a variable traveling speed is caused to enter a work section.
  • a transport traveling body loaded with an automobile body is moved at a constant low speed while a work floor loaded with the automobile body of each transportation traveling body is continuous in the traveling direction.
  • a work section in which work is performed on the loaded vehicle body is used.
  • the transport traveling body necessary for the entire facility can be obtained by running the transport traveling body at a high speed outside the work section. It is possible to reduce the number of units and increase the conveyance efficiency in the travel route other than the work section.
  • the rear transport traveling body approaching the work section at high speed is decelerated with respect to the front transport traveling body moving near the entrance of the work section at the work speed, and the rear transport traveling body is When docked to the front conveying traveling body, the rear conveying traveling body must be automatically decelerated so that the traveling speed of the rear conveying traveling body is just reduced to the working speed.
  • Conventionally known deceleration control methods that can be applied in such a case cannot show the prior art document, but the distance between the front conveyance traveling body is detected by a distance sensor, and the detected front conveyance This is a method of decelerating the rear conveyance traveling body based on the distance information between the traveling body.
  • the distance sensor itself that can detect the change in the distance to the front transport traveling body with high accuracy is only very expensive. In addition, it is difficult to quickly adapt the detection distance value to a change in actual distance with no time lag, and in addition, the structure of the transport traveling body itself is also restricted in order to improve the detection accuracy of the distance sensor. It was not practical.
  • the present invention proposes a traveling control method for a transport traveling body that can solve the above-described conventional problems, and the traveling of the transport traveling body according to the present invention according to claim 1.
  • the reference numerals used in the description of the embodiments are shown in parentheses, and the traveling speed of the self-propelled conveyance body with variable travel speed is shown.
  • a work section (WA) in which each traveling traveling body (1) keeps a continuous state in the travel direction and runs at a constant low work speed (VL) is set.
  • VL constant low work speed
  • each transport traveling body (1) has a transport traveling body (1) adjacent to the front and rear.
  • Data communication means (13, 14) for performing data communication between them is provided, and in the upper travel route of the work section (WA), the measurement starting point (P1)
  • the measurement starting point is set for the rear conveyance traveling body (1Z) that is set and approaches the work section (WA) at high speed and the front conveyance traveling body (1Y) that travels at the work speed (VL) in front thereof.
  • the current position information corresponding to the travel distance (L1Y, L1Z) from (P1) is given, and the rear-side transport traveling body (1Z) passes through its own current position information and the data communication means (13, 14).
  • the distance sensor attached to the rear-side transport traveling body to be subjected to the deceleration control does not have distance information with the front-side transport traveling body immediately before, Various problems considered in the case of using the distance sensor as described above are solved.
  • the rear transfer traveling body is automatically decelerated as the distance (interval) between the rear transport traveling body approaching the work section at a high speed and the immediately preceding front transport traveling body is reduced.
  • the rear-side transport traveling body can enter the work section at the same constant low speed as the front-side transport traveling body.
  • the rear conveyance traveling body after completion of the docking can also travel in the work section while continuing the speed control so that the distance between the rear transportation traveling body and the front transportation traveling body is maintained at a set value.
  • the rear transportation traveling body and the front transportation traveling body are coupled by the coupling means that automatically couples the front and rear transportation traveling bodies.
  • the work section it is possible to run the connected transport traveling body at the work speed by the self-running force of each transport traveling body or other propulsion means.
  • the rear transport traveling body (1Z) terminates the speed control based on the distance between the front and rear transport traveling bodies (1Y, 1Z), and all transports in the work section (WA) are completed.
  • the traveling body (1) can be self-propelled at the working speed (VL) without being connected to each other.
  • VL working speed
  • the distance between the front and rear transport traveling bodies is calculated as compared to the case where the speed control based on the distance between the front and rear transport traveling bodies is continued in the entire long section including the entire work section. The section becomes shorter and high-precision control becomes easy.
  • the data communication means between the front and rear transport traveling bodies (1Y, 1Z) may be any, but as the data communication means (13, 14), an optical communication means using a projector / receiver may be used. Not only can it be implemented at low cost, it is also easy to maintain and practical.
  • each transport traveling body (1) is provided with an obstacle sensor (12) for detecting a front obstacle, and the rear transport traveling body (1Z) approaching the work section (WA) at high speed is
  • the object sensor (12) detects the front conveyance traveling body (1Y)
  • the length of the section for performing the deceleration control based on the gradual change in the distance to the traveling body (1Y) can always be reduced to the minimum necessary, and high-precision control is facilitated.
  • FIG. 1A is a plan view of a transport traveling body
  • FIG. 1B is a side view showing a traveling state of each transport traveling body in a work section.
  • FIG. 2 is a plan view for explaining a work section.
  • FIG. 3A is a plan view showing a first stage of speed control of the conveying traveling body at the work section entrance side
  • FIG. 3B is a plan view showing a second stage of the speed control.
  • 4A is a plan view showing a third stage of the speed control
  • FIG. 4B is a plan view showing a fourth stage of the speed control.
  • FIG. 5A is a plan view showing a final stage of the speed control
  • FIG. 5B is a plan view showing a first stage of speed control of the transport traveling body at the work section exit side.
  • FIG. 6A is a plan view showing a second stage of the speed control
  • FIG. 6B is a plan view showing a state where an abnormality has occurred in the second stage.
  • FIG. 7 is a flowchart for explaining the control when the traveling body for transportation that travels at a high speed enters the work section.
  • FIG. 8 is a flow chart for explaining the control for the transporting body at the end of the work section.
  • FIG. 9 is a flowchart for explaining the control when the leading conveying traveling body is withdrawn from the work section.
  • FIG. 10 is a flowchart for explaining the control for the second transport traveling body following the leading transport traveling body in the work section.
  • the transport traveling body 1 used in this embodiment is composed of a combination of a self-propelled tow vehicle 2 and a transport carriage 3 towed by the tow vehicle 2.
  • the tow truck 2 has a low floor structure that is low enough to allow the vehicle height to travel below the transport carriage 3, and the rear half of the tow truck 2 enters the lower side of the front end of the transport carriage 3.
  • the vicinity of the center in the length direction and the vicinity of the center in the width direction near the front end of the transport carriage 3 are connected by the vertical connection shaft 4 so as to be relatively rotatable around the vertical connection shaft 4.
  • the towing vehicle 2 includes a pair of left and right drive wheels 5 positioned on the left and right sides of the vertical connecting shaft 4, a pair of left and right motors 6 that rotate the drive wheels 5 in any direction, forward and reverse, respectively,
  • a rear wheel 7 is provided at the center in the width direction near the end.
  • the pair of left and right drive wheels 5 are fixed in a straight traveling direction, and the rear wheel 7 is a free wheel.
  • the transport carriage 3 supports a transported object (such as an automobile body) W by a plurality of transported object support jigs 8 erected on the surface (work floor).
  • a cover plate 9 covering the front side of the transport carriage 3 adjacent to the rear side in the work section extends rearward.
  • the transport carriage 3 includes a pair of left and right front wheels 10 each having a free wheel provided at a position that does not interfere with the relative rotation of the towing vehicle 2 around the vertical connecting shaft 4 and a pair of left and right front wheels fixed in a straight direction.
  • a rear wheel 11 is provided.
  • the tow vehicle 2 is provided with an obstacle sensor 12 for detecting an obstacle that is within a predetermined forward distance range at the front end thereof.
  • the front and rear end portions of the side face are oriented in the front-rear direction using the light emitter / receiver.
  • the optical communication devices 13 and 14 are attached, and a wide optical communication device 15 in a lateral direction using a light projecting / receiving device is attached at an intermediate position on the side surface.
  • a fixed position detection sensor 16 for detecting a marker disposed on the floor surface is attached to the bottom surface.
  • the optical communication devices 13 and 14 oriented in the front-rear direction are oriented in the front-rear direction of the towing vehicle 2 of another transporting traveling body 1 having the same structure and located within a certain distance range in the front-rear direction of the transporting traveling body 1 on a straight path.
  • Data communication is performed between the optical communication devices 13 and 14 using, for example, a 16-bit light beam, and the wide optical communication device 15 in the lateral direction is viewed as viewed from the wide optical communication device 15.
  • data communication is performed using, for example, an 8-bit light beam with a wide optical communication device having the same structure on the ground side, which is located within a certain range before and after the traveling direction (for example, within a range of 60 degrees each before and after).
  • Section WA is set.
  • the front half of the towing vehicle 2 projecting forward from the front end of each transport carriage 3 enters the lower side of the rear end of the transport carriage 3 in the immediately preceding transport traveling body 1, and A cover plate 9 extending rearward from the rear side is covered on the front side of the transport carriage 3 in the transport body 1 just after.
  • the travel control when the transport traveling body 1 enters the work section WA will be described with reference to FIGS.
  • the transport traveling body 1 composed of the towing vehicle 2 and the transport carriage 3 is simplified and shown in a rectangular box shape in plan view.
  • the fixed position detection sensor 16 on the bottom surface of the transport carriage 3 is displayed on the left side surface of the transport traveling body 1, and the optical communication devices 13, 14 and the wide optical communication device 15 are illustrated. 1 and the position shown in FIG. 2 are displayed on the right side surface of the traveling body 1 for conveyance opposite to the left and right.
  • a measurement starting point P1 is set at a fixed position away from the work section WA by a certain distance upstream, and a docking confirmation position P2 is set near the entrance of the work section WA. Yes.
  • markers that are detected by the fixed position detecting sensor 16 provided in the transporting traveling body 1 that passes through are provided on the floor surface or the like.
  • a ground-side wide optical communication device 17 that performs data communication with the wide optical communication device 15 provided in the transport traveling body 1 that passes therethrough is provided.
  • the ground-side wide optical communication device 17 also travels in the traveling direction of the transport traveling body 1 when the travel side of the transport traveling body 1 is viewed from the ground-side wide optical communication device 17.
  • Data communication can be performed with the wide optical communication device 15 passing within a certain range before and after (for example, within each 60 degrees range).
  • the ground-side wide optical communication devices 18a and 18b that perform data communication with the wide optical communication device 15 included in the transport traveling body 1 that passes therethrough.
  • the ground wide optical communication devices 18 a and 18 b also have the transport traveling body 1 when the travel path side of the transport traveling body 1 is viewed from the various wide optical communication devices 18 a and 18 b.
  • Data communication can be performed with the wide optical communication device 15 passing through a certain range in the traveling direction (for example, within a range of 60 degrees each in the longitudinal direction). In the figure, two identical grounds connected in parallel are connected.
  • the wide wide optical communication devices 18a and 18b are used to expand the entire communication area in the traveling direction of the transport traveling body 1, but the number of wide optical communication devices to be used is not limited. If the communication area of one wide optical communication device is sufficiently wide, it can be configured by one wide optical communication device.
  • a final process confirmation position P4 and a confirmation position P3 one prior to the final process are set in the vicinity of the exit of the work section WA with an interval about the same as the entire length of one transport traveling body 1. .
  • markers detected by the fixed position detection sensor 16 provided in the transporting traveling body 1 that passes therethrough are provided on the floor surface or the like.
  • the communication area of the two terrestrial wide optical communication devices 18a and 18b as a whole is at least between the wide optical communication devices 15 of the front and rear two transport traveling bodies 1 located at the two confirmation positions P3 and P4, respectively. It has enough space for data communication.
  • the traveling speed set for each conveyance traveling body 1 that self-travels in the work section WA in a continuous state is determined by the operator on the work floor of each conveyance traveling body 1 (conveyance carriage 3).
  • the work speed VL is a constant low speed at which work on the loaded object W can be performed while walking safely.
  • the travel enable signal transmitted to the transport traveling body 1 located near the exit of the work section WA is transmitted through the front and rear optical communication devices 13 and 14 included in each transport travel body 1 in the work section WA.
  • Each transport traveling body 1 is provided with a travel enable signal that is sequentially transmitted upstream to all the transport traveling bodies 1 and reaches the last transport traveling body 1 located near the entrance of the work section WA.
  • a control device 19 is mounted on the towing vehicle 2 in each transport traveling body 1.
  • the control device 19 controls the relay transmission of the travel enable signal and relays the travel enable signal.
  • the control device 19 of the transport traveling body 1 relays the travel enable signal based on the relay travel enable signal.
  • the pair of left and right motors 6 are controlled so that 1 runs straight at the work speed VL. Accordingly, all the transport traveling bodies 1 in the work section WA travel straight ahead while maintaining the work speed VL.
  • the traveling-ready signal is transmitted to all the transporting traveling bodies 1 in the work section WA. Disappear.
  • the control device 19 of each transport traveling body 1 stops the motor 6 based on the absence of the travel enable signal, so that all the transport traveling bodies 1 in the work section WA are stopped on the spot. It will be.
  • the control device 19 of the specific transport traveling body 1 travels between the front and rear transport traveling bodies 1. Stops relaying of possible signals automatically.
  • the relay transmission of the travel enable signal to be returned to the ground side control device is interrupted, and the ground side control device stops transmission of the travel enable signal based on this situation, so that all the traveling traveling bodies in the work section WA
  • the traveling enable signal is not transmitted to 1 and all the transport traveling bodies 1 in the work section WA are stopped on the spot.
  • the rearmost transport traveling body 1 located near the entrance of the work section WA is based on the determination that the rear transport traveling body 1 is the rearmost transport traveling body 1 from the rear transport traveling body 1. Stop control due to not receiving the downstream travel enable signal is not performed, and the travel enable signal received from the immediately preceding transport traveling body 1 is transmitted in the reverse direction in the reverse direction.
  • FIG. 3A the rearmost transport traveling body 1 traveling at the work speed VL near the entrance of the work section WA is defined as a front transport traveling body 1Y, and immediately behind the front transport traveling body 1Y.
  • the rear transport traveling body 1Z has its obstacle sensor 12 detecting an obstacle in the front detection area. If the obstacle sensor 12 detects an obstacle in the detection area ahead, if the obstacle sensor 12 detects an obstacle in the front detection area, the deceleration stop control program at the time of obstacle detection is set in advance. Accordingly, the control device 19 automatically executes deceleration stop control.
  • the rear transfer traveling body 1Z passes a fixed position at a fixed upstream distance from the work section WA (FIG. 7-S1), for example, the measurement starting point P1 or a fixed position set separately from the measuring starting point P1 is passed.
  • the deceleration stop control program at the time of obstacle detection by the obstacle sensor 12 is invalidated (FIG. 7-S2), and as shown in FIG. 3B, the rear-side transport traveling body 1Z changes the front-side transport traveling body 1Y.
  • deceleration control for docking is started. That is, when the obstacle sensor 12 of the rear conveyance traveling body 1Z detects the front conveyance traveling body 1Y as an obstacle (FIG.
  • deceleration stop at the time of obstacle detection performed during normal traveling is performed.
  • the control program is not executed, and based on the detection signal ON of the obstacle sensor 12, deceleration control based on the inter-vehicle distance from the front conveyance traveling body 1Y is started (FIG. 7-S4).
  • each of the front conveyance traveling body 1Y and the rear conveyance traveling body 1Z passes the measurement start point P1 (the ground side marker provided at the measurement start point P1 by the fixed position detection sensor 16).
  • Current position information corresponding to the travel distances L1Y and L1Z from the detected time).
  • the transmission pulse of the pulse encoder linked to the rotation of the drive wheel 5 is added and counted from the time when it passes the measurement starting point P1 by the calculation function provided in the control device 19, and the travel distance of the transport traveling body 1 is calculated. It is possible to have a count value that increases in proportion to the current position information.
  • the control device 19 of the front transport traveling body 1Y transmits the calculated current position information to the rear transport traveling body 1Z via the optical communication devices 13 and 14, and the rear transport travel.
  • the control device 19 of the body 1Z compares and calculates the received current position information of the front transporting traveling body 1Y and the current position information of the rear transporting traveling body 1Z calculated by itself to obtain a front transporting traveling body.
  • the inter-vehicle distance d between 1Y is obtained.
  • the motor 6 is controlled to decelerate the rear conveyance traveling body 1Z, and the calculated inter-vehicle distance d reaches a set value set in advance as the docking distance.
  • the rear-side transport traveling body 1Z is controlled to be decelerated so that the rear-side transport traveling body 1Z is decelerated to the working speed VL (FIG. 7-S5).
  • the rear conveyance traveling body 1Z approaches the front conveyance traveling body 1Y to the intended docking distance, and the same operation as the front conveyance traveling body 1Y is performed.
  • a docking completion signal is transmitted to the front conveyance traveling body 1Y via the optical communication devices 13 and 14 (FIG. 7-S6), and the deceleration control based on the above-mentioned inter-vehicle distance is completed.
  • the travel at the work speed VL is continued (FIG. 7-S7).
  • the front transport traveling body 1Y has not reached the docking confirmation position P2, but when the front transport traveling body 1Y has reached the docking confirmation position P2 (FIG. 8-S1), when a docking completion signal has already been received from the rear-side transport traveling body 1Z (FIG. 8-S2), the wide-side optical communication device 15 through the ground-side wide-optical communication device 17 passes the ground side.
  • the control device transmits a docking completion signal (FIG. 8-S3) and continues running at the working speed VL (FIG. 8-S4).
  • the traveling body 1 for transportation travels at a work speed VL so as to maintain a continuous state (docking state).
  • the rear conveyance traveling body 1Z approaches the obstacle detection maximum inter-vehicle distance D1 with respect to the front conveyance traveling body 1Y that is waiting to stop, receives the deceleration control based on the above-mentioned inter-vehicle distance,
  • the front transport traveling body 1Y which has been waiting to stop, is docked to the ground side control device via the wide optical communication device 15 and the ground wide optical communication device 17.
  • Completion is notified, and the ground side control device sends a travel enable signal from the ground-side wide optical communication devices 18a, 18b on the exit side of the work section WA to the leading conveyance traveling body 1 that is stopped and waiting near the exit side of the work section WA.
  • the transport traveling body 1 that has just exited from the work section WA and travels at a high speed VH is located at the last process confirmation position P4 of the previous exit transport traveling body 1A and the work section WA.
  • the leading conveyance traveling body 1B is When the final process confirmation position P4 is reached (FIG.
  • the information is transmitted from the wide optical communication device 15 of the leading transport traveling body 1B via the ground wide optical communication devices 18a and 18b to the ground control device. Is transmitted.
  • the ground-side control device determines whether or not the immediately preceding leaving and traveling vehicle 1A is within a certain safety ensuring distance D2 from the leading and conveying vehicle 1B.
  • the transmission of the travel enable signal from the ground-side wide optical communication devices 18a and 18b is continued.
  • the control device 19 controls the acceleration of the motor 6 based on the fact that the final process confirmation position P4 has been reached and the receipt of the travel enable signal, and the head transport travel body 1B is moved from the work section WA at a high speed VH. Exit (FIG. 9-S3).
  • the ground-side control device determines that the traveling body 1A for immediately leaving and exiting is within the certain safety ensuring distance D2, as shown by a virtual line in FIG. 5B, travel from the ground-side wide optical communication devices 18a and 18b. Since transmission of the enabling signal is stopped, the relay transmission of the enabling signal described above is stopped, and all the transporting traveling bodies 1 in the work section WA including the leading transporting traveling body 1B are stopped and waited on the spot. (FIG. 9-S4). When the immediately-retreating traveling body 1A moves forward from within the certain safety ensuring distance D2, the control described above is performed, and at the same time the leading transportation body 1B leaves the work section WA at the high speed VH.
  • the second transport traveling body 1C and all the transport traveling bodies 1 in the subsequent work section WA resume traveling at the work speed VL.
  • the leading conveyance traveling body 1B that exits from the work section WA at a high speed VH has the obstacle sensor 12 that has been disabled before entering the work section WA before reaching the final process confirmation position P4, as will be described later. Since the deceleration stop control program based on the obstacle detection is effectively returned, the deceleration stop control based on the obstacle detection of the normal obstacle sensor 12 is used together.
  • the leading communication traveling body 1B passing through the final process confirmation position P4 changes from the optical communication device 13, 14 (FIG. 10-S2), the second transport traveling body 1C continues to travel at the working speed VL (FIG. 10-S3).
  • the transport traveling body 1B travels away from the work section WA at a high speed VH from the final process confirmation position P4, and the inter-vehicle distance between the leading transport traveling body 1B and the second transport traveling body 1C is the optical communication device.
  • the second transport traveling body 1C cannot inherit the travel enable signal from the front transport traveling body 1B via the front and rear optical communication devices 13 and 14.
  • the second transport traveling body 1C between the confirmation position P3 immediately before the final process and the final process confirmation position P4 travels from the ground-side wide optical communication devices 18a and 18b via the wide optical communication device 15.
  • the enable signal has been received (FIG. 10-S4)
  • it is possible to continue traveling at the work speed VL until the final process confirmation position P4 is reached (FIG. 10-S7) (FIG. 10). -S6).
  • the second transport traveling body 1C receives the travel enable signal from the ground-side wide optical communication devices 18a and 18b, the second transport traveling body 1C is located within the work section WA that is continuously rearward from the second transport traveling body 1C. Relay transmission of the travel enable signal to all the transport traveling bodies 1 is also continued, and all the transport traveling bodies 1 in the work section WA follow the second transport traveling body 1C and travel at the work speed VL.
  • the deceleration stop control program based on the obstacle detection of the obstacle sensor 12 of each transport traveling body 1 that was invalidated before entering the work section WA passed the confirmation position P3 one step before the final process.
  • the deceleration stop control based on the obstacle detection of the obstacle sensor 12 is used together. Accordingly, as shown in FIG. 6, the obstacle sensor of the second transport traveling body 1C before reaching the final process confirmation position P4 for some reason due to the leading transport traveling body 1B started at high speed from the final process confirmation position P4. 2C, the second transport traveling body 1C stops on the spot by the action of the normal deceleration stop control program based on the obstacle detection of the obstacle sensor 12, and subsequently continues. Since the relay transmission of the travel enable signal to the transport traveling body 1 is also stopped, all the transport traveling bodies 1 in the work section WA starting from the second transport traveling body 1C have stopped abnormally. The transportation traveling body 1B stops and waits on the spot until the traveling at the high speed VH is resumed.
  • the second transporting travel body that has passed the confirmation position P3 one step before the final process. 1C stops on the spot, and relay transmission of the travel enable signal to the subsequent transport traveling body 1 is also cut off, so that all transport objects in the work section WA starting from the second transport traveling body 1C are used.
  • the traveling body 1 stops and waits on the spot until the transmission of the travel enable signal from the ground side wide optical communication devices 18a and 18b is resumed (FIG. 10-S8).
  • the transport traveling body 1 traveling at a high speed is automatically decelerated and entered into the work section WA, and in this work section WA, all the transport traveling bodies 1 are continuously adjacent to each other.
  • Each transport traveling body 1 that has traveled at a constant work speed VL in the state and has reached the exit of the work section WA can be automatically accelerated and retreated at a high speed VH.
  • the traveling control method for a transport traveling body according to the present invention travels while maintaining a continuous state at a constant work speed for a self-propelled transport traveling body on which an automobile body is loaded in a certain work section in an automobile assembly line. It can be used as a driving control method when

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Conveyors (AREA)

Abstract

 搬送用走行体の走行制御方法は、作業区間WAへ高速で接近する後ろ側搬送用走行体1Zと作業区間WA内で作業速度VLで走行する前側搬送用走行体1Yに、計測起点P1からの走行距離に相当する現在位置情報を持たせ、後ろ側搬送用走行体1Zでは、自体の現在位置情報とデータ通信手段13,14を介して受け取った前側搬送用走行体1Yの現在位置情報とに基づいて前側搬送用走行体1Yとの間の距離を演算させると共に当該距離の漸減変化に基づいて作業速度VLまで減速制御を行わせることを特徴とする。

Description

搬送用走行体の走行制御方法
 本発明は、走行速度可変の自走可能な搬送用走行体を作業区間に進入させるときの搬送用走行体の走行制御方法に関するものである。
 自動車組立てラインでは、自動車車体を積載した搬送用走行体を、各搬送用走行体の自動車車体を積載した作業床が走行方向に連続する状態で一定低速度の作業速度で移動させながら、所要の作業を積載車体に対して行う作業区間が使用される。このような作業区間において、走行速度可変の自走可能な搬送用走行体を使用する場合、前記作業区間以外では搬送用走行体を高速走行させることによって、設備全体として必要な搬送用走行体の台数を少なくすると共に作業区間以外の走行経路中の搬送効率を高めることが出来る。この場合、作業区間の入り口付近を作業速度で移動している前側搬送用走行体に対して高速走行で作業区間に接近する後ろ側搬送用走行体を減速させ、この後ろ側搬送用走行体が前記前側搬送用走行体にドッキングしたとき、当該後ろ側搬送用走行体の走行速度が丁度前記作業速度まで減速されているように、後ろ側搬送用走行体を自動的に減速制御しなければならない。このような場合に適用出来る従来周知の減速制御方法は、先行技術文献を示すことは出来ないが、前側搬送用走行体との間の距離を距離センサーで検出させ、この検出された前側搬送用走行体との間の距離情報に基づいて後ろ側搬送用走行体を減速させる方法であった。
 上記のような距離センサーを利用する搬送用走行体の走行制御方法では、前側搬送用走行体との間の距離の変化を高精度に検出出来る距離センサーそのものが非常に高価なものであるだけでなく、実際の距離の変化に検出距離値をタイムラグ無く高精度に即応させることも困難であり、更には距離センサーの検出精度を高めるために搬送用走行体自体の構造にも制約を受けることになり、実用的ではなかった。
 本発明は、上記のような従来の問題点を解消することの出来る搬送用走行体の走行制御方法を提案するものであって、請求項1に記載の本発明に係る搬送用走行体の走行制御方法は、後述する実施例との関係を理解し易くするために、当該実施例の説明において使用した参照符号を括弧付きで付して示すと、走行速度可変の自走式搬送用走行体(1)の走行経路中に、各搬送用走行体(1)が走行方向に連続する状態を保って一定低速度の作業速度(VL)で自走する作業区間(WA)が設定され、この作業区間(WA)へ搬送用走行体(1)が高速で接近走行するように構成された搬送設備において、各搬送用走行体(1)には、前後に隣り合う搬送用走行体(1)間でデータ通信を行うデータ通信手段(13,14)が設けられ、前記作業区間(WA)の上手側走行経路中には、計測起点(P1)が設定され、前記作業区間(WA)へ高速で接近する後ろ側搬送用走行体(1Z)とその前方の前記作業速度(VL)で走行する前側搬送用走行体(1Y)には、前記計測起点(P1)からの走行距離(L1Y,L1Z)に相当する現在位置情報を持たせ、後ろ側搬送用走行体(1Z)では、自体の現在位置情報と前記データ通信手段(13,14)を介して受け取った前側搬送用走行体(1Y)の現在位置情報とに基づいて前側搬送用走行体(1Y)との間の距離を演算させると共に当該距離の漸減変化に基づいて減速制御を行わせ、前記距離が設定値に達したドッキング完了時に後ろ側搬送用走行体(1Z)が前記作業速度(VL)で自走しているように制御することを特徴とするものである。
 上記の本発明方法によれば、減速制御の対象となる後ろ側搬送用走行体に取り付けた距離センサーによって、その直前の前側搬送用走行体との間の距離情報を持たせるものではないため、先に説明したような距離センサー利用の場合に考えられた種々の問題点が解消する。しかも、作業区間に高速で接近する後ろ側搬送用走行体をその直前の前側搬送用走行体との間の距離(間隔)が狭まるのに従って自動的に減速制御し、この後ろ側搬送用走行体が前側搬送用走行体に対して設定値まで接近(ドッキング)したとき、当該後ろ側搬送用走行体を前側搬送用走行体と同一の一定低速の作業速度で作業区間に進入させることが出来る。
 尚、前記ドッキング完了後の後ろ側搬送用走行体は、そのまま前側搬送用走行体との間の間隔を設定値に保たせるように速度制御を継続させながら作業区間を走行させることも可能であるし、作業区間の入り口で前側搬送用走行体とドッキングしたとき、前後の搬送用走行体どうしを自動的に連結する連結手段により当該後ろ側搬送用走行体と前側搬送用走行体とを連結させ、作業区間内では、各搬送用走行体の自走力又は他の推進手段により、連結状態の搬送用走行体を作業速度で走行させることも可能である。
 しかしながら、前記ドッキング完了後の後ろ側搬送用走行体(1Z)は、前後両搬送用走行体(1Y,1Z)間の距離に基づく速度制御を終了させ、作業区間(WA)内の全ての搬送用走行体(1)を互いに連結することなく前記作業速度(VL)で自走させることが出来る。この制御方法によれば、作業区間全長を含む長区間全域で前後両搬送用走行体間の距離に基づく速度制御を継続させる場合と比較して、前後両搬送用走行体間の距離を演算する区間が短くなり、高精度の制御が容易になる。
 前後の搬送用走行体(1Y,1Z)間のデータ通信手段は如何なるものであっても良いが、前記データ通信手段(13,14)として投受光器を使用した光通信手段を使用することが、安価に実施出来るだけでなく、保守も容易であり、実用的である。
 更に、各搬送用走行体(1)に前方の障害物を検知する障害物センサー(12)を設け、前記作業区間(WA)へ高速で接近する後ろ側搬送用走行体(1Z)が前記障害物センサー(12)により前側搬送用走行体(1Y)を検出したときから、前側搬送用走行体(1Y)との間の距離の漸減変化に基づく前記減速制御を行わせることにより、前側搬送用走行体(1Y)との間の距離の漸減変化に基づく前記減速制御を行わせる区間の長さを常に必要最小限に狭めることが出来、高精度の制御が容易になる。
図1Aは搬送用走行体の平面図、図1Bは作業区間での各搬送用走行体の走行状態を示す側面図である。 図2は作業区間を説明する平面図である。 図3Aは作業区間入り口側での搬送用走行体の速度制御の第一段階を示す平面図、図3Bは同速度制御の第二段階を示す平面図である。 図4Aは同速度制御の第三段階を示す平面図、図4Bは同速度制御の第四段階を示す平面図である。 図5Aは同速度制御の最終段階を示す平面図、図5Bは作業区間出口側での搬送用走行体の速度制御の第一段階を示す平面図である。 図6Aは同速度制御の第二段階を示す平面図、図6Bは同第二段階で異常が生じた状態を示す平面図である。 図7は高速で走行して来る搬送用走行体を作業区間に進入させるときの制御を説明するフローチャートである。 図8は作業区間の最後尾の搬送用走行体に対する制御を説明するフローチャートである。 図9は作業区間から先頭搬送用走行体を退出させるときの制御を説明するフローチャートである。 図10は作業区間の先頭搬送用走行体に続く2番搬送用走行体に対する制御を説明するフローチャートである。
 図1に示すように、本実施例で使用する搬送用走行体1は、自走可能な牽引車2と当該牽引車2で牽引される搬送台車3との組み合わせから成る。牽引車2は、車高が搬送台車3の下側を走行出来るほどに低い低床構造のものであって、その後半部が搬送台車3の前端部下側に入り込む状態で、牽引車2の前後長さ方向の中央付近と搬送台車3の前端近傍の巾方向中央付近とが垂直連結軸4によって、当該垂直連結軸4の周りに相対回転自在に連結されている。牽引車2には、前記垂直連結軸4の左右両側に位置する左右一対の駆動車輪5と、これら両駆動車輪5を各別に正逆任意の方向に回転駆動する左右一対のモーター6と、後端近傍の巾方向中央位置に位置する後輪7を備えている。左右一対の駆動車輪5は直進向きに固定され、後輪7は自在車輪で構成されている。
 搬送台車3は、その表面(作業床)上に立設された複数の被搬送物支持用治具8により被搬送物(自動車車体など)Wを支持するものであって、その後側辺には、作業区間で後ろ側に隣接する搬送台車3の前側辺上に被さるカバープレート9が後方向きに延設されている。又、この搬送台車3には、垂直連結軸4の周りでの牽引車2の相対回転と干渉しない位置に設けられた自在車輪から成る左右一対の前輪10と、直進向きに固定された左右一対の後輪11とが設けられている。
 牽引車2には、その前端に、前方一定距離範囲内に入った障害物を検知する障害物センサー12が設けられ、側面の前端部と後端部には、投受光器使用の前後方向向きの光通信装置13,14が取り付けられ、側面中間位置には、投受光器使用の横側方向きの巾広光通信装置15が取り付けられている。又、底面には、床面に配設されたマーカーを検出する定位置検出用センサー16が取り付けられている。前後方向向きの光通信装置13,14は、直進経路上でこの搬送用走行体1の前後一定距離範囲内に位置する同一構造の他の搬送用走行体1の牽引車2の前後方向向きの光通信装置13,14との間で、例えば16bitの光線によりデータ通信を行うものであり、横側方向きの巾広光通信装置15は、この巾広光通信装置15から見て搬送用走行体1の走行方向の前後一定範囲内(例えば前後各60度範囲内)に位置する地上側の同一構造の巾広光通信装置との間で、例えば8bitの光線によりデータ通信を行うものである。
 上記構成の搬送用走行体1の循環走行経路中には、図2に示すように、複数台の搬送用走行体1が、その搬送台車3の表面の作業床が連続する状態で直進する作業区間WAが設定されている。この作業区間WAでは、各搬送台車3の前端から前方に突出している牽引車2の前半部が、直前の搬送用走行体1における搬送台車3の後端部下側に入り込み、各搬送台車3の後側辺から後方に延出しているカバープレート9が、直後の搬送用走行体1における搬送台車3の前側辺上に被さっている。以下、この作業区間WAに対する搬送用走行体1の進入時の走行制御について図3~図5Aに基づいて説明し、当該作業区間WAからの搬送用走行体1の退出時の走行制御について図5B~図6に基づいて説明するが、これら図3~図6では、牽引車2と搬送台車3とから成る搬送用走行体1を、平面視で1つの長方形の箱形に簡略化して示すと共に、図の判読が容易になるように、搬送台車3の底面の定位置検出用センサー16を搬送用走行体1の左側面に表示し且つ光通信装置13,14と巾広光通信装置15を図1及び図2に示す位置とは左右逆の搬送用走行体1の右側面に表示している。
 図3~図5Aに示すように、作業区間WAより一定距離上流側に離れた定位置には、計測起点P1が設定され、作業区間WAの入り口付近には、ドッキング確認位置P2が設定されている。これら計測起点P1及びドッキング確認位置P2には、通過する搬送用走行体1が備える前記定位置検出用センサー16によって検出されるマーカーが床面などに設けられている。又、作業区間WAの入り口付近には、通過する搬送用走行体1が備える巾広光通信装置15との間でデータ通信を行う地上側巾広光通信装置17が設けられている。この地上側巾広光通信装置17も、巾広光通信装置15と同様に、この地上側巾広光通信装置17から搬送用走行体1の走行経路側を見たときの搬送用走行体1の走行方向の前後一定範囲内(例えば前後各60度範囲内)を通過する前記巾広光通信装置15との間でデータ通信が行えるものである。
 図5B~図6に示すように、作業区間WAの出口付近には、通過する搬送用走行体1が備える巾広光通信装置15との間でデータ通信を行う地上側巾広光通信装置18a,18bが設けられている。これら地上側巾広光通信装置18a,18bも、巾広光通信装置15と同様に、各地上側巾広光通信装置18a,18bから搬送用走行体1の走行経路側を見たときの搬送用走行体1の走行方向の前後一定範囲内(例えば前後各60度範囲内)を通過する前記巾広光通信装置15との間でデータ通信が行えるものであり、図では、並列接続された2つの同一の地上側巾広光通信装置18a,18bを使用して、全体の通信エリアを搬送用走行体1の走行方向に広げているが、使用する巾広光通信装置の個数は限定されない。1つの巾広光通信装置の通信エリアが十分に広ければ、1つの巾広光通信装置で構成することも出来る。又、この作業区間WAの出口付近には、1台の搬送用走行体1の全長と同じ程度の間隔を隔てて最終工程確認位置P4と最終工程1つ手前の確認位置P3が設定されている。これら2つの確認位置P3,P4には、通過する搬送用走行体1が備える前記定位置検出用センサー16によって検出されるマーカーが床面などに設けられている。前記2つの地上側巾広光通信装置18a,18b全体の通信エリアは、少なくとも前記2つの確認位置P3,P4に夫々位置する前後2台の搬送用走行体1の巾広光通信装置15との間でデータ通信が行える広さを有する。
 上記のように連続状態で作業区間WA内を自走する各搬送用走行体1に対して設定されている走行速度は、作業者が各搬送用走行体1(搬送台車3)の作業床上を安全に歩行しながら積載被搬送物Wに対する作業を行える、一定低速の作業速度VLである。今、作業区間WA内の全域に搬送用走行体1が連続状態に配置されている状況において、地上側制御装置の働きによって、作業区間WAの出口付近に設置された地上側巾広光通信装置18a,18bから作業速度での走行可信号が発信されると、この走行可信号は、作業区間WAの出口付近に位置する少なくとも前後2台の搬送用走行体1に、これら搬送用走行体1の巾広光通信装置15を介して伝送される。この作業区間WAの出口付近に位置する搬送用走行体1に伝送された走行可信号は、各搬送用走行体1が備えている前後両光通信装置13,14を介して作業区間WA内の全ての搬送用走行体1に上流向きに順次伝送されると共に、作業区間WAの入り口付近に位置する最後尾の搬送用走行体1に達した走行可信号が、各搬送用走行体1が備えている前後両光通信装置13,14を介して今度は下流向きに伝送され、作業区間WAの出口付近に位置する搬送用走行体1の巾広光通信装置15から地上側巾広光通信装置18a,18bを経由して地上側制御装置に戻される。そしてこの作業区間WA内の全ての搬送用走行体1を1往復する1単位の走行可信号のリレー伝送が繰り返し行われるように構成されている。
 各搬送用走行体1には、図1に示すように、その牽引車2に制御装置19が搭載されている。この制御装置19が上記の走行可信号のリレー伝送を制御すると共に、走行可信号の中継を行う搬送用走行体1の制御装置19は、その中継する走行可信号に基づいて、搬送用走行体1を前記作業速度VLで直進走行させるように、左右一対のモーター6を制御するものである。従って、作業区間WA内の全ての搬送用走行体1が前記作業速度VLを保って直進走行することになる。
 若し、地上側巾広光通信装置18a,18bからの走行可信号の送信が地上側制御装置によって断たれたときは、作業区間WA内の全ての搬送用走行体1に走行可信号が伝送されなくなる。このとき各搬送用走行体1の制御装置19は、走行可信号の受信がないことに基づいてモーター6を停止させるので、作業区間WA内の全ての搬送用走行体1はその場で停止することになる。又、作業区間WA内の特定の搬送用走行体1に非常停止の対象となる異常が生じたとき、当該特定搬送用走行体1の制御装置19は、前後の搬送用走行体1間の走行可信号の中継を自動停止する。この結果、地上側制御装置へ戻す走行可信号のリレー伝送が遮断され、この状況に基づいて地上側制御装置は走行可信号の送信を中止するので、作業区間WA内の全ての搬送用走行体1に走行可信号が伝送されなくなり、やはり作業区間WA内の全ての搬送用走行体1はその場で停止することになる。尚、作業区間WAの入り口付近に位置する最後尾の搬送用走行体1は、自身が最後尾の搬送用走行体1であるとの判定に基づいて、後ろ側の搬送用走行体1からの下流向きの走行可信号を受信していないことによる停止制御は行わずに、その直前の搬送用走行体1から受信した走行可信号を下流方向へ逆向きに伝送することになる。
 次に、作業区間WAへ進入する搬送用走行体1に対する走行制御について、図3~図5A、図7及び図8に基づいて説明する。図3Aに示すように、作業区間WAの入り口付近において作業速度VLで走行している最後尾の搬送用走行体1を前側搬送用走行体1Yとし、この前側搬送用走行体1Yの直後の後ろ側搬送用走行体1Zが作業区間WAに向かって高速VHで走行している状態とすると、当該後ろ側搬送用走行体1Zは、その障害物センサー12が前方の検出エリア内の障害物を検出していないことを条件に高速VHで走行を継続し、若し、障害物センサー12が前方の検出エリア内の障害物を検出すれば、予め設定されている障害物検出時の減速停止制御プログラムに従って制御装置19が自動的に減速停止制御を実行する。
 後ろ側搬送用走行体1Zが、作業区間WAから上流側一定距離の定位置を通過した時点(図7-S1)、例えば計測起点P1又は当該計測起点P1とは別に設定した定位置を通過した時点で、障害物センサー12による障害物検出時の減速停止制御プログラムは無効とし(図7-S2)、図3Bに示すように、当該後ろ側搬送用走行体1Zが前側搬送用走行体1Yを障害物センサー12が検出する障害物検出最大車間距離D1まで接近したとき、ドッキングのための減速制御が開始される。即ち、後ろ側搬送用走行体1Zの障害物センサー12が前側搬送用走行体1Yを障害物として検出したとき(図7-S3)には、通常走行時に実行される障害物検出時の減速停止制御プログラムは実行されず、障害物センサー12の検出信号ONに基づいて前側搬送用走行体1Yとの間の車間距離に基づく減速制御が開始される(図7-S4)。
 図4Aに示すように、前側搬送用走行体1Y及び後ろ側搬送用走行体1Zは、夫々計測起点P1を通過した時点(定位置検出用センサー16が計測起点P1に設けられた地上側マーカーを検出した時点)からの走行距離L1Y,L1Zに相当する現在位置情報を持っている。具体的には、例えば駆動車輪5の回転に連動するパルスエンコーダーの発信パルスを、制御装置19が備える演算機能により計測起点P1を通過した時点から加算計数し、この搬送用走行体1の走行距離に比例して増加する計数値を現在位置情報として持たせることが出来る。而して、前側搬送用走行体1Yの制御装置19は、演算している現在位置情報を後ろ側搬送用走行体1Zに光通信装置13,14を介して伝送し、当該後ろ側搬送用走行体1Zの制御装置19では、受信した前側搬送用走行体1Yの現在位置情報と自身が演算している後ろ側搬送用走行体1Zの現在位置情報とを比較演算して、前側搬送用走行体1Yとの間の車間距離dを求める。そしてこの車間距離dの漸減変化に対応してモーター6を制御して後ろ側搬送用走行体1Zを減速させ、演算されている車間距離dが予めドッキング距離として設定されている設定値に達したとき(図7-S5)、当該後ろ側搬送用走行体1Zが作業速度VLにまで減速されているように、当該後ろ側搬送用走行体1Zを減速制御する(図7-S5)。
 上記減速制御により、図4Bに示すように、後ろ側搬送用走行体1Zが前側搬送用走行体1Yに対して所期のドッキング距離まで接近して、当該前側搬送用走行体1Yと同一の作業速度VLで走行するドッキング完了状態になると、光通信装置13,14を介して前側搬送用走行体1Yにドッキング完了信号を送信し(図7-S6)、上記の車間距離に基づく減速制御を終了すると共に、そのまま作業速度VLでの走行を継続させる(図7-S7)。
 上記のドッキング完了時点では、図4Bに示すように、前側搬送用走行体1Yはドッキング確認位置P2に到達していないが、この前側搬送用走行体1Yがドッキング確認位置P2に到達したとき(図8-S1)、既に後ろ側搬送用走行体1Zからドッキング完了信号を受信しているとき(図8-S2)は、巾広光通信装置15から地上側巾広光通信装置17を経由させて地上側制御装置にドッキング完了信号を送信させる(図8-S3)と共に、そのまま作業速度VLでの走行を継続させる(図8-S4)。この後、先に説明した走行可信号のリレー伝送が後ろ側搬送用走行体1Zを最後尾の搬送用走行体1として実行され、この後ろ側搬送用走行体1Zを含む作業区間WA内の全ての搬送用走行体1が連続状態(ドッキング状態)を維持すべく作業速度VLで走行することになる。
 若し、図5Aに示すように、後ろ側搬送用走行体1Zが前側搬送用走行体1Yに対してドッキングを完了する前に、前側搬送用走行体1Yがドッキング確認位置P2に到達したならば、その場で停止制御を実行させると共に走行可信号の中継作用を中止させる(図8-S5)。この結果、作業区間WA内の全ての搬送用走行体1に対する走行可信号のリレー伝送が停止し、作業区間WAの出口側の地上側巾広光通信装置18a,18bからの走行可信号の送信も停止するので、作業区間WA内の全ての搬送用走行体1が停止待機することになる。この状況は、停止待機する前側搬送用走行体1Yの巾広光通信装置15から地上側巾広光通信装置17を経由して地上側制御装置に通知される。
 そして停止待機している前側搬送用走行体1Yに対して後ろ側搬送用走行体1Zが障害物検出最大車間距離D1まで接近し、上記の車間距離に基づく減速制御を受けて、停止待機している前側搬送用走行体1Yに対してドッキングが完了すると、停止待機していた前側搬送用走行体1Yから巾広光通信装置15及び地上側巾広光通信装置17を経由して地上側制御装置にドッキング完了が通知され、地上側制御装置が作業区間WAの出口側の地上側巾広光通信装置18a,18bから作業区間WAの出口側付近で停止待機している先頭搬送用走行体1に走行可信号を送信するので、後ろ側搬送用走行体1Zと作業区間WA内で停止待機していた全ての搬送用走行体1に走行可信号が伝送され、再び作業速度VLでの走行が再開される。尚、停止待機している前側搬送用走行体1Yに対して後ろ側搬送用走行体1Zがドッキング完了した時点から、この前側搬送用走行体1Yを含む作業区間WA内の全ての搬送用走行体1が作業速度VLで走行を開始するまでの間の時間遅れが大きくなるときは、前側搬送用走行体1Yから後ろ側搬送用走行体1Zに走行可信号が送信されるまでの間、後ろ側搬送用走行体1Zを一時停止させるように制御しても良い。
 次に、図5B~図6、図9及び図10に基づいて、作業区間WAから搬送用走行体1が退出するときの走行制御について説明する。図5Bに示すように、作業区間WAから直前に退出して高速VHで走行する搬送用走行体1を直前退出搬送用走行体1A、作業区間WAの最終工程確認位置P4に位置する搬送用走行体1を先頭搬送用走行体1B、そして作業区間WAの最終工程1つ手前の確認位置P3に位置する搬送用走行体1を2番搬送用走行体1Cとすると、先頭搬送用走行体1Bが最終工程確認位置P4に達したとき(図9-S1)、その情報が当該先頭搬送用走行体1Bの巾広光通信装置15から地上側巾広光通信装置18a,18bを経由して地上側制御装置に伝送される。地上側制御装置は、そのときの直前退出搬送用走行体1Aが先頭搬送用走行体1Bから一定安全確保距離D2の範囲内にあるか否かを判定し、直前退出搬送用走行体1Aが既に一定安全確保距離D2の範囲内から前方に離れているときは(図9-S2)、地上側巾広光通信装置18a,18bからの走行可信号の送信を継続するので、先頭搬送用走行体1Bの制御装置19は、最終工程確認位置P4に達したことと走行可信号を受信していることに基づいてモーター6を加速制御し、この先頭搬送用走行体1Bを高速VHで作業区間WAから退出させる(図9-S3)。
 若し、図5Bに仮想線で示すように、直前退出搬送用走行体1Aが一定安全確保距離D2内に有ると地上側制御装置が判定すると、地上側巾広光通信装置18a,18bからの走行可信号の送信を停止するので、先に説明した走行可信号のリレー伝送が停止され、この先頭搬送用走行体1Bを含む作業区間WA内の全ての搬送用走行体1がその場に停止待機することになる(図9-S4)。そして、直前退出搬送用走行体1Aが一定安全確保距離D2内から前方に進出すれば、先に説明した制御が行われて、先頭搬送用走行体1Bが高速VHで作業区間WAから退出すると同時に、2番搬送用走行体1Cとその後続の作業区間WA内の全ての搬送用走行体1が作業速度VLでの走行を再開する。作業区間WAから高速VHで退出する先頭搬送用走行体1Bは、後述するように最終工程確認位置P4に到達する前に、作業区間WAに進入する前に無効にされていた障害物センサー12の障害物検知に基づく減速停止制御プログラムが有効に戻されているので、通常の障害物センサー12の障害物検知に基づく減速停止制御が併用される。
 一方、2番搬送用走行体1Cが最終工程1つ手前の確認位置P3を通過するとき(図10-S1)、最終工程確認位置P4を通過する先頭搬送用走行体1Bから光通信装置13,14を介して走行可信号を受信している(図10-S2)ので、2番搬送用走行体1Cはそのまま作業速度VLでの走行を継続する(図10-S3)が、上記作用により先頭搬送用走行体1Bが最終工程確認位置P4から高速VHで作業区間WAから退出走行して、当該先頭搬送用走行体1Bと2番搬送用走行体1Cとの間の車間距離が、光通信装置13,14によるデータ通信可能な車間距離より広がると、2番搬送用走行体1Cは先頭搬送用走行体1Bから前後の光通信装置13,14を介して走行可信号を受け継ぐことが出来なくなる。しかしこの最終工程1つ手前の確認位置P3から最終工程確認位置P4までの間の2番搬送用走行体1Cは、巾広光通信装置15を介して地上側巾広光通信装置18a,18bからの走行可信号を受信している(図10-S4)ことを条件に、最終工程確認位置P4に到達するまで(図10-S7)まで、作業速度VLでの走行を継続させることが出来る(図10-S6)。又、この2番搬送用走行体1Cが地上側巾広光通信装置18a,18bから走行可信号を受信していることにより、当該2番搬送用走行体1Cから後方に連続する作業区間WA内の全ての搬送用走行体1に対する走行可信号のリレー伝送も継続され、作業区間WA内の全ての搬送用走行体1も2番搬送用走行体1Cに追従して作業速度VLで走行する。
 尚、作業区間WAに進入する前に無効にされていた各搬送用走行体1の障害物センサー12の障害物検知に基づく減速停止制御プログラムは、最終工程1つ手前の確認位置P3を通過した2番搬送用走行体1Cが先頭搬送用走行体1Bからの走行可信号に基づいて走行する状態から、地上側巾広光通信装置18a,18bからの走行可信号のみに基づいて走行を継続する段階に移った時点で有効になる(図10-S5)。従って、最終工程1つ手前の確認位置P3を通過した2番搬送用走行体1Cは、高速VHで作業区間WAから退出する先頭搬送用走行体1Bが前方に離れて走行可信号を受信しなくなった後は、障害物センサー12の障害物検知に基づく減速停止制御が併用される。従って、図6に示すように、最終工程確認位置P4から高速発進した先頭搬送用走行体1Bが何らかの原因で、最終工程確認位置P4に到達する前の2番搬送用走行体1Cの障害物センサー12で検出し得る位置で停止していたとすると、当該2番搬送用走行体1Cは、障害物センサー12の障害物検知に基づく通常の減速停止制御プログラムの作用によりその場で停止し、同時に後続の搬送用走行体1に対する走行可信号のリレー伝送も停止するので、この2番搬送用走行体1Cを先頭とする作業区間WA内の全ての搬送用走行体1が、異常停止していた先頭搬送用走行体1Bの高速VHでの走行が再開されるまで、その場で停止待機することになる。
 尚、地上側制御装置の働きで地上側巾広光通信装置18a,18bからの走行可信号の送信が断たれたときは、最終工程1つ手前の確認位置P3を通過した2番搬送用走行体1Cはその場に停止すると共に、後続の搬送用走行体1に対する走行可信号のリレー伝送も断たれるので、この2番搬送用走行体1Cを先頭とする作業区間WA内の全ての搬送用走行体1が、地上側巾広光通信装置18a,18bからの走行可信号の送信が再開されるまでその場で停止待機することになる(図10-S8)。
 以上の走行制御によって、高速で走行する搬送用走行体1を自動的に減速制御して作業区間WA内に進入させ、この作業区間WA内では、全ての搬送用走行体1を互いに隣接する連続状態において一定の作業速度VLで走行させ、作業区間WAの出口に達した各搬送用走行体1は、自動的に加速制御して高速VHで退出させることが出来る。
 本発明の搬送用走行体の走行制御方法は、自動車組立てライン内の一定の作業区間において、自動車車体を積載する自走可能な搬送用走行体を一定の作業速度で連続状態を維持させながら走行させる場合の走行制御方法として活用出来る。
 1,1A~1C,1Y,1Z  搬送用走行体
 2  牽引車
 3  搬送台車
 4  垂直連結軸
 5  駆動車輪
 6  モーター
 7  後輪
 12  障害物センサー
 13,14  光通信装置
 15  巾広光通信装置
 16  定位置検出用センサー
 17,18a,18b  地上側巾広光通信装置
 19  制御装置
 P1  計測起点
 P2  ドッキング確認位置
 P3  最終工程1つ手前の確認位置
 P4  最終工程確認位置
 L1Y,L1Z  搬送用走行体1Y及び1Zの走行距離
 d,D3  車間距離
 D1  障害物検出最大車間距離
 D2  一定安全確保距離
 WA  作業区間

Claims (4)

  1.  走行速度可変の自走式搬送用走行体の走行経路中に、各搬送用走行体が走行方向に連続する状態を保って一定低速度の作業速度で自走する作業区間が設定され、この作業区間へ搬送用走行体が高速で接近走行するように構成された搬送設備において、各搬送用走行体には、前後に隣り合う搬送用走行体間でデータ通信を行うデータ通信手段が設けられ、前記作業区間の上手側走行経路中には、計測起点が設定され、前記作業区間へ高速で接近する後ろ側搬送用走行体とその前方の前記作業速度で走行する前側搬送用走行体には、前記計測起点からの走行距離に相当する現在位置情報を持たせ、後ろ側搬送用走行体では、自体の現在位置情報と前記データ通信手段を介して受け取った前側搬送用走行体の現在位置情報とに基づいて前側搬送用走行体との間の距離を演算させると共に当該距離の漸減変化に基づいて減速制御を行わせ、前記距離が設定値に達したドッキング完了時に後ろ側搬送用走行体が前記作業速度で自走しているように制御することを特徴とする、搬送用走行体の走行制御方法。
  2.  前記ドッキング完了後の後ろ側搬送用走行体は、前後両搬送用走行体間の距離に基づく速度制御を終了させ、作業区間内の全ての搬送用走行体を互いに連結することなく前記作業速度で自走させることを特徴とする、請求項1に記載の搬送用走行体の走行制御方法。
  3.  前記データ通信手段が投受光器を使用した光通信手段である、請求項1又は2に記載の搬送用走行体の走行制御方法。
  4.  各搬送用走行体には、前方の障害物を検知する障害物センサーが設けられ、前記作業区間へ高速で接近する後ろ側搬送用走行体が前記障害物センサーにより前側搬送用走行体を検出したときから、前側搬送用走行体との間の距離の漸減変化に基づく前記減速制御を行わせることを特徴とする、請求項1又は2に記載の搬送用走行体の走行制御方法。
PCT/JP2012/051835 2011-02-02 2012-01-27 搬送用走行体の走行制御方法 WO2012105450A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112013010514-3A BR112013010514B1 (pt) 2011-02-02 2012-01-27 Metodo para controlar o movimento de transportadores
CN201280004317.1A CN103270461B (zh) 2011-02-02 2012-01-27 搬送用行走体的行走控制方法
US13/923,107 US8825205B2 (en) 2011-02-02 2013-06-20 Method for controlling movement of travelling carriers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011020546A JP5448101B2 (ja) 2011-02-02 2011-02-02 搬送用走行体の走行制御方法
JP2011-020546 2011-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/923,107 Continuation US8825205B2 (en) 2011-02-02 2013-06-20 Method for controlling movement of travelling carriers

Publications (1)

Publication Number Publication Date
WO2012105450A1 true WO2012105450A1 (ja) 2012-08-09

Family

ID=46602666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051835 WO2012105450A1 (ja) 2011-02-02 2012-01-27 搬送用走行体の走行制御方法

Country Status (5)

Country Link
US (1) US8825205B2 (ja)
JP (1) JP5448101B2 (ja)
CN (1) CN103270461B (ja)
BR (1) BR112013010514B1 (ja)
WO (1) WO2012105450A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448102B2 (ja) * 2011-02-02 2014-03-19 株式会社ダイフク 搬送用走行体の走行制御方法
JP2014190114A (ja) * 2013-03-28 2014-10-06 Daifuku Co Ltd 搬送用走行体の走行経路構造
US9540190B2 (en) * 2015-04-09 2017-01-10 Amazon Technologies, Inc. Methods and apparatus for controlling movement of receptacles
DE102015015770B3 (de) 2015-12-08 2017-06-08 Sew-Eurodrive Gmbh & Co Kg Verfahren zum Betreiben eines Systems und System
AU2018230435B2 (en) 2017-03-08 2024-01-04 Regal Beloit America, Inc. Package sorting transfer module and systems and methods therefor
US10532894B2 (en) 2017-03-10 2020-01-14 Regal Beloit America, Inc. Modular transfer units, systems, and methods
JP6963908B2 (ja) * 2017-05-09 2021-11-10 株式会社ダイフク 物品搬送車
CN111587214B (zh) 2017-11-22 2022-02-22 雷勃美国公司 模块化分选单元、系统和方法
US11185954B2 (en) * 2017-11-30 2021-11-30 Canon Kabushiki Kaisha Transport system, transport method, and article manufacturing method
US10933933B2 (en) * 2018-11-02 2021-03-02 GM Global Technology Operations LLC Autonomous vehicle guidance system and method
KR102316936B1 (ko) * 2019-11-07 2021-10-25 세메스 주식회사 비히클 및 비히클의 속도 조절 방법
CN114803384B (zh) * 2022-05-30 2024-04-02 博众精工科技股份有限公司 一种运动跟随防碰撞方法、装置和换电站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044409A (ja) * 1990-04-20 1992-01-08 Tsubakimoto Chain Co 車間距離保持装置及び車間距離保持方法
JPH06211332A (ja) * 1993-01-19 1994-08-02 Nakanishi Kinzoku Kogyo Kk 搬送装置の切離しゾーンにおける台車走行速度制御 方法
JP2001216024A (ja) * 2000-02-01 2001-08-10 Daifuku Co Ltd 荷搬送設備

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129025A (en) * 1995-07-04 2000-10-10 Minakami; Hiroyuki Traffic/transportation system
JP4182709B2 (ja) * 2002-08-30 2008-11-19 株式会社ダイフク 走行体の走行制御方法
CN1817710B (zh) * 2005-02-07 2012-10-24 傅庆斌 用于控制轨道车运行的方法及控制系统
JP4775650B2 (ja) * 2006-09-05 2011-09-21 株式会社ダイフク 移動体の走行設備
US8428770B2 (en) * 2009-02-06 2013-04-23 Autran Corp Automated transport control system
CN101944148B (zh) * 2010-09-10 2012-03-28 天津市市政工程设计研究院 基于元胞自动机的港区道路弯道圆曲线要素设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044409A (ja) * 1990-04-20 1992-01-08 Tsubakimoto Chain Co 車間距離保持装置及び車間距離保持方法
JPH06211332A (ja) * 1993-01-19 1994-08-02 Nakanishi Kinzoku Kogyo Kk 搬送装置の切離しゾーンにおける台車走行速度制御 方法
JP2001216024A (ja) * 2000-02-01 2001-08-10 Daifuku Co Ltd 荷搬送設備

Also Published As

Publication number Publication date
BR112013010514A2 (pt) 2016-08-02
JP5448101B2 (ja) 2014-03-19
JP2012160105A (ja) 2012-08-23
US8825205B2 (en) 2014-09-02
BR112013010514B1 (pt) 2021-02-23
CN103270461A (zh) 2013-08-28
CN103270461B (zh) 2015-12-02
US20130282168A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5448101B2 (ja) 搬送用走行体の走行制御方法
JP5448102B2 (ja) 搬送用走行体の走行制御方法
US9193387B2 (en) Automatic forward parking in perpendicular parking spaces
TWI557525B (zh) A Moving Control Method for Moving Vehicles in a Moving System and a Turning Section
CN109542097B (zh) 红外置顶循迹的井下无人无轨胶轮车及其行驶控制方法
KR102142202B1 (ko) 자동차의 적어도 반자율적 조종으로 주차 공간으로부터 최종 위치까지 자동차를 출차하는 방법, 운전자 보조 시스템 및 자동차
CN104828450A (zh) 智能搬运车及智能搬运车用交叉口防撞系统
KR20180092875A (ko) 물품 반송 설비
WO2014156501A1 (ja) 自動搬送車
CN108290608B (zh) 用于站台处泊靠操纵的辅助装置
KR20170094502A (ko) 물품 반송 설비
KR20160138155A (ko) 열차 제어 방법 및 열차 제어 시스템
JP2018043599A (ja) 鉱山用作業機械及びその後方監視方法
CN109144071A (zh) 一种狭窄车道内agv行车控制方法
JP4151108B2 (ja) 無人搬送車の衝突防止装置
JP2011145975A (ja) 自動搬送車
JP2019521903A (ja) 航空機のタキシングの改善
CN116457738A (zh) 用于协调无人驾驶运输车辆的方法和系统
CN204642872U (zh) 智能搬运车及智能搬运车用交叉口防撞系统
JP2836314B2 (ja) 自走台車の衝突防止制御方法
JP6110285B2 (ja) 移動体、及び移動体と被牽引物との自動切離しシステム
JP3620144B2 (ja) 有軌道台車の走行制御装置
JP4974934B2 (ja) 無人搬送車の制御方法
JP7200598B2 (ja) 隊列走行システム
JP3366923B2 (ja) 搬送装置の切離しゾーンにおける台車走行速度制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010514

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12742459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013010514

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130429