WO2012104893A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2012104893A1
WO2012104893A1 PCT/JP2011/000518 JP2011000518W WO2012104893A1 WO 2012104893 A1 WO2012104893 A1 WO 2012104893A1 JP 2011000518 W JP2011000518 W JP 2011000518W WO 2012104893 A1 WO2012104893 A1 WO 2012104893A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
side heat
compressor
heating
Prior art date
Application number
PCT/JP2011/000518
Other languages
English (en)
French (fr)
Inventor
直史 竹中
若本 慎一
山下 浩司
裕之 森本
亮宗 石村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/997,422 priority Critical patent/US9523520B2/en
Priority to PCT/JP2011/000518 priority patent/WO2012104893A1/ja
Priority to EP11857819.4A priority patent/EP2672203B1/en
Priority to CN201180065821.8A priority patent/CN103328909B/zh
Priority to JP2012555551A priority patent/JP5627713B2/ja
Publication of WO2012104893A1 publication Critical patent/WO2012104893A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner that has been improved to reduce the temperature of refrigerant discharged from a compressor.
  • a refrigerant having a high global warming potential such as the current R410A refrigerant, R407c refrigerant, R134a refrigerant, carbon dioxide refrigerant, ammonia refrigerant, hydrocarbon refrigerant, Switching to a refrigerant having a low GWP such as an HFO refrigerant or an R32 refrigerant has been studied.
  • GWP global warming potential
  • the R32 refrigerant has substantially the same evaporation / condensation pressure as the R410A refrigerant, and the refrigerating capacity per unit volume is larger than that of the R410A refrigerant. Employment of a mixed refrigerant whose main component is R32 refrigerant mixed with refrigerant or the like is considered promising. However, the R32 refrigerant has a feature that the suction density of the compressor is smaller than that of the R410A refrigerant, and the discharge temperature of the compressor becomes higher.
  • the discharge temperature of the R32 refrigerant is about 20 ° C. higher than the R410A refrigerant.
  • the compressor has an upper limit of discharge temperature determined from the guaranteed temperature of the refrigeration oil or the sealing material, and when the R32 refrigerant mixed with R32 refrigerant or HFO refrigerant is changed to the main refrigerant mixture, the discharge temperature It is necessary to take measures to reduce this.
  • a large-scale air conditioner (such as a cooling rated capacity of about 20 kW or more) that air-conditions a building has a plurality of indoor units connected to a single outdoor unit.
  • a low pressure shell type compressor in which an oil reservoir, a motor, etc. are provided on the low pressure side is used in order to reduce the heat radiation amount of the compressor and ensure the pressure resistance of the compressor shell.
  • the low-pressure shell type compressor separates the liquid refrigerant into the oil sump at the time of suction, so that there is a limit to the reduction of the discharge temperature even if the suction state is moist. Then, the air conditioning apparatus which has a refrigerant circuit which operates the compressor stably (highly reliable) by reducing the discharge temperature of a compressor by injecting a refrigerant into a compressor is proposed (for example, patent) Reference 1).
  • Patent Document 1 The technique described in Patent Document 1 is to inject into a compressor during cooling operation and heating operation to reduce the discharge temperature of the compressor and to operate the compressor stably (highly reliable).
  • the cooling operation and the heating operation there is no significant difference in the state of the refrigerant in the liquid side piping of the outdoor heat exchanger or the indoor heat exchanger, and the state of the refrigerant in the medium pressure container is almost constant.
  • the pressure and dryness of the medium-pressure container may vary depending on the outside air temperature, the load condition of the indoor unit, and the like. As described above, when the pressure or dryness of the medium-pressure container changes, there is a problem that it is difficult to perform stable injection.
  • the air conditioner according to the present invention is made in response to the above-described problem, and aims to provide an air conditioner that stably operates the compressor by reducing the discharge temperature of the compressor. Yes.
  • the air conditioner according to the present invention includes a refrigerant mixture including R32, R32, and HFO1234yf as a heat source refrigerant and having a mass ratio of R32 of 40% or more, or a refrigerant mixture including R32 and HFO1234ze and having a mass ratio of R32 of 15% or more.
  • a refrigerant circuit and an opening constituting a refrigeration cycle are provided.
  • a continuous injection pipe, and a second flow rate control device that is provided in the injection pipe and controls the injection amount of the refrigerant supplied to the compression chamber, and the refrigerant circulating in the refrigeration cycle is passed through the injection pipe and the opening. Then, the compressor is supplied into the compression chamber to inject the compressor.
  • the air conditioner according to the present invention can stably operate the compressor by reducing the discharge temperature of the compressor by injecting the refrigerant from the opening into the compression chamber via the injection pipe.
  • FIG. 3 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 2 The temperature of the refrigerant
  • FIG. 2 is a Ph diagram when the air-conditioning apparatus shown in FIG. 1 is in a cooling only operation and is not injected.
  • FIG. 2 is a Ph diagram when injecting at the time of a cooling only operation of the air conditioner shown in FIG. It is an example of the refrigerant circuit structure different from the refrigerant circuit structure shown in FIG. 1, and shows what can be injected at the time of air conditioning.
  • FIG. 2 is a Ph diagram when the air-conditioning apparatus shown in FIG. 1 is in a completely heating operation and is not injected.
  • FIG. 2 is a Ph diagram when injecting at the time of heating only operation of the air conditioner shown in FIG. 1.
  • FIG. 2 is a Ph diagram when the air-conditioning apparatus shown in FIG. 1 is in a cooling main operation and does not perform injection.
  • FIG. 2 is a Ph diagram when injection is performed during cooling-main operation of the air conditioner shown in FIG. 1.
  • FIG. 2 is a Ph diagram when the air-conditioning apparatus shown in FIG. 1 is in a heating main operation and does not perform injection.
  • FIG. 2 is a Ph diagram in the case of performing injection when the air-conditioning apparatus shown in FIG.
  • FIG. 6 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 3.
  • FIG. 6 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 4.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning apparatus 100 according to Embodiment 1.
  • the air conditioner 100 according to the present embodiment has a function of reducing the temperature of the refrigerant discharged from the compressor and reducing the deterioration of the refrigerant and the refrigerating machine oil and the fatigue of the seal material of the compressor.
  • the air conditioner 100 includes a cooling only operation for performing only a cooling operation for the indoor unit, a heating operation mode for performing only a heating operation for the indoor unit, and an indoor unit for performing a cooling operation and a heating operation.
  • Cooling and heating mixed operation can be executed.
  • the mixed heating / cooling operation includes a cooling main operation mode in which the cooling load is larger and a heating main operation mode in which the heating load is larger.
  • the air conditioner 100 includes a heat source unit (outdoor unit) A, three indoor units C to E, a first connection pipe 6 and a second connection pipe 7. And a relay unit B connected to the indoor units C to E via the first connection pipes 6c to 6e and the second connection pipes 7c to 7e. That is, the cold or warm heat generated by the heat source unit A is delivered to the indoor units C to E via the relay unit B.
  • the air conditioner 100 according to Embodiment 1 is provided with one heat source unit A and one relay unit B, and three indoor units C to E. However, the number of these is not particularly limited.
  • a refrigerant mixture of R32, R32 and HFO1234yf, or a refrigerant mixture of R32 and HFO1234ze is used as a refrigerant for the heat source.
  • the heat source machine A includes a compressor 1, a four-way switching valve 2, a heat source side heat exchanger 3, an accumulator 4, a third flow rate control device 22, a second flow rate control device 24, and a third heat exchanger (heat exchange unit) 26.
  • the gas-liquid separator (second branch portion) 25, the electromagnetic valve 29, the injection pipe 23, and the check valves 18 to 21, 27, and 28 are connected by a refrigerant pipe.
  • the compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature / high pressure state.
  • the compressor 1 has a discharge side connected to the four-way switching valve 2 and a suction side connected to the accumulator 4.
  • the compressor 1 according to the first embodiment is a compressor having a low-pressure shell structure in which a compression chamber is provided in a sealed container, and an opening (not shown) that communicates the inside and outside of the sealed container is formed in the compression chamber. It will be explained as being. Note that an injection pipe 23 is connected to the opening so that the refrigerant can be supplied to the compression chamber.
  • the four-way switching valve 2 connects the discharge side of the compressor 1 to the check valve 27 and the check valve 19 to the suction side of the accumulator 4 in the cooling operation mode and the cooling main operation mode. Further, in the heating only operation mode and the heating main operation mode, the discharge side of the compressor 1 and the check valve 20, and the check valve 28 and the suction side of the accumulator 4 are connected.
  • the heat source side heat exchanger 3 functions as a condenser (radiator) during cooling operation and cooling main operation, and functions as an evaporator during heating operation and heating main operation. And heat exchange can be performed between the air supplied from the air blower attached to the heat source side heat exchanger 3 and the refrigerant, and the refrigerant can be vaporized or condensed and liquefied.
  • One of the heat source side heat exchangers 3 is connected to a check valve 27 and a third flow rate controller 22 described later, and the other is connected to an electromagnetic valve 29, a check valve 28 and a check valve 18.
  • the heat source side heat exchanger 3 will be described as an air-cooled heat exchanger, for example, other methods such as a water-cooled method may be used as long as the refrigerant exchanges heat with other fluids.
  • the accumulator 4 changes the surplus refrigerant and the transient operation due to the difference between the cooling operation, the cooling main operation, the heating operation, and the heating main operation (for example, which of the indoor units C to E is operated)
  • the excess refrigerant is stored.
  • the accumulator 4 has a suction side connected to the check valve 19 and a discharge side connected to the suction side of the compressor 1 in the cooling operation mode and the cooling main operation mode. In the heating operation mode and the heating main operation, the suction side is connected to the check valve 28 and the discharge side is connected to the suction side of the compressor 1.
  • the check valve 18 is provided in a pipe connecting the heat source side heat exchanger 3 and the second connection pipe 7, and allows the refrigerant to flow only from the heat source side heat exchanger 3 to the second connection pipe 7.
  • the check valve 19 is provided in a pipe connecting the four-way switching valve 2 of the heat source apparatus A and the first connection pipe 6, and allows the refrigerant to flow only from the first connection pipe 6 to the four-way switching valve 2.
  • the check valve 20 is provided in a pipe connecting the four-way switching valve 2 and the second connection pipe 7 of the heat source apparatus A, and allows the refrigerant to flow only from the four-way switching valve 2 to the second connection pipe 7.
  • the check valve 21 is provided in a pipe connecting the heat source side heat exchanger 3 and the first connection pipe 6, and allows the refrigerant to flow only from the first connection pipe 6 to the heat source side heat exchanger 3.
  • the check valve 27 is provided in a pipe connecting the four-way switching valve 2 and the heat source side heat exchanger 3, and allows the refrigerant to flow only from the four-way switching valve 2 to the heat source side heat exchanger 3.
  • the check valve 28 is provided in a pipe connecting the second connection pipe 7 and the heat source side heat exchanger 3, and allows the refrigerant to flow only from the second connection pipe 7 to the heat source side heat exchanger 3.
  • the check valve 27 and the check valve 28 fix the flow direction of the refrigerant flowing into the heat source side heat exchanger 3 regardless of whether the heat source side heat exchanger 3 functions as an evaporator or a condenser.
  • the 3rd flow control device 22 and the 2nd flow control device 24 have a function as a pressure-reduction valve or an expansion valve, and decompress and expand a refrigerant.
  • the 3rd flow control device 22 and the 2nd flow control device 24 are good to comprise with what can control the opening degree variably, for example, an electronic expansion valve.
  • one of the third flow rate control devices 22 is connected to the third heat exchanger 26 and the electromagnetic valve 29, and the other is connected to the heat source side heat exchanger 3.
  • One of the second flow rate control devices 24 is connected to the gas-liquid separator 25 and the other is connected to the third heat exchanger 26.
  • the third flow rate control device 22 is closed so that the refrigerant does not flow when the heat source side heat exchanger 3 acts as a condenser, and the refrigerant flows only when the heat source side heat exchanger 3 acts as an evaporator. It is controlled to flow.
  • the second flow rate control device 24 adjusts the flow rate of the refrigerant that is injected into the compressor 1 via the injection pipe 23.
  • the injection pipe 23 is a pipe for injecting the refrigerant flowing through the second connection pipe 7 into the compressor 1.
  • One of the injection pipes 23 is connected to the compressor 1 and the other is connected to the third heat exchanger 26.
  • the gas-liquid separation device (second branch portion) 25 is separable into a gas phase refrigerant and a liquid phase refrigerant.
  • the gas-liquid separator 25 causes the liquid phase of the refrigerant to flow to the second flow control device 24, and mainly the gas phase component. Is branched to flow to the third flow control device 22.
  • the gas-liquid separator 25 is connected to the check valve 21, the third heat exchanger 26, and the second flow rate controller 24.
  • the third heat exchanger 26 includes a refrigerant flowing between the gas-liquid separation device 25 from the first branch portion 40 and the injection pipe 23 when performing the injection in the cooling operation and when performing the injection in the cooling main operation.
  • the refrigerant flowing from the second flow control device 24 to the compressor 1 is subjected to heat exchange.
  • the refrigerant flowing between the gas-liquid separation device 25 and the third flow control device 22 and the second flow control device 24 among the injection pipes 23 when performing the injection in the heating operation and when performing the injection in the heating-main operation, the refrigerant flowing between the gas-liquid separation device 25 and the third flow control device 22 and the second flow control device 24 among the injection pipes 23.
  • the refrigerant flowing from the compressor to the compressor 1 is subjected to heat exchange.
  • One of the third heat exchangers 26 is connected to a pipe connecting the third flow control device 22 and the gas-liquid separator 25, and the other is connected to the injection pipe 23.
  • the electromagnetic valve 29 opens and closes the flow path in which it is provided.
  • the electromagnetic valve 29 is provided between the pipes connecting the first branch part 40 to the third heat exchanger 26.
  • the electromagnetic valve 29 is closed when the heat source side heat exchanger 3 acts as an evaporator, and is controlled to open and close when the heat source side heat exchanger 3 acts as a condenser.
  • One of the solenoid valves 29 is connected to the heat source side heat exchanger 3, and the other is connected to the third flow control device 22 and the third heat exchanger 26.
  • the position of the first branch portion 40 may be either before or after the check valve 18 as long as it is a pipe between the heat source side heat exchanger 3 and the second connection pipe 7.
  • the third branch portion 10 is connected to the heat source unit A via the first connection pipe 6 and the second connection pipe 7, and is connected to each of the indoor units C to E via the first connection pipes 6c to 6e.
  • the first connection pipe 6c is provided with first electromagnetic valves 8c and 8f
  • the first connection pipe 6d is provided with second electromagnetic valves 8d and 8g
  • the first connection pipe 6e is provided with a third electromagnetic valve. 8e and 8h are provided.
  • the third branch section 10 is connected to the first bypass pipe 14a and the second bypass pipe 14b, and further connected to each of the indoor units C to E via the fourth branch section 11 and the second connection pipes 7c to 7e. Has been.
  • the first solenoid valves 8c and 8f, the second solenoid valves 8d and 8g, and the third solenoid valves 8e and 8h are connected to the first connection pipes 6c to 6e and the first connection pipe 6 or the The connection between the two connection pipes 7 is switched.
  • the indoor units C to E are used for cooling.
  • the second connection pipe 7 is connected, the indoor unit is used. Heating is performed from C to E.
  • a flow path switching valve such as a check valve may be provided in the fourth branch portion 11. This is because the refrigerant flowing into the fourth branch section 11 through the second connection pipes 7c to 7e from the indoor units C to E that are in the heating operation passes through the check valve and then the fifth flow rate.
  • the gas-liquid separation device 12 can be separated into a gas-phase refrigerant and a liquid-phase refrigerant.
  • the gas-liquid separator 12 is connected to the second connection pipe 7, the third branching section 10, and the first bypass pipe 14a.
  • the gas-liquid separation device 12 is connected such that its gas phase component is connected to the third branch portion 10 and its liquid phase component is connected to the fourth branch portion 11 via the first bypass pipe 14a. It has become.
  • the fourth flow control device 13 and the fifth flow control device 15 have a function as a pressure reducing valve or an expansion valve, and expand the refrigerant by reducing the pressure.
  • the 4th flow control device 13 and the 5th flow control device 15 are good to comprise by what can control the opening degree variably, for example, an electronic expansion valve.
  • the fourth flow rate control device 13 is connected between the second heat exchanger 17 and the first heat exchanger 16 in the first bypass pipe 14a.
  • the fifth flow control device 15 is connected between the first heat exchanger 16 and the fourth branching portion 11 in the second bypass pipe 14b.
  • One of the first bypass pipes 14 a is connected to the gas-liquid separator 12, and the other is connected to the fourth branch part 11.
  • the first bypass pipe 14a connects the downstream side of the heat source side heat exchanger 3 and the first flow control devices 9c to 9e when the cooled refrigerant flows toward the indoor heat exchangers 5c to 5e.
  • the 2nd heat exchanger 17, the 4th flow control device 13, and the 1st heat exchanger 16 are connected to the 1st bypass piping 14a in this order.
  • One of the second bypass pipes 14 b is connected to the first connection pipe 6 and the other is connected to the fourth branch portion 11.
  • This 2nd bypass piping 14b connects the 5th flow control device 15 and the injection piping 23 at the time of heating operation and heating main operation. At this time, the refrigerant does not pass through the first bypass pipe 14a.
  • the 2nd heat exchanger 17, the 1st heat exchanger 16, and the 5th flow control device 15 are connected to the 2nd bypass piping 14b in this order.
  • the first heat exchanger 16 exchanges heat between the refrigerant flowing through the first bypass pipe 14a and the refrigerant flowing through the second bypass pipe 14b.
  • One of the first heat exchangers 16 is connected between the fourth flow rate control device 13 and the fourth branch part 11 in the first bypass pipe 14a.
  • the other end of the first heat exchanger 16 is connected between the second heat exchanger 17 and the fifth flow control device 15 in the second bypass pipe 14b.
  • the second heat exchanger 17 exchanges heat between the refrigerant flowing through the first bypass pipe 14a and the refrigerant flowing through the second bypass pipe 14b.
  • One end of the second heat exchanger 17 is connected between the gas-liquid separator 12 and the fourth flow rate controller 13 in the first bypass pipe 14a.
  • the other end of the second heat exchanger 17 is connected between the third branch portion 10 and the first heat exchanger 16 in the second bypass pipe 14b.
  • the indoor units C to E are provided with first flow rate controllers 9c to 9e and indoor heat exchangers 5c to 5e connected by refrigerant piping.
  • the first flow control devices 9c to 9e function as pressure reducing valves and expansion valves, and expand the refrigerant by reducing the pressure.
  • the first flow rate control devices 9c to 9e are preferably constituted by devices whose opening degree can be variably controlled, for example, electronic expansion valves.
  • one of the first flow control devices 9c to 9e is connected to the second connection pipes 7c to 7e, and the other is connected to the indoor heat exchangers 5c to 5e.
  • the indoor heat exchangers 5c to 5e function as an evaporator during the cooling operation and the cooling main operation, and function as a condenser (radiator) during the heating operation and the heating main operation. Then, heat exchange can be performed between the air supplied from the blower attached to the indoor heat exchangers 5c to 5e and the refrigerant, and the refrigerant can be evaporated or condensed and liquefied.
  • One of the indoor heat exchangers 5c to 5e is connected to the first flow rate controllers 9c to 9e, and the other is connected to the first connection pipes 6c to 6e.
  • the indoor heat exchangers 5c to 5e are described as air-cooled heat exchangers, for example. However, other systems such as a water-cooled type may be used as long as the refrigerant exchanges heat with other fluids.
  • the air conditioning apparatus 100 is provided with a control means 50.
  • the control means 50 includes information (refrigerant pressure information, refrigerant temperature information, outdoor temperature information, and indoor temperature) detected by various detectors provided in the air conditioning apparatus 100. Based on (information), it is possible to control the driving of the compressor, the switching of the four-way switching valve, the driving of the fan motor of the outdoor fan, the opening of the flow control device, the driving of the fan motor of the indoor fan, and the like.
  • the control means 50 includes a memory 50a in which a function for determining each control value is stored. Further, as illustrated in FIG. 1, one control unit 50 may be provided for each of the heat source unit A and the relay unit B, or may be provided for either one.
  • FIG. 2 shows the temperature of the refrigerant discharged from the compressor 1 with respect to the mixing ratio of the R32 refrigerant. Specifically, the calculation results of the refrigerant temperature discharged from the compressor in the mixed refrigerant of R410A, R32 and HFO1234yf and the mixed refrigerant of R32 and HFO1234ze are shown. It is assumed that the evaporation temperature of the compressor suction is 5 ° C., the condensation temperature is 45 ° C., the suction SH is 3 ° C., and the heat insulation efficiency of the compressor is 65%. Based on FIG. 2, the change of the discharge temperature of the compressor 1 in the refrigerant
  • the refrigerant discharge temperature is required to be suppressed to about 120 ° C. or less, for example.
  • the discharge temperature is increased by about 20 ° C. compared to R410A. In this calculation condition, the discharge temperature does not exceed 120 ° C. However, when the compressor 1 is operated with a large compression ratio such as heating operation in low outside air, the discharge temperature may exceed 120 ° C. From FIG. 2, in order to design a unit with the same level of reliability as R410A, in the case of a mixed refrigerant of R32 and HFO1234yf, R32 is 40 wt% or more, and in the case of a mixed refrigerant of R32 and HFO1234yf, R32 is 15 wt%. In such a case, a measure for reducing the discharge temperature is required.
  • the discharge temperature is reduced when R32 is 60 wt% or more in the mixed refrigerant of R32 and HFO1234yf, and R32 is 25 wt% or more in the mixed refrigerant of R32 and HFO1234yf. It is necessary to take measures.
  • a low-pressure shell type compressor when used, there is a limit in reducing the discharge temperature even if the refrigerant on the suction side of the compressor 1 is moistened. Therefore, it is effective to reduce the refrigerant temperature injected from the compressor 1 and discharged from the compressor 1.
  • the cooling operation is an operation mode in which the indoor units C to E can only be cooled and are cooled or stopped.
  • the heating operation is an operation mode in which the indoor units C to E can only be heated and are heated or stopped.
  • the cooling main operation is an operation mode in which air conditioning is selected for each of the indoor units C to E, and the cooling load is larger than the heating load.
  • the operation mode is such that the heat source side heat exchanger 3 is connected to the discharge side of the compressor 1 and functions as a condenser (heat radiator).
  • the heating-main operation is a mixed heating / cooling operation mode in which cooling / heating can be selected for each indoor unit.
  • the heating load is larger than the cooling load, and the heat source side heat exchanger 3 is connected to the suction side of the compressor 1 to evaporate.
  • This is an operation mode acting as a vessel.
  • the refrigerant flow in the case where the injection in each operation mode is not performed will be described together with the Ph diagram.
  • FIG. 3 is a Ph diagram when the air-conditioning apparatus 100 shown in FIG. 1 is in a cooling only operation and does not perform injection. A case where the cooling operation is performed and no injection is performed will be described with reference to FIGS. 1 and 3. Here, a case where all of the indoor units C to E are going to be cooled will be described.
  • the four-way switching valve 2 is switched so that the refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3. Further, the first electromagnetic valve 8c, the second electromagnetic valve 8d, and the third electromagnetic valve 8e are opened, and the first electromagnetic valve 8f, the second electromagnetic valve 8g, and the third electromagnetic valve 8h are closed. Further, the third flow control device 22 is fully closed so that the refrigerant does not flow, and the electromagnetic valve 29 is closed. In this state, the operation of the compressor 1 is started.
  • a low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant compression process of the compressor 1 is compressed so as to be heated rather than being adiabatically compressed by an isentropic line by the amount of the adiabatic efficiency of the compressor, and is indicated by points (a) to (b) in FIG. Represented by a line.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 through the four-way switching valve 2 and the check valve 27. At this time, the refrigerant is cooled while heating the outdoor air, and becomes a medium-temperature and high-pressure liquid refrigerant.
  • the refrigerant change in the heat source side heat exchanger 3 is expressed by a straight line that is slightly inclined from the point (b) to the point (c) in FIG. .
  • the medium-temperature and high-pressure liquid refrigerant flowing out from the heat source side heat exchanger 3 flows into the first bypass pipe 14a through the second connection pipe 7 and the gas-liquid separator 12.
  • the refrigerant flowing into the first bypass pipe 14 a passes through the second heat exchanger 17, the fourth flow rate control device 13, and the first heat exchanger 16.
  • the refrigerant flowing into the first bypass pipe 14a is cooled by exchanging heat with the refrigerant flowing through the second bypass pipe 14b in the first heat exchanger 16 and the second heat exchanger 17.
  • the cooling process at this time is represented by points (c) to (d) in FIG.
  • the liquid refrigerant cooled by the first heat exchanger 16 and the second heat exchanger 17 flows into the fourth branch portion 11 while bypassing a part of the refrigerant to the second bypass pipe 14b.
  • the high-pressure liquid refrigerant that has flowed into the fourth branch portion 11 is branched at the fourth branch portion 11 and flows into the first flow control devices 9c to 9e.
  • the high-pressure liquid refrigerant is squeezed and decompressed by the first flow rate control devices 9c to 9e to be in a low-temperature and low-pressure gas-liquid two-phase state.
  • the change of the refrigerant in the first flow rate control devices 9c to 9e is performed under a constant enthalpy.
  • the refrigerant change at this time is represented by the vertical line shown from the point (d) to the point (e) in FIG.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the first flow control devices 9c to 9e flows into the indoor heat exchangers 5c to 5e.
  • the refrigerant is heated while cooling the room air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the change of the refrigerant in the indoor heat exchangers 5c to 5e is represented by a slightly inclined horizontal line shown in FIG. 3 from the point (e) to the point (a) in consideration of the pressure loss.
  • the low-temperature and low-pressure gas refrigerant that has exited the indoor heat exchangers 5c to 5e passes through the electromagnetic valves 8c to 8e, respectively, and joins at the third branch section 10.
  • the low-temperature and low-pressure gas refrigerant merged at the third branch portion 10 merges with the low-temperature and low-pressure gas refrigerant heated by the second heat exchanger 17 and the first heat exchanger 16 of the second bypass pipe 14b. And it flows into the compressor 1 via the 1st connection piping 6, the four-way switching valve 2, and the accumulator 4, and is compressed.
  • FIG. 4 is a Ph diagram when the air-conditioning apparatus 100 shown in FIG. 1 is in the cooling only operation and injecting. The case of the cooling operation and the injection will be described with reference to FIGS. 1 and 4. A description will be given of the operation of the refrigerant when the refrigerant compression ratio increases when the outside air temperature is high or the room temperature is low and the temperature of the refrigerant discharged from the compressor 1 increases without injection.
  • the electromagnetic valve 29 is opened. The flow in the main flow portion of the refrigerant is the same as that in the case of the cooling operation and no injection is performed, and thus the description thereof is omitted.
  • a part of the liquid refrigerant cooled by the heat source side heat exchanger 3 flows into the third heat exchanger 26 via the electromagnetic valve 29.
  • the refrigerant flowing into the third heat exchanger 26 is cooled by exchanging heat with a low-temperature refrigerant described later.
  • the refrigerant change at this time is represented by the point (f) from the point (c) in FIG.
  • the cooled refrigerant flows into the second flow rate control device 24 via the gas-liquid separation device 25, is decompressed, and flows into the third heat exchanger 26.
  • the refrigerant change at this time is represented by the point (g) from the point (f) in FIG.
  • the refrigerant flowing into the third heat exchanger 26 exchanges heat with the above-described high-temperature refrigerant and is heated.
  • the refrigerant change at this time is represented by the point (h) from the point (g) in FIG. *
  • the cooled gas-liquid two-phase refrigerant that has flowed out of the third heat exchanger 26 is injected into the compressor 1.
  • coolant flow rate of the compressor 1 increases and cooling capacity increases.
  • the discharge temperature of the compressor 1 is reduced.
  • the refrigerant flowing into the third heat exchanger 26 via the electromagnetic valve 29 is cooled by the third heat exchanger 26, and thus the flow rate control device 24.
  • the refrigerant flowing into the liquid becomes a liquid single phase. That is, since the liquid single phase flows into the flow rate control device 24, occurrence of pressure vibration is suppressed. That is, the flow control device 24 can perform stable flow control on the refrigerant.
  • FIG. 5 is an example of a refrigerant circuit configuration different from the refrigerant circuit configuration shown in FIG. 1 and shows one that can be injected during cooling and heating.
  • the injection operation is also possible in the circuit shown in FIG.
  • the refrigerant circuit configuration shown in FIG. 1 shows one that can be injected during cooling and heating.
  • the refrigerant passes through the third flow control device 22 during the cooling only operation and the cooling main operation.
  • the refrigerant may be foamed due to the pressure loss caused by the third flow control device 22.
  • the air-conditioning apparatus 100 according to Embodiment 1 employs the refrigerant circuit configuration shown in FIG. 1 so that the refrigerant does not pass through the third flow rate control device 22 during the cooling only operation and the cooling main operation. .
  • the high-pressure liquid refrigerant is directly injected into the compressor 1, stable injection is possible.
  • FIG. 6 is a Ph diagram when the air-conditioning apparatus shown in FIG. A case where the heating operation is performed and no injection is performed will be described with reference to FIGS. 1 and 6. Here, the case where all of the indoor units C to E are going to be heated will be described.
  • the four-way switching valve 2 is switched so that the refrigerant discharged from the compressor 1 flows into the third branch portion 10.
  • the first electromagnetic valve 8c, the second electromagnetic valve 8d, and the third electromagnetic valve 8e are closed, and the first electromagnetic valve 8f, the second electromagnetic valve 8g, and the third electromagnetic valve 8h are opened.
  • the electromagnetic valve 29 is closed. In this state, the operation of the compressor 1 is started.
  • a low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant compression process of this compressor is represented by the line shown from point (a) to point (b) in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the third branch portion 10 via the four-way switching valve 2, the second connection pipe 7, and the gas-liquid separator 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the third branch portion 10 is branched at the third branch portion 10, and flows into the indoor heat exchangers 5c to 5e through the first electromagnetic valves 8f to 8h.
  • the refrigerant is cooled while heating the room air, and becomes a medium-temperature and high-pressure liquid refrigerant.
  • the change of the refrigerant in the indoor heat exchangers 5c to 5e is represented by a slightly inclined straight line that is slightly inclined from the point (b) to the point (c) in FIG.
  • the medium-temperature and high-pressure liquid refrigerant that has flowed out of the indoor heat exchangers 5c to 5e merges at the fourth branching section 11 via the first flow rate control devices 9c to 9e, and further the fifth flow rate control device 15 and the first heat exchange.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchangers 5c to 5e is expanded and depressurized by the first flow control devices 9c to 9e, the fifth flow control device 15, and the third flow control device 22. It becomes a low-temperature low-pressure gas-liquid two-phase state.
  • the refrigerant change at this time is represented by the vertical line shown from the point (c) to the point (d) in FIG.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed out of the third flow control device 22 flows into the heat source side heat exchanger 3, and the refrigerant is heated while cooling the outdoor air to become a low-temperature low-pressure gas refrigerant.
  • the refrigerant change in the heat source side heat exchanger 3 is represented by a slightly inclined straight line that is slightly inclined from the point (d) to the point (a) in FIG.
  • the low-temperature and low-pressure gas refrigerant exiting the heat source side heat exchanger 3 flows into the compressor 1 via the check valve 28, the four-way switching valve 2, and the accumulator 4, and is compressed.
  • FIG. 7 is a Ph diagram when the air-conditioning apparatus 100 shown in FIG. A case where the heating operation is performed and injection is performed will be described with reference to FIGS. 1 and 7.
  • the operation of the refrigerant when the refrigerant compression ratio becomes large and the discharge temperature becomes high without injection will be described, for example, when the outside air temperature is low or the room temperature is high.
  • the electromagnetic valve 29 is closed. Since the flow in the main flow portion of the refrigerant is basically the same as that in the case where the injection is not performed, the description thereof is omitted.
  • the balance of the throttles of the fifth flow control device 15 and the third flow control device 22 was arbitrary.
  • the fifth flow rate control device 15 is fully opened, and the third flow rate control is mainly performed so that the pressure difference between the discharge side pressure of the compressor 1 and the outlet of the fifth flow rate control device 15 is, for example, about 1 MPa or less. It is preferable that the flow rate of the refrigerant flowing into the heat source side heat exchanger 3 can be adjusted by adjusting the device 22.
  • a part of the refrigerant of the gas-liquid two-phase refrigerant that circulates through the indoor units C to E and flows into the gas-liquid separator 25 is branched from the lower part of the gas-liquid separator 25 mainly in a liquid refrigerant state.
  • the main refrigerant (point (f)) is cooled by the third heat exchanger 26 (point (g)), depressurized by the third flow rate controller 22 (point (d)), and flows into the heat source side heat exchanger 3. To do.
  • the branched liquid refrigerant (point (e)) is decompressed by the flow control device 24 (point (h)), heated by the third heat exchanger 26 (point (i)), and injected into the compressor 1. Is done.
  • the gas-liquid two-phase refrigerant is injected into the compressor 1, the refrigerant flow rate is increased and the heating capacity is increased. Moreover, the discharge temperature of the compressor 1 is reduced.
  • the refrigerant flowing into the second flow rate control device 24 becomes a liquid single phase due to the branching of the liquid refrigerant in the gas-liquid separator 25, and the refrigerant that flows into the third flow rate control device 22 by the third heat exchanger 26. Is cooled to a liquid single phase.
  • the second flow rate control device 24 and the third flow rate control device 22 can perform stable flow rate control on the refrigerant.
  • the air-conditioning apparatus 100 reduces the discharge temperature of the compressor 1 by injecting the compressor 1 during the all-heating operation, and deteriorates or compresses the refrigerant or refrigerating machine oil.
  • the fatigue of the sealing material of the machine 1 can be reduced, and the compressor 1 can be operated stably (highly reliable).
  • the refrigerant is controlled to an intermediate pressure by passing through the third flow control device 22. And since the said medium pressure refrigerant
  • FIG. 8 is a Ph diagram when the air-conditioning apparatus shown in FIG. 1 is in a cooling main operation and does not perform injection.
  • a case where the cooling main operation is performed and no injection is performed will be described with reference to FIGS. 1 and 8.
  • the indoor units C and D are cooling and the indoor unit E is heating will be described.
  • the four-way switching valve 2 is switched so that the refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3.
  • the first electromagnetic valve 8c, the second electromagnetic valve 8d, and the third electromagnetic valve 8h are opened, and the first electromagnetic valve 8f, the second electromagnetic valve 8g, and the third electromagnetic valve 8e are closed.
  • the third flow control device 22 is fully closed so that the refrigerant does not flow, and the electromagnetic valve 29 is closed. In this state, the operation of the compressor 1 is started.
  • a low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant compression process of the compressor 1 is represented by a line shown from the point (a) to the point (b) in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 through the four-way switching valve 2.
  • the heat source side heat exchanger 3 the refrigerant is cooled while heating the outdoor air while leaving the amount of heat necessary for heating, and is in a gas-liquid two-phase state of medium temperature and high pressure.
  • the refrigerant change in the heat source side heat exchanger 3 is represented by a slightly inclined horizontal line shown from the point (b) to the point (c) in FIG.
  • the gas refrigerant (point (d)) separated by the gas-liquid separator 12 flows into the indoor heat exchanger 5e that performs heating via the third branch portion 10 and the electromagnetic valve 8h. Then, the refrigerant is cooled while heating the room air, and becomes a medium temperature and high pressure gas refrigerant.
  • the change of the refrigerant in the indoor heat exchanger 5e is represented by a slightly inclined straight line that is slightly inclined from the point (d) to the point (f) in FIG. And the refrigerant
  • the liquid refrigerant (point (e)) separated by the gas-liquid separator 12 flows into the first bypass pipe 14a. Then, the liquid refrigerant that has flowed into the first bypass pipe 14 a flows into the second heat exchanger 17.
  • the liquid refrigerant flowing into the second heat exchanger 17 is cooled by exchanging heat with the low-pressure refrigerant flowing through the second bypass pipe 14b.
  • coolant in this 2nd heat exchanger 17 is represented by the substantially horizontal straight line shown to the point (g) from the point (e) of FIG.
  • the combined high-pressure liquid refrigerant flows into the first flow control devices 9c and 9d of the indoor units C and D that perform cooling from the fourth branch portion 11 while bypassing a part of the refrigerant to the second bypass pipe 14b. .
  • the high-pressure liquid refrigerant is squeezed and decompressed by the first flow control devices 9c and 9d to be in a low-temperature and low-pressure gas-liquid two-phase state.
  • the change of the refrigerant in the first flow control devices 9c and 9d is performed under a constant enthalpy.
  • the refrigerant change at this time is represented by the vertical line shown from the point (h) to the point (i) in FIG.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the first flow rate control devices 9c and 9d flows into the indoor heat exchangers 5c and 5d that perform cooling.
  • the refrigerant is heated while cooling the room air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the change of the refrigerant in the indoor heat exchangers 5c and 5d is represented by a slightly inclined straight line that is slightly inclined from the point (i) to the point (a) in FIG.
  • the low-temperature and low-pressure gas refrigerants flowing out from the indoor heat exchangers 5c and 5d flow through the electromagnetic valves 8c and 8d, respectively, and flow into the third branch portion 10 to join.
  • the low-temperature and low-pressure gas refrigerant merged at the third branch portion 10 merges with the low-temperature and low-pressure gas refrigerant flowing from the second bypass pipe 14b.
  • the refrigerant flowing from the second bypass pipe 14b is heated by the second heat exchanger 17 and the first heat exchanger 16 by the liquid refrigerant flowing through the first bypass pipe 14a.
  • the low-temperature and low-pressure gas refrigerant flowing out from the third branch portion 10 flows into the compressor 1 through the first connection pipe 6, the four-way switching valve 2, and the accumulator 4 and is compressed.
  • FIG. 9 is a Ph diagram when the air-conditioning apparatus shown in FIG. 1 is in cooling main operation and injecting. A case of cooling main operation and injection will be described with reference to FIGS. 1 and 9. The operation of the refrigerant when the compression ratio of the refrigerant becomes large and the discharge temperature becomes high without injection will be described. In addition, when performing injection by the cooling main operation, the electromagnetic valve 29 is opened. Since the flow in the main flow portion of the refrigerant is basically the same as that in the case where the injection is not performed, the description thereof is omitted.
  • a part of the liquid refrigerant cooled by the heat source side heat exchanger 3 flows into the third heat exchanger 26 via the electromagnetic valve 29.
  • the refrigerant flowing into the third heat exchanger 26 exchanges heat with a low-temperature refrigerant, which will be described later, is cooled (point (j) in FIG. 9), and is depressurized by the flow rate control device 24 via the gas-liquid separator 25. (Point (k)) is heated by the third heat exchanger 26 (point (l)).
  • the cooled gas-liquid two-phase refrigerant that has flowed out of the third heat exchanger 26 is injected into the compressor 1.
  • coolant flow rate of the compressor 1 increases and cooling capacity increases.
  • the discharge temperature of the compressor 1 is reduced.
  • the refrigerant flowing into the third heat exchanger 26 via the electromagnetic valve 29 is cooled by the third heat exchanger 26, and thus the flow rate control device 24.
  • the refrigerant flowing into the liquid becomes a liquid single phase. That is, since the liquid single phase flows into the flow rate control device 24, occurrence of pressure vibration is suppressed. That is, the flow control device 24 can perform stable flow control on the refrigerant.
  • the air-conditioning apparatus 100 reduces the discharge temperature of the compressor 1 by injecting into the compressor 1 during the cooling-main operation, thereby degrading or compressing refrigerant or refrigerating machine oil.
  • the fatigue of the sealing material of the machine 1 can be reduced, and the compressor 1 can be operated stably (highly reliable).
  • the third flow rate control device 22 does not pass as in the cooling operation. As in the case of the cooling only operation, since the high-pressure liquid refrigerant is directly injected into the compressor 1, stable injection is possible.
  • FIG. 10 is a Ph diagram when the air-conditioning apparatus 100 shown in FIG. 1 is in a heating main operation and does not perform injection. A case where the heating-dominated operation is not performed and the injection is not performed will be described with reference to FIGS. 1 and 10.
  • the indoor unit C is cooling and the indoor units D and E are heating will be described.
  • the four-way switching valve 2 is switched so that the refrigerant discharged from the compressor 1 flows into the third branch section 10. Further, the first electromagnetic valve 8f, the second electromagnetic valve 8d, and the third electromagnetic valve 8e are closed, and the first electromagnetic valve 8c, the second electromagnetic valve 8g, and the third electromagnetic valve 8h are opened.
  • the opening of the third flow rate control device 22 is fully opened, or the evaporation temperature of the refrigerant in the first connection pipe 6c is 0. It is controlled to be about °C. In this state, the operation of the compressor 1 is started.
  • a low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant compression process of the compressor 1 is represented by a line shown from the point (a) to the point (b) in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the third branch portion 10 via the four-way switching valve 2, the check valve 20, and the second connection pipe 7.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the third branch portion 10 flows from the third branch portion 10 into the indoor heat exchangers 5d and 5e via the electromagnetic valves 8g and 8h and the first connection pipes 6d and 6e.
  • the refrigerant is cooled while heating the room air, and becomes a medium-temperature and high-pressure liquid refrigerant.
  • the change of the refrigerant in the indoor heat exchangers 5d and 5e is represented by a slightly inclined straight line that is inclined slightly from the point (b) to the point (c) in FIG.
  • the medium-temperature and high-pressure liquid refrigerant that has flowed out of the indoor heat exchangers 5d and 5e flows into the first flow rate control devices 9d and 9e, and flows into the fourth branch portion 11 through the second connection pipes 7d and 7e. To do. Part of the high-pressure liquid refrigerant merged at the fourth branch portion 11 flows into the first flow rate control device 9c provided in the indoor unit C that performs cooling through the second connection pipe 7c.
  • the high-pressure liquid refrigerant that has flowed into the first flow control device 9c is throttled and decompressed by the first flow control device 9c to be in a low-temperature low-pressure gas-liquid two-phase state.
  • the refrigerant change at this time is represented by the vertical line shown from the point (c) to the point (d) in FIG.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed out of the first flow control device 9c flows into the indoor heat exchanger 5c.
  • the refrigerant is heated while cooling the room air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the refrigerant change at this time is represented by a straight line that is slightly inclined and shown from point (d) to point (e) in FIG.
  • the refrigerant that has flowed out of the indoor heat exchanger 5c flows into the first connection pipe 6c, and flows into the first connection pipe 6 through the electromagnetic valve 8c and the third branch portion 10.
  • the high-pressure liquid refrigerant that has flowed into the fifth flow control device 15 is throttled and expanded (depressurized) by the fifth flow control device 15, and enters a low-temperature low-pressure gas-liquid two-phase state.
  • the refrigerant change at this time is represented by the vertical line shown from the point (c) to the point (f) in FIG.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the fifth flow control device 15 flows into the first connection pipe 6 via the first heat exchanger 16 and the second heat exchanger 17, and the indoor heat exchanger It merges with the low-temperature low-pressure gas-liquid two-phase refrigerant (vapor refrigerant) flowing out of 5c (point (g)).
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant merged in the first connection pipe 6 is supplied as a heat source via the check valve 21, the gas-liquid separator 25, the third heat exchanger 26, and the third flow rate controller 22. It flows into the side heat exchanger 3.
  • the refrigerant absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
  • the refrigerant change at this time is represented by a straight line that is slightly inclined from the point (g) to the point (a) in FIG.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 3 flows into the compressor 1 through the check valve 28, the four-way switching valve 2, and the accumulator 4, and is compressed.
  • FIG. 11 is a Ph diagram when the air-conditioning apparatus 100 shown in FIG. A case where the heating operation is mainly performed and injection is performed will be described with reference to FIGS. 1 and 11. The operation of the refrigerant when the compression ratio of the refrigerant becomes large and the discharge temperature becomes high without injection will be described. In addition, when injecting by heating main operation, the solenoid valve 29 is closed. Since the flow in the main flow portion of the refrigerant is the same as that in the case where the injection is not performed, the description is omitted.
  • the opening degree (throttle) of the third flow rate control device 22 is increased in the first connection pipe 6c in order to increase the pressure of the refrigerant injected into the compressor 1 and to ensure the capacity of the indoor unit C that performs cooling.
  • the evaporation temperature of the refrigerant is controlled to be about 0 ° C.
  • the gas-liquid two-phase refrigerant that circulates through the indoor units C to E and flows into the gas-liquid separator 25 a part of the refrigerant is branched from one of the gas-liquid separators 25 mainly in a liquid refrigerant state (FIG. (K)), the remaining gas-phase refrigerant flows out from the other outlet (point (h)).
  • the main refrigerant flowing out of the other outlet (point (h)) is cooled by the third heat exchanger 26 (point (i)) and depressurized by the third flow rate controller 22 (point (j)). Then, it flows into the heat source side heat exchanger 3.
  • the branched liquid refrigerant (point (k)) is depressurized by the flow control device 24 (point (l)), heated by the third heat exchanger 26 (point (m)), and injected into the compressor 1. Is done.
  • the gas-liquid two-phase refrigerant is injected into the compressor 1, the refrigerant flow rate increases and the cooling capacity increases. Moreover, the discharge temperature of the compressor 1 is reduced.
  • the refrigerant flowing into the second flow rate control device 24 becomes a liquid single phase due to the branching of the liquid refrigerant in the gas-liquid separator 25, and the refrigerant that flows into the third flow rate control device 22 by the third heat exchanger 26. Is cooled to a liquid single phase.
  • the second flow rate control device 24 and the third flow rate control device 22 can perform stable flow rate control on the refrigerant.
  • the refrigerant flowing into the third flow control device 22 is cooled by the third heat exchanger 26 and cooled to the liquid single phase.
  • it may not be a liquid single phase but a gas-liquid two phase.
  • more stable control can be performed by incorporating a device that disturbs and stirs the flow field of the gas-liquid two-phase flow, such as a porous metal or a sintered tube, just before the third flow control device 22.
  • a device that disturbs and stirs the flow field of the gas-liquid two-phase flow such as a porous metal or a sintered tube, just before the third flow control device 22.
  • the stirrer may be installed from the third flow rate controller 22 to about 5 times the inner diameter or less in order to obtain the effect of stirring.
  • a device that disturbs and stirs the flow field of the gas-liquid two-phase flow may be employed in the second flow control device 24 and the fifth flow control device 15.
  • the air-conditioning apparatus 100 reduces the discharge temperature of the compressor 1 by injecting the compressor 1 during the heating-main operation, thereby degrading or compressing refrigerant or refrigerating machine oil.
  • the fatigue of the sealing material of the machine 1 can be reduced, and the compressor 1 can be operated stably (highly reliable).
  • the refrigerant is controlled to an intermediate pressure by passing through the fifth flow control device 15. And since the said medium pressure refrigerant
  • coolant is injected into the compressor 1, the stable injection is possible.
  • the air-conditioning apparatus 100 can perform defrosting by performing a defrost operation.
  • a defrost operation In order to perform the defrosting operation efficiently, it is necessary to reduce the temperature difference between the outside air temperature and the refrigerant temperature to prevent heat radiation, and to shorten the time for heat radiation to the outside air by shortening the defrost time.
  • the connection of the four-way switching valve 2 is switched, and the high-temperature refrigerant discharged from the compressor 1 is supplied to the heat source side heat exchanger 3. And the cooled refrigerant
  • the air conditioner 100 employs a mixed refrigerant of R32, R32 and HFO1234yf, or a mixed refrigerant of R32 and HFO1234ze. Therefore, as shown in FIG. 2, the discharge temperature of the compressor 1 increases as compared with the case where the R410A refrigerant is employed. Therefore, it is effective to improve the defrosting capability by reducing the discharge temperature of the compressor 1 by injection and increasing the refrigerant flow rate.
  • the injection can be performed regardless of the cooling operation, the heating operation, and the cooling / heating mixed operation. That is, regardless of the cooling operation, the heating operation, and the cooling / heating mixed operation, the discharge temperature of the compressor 1 can be reduced and the compressor 1 can be operated stably.
  • the refrigerant flows through the third flow rate control device 22 only during the heating operation and the heating main operation.
  • the evaporating temperature at which the refrigerant is evaporated in the heat source side heat exchanger 3 is lower than the evaporating temperature of the indoor heat exchanger provided in the indoor unit that performs cooling because the outside air temperature decreases.
  • the refrigerant flowing into the heat source side heat exchanger 3 can be surely evaporated by adjusting the pressure with the third flow rate control device 22.
  • the condensation temperature for condensing the refrigerant in the heat source side heat exchanger 3 is not practically higher than the condensation temperature of the indoor unit that performs heating, and thus pressure adjustment is not necessary. That is, in the cooling main operation, the pressure loss generated in the process of the refrigerant flowing from the indoor unit that performs heating to the heat source side heat exchanger 3 is reduced, and the operation can be performed in a highly efficient state. It means that no adjustment is required.
  • FIG. FIG. 12 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of the air-conditioning apparatus 200 according to Embodiment 2.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • the position of the first branch portion 40 may be either before or after the check valve 18 as long as it is a pipe between the heat source side heat exchanger 3 and the second connection pipe 7. .
  • the air-conditioning apparatus 200 according to the second embodiment is different from the air-conditioning apparatus 100 according to the first embodiment in the extraction part of the injection pipe 23 from the gas-liquid separation device 25.
  • the refrigerant separated into the gas-liquid separator 25 and flowing into the injection pipe 23 is gas-liquid two-phase. Met.
  • the air-conditioning apparatus 200 according to Embodiment 2 performs the injection during the heating operation or the heating main operation, the refrigerant separated into the gas-liquid separator 25 and flowing into the injection pipe 23 is mainly gas. It has become.
  • the compressor 1 can be injected during the cooling operation, the heating operation, and the cooling / heating mixed operation. That is, the refrigerant flow rate increases, and the capabilities of cooling operation, heating operation, and mixed cooling / heating operation increase. Moreover, the discharge temperature of the compressor 1 is reduced.
  • the gas-liquid separation device 25 of the air-conditioning apparatus 200 according to Embodiment 2 flows into the gas-liquid separation device 25 although the diameter of the flow control device 24 is increased in order to cause the gas refrigerant to flow into the injection pipe 23.
  • the flow rate of the refrigerant flowing into the heat source side heat exchanger 3 can be reduced. Therefore, the amount of refrigerant flowing out from the heat source side heat exchanger 3 is reduced, and accordingly, the electric power (input) supplied to the compressor 1 can be reduced accordingly.
  • the third heat exchanger 26 can be removed without any problem.
  • FIG. 13 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of the air-conditioning apparatus 210 according to Embodiment 3.
  • the air-conditioning apparatus 210 according to the third embodiment is configured such that mainstream refrigerant passes through the gas-liquid separator 25 and the third heat exchanger 26 even during cooling.
  • the check valve 18-1 and the check valve 18-2 are connected in series to the check valve 18 portion of the first embodiment, and the gas-liquid separator 25, the third heat The exchanger 26, the 3rd flow control apparatus 22, and the injection piping 23 are connected.
  • a check valve 21 is connected in parallel to the check valve 18-1 to the pipe that flows into the gas-liquid separator 25, and the side that flows out from the third heat exchanger 26 (but not the injection pipe 23).
  • the third flow control device 22 is connected in parallel with the check valve 18-2.
  • the solenoid valve 29 used in the first and second embodiments is not provided.
  • the 1st branch part 40 and the gas-liquid separator (2nd branch part) 25 are the same parts of the refrigerant circuit shown in FIG.
  • air conditioner 210 Since air conditioner 210 according to Embodiment 3 has check valve 18-1 and check valve 18-2, the flow of refrigerant during heating operation and heating main operation is the same as in Embodiment 1. . Further, during the cooling operation and the cooling main operation, the refrigerant is separated into gas and liquid at the first branch portion 40. The liquid phase portion of the separated refrigerant is decompressed by the second flow control device 24, further gasified by the third heat exchanger 26, and injected into the compressor 1. In addition, the mainstream refrigerant (the gas phase portion of the gas-liquid separated refrigerant) is cooled by the third heat exchanger 26.
  • the mainstream refrigerant is liquefied and the refrigerant flowing into the second flow rate control device 24 can also be maintained in the liquid single-phase state, so that the injection operation can be performed more stably.
  • the solenoid valve used in the first and second embodiments can be omitted.
  • the mainstream refrigerant can be cooled, and the cooling capacity is increased.
  • FIG. 14 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning apparatus 300 according to Embodiment 4.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • the circuit configuration in the outdoor unit can be configured as in the second embodiment or the third embodiment without any problem.
  • the intermediate heat exchangers 30a and 30b, the first flow control devices 9a and 9b, and the pumps 31a and 31b are installed in the relay unit B.
  • the 1st heat exchanger 16 and the 2nd heat exchanger 17 which were used in Embodiment 1, Embodiment 2, and Embodiment 3 are not provided.
  • electromagnetic valves 32c to 32h for selecting connection between the second connection pipes 7c to 7e of the indoor units C to E and the intermediate heat exchangers 30a and 30b are installed.
  • electromagnetic valves 32i to 32n for selecting connection between the first connection pipes 6c to 6e of the indoor units C to E and the intermediate heat exchangers 30a and 30b are installed.
  • flow control devices 33c to 33e for adjusting the flow rate of the brine flowing into the indoor units C to E are installed.
  • any number of intermediate heat exchangers may be installed as long as the second refrigerant can be cooled or / and heated.
  • the number of pumps 31a and 31b is not limited to one, and a plurality of small capacity pumps may be used in parallel or in series.
  • the refrigerant exchanges heat with the brine driven by the pumps 31a and 31b to generate hot water or cold water.
  • the brine an antifreeze or water, a mixture of antifreeze and water, a mixture of water and an additive having a high anticorrosive effect, or the like may be used. This brine flows through the thick line portion shown in FIG.
  • Heat transfer from the intermediate heat exchangers 30a and 30b to the indoor units C to E is performed by brine. That is, the brine is heated or cooled by exchanging heat with the refrigerant on the heat source unit A side in the intermediate heat exchangers 30a and 30b. Then, the heated or cooled brine is supplied to the indoor units C to E by the pumps 31a and 31b via the second connection pipes 7c to 7e. The heat of the brine supplied to the indoor units C to E is used for heating or cooling by the action of the indoor heat exchangers 5c to 5e. The brine that has flowed out of the indoor heat exchangers 5c to 5e returns to the relay machine B through the first connection pipes 6c to 6e. Note that since the density of the brine flowing through the second connection pipes 7c to 7e and the brine flowing through the first connection pipes 6c to 6e are almost the same, the thickness of the pipes may be the same.
  • the intermediate heat exchangers 30a and 30b act as evaporators because they produce cold water.
  • the Ph diagram on the refrigeration cycle side (heat source unit side) at this time is the same as FIG. 3 when no injection is performed, and is the same as FIG. 4 when injection is performed.
  • the intermediate heat exchangers 30a and 30b act as radiators because they produce hot water.
  • the Ph diagram on the refrigeration cycle side at this time is the same as that in FIG. 6 when injection is not performed, and is the same as that in FIG. 7 when injection is performed.
  • either one of the intermediate heat exchangers 30a and 30b acts as an evaporator to produce cold water, and the other is a condenser. Acts as a hot water.
  • the connection of the four-way switching valve 2 is switched according to the ratio of the cooling load and the heating load, and the heat source side heat exchanger 3 is selected to act as either an evaporator or a radiator, and the cooling main operation or the heating main operation is performed. I do.
  • the Ph diagram on the refrigeration cycle side at this time is the same as that in FIG. 8 when the cooling main operation is not performed and is the same as that in FIG. 9 when the injection is performed.
  • the operation on the refrigeration cycle side is almost the same as that in the first embodiment.
  • the refrigerant flow is regarded as the one corresponding to the indoor heat exchangers 5c to 5e of the first embodiment replaced with the intermediate heat exchangers 30a and 30b.
  • the pumps 31a and 31b, the indoor heat exchangers 5c to 5e, and the intermediate heat exchangers 30a and 30b are connected to form a circulation circuit that circulates a second refrigerant such as brine, and the indoor heat exchanger 5c. To 5e exchange heat between the second refrigerant and room air.
  • the first flow rate control is performed.
  • the devices 9c to 9e are installed in the vicinity of the indoor heat exchangers 5c to 5e.
  • the temperature of the brine changes due to pressure loss in the first connection pipes 6c to 6e and the second connection pipes 7c to 7e. Is reduced.
  • the flow rate control devices 33c to 33e can be installed in the repeater B. In this way, by installing the flow control devices 33c to 33e in the relay B, the flow control devices 33c to 33e can be separated from the indoor air-conditioning target space, so that the valves of the flow control devices 33c to 33e are driven. And noise to the indoor unit such as refrigerant flow noise when passing through the valve can be reduced.
  • the control in the indoor units C to E is controlled by information on the status of the indoor remote control, the thermo-off, whether the outdoor unit is defrosting, etc. You only have to do it. Furthermore, by performing heat transport from the heat source unit A to the relay unit B with the refrigerant, the pump used for driving the brine can be reduced in size, and further, the power for conveying the brine can be reduced to save energy.
  • the air conditioning apparatus 100 in the refrigerant circuit configuration of the air conditioner 300 according to the fourth embodiment, also injects air into the compressor 1 through the injection pipe 23, thereby cooling and heating capacity. Can be improved. Moreover, the discharge temperature of the compressor 1 can be reduced thereby, the discharge temperature of the compressor 1 can be reduced, and the compressor 1 can be operated stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 熱源用の冷媒としてR32、R32及びHFO1234yfを含みR32の質量比率が40%以上の混合冷媒、又はR32及びHFO1234zeを含みR32の質量比率が15%以上の混合冷媒を用い、密閉容器内に圧縮室を有し、当該圧縮室には密閉容器内外を連通する開口部が形成された低圧シェル構造の圧縮機1、第1流路切替弁2、熱源側熱交換器3、第1流量制御装置9c~9e、及び複数の利用側熱交換器C~Eを有し、これらが冷媒配管で接続されて冷凍サイクルを構成し、利用側熱交換器C~E側で暖房のみを行う暖房運転、利用側熱交換器C~E側で冷房のみを行う冷房運転、及び利用側熱交換器C~E側で暖房と冷房が混在する冷暖房混在運転を可能とした空気調和装置100、200、300において、冷凍サイクルを構成する冷媒回路と開口部とを接続するインジェクション配管23と、インジェクション配管23に設けられ、圧縮室に供給される冷媒のインジェクション量を制御する第2流量制御装置24とを有し、冷凍サイクルを循環する冷媒を、インジェクション配管23及び開口部を介して圧縮室内に供給して圧縮機1をインジェクションする。 

Description

空気調和装置
 本発明は、空気調和装置に関し、特に、圧縮機から吐出される冷媒の温度を低減する改良がなされた空気調和装置に関するものである。
 近年、地球環境保護の観点から、空調に利用する冷媒として、現行のR410A冷媒やR407c冷媒、R134a冷媒など地球温暖化係数(GWP)が高い冷媒から二酸化炭素冷媒、アンモニア冷媒、炭化水素系冷媒、HFO系冷媒、R32冷媒などGWPの低い冷媒への切り替えが検討されている。これらGWPが低い冷媒の中で、R32冷媒は蒸発・凝縮圧力がR410A冷媒とほぼ同等かつ、単位体積あたりの冷凍能力がR410A冷媒よりも大きく機器の小型化が可能であるため、R32冷媒もしくはHFO冷媒等を混合させるなどしたR32冷媒が主成分の混合冷媒の採用が有力視されている。
 ただし、R32冷媒はR410A冷媒に比べて圧縮機の吸入密度が小さく、圧縮機の吐出温度が高くなる特徴がある。例えば、蒸発温度5℃、凝縮温度45℃、圧縮機吸入時の冷媒の過熱度が1℃の場合、R32冷媒はR410A冷媒よりも吐出温度が20℃程度上昇する。圧縮機は冷凍機油やシール材の保障温度などから、吐出温度の上限値が決まっており、R32冷媒もしくはHFO冷媒等を混合させるなどしたR32冷媒が主成分の混合冷媒に転換した場合、吐出温度を低減できる対策が必要となる。
 また、一般にビルの空調を行うような大型の空気調和装置(例えば冷房定格能力が20kW程度以上)には、一台の室外機に複数台の室内機が接続され、そして、室内機が冷房のみを行う冷房運転と、室内機が暖房のみを行う暖房運転と、冷房運転及び暖房運転を行う室内機が同時に混在する冷暖房混在運転とを行うことができる空気調和装置が存在する。このような大型の空気調和装置は、圧縮機の放熱量の低減、圧縮機シェルの耐圧確保のため、圧縮機は油溜め、モータ等を低圧側に設ける低圧シェル型圧縮機が用いられている。しかし、低圧シェル型圧縮機では、高圧シェル型圧縮機と異なり、吸入時に液冷媒が油溜めに分離されるため、吸入状態を湿り気味にしても吐出温度の低減に限界がある。
そこで、圧縮機に冷媒をインジェクションすることで、圧縮機の吐出温度を低減し、圧縮機を安定的(高信頼性)に運転させる冷媒回路を有する空気調和装置が提案されている(たとえば、特許文献1参照)。
特開2002-13491号公報(明細書の5~7、9頁、図3及び図4参照)
 特許文献1に記載の技術は、冷房運転、暖房運転時において圧縮機にインジェクションして圧縮機の吐出温度を低減し、圧縮機を安定的(高信頼性)に運転させるものである。ここで、冷房運転及び暖房運転時には、室外熱交換器や室内熱交換器の液側配管の冷媒の状態に大きな差はなく、中圧の容器の冷媒の状態はほぼ一定である。
 しかし、冷房運転及び暖房運転を行う室内機が同時に混在する冷暖房混在運転時においては、外気温度や室内機の負荷状況などにより、中圧の容器の圧力や乾き度が変化する場合がある。このように中圧の容器の圧力や乾き度が変化すると、安定的にインジェクションを行うことが困難となるという課題があった。
 本発明に係る空気調和装置は、上記の課題に対応して成されたもので、圧縮機の吐出温度を低減して、圧縮機を安定的に運転させる空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、熱源用の冷媒としてR32、R32及びHFO1234yfを含みR32の質量比率が40%以上の混合冷媒、又はR32及びHFO1234zeを含みR32の質量比率が15%以上の混合冷媒を用い、密閉容器内に圧縮室を有し、当該圧縮室には密閉容器内外を連通する開口部が形成された低圧シェル構造の圧縮機、第1流路切替弁、熱源側熱交換器、第1流量制御装置、及び複数の利用側熱交換器を有し、これらが冷媒配管で接続されて冷凍サイクルを構成し、利用側熱交換器側で暖房のみを行う暖房運転、利用側熱交換器側で冷房のみを行う冷房運転、及び利用側熱交換器側で暖房と冷房が混在する冷暖房混在運転を可能とした空気調和装置において、冷凍サイクルを構成する冷媒回路と開口部とを接続するインジェクション配管と、インジェクション配管に設けられ、圧縮室に供給される冷媒のインジェクション量を制御する第2流量制御装置とを有し、冷凍サイクルを循環する冷媒を、インジェクション配管及び開口部を介して圧縮室内に供給して圧縮機をインジェクションするものである。
 本発明に係る空気調和装置は、インジェクション配管を介して開口部から圧縮室に冷媒をインジェクションすることにより、圧縮機の吐出温度を低減して、圧縮機を安定的に運転させることができる。
実施の形態1に係る空気調和装置の冷媒回路構成の一例を示す冷媒回路図である。 R32冷媒の混合比率に対する圧縮機から吐出される冷媒の温度について説明するものである。 図1に示す空気調和装置の全冷房運転時であってインジェクションしない場合のP-h線図である。 図1に示す空気調和装置の全冷房運転時であってインジェクションする場合のP-h線図である。 図1に示す冷媒回路構成とは異なる冷媒回路構成の一例であり、冷暖房時にインジェクション可能であるものを示すものである。 図1に示す空気調和装置の全暖房運転時であってインジェクションしない場合のP-h線図である。 図1に示す空気調和装置の全暖房運転時であってインジェクションする場合のP-h線図である。 図1に示す空気調和装置の冷房主体運転時であってインジェクションしない場合のP-h線図である。 図1に示す空気調和装置の冷房主体運転時であってインジェクションする場合のP-h線図である。 図1に示す空気調和装置の暖房主体運転時であってインジェクションしない場合のP-h線図である。 図1に示す空気調和装置の暖房主体運転時であってインジェクションする場合のP-h線図である。 実施の形態2に係る空気調和装置の冷媒回路構成の一例を示す冷媒回路図である。 実施の形態3に係る空気調和装置の冷媒回路構成の一例を示す冷媒回路図である。 実施の形態4に係る空気調和装置の冷媒回路構成の一例を示す冷媒回路図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、実施の形態1に係る空気調和装置100の冷媒回路構成の一例を示す冷媒回路図である。図1に基づいて、空気調和装置100の冷媒回路構成について説明する。本実施の形態に係る空気調和装置100は、圧縮機から吐出される冷媒温度を低減し、冷媒や冷凍機油の劣化及び圧縮機のシール材等の疲労を低減する機能を有している。
 また、空気調和装置100は、室内機に冷房運転のみを実行する全冷房運転と、室内機に暖房運転のみを実行する全暖房運転モードと、冷房運転と暖房運転を実行する室内機が混在する冷房暖房混在運転とを実行可能である。なお、冷暖房混在運転には、冷房負荷の方が大きい冷房主体運転モード、及び暖房負荷の方が大きい暖房主体運転モードがある。
 図1に図示されるように、空気調和装置100は、一台の熱源機(室外機)Aと、三台の室内機C~Eと、第1接続配管6及び第2接続配管7を介して熱源機Aに接続されるとともに、第1接続配管6c~6e及び第2接続配管7c~7eを介して室内機C~Eに接続される中継機Bとを有している。つまり、熱源機Aで生成された冷熱又は温熱は、中継機Bを介して室内機C~Eに配送されるようになっている。
 なお、本実施の形態1に係る空気調和装置100は、1台の熱源機Aと、一台の中継機Bとが一台ずつ設けられ、3台の室内機C~Eが設けられたものとして説明するが、これらの台数は、特に限定されるものではない。また、本空気調和装置100には、熱源用の冷媒としてR32、R32とHFO1234yfの混合冷媒、又はR32とHFO1234zeの混合冷媒が用いられる。
[熱源機A]
 熱源機Aには、圧縮機1、四方切替弁2、熱源側熱交換器3、アキュムレータ4、第3流量制御装置22、第2流量制御装置24、第3熱交換器(熱交換部)26、気液分離装置(第2の分岐部)25、電磁弁29、インジェクション配管23、及び逆止弁18~21、27、28が冷媒配管で接続されて設けられている。
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出するものである。この圧縮機1は、吐出側が四方切替弁2に接続され、吸引側がアキュムレータ4に接続されている。本実施の形態1に係る圧縮機1は、密閉容器内に圧縮室を有し、当該圧縮室には密閉容器内外を連通する開口部(図示省略)が形成された低圧シェル構造の圧縮機であるものとして説明する。なお、この開口部にはインジェクション配管23が接続されており、冷媒を圧縮室に供給可能となっている。
 四方切替弁2は、冷房運転モード時及び冷房主体運転モード時において、圧縮機1の吐出側と逆止弁27、及び逆止弁19とアキュムレータ4の吸引側を接続する。また、全暖房運転モード時及び暖房主体運転モード時において、圧縮機1の吐出側と逆止弁20、及び逆止弁28とアキュムレータ4の吸引側を接続するようにする。
 熱源側熱交換器3は、冷房運転時及び冷房主体運転時には凝縮器(放熱器)として機能し、暖房運転時及び暖房主体運転時には蒸発器として機能する。そして、熱源側熱交換器3に付設された送風機から供給される空気と冷媒との間で熱交換を行ない、冷媒を蒸発ガス化又は凝縮液化することができる。この熱源側熱交換器3は、一方が逆止弁27及び後述の第3流量制御装置22に接続され、他方が電磁弁29、逆止弁28及び逆止弁18に接続されている。熱源側熱交換器3は、たとえば空冷式の熱交換器であるものとして説明するが、冷媒が他の流体と熱交換する構成であれば水冷式等他の方式でもよい。
 アキュムレータ4は、冷房運転時、冷房主体運転時、暖房運転時及び暖房主体運転時の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内機C~Eのうちのいずれを運転するか)に対する余剰冷媒を蓄えるものである。このアキュムレータ4は、冷房運転モード時及び冷房主体運転モード時において、吸引側が逆止弁19に接続され、吐出側が圧縮機1の吸引側に接続される。また、暖房運転モード時及び暖房主体運転時において、吸引側が逆止弁28に接続され、吐出側が圧縮機1の吸引側に接続される。
 逆止弁18は、熱源側熱交換器3と第2接続配管7とを接続する配管に設けられており、熱源側熱交換器3から第2接続配管7へのみ冷媒の流通を許容する。逆止弁19は、熱源機Aの四方切替弁2と第1接続配管6とを接続する配管に設けられており、第1接続配管6から四方切替弁2へのみ冷媒の流通を許容する。逆止弁20は、熱源機Aの四方切替弁2と第2接続配管7を接続する配管に設けられており、四方切替弁2から第2接続配管7へのみ冷媒の流通を許容する。逆止弁21は、熱源側熱交換器3と第1接続配管6とを接続する配管に設けられており、第1接続配管6から熱源側熱交換器3へのみ冷媒の流通を許容する。
 また、逆止弁27は、四方切替弁2と熱源側熱交換器3とを接続する配管に設けられており、四方切替弁2から熱源側熱交換器3へのみ冷媒の流通を許容する。逆止弁28は、第2接続配管7と熱源側熱交換器3とを接続する配管に設けられており、第2接続配管7から熱源側熱交換器3へのみ冷媒の流通を許容する。逆止弁27及び逆止弁28は、熱源側熱交換器3が蒸発器、又は凝縮器として機能するにかかわらず熱源側熱交換器3へ流れ込む冷媒の流れ方向を固定している。
 第3流量制御装置22及び第2流量制御装置24は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。第3流量制御装置22及び第2流量制御装置24は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
ここで、第3流量制御装置22は、一方が第3熱交換器26及び電磁弁29に接続され、他方が熱源側熱交換器3に接続されている。また、第2流量制御装置24は、一方が気液分離装置25に接続され、他方が第3熱交換器26に接続されている。
 なお、第3流量制御装置22は、熱源側熱交換器3が凝縮器として作用した場合には冷媒が流れないように閉止し、熱源側熱交換器3が蒸発器として作用した場合のみ冷媒が流れるように制御されている。また、第2流量制御装置24は、インジェクション配管23を介して圧縮機1にインジェクションする冷媒流量を調整するものである。
 インジェクション配管23は、第2接続配管7を流れる冷媒を圧縮機1にインジェクションするための配管である。インジェクション配管23は、一方が圧縮機1に接続され、他方が第3熱交換器26に接続されている。
 気液分離装置(第2の分岐部)25は、気相の冷媒と液相の冷媒とに分離可能なものである。たとえば、逆止弁21から気液二相状態の冷媒が供給された場合において、気液分離装置25は、冷媒の液相分を第2流量制御装置24に流れるようにし、主に気相分が第3流量制御装置22に流れるように分岐させるものである。気液分離装置25は、逆止弁21、第3熱交換器26及び第2流量制御装置24に接続されている。
 第3熱交換器26は、冷房運転でインジェクションを行う際及び冷房主体運転でインジェクションを行う際において、第1の分岐部40から気液分離装置25の間を流れる冷媒と、インジェクション配管23のうち第2流量制御装置24から圧縮機1までを流れる冷媒を熱交換させるものである。また、暖房運転でインジェクションを行う際及び暖房主体運転でインジェクションを行う際において、気液分離装置25から第3流量制御装置22の間を流れる冷媒と、インジェクション配管23のうち第2流量制御装置24から圧縮機1までを流れる冷媒を熱交換させるものである。なお、本構成では暖房時のインジェクションを行う場合に冷媒の流れが並行流に、冷房時のインジェクションを行う場合に対向流になる構成になっているが、熱交換器の配管の接続を変更して、冷媒の流れの向きを逆転させても問題ない。
 第3熱交換器26は、一方が第3流量制御装置22と気液分離装置25を接続する配管に接続され、他方がインジェクション配管23に接続されている。
 電磁弁29は、それが設けられている流路を開閉するものである。電磁弁29は、第1の分岐部40から第3熱交換器26までを接続する配管の間に設けられている。電磁弁29は、熱源側熱交換器3が蒸発器として作用する場合には閉じており、凝縮器として作用する場合には開閉の制御が行われる。電磁弁29は、一方が熱源側熱交換器3に接続され、他方が第3流量制御装置22及び第3熱交換器26に接続されている。なお、第1の分岐部40の位置は、熱源側熱交換器3から第2接続配管7までの間の配管であれば逆止弁18の前後どちらでも構わない。
[中継機B]
 中継機Bには、第1電磁弁8c、8f、第2電磁弁8d、8g、第3電磁弁8e、8h、第3の分岐部10、第4の分岐部11、気液分離装置12、第4流量制御装置13、第1バイパス配管14a、第2バイパス配管14b、第5流量制御装置15、第1熱交換器16、及び第2熱交換器17が冷媒配管で接続されて設けられている。
 なお、図1に図示されるように、第4の分岐部11と、後述の第1流量制御装置9c~9eとは、それぞれが第2接続配管7c~7eを介して接続されている。また、第1接続配管6の径より第2接続配管7の径の方が小さく(細く)なっているとよい。これにより、封入する冷媒量を削減できる。
 第3の分岐部10は、第1接続配管6及び第2接続配管7を介して熱源機Aに接続され、第1接続配管6c~6eを介して室内機C~Eのそれぞれに接続されている。ここで、第1接続配管6cには第1電磁弁8c、8fが設けられ、第1接続配管6dには第2電磁弁8d、8gが設けられ、第1接続配管6eには第3電磁弁8e、8hが設けられている。
 第3の分岐部10は、第1バイパス配管14a及び第2バイパス配管14bに接続され、さらに第4の分岐部11及び第2接続配管7c~7eを介して室内機C~Eのそれぞれに接続されている。
 なお、第1電磁弁8c、8f、第2電磁弁8d、8g、及び第3電磁弁8e、8hは、流路の開閉により、第1接続配管6c~6eと、第1接続配管6または第2接続配管7との接続の切り替えを行うものであり、第1接続配管6と接続される場合には室内機C~Eで冷房が、第2接続配管7と接続される場合には室内機C~Eで暖房が行われる。
 なお、第4の分岐部11に逆止弁等の流路切替弁を配設してもよい。これは、室内機C~Eのうち暖房運転しているものから第2接続配管7c~7eを介して第4の分岐部11に流入した冷媒が、その逆止弁を通ってから第5流量制御装置15及び第4流量制御装置13に流入することになるからである。つまり、その逆止弁を通ることにより、第5流量制御装置15及び第4流量制御装置13に流入する前の冷媒を、確実に単相の液冷媒とすることができるため、安定した流量制御ができる。
 気液分離装置12は、気相の冷媒と液相の冷媒とに分離可能なものである。気液分離装置12は、第2接続配管7、第3の分岐部10、及び第1バイパス配管14aに接続されている。ここで、気液分離装置12は、その気相分が第3の分岐部10に接続され、その液相分が第1バイパス配管14aを介して第4の分岐部11に接続されるようになっている。
 第4流量制御装置13及び第5流量制御装置15は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。第4流量制御装置13及び第5流量制御装置15は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。ここで、第4流量制御装置13は第1バイパス配管14aのうち第2熱交換器17から第1熱交換器16までの間に接続されている。また、第5流量制御装置15は第2バイパス配管14bのうち第1熱交換器16から第4の分岐部11までの間に接続されている。
 第1バイパス配管14aは、一方が気液分離装置12に接続され、他方が第4の分岐部11に接続されている。この第1バイパス配管14aは、室内熱交換器5c~5eに向かって冷却された冷媒が流れる時に、熱源側熱交換器3の下流側と第1流量制御装置9c~9eとを接続する。第1バイパス配管14aには、第2熱交換器17、第4流量制御装置13、及び第1熱交換器16がこの順番で接続されている。
 第2バイパス配管14bは、一方が第1接続配管6に接続され、他方が第4の分岐部11に接続されている。この第2バイパス配管14bは、暖房運転及び暖房主体運転時において、第5流量制御装置15とインジェクション配管23とを接続する。このとき、冷媒は、第1バイパス配管14aを通らない。第2バイパス配管14bには、第2熱交換器17、第1熱交換器16、及び第5流量制御装置15がこの順番で接続されている。
 第1熱交換器16は、第1バイパス配管14aを流れる冷媒と第2バイパス配管14bを流れる冷媒とを、熱交換させるものである。第1熱交換器16は、一方が第1バイパス配管14aのうち第4流量制御装置13から第4の分岐部11までの間に接続されている。また、第1熱交換器16の他方は、第2バイパス配管14bのうち第2熱交換器17から第5流量制御装置15までの間に接続されている。
 第2熱交換器17は、第1バイパス配管14aを流れる冷媒と第2バイパス配管14bを流れる冷媒とを、熱交換させるものである。第2熱交換器17は、一方が第1バイパス配管14aのうち気液分離装置12から第4流量制御装置13までの間に接続されている。また、第2熱交換器17の他方は、第2バイパス配管14bのうち第3の分岐部10から第1熱交換器16までの間に接続されている。
[室内機C~E]
 室内機C~Eには、第1流量制御装置9c~9e、及び室内熱交換器5c~5eが冷媒配管で接続されて設けられている。
 第1流量制御装置9c~9eは、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。第1流量制御装置9c~9eは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。ここで、第1流量制御装置9c~9eは、一方が第2接続配管7c~7eに接続され、他方が室内熱交換器5c~5eに接続されている。
 室内熱交換器5c~5eは、冷房運転時及び冷房主体運転時には蒸発器として機能し、暖房運転時及び暖房主体運転時には凝縮器(放熱器)として機能する。そして、室内熱交換器5c~5eに付設された送風機から供給される空気と冷媒との間で熱交換を行ない、冷媒を蒸発ガス化又は凝縮液化することができる。
 この室内熱交換器5c~5eは、一方が第1流量制御装置9c~9eに接続され、他方が第1接続配管6c~6eに接続されている。室内熱交換器5c~5eは、たとえば空冷式の熱交換器であるものとして説明するが、冷媒が他の流体と熱交換する構成であれば水冷式等他の方式でもよい。
 さらに、空気調和装置100には、制御手段50が設けられている。この制御手段50は、検出器の詳細な説明については省略するが、空気調和装置100に備えられた各種検出器で検出された情報(冷媒圧力情報、冷媒温度情報、室外温度情報、及び室内温度情報)に基づいて、圧縮機の駆動、四方切替弁の切り替え、室外ファンのファンモーターの駆動、流量制御装置の開度、室内ファンのファンモーターの駆動などを制御可能となっている。なお、制御手段50は、各制御値を決定する関数等が格納されるメモリ50aを備えている。また、制御手段50は、図1に図示されるように、熱源機A及び中継機Bにそれぞれ1つずつ設けられていてもよいし、いずれか一方に設けられていてもよい。
 図2は、R32冷媒の混合比率に対する圧縮機1から吐出される冷媒の温度について示すものである。具体的には、R410A、R32とHFO1234yfの混合冷媒、及びR32とHFO1234zeの混合冷媒における圧縮機から吐出される冷媒温度の計算結果を示すものである。なお、圧縮機吸入の蒸発温度5℃、凝縮温度45℃、吸入SH3℃、圧縮機の断熱効率を65%と仮定している。
 図2に基づいて、本空気調和装置100に使用される冷媒における圧縮機1の吐出温度の変化について検討する。冷媒の吐出温度が高くなると圧縮機1のシール材、冷凍機油の劣化や冷媒の安定性が悪くなる。したがって、冷媒の吐出温度は、たとえば120℃程度以下に抑えることが要求される。
 R32冷媒は単体で使用した場合、吐出温度がR410Aに比べて20℃程度上昇している。本計算条件では吐出温度が120℃を超えていないが、低外気時の暖房運転など圧縮機1の圧縮比が大きな運転をした場合、120℃を超える可能性がある。図2より、R410Aと同程度の信頼性を持たせてユニット設計をするには、R32とHFO1234yfの混合冷媒の場合、R32が40wt%以上、R32とHFO1234yfの混合冷媒の場合、R32が15wt%以上の場合に吐出温度を低減する対策が必要となる。なお、R410Aよりも5℃程度の上昇まで許容できるとした場合、R32とHFO1234yfの混合冷媒ではR32が60wt%以上、R32とHFO1234yfの混合冷媒ではR32が25wt%以上の場合に、吐出温度を低減する対策が必要となる。
 ここで、低圧シェル式の圧縮機が用いられた場合において、圧縮機1の吸入側の冷媒を湿らせても吐出温度の低減には限界がある。したがって、圧縮機1にインジェクションして圧縮機1から吐出される冷媒温度を低減することが有効である。
 次に、本実施の形態1に係る空気調和装置100が実行する各種運転時の運転動作について説明する。空気調和装置100の運転動作には、冷房運転、暖房運転、及び冷暖房混在運転である冷房主体運転及び暖房主体運転の4つのモードがある。
 冷房運転とは、室内機C~Eは冷房のみが可能な運転モードであり、冷房もしくは停止している。暖房運転とは、室内機C~Eは暖房のみが可能な運転モードであり、暖房もしくは停止している。
 冷房主体運転とは、室内機C~Eごとに冷暖房を選択できる冷暖房混在の運転モードであり、暖房負荷に比べて冷房負荷が大きいものである。そして、熱源側熱交換器3が圧縮機1の吐出側に接続され、凝縮器(放熱器)として作用している運転モードである。
 暖房主体運転とは、室内機ごとに冷暖房を選択できる冷暖房混在の運転モードであり、冷房負荷に比べて暖房負荷が大きく、熱源側熱交換器3が圧縮機1の吸入側に接続され、蒸発器として作用している運転モードである。以降、各運転モードのインジェクションしない場合とした場合の冷媒の流れを、P-h線図とともに説明する。
[全冷房運転・インジェクションをしない場合]
 図3は、図1に示す空気調和装置100の全冷房運転時であってインジェクションしない場合のP-h線図である。図1及び図3に基づいて全冷房運転であってインジェクションしない場合を説明する。ここでは、室内機C~Eの全てが冷房しようとしている場合について説明する。全冷房運転を行なう場合、四方切替弁2を、圧縮機1から吐出された冷媒を熱源側熱交換器3へ流入させるように切り替える。また、第1電磁弁8c、第2電磁弁8d、及び第3電磁弁8eは開口され、第1電磁弁8f、第2電磁弁8g、及び第3電磁弁8hは閉止される。また、第3流量制御装置22は冷媒が流れないように全閉状態になり、電磁弁29は閉止されている。この状態で、圧縮機1の運転を開始する。
 低温低圧のガス冷媒が圧縮機1によって圧縮され、高温高圧のガス冷媒となって吐出される。この圧縮機1の冷媒圧縮過程は、圧縮機の断熱効率の分だけ等エントロピ線で断熱圧縮されるよりも加熱されるように圧縮され、図3の点(a)から点(b)に示す線で表される。
 圧縮機1から吐出された高温高圧のガス冷媒は、四方切替弁2及び逆止弁27を介して熱源側熱交換器3に流入する。このとき、冷媒が室外空気を加熱しながら冷却され、中温高圧の液冷媒となる。熱源側熱交換器3での冷媒変化は、熱源側熱交換器3の圧力損失を考慮すると、図3の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。
 熱源側熱交換器3から流出した中温高圧の液冷媒は、第2接続配管7及び気液分離装置12を介して第1バイパス配管14aに流入する。そして、第1バイパス配管14aに流入した冷媒は、第2熱交換器17、第4流量制御装置13、及び第1熱交換器16を通る。ここで、第1バイパス配管14aに流入した冷媒は、第1熱交換器16及び第2熱交換器17において、第2バイパス配管14bを流れる冷媒と熱交換し、冷却される。このときの冷却過程は図3の点(c)から点(d)で表される。
 第1熱交換器16、及び第2熱交換器17で冷却された液冷媒は、一部の冷媒を第2バイパス配管14bにバイパスさせながら、第4の分岐部11に流入する。第4の分岐部11に流入した高圧の液冷媒は、第4の分岐部11で分岐され、第1流量制御装置9c~9eに流入する。そして、高圧の液冷媒は第1流量制御装置9c~9eで絞られて膨張、減圧し、低温低圧の気液二相状態になる。この第1流量制御装置9c~9eでの冷媒の変化はエンタルピが一定のもとで行われる。このときの冷媒変化は、図3の点(d)から点(e)に示す垂直線で表される。
 第1流量制御装置9c~9eから流出した低温低圧の気液二相状態の冷媒は、室内熱交換器5c~5eに流入する。そして、冷媒が室内空気を冷却しながら加熱され、低温低圧のガス冷媒となる。室内熱交換器5c~5eでの冷媒の変化は、圧力損失を考慮すると、図3の点(e)から点(a)に示すやや傾いた水平に近い直線で表される。
 室内熱交換器5c~5eを出た低温低圧のガス冷媒は、それぞれ電磁弁8c~8eを通り、第3の分岐部10にて合流する。第3の分岐部10で合流した低温低圧のガス冷媒は、第2バイパス配管14bの第2熱交換器17及び第1熱交換器16で加熱された低温低圧のガス冷媒と合流する。そして、第1接続配管6、四方切替弁2、及びアキュムレータ4を介して圧縮機1に流入し、圧縮される。
[全冷房運転・インジェクションをする場合]
 図4は、図1に示す空気調和装置100の全冷房運転時であってインジェクションする場合のP-h線図である。図1及び図4に基づいて全冷房運転であってインジェクションする場合を説明する。外気温度が高い場合や、室内温度が低い場合など冷媒の圧縮比が大きくなり、インジェクションをしないと圧縮機1から吐出される冷媒温度が高くなる場合の冷媒の動作について説明する。なお、冷房運転でインジェクションをする場合には、電磁弁29は開口される。冷媒の主流部の流れについては冷房運転であってインジェクションをしない場合と同様であるため省略する。
 冷媒の吐出温度を低減するため、熱源側熱交換器3で冷却された液冷媒の一部が電磁弁29を介して第3熱交換器26に流入する。第3熱交換器26に流入した冷媒は、後述する低温の冷媒と熱交換し冷却される。このときの冷媒変化は、図4の点(c)から点(f)で表される。さらに、この冷却された冷媒は、気液分離装置25を介して第2流量制御装置24に流入して減圧され、第3熱交換器26に流入する。このときの冷媒変化は、図4の点(f)から点(g)で表される。第3熱交換器26に流入した冷媒は、前述の高温の冷媒と熱交換し、加熱される。このときの冷媒変化は、図4の点(g)から点(h)で表される。 
 この第3熱交換器26から流出した冷却された気液二相の冷媒が、圧縮機1にインジェクションされる。それによって、圧縮機1の冷媒流量が増大し、冷房能力が増大する。また、圧縮機1の吐出温度が低減される。
 なお、流量制御装置24に気液二相の冷媒が流入すると、気体、液体が交互に流入することで大きな圧力振動が発生する場合がある。しかし、本実施の形態1に係る空気調和装置100において、電磁弁29を介して第3熱交換器26に流入する冷媒は、第3熱交換器26で冷却されているので、流量制御装置24に流入する冷媒が液単相となる。つまり、流量制御装置24には液単相が流入することになるので、圧力振動が発生することが抑制される。すなわち、流量制御装置24は、冷媒に対して安定した流量制御を行うことができる。
 このように、本実施の形態1に係る空気調和装置100は、全冷房運転時において圧縮機1にインジェクションをすることにより、圧縮機1の吐出温度を低減し、冷媒や冷凍機油の劣化や圧縮機1のシール材などの疲労を低減でき、圧縮機1を安定的(高信頼性)に運転することができる。
 図5は、図1に示す冷媒回路構成とは異なる冷媒回路構成の一例であり、冷暖房時にインジェクション可能であるものを示すものである。冷媒回路構成としては、図5に示す回路においてもインジェクション運転が可能である。しかし、図5に示す冷媒回路構成では、
全冷房運転及び冷房主体運転時に、冷媒が第3流量制御装置22を通る。これにより、第3流量制御装置22による圧力損失により冷媒が発泡する可能性がある。
 一方、本実施の形態1に係る空気調和装置100は、図1に示す冷媒回路構成を採用していることにより、全冷房運転及び冷房主体運転時に、冷媒が第3流量制御装置22を通らない。これにより、高圧の液冷媒を圧縮機1に直接インジェクションするので、安定的なインジェクションが可能となっている。
[全暖房運転・インジェクションをしない場合]
 図6は、図1に示す空気調和装置の全暖房運転時であってインジェクションしない場合のP-h線図である。図1及び図6に基づいて全暖房運転であってインジェクションしない場合を説明する。ここでは、室内機C~Eの全てが暖房をしようとしている場合について説明する。暖房運転を行なう場合、四方切替弁2を、圧縮機1から吐出された冷媒を第3の分岐部10へ流入させるように切り替える。また、第1電磁弁8c、第2電磁弁8d、及び第3電磁弁8eは閉止され、第1電磁弁8f、第2電磁弁8g、及び第3電磁弁8hは開口される。なお、電磁弁29は閉止されている。この状態で圧縮機1の運転を開始する。
 低温低圧のガス冷媒が圧縮機1によって圧縮され、高温高圧のガス冷媒となって吐出される。この圧縮機の冷媒圧縮過程は図6の点(a)から点(b)に示す線で表される。
 圧縮機1から吐出された高温高圧のガス冷媒は、四方切替弁2、第2接続配管7、及び気液分離装置12を介して第3の分岐部10に流入する。第3の分岐部10に流入した高温高圧のガス冷媒は、第3の分岐部10で分岐され、第1電磁弁8f~8hを通り室内熱交換器5c~5eに流入する。そして、冷媒が室内空気を加熱しながら冷却され、中温高圧の液冷媒となる。室内熱交換器5c~5eでの冷媒の変化は、図6の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。
 室内熱交換器5c~5eから流出した中温高圧の液冷媒は、第1流量制御装置9c~9eを介して第4の分岐部11で合流し、さらに第5流量制御装置15、第1熱交換器16、第2熱交換器17、第1接続配管6、逆止弁21、気液分離装置25、及び第3熱交換器26を介して第3流量制御装置22に流入する。ここで、室内熱交換器5c~5eから流出した高圧の液冷媒は、第1流量制御装置9c~9e、第5流量制御装置15、及び第3流量制御装置22で絞られて膨張、減圧し、低温低圧の気液二相状態になる。このときの冷媒変化は図6の点(c)から点(d)に示す垂直線で表される。
 第3流量制御装置22から流出した低温低圧の気液二相状態の冷媒は、熱源側熱交換器3に流入し、冷媒が室外空気を冷却しながら加熱され、低温低圧のガス冷媒となる。熱源側熱交換器3での冷媒変化は、図6の点(d)から点(a)に示すやや傾いた水平に近い直線で表される。熱源側熱交換器3を出た低温低圧のガス冷媒は逆止弁28、四方切替弁2、及びアキュムレータ4を介して圧縮機1に流入し、圧縮される。
[全暖房運転・インジェクションをする場合]
 図7は、図1に示す空気調和装置100の全暖房運転時であってインジェクションする場合のP-h線図である。図1及び図7に基づいて全暖房運転であってインジェクションする場合を説明する。外気温度が低い場合や、室内温度が高い場合など冷媒の圧縮比が大きくなり、インジェクションをしないと吐出温度が高くなる場合の冷媒の動作について説明する。このとき、電磁弁29は閉止されている。冷媒の主流部の流れについてはインジェクションをしない場合と基本的に同様であるため省略する。
 なお、暖房運転であってインジェクションをしない場合には第5流量制御装置15及び第3流量制御装置22の絞りのバランスは任意であった。一方、暖房運転であってインジェクションをする場合には、インジェクションする冷媒の圧力を上昇させ、流量調整を行いやすくするとよい。そのために、たとえば第5流量制御装置15は全開とし、圧縮機1の吐出側の圧力と第5流量制御装置15出口との圧力差が、たとえば1MPa程度以下となるように主に第3流量制御装置22の調整によって熱源側熱交換器3に流入する冷媒流量を調整できるようにするとよい。
 このとき、室内機C~Eを循環して気液分離装置25に流入した気液二相の冷媒は、一部の冷媒が気液分離装置25の下方から主に液冷媒の状態で分岐され(図7の点(e))、残りの冷媒が他方の出口から流出する(点(f))。主流の冷媒(点(f))は第3熱交換器26で冷却され(点(g))、第3流量制御装置22で減圧され(点(d))、熱源側熱交換器3に流入する。
 一方、分岐された液冷媒(点(e))は、流量制御装置24で減圧され(点(h))、第3熱交換器26で加熱され(点(i))、圧縮機1にインジェクションされる。気液二相の冷媒が圧縮機1にインジェクションされることで冷媒流量が増大し、暖房能力が増大する。また、圧縮機1の吐出温度が低減される。なお、気液分離装置25で液冷媒が分岐することで第2流量制御装置24に流入する冷媒が液単相になるとともに、第3熱交換器26により第3流量制御装置22に流入する冷媒が冷却されて液単相となる。つまり、第2流量制御装置24及び第3流量制御装置22には、液単相の冷媒が流入することになるので、圧力振動が発生することが抑制される。すなわち、第2流量制御装置24及び第3流量制御装置22は、冷媒に対して安定した流量制御を行うことができる。
 このように、本実施の形態1に係る空気調和装置100は、全暖房運転時において圧縮機1にインジェクションをすることにより、圧縮機1の吐出温度を低減し、冷媒や冷凍機油の劣化や圧縮機1のシール材などの疲労を低減でき、圧縮機1を安定的(高信頼性)に運転することができる。また、この全暖房運転時において、冷媒が、第3流量制御装置22を通ることで中圧に制御される。そして、当該中圧の冷媒を圧縮機1にインジェクションするので、安定的なインジェクションが可能となっている。
[冷房主体運転・インジェクションをしない場合]
 図8は、図1に示す空気調和装置の冷房主体運転時であってインジェクションしない場合のP-h線図である。図1及び図8に基づいて冷房主体運転であってインジェクションしない場合を説明する。ここでは、室内機C、Dが冷房を、室内機Eが暖房をしている場合について説明する。このような冷房主体運転を行う場合、四方切替弁2を、圧縮機1から吐出された冷媒を熱源側熱交換器3へ流入させるように切り替える。また、第1電磁弁8c、第2電磁弁8d、第3電磁弁8hは開口され、第1電磁弁8f、第2電磁弁8g、及び第3電磁弁8eは閉止される。また、第3流量制御装置22は冷媒が流れないように全閉状態になり、電磁弁29は閉止されている。この状態で、圧縮機1の運転を開始する。
 低温低圧のガス冷媒が圧縮機1によって圧縮され、高温高圧のガス冷媒となって吐出される。この圧縮機1の冷媒圧縮過程は図8の点(a)から点(b)に示す線で表される。
圧縮機1から吐出された高温高圧のガス冷媒は、四方切替弁2を介して熱源側熱交換器3に流入する。このとき、熱源側熱交換器3では暖房で必要な熱量を残して冷媒が室外空気を加熱しながら冷却され、中温高圧の気液二相状態となる。熱源側熱交換器3での冷媒変化は、図8の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。
 熱源側熱交換器3から流出した中温高圧の気液二相冷媒は、第2接続配管7を介して気液分離装置12に流入する。そして、気液分離装置12において、ガス冷媒(点(d))と液冷媒(点(e))とに分離される。
 気液分離装置12で分離されたガス冷媒(点(d))は、第3の分岐部10、及び電磁弁8hを介して暖房を行う室内熱交換器5eに流入する。そして、冷媒が室内空気を加熱しながら冷却され、中温高圧のガス冷媒となる。室内熱交換器5eでの冷媒の変化は、図8の点(d)から点(f)に示すやや傾いた水平に近い直線で表される。そして、暖房を行う室内熱交換器5eから流出した冷媒(点(f))は、第1流量制御装置9e及び第2接続配管7eを介して第4の分岐部11に流入する。
 一方、気液分離装置12で分離された液冷媒(点(e))は、第1バイパス配管14aに流入する。そして、第1バイパス配管14aに流入した液冷媒は、第2熱交換器17に流入する。この第2熱交換器17に流入した液冷媒は、第2バイパス配管14bを流れる低圧冷媒と熱交換して冷却される。なお、この第2熱交換器17での冷媒の変化は、図8の点(e)から点(g)に示すほぼ水平な直線で表される。そして、第2熱交換器17から流出した冷媒(点(g))は、第4流量制御装置13、及び第1熱交換器16を介して第4の分岐部11に流入して、第2接続配管7eから流入する冷媒と合流する(点(h))。
 合流した高圧の液冷媒は、一部の冷媒を第2バイパス配管14bにバイパスさせながら、第4の分岐部11から冷房を行う室内機C、Dの第1流量制御装置9c、9dに流入する。そして、この高圧の液冷媒は、第1流量制御装置9c、9dで絞られて膨張、減圧し、低温低圧の気液二相状態になる。この第1流量制御装置9c、9dでの冷媒の変化はエンタルピが一定のもとで行われる。このときの冷媒変化は、図8の点(h)から点(i)に示す垂直線で表される。
 第1流量制御装置9c、9dから流出した低温低圧の気液二相状態の冷媒は、冷房を行う室内熱交換器5c、5dに流入する。そして、冷媒が室内空気を冷却しながら加熱され、低温低圧のガス冷媒となる。室内熱交換器5c、5dでの冷媒の変化は、図8の点(i)から点(a)に示すやや傾いた水平に近い直線で表される。
 室内熱交換器5c、5dから流出した低温低圧のガス冷媒は、それぞれが電磁弁8c、8dを通り、第3の分岐部10に流入して合流する。この第3の分岐部10で合流した低温低圧のガス冷媒は、第2バイパス配管14bから流入する低温低圧のガス冷媒と合流する。このとき、この第2バイパス配管14bから流入する冷媒は、第1バイパス配管14aを流れる液冷媒により、第2熱交換器17及び第1熱交換器16で加熱されている。
 第3の分岐部10から流出した低温低圧のガス冷媒は、第1接続配管6、四方切替弁2、及びアキュムレータ4を介して圧縮機1に流入し、圧縮される。
[冷房主体運転・インジェクションをする場合]
 図9は、図1に示す空気調和装置の冷房主体運転時であってインジェクションする場合のP-h線図である。図1及び図9に基づいて冷房主体運転であってインジェクションする場合を説明する。冷媒の圧縮比が大きくなり、インジェクションをしないと吐出温度が高くなる場合の冷媒の動作について説明する。なお、冷房主体運転でインジェクションをする場合には、電磁弁29は開口される。冷媒の主流部の流れについてはインジェクションをしない場合と基本的に同様であるため省略する。
 冷媒の吐出温度を低減するため、熱源側熱交換器3で冷却された液冷媒の一部が電磁弁29を介して第3熱交換器26に流入する。第3熱交換器26に流入した冷媒は、後述する低温の冷媒と熱交換し、冷却され(図9の点(j))、気液分離装置25を介して、流量制御装置24で減圧され(点(k))、第3熱交換器26で加熱される(点(l))。
 この第3熱交換器26から流出した冷却された気液二相の冷媒が、圧縮機1にインジェクションされる。それによって、圧縮機1の冷媒流量が増大し、冷房能力が増大する。また、圧縮機1の吐出温度が低減される。なお、流量制御装置24に気液二相の冷媒が流入すると、気体、液体が交互に流入することで大きな圧力振動が発生する場合がある。しかし、本実施の形態1に係る空気調和装置100において、電磁弁29を介して第3熱交換器26に流入する冷媒は、第3熱交換器26で冷却されているので、流量制御装置24に流入する冷媒が液単相となる。つまり、流量制御装置24には液単相が流入することになるので、圧力振動が発生することが抑制される。すなわち、流量制御装置24は、冷媒に対して安定した流量制御を行うことができる。
 このように、本実施の形態1に係る空気調和装置100は、冷房主体運転時において圧縮機1にインジェクションをすることにより、圧縮機1の吐出温度を低減し、冷媒や冷凍機油の劣化や圧縮機1のシール材などの疲労を低減でき、圧縮機1を安定的(高信頼性)に運転することができる。また、この冷房主体運転時において、冷房運転時と同じく第3流量制御装置22を通らない。全冷房運転時と同様に、高圧の液冷媒を圧縮機1に直接インジェクションするので、安定的なインジェクションが可能となっている。
[暖房主体運転・インジェクションをしない場合]
 図10は、図1に示す空気調和装置100の暖房主体運転時であってインジェクションしない場合のP-h線図である。図1及び図10に基づいて暖房主体運転であってインジェクションしない場合を説明する。ここでは、室内機Cが冷房を、室内機D、Eが暖房をしている場合について説明する。このような暖房主体運転を行う場合、四方切替弁2を、圧縮機1から吐出された冷媒を第3の分岐部10へ流入させるように切り替える。また、第1電磁弁8f、第2電磁弁8d、及び8第3電磁弁8eは閉止され、第1電磁弁8c、第2電磁弁8g、及び第3電磁弁8hは開口される。また、冷房を行う室内機Cと熱源側熱交換器3の圧力差を低減するために、第3流量制御装置22の開度は全開、又は第1接続配管6cでの冷媒の蒸発温度が0℃程度になるように制御されている。この状態で、圧縮機1の運転を開始する。
 低温低圧のガス冷媒が圧縮機1によって圧縮され、高温高圧のガス冷媒となって吐出される。この圧縮機1の冷媒圧縮過程は図10の点(a)から点(b)に示す線で表される。
圧縮機1から吐出された高温高圧のガス冷媒は、四方切替弁2、逆止弁20、及び第2接続配管7を介して第3の分岐部10に流入する。第3の分岐部10に流入した高温高圧のガス冷媒は、第3の分岐部10から電磁弁8g、8h及び第1接続配管6d、6eを介して室内熱交換器5d、5eに流入する。そして、冷媒が室内空気を加熱しながら冷却され、中温高圧の液冷媒となる。室内熱交換器5d、5eでの冷媒の変化は、図10の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。
 室内熱交換器5d、5eから流出した中温高圧の液冷媒は、第1流量制御装置9d、9eに流入し、第2接続配管7d、7eを介して第4の分岐部11に流入して合流する。第4の分岐部11で合流した高圧の液冷媒の一部は、第2接続配管7cを介して冷房を行う室内機Cに設けられた第1流量制御装置9cに流入する。この第1流量制御装置9cに流入した高圧の液冷媒は、第1流量制御装置9cで絞られて膨張、減圧し、低温低圧の気液二相状態になる。このときの冷媒変化は、図10の点(c)から点(d)に示す垂直線で表される。
 第1流量制御装置9cから流出した低温低圧で気液二相状態の冷媒は、室内熱交換器5cに流入する。そして、冷媒が室内空気を冷却しながら加熱され、低温低圧のガス冷媒となる。このときの冷媒変化は、図10の点(d)から点(e)に示すやや傾いた水平に近い直線で表される。室内熱交換器5cから流出した冷媒は、第1接続配管6cに流入し、電磁弁8c及び第3の分岐部10を介して第1接続配管6に流入する。
 一方、室内熱交換器5d、5eから流出し、第2接続配管7d、7eを介して第4の分岐部11に流入して合流した高圧の液冷媒の残りは、第2バイパス配管14bに流入して第5流量制御装置15に流入する。この第5流量制御装置15に流入した高圧の液冷媒は、第5流量制御装置15で絞られて膨張(減圧)し、低温低圧の気液二相状態になる。このときの冷媒変化は、図10の点(c)から点(f)に示す垂直線で表される。
 第5流量制御装置15から流出した低温低圧の気液二相状態の冷媒は、第1熱交換器16及び第2熱交換器17を介して第1接続配管6に流入し、室内熱交換器5cから流出した低温低圧の気液二相状態の冷媒(蒸気状冷媒)と合流する(点(g))。この第1接続配管6で合流した低温低圧で気液二相状態の冷媒は、逆止弁21、気液分離装置25、第3熱交換器26、及び第3流量制御装置22を介して熱源側熱交換器3に流入する。そして、冷媒は室外空気から吸熱して、低温低圧のガス冷媒となる。このときの冷媒変化は、図10の点(g)から点(a)に示すやや傾いた水平に近い直線で表される。熱源側熱交換器3から流出した低温低圧のガス冷媒は、逆止弁28、四方切替弁2、及びアキュムレータ4を介して圧縮機1に流入し、圧縮される。
[暖房主体運転・インジェクションをする場合]
 図11は、図1に示す空気調和装置100の暖房主体運転時であってインジェクションする場合のP-h線図である。図1及び図11に基づいて暖房主体運転であってインジェクションする場合を説明する。冷媒の圧縮比が大きくなり、インジェクションをしないと吐出温度が高くなる場合の冷媒の動作について説明する。なお、暖房主体運転でインジェクションをする場合には、電磁弁29は閉止される。冷媒の主流部の流れについてはインジェクションをしない場合と同様であるため省略する。また、第3流量制御装置22の開度(絞り)は、圧縮機1にインジェクションする冷媒の圧力を上昇させるため、及び冷房を行う室内機Cの能力確保のために、第1接続配管6cでの冷媒の蒸発温度が0℃程度になるように制御される。
 室内機C~Eを循環して気液分離装置25に流入した気液二相の冷媒は、一部の冷媒が気液分離装置25の一方から主に液冷媒の状態で分岐され(図11の点(k))、残りの気相の冷媒が他方の出口から流出する(点(h))。この他方の出口から流出した主流である冷媒(点(h))は、第3熱交換器26で冷却され(点(i))、第3流量制御装置22で減圧され(点(j))、熱源側熱交換器3に流入する。
 一方、分岐された液冷媒(点(k))は、流量制御装置24で減圧され(点(l))、第3熱交換器26で加熱され(点(m))、圧縮機1にインジェクションされる。気液二相の冷媒が圧縮機1にインジェクションされることで冷媒流量が増大し、冷房能力が増大する。また、圧縮機1の吐出温度が低減される。なお、気液分離装置25で液冷媒が分岐することで第2流量制御装置24に流入する冷媒が液単相になるとともに、第3熱交換器26により第3流量制御装置22に流入する冷媒が冷却されて液単相となる。つまり、第2流量制御装置24及び第3流量制御装置22には、液単相の冷媒が流入することになるので、圧力振動が発生することが抑制される。すなわち、第2流量制御装置24及び第3流量制御装置22は、冷媒に対して安定した流量制御を行うことができる。
 ここで、第3熱交換器26により第3流量制御装置22に流入する冷媒が冷却されて液単相に冷却されるものとして説明した。しかし、冷媒の条件によっては液単相とならず、気液二相に場合がある。このような場合には、第3流量制御装置22の直前に多孔質金属、焼結管など、気液二相流の流動場を乱し、攪拌させる装置を組み込めばより安定した制御を行うことができる。なお、一般に管路内の流れは内径の10~20倍程度で発達するため、攪拌による効果を得るために、攪拌装置を第3流量制御装置22から内径の5倍程度以下に設置すればよい。また、気液二相流の流動場を乱し、攪拌させる装置は、第2流量制御装置24及び第5流量制御装置15に採用してもよいことは言うまでもない。
 このように、本実施の形態1に係る空気調和装置100は、暖房主体運転時において圧縮機1にインジェクションをすることにより、圧縮機1の吐出温度を低減し、冷媒や冷凍機油の劣化や圧縮機1のシール材などの疲労を低減でき、圧縮機1を安定的(高信頼性)に運転することができる。また、この暖房主体運転時において、冷媒が、第5流量制御装置15を通ることで中圧に制御される。そして、当該中圧の冷媒を圧縮機1にインジェクションするので、安定的なインジェクションが可能となっている。 
[デフロスト運転を行う場合]
 熱源側熱交換器3が蒸発器として作用する場合には、熱源側熱交換器3のフィンやチューブなどに着霜することがある。本実施の形態1に係る空気調和装置100は、デフロスト運転を行うことで除霜することができる。このデフロスト運転について検討する。効率良くデフロスト運転を行うには、外気温度と冷媒の温度の温度差を小さくし、放熱を防ぐこと、及びデフロスト時間を短くして外気に放熱する時間を短くすることなどが必要である。
 デフロスト運転を行う場合には、四方切替弁2の接続を切り替えて、圧縮機1から吐出される高温冷媒を熱源側熱交換器3に供給する。そして、熱源側熱交換器3から流出する冷却された冷媒を、第1の分岐部40を介してインジェクション配管23に供給し、圧縮機1をインジェクションする。
 本実施の形態1に係る空気調和装置100は、R32、R32とHFO1234yfの混合冷媒、又はR32とHFO1234zeの混合冷媒を採用している。したがって、図2で示されるように、R410A冷媒を採用した場合と比べると圧縮機1の吐出温度が上昇する。したがって、インジェクションにより圧縮機1の吐出温度を低減し、冷媒流量を増大させてデフロスト能力を向上させることが有効である。
 上記のとおり、実施の形態1に係る空気調和装置100の冷媒回路構成では、冷房運転、暖房運転、及び冷暖房混在運転に関わらずインジェクションを行うことができる。つまり、冷房運転、暖房運転、及び冷暖房混在運転に関わらず、圧縮機1の吐出温度を低減して、圧縮機1を安定的に運転させることができるということである。
 また、逆止弁21、27、28が設けられていることにより、第3流量制御装置22には、暖房運転、及び暖房主体運転時のみにしか冷媒が流れないようになっている。ここで、暖房主体運転時において、外気温度が下がることで、冷房を行う室内機に設けられた室内熱交換器の蒸発温度よりも熱源側熱交換器3で冷媒を蒸発させる蒸発温度のほうが低くなる場合がある。このような場合には、第3流量制御装置22で圧力の調整を行うことで、確実に熱源側熱交換器3に流入する冷媒を蒸発させることができる。
 一方、冷房主体運転時において、暖房を行う室内機の凝縮温度よりも熱源側熱交換器3で冷媒を凝縮させる凝縮温度が高くなることは現実的にないので、圧力調整の必要がない。つまり、冷房主体運転時において、暖房を行う室内機から熱源側熱交換器3までを冷媒が流れる過程で発生する圧力損失が低減され、効率の高い状態で運転を行うことができるので、特に圧力調整をしなくてもよいということである。
実施の形態2.
 図12は、実施の形態2に係る空気調和装置200の冷媒回路構成の一例を示す冷媒回路図である。なお、本実施の形態2では、実施の形態1と同一部分には同一符号とし、実施の形態1との相違点を中心に説明するものとする。また、実施の形態1と同様に、第1の分岐部40の位置は、熱源側熱交換器3から第2接続配管7までの間の配管であれば逆止弁18の前後どちらでも構わない。本実施の形態2に係る空気調和装置200は、実施の形態1に係る空気調和装置100とは、気液分離装置25からのインジェクション配管23の取り出し部が異なっている。
 つまり、実施の形態1に係る空気調和装置100において、暖房運転、又は暖房主体運転時にインジェクションをする際に、気液分離装置25に分離されてインジェクション配管23に流入する冷媒は、気液二相であった。一方、実施の形態2に係る空気調和装置200は、暖房運転、又は暖房主体運転時にインジェクションをする際に、気液分離装置25に分離されてインジェクション配管23に流入する冷媒は、主にガスとなっている。このような空気調和装置200においても、冷房運転、暖房運転、及び冷暖房混在運転時に、圧縮機1にインジェクションを行うことができる。つまり、冷媒流量が増大し、冷房運転、暖房運転、及び冷暖房混在運転の能力が増大する。また、圧縮機1の吐出温度が低減される。
 なお、実施の形態2に係る空気調和装置200の気液分離装置25は、ガス冷媒をインジェクション配管23に流入させるために、流量制御装置24の口径が大きくなるものの、気液分離装置25に流入する二相冷媒の大部分のガスを圧縮機1にインジェクションさせることで、熱源側熱交換器3に流入する冷媒流量を減少させることができる。したがって、熱源側熱交換器3から流出する冷媒量が減少するので、その分圧縮機1に供給する電力(入力)を低減することができる。なお、第3熱交換器26は取り外しても問題ない。
実施の形態3.
 図13は、実施の形態3に係る空気調和装置210の冷媒回路構成の一例を示す冷媒回路図である。なお、本実施の形態3では、実施の形態1と同一部分には同一符号とし、実施の形態1との相違点を中心に説明するものとする。
 本実施の形態3に係る空気調和装置210は、冷房時にも主流の冷媒が気液分離装置25および第3熱交換器26を通るようになっている。具体的には、実施の形態1の逆止弁18の部分に逆止弁18-1、逆止弁18-2が直列に接続され、その間の配管に、気液分離装置25、第3熱交換器26、第3流量制御装置22、インジェクション配管23が接続されている。また、気液分離装置25に流入する側の配管に、逆止弁18-1と並列に逆止弁21が接続され、第3熱交換器26から流出する側(ただし、インジェクション配管23ではない方)の配管に逆止弁18-2と並列に第3流量制御装置22が接続されている。なお、実施の形態1、2で用いた電磁弁29が設けられていない。また、第1の分岐部40と気液分離装置(第2の分岐部)25とは、図1に図示する冷媒回路の同一の部分である。
 本実施の形態3に係る空気調和装置210は、逆止弁18-1、逆止弁18-2があるため、暖房運転および暖房主体運転時の冷媒の流れは実施の形態1と同様である。また、冷房運転および冷房主体運転時には、第1の分岐部40で冷媒が気液分離される。この気液分離された冷媒の液相部が、第2流量制御装置24により減圧され、さらに第3熱交換器26によりガス化されて、圧縮機1にインジェクションされる。また、主流の冷媒(気液分離された冷媒の気相部)は、第3熱交換器26により冷却される。
 本構成にすることにより、主流の冷媒を液化するとともに、第2流量制御装置24に流入する冷媒も液単相状態を保てるため、より安定的にインジェクション運転を行うことができる。また、実施の形態1、2で用いた電磁弁を省略することができる。さらに、主流の冷媒を冷却することができ、冷房能力が増大する。
実施の形態4.
 図14は、実施の形態4に係る空気調和装置300の冷媒回路構成の一例を示す冷媒回路図である。なお、本実施の形態4では、実施の形態1と同一部分には同一符号とし、実施の形態1との相違点を中心に説明するものとする。また、室外機内の回路構成については、実施の形態2、又は実施の形態3のように構成しても問題ない。
 本実施の形態4における空気調和装置300には、中継機Bに中間熱交換器30a、30b、第1流量制御装置9a、9b、及びポンプ31a、31bが設置される。なお、実施の形態1、実施の形態2、及び実施の形態3で用いた、第1熱交換器16及び第2熱交換器17は、設けられていない。
 中継機Bには、室内機C~Eの第2接続配管7c~7eと中間熱交換器30a、30bとの接続を選択する電磁弁32c~32hが設置される。また、室内機C~Eの第1接続配管6c~6eと中間熱交換器30a、30bとの接続を選択する電磁弁32i~32nが設置される。さらに、電磁弁32c~32hと室内機C~Eとの間に、室内機C~Eに流入するブラインの流量を調整する流量制御装置33c~33eが設置される。
 なお、ここでは中間熱交換器30a、30bが2つある場合を例に説明するが、これに限るものではない。第2冷媒を冷却または/および加熱できるように構成すれば、中間熱交換器をいくつ設置しても良い。さらに、ポンプ31a、31bは、それぞれ一つとは限らず、複数の小容量のポンプを並列、直列に並べて使用しても良い。
 中間熱交換器30a、30bにおいて、冷媒はポンプ31a、31bにより駆動されるブラインと熱交換し、温水、又は冷水が生成される。なお、ブラインとしては、不凍液や水、不凍液と水の混合液、水と防食効果が高い添加剤の混合液等を用いるとよい。このブラインは、図14に図示される太線部を流れる。
 中間熱交換器30a、30bから室内機C~Eまでの熱輸送はブラインにより行われる。つまり、ブラインは、中間熱交換器30a、30bで、熱源機A側の冷媒と熱交換して、加熱、又は冷却される。そして、加熱、又は冷却されたブラインは、ポンプ31a、31bによって、第2接続配管7c~7eを介して室内機C~Eに供給される。この室内機C~Eに供給されたブラインの熱は、室内熱交換器5c~5eの作用によって暖房、又は冷房に利用される。室内熱交換器5c~5eから流出したブラインは、第1接続配管6c~6e介して中継機Bに戻る。なお、第2接続配管7c~7eを流れるブラインと第1接続配管6c~6eを流れるブラインの密度は、ほとんど同じであるため、配管の太さは両者とも同じでも良い。
 室内機C~Eがすべて冷房を行う冷房運転では、中間熱交換器30a、30bは冷水を作るため、蒸発器として作用する。このときの冷凍サイクル側(熱源機側)のP-h線図は、インジェクションしない場合には図3と同じになり、インジェクションをする場合には図4と同じになる。一方、室内機C~Eがすべて暖房を行う暖房運転では、中間熱交換器30a、30bは温水を作るため、放熱器として作用する。このときの冷凍サイクル側のP-h線図は、インジェクションしない場合には図6と同じになり、インジェクションをする場合には図7と同じになる。
 さらに、冷房運転及び暖房運転を行う室内機が同時に混在する冷暖房混在運転を行う場合には、中間熱交換器30a、30bの何れか一方が蒸発器として作用して冷水を作り、他方が凝縮器として作用して温水を作る。このとき、冷房負荷と暖房負荷の比率により、四方切替弁2の接続を切り替え、熱源側熱交換器3を蒸発器または放熱器のいずれかとして作用させる選択を行い、冷房主体運転または暖房主体運転を行う。このときの冷凍サイクル側のP-h線図は、冷房主体運転でインジェクションしない場合には図8と同じになり、インジェクションする場合には図9と同じになる。また、暖房主体運転でインジェクションしない場合には図10と同じになり、インジェクションする場合には図11と同じになる。つまり、冷凍サイクル側の動作は実施の形態1とほぼ同様である。
 本実施の形態4に係る空気調和装置300において、冷媒の流れは、実施の形態1の室内熱交換器5c~5eに対応するものが中間熱交換器30a、30bに置き換えられたものとみなすことで、実施の形態1と同様に考えることができる。これに加えて、ポンプ31a、31b、室内熱交換器5c~5e、及び中間熱交換器30a、30bが接続されてブラインなどの第2冷媒を循環させる循環回路が形成され、室内熱交換器5c~5eは、第2冷媒と室内の空気とを熱交換する。 このため、冷媒が配管から漏れたとしても空調対象空間へ冷媒が侵入することを抑制でき、安全な空気調和装置を得ることができる。
 また、実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200のように、中継機Bから室内機C~Eまでの熱輸送を冷媒で行うと、第1流量制御装置9c~9eが室内熱交換器5c~5e近傍に設置されることになる。
 一方、実施の形態4に係る空気調和装置300のように、ブラインで熱輸送した場合には、第1接続配管6c~6e、第2接続配管7c~7e内の圧力損失によりブラインが温度変化してしまうことが低減される。これにより、中継機B内に流量制御装置33c~33eを設置することが可能である。このように、中継機B内に流量制御装置33c~33eを設置することで、室内の空調対象空間から流量制御装置33c~33eを離すことができるので、流量制御装置33c~33eの弁の駆動や弁通過時の冷媒の流動音等、室内機への騒音を低減させることができる。
 また、流量制御を中継機Bで一括して行うことができるため、室内機C~Eにおける制御は、室内のリモコンの状況やサーモオフ、室外機がデフロストを行っているか等の情報でファンの制御のみをすれば良い。
 さらに、熱源機Aから中継機Bまでの熱輸送を冷媒で行うことにより、ブラインの駆動に使用するポンプを小型化でき、さらにブラインの搬送動力を低減させて省エネルギー化を図ることができる。
 なお、本実施の形態4に係る空気調和装置300における冷媒回路構成においても、実施の形態1に係る空気調和装置100のように、インジェクション配管23を介して圧縮機1にインジェクションをして冷暖房能力を向上させることができる。また、それにより圧縮機1の吐出温度を低減し、圧縮機1の吐出温度を低減して、圧縮機1を安定的に運転させることができる。
 1 圧縮機、2 四方切替弁、3 熱源側熱交換器、4 アキュムレータ、5c~5e 室内熱交換器、6 第1接続配管、6c~6e 第1接続配管、7 第2接続配管、7c~7e 第2接続配管、8c 電磁弁、9 第1流量制御装置、9a、9b 第1流量制御装置、9c~9e 第1流量制御装置、10 第3の分岐部、11 第4の分岐部、12 気液分離装置 13 第4流量制御装置、14 バイパス配管、14a 第1バイパス配管、14b 第2バイパス配管、15 第5流量制御装置、16 第1熱交換器、17 第2熱交換器、18~21、18-1、18-2 逆止弁、22 第3流量制御装置、23 インジェクション配管、24 第2流量制御装置、25 気液分離装置(第2の分岐部)、26 第3熱交換器、27、28 逆止弁、29 電磁弁、30a、30b 中間熱交換器、31a、31b ポンプ、32c~32n 電磁弁、33c~33e 流量制御装置、40 第1の分岐部、100、200、210、300 空気調和装置、A 熱源機(室外機)、B 中継機、C~E 室内機。

Claims (9)

  1.  熱源用の冷媒としてR32、R32及びHFO1234yfを含みR32の質量比率が40%以上の混合冷媒、又はR32及びHFO1234zeを含みR32の質量比率が15%以上の混合冷媒を用い、
     密閉容器内に圧縮室を有し、当該圧縮室には密閉容器内外を連通する開口部が形成された低圧シェル構造の圧縮機、第1流路切替弁、熱源側熱交換器、第1流量制御装置、及び複数の利用側熱交換器を有し、これらが冷媒配管で接続されて冷凍サイクルを構成し、前記利用側熱交換器側で暖房のみを行う暖房運転、前記利用側熱交換器側で冷房のみを行う冷房運転、及び前記利用側熱交換器側で暖房と冷房が混在する冷暖房混在運転を可能とした空気調和装置において、
     前記冷凍サイクルを構成する冷媒回路と前記開口部とを接続するインジェクション配管と、
     前記インジェクション配管に設けられ、前記圧縮室に供給される冷媒のインジェクション量を制御する第2流量制御装置とを有し、
     前記冷凍サイクルを循環する冷媒を、前記インジェクション配管及び前記開口部を介して前記圧縮室内に供給して前記圧縮機をインジェクションする
     ことを特徴とする空気調和装置。
  2.  前記第1流路切替弁の接続を切り替えることで、
     前記熱源側熱交換器が凝縮器として動作させ、前記利用側熱交換器側で冷房を行う冷房運転、前記利用側熱交換器側で暖房と冷房が混在し、冷房負荷が暖房負荷よりも大きな冷房主体運転と、
    前記熱源側熱交換器が蒸発器として動作させ、前記利用側熱交換器側で暖房を行う暖房運転、前記利用側熱交換器側で暖房と冷房が混在し、暖房負荷が冷房負荷よりも大きな暖房主体運転とを切替可能であり、
     前記冷凍サイクルの冷媒を、暖房運転、暖房主体運転時において圧縮機から吐出される冷媒の高圧圧力よりも小さくかつ圧縮機から吸入される冷媒の低圧圧力よりも大きい中間圧力に制御可能である第3流量制御装置を有し、
     前記熱源側熱交換器を凝縮器として動作させた冷房運転、冷房主体運転時には、
     前記熱源側熱交換器から流出した冷媒が第3流量制御装置を通らずに前記利用側熱交換器に流入し、
     前記熱源側熱交換器を蒸発器として動作させた暖房運転、暖房主体運転時には、
     前記利用側熱交換器から流出した冷媒が第3流量制御装置を通り前記熱源側熱交換器に流入する配管接続とした
    ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記熱源側熱交換器の下流側であって、一方が前記利用側熱交換器に分岐し、他方が前記インジェクション配管に分岐する第1の分岐部と
     前記熱源側熱交換器から前記第1の分岐部を介して流入する冷媒と、前記第2流量制御装置を通過した冷媒とを熱交換させる熱交換部とを有し、
     前記熱源側熱交換器が凝縮器として動作する場合、
     前記圧縮機から吐出された冷媒が、前記熱源側熱交換器、前記第1の分岐部、前記第2流量制御装置、前記熱交換部の順に流動して、前記圧縮機にインジェクションする
     ことを特徴とする請求項1又は2に記載の空気調和装置。
  4.  前記第3流量制御装置と前記利用側熱交換器との間であって、一方が第3流量制御装置に分岐し、他方が前記インジェクション配管に分岐する第2の分岐部と、
     前記第2の分岐部を介して流入する冷媒と、前記第2流量制御装置を通過した冷媒とを熱交換させる熱交換部とを有し、
     前記熱源側熱交換器が蒸発器として動作する場合、
     前記圧縮機から吐出された冷媒が、負荷が発生する前記利用側熱交換器、前記第1流量制御装置、前記第2の分岐部、前記第2流量制御装置、前記熱交換部の順に流動して、前記圧縮機にインジェクションされる
     ことを特徴とする請求項2又は3に記載の空気調和装置。
  5.  前記第2の分岐部には、気液分離装置が備えられ、
     主に液相の冷媒が前記インジェクション配管に供給され、主に気相の冷媒が前記熱源側熱交換器に供給され、
     前記インジェクション配管に供給される主に液相の冷媒と、前記熱源側熱交換器に供給される気相の冷媒とが前記熱交換部で熱交換する
     ことを特徴とする請求項4に記載の空気調和装置。
  6.  前記第2の分岐部には、気液分離装置が備えられ、
     主に気相の冷媒が前記インジェクション配管に供給され、主に液相の冷媒が前記熱源側熱交換器に供給され、
     前記インジェクション配管に供給される主に気相の冷媒と、前記熱源側熱交換器に供給される液相の冷媒とが前記熱交換部で熱交換する
     ことを特徴とする請求項4に記載の空気調和装置。
  7.  前記第3流量制御装置には、
     液単相や気液二相状態の冷媒を混合させる冷媒攪拌手段が設けられている
     ことを特徴とする請求項2~6のいずれか一項に記載の空気調和装置。
  8.  前記第1の分岐部と前記第2の分岐部とは同一の部分である
     ことを特徴とする請求項2~7のいずれか一項に記載の空気調和装置。
  9.  前記熱源側熱交換器のデフロスト運転を行う場合において、
     前記第1流路切替弁の接続を切り替えて、前記圧縮機から吐出される高温冷媒を前記熱源側熱交換器に供給し、前記熱源側熱交換器から流出する冷却された冷媒を、前記第1の分岐部を介して前記インジェクション配管に供給し、前記圧縮機にインジェクションする
     ことを特徴とする請求項3~8のいずれか一項に記載の空気調和装置。
PCT/JP2011/000518 2011-01-31 2011-01-31 空気調和装置 WO2012104893A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/997,422 US9523520B2 (en) 2011-01-31 2011-01-31 Air-conditioning apparatus
PCT/JP2011/000518 WO2012104893A1 (ja) 2011-01-31 2011-01-31 空気調和装置
EP11857819.4A EP2672203B1 (en) 2011-01-31 2011-01-31 Air-conditioning device
CN201180065821.8A CN103328909B (zh) 2011-01-31 2011-01-31 空气调节装置
JP2012555551A JP5627713B2 (ja) 2011-01-31 2011-01-31 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000518 WO2012104893A1 (ja) 2011-01-31 2011-01-31 空気調和装置

Publications (1)

Publication Number Publication Date
WO2012104893A1 true WO2012104893A1 (ja) 2012-08-09

Family

ID=46602149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000518 WO2012104893A1 (ja) 2011-01-31 2011-01-31 空気調和装置

Country Status (5)

Country Link
US (1) US9523520B2 (ja)
EP (1) EP2672203B1 (ja)
JP (1) JP5627713B2 (ja)
CN (1) CN103328909B (ja)
WO (1) WO2012104893A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038059A1 (ja) * 2012-09-07 2014-03-13 三菱電機株式会社 空気調和装置
WO2014054120A1 (ja) * 2012-10-02 2014-04-10 三菱電機株式会社 空気調和装置
WO2014054091A1 (ja) * 2012-10-01 2014-04-10 三菱電機株式会社 空気調和装置
WO2014054090A1 (ja) * 2012-10-01 2014-04-10 三菱電機株式会社 空気調和装置
WO2014069603A1 (ja) * 2012-10-31 2014-05-08 ダイキン工業株式会社 冷凍装置
JP2014129977A (ja) * 2012-12-28 2014-07-10 Daikin Ind Ltd 空気調和装置
JP2014129976A (ja) * 2012-12-28 2014-07-10 Daikin Ind Ltd 空気調和装置
WO2014141374A1 (ja) * 2013-03-12 2014-09-18 三菱電機株式会社 空気調和装置
WO2014141373A1 (ja) * 2013-03-12 2014-09-18 三菱電機株式会社 空気調和装置
JP2015087020A (ja) * 2013-10-28 2015-05-07 三菱電機株式会社 冷凍サイクル装置
WO2015173848A1 (ja) * 2014-05-15 2015-11-19 三菱電機株式会社 蒸気圧縮式冷凍サイクル
JP2015215129A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
EP2960596A4 (en) * 2013-02-19 2016-09-28 Mitsubishi Electric Corp AIR CONDITIONING DEVICE
JP6012757B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置
JP6058145B2 (ja) * 2013-08-28 2017-01-11 三菱電機株式会社 空気調和装置
WO2023139713A1 (ja) * 2022-01-20 2023-07-27 三菱電機株式会社 空気調和装置
WO2023170734A1 (ja) * 2022-03-07 2023-09-14 三菱電機株式会社 空気調和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240332B2 (ja) * 2011-09-01 2013-07-17 ダイキン工業株式会社 冷凍装置
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
US20150324937A1 (en) * 2014-04-01 2015-11-12 Michael Callahan Food and beverage preparation and retailing
US10451306B2 (en) 2014-07-28 2019-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101908875B1 (ko) * 2014-10-16 2018-10-16 미쓰비시덴키 가부시키가이샤 냉동 사이클 장치
KR102403512B1 (ko) * 2015-04-30 2022-05-31 삼성전자주식회사 공기 조화기의 실외기, 이에 적용되는 컨트롤 장치
CN105241125B (zh) * 2015-11-06 2018-01-16 珠海格力节能环保制冷技术研究中心有限公司 压缩机、制冷系统以及压缩机降温增气的方法
US10684043B2 (en) * 2016-02-08 2020-06-16 Mitsubishi Electric Corporation Air-conditioning apparatus
US10656662B2 (en) 2017-09-15 2020-05-19 Kabushiki Kaisha Toshiba Variable pressure device and actuator
JP2019052829A (ja) * 2017-09-19 2019-04-04 三星電子株式会社Samsung Electronics Co.,Ltd. 熱交換器及び空気調和機
JP2019091348A (ja) * 2017-11-16 2019-06-13 富士通株式会社 情報処理装置
US10948208B2 (en) * 2018-01-21 2021-03-16 Daikin Industries, Ltd. System and method for heating and cooling
EP3798535A4 (en) * 2018-05-23 2022-03-02 Sanhua Holding Group Co., Ltd. THERMAL MANAGEMENT SYSTEM
CN112622563B (zh) * 2020-12-18 2022-05-27 艾泰斯热系统研发(上海)有限公司 一种间接式热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013491A (ja) 2000-06-30 2002-01-18 Hitachi Ltd スクロール圧縮機およびそれを用いた空気調和機
JP2002107002A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 冷凍装置
JP2003202167A (ja) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp 流量制御弁および冷凍空調装置および流量制御弁の製造方法
JP2009222363A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 空気調和装置の更新方法および空気調和装置
WO2009154149A1 (ja) * 2008-06-16 2009-12-23 三菱電機株式会社 非共沸混合冷媒及び冷凍サイクル装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU649810B2 (en) * 1991-05-09 1994-06-02 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
MY122977A (en) * 1995-03-14 2006-05-31 Panasonic Corp Refrigerating apparatus, and refrigerator control and brushless motor starter used in same
JP4123829B2 (ja) * 2002-05-28 2008-07-23 三菱電機株式会社 冷凍サイクル装置
JP4069733B2 (ja) 2002-11-29 2008-04-02 三菱電機株式会社 空気調和機
US6817205B1 (en) * 2003-10-24 2004-11-16 Carrier Corporation Dual reversing valves for economized heat pump
JP3939314B2 (ja) * 2004-06-10 2007-07-04 三星電子株式会社 空気調和装置及びその均油運転方法
WO2006057141A1 (ja) * 2004-11-25 2006-06-01 Mitsubishi Denki Kabushiki Kaisha 空気調和装置
US20070245769A1 (en) * 2006-04-21 2007-10-25 Parker Christian D Fluid expansion-distribution assembly
JP5196452B2 (ja) * 2007-04-24 2013-05-15 キャリア コーポレイション 充填量管理を備えた遷臨界冷媒蒸気圧縮システム
EP2282144B1 (en) * 2008-04-30 2017-04-05 Mitsubishi Electric Corporation Air conditioner
JP5407173B2 (ja) 2008-05-08 2014-02-05 ダイキン工業株式会社 冷凍装置
JP5277854B2 (ja) * 2008-10-14 2013-08-28 ダイキン工業株式会社 空気調和装置
JP5218107B2 (ja) * 2009-01-30 2013-06-26 株式会社富士通ゼネラル 冷凍空調装置
JP4969608B2 (ja) * 2009-05-25 2012-07-04 三菱電機株式会社 空気調和機
JP2010276239A (ja) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp 冷凍空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013491A (ja) 2000-06-30 2002-01-18 Hitachi Ltd スクロール圧縮機およびそれを用いた空気調和機
JP2002107002A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 冷凍装置
JP2003202167A (ja) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp 流量制御弁および冷凍空調装置および流量制御弁の製造方法
JP2009222363A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 空気調和装置の更新方法および空気調和装置
WO2009154149A1 (ja) * 2008-06-16 2009-12-23 三菱電機株式会社 非共沸混合冷媒及び冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672203A4

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038059A1 (ja) * 2012-09-07 2014-03-13 三菱電機株式会社 空気調和装置
US9903625B2 (en) 2012-09-07 2018-02-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5872052B2 (ja) * 2012-09-07 2016-03-01 三菱電機株式会社 空気調和装置
JP5759080B2 (ja) * 2012-10-01 2015-08-05 三菱電機株式会社 空気調和装置
JPWO2014054090A1 (ja) * 2012-10-01 2016-08-25 三菱電機株式会社 空気調和装置
WO2014054091A1 (ja) * 2012-10-01 2014-04-10 三菱電機株式会社 空気調和装置
WO2014054090A1 (ja) * 2012-10-01 2014-04-10 三菱電機株式会社 空気調和装置
EP2918951A4 (en) * 2012-10-02 2016-07-20 Mitsubishi Electric Corp AIR CONDITIONING
JPWO2014054120A1 (ja) * 2012-10-02 2016-08-25 三菱電機株式会社 空気調和装置
US10161647B2 (en) 2012-10-02 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014054120A1 (ja) * 2012-10-02 2014-04-10 三菱電機株式会社 空気調和装置
US20150316284A1 (en) * 2012-10-02 2015-11-05 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104685304A (zh) * 2012-10-02 2015-06-03 三菱电机株式会社 空调装置
JP2014112026A (ja) * 2012-10-31 2014-06-19 Daikin Ind Ltd 冷凍装置
JP2021036193A (ja) * 2012-10-31 2021-03-04 ダイキン工業株式会社 冷凍装置
KR20210040178A (ko) * 2012-10-31 2021-04-12 다이킨 고교 가부시키가이샤 냉동 장치
JP2015061926A (ja) * 2012-10-31 2015-04-02 ダイキン工業株式会社 冷凍装置
WO2014069603A1 (ja) * 2012-10-31 2014-05-08 ダイキン工業株式会社 冷凍装置
KR20200090953A (ko) * 2012-10-31 2020-07-29 다이킨 고교 가부시키가이샤 냉동 장치
AU2013339083B2 (en) * 2012-10-31 2015-12-03 Daikin Industries, Ltd. Refrigeration apparatus
JP7029095B2 (ja) 2012-10-31 2022-03-03 ダイキン工業株式会社 冷凍装置
KR102237933B1 (ko) * 2012-10-31 2021-04-08 다이킨 고교 가부시키가이샤 냉동 장치
KR102337469B1 (ko) * 2012-10-31 2021-12-10 다이킨 고교 가부시키가이샤 냉동 장치
EP3627068A1 (en) * 2012-10-31 2020-03-25 Daikin Industries, Ltd. Refrigeration apparatus
JP2014224271A (ja) * 2012-10-31 2014-12-04 ダイキン工業株式会社 冷凍装置
JP6012757B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置
JPWO2014080464A1 (ja) * 2012-11-21 2017-01-05 三菱電機株式会社 空気調和装置
JP2014129977A (ja) * 2012-12-28 2014-07-10 Daikin Ind Ltd 空気調和装置
JP2014129976A (ja) * 2012-12-28 2014-07-10 Daikin Ind Ltd 空気調和装置
EP2960596A4 (en) * 2013-02-19 2016-09-28 Mitsubishi Electric Corp AIR CONDITIONING DEVICE
JP5968519B2 (ja) * 2013-03-12 2016-08-10 三菱電機株式会社 空気調和装置
WO2014141374A1 (ja) * 2013-03-12 2014-09-18 三菱電機株式会社 空気調和装置
CN105008820B (zh) * 2013-03-12 2017-03-08 三菱电机株式会社 空调装置
US9869501B2 (en) 2013-03-12 2018-01-16 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014141373A1 (ja) * 2013-03-12 2014-09-18 三菱電機株式会社 空気調和装置
US10088205B2 (en) 2013-03-12 2018-10-02 Mitsubishi Electric Corporation Air-conditioning apparatus
CN105008820A (zh) * 2013-03-12 2015-10-28 三菱电机株式会社 空调装置
JP6005255B2 (ja) * 2013-03-12 2016-10-12 三菱電機株式会社 空気調和装置
JP6058145B2 (ja) * 2013-08-28 2017-01-11 三菱電機株式会社 空気調和装置
JPWO2015029160A1 (ja) * 2013-08-28 2017-03-02 三菱電機株式会社 空気調和装置
JP2015087020A (ja) * 2013-10-28 2015-05-07 三菱電機株式会社 冷凍サイクル装置
JP2015215129A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
WO2015173848A1 (ja) * 2014-05-15 2015-11-19 三菱電機株式会社 蒸気圧縮式冷凍サイクル
JP6038402B2 (ja) * 2014-05-15 2016-12-07 三菱電機株式会社 蒸気圧縮式冷凍サイクル
WO2023139713A1 (ja) * 2022-01-20 2023-07-27 三菱電機株式会社 空気調和装置
WO2023170734A1 (ja) * 2022-03-07 2023-09-14 三菱電機株式会社 空気調和装置
JP7378671B1 (ja) * 2022-03-07 2023-11-13 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
EP2672203B1 (en) 2017-10-11
EP2672203A1 (en) 2013-12-11
CN103328909A (zh) 2013-09-25
EP2672203A4 (en) 2017-01-04
JP5627713B2 (ja) 2014-11-19
JPWO2012104893A1 (ja) 2014-07-03
CN103328909B (zh) 2015-04-01
US20130283843A1 (en) 2013-10-31
US9523520B2 (en) 2016-12-20

Similar Documents

Publication Publication Date Title
JP5627713B2 (ja) 空気調和装置
JP5871959B2 (ja) 空気調和装置
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP5855312B2 (ja) 空気調和装置
JP5968534B2 (ja) 空気調和装置
JP5992089B2 (ja) 空気調和装置
JP6005255B2 (ja) 空気調和装置
US9797610B2 (en) Air-conditioning apparatus with regulation of injection flow rate
JP5992088B2 (ja) 空気調和装置
EP2672202B1 (en) Air-conditioning device
US20120198873A1 (en) Air-conditioning apparatus
CN103733005B (zh) 空调装置
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
WO2014141373A1 (ja) 空気調和装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
JP6017048B2 (ja) 空気調和装置
JP6017049B2 (ja) 空気調和装置
US20220214081A1 (en) Air conditioning apparatus and outdoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555551

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13997422

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011857819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011857819

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE