WO2014038059A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014038059A1
WO2014038059A1 PCT/JP2012/072848 JP2012072848W WO2014038059A1 WO 2014038059 A1 WO2014038059 A1 WO 2014038059A1 JP 2012072848 W JP2012072848 W JP 2012072848W WO 2014038059 A1 WO2014038059 A1 WO 2014038059A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
injection
control device
pipe
Prior art date
Application number
PCT/JP2012/072848
Other languages
English (en)
French (fr)
Inventor
正 有山
森本 修
博文 ▲高▼下
航祐 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014534121A priority Critical patent/JP5872052B2/ja
Priority to PCT/JP2012/072848 priority patent/WO2014038059A1/ja
Priority to EP12884004.8A priority patent/EP2896911B1/en
Priority to US14/412,035 priority patent/US9903625B2/en
Publication of WO2014038059A1 publication Critical patent/WO2014038059A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to an air conditioner that performs air conditioning using a refrigeration cycle (heat pump cycle).
  • a heat source unit having a compressor, a heat source unit side heat exchanger, and the like (sometimes referred to as a heat source unit or an outdoor unit), a flow rate control unit (Expansion valve etc.) and a load side unit (sometimes referred to as an indoor unit) having an indoor unit side heat exchanger or the like are connected by a refrigerant pipe to constitute a refrigerant circuit for circulating the refrigerant.
  • a refrigerant pipe sometimes referred to as an indoor unit having an indoor unit side heat exchanger or the like
  • Air conditioning is performed while changing.
  • Air conditioning is performed while changing.
  • the heating capacity refers to the amount of heat per hour supplied to the indoor unit side by refrigerant circulation during heating.
  • the cooling capacity refers to the amount of heat per hour that is supplied to the indoor unit by refrigerant circulation during cooling.
  • ability including heating capability and cooling capability.
  • the refrigerant on the low pressure side (hereinafter referred to as the low pressure side) of the refrigeration cycle is susceptible to the temperature of the outside air, the operation mode, and the like. For this reason, during the heating operation in an environment where the temperature of the outside air is low, if the refrigerant on the low-pressure side is bypassed and injected into the compressor, the differential pressure from the refrigerant pressure during compression may not be sufficiently obtained. For this reason, there is a possibility that the amount of refrigerant to be injected is insufficient, and the temperature of the refrigerant discharged from the compressor (hereinafter referred to as compressor discharge temperature) is excessively increased.
  • the other end of the injection pipe is connected to a position where the refrigerant discharged from the compression device branches and flows, and the refrigerant condensed by heat exchange is brought into contact with a part of the heat exchanger on the heat source side in the compression stroke.
  • the injected heated gas refrigerant cannot be supplied to the heating indoor unit, and in order to secure the capacity, it is necessary to increase the entire circulation amount.
  • the present invention has been made in order to solve the above-described problems, and obtains an air conditioner that can suppress an increase in discharge temperature of a compression device and can ensure performance even when the temperature of outside air is low. For the purpose.
  • An air conditioner includes a compressor that compresses a refrigerant, a heat source device having a heat source side heat exchanger that exchanges heat between the refrigerant and outside air, and an indoor that exchanges heat between air to be air-conditioned and the refrigerant.
  • An indoor unit having a heat exchanger and a throttling means; a refrigerant pipe connecting the heat source unit and the indoor unit to form a refrigerant circuit; and a refrigerant discharged from the compression device is branched to compress the compression device
  • An injection pipe that flows into the middle part of the stroke, a refrigerant that flows through the injection pipe, and an internal heat exchanger for injection that exchanges heat between the refrigerant that passes through the indoor unit and flows into the heat source side heat exchanger, It is provided with.
  • the present invention suppresses an excessive increase in the discharge temperature of the compression device, and can ensure the capability even when the temperature of the outside air is low.
  • FIG. 3 is a refrigerant circuit diagram during a cooling only operation of the air-conditioning apparatus according to Embodiment 1. It is a figure which shows the structure of the compression apparatus of the air conditioning apparatus which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit figure at the time of the all heating operation of the air conditioning apparatus which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit figure at the time of heating main operation
  • FIG. FIG. 3 is a refrigerant circuit diagram during cooling main operation of the air-conditioning apparatus according to Embodiment 1.
  • 3 is a flowchart showing the operation of the air-conditioning apparatus according to Embodiment 1. It is a figure which shows an example of the refrigerant circuit structure of the air conditioning apparatus which concerns on Embodiment 3.
  • FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1 during a cooling only operation. Based on FIG. 1, the refrigerant circuit structure of the air conditioning apparatus 1 is demonstrated.
  • the air conditioner 1 is installed in a building, a condominium, etc., for example.
  • the air conditioner 1 performs an air conditioning operation using a refrigeration cycle (heat pump cycle) that circulates a refrigerant (air conditioning refrigerant).
  • the air conditioner 1 can perform a cooling and heating simultaneous operation in which a plurality of indoor units simultaneously mix cooling and heating.
  • cooling only operation A case where all the operating indoor units perform the cooling operation is referred to as a cooling only operation.
  • heating main operation case where the indoor unit that performs the cooling operation and the indoor unit that performs the heating operation are mixed and cooling is mainly used is referred to as cooling main operation.
  • heating main operation case where the indoor unit that performs the cooling operation and the indoor unit that performs the heating operation are mixed and heating is mainly used is referred to as heating main operation.
  • the air conditioner 1 includes a heat source unit A, a plurality of indoor units B and C, and a relay unit D.
  • the relay unit D is provided between the heat source unit A and the indoor units B and C.
  • the relay machine D controls the flow of the refrigerant.
  • the relay machine D is connected to the heat source machine A by the first main pipe 107 and the second main pipe 106.
  • the plurality of indoor units B and C are connected to the relay unit D in parallel by the connection pipe 133 and the connection pipe 134.
  • the control unit 200 controls the operation of the air conditioner 1.
  • the heat source machine A and the relay machine D are connected by the first main pipe 107 and the second main pipe 106.
  • the first main pipe 107 is a pipe having a pipe diameter larger than that of the second main pipe 106.
  • the refrigerant flows from the heat source unit A side to the relay unit D side.
  • the refrigerant flows from the relay machine D side to the heat source machine A side.
  • a low-pressure refrigerant flows through the first main pipe 107 as compared with the refrigerant flowing through the second main pipe 106.
  • the expressions of high pressure and low pressure, and high and low stages are not defined by the relationship with the reference pressure (numerical value).
  • the expression of high pressure and low pressure is expressed based on relative pressure (including intermediate) in the refrigerant circuit by pressurization of the compression device 101, control of the open / closed state (opening) of each flow control device, and the like. .
  • coolant discharged from the compression apparatus 101 becomes the highest. Further, since the pressure is lowered by the flow control device or the like, the pressure of the refrigerant sucked into the compression device 101 becomes the lowest.
  • the relay machine D and the indoor units B and C are connected by a connection pipe 134 and a connection pipe 133.
  • the refrigerant circulates between the heat source unit A, the relay unit D, and the indoor units B and C by the pipe connection of the first main pipe 107, the second main pipe 106, the connection pipe 134, and the connection pipe 133.
  • the heat source machine A includes a compressor 101, a four-way switching valve 102, a heat source side heat exchanger 103, an accumulator 104, a check valve 105a, a check valve 105b, a check valve 105c, a check valve 105d, and internal heat for injection.
  • An exchange 122 is provided.
  • the heat source machine A includes an injection pipe 120a, an injection pipe 120b, an injection flow control device 121a, an injection flow control device 121b, an injection internal heat exchanger 122, and a gas-liquid separation device 123.
  • the “injection tube 120a” corresponds to the “injection tube” in the present invention.
  • the “injection tube 120b” corresponds to the “second injection tube” in the present invention.
  • the “injection flow rate control device 121a” corresponds to the “injection flow rate control device” in the present invention.
  • the “injection flow rate control device 121b” corresponds to the “second injection flow rate control device” in the present invention.
  • FIG. 2 is a diagram illustrating a configuration of the compression device of the air-conditioning apparatus according to Embodiment 1.
  • the compressor 101 applies pressure to the sucked refrigerant and discharges (sends out) it.
  • the compression apparatus 101 has a two-stage configuration of a low-stage compressor 101a and a high-stage compressor 101b.
  • the driving frequency of the low-stage compressor 101a and the high-stage compressor 101b can be arbitrarily changed.
  • the drive frequencies of the low-stage compressor 101a and the high-stage compressor 101b are controlled by an inverter circuit (not shown) based on instructions from the control means 200.
  • the compression apparatus 101 can change the capacity according to the discharge capacity (discharge amount of the refrigerant per unit time) and the discharge capacity as a whole.
  • the drive frequencies of the low-stage compressor 101a and the high-stage compressor 101b may be determined in advance according to a predetermined ratio according to the stroke volume of each compressor. This predetermined ratio is a ratio when the suction pressure of the high-stage compressor 101b becomes a predetermined value.
  • An injection port 101c is provided in the middle of the compression stroke between the low stage compressor 101a and the high stage compressor 101b.
  • the injection port 101c causes the high-stage compressor 101b to suck the refrigerant flowing in from the injection pipes 120a and 120b.
  • the control unit 200 drives the compressor 101 when the pressure on the low pressure side of the refrigerant circuit decreases and the density of the refrigerant sucked by the low-stage compressor 101a decreases in an environment where the temperature of the outside air is low. Increase the number of revolutions with an inverter circuit. This prevents the refrigerant flow rate from decreasing and maintains the heating capacity.
  • the control unit 200 operates at a high compression ratio due to a decrease in the pressure on the low pressure side of the refrigerant circuit, and the refrigerant cooled by the heat source side heat exchanger 103 from the injection port 101c when the discharge temperature becomes high. Is introduced through the injection port 101c. Thereby, the temperature rise (excessive rise) of the refrigerant discharged from the compressor 101 is prevented.
  • the four-way switching valve 102 switches the refrigerant path based on an instruction from the control means 200.
  • the four-way switching valve 102 switches the refrigerant path according to the cooling only operation, the heating only operation, the cooling main operation, and the heating main operation.
  • the heat source side heat exchanger 103 has a heat transfer tube through which the refrigerant passes, and fins for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and air (outside air).
  • the heat source side heat exchanger 103 performs heat exchange between the refrigerant and air (outside air).
  • the heat source side heat exchanger 103 functions as an evaporator during the all heating operation and the heating main operation, and evaporates and vaporizes the refrigerant.
  • the heat source side heat exchanger 103 functions as a condenser during the cooling only operation and the cooling main operation, and condenses and liquefies the refrigerant.
  • the heat source side heat exchanger 103 does not completely gasify or liquefy during cooling-main operation, but condenses to a state of two-phase mixing (gas-liquid two-phase refrigerant) of liquid and gas (gas), etc. May be adjusted.
  • the blower 140 is provided in the vicinity of the heat source side heat exchanger 103.
  • the blower 140 blows air to the heat source side heat exchanger 103 in order to efficiently perform heat exchange between the refrigerant and the air.
  • the blower 140 changes the air volume based on an instruction from the control means 200.
  • the heat exchange capacity in the heat source side heat exchanger 103 can be changed by changing the air volume of the blower 140.
  • the accumulator 104 is provided between the compression device 101 and the four-way switching valve 102.
  • the accumulator 104 stores excess refrigerant in the refrigerant circuit.
  • the check valve 105 a is provided in a pipe between the heat source side heat exchanger 103 and the second main pipe 106.
  • the check valve 105 a allows the refrigerant flow only in the direction from the heat source side heat exchanger 103 to the second main pipe 106.
  • the check valve 105 b is provided in a pipe between the four-way switching valve 102 and the first main pipe 107.
  • the check valve 105 b allows the refrigerant to flow only in the direction from the first main pipe 107 to the four-way switching valve 102.
  • the second main pipe 106 and the first main pipe 107 are connected by a connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b.
  • the second main pipe 106 and the first main pipe 107 are connected by a connection pipe 131 that connects the downstream side of the check valve 105a and the downstream side of the check valve 105b. That is, the connection part a between the second main pipe 106 and the connection pipe 130 is upstream of the connection part b between the second main pipe 106 and the connection pipe 131 with the check valve 105a interposed therebetween.
  • the connection part c between the first main pipe 107 and the connection pipe 130 is upstream of the connection part d between the first main pipe 107 and the connection pipe 131 with the check valve 105b interposed therebetween.
  • the connection pipe 130 is provided with a check valve 105d.
  • the check valve 105 d allows the refrigerant to flow only in the direction from the first main pipe 107 to the second main pipe 106.
  • the connection pipe 131 is provided with a check valve 105c.
  • the check valve 105 c allows the refrigerant to flow only in the direction from the first main pipe 107 to the second main pipe 106.
  • the open states of the check valves 105a to 105d are shown in white, and the closed states are shown in black.
  • the open states of the check valves 105a to 105d are shown in white and the closed states are shown in black.
  • One end of the injection pipe 120 a is connected to a pipe between the check valve 105 a and the second main pipe 106.
  • the other end of the injection tube 120a is connected to the injection port 101c.
  • the injection pipe 120a allows the refrigerant to flow into the high stage compressor 101b of the compression apparatus 101 to pass through.
  • the injection pipe 120a is provided with an injection flow control device 121a.
  • the injection flow rate control device 121a adjusts the flow rate of refrigerant passing through the injection pipe 120a and the pressure of the refrigerant based on an instruction from the control means 200.
  • the internal heat exchanger 122 for injection is provided in a pipe between the check valve 105a and the flow control device 124.
  • the internal heat exchanger 122 for injection performs heat exchange between the refrigerant flowing toward the injection pipe 120a and the refrigerant flowing toward the heat source side heat exchanger 103.
  • the heat source side heat exchanger 103 When the heat source side heat exchanger 103 functions as an evaporator, the heat source side heat exchanger 103 has an injection heat for exchanging heat between the refrigerant flowing through the heat source side heat exchanger 103 and the refrigerant flowing through the injection pipe 120a.
  • An exchange part 103a is formed.
  • the injection heat exchange unit 103a may be omitted.
  • injection tube 120 b One end of the injection tube 120 b is connected to the gas-liquid separator 123. The other end of the injection tube 120b is connected to the injection port 101c.
  • the injection pipe 120b allows the refrigerant flowing (supplied) to the high stage compressor 101b of the compressor 101 to pass therethrough.
  • the injection pipe 120b is provided with an injection flow control device 121b.
  • the injection flow rate control device 121b adjusts the flow rate of the refrigerant passing through the injection pipe 120b and the pressure of the refrigerant based on an instruction from the control unit 200.
  • the gas-liquid separator 123 separates the refrigerant that has passed through the first main pipe 107 into gas refrigerant and liquid refrigerant.
  • the gas-liquid separator 123 causes at least a part of the separated liquid refrigerant to flow through the injection pipe 120b.
  • the gas-liquid separation device 123 may be a simple gas-liquid separation device that vertically separates the liquid refrigerant from the lower side by installing the pipe vertically and sucking the refrigerant from the side. In the cooling only operation or the cooling main operation, the high-pressure liquid refrigerant or the gas-liquid two-phase refrigerant passes through the first main pipe 107. By providing the gas-liquid separation device 123, the cooling is not affected by a large pressure loss. Can demonstrate ability.
  • the heat detector A is provided with a pressure detector 125, a pressure detector 126, and an outside air temperature detector 127.
  • the pressure detector 125 is attached to a pipe connected to the discharge side of the compression device 101.
  • the pressure detector 125 detects the pressure of the refrigerant discharged from the compression device 101.
  • the pressure detector 125 can be composed of a pressure sensor.
  • the control means 200 acquires a detection signal from the pressure detector 125. Based on the detection signal from the pressure detector 125, the control means 200 detects, for example, the pressure Pd and temperature Td of the refrigerant discharged from the compressor 101. The control means 200 calculates the condensation temperature Tc and the like based on the pressure Pd.
  • the pressure detector 126 is attached to a pipe connecting the heat source device A and the first main pipe 107.
  • the pressure detector 126 detects the pressure of the refrigerant flowing into the heat source unit A from the relay unit D (indoor unit B).
  • the outside air temperature detector 127 detects the outside air temperature (outside air temperature).
  • the relay machine D includes a gas-liquid separation device 108, a first branching unit 109, a second branching unit 110, a first heat exchanger 111, and a second heat exchanger 113.
  • the gas-liquid separator 108 separates the refrigerant that has flowed into the relay unit D from the second main pipe 106 into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separation device 108 includes a gas phase portion from which a gas refrigerant flows and a liquid phase portion from which the liquid refrigerant flows.
  • the gas phase part of the gas-liquid separator 108 is connected to the first branch part 109.
  • the liquid phase part of the gas-liquid separator 108 is connected to the second branch part 110 via the first heat exchanger 111 and the second heat exchanger 113.
  • connection pipe 133 is branched into two.
  • One branched connection pipe 133 a is connected to the first main pipe 107.
  • the other branched connection pipe 133 b is connected to the connection pipe 132.
  • the connection pipe 132 connects the gas-liquid separator 108 and the first distribution unit 109.
  • a switching valve 109a is provided in the connection pipe 133a connected to the indoor unit B.
  • a switching valve 109b is provided in the connection pipe 133a connected to the indoor unit C.
  • the connection pipe 133b connected to the indoor unit B is provided with a switching valve 109b.
  • the connection pipe 133b connected to the indoor unit C is provided with a switching valve 109a.
  • the switching valve 109a and the switching valve 109b are controlled to be opened and closed by the control means 200, and the presence / absence of conduction of the refrigerant is controlled.
  • the open state of the switching valve 109a and the switching valve 109b is shown in white, and the closed state is shown in black.
  • the open state of the switching valve 109a and the switching valve 109b is shown in white, and the closed state is shown in black.
  • connection pipe 134 is branched into two.
  • One branched connection pipe 134b is connected to a pipe between a first flow control device 112 (described later) and the second heat exchanger 113 by a first meeting portion 115.
  • the other branched connection pipe 134 a is connected to a pipe between a second flow rate control device 114 (described later) and the second heat exchanger 113 by a second meeting part 116.
  • a check valve 110a is provided in the connection pipe 134a connected to the indoor unit B.
  • the connection pipe 134a connected to the indoor unit C is provided with a check valve 110b.
  • a check valve 110b is provided in the connection pipe 134b connected to the indoor unit B.
  • the connection pipe 134b connected to the indoor unit C is provided with a check valve 110a.
  • the check valve 110a and the check valve 110b allow only one refrigerant to flow.
  • the open state of the check valve 110a and the check valve 110b is shown in white, and the closed state is shown in black.
  • the open state of the check valve 110a and the check valve 110b is shown in white, and the closed state is shown in black.
  • the first meeting unit 115 connects the gas-liquid separation device 108 and the second distribution unit 110 via the first flow control device 112 and the first heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second heat exchanger 113. One of the branches is connected to the first meeting part 115 via the second heat exchanger 113.
  • the other branched first bypass pipe 116 a is connected to the first main pipe 107 via the second flow control device 114, the second heat exchanger 113, and the first heat exchanger 111.
  • the first heat exchanger 111 is provided between the gas-liquid separator 108 and the first flow control device 112.
  • the first heat exchanger 111 exchanges heat between the refrigerant conducted from the gas-liquid separator 108 to the first meeting part 115 and the refrigerant conducted from the second heat exchanger 113 to the first main pipe 107.
  • the first heat exchanger 111 supercools the liquid refrigerant during the cooling only operation and supplies the liquid refrigerant to the indoor unit B and the indoor unit C side.
  • the first heat exchanger 111 is pipe-connected to the first main pipe 107 and allows the refrigerant flowing from the indoor unit B and the indoor unit C side and the refrigerant used for supercooling to flow through the first main pipe 107.
  • the second heat exchanger 113 is provided between the first meeting part 115 and the second meeting part 116.
  • the second heat exchanger 113 exchanges heat between the refrigerant that is conducted from the first meeting part 115 to the second meeting part 116 and the refrigerant that is branched by the second meeting part 116 and is conducted through the first bypass pipe 116a.
  • the second heat exchanger 113 supercools the liquid refrigerant during the cooling only operation and supplies it to the indoor unit B and the indoor unit C side.
  • the second heat exchanger 113 is connected to the first main pipe 107 by piping, and causes the refrigerant that has flowed from the indoor unit B and the indoor unit C side and the refrigerant used for supercooling to flow to the first main pipe 107.
  • the first flow control device 112 is provided between the first heat exchanger 111 and the second heat exchanger 113.
  • the first flow control device 112 controls the opening based on an instruction from the control means 200.
  • the first flow control device 112 adjusts the flow rate of refrigerant and the pressure of the refrigerant flowing from the gas-liquid separator 108 to the first heat exchanger 111.
  • the second flow rate control device 114 is provided in the first bypass pipe 116 a between the second meeting part 116 and the second heat exchanger 113.
  • the second flow control device 114 controls the opening degree based on an instruction from the control means 200.
  • the second flow control device 114 adjusts the refrigerant flow rate and the refrigerant pressure of the refrigerant passing through the first bypass pipe 116a.
  • a pressure detector 128 and a pressure detector 129 are attached to the relay machine D.
  • the pressure detector 128 is attached to a pipe between the first heat exchanger 111 and the first flow control device 112.
  • the pressure detector 128 detects the pressure of the refrigerant flowing from the first heat exchanger 111 to the first flow control device 112.
  • the pressure detector 129 is attached to a pipe between the first flow control device 112 and the first meeting part 115.
  • the pressure detector 129 detects the pressure of the refrigerant flowing from the first flow control device 112 to the first meeting unit 115.
  • the control means 200 acquires detection signals from the pressure detector 128 and the pressure detector 129.
  • the control means 200 determines the opening degree of the second flow control device 114 based on the pressure difference detected by the pressure detector 128 and the pressure detector 129.
  • the refrigerant that has passed through the second flow control device 114 and the first bypass pipe 116a supercools the refrigerant in the second heat exchanger 113 and the first heat exchanger 111, for example, and flows to the first main pipe 107.
  • the second heat exchanger 113 performs heat exchange between the refrigerant that passes through the second flow control device 114 and flows through the first bypass pipe 116 a and the refrigerant that flows from the first flow control device 112.
  • the first heat exchanger 111 performs heat exchange between the refrigerant that has passed through the first bypass pipe 116 a and the second heat exchanger 113 and the refrigerant that flows from the gas-liquid separation device 108 to the first flow control device 112.
  • the second bypass pipe 116b flows the refrigerant that passes through the second heat exchanger 113 and flows to the indoor unit B through the check valve 110a.
  • the second bypass pipe 116b flows the refrigerant that passes through the second heat exchanger 113 and flows to the indoor unit C through the check valve 110b.
  • the refrigerant that has passed through the second bypass pipe 116b passes through the second heat exchanger 113 and then flows to the indoor units B and C that are partially or entirely cooling. Further, for example, when the all heating operation is performed, the whole flows through the second flow rate control device 114 and the first bypass pipe 116a to the first main pipe 107.
  • the throttle means 117 and the indoor heat exchanger 118 are mounted connected in series.
  • a throttle means 117 and an indoor heat exchanger 118 are mounted in series.
  • the indoor unit B receives the cooling heat from the heat source unit A and takes charge of the cooling load
  • the indoor unit C receives the heat from the heat source unit A. In charge of the heating load.
  • both the indoor unit B and the indoor unit C receive the supply of cooling heat from the heat source unit A and take charge of the cooling load.
  • both the indoor unit B and the indoor unit C receive a supply of warm heat from the heat source unit A and take charge of the cooling load.
  • the indoor heat exchanger 118 has a heat transfer tube through which the refrigerant passes, and fins for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the indoor air.
  • the indoor heat exchanger 118 performs heat exchange between the refrigerant and the indoor air.
  • the indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator.
  • the indoor heat exchanger 118 condenses or evaporates the refrigerant.
  • a blower 141 is provided in the vicinity of the indoor heat exchanger 118.
  • the blower 141 blows air to the indoor heat exchanger 118 in order to efficiently perform heat exchange between the refrigerant and the air.
  • the blower 141 changes the air volume based on an instruction from the control means 200.
  • the heat exchange capacity in the indoor heat exchanger 118 can be changed by changing the air volume of the blower 141.
  • the throttle means 117 functions as a pressure reducing valve or an expansion valve.
  • the throttle means 117 expands the refrigerant by decompressing it.
  • the aperture means 117 can be variably controlled in opening.
  • Control means 200 and storage means 201 The control unit 200 performs, for example, determination processing based on signals transmitted from various detectors (sensors) provided inside and outside the air conditioner 1 and each device (means) of the air conditioner 1.
  • the control unit 200 operates each device based on a determination process or the like.
  • the control unit 200 controls the overall operation of the air conditioner 1. Specifically, the control unit 200 controls the driving frequency of the compression device 101, the opening degree control of a flow rate control device such as the flow rate control device 124, the switching control of the four-way switching valve 102, the switching valves 109a and 109b, and the throttle unit 117. Etc.
  • the storage unit 201 temporarily or long-term stores various data, programs, and the like necessary for the control unit 200 to perform processing.
  • the control unit 200 and the storage unit 201 are provided independently of the heat source unit A will be described, but the present invention is not limited to this.
  • the control unit 200 and the storage unit 201 may be provided in the heat source machine A.
  • this Embodiment demonstrates the case where the control means 200 and the memory
  • the control unit 200 and the storage unit 201 may be provided outside the air conditioner 1 and remotely controlled by performing signal communication via a telecommunication network or the like.
  • the air conditioning apparatus 1 performs any one of a cooling only operation, a heating only operation, a cooling main operation, and a heating main operation.
  • the heat source side heat exchanger 103 functions as a condenser during the all-cooling operation and the cooling main operation.
  • the heat source side heat exchanger 103 functions as an evaporator during all heating operation and heating main operation.
  • the compressor 101 compresses the sucked refrigerant and discharges a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant discharged from the compressor 101 flows to the heat source side heat exchanger 103 through the four-way switching valve 102.
  • the high-pressure gas refrigerant is condensed by heat exchange with the outside air while passing through the heat source side heat exchanger 103, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows through the check valve 105a. At this time, the high-pressure liquid refrigerant does not flow to the check valve 105c and the check valve 105d side due to the pressure of the refrigerant. Then, the high-pressure liquid refrigerant flows into the relay machine D through the second main pipe 106.
  • the gas-liquid separator 108 separates the refrigerant flowing into the relay unit D into a gas refrigerant and a liquid refrigerant.
  • the refrigerant that flows into the relay unit D during the cooling only operation is a liquid refrigerant.
  • the control means 200 switches the switching valve 109a and switching valve 109b connected to the connection pipe 133a to the open state.
  • the control means 200 switches the switching valve 109a and switching valve 109b connected to the connection pipe 133b to the closed state. For this reason, the gas refrigerant separated by the gas-liquid separator 108 does not flow from the gas-liquid separator 108 to the indoor units B and C.
  • the liquid refrigerant separated by the gas-liquid separation device 108 passes through the first heat exchanger 111, the first flow rate control device 112, and the second heat exchanger 113, and a part thereof flows into the second branch portion 110.
  • the refrigerant that has flowed into the second branch 110 is divided into the indoor unit B and the indoor unit C via the check valve 110a connected to the connection pipe 134a, the check valve 110b connected to the connection pipe 134a, and the connection pipe 134. To do.
  • the control unit 200 adjusts the opening degree of the throttle unit 117.
  • the throttle means 117 adjusts the pressure of the liquid refrigerant flowing from the connection pipe 134.
  • the opening degree of the throttle means 117 is adjusted based on the degree of superheat on the refrigerant outlet side of each indoor heat exchanger 118.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant flows through the indoor heat exchanger 118 by adjusting the opening degree of the throttle means 117.
  • the low-pressure liquid refrigerant or gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air that is the air-conditioning target space.
  • the indoor air is cooled by heat exchange to cool the room.
  • the refrigerant that has passed through the indoor heat exchanger 118 becomes a low-pressure gas refrigerant and flows into the connection pipe 133.
  • the refrigerant that has passed through the indoor heat exchanger 118 may be a gas-liquid two-phase refrigerant.
  • the air conditioning load of at least one of the indoor unit B and the indoor unit C is small, or in a transient state such as immediately after the start of operation, the refrigerant is not completely vaporized in the indoor heat exchanger 118, It becomes a gas-liquid two-phase refrigerant.
  • the air conditioning load refers to the amount of heat required by the indoor unit B and the indoor unit C. Hereinafter, it is also referred to as a load.
  • connection pipe 133 The low-pressure gas refrigerant or the gas-liquid two-phase refrigerant (low-pressure refrigerant) flowing through the connection pipe 133 passes through the switching valve 109a connected to the connection pipe 133a and the switching valve 109b connected to the connection pipe 133a, and passes through the first main pipe. It flows to 107.
  • the refrigerant that has flowed into the heat source machine A through the first main pipe 107 returns to the compression device 101 again through the check valve 105b, the four-way switching valve 102, and the accumulator 104.
  • the above is the basic refrigerant circulation path during the cooling only operation.
  • the control means 200 controls the opening degree of the injection flow control device 121a and the injection flow control device 121b to be fully closed in the cooling only operation.
  • the injection flow control device 121a fully closes the opening and does not flow the refrigerant into the injection pipe 120a.
  • the injection flow control device 121b fully closes the opening and does not flow the refrigerant into the injection pipe 120b.
  • the liquid refrigerant separated by the gas-liquid separation device 108 passes through the first heat exchanger 111, the first flow rate control device 112, and the second heat exchanger 113, and a part thereof flows into the second branch portion 110, The other part flows into the second flow control device 114.
  • the refrigerant that has flowed into the second flow control device 114 passes through the first bypass pipe 116a, and supercools the refrigerant flowing from the gas-liquid separation device 108 in the second heat exchanger 113 and the first heat exchanger 111, It flows to the first main pipe 107.
  • connection pipe 134 side The enthalpy on the refrigerant inlet side (connection pipe 134 side) can be reduced by supercooling the refrigerant and flowing it to the second branch 110 side. Therefore, in the indoor heat exchanger 118, the amount of heat exchange with air can be increased.
  • the control means 200 controls the first flow rate control by controlling the opening degree of the second flow rate control device 114 so that the pressure difference between the pressure detector 128 and the pressure detector 129 becomes a predetermined value. The degree of superheat of the refrigerant at the outlet of the device 112 is adjusted.
  • the control means 200 controls the discharge capacity of the compression device 101 and the air volume of the blower 140 and the blower 141, and supplies capacity corresponding to the loads of the indoor unit B and the indoor unit C. Thereby, the control means 200 makes the evaporation temperature of the refrigerant in the indoor heat exchanger 118 and the condensation temperature of the refrigerant in the heat source side heat exchanger 103 become predetermined target temperatures.
  • FIG. 3 is a refrigerant circuit diagram at the time of heating only operation of the air-conditioning apparatus according to Embodiment 1. Based on FIG. 3, the operation
  • the compressor 101 compresses the sucked refrigerant and discharges a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant discharged from the compressor 101 flows through the check valve 105c via the four-way switching valve 102.
  • the high-pressure liquid refrigerant does not flow to the check valve 105b and the check valve 105a side due to the pressure of the refrigerant.
  • the high-pressure gas refrigerant flows into the relay machine D through the second main pipe 106.
  • the control means 200 controls the switching valve 109a and the switching valve 109b connected to the connection pipe 133a to be closed.
  • the control means 200 switches the switching valve 109a and switching valve 109b connected to the connection pipe 133b to the open state. For this reason, the gas refrigerant separated by the gas-liquid separator 108 flows from the first branch portion 109 to the indoor unit B and the indoor unit C via the connection pipe 133.
  • the high-pressure gas refrigerant is condensed by heat exchange with room air that becomes the air-conditioning target space while passing through the indoor heat exchanger 118. At this time, room air is heated by heating indoor air by heat exchange.
  • the refrigerant that has passed through the indoor heat exchanger 118 becomes liquid refrigerant and passes through the throttle means 117.
  • the control unit 200 adjusts the opening degree of the throttle unit 117.
  • the throttle means 117 adjusts the pressure of the liquid refrigerant that has flowed out of the indoor heat exchanger 118.
  • the opening degree of the throttle means 117 is adjusted based on the degree of supercooling on the refrigerant outlet side of each indoor heat exchanger 118.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant by adjusting the opening degree of the throttle means 117 passes through the connection pipe 134 and flows into the second branch portion 110.
  • the refrigerant flowing into the second branch part 110 flows through the first meeting part 115 via the check valve 110a and the check valve 110b connected to the connection pipe 134b.
  • the refrigerant that has flowed from the first meeting portion 115 to the second heat exchanger 113 flows from the second meeting portion 116 into the second flow rate control device 114.
  • the refrigerant that has flowed out of the second flow rate control device 114 passes through the first bypass pipe 116 a, the second heat exchanger 113, and the second heat exchanger 113 and flows into the first main pipe 107.
  • the low-pressure gas-liquid two-phase refrigerant flows into the first main pipe 107 by adjusting the opening degree of the second flow rate control device 114.
  • the refrigerant passing through the first main pipe 107 and flowing into the heat source unit A passes through the check valve 105d and flows into the heat source side heat exchanger 103.
  • the refrigerant that has flowed into the heat source side heat exchanger 103 evaporates by heat exchange with the outside air while passing through the heat source side heat exchanger 103, and becomes a gas refrigerant.
  • the gas refrigerant returns to the compression device 101 again through the four-way switching valve 102 and the accumulator 104.
  • the above is the refrigerant circulation path during the all-heating operation.
  • the control means 200 controls the discharge capacity of the compression device 101 and the air volume of the blower 140 and the blower 141, and supplies capacity corresponding to the loads of the indoor unit B and the indoor unit C. Thereby, the control means 200 makes the condensation temperature of the refrigerant in the indoor heat exchanger 118 and the evaporation temperature of the refrigerant in the heat source side heat exchanger 103 become predetermined target temperatures.
  • the control means 200 controls the opening degree of the injection flow control device 121a and the injection flow control device 121b based on the temperature of the outside air in the heating only operation. That is, the control means 200 controls the opening degree of the injection flow rate control device 121a based on the temperature of the outside air, causes a high-pressure gas refrigerant to flow into the injection pipe 120a, and causes the high-stage compressor 101b to flow from the injection port 101c. Let it flow into the suction side. Further, the control means 200 controls the opening degree of the injection flow rate control device 121b, causes liquid refrigerant to flow into the injection pipe 120b, and flows into the suction side of the high-stage compressor 101b from the injection port 101c. Details of the operation related to the injection will be described later. The capability to be supplied by the compression apparatus 101 is ensured by increasing the driving frequency.
  • all the indoor units B and C are described as operating. However, for example, some indoor units may be stopped. Further, for example, when some of the indoor units are stopped and the load of the air conditioner 1 as a whole is small, either the low-stage compressor 101a or the high-stage compressor 101b is stopped, and the compression apparatus You may make it change the capability which 101 supplies.
  • FIG. 4 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1 during a heating main operation. Based on FIG. 4, the operation
  • each device of the heat source unit A and the flow of the refrigerant are the same as in the heating only operation described with reference to FIG.
  • the control means 200 switches the switching valve 109a connected to the connecting pipe 133a and the switching valve 109a connected to the connecting pipe 133b to the open state.
  • the control means 200 controls the switching valve 109b connected to the connection pipe 133a and the switching valve 109b connected to the connection pipe 133b to be closed.
  • the gas refrigerant separated by the gas-liquid separator 108 flows only from the first branch portion 109 to the indoor unit C side via the connection pipe 133.
  • coolant in the heating of the indoor unit C it is the same as that of the flow at the time of the heating operation demonstrated using FIG.
  • the flow of the refrigerant in the cooling of the indoor unit B is different from that of the indoor unit C that performs heating.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant by adjusting the opening degree of the throttle means 117 passes through the connection pipe 134 and flows into the second branch portion 110.
  • the refrigerant flowing into the second branch part 110 flows through the first meeting part 115 via the check valve 110a connected to the connection pipe 134b.
  • the control means 200 closes the first flow control device 112 and blocks the refrigerant flow between the gas-liquid separation device 108 and the first meeting part 115. Therefore, the refrigerant flows from the first meeting part 115 through the second heat exchanger 113 to the second meeting part 116.
  • a part of the refrigerant that has flowed to the second meeting portion 116 flows to the second bypass pipe 116b, passes through the check valve 110a and the connection pipe 134 connected to the connection pipe 134a, and flows into the indoor unit B.
  • the control unit 200 adjusts the opening degree of the throttle unit 117.
  • the throttle means 117 adjusts the pressure of the liquid refrigerant flowing from the connection pipe 134.
  • the opening degree of the throttle means 117 is adjusted based on the degree of superheat on the refrigerant outlet side of each indoor heat exchanger 118.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant by adjusting the opening degree of the throttle means 117 flows to the indoor heat exchanger 118 of the indoor unit B. While passing through the indoor heat exchanger 118, the low-pressure liquid refrigerant or gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air that is the air-conditioning target space.
  • the indoor air is cooled by heat exchange to cool the room.
  • the refrigerant that has passed through the indoor heat exchanger 118 becomes a low-pressure gas refrigerant and flows into the connection pipe 133.
  • the low-pressure gas refrigerant or the gas-liquid two-phase refrigerant (low-pressure refrigerant) flowing through the connection pipe 133 passes through the switching valve 109a connected to the connection pipe 133a and flows to the first main pipe 107.
  • the control means 200 adjusts the opening degree of the second flow rate control device 114 to supply the refrigerant necessary for the indoor unit C, while supplying the remaining refrigerant to the first main pipe via the first bypass pipe 116a. Flow to 107.
  • control unit 200 controls the opening degree of the injection flow control device 121a and the injection flow control device 121b based on the temperature of the outside air in the heating main operation. Details of the operation related to the injection will be described later.
  • the refrigerant that has flowed out of the indoor unit that is heating flows through the indoor unit that performs cooling (here, indoor unit B). Therefore, when the indoor unit B that performs cooling stops, the amount of the gas-liquid two-phase refrigerant flowing through the first bypass pipe 116a increases. On the other hand, when the load on the indoor unit B that performs cooling increases, the amount of the gas-liquid two-phase refrigerant flowing through the first bypass pipe 116a decreases. Therefore, the load of the indoor heat exchanger 118 (evaporator) in the indoor unit B that performs cooling changes while the amount of refrigerant necessary for the indoor unit C that performs heating remains unchanged.
  • control means 200 controls the discharge capacity of the compressor 101 and the air volume of the blower 140 and the blower 141, and supplies the capacity corresponding to the loads of the indoor unit B and the indoor unit C.
  • FIG. 5 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1 during cooling main operation. Based on FIG. 5, the operation of each device and the flow of the refrigerant in the cooling main operation will be described. Here, the case where the indoor unit C performs heating and the indoor unit B performs cooling will be described.
  • each device of the heat source device A and the flow of the refrigerant are the same as in the cooling only operation described with reference to FIG.
  • the refrigerant condensing capacity in the heat source side heat exchanger 103 is controlled so that the refrigerant flowing into the relay unit D through the second main pipe 106 becomes a gas-liquid two-phase refrigerant. That is, the control means 200 controls the discharge capacity of the compressor 101 and the air volume of the blower 140, and controls the refrigerant condensing capacity in the heat source side heat exchanger 103.
  • the gas-liquid separator 108 separates the refrigerant flowing into the relay unit D into a gas refrigerant and a liquid refrigerant.
  • the refrigerant that flows into the relay unit D during the cooling main operation is a gas-liquid two-phase refrigerant.
  • the control means 200 switches the switching valve 109a connected to the connecting pipe 133a and the switching valve 109a connected to the connecting pipe 133b to the open state.
  • the control means 200 controls the switching valve 109b connected to the connection pipe 133a and the switching valve 109b connected to the connection pipe 133b to be closed. For this reason, the gas refrigerant separated by the gas-liquid separator 108 flows only from the first branch portion 109 to the indoor unit C side via the connection pipe 133.
  • the high-pressure gas refrigerant is condensed by heat exchange while passing through the indoor heat exchanger 118 and passes through the throttle means 117. At this time, room air is heated by heating indoor air by heat exchange.
  • the refrigerant that has passed through the throttle means 117 becomes a liquid refrigerant having a slightly reduced pressure, passes through the connection pipe 134, and flows into the second branch portion 110.
  • the refrigerant flowing into the second branch part 110 flows through the first meeting part 115 via the check valve 110a connected to the connection pipe 134b.
  • the control means 200 adjusts the opening degree of the first flow rate control device 112 and causes the liquid refrigerant separated by the gas-liquid separation device 108 to flow to the first meeting unit 115.
  • the control unit 200 adjusts the opening degree of the throttle unit 117.
  • the throttle means 117 adjusts the pressure of the liquid refrigerant flowing from the connection pipe 134.
  • the opening degree of the throttle means 117 is adjusted based on the degree of superheat on the refrigerant outlet side of each indoor heat exchanger 118.
  • the refrigerant that has become low-pressure liquid refrigerant or gas-liquid two-phase refrigerant by adjusting the opening degree of the throttle means 117 flows to the indoor heat exchanger 118 of the indoor unit B. While passing through the indoor heat exchanger 118, the low-pressure liquid refrigerant or gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air that is the air-conditioning target space.
  • the indoor air is cooled by heat exchange to cool the room.
  • the refrigerant that has passed through the indoor heat exchanger 118 becomes a low-pressure gas refrigerant and flows into the connection pipe 133.
  • the low-pressure gas refrigerant or the gas-liquid two-phase refrigerant (low-pressure refrigerant) flowing through the connection pipe 133 passes through the switching valve 109a connected to the connection pipe 133a and flows to the first main pipe 107.
  • the heat source side heat exchanger 103 functions as a condenser.
  • coolant which passed the indoor unit C which heats is used as a refrigerant
  • the control unit 200 increases the opening of the second flow control device 114. As a result, it is possible to flow through the first main pipe 107 via the first bypass pipe 116a without supplying more refrigerant than necessary to the indoor unit B that is performing cooling.
  • control means 200 controls the discharge capacity of the compressor 101 and the air volume of the blower 140 and the blower 141, and supplies the capacity corresponding to the loads of the indoor unit B and the indoor unit C.
  • the control means 200 controls the opening degree of the injection flow control device 121a and the injection flow control device 121b to be fully closed in the cooling main operation.
  • the injection flow control device 121a fully closes the opening and does not flow the refrigerant into the injection pipe 120a.
  • the injection flow control device 121b fully closes the opening and does not flow the refrigerant into the injection pipe 120b.
  • control means 200 changes the opening degree of at least one of the injection flow rate control device 121a and the injection flow rate control device 121b.
  • the refrigerant is supplemented from the injection port 101c to increase the refrigerant density.
  • the temperature of the refrigerant sucked by the high stage compressor 101b is lowered so that the temperature of the refrigerant discharged from the compressor 101 does not rise excessively.
  • the high-pressure gas refrigerant discharged from the compression device 101 is branched at one end of the injection pipe 120a in the heating only operation and the heating main operation.
  • the other end of the injection pipe 120a is connected to the injection port 101c of the compression apparatus 101.
  • the control means 200 adjusts the refrigerant passing through the injection pipe 120a under reduced pressure by the injection flow rate control device 121a.
  • a part of the injection pipe 120a passes through the internal heat exchanger 122 for injection.
  • heat exchange is performed between the refrigerant flowing through the injection pipe 120a and the refrigerant flowing into the heat source side heat exchanger 103 to condense the refrigerant.
  • the refrigerant condensed in the internal heat exchanger 122 for injection flows into the high stage compressor 101b from the injection port 101c of the compressor 101.
  • a stable high-pressure refrigerant discharged from the compression device 101 is decompressed and adjusted by the injection flow control device 121a, and a sufficient differential pressure is provided, so that a stable amount of refrigerant is supplied from the injection port 101c to the compression device 101. Can flow in.
  • the low-pressure gas-liquid two-phase refrigerant that has passed through the indoor unit B, the indoor unit C, and the relay unit D is separated into a liquid refrigerant and a gas refrigerant in the heating only operation and the heating main operation.
  • the gas refrigerant is branched at one end of the injection pipe 120b.
  • the other end of the injection pipe 120b is connected to the injection port 101c of the compression apparatus 101.
  • the control means 200 adjusts the refrigerant passing through the injection pipe 120b under a reduced pressure by the injection flow rate control device 121b.
  • the injection pipe 120b is used. By mainly using the injection, it is possible to ensure the heating capacity and increase the efficiency of operation.
  • the high-pressure refrigerant passing through the injection pipe 120a is heat-exchanged with the indoor unit for cooling and the low-pressure gas-liquid two-phase refrigerant passing through the relay unit D by the internal heat exchanger 122 for injection.
  • the enthalpy of the refrigerant to be injected can be reduced.
  • the low-pressure gas-liquid two-phase refrigerant that has passed through the indoor unit that performs cooling and the relay unit D has increased enthalpy and can reduce the load on the heat source side heat exchanger 103. Along with this, it becomes possible to raise the low pressure and raise the heating capacity.
  • FIG. 6 is a flowchart showing the operation of the air-conditioning apparatus according to Embodiment 1. Hereinafter, the details of the control related to the injection will be described with reference to FIG.
  • the control unit 200 determines whether or not the outside air temperature is lower than a predetermined outside air temperature (low outside air determination). If the outside air temperature is not lower than the predetermined outside air temperature, the process proceeds to STEP8.
  • control means 200 controls the opening degree of the flow control device 124 so that the pressure detected by the pressure detector 126 becomes a predetermined target intermediate pressure. .
  • the control unit 200 detects the pressure Pd and the temperature Td of the refrigerant discharged from the compression device 101 based on the detection value of the pressure detector 125.
  • the control means 200 calculates the condensation temperature Tc based on the pressure Pd.
  • the control means 200 calculates the discharge superheat degree TdSH, which is the difference between the temperature Td and the condensation temperature Tc.
  • the control unit 200 determines whether or not the discharge superheat degree TdSH calculated in STEP 3 is larger than a predetermined target discharge superheat degree TdSHm. When the discharge superheat degree TdSH is larger than the target discharge superheat degree TdSHm, the process returns to STEP1.
  • the control means 200 controls the opening degree of the injection flow control device 121b so that the discharge superheat degree TdSH becomes the target discharge superheat degree TdSHm.
  • the control means 200 determines whether or not the opening degree of the injection flow control device 121b is maximum. When the opening degree of the injection flow control device 121b is not the maximum, the process returns to STEP1.
  • StepP8 When it is determined in STEP 1 that the outside air temperature is not lower than the predetermined outside air temperature, the control unit 200 closes the injection flow rate control device 121a and the injection flow rate control device 121b, and returns to STEP 1. When it is closed, leave it as it is. As a result, the refrigerant is prevented from flowing into the injection pipes 120a and 120b, and control by normal operation is performed.
  • the refrigerant after passing through is injected. Further, when it is desired to secure a sufficient injection flow rate, the high-pressure gas refrigerant discharged from the compression device 101 is condensed by exchanging heat with the two-phase refrigerant after passing through the indoor unit and injected into the compression device 101. I do.
  • the heating capacity to be supplied to the indoor unit that is heating is secured (maintained), and then the cooling is performed by controlling the pressure of the refrigerant flowing out of the indoor heat exchanger 118 serving as an evaporator. It is possible to secure (maintain) the cooling capacity supplied to the indoor unit. Therefore, the operation
  • Embodiment 2 FIG. In the present embodiment, in the heat source unit A, an evaporation operation performed to prevent freezing of an indoor unit that performs cooling in the heating-main operation will be described.
  • the control means 200 of the second embodiment performs an evaporation operation that prevents freezing of the indoor unit that performs cooling.
  • the controller 200 controls the flow rate control device 124 so that the intermediate pressure detected by the pressure detector 126 becomes a predetermined pressure set in advance (pressure at which the saturation temperature becomes 0 ° C. or higher) during heating-main operation. Control the opening.
  • the evaporation temperature of the indoor heat exchanger 118 of the indoor unit B that performs cooling can be maintained at 0 ° C. or higher, and freezing of the indoor unit B that performs cooling can be prevented.
  • Embodiment 3 FIG.
  • the air conditioner 1 that has the relay unit D and can perform the cooling and heating simultaneous operation has been described.
  • the present invention is not limited to such a configuration.
  • the heat source unit A and the indoor units B and C may be connected without providing the relay unit D.
  • the present invention can be applied to the air conditioner 1 that switches between cooling and heating without providing the relay unit D.
  • the present invention can be applied to the air conditioner 1 in which the indoor unit (load side unit) is dedicated to heating (heating).

Abstract

 圧縮装置が吐出した冷媒を分岐し、圧縮装置の圧縮行程の途中部分に流入させるインジェクション管と、インジェクション管を流通する冷媒と、室内機を通過したあと熱源側熱交換器へ流入する冷媒とを熱交換するインジェクション用内部熱交換器とを備えたこと特徴とする。

Description

空気調和装置
 本発明は、冷凍サイクル(ヒートポンプサイクル)を利用して空気調和を行う空気調和装置に関するものである。
 例えば、冷凍サイクル(ヒートポンプサイクル)を利用した空気調和装置では、圧縮機、及び熱源機側熱交換器等を有する熱源機側ユニット(熱源機又は室外機と称する場合もある)と、流量制御装置(膨張弁等)、及び室内機側熱交換器等を有する負荷側ユニット(室内機と称する場合もある)とを、冷媒配管によって接続し、冷媒を循環させる冷媒回路を構成している。そして、室内機側熱交換器において、冷媒が蒸発、凝縮する際に、熱交換対象となる空調対象空間の空気から吸熱、放熱することを利用し、冷媒回路における冷媒に係る圧力、温度等を変化させながら空気調和を行っている。
 従来、例えば室内機に供え付けられたリモートコントローラの設定温度と、室内機周辺の気温とに応じて、複数の室内機において、それぞれ冷房又は暖房を自動的に判断し、室内機ごとに冷房又は暖房を行う冷暖房同時運転(冷暖房混在運転)が可能な空気調和装置もある。
 また、例えば寒冷地等に設置する空気調和装置において、室外の空気(以下、外気という)の温度が低い場合に、暖房能力を向上させるため、熱源機に設けられた圧縮機の圧縮行程途中の部分に、インジェクション管を介して冷媒を流入させるものがある(例えば、特許文献1参照)。これは、圧縮機から吐出する冷媒密度を上昇させることで、能力を向上させようとするものである。
 以下、圧縮機の圧縮行程途中の部分に、インジェクション管を介して冷媒を流入させることを「インジェクション」と称する。なお、暖房能力とは、暖房時において、冷媒循環によって室内機側に供給する時間当たりの熱量をいう。また、冷房能力とは、冷房時において、冷媒循環によって室内機側に供給する時間当たりの熱量をいう。以下、暖房能力及び冷房能力を含めて「能力」と称する場合もある。
特開2009-198099号公報
 冷凍サイクルの低圧側(以下、低圧側と称する)の冷媒は、外気の温度及び運転形態等に影響を受けやすい。このため、外気の温度が低い環境下での暖房運転時に、低圧側の冷媒をバイパスさせて圧縮機にインジェクションすると、圧縮途中の冷媒の圧力との差圧が十分にとれなくなる場合がある。
 このため、インジェクションさせる冷媒の量が不足し、圧縮機から吐出する冷媒の温度(以下、圧縮機吐出温度という)が過剰に上昇してしまう可能性があった。
 インジェクション管の別の一端を、圧縮装置が吐出した冷媒を分岐させて流入する位置に接続し、また、熱源機側熱交換器の一部と接触させて熱交換によって凝縮した冷媒を圧縮行程の中間部分に流入させた場合、インジェクションした分の加熱ガス冷媒を暖房室内機に供給できず、能力を確保するためにはその分全体の循環量を多くする必要がある。
 本発明は、上記のような課題を解決するためになされたもので、圧縮装置の吐出温度の上昇を抑制し、外気の温度が低い場合においても能力を確保することができる空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は、冷媒を圧縮する圧縮装置、及び前記冷媒と外気とを熱交換する熱源側熱交換器を有する熱源機と、空調対象の空気と前記冷媒とを熱交換する室内熱交換器、及び絞り手段を有する室内機と、前記熱源機と前記室内機とを接続して冷媒回路を形成する冷媒配管と、前記圧縮装置が吐出した冷媒を分岐し、前記圧縮装置の圧縮行程の途中部分に流入させるインジェクション管と、前記インジェクション管を流通する冷媒と、前記室内機を通過したあと前記熱源側熱交換器へ流入する冷媒とを熱交換するインジェクション用内部熱交換器と、を備えたことを特徴とする。
 本発明は、圧縮装置の吐出温度の過剰な上昇を抑制し、外気の温度が低い場合においても能力を確保することができる。
実施の形態1に係る空気調和装置の全冷房運転時の冷媒回路図である。 実施の形態1に係る空気調和装置の圧縮装置の構成を示す図である。 実施の形態1に係る空気調和装置の全暖房運転時の冷媒回路図である。 実施の形態1に係る空気調和装置の暖房主体運転時の冷媒回路図である。 実施の形態1に係る空気調和装置の冷房主体運転時の冷媒回路図である。 実施の形態1に係る空気調和装置の動作を示すフローチャートである。 実施の形態3に係る空気調和装置の冷媒回路構成の一例を示す図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、実施の形態1に係る空気調和装置の全冷房運転時の冷媒回路図である。
 図1に基づいて、空気調和装置1の冷媒回路構成について説明する。
 空気調和装置1は、例えば、ビル、マンション等に設置される。
 空気調和装置1は、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して冷暖房運転を行う。
 空気調和装置1は、複数の室内機において、それぞれ冷房と暖房とを同時に混在して行う冷暖房同時運転を行うことができる。
 なお、動作している室内機の全てが冷房運転を行う場合を全冷房運転という。
 また、動作している室内機の全てが暖房運転を行う場合を全暖房運転という。
 また、冷房運転を行う室内機と暖房運転を行う室内機とが混在し、冷房が主となる場合を冷房主体運転という。
 また、冷房運転を行う室内機と暖房運転を行う室内機とが混在し、暖房が主となる場合を暖房主体運転という。
[全体構成]
 空気調和装置1は、熱源機A、複数の室内機B、C、並びに中継機Dで構成される。
 中継機Dは、熱源機Aと室内機B、Cとの間に設けられる。
 中継機Dは、冷媒の流れを制御する。
 中継機Dは、第1主管107及び第2主管106によって、熱源機Aに接続される。
 複数の室内機B、Cは、接続配管133及び接続配管134によって、中継機Dに並列に接続される。
 制御手段200は、空気調和装置1の動作を制御する。
 熱源機Aと中継機Dとの間は、第1主管107及び第2主管106によって接続される。
 第1主管107は、管径が第2主管106よりも太い配管である。
 第2主管106には、熱源機A側から中継機D側に冷媒が流れる。
 第1主管107には、中継機D側から熱源機A側に冷媒が流れる。
 第1主管107には、第2主管106を流れる冷媒に比べて低圧の冷媒が流れる。
 なお、以下の説明において、圧力の高圧及び低圧、並びに、高段及び低段との表現については、基準となる圧力(数値)との関係によって定めるものではない。
 圧力の高圧及び低圧との表現は、圧縮装置101の加圧、各流量制御装置の開閉状態(開度)の制御等によって、冷媒回路内において相対的な圧力(中間を含む)に基づいて表す。
 なお、圧縮装置101から吐出した冷媒の圧力が最も高くなる。
 また、流量制御装置等によって圧力が低下していくため、圧縮装置101に吸入される冷媒の圧力が最も低くなる。
 中継機Dと室内機B、Cとの間は、接続配管134及び接続配管133によって接続される。
 第1主管107、第2主管106、接続配管134、及び接続配管133の配管接続によって、熱源機A、中継機D、並びに室内機B、Cの間を冷媒が循環する。
[熱源機A]
 熱源機Aは、圧縮装置101、四方切換弁102、熱源側熱交換器103、アキュムレータ104、逆止弁105a、逆止弁105b、逆止弁105c、逆止弁105d、及び、インジェクション用内部熱交換器122を有している。
 また、熱源機Aは、インジェクション管120a、インジェクション管120b、インジェクション流量制御装置121a、インジェクション流量制御装置121b、インジェクション用内部熱交換器122、及び気液分離装置123を有している。
 なお、「インジェクション管120a」は、本発明における「インジェクション管」に相当する。
 また、「インジェクション管120b」は、本発明における「第2インジェクション管」に相当する。
 また、「インジェクション流量制御装置121a」は、本発明における「インジェクション用流量制御装置」に相当する。
 また、「インジェクション流量制御装置121b」は、本発明における「第2インジェクション用流量制御装置」に相当する。
 図2は、実施の形態1に係る空気調和装置の圧縮装置の構成を示す図である。
 圧縮装置101は、吸入した冷媒に圧力を加えて吐出する(送り出す)。
 図2に示すように、圧縮装置101は、低段側圧縮機101a及び高段側圧縮機101bの2段構成となっている。
 低段側圧縮機101a及び高段側圧縮機101bは、駆動周波数が任意に変化可能である。
 低段側圧縮機101a及び高段側圧縮機101bの駆動周波数は、制御手段200の指示に基づいて、インバータ回路(図示せず)によって制御される。
 圧縮装置101は、全体として吐出容量(単位時間あたりの冷媒の吐出量)と、その吐出容量に伴って能力を変化させることができる。
 低段側圧縮機101a及び高段側圧縮機101bの駆動周波数は、各圧縮機のストロークボリュームに応じて、あらかじめ所定の比率によって決めてもよい。
 この所定の比率とは、高段側圧縮機101bの吸入圧力が所定の値となる場合の比率である。
 低段側圧縮機101aと高段側圧縮機101bとの間の圧縮行程の途中部分に、インジェクションポート101cを設ける。
 インジェクションポート101cは、インジェクション管120a、120bから流入する冷媒を、高段側圧縮機101bに吸入させる。
 制御手段200は、例えば、外気の温度が低い環境下で、冷媒回路の低圧側の圧力が低下し、低段側圧縮機101aが吸入する冷媒の密度が減少する場合に、圧縮装置101の駆動回転数をインバータ回路で増速させる。これによって、冷媒流量の低下を防ぎ、暖房能力を維持する。
 また、制御手段200は、冷媒回路の低圧側の圧力が低下することで、高圧縮比の運転となり、吐出温度が高くなる場合に、インジェクションポート101cから熱源側熱交換器103で冷却された冷媒を、インジェクションポート101cを介して流入させる。これによって、圧縮装置101から吐出された冷媒の温度上昇(過剰な上昇)を防止する。
 四方切換弁102は、制御手段200の指示に基づいて、冷媒の経路を切り換える。
 四方切換弁102は、全冷房運転時と、全暖房運転時と、冷房主体運転時と、暖房主体運転時とによって、冷媒の経路を切り換える。
 熱源側熱交換器103は、冷媒を通過させる伝熱管、及びその伝熱管を流れる冷媒と空気(外気)との間の伝熱面積を大きくするためのフィンを有している。
 熱源側熱交換器103は、冷媒と空気(外気)との熱交換を行う。
 熱源側熱交換器103は、全暖房運転時、及び暖房主体運転時において、蒸発器として機能し、冷媒を蒸発させて気化させる。
 熱源側熱交換器103は、全冷房運転時、及び冷房主体運転時において、凝縮器として機能し、冷媒を凝縮して液化させる。
 熱源側熱交換器103は、例えば冷房主体運転時では、完全にガス化、液化するのではなく、液体とガス(気体)との二相混合(気液二相冷媒)の状態まで凝縮する等の調整が行われる場合もある。
 送風機140は、熱源側熱交換器103の近辺に設けられている。
 送風機140は、冷媒と空気との熱交換を効率よく行うため、熱源側熱交換器103へ空気を送風する。
 送風機140は、制御手段200からの指示に基づいて、風量を変化させる。
 送風機140の風量変化によって、熱源側熱交換器103における熱交換容量を変化させることができる。
 アキュムレータ104は、圧縮装置101と四方切換弁102との間に設けられる。
 アキュムレータ104は、冷媒回路中の過剰な冷媒を貯留する。
 逆止弁105aは、熱源側熱交換器103と第2主管106との間の配管に設けられる。
 逆止弁105aは、熱源側熱交換器103から第2主管106へ向かう方向にのみ冷媒流通を許容する。
 逆止弁105bは、四方切換弁102と第1主管107との間の配管に設けられる。
 逆止弁105bは、第1主管107から四方切換弁102へ向かう方向にのみ冷媒流通を許容する。
 第2主管106と第1主管107とは、逆止弁105aの上流側と逆止弁105bの上流側とを接続する接続配管130で、接続されている。
 また、第2主管106と第1主管107とは、逆止弁105aの下流側と逆止弁105bの下流側とを接続する接続配管131で、接続されている。
 つまり、第2主管106と接続配管130との接続部分aは、逆止弁105aを挟んで、第2主管106と接続配管131との接続部分bよりも上流側になっている。
 第1主管107と接続配管130との接続部分cは、逆止弁105bを挟んで、第1主管107と接続配管131との接続部分dよりも上流側になっている。
 接続配管130には、逆止弁105dが設けられている。
 逆止弁105dは、第1主管107から第2主管106へ向かう方向にのみ冷媒流通を許容する。
 接続配管131には、逆止弁105cが設けられている。
 逆止弁105cは、第1主管107から第2主管106へ向かう方向にのみ冷媒流通を許容する。
 なお、図1では、逆止弁105a~逆止弁105dの開状態を白塗りで示し、閉状態を黒塗りで示している。なお、以下の冷媒回路図においても同様に、逆止弁105a~逆止弁105dの開状態を白塗りで示し、閉状態を黒塗りで示している。
 インジェクション管120aは、一方の端部が、逆止弁105aと第2主管106との間の配管に接続される。
 インジェクション管120aは、他方の端部が、インジェクションポート101cに接続される。
 インジェクション管120aは、圧縮装置101の高段側圧縮機101bへ流入させる冷媒を通過させる。
 インジェクション管120aには、インジェクション流量制御装置121aが設けられている。
 インジェクション流量制御装置121aは、制御手段200の指示に基づいて、インジェクション管120aを通過する冷媒流量及びその冷媒の圧力を調整する。
 インジェクション用内部熱交換器122は、逆止弁105aと流量制御装置124との間の配管に設けられる。
 インジェクション用内部熱交換器122は、インジェクション管120a側に流れる冷媒と熱源側熱交換器103側に流れる冷媒との間で熱交換を行う。
 熱源側熱交換器103には、当該熱源側熱交換器103が蒸発器として機能する場合に、当該熱源側熱交換器103に流れる冷媒と、インジェクション管120aに流れる冷媒とを熱交換するインジェクション熱交換部103aが形成されている。
 なお、インジェクション熱交換部103aは、省略しても良い。
 インジェクション管120bは、一方の端部が、気液分離装置123に接続される。
 インジェクション管120bは、他方の端部が、インジェクションポート101cに接続される。
 インジェクション管120bは、圧縮装置101の高段側圧縮機101bに流入する(供給する)冷媒を、通過させる。
 インジェクション管120bには、インジェクション流量制御装置121bが設けられている。
 インジェクション流量制御装置121bは、制御手段200の指示に基づいて、インジェクション管120bを通過する冷媒流量及びその冷媒の圧力を調整する。
 気液分離装置123は、第1主管107を通過した冷媒を、ガス冷媒と液冷媒とに分離する。
 気液分離装置123は、分離した液冷媒の少なくとも一部を、インジェクション管120bに流す。
 なお、気液分離装置123は、配管を垂直に設置し、横から冷媒を吸入させることによって、液冷媒を下側にガス冷媒を上流に分離させる簡易な気液分離装置でもよい。
 全冷房運転又は冷房主体運転時において、高圧の液冷媒又は気液二相冷媒が第1主管107を通過するが、気液分離装置123を設けることによって、大きな圧力損失の影響を受けることなく冷房能力を発揮することができる。
 熱源機Aには、圧力検出器125、圧力検出器126、及び外気温度検出器127が取り付けられている。
 圧力検出器125は、圧縮装置101の吐出側と接続した配管に取り付けられている。
 圧力検出器125は、圧縮装置101から吐出された冷媒の圧力を検出する。
 圧力検出器125は、圧力センサで構成することができる。
 制御手段200は、圧力検出器125からの検出信号を取得する。
 制御手段200は、圧力検出器125からの検出信号に基づいて、例えば圧縮装置101が吐出した冷媒の圧力Pd及び温度Td等の検知を行う。
 制御手段200は、圧力Pdに基づいて、凝縮温度Tc等の演算を行う。
 圧力検出器126は、熱源機Aと第1主管107とを接続する配管に取り付けられている。
 圧力検出器126は、中継機D(室内機B)から熱源機Aへ流入する冷媒の圧力を検出する。
 外気温度検出器127は、外気の温度(外気温)を検出する。
[中継機D]
 中継機Dは、気液分離装置108、第1分岐部109、第2分岐部110、第1熱交換器111、及び第2熱交換器113を有する。
 気液分離装置108は、第2主管106から中継機Dに流入した冷媒を、ガス冷媒と液冷媒とに分離する。
 気液分離装置108は、ガス冷媒が流れ出る気相部、及び、液冷媒が流れ出る液相部を備える。
 気液分離装置108の気相部は、第1分岐部109に接続される。
 気液分離装置108の液相部は、第1熱交換器111、第2熱交換器113を介して、第2分岐部110と接続される。
 第1分配部109では、接続配管133が2つに分岐されている。
 分岐された一方の接続配管133aは、第1主管107に接続する。
 分岐された他方の接続配管133bは、接続配管132に接続する。
 接続配管132は、気液分離装置108と第1分配部109とを接続する。
 室内機Bに接続する接続配管133aには、切換弁109aが設けられている。
 室内機Cに接続する接続配管133aには、切換弁109bが設けられている。
 室内機Bに接続する接続配管133bには、切換弁109bが設けられている。
 室内機Cに接続する接続配管133bには、切換弁109aが設けられている。
 切換弁109a及び切換弁109bは、制御手段200によって開閉制御されて、冷媒の導通の有無が制御される。
 なお、図1では、切換弁109a及び切換弁109bの開状態を白塗りで示し、閉状態を黒塗りで示している。なお、以下の冷媒回路図においても同様に、切換弁109a及び切換弁109bの開状態を白塗りで示し、閉状態を黒塗りで示している。
 第2分配部110では、接続配管134が2つに分岐されている。
 分岐された一方の接続配管134bは、第1流量制御装置112(後述)と第2熱交換器113との間の配管に、第1会合部115によって接続されている。
 分岐された他方の接続配管134aは、第2流量制御装置114(後述)と第2熱交換器113との間の配管に、第2会合部116によって接続されている。
 室内機Bに接続する接続配管134aには、逆止弁110aが設けられている。
 室内機Cに接続する接続配管134aには、逆止弁110bが設けられている。
 室内機Bに接続する接続配管134bには、逆止弁110bが設けられている。
 室内機Cに接続する接続配管134bには、逆止弁110aが設けられている。
 逆止弁110a及び逆止弁110bは、冷媒の流通を一方のみに許容する。
 なお、図1では、逆止弁110a及び逆止弁110bの開状態を白塗りで示し、閉状態を黒塗りで示している。なお、以下の冷媒回路図においても同様に、逆止弁110a及び逆止弁110bの開状態を白塗りで示し、閉状態を黒塗りで示している。
 第1会合部115は、第1流量制御装置112及び第1熱交換器111を介して、気液分離装置108と第2分配部110とを接続している。
 第2会合部116は、第2分配部110と第2熱交換器113との間を分岐している。
 分岐した一方が、第2熱交換器113を介して、第1会合部115に接続されている。
 分岐した他方である第1バイパス配管116aが、第2流量制御装置114、第2熱交換器113、及び第1熱交換器111を介して、第1主管107に接続されている。
 第1熱交換器111は、気液分離装置108と第1流量制御装置112との間に設けられている。
 第1熱交換器111は、気液分離装置108から第1会合部115へ導通する冷媒と、第2熱交換器113から第1主管107へ導通する冷媒との間で熱交換する。
 第1熱交換器111は、例えば全冷房運転時に液冷媒を過冷却して、室内機B及び室内機C側に供給する。
 第1熱交換器111は、第1主管107と配管接続し、室内機B及び室内機C側から流れてきた冷媒、及び過冷却を行うために用いた冷媒を第1主管107に流す。
 第2熱交換器113は、第1会合部115と第2会合部116との間に設けられている。
 第2熱交換器113は、第1会合部115から第2会合部116へ導通する冷媒と、第2会合部116で分岐され第1バイパス配管116aを導通している冷媒との間で熱交換する。
 第2熱交換器113は、例えば全冷房運転時に液冷媒を過冷却して、室内機B及び室内機C側に供給する。
 第2熱交換器113は、第1主管107と配管接続し、室内機B及び室内機C側から流れてきた冷媒、及び過冷却を行うために用いた冷媒を第1主管107に流す。
 第1流量制御装置112は、第1熱交換器111と第2熱交換器113との間に設けられている。
 第1流量制御装置112は、制御手段200の指示に基づいて、開度を制御する。
 第1流量制御装置112は、気液分離装置108から第1熱交換器111へ流れる冷媒流量及び冷媒の圧力を調整する。
 第2流量制御装置114は、第2会合部116と第2熱交換器113との間の、第1バイパス配管116aに設けられている。
 第2流量制御装置114は、制御手段200の指示に基づいて、開度を制御する。
 第2流量制御装置114は、第1バイパス配管116aを通過する冷媒の冷媒流量及び冷媒の圧力を調整する。
 中継機Dには、圧力検出器128、及び圧力検出器129が取り付けられている。
 圧力検出器128は、第1熱交換器111と第1流量制御装置112との間の配管に取り付けられている。
 圧力検出器128は、第1熱交換器111から第1流量制御装置112へ流れる冷媒の圧力を検出する。
 圧力検出器129は、第1流量制御装置112と第1会合部115との間の配管に取り付けられている。
 圧力検出器129は、第1流量制御装置112から第1会合部115へ流れる冷媒の圧力を検出する。
 制御手段200は、圧力検出器128及び圧力検出器129からの検出信号を取得する。
 制御手段200は、圧力検出器128と圧力検出器129とが検出する圧力の差に基づいて、第2流量制御装置114の開度を決定する。
 第2流量制御装置114、及び第1バイパス配管116aを通過した冷媒は、例えば第2熱交換器113及び第1熱交換器111において冷媒を過冷却し、第1主管107に流れる。
 第2熱交換器113は、第2流量制御装置114を通過し第1バイパス配管116aを流れる冷媒と、第1流量制御装置112から流れてくる冷媒との間で熱交換を行う。
 第1熱交換器111は、第1バイパス配管116a及び第2熱交換器113を通過した冷媒と、気液分離装置108から第1流量制御装置112に流れる冷媒との間で熱交換を行う。
 第2バイパス配管116bは、第2熱交換器113を通過し、逆止弁110aを介して室内機Bへ流れる冷媒を流す。
 第2バイパス配管116bは、第2熱交換器113を通過し、逆止弁110bを介して室内機Cへ流れる冷媒を流す。
 第2バイパス配管116bを通過した冷媒は、冷房主体運転及び暖房主体運転時には、第2熱交換器113を通過した後、一部又は全部が冷房を行っている室内機B、Cに流れる。
 また、例えば全暖房運転を行っている場合には、全部が第2流量制御装置114及び第1バイパス配管116aを通過して第1主管107に流れる。
[室内機B及び室内機C]
 室内機Bには、絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。
 室内機Cには、絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。
 本実施の形態では、冷房主体運転時及び暖房主体運転時において、室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当し、室内機Cは、熱源機Aからの温熱の供給を受けて暖房負荷を担当する。
 また、全冷房運転時において、室内機B及び室内機Cは、共に、熱源機Aからの冷熱の供給を受けて冷房負荷を担当する。
 また、全暖房運転時において、室内機B及び室内機Cは、共に、熱源機Aからの温熱の供給を受けて冷房負荷を担当する。
 室内熱交換器118は、冷媒を通過させる伝熱管、及びその伝熱管を流れる冷媒と室内の空気との間の伝熱面積を大きくするためのフィンを有している。
 室内熱交換器118は、冷媒と室内の空気との熱交換を行う。
 室内熱交換器118は、放熱器(凝縮器)又は蒸発器として機能する。
 室内熱交換器118は、冷媒を凝縮液化又は蒸発ガス化する。
 室内熱交換器118の近辺には、送風機141が設けられている。
 送風機141は、冷媒と空気との熱交換を効率よく行うため、室内熱交換器118へ空気を送風する。
 送風機141は、制御手段200からの指示に基づいて、風量を変化させる。 送風機141の風量変化によって、室内熱交換器118における熱交換容量を変化させることができる。
 絞り手段117は、減圧弁又は膨張弁として機能する。
 絞り手段117は、冷媒を減圧して膨張させるものである。
 絞り手段117は、開度が可変に制御可能である。
[制御手段200及び記憶手段201]
 制御手段200は、例えば空気調和装置1内外に設けられた各種検出器(センサ)、及び空気調和装置1の各機器(手段)から送信される信号に基づく判断処理等を行う。
 制御手段200は、判断処理等に基づいて各機器を動作させる。
 制御手段200は、空気調和装置1の全体の動作を統括制御する。
 具体的には、制御手段200は、圧縮装置101の駆動周波数制御、流量制御装置124等の流量制御装置の開度制御、四方切換弁102、切換弁109a、109b、及び絞り手段117の切換制御等を行う。
 記憶手段201は、制御手段200が処理を行うために必要となる各種データ、プログラム等を一時的又は長期的に記憶する。
 なお、本実施の形態では、制御手段200及び記憶手段201を、熱源機Aと独立して設ける場合を説明するが、これに限るものではない。例えば、制御手段200及び記憶手段201を、熱源機A内に設けても良い。
 また、本実施の形態では、制御手段200及び記憶手段201を、空気調和装置1内に設ける場合を説明するが、これに限るものではない。例えば、制御手段200及び記憶手段201を空気調和装置1外に設け、電気通信網等を介した信号通信を行うことによって、遠隔制御してもよい。
[運転動作]
 本実施の形態の空気調和装置1は、全冷房運転、全暖房運転、冷房主体運転、及び暖房主体運転のうちの何れかの運転を行う。
 熱源側熱交換器103は、全冷房運転時及び冷房主体運転時に、凝縮器として機能する。
 熱源側熱交換器103は、全暖房運転時及び暖房主体運転時に、蒸発器として機能する。
 次に、各運転における、各機器の動作及び冷媒の流れについて説明する。
[全冷房運転]
 図1に基づいて、全冷房運転における、各機器の動作及び冷媒の流れについて説明する。
 ここでは、全ての室内機が停止することなく冷房を行っている場合について説明する。
 圧縮装置101は、吸入した冷媒を圧縮し、高圧のガス冷媒を吐出する。
 圧縮装置101から吐出した高圧のガス冷媒は、四方切換弁102を経て、熱源側熱交換器103に流れる。
 高圧のガス冷媒は、熱源側熱交換器103内を通過する間に、外気との熱交換によって凝縮し、高圧の液冷媒となる。
 高圧の液冷媒は、逆止弁105aを流れる。
 このとき、高圧の液冷媒は、冷媒の圧力の関係で、逆止弁105c及び逆止弁105d側には流れない。
 そして、高圧の液冷媒は、第2主管106を通って中継機Dに流入する。
 気液分離装置108は、中継機Dに流入した冷媒を、ガス冷媒と液冷媒とに分離する。
 全冷房運転時に中継機Dへ流入する冷媒は、液冷媒である。
 制御手段200は、接続配管133aに接続する切換弁109a及び切換弁109bを開状態に切換制御する。
 制御手段200は、接続配管133bに接続する切換弁109a及び切換弁109bを閉状態に切換制御する。
 このため、気液分離装置108によって分離されたガス冷媒は、気液分離装置108から室内機B、室内機C側に流れない。
 気液分離装置108によって分離された液冷媒は、第1熱交換器111、第1流量制御装置112、第2熱交換器113を通過して、一部が第2分岐部110に流入する。
 第2分岐部110へ流入した冷媒は、接続配管134aに接続する逆止弁110a、接続配管134aに接続する逆止弁110b、及び接続配管134を介して、室内機B及び室内機Cに分流する。
 制御手段200は、絞り手段117の開度調整を行う。
 室内機B及び室内機Cにおいて、絞り手段117は、接続配管134から流入した液冷媒の圧力調整を行う。
 絞り手段117の開度調整は、各室内熱交換器118の冷媒出口側の過熱度に基づいて行う。
 絞り手段117の開度調整によって、低圧の液冷媒又は気液二相冷媒となった冷媒は、それぞれ室内熱交換器118に流れる。
 低圧の液冷媒又は気液二相冷媒は、室内熱交換器118を通過する間に、空調対象空間となる室内空気との熱交換によって蒸発する。
 このとき、熱交換によって室内空気を冷却して室内の冷房を行う。
 そして、室内熱交換器118を通過した冷媒は、低圧のガス冷媒となり、接続配管133に流れる。
 なお、室内熱交換器118を通過した冷媒は、気液二相冷媒となる場合もある。
 例えば、室内機B及び室内機Cの少なくとも一方の空調負荷が小さい場合、又は、運転開始直後等の過渡的な状態の場合等には、室内熱交換器118において冷媒が完全に気化せず、気液二相冷媒となる。
 なお、空調負荷とは、室内機B及び室内機Cが必要とする熱量をいう。以下、負荷ともいう。
 接続配管133を流通した低圧のガス冷媒又は気液二相冷媒(低圧の冷媒)は、接続配管133aに接続する切換弁109a及び接続配管133aに接続する切換弁109bを通過して、第1主管107に流れる。
 第1主管107を通過して熱源機Aに流入した冷媒は、逆止弁105b、四方切換弁102、及びアキュムレータ104を経て、再び圧縮装置101に戻る。
 以上が全冷房運転時における、基本的な冷媒の循環経路となる。
 制御手段200は、全冷房運転において、インジェクション流量制御装置121a、及びインジェクション流量制御装置121bの開度を全閉に制御する。
 インジェクション流量制御装置121aは、開度を全閉にして、インジェクション管120aへ冷媒を流さない。
 インジェクション流量制御装置121bは、開度を全閉にして、インジェクション管120bへ冷媒を流さない。
 ここで、第1熱交換器111及び第2熱交換器113における、冷媒の流れについて説明する。
 気液分離装置108で分離した液冷媒は、第1熱交換器111、第1流量制御装置112、及び第2熱交換器113を通過して、一部が第2分岐部110に流入し、他の一部が第2流量制御装置114に流入する。
 第2流量制御装置114に流入した冷媒は、第1バイパス配管116aを通過し、第2熱交換器113、及び第1熱交換器111において、気液分離装置108から流れる冷媒を過冷却し、第1主管107に流れる。
 冷媒を過冷却して第2分岐部110側に流すことによって、冷媒入口側(接続配管134側)のエンタルピーを小さくすることができる。よって、室内熱交換器118において、空気との熱交換量を大きくすることができる。
 第2流量制御装置114の開度が大きく、第1バイパス配管116aを流れる冷媒(過冷却に用いる冷媒)の量が多くなると、室内熱交換器118で蒸発されない冷媒が多くなり過ぎる場合がある。
 このため、制御手段200は、圧力検出器128と圧力検出器129との圧力差が、予め定めた値となるように、第2流量制御装置114の開度を制御して、第1流量制御装置112出口での冷媒の過熱度を調節する。
 制御手段200は、圧縮装置101の吐出容量、送風機140及び送風機141の風量を制御し、室内機B及び室内機Cの負荷に対応した能力供給を行う。
 これによって、制御手段200は、室内熱交換器118の冷媒の蒸発温度、及び熱源側熱交換器103の冷媒の凝縮温度が、予め定めた目標温度になるようにする。
[全暖房運転]
 図3は、実施の形態1に係る空気調和装置の全暖房運転時の冷媒回路図である。
 図3に基づいて、全暖房運転における、各機器の動作及び冷媒の流れについて説明する。
 ここでは、全ての室内機が停止することなく冷房を行っている場合について説明する。
 圧縮装置101は、吸入した冷媒を圧縮し、高圧のガス冷媒を吐出する。
 圧縮装置101から吐出した高圧のガス冷媒は、四方切換弁102を経て、逆止弁105cを流れる。
 このとき、高圧の液冷媒は、冷媒の圧力の関係で、逆止弁105b及び逆止弁105a側には流れない。
 そして、高圧のガス冷媒は、第2主管106を通って中継機Dに流入する。
 制御手段200は、接続配管133aに接続する切換弁109a及び切換弁109bを閉状態に切換制御する。
 制御手段200は、接続配管133bに接続する切換弁109a及び切換弁109bを開状態に切換制御する。
 このため、気液分離装置108によって分離されたガス冷媒は、第1分岐部109から接続配管133を介して、室内機B、室内機C側に流れる。
 高圧のガス冷媒は、室内熱交換器118をそれぞれ通過する間に空調対象空間となる室内空気との熱交換によって凝縮する。
 このとき、熱交換によって室内空気を加熱して室内の暖房を行う。
 そして、室内熱交換器118を通過した冷媒は、液冷媒となり、絞り手段117を通過する。
 制御手段200は、絞り手段117の開度調整を行う。
 室内機B及び室内機Cにおいて、絞り手段117は、室内熱交換器118から流出した液冷媒の圧力調整を行う。
 絞り手段117の開度調整は、各室内熱交換器118の冷媒出口側の過冷却度に基づいて行う。
 絞り手段117の開度調整によって、低圧の液冷媒又は気液二相冷媒となった冷媒は、接続配管134を通過し、第2分岐部110に流入する。
 第2分岐部110に流入した冷媒は、接続配管134bに接続する逆止弁110a及び逆止弁110bを介して、第1会合部115を流れる。
 そして、第1会合部115から第2熱交換器113へ流れた冷媒は、第2会合部116から第2流量制御装置114へ流入する。
 そして、第2流量制御装置114を流出した冷媒は、第1バイパス配管116a、第2熱交換器113、及び第2熱交換器113を通過して、第1主管107に流れる。
 このとき、第2流量制御装置114の開度調整をすることによって、低圧の気液二相冷媒が第1主管107に流れる。
 第1主管107を通過して熱源機Aに流入した冷媒は、逆止弁105dを通過し、熱源側熱交換器103に流入する。
 熱源側熱交換器103に流入した冷媒は、熱源側熱交換器103を通過する間に外気との熱交換によって蒸発し、ガス冷媒となる。
 そして、ガス冷媒は、四方切換弁102、及びアキュムレータ104を経て、再び圧縮装置101に戻る。
 以上が全暖房運転時の冷媒の循環経路となる。
 制御手段200は、圧縮装置101の吐出容量、送風機140及び送風機141の風量を制御し、室内機B及び室内機Cの負荷に対応した能力供給を行う。
 これによって、制御手段200は、室内熱交換器118の冷媒の凝縮温度、及び熱源側熱交換器103の冷媒の蒸発温度が、予め定めた目標温度になるようにする。
 制御手段200は、全暖房運転において、インジェクション流量制御装置121a、及びインジェクション流量制御装置121bの開度を、外気の温度に基づいて制御する。
 即ち、制御手段200は、外気の温度に基づいて、インジェクション流量制御装置121aの開度を制御して、インジェクション管120aに高圧のガス冷媒を流入させ、インジェクションポート101cから高段側圧縮機101bの吸入側に流入させる。
 また、制御手段200は、インジェクション流量制御装置121bの開度を制御して、インジェクション管120bに液冷媒を流入させ、インジェクションポート101cから高段側圧縮機101bの吸入側に流入させる。
 なお、インジェクションに係る動作の詳細は後述する。
 なお、圧縮装置101が供給する能力の確保は、駆動周波数の増速等によって行う。
 なお、上述した全冷房運転及び全暖房運転において、すべての室内機B及び室内機Cが運転しているものとして説明したが、例えば一部の室内機が停止していてもよい。
 また、例えば一部の室内機が停止しており、空気調和装置1全体として負荷が小さい場合は、低段側圧縮機101a、高段側圧縮機101bのいずれか一方を停止して、圧縮装置101が供給する能力を変化させるようにしてもよい。
[暖房主体運転]
 図4は、実施の形態1に係る空気調和装置の暖房主体運転時の冷媒回路図である。
 図4に基づいて、暖房主体運転における、各機器の動作及び冷媒の流れについて説明する。
 ここでは、室内機Cが暖房を行い、室内機Bが冷房を行っている場合について説明する。
 熱源機Aの各機器の動作及び冷媒の流れは、図3を用いて説明した全暖房運転と同じである。
 制御手段200は、接続配管133aに接続する切換弁109a、及び接続配管133bに接続する切換弁109aを開状態に切換制御する。
 制御手段200は、接続配管133aに接続する切換弁109b、及び接続配管133bに接続する切換弁109bを閉状態に切換制御する。
 このため、気液分離装置108によって分離されたガス冷媒は、第1分岐部109から接続配管133を介して、室内機C側にのみ流れる。
 室内機Cの暖房における冷媒の流れについては、図3を用いて説明した全暖房運転時の流れと同様である。
 一方、室内機Bの冷房における冷媒の流れは、暖房を行っている室内機Cと異なる。
 室内機Cにおいて、絞り手段117の開度調整によって、低圧の液冷媒又は気液二相冷媒となった冷媒は、接続配管134を通過し、第2分岐部110に流入する。
 第2分岐部110に流入した冷媒は、接続配管134bに接続する逆止弁110aを介して、第1会合部115を流れる。
 制御手段200は、第1流量制御装置112を閉止させ、気液分離装置108と第1会合部115との間の冷媒の流れを遮断する。
 そのため、冷媒は、第1会合部115から、第2熱交換器113を介して、第2会合部116を流れる。
 第2会合部116へ流れた冷媒は、一部が第2バイパス配管116bに流れ、接続配管134aに接続する逆止弁110a及び接続配管134を通過し、室内機Bへ流入する。
 制御手段200は、絞り手段117の開度調整を行う。
 室内機Bにおいて、絞り手段117は、接続配管134から流入した液冷媒の圧力調整を行う。
 絞り手段117の開度調整は、各室内熱交換器118の冷媒出口側の過熱度に基づいて行う。
 絞り手段117の開度調整によって、低圧の液冷媒又は気液二相冷媒となった冷媒は、室内機Bの室内熱交換器118に流れる。
 低圧の液冷媒又は気液二相冷媒は、室内熱交換器118を通過する間に、空調対象空間となる室内空気との熱交換によって蒸発する。
 このとき、熱交換によって室内空気を冷却して室内の冷房を行う。
 そして、室内熱交換器118を通過した冷媒は、低圧のガス冷媒となり、接続配管133に流れる。
 接続配管133を流通した低圧のガス冷媒又は気液二相冷媒(低圧の冷媒)は、接続配管133aに接続する切換弁109aを通過して、第1主管107に流れる。
 一方、第2熱交換器113を通過して、第2会合部116へ流れた冷媒の一部は、第2流量制御装置114に流入する。
 そして、第2流量制御装置114を流出した冷媒は、第1バイパス配管116a、第2熱交換器113、及び第2熱交換器113を通過して、第1主管107に流れる。
 このとき、制御手段200は、第2流量制御装置114の開度調整をすることによって、室内機Cに必要な冷媒供給を行いつつ、残りの冷媒を第1バイパス配管116aを介して第1主管107に流す。
 上述した全暖房運転と同様に、制御手段200は、暖房主体運転において、インジェクション流量制御装置121a、及びインジェクション流量制御装置121bの開度を、外気の温度に基づいて制御する。なお、インジェクションに係る動作の詳細は後述する。
 暖房主体運転において、冷房を行う室内機(ここでは室内機B)には、暖房を行っている室内機(ここでは室内機C)から流出した冷媒が流れることになる。
 そのため、冷房を行う室内機Bが停止すると、第1バイパス配管116aを流れる気液二相冷媒の量が増加する。
 一方、冷房を行う室内機Bにおける負荷が増えると、第1バイパス配管116aを流れる気液二相冷媒の量が減少する。
 そのため、暖房を行う室内機Cに必要な冷媒の量は変わらないまま、冷房を行う室内機Bにおける室内熱交換器118(蒸発器)の負荷が変化する。
 このような暖房主体運転においても、制御手段200は、圧縮装置101の吐出容量、送風機140及び送風機141の風量を制御し、室内機B及び室内機Cの負荷に対応した能力供給を行う。
[冷房主体運転]
 図5は、実施の形態1に係る空気調和装置の冷房主体運転時の冷媒回路図である。
 図5に基づいて、冷房主体運転における、各機器の動作及び冷媒の流れについて説明する。
 ここでは、室内機Cが暖房を行い、室内機Bが冷房を行っている場合について説明する。
 熱源機Aの各機器の動作及び冷媒の流れは、図1を用いて説明した全冷房運転と同じである。
 ただし、冷房主体運転では、第2主管106を通って中継機Dに流入する冷媒が、気液二相冷媒となるように、熱源側熱交換器103における冷媒の凝縮能力を制御する。
 即ち、制御手段200は、圧縮装置101の吐出容量、送風機140の風量を制御し、熱源側熱交換器103における冷媒の凝縮能力を制御する。
 気液分離装置108は、中継機Dに流入した冷媒を、ガス冷媒と液冷媒とに分離する。
 冷房主体運転時に中継機Dへ流入する冷媒は、気液二相冷媒である。
 制御手段200は、接続配管133aに接続する切換弁109a、及び接続配管133bに接続する切換弁109aを開状態に切換制御する。
 制御手段200は、接続配管133aに接続する切換弁109b、及び接続配管133bに接続する切換弁109bを閉状態に切換制御する。
 このため、気液分離装置108によって分離されたガス冷媒は、第1分岐部109から接続配管133を介して、室内機C側にのみ流れる。
 室内機Cにおいて、高圧のガス冷媒は、室内熱交換器118内を通過する間に熱交換によって凝縮して液冷媒となり、絞り手段117を通過する。
 このとき、熱交換によって室内空気を加熱して室内の暖房を行う。
 絞り手段117を通過した冷媒は若干圧力が減少した液冷媒となり、接続配管134を通過し、第2分岐部110に流入する。
 第2分岐部110に流入した冷媒は、接続配管134bに接続する逆止弁110aを介して、第1会合部115を流れる。
 制御手段200は、第1流量制御装置112を開度を調節し、気液分離装置108で分離された液冷媒を第1会合部115へ流す。
 そのため、
 気液分離装置108から流れてきた液冷媒と、第2分岐部110から流れてきた液冷媒とが、第1会合部115で合流する。
 合流した液冷媒は、第1会合部115から、第2熱交換器113を介して、第2会合部116を流れる。
 第2会合部116へ流れた冷媒は、一部が第2バイパス配管116bに流れ、接続配管134aに接続する逆止弁110a及び接続配管134を通過し、室内機Bへ流入する。
 制御手段200は、絞り手段117の開度調整を行う。
 室内機Bにおいて、絞り手段117は、接続配管134から流入した液冷媒の圧力調整を行う。
 絞り手段117の開度調整は、各室内熱交換器118の冷媒出口側の過熱度に基づいて行う。
 絞り手段117の開度調整によって、低圧の液冷媒又は気液二相冷媒となった冷媒は、室内機Bの室内熱交換器118に流れる。
 低圧の液冷媒又は気液二相冷媒は、室内熱交換器118を通過する間に、空調対象空間となる室内空気との熱交換によって蒸発する。
 このとき、熱交換によって室内空気を冷却して室内の冷房を行う。
 そして、室内熱交換器118を通過した冷媒は、低圧のガス冷媒となり、接続配管133に流れる。
 接続配管133を流通した低圧のガス冷媒又は気液二相冷媒(低圧の冷媒)は、接続配管133aに接続する切換弁109aを通過して、第1主管107に流れる。
 このように冷房主体運転においては、熱源側熱交換器103は、凝縮器として機能する。
 また、暖房を行う室内機Cを通過した冷媒は、冷房を行う室内機Bの冷媒として用いる。
 ここで、室内機Bにおける負荷が小さく、室内機Bに流れる冷媒を抑制する等の場合には、制御手段200は、第2流量制御装置114の開度を大きくさせる。
 これによって、冷房を行っている室内機Bに必要以上の冷媒を供給しなくても、第1バイパス配管116aを介して第1主管107に流すことができる。
 このような冷房主体運転についても、制御手段200は、圧縮装置101の吐出容量、送風機140及び送風機141の風量を制御し、室内機B及び室内機Cの負荷に対応した能力供給を行う。
 制御手段200は、冷房主体運転において、インジェクション流量制御装置121a、及びインジェクション流量制御装置121bの開度を全閉に制御する。
 インジェクション流量制御装置121aは、開度を全閉にして、インジェクション管120aへ冷媒を流さない。
 インジェクション流量制御装置121bは、開度を全閉にして、インジェクション管120bへ冷媒を流さない。
[インジェクションに係る制御]
 外気の温度が低くなると、全暖房運転、及び暖房主体運転において、蒸発器として機能する熱源側熱交換器103での冷媒の圧力が低下する。即ち、圧縮装置101の吸入側の冷媒の圧力が低下する。
 そのため、圧縮装置101に吸入される冷媒(循環する冷媒)が、減少(冷媒密度が低下)する。
 圧縮装置101に吸入される冷媒が減少すると、圧縮比が高くなり、圧縮装置101が吐出する冷媒の温度(吐出温度)が高くなる。
 そこで、制御手段200は、インジェクション流量制御装置121a、及びインジェクション流量制御装置121bの少なくとも一方の開度を変化させる。
 これによって、インジェクションポート101cから冷媒を補って、冷媒密度を高める。
 また、高段側圧縮機101bが吸入する冷媒の温度を低くして、圧縮装置101が吐出する冷媒の温度が過昇しないようにする。
 本実施の形態では、全暖房運転、及び暖房主体運転において、圧縮装置101から吐出された高圧のガス冷媒を、インジェクション管120aの一方の端部で分岐させる。
 インジェクション管120aの他方の端部を、圧縮装置101のインジェクションポート101cに接続する。
 制御手段200は、インジェクション流量制御装置121aによって、インジェクション管120aを通過する冷媒を減圧調整する。
 インジェクション管120aの一部は、インジェクション用内部熱交換器122を通過する。
 インジェクション用内部熱交換器122では、インジェクション管120aを流れる冷媒と、熱源側熱交換器103へ流入する冷媒との間で熱交換を行い、冷媒を凝縮させる。
 インジェクション用内部熱交換器122で凝縮された冷媒は、圧縮装置101のインジェクションポート101cから高段側圧縮機101bに流入する。
 これによって、圧縮装置101から吐出し、安定した高圧の冷媒を、インジェクション流量制御装置121aによって減圧調整し、十分な差圧を設けることで、インジェクションポート101cから圧縮装置101に安定した量の冷媒を流入させることができる。
 また、本実施の形態では、全暖房運転、及び暖房主体運転において、室内機B、室内機C、及び中継機Dを通過した低圧の気液二相冷媒を液冷媒とガス冷媒とに分離し、そのガス冷媒を、インジェクション管120bの一方の端部で分岐させる。
 インジェクション管120bの他方の端部を、圧縮装置101のインジェクションポート101cに接続する。
 制御手段200は、インジェクション流量制御装置121bによって、インジェクション管120bを通過する冷媒を減圧調整する。
 これによって、暖房を行う室内機を通過した冷媒をインジェクションするため、暖房を行う室内機に、多くの冷媒を流すことができる。
 よって、全暖運転時の十分な差圧を確保できる場合、外気の温度が比較的高い場合、又は、暖房負荷が小さい場合等、インジェクションする冷媒量を多く必要としない場合は、インジェクション管120bからのインジェクションを主として活用することで、暖房能力の確保、及び運転の高効率化することができる。
 また、インジェクション管120aを通過する高圧の冷媒は、インジェクション用内部熱交換器122によって、冷房を行う室内機、及び中継機Dを通過した低圧の気液二相冷媒と熱交換される。
 これによって、インジェクションさせる冷媒のエンタルピーを低下させることができる。
 また、冷房を行う室内機及び中継機Dを通過した低圧の気液二相冷媒は、エンタルピーが上昇し、熱源側熱交換器103での負荷を軽くすることができる。それに伴い、低圧を上昇させ、暖房能力を上昇させることが可能となる。
 図6は、実施の形態1に係る空気調和装置の動作を示すフローチャートである。
 以下、図6に基づき、インジェクションに係る制御の詳細を説明する。
(STEP1)
 制御手段200は、外気温度検出器127から送信される信号に基づいて、外気温が、あらかじめ定めた所定外気温度よりも低いか否かを判断する(低外気判定)。
 外気温が所定外気温度よりも低くない場合、STEP8に進む。
(STEP2)
 一方、外気温が所定外気温度よりも低い場合、制御手段200は、圧力検出器126によって検出される圧力が、あらかじめ定めた目標中間圧力となるように、流量制御装置124の開度を制御する。
(STEP3)
 制御手段200は、圧力検出器125の検出値に基づいて、圧縮装置101が吐出した冷媒の圧力Pd及び温度Tdを検知する。
 制御手段200は、圧力Pdに基づいて、凝縮温度Tcを演算する。
 制御手段200は、温度Tdと凝縮温度Tcとの差である吐出過熱度TdSHを算出する。
(STEP4)
 制御手段200は、STEP3によって演算した吐出過熱度TdSHが、あらかじめ定めた目標吐出過熱度TdSHmより大きいか否かを判断する。
 吐出過熱度TdSHが目標吐出過熱度TdSHmより大きい場合、STEP1に戻る。
(STEP5)
 一方、吐出過熱度TdSHが目標吐出過熱度TdSHmより大きくない場合、制御手段200は、吐出過熱度TdSHが目標吐出過熱度TdSHmとなるように、インジェクション流量制御装置121bの開度を制御する。
(STEP6)
 制御手段200は、インジェクション流量制御装置121bの開度が最大であるか否かを判断する。
 インジェクション流量制御装置121bの開度が最大でない場合、STEP1に戻る。
(STEP7)
 インジェクション流量制御装置121bの開度が最大である場合、制御手段200は、吐出過熱度TdSHを目標吐出過熱度TdSHmとなるように、インジェクション流量制御装置121aの開度を制御する。
(STEP8)
 STEP1において、外気温が所定外気温度よりも低くないと判断した場合、制御手段200は、インジェクション流量制御装置121a及びインジェクション流量制御装置121bを閉止させ、STEP1に戻る。なお、閉止しているときはそのままにする。
 これによって、インジェクション管120a、120bに冷媒が流れないようにし、通常動作による制御を行う。
 以上のように本実施の形態においては、差圧が確保でき安定したインジェクション流量を確保できる全暖運転時、及び、外気が比較的高く多くのインジェクション流量を必要としない暖主運転時には、室内機を通った後の冷媒をインジェクションする。また、インジェクション流量を十分に確保したい場合には、圧縮装置101から吐出した高圧のガス冷媒を、室内機を通った後の二相冷媒と熱交換を行い凝縮させ、圧縮装置101にインジェクションする制御を行う。
 このため、暖房を行っている室内機に供給する暖房能力を確保(維持)し、その上で、蒸発器となる室内熱交換器118から流出する冷媒の圧力を制御することによって、冷房を行っている室内機に供給する冷房能力を確保(維持)することができる。
 よって、インジェクションを利用した効率のよい運転を行いつつ、さらにその配管接続を活かした運転ができる。
実施の形態2.
 本実施の形態では、熱源機Aにおいて、暖房主体運転において、冷房を行う室内機の凍結を防ぐために行う蒸発運転について説明する。
 本実施の形態2における暖房主体運転の冷媒の流れについては、上記実施の形態1において図4を用いて説明した暖房主体運転の流れと同様である。
 本実施の形態2の制御手段200は、上記実施の形態1の動作に加え、冷房を行う室内機の凍結を防ぐ蒸発運転を行う。
 制御手段200は、暖房主体運転時において、圧力検出器126によって検出された中間圧力が、あらかじめ設定した所定の圧力(飽和温度が0℃以上となる圧力)となるように、流量制御装置124の開度を制御する。
 このような制御によって、冷房を行う室内機Bの室内熱交換器118の蒸発温度を0℃以上に維持することができ、冷房を行う室内機Bの凍結を防ぐことができる。
実施の形態3.
 上述の実施の形態1及び2においては、中継機Dを有し、冷暖同時運転を行うことができる空気調和装置1について説明したが、このような構成に限定するものではない。
 例えば、図7に示すように、中継機Dを設けずに、熱源機Aと室内機B、Cとを接続するようにしても良い。
 例えば、中継機Dを設けずに、冷房と暖房を切り替えて行う空気調和装置1に適用することができる。
 また例えば、室内機(負荷側ユニット)が暖房(加熱)専用となる空気調和装置1に適用することができる。
 1 空気調和装置、101 圧縮装置、101a 低段側圧縮機、101b 高段側圧縮機、101c インジェクションポート、102 四方切換弁、103 熱源側熱交換器、103a インジェクション熱交換部、104 アキュムレータ、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 第2主管、107 第1主管、108 気液分離装置、109a 切換弁、109b 切換弁、110a 逆止弁、110b 逆止弁、111 第1熱交換器、112 第1流量制御装置、113 第2熱交換器、114 第2流量制御装置、115 第1会合部、116 第2会合部、116a 第1バイパス配管、116b 第2バイパス配管、117 絞り手段、118 室内熱交換器、120a インジェクション管、120b インジェクション管、121a インジェクション流量制御装置、121b インジェクション流量制御装置、122 インジェクション用内部熱交換器、123 気液分離装置、124 流量制御装置、125 圧力検出器、126 圧力検出器、127 外気温度検出器、128 圧力検出器、129 圧力検出器、130 接続配管、131 接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、140 送風機、141 送風機、200 制御手段、201 記憶手段、A 熱源機、B 室内機、C 室内機、D 中継機、a 接続部分、b 接続部分、c 接続部分、d 接続部分。

Claims (11)

  1.  冷媒を圧縮する圧縮装置、及び前記冷媒と外気とを熱交換する熱源側熱交換器を有する熱源機と、
     空調対象の空気と前記冷媒とを熱交換する室内熱交換器、及び絞り手段を有する室内機と、
     前記熱源機と前記室内機とを接続して冷媒回路を形成する冷媒配管と、
     前記圧縮装置が吐出した冷媒を分岐し、前記圧縮装置の圧縮行程の途中部分に流入させるインジェクション管と、
     前記インジェクション管を流通する冷媒と、前記室内機を通過したあと前記熱源側熱交換器へ流入する冷媒とを熱交換するインジェクション用内部熱交換器と、を備えた
    ことを特徴とする空気調和装置。
  2.  前記熱源機と、複数の前記室内機との間に設けられ、前記複数の室内機のうち暖房を行う前記室内機に気体の冷媒を供給し、前記複数の室内機のうち冷房を行う前記室内機に液体の冷媒を供給する流路を形成する中継機を備えた
    ことを特徴とする請求項1記載の空気調和装置。
  3.  前記圧縮装置は、
     直列に接続された複数の圧縮機によって構成され、前記複数の圧縮機の連結部分に前記インジェクション管を接続するインジェクションポートを備えた
    ことを特徴とする請求項1又は2記載の空気調和装置。
  4.  前記インジェクション管を通過する冷媒量を調整するインジェクション用流量制御装置と、
     前記インジェクション用流量制御装置の開度を制御する制御手段と、を備え、
     前記制御手段は、
     前記外気の温度が予め設定した温度以下の場合、前記インジェクション用流量制御装置の開度を開放させて、前記冷媒を前記圧縮装置の圧縮行程の途中部分に流入させる
    ことを特徴とする請求項1~3のいずれかに記載の冷凍空気調和装置。
  5.  前記制御手段は、
     前記圧縮装置が吐出した冷媒の過熱度に基づいて、前記インジェクション用流量制御装置の開度を制御する
    ことを特徴とする請求項4記載の空気調和装置。
  6.  前記室内機を通過したあと前記熱源機に流入し、前記熱源側熱交換器に流入する前の冷媒を分岐し、前記圧縮装置の圧縮行程の途中部分に流入させる第2インジェクション管を備えた
    ことを特徴とする請求項1~3の何れか一項に記載の空気調和装置。
  7.  前記室内機を通過したあと前記熱源機に流入し、前記熱源側熱交換器に流入する前の冷媒を分岐し、前記圧縮装置の圧縮行程の途中部分に流入させる第2インジェクション管と、
     前記第2インジェクション管を通過する冷媒量を調整する第2インジェクション用流量制御装置と、
     前記第2インジェクション用流量制御装置の開度を制御する制御手段と、を備え、
     前記制御手段は、
     前記外気の温度が予め設定した温度以下の場合、前記第2インジェクション用流量制御装置の開度を開放させて、前記冷媒を前記圧縮装置の圧縮行程の途中部分に流入させる
    ことを特徴とする請求項1~3のいずれかに記載の冷凍空気調和装置。
  8.  前記制御手段は、
     前記圧縮装置が吐出した冷媒の過熱度に基づいて、前記第2インジェクション用流量制御装置の開度を制御する
    ことを特徴とする請求項7記載の空気調和装置。
  9.  前記インジェクション管を通過する冷媒量を調整するインジェクション用流量制御装置と、
     前記室内機を通過したあと前記熱源機に流入し、前記熱源側熱交換器に流入する前の冷媒を分岐し、前記圧縮装置の圧縮行程の途中部分に流入させる第2インジェクション管と、
     前記第2インジェクション管を通過する冷媒量を調整する第2インジェクション用流量制御装置と、
     前記インジェクション用流量制御装置、及び前記第2インジェクション用流量制御装置の開度を制御する制御手段と、を備え、
     前記制御手段は、
     前記外気の温度が予め設定した温度以下の場合、前記第2インジェクション用流量制御装置の開度を制御し、
     前記第2インジェクション用流量制御装置の開度が、予め設定した開度以上となったとき、前記インジェクション用流量制御装置の開度を開放させる
    ことを特徴とする請求項1~3のいずれかに記載の冷凍空気調和装置。
  10.  前記制御手段は、
     前記圧縮装置が吐出した冷媒の過熱度が予め設定した値となるように、前記インジェクション用流量制御装置、及び前記第2インジェクション用流量制御装置の開度を制御する
    ことを特徴とする請求項9記載の空気調和装置。
  11.  前記熱源側熱交換器は、
     当該熱源側熱交換器が蒸発器として機能する場合に、当該熱源側熱交換器に流れる冷媒と、前記インジェクション管に流れる冷媒とを熱交換するインジェクション熱交換部が形成された
    ことを特徴とする請求項1~10の何れか一項に記載の空気調和装置。
PCT/JP2012/072848 2012-09-07 2012-09-07 空気調和装置 WO2014038059A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014534121A JP5872052B2 (ja) 2012-09-07 2012-09-07 空気調和装置
PCT/JP2012/072848 WO2014038059A1 (ja) 2012-09-07 2012-09-07 空気調和装置
EP12884004.8A EP2896911B1 (en) 2012-09-07 2012-09-07 Air conditioning apparatus
US14/412,035 US9903625B2 (en) 2012-09-07 2012-09-07 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072848 WO2014038059A1 (ja) 2012-09-07 2012-09-07 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014038059A1 true WO2014038059A1 (ja) 2014-03-13

Family

ID=50236708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072848 WO2014038059A1 (ja) 2012-09-07 2012-09-07 空気調和装置

Country Status (4)

Country Link
US (1) US9903625B2 (ja)
EP (1) EP2896911B1 (ja)
JP (1) JP5872052B2 (ja)
WO (1) WO2014038059A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115199B (zh) * 2015-07-06 2017-10-31 广东美的暖通设备有限公司 多联机系统的冷媒分流控制方法和装置
CN105066539B (zh) * 2015-07-16 2018-07-10 广东美的暖通设备有限公司 多联机系统及其电子膨胀阀控制方法
CN105371548B (zh) * 2015-12-11 2017-11-21 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置
CN106016457B (zh) * 2016-05-23 2018-12-18 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
JP7097762B2 (ja) * 2018-06-28 2022-07-08 三菱重工サーマルシステムズ株式会社 ヒートポンプ、ヒートポンプの制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051955U (ja) * 1991-06-17 1993-01-14 三菱電機株式会社 冷凍装置
JPH06337172A (ja) * 1993-05-27 1994-12-06 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JP2007278686A (ja) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2009186121A (ja) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
JP2009198099A (ja) 2008-02-22 2009-09-03 Mitsubishi Electric Corp 空気調和装置
WO2012104893A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569708B2 (ja) * 2008-12-05 2010-10-27 ダイキン工業株式会社 冷凍装置
KR101155494B1 (ko) * 2009-11-18 2012-06-15 엘지전자 주식회사 히트 펌프
JP5611353B2 (ja) * 2010-07-29 2014-10-22 三菱電機株式会社 ヒートポンプ
EP2672202B1 (en) * 2011-01-31 2021-04-14 Mitsubishi Electric Corporation Air-conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051955U (ja) * 1991-06-17 1993-01-14 三菱電機株式会社 冷凍装置
JPH06337172A (ja) * 1993-05-27 1994-12-06 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JP2007278686A (ja) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2009186121A (ja) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
JP2009198099A (ja) 2008-02-22 2009-09-03 Mitsubishi Electric Corp 空気調和装置
WO2012104893A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
JPWO2014038059A1 (ja) 2016-08-08
JP5872052B2 (ja) 2016-03-01
US20150168037A1 (en) 2015-06-18
EP2896911B1 (en) 2019-08-07
EP2896911A4 (en) 2016-05-25
EP2896911A1 (en) 2015-07-22
US9903625B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
JP4675810B2 (ja) 空気調和装置
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
US7360372B2 (en) Refrigeration system
JP5592508B2 (ja) カスケードヒートポンプ装置
KR100795291B1 (ko) 냉동장치
JP6033297B2 (ja) 空気調和装置
WO2013145006A1 (ja) 空気調和装置
WO2014128830A1 (ja) 空気調和装置
AU2014219806B2 (en) Air-conditioning apparatus
WO2014141374A1 (ja) 空気調和装置
JP5968519B2 (ja) 空気調和装置
JP6223469B2 (ja) 空気調和装置
KR101859231B1 (ko) 냉장 냉동 복합 시스템
WO2006013938A1 (ja) 冷凍装置
JP5872052B2 (ja) 空気調和装置
JP2010276239A (ja) 冷凍空気調和装置
WO2020262624A1 (ja) 冷凍装置
JP2008267653A (ja) 冷凍装置
JP2009293887A (ja) 冷凍装置
JP2008032337A (ja) 冷凍装置
KR102087677B1 (ko) 공조 냉장 복합 시스템
JP6704513B2 (ja) 冷凍サイクル装置
JP2009115336A (ja) 冷凍装置
KR20080006055A (ko) 공기 조화 시스템
JP2014070829A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534121

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412035

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012884004

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE