WO2012102561A2 - 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극 - Google Patents

환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극 Download PDF

Info

Publication number
WO2012102561A2
WO2012102561A2 PCT/KR2012/000617 KR2012000617W WO2012102561A2 WO 2012102561 A2 WO2012102561 A2 WO 2012102561A2 KR 2012000617 W KR2012000617 W KR 2012000617W WO 2012102561 A2 WO2012102561 A2 WO 2012102561A2
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
graphene oxide
conductive thin
substrate
coating
Prior art date
Application number
PCT/KR2012/000617
Other languages
English (en)
French (fr)
Other versions
WO2012102561A3 (ko
Inventor
이효영
황은희
이혜미
이정현
이은교
김지연
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2012102561A2 publication Critical patent/WO2012102561A2/ko
Publication of WO2012102561A3 publication Critical patent/WO2012102561A3/ko
Priority to US13/951,993 priority Critical patent/US9576707B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention provides a conductive thin film composed of reduced graphene oxide and carbon nanotubes.
  • the present invention relates to a transparent electrode including a manufacturing method and a conductive thin film manufactured by the method, and more particularly, to a low temperature process and a mass production, and to reducing both electrical conductivity and transparency, to reduced graphene oxide and carbon nanoleuprobro
  • the present invention relates to a method for manufacturing a configured conductive thin film and a transparent electrode including the conductive thin film produced thereby.
  • Transparent electrodes are widely used in various electronic devices that require both light transmission and electrical conductivity, such as image sensors, solar cells, liquid crystal display devices, organic EL displays, and touch screen panels.
  • Indium tin oxide ( ⁇ ) which is composed of a substrate and a conductive film formed on the transparent substrate, is easy to form a thin film, and has excellent light transmission properties and electrical conductivity, has been mainly used.
  • the use of such ITO has a disadvantage of high manufacturing cost, low flexibility, and high surface resistance and low durability when used in flexible displays.
  • the present inventors have found that the present invention can be used in the field of transparent electrodes, particularly flexible devices.
  • Conductive thin film made of carbon nanoleuze simultaneously has electrical conductivity and transmittance
  • the present invention has been accomplished by using a reducing agent containing a halogen element and improving the low cost process and mass production.
  • An object of the present invention is to provide a method for manufacturing a conductive thin film capable of low-temperature processing and mass production, and improved electrical conductivity and transmittance at the same time.
  • Another object of the present invention is to provide a transparent electrode employing the conductive thin film.
  • (S1) carbon nanotubes surface-modified with graphene oxide and carboxylic acid; Graphene oxide and carbon nanoleubes; Or coating a dispersion liquid in which reducing graphene oxide and carbon nanoleuze are dispersed in a solvent; And (S2) exposing the substrate to a vapor of a reducing agent-containing solution containing a halogen element, thereby producing a conductive thin film, and a method of manufacturing a conductive thin film including reduced graphene oxide and carbon nanotubes.
  • step S1 coating a dispersion liquid on which a graphene oxide is dispersed in a solvent;
  • S2 exposing the substrate to vapor of a reducing agent containing solution containing a halogen element;
  • step S3 provides a method for producing a conductive thin film consisting of reduced graphene oxide and carbon nanotubes comprising the step of preparing a conductive thin film by coating a dispersion obtained by dispersing the carbon nano-rubber in a solvent on the substrate obtained in step S2.
  • step S1 coating a graphene oxide dispersed in a solvent on a substrate; (S2) dispersing a carbon nano-rubber surface-modified with carboxylic acid on a substrate in a solvent Coating the dispersion; And (S3) exposing the substrate obtained in step S2 to vapor of a reducing agent-containing solution containing a halogen element to produce a conductive thin film.
  • step S1 coating a dispersion liquid obtained by dispersing the surface-modified carbon nano-rubber with a carboxylic acid in a solvent
  • step S2 coating a dispersion in which graphene oxide is dispersed in a solvent on the substrate; And (S3) exposing the substrate obtained in step S2 to vapor of a reducing agent-containing solution containing a halogen element, thereby preparing a conductive thin film.
  • the substrate is glass, Si / Si0 2, or
  • the manufacturing method according to the present invention is characterized by coating on a substrate by spin coating, dip coating, bar coater, or spray coating, preferably by spin coating.
  • the spin speed is characterized in that 400 ⁇ 6000 rpm.
  • the surfactant is further used when dispersed in a solvent.
  • the surfactant is sodium dodecyl sulfate (SDS) or sodium octylbenzene sulfonate. (NaOBS), Sodium Dodecyl Benzene Sulfate (SDBS), Triton X-IOO, Sodium Dodecyl
  • SDSA Sulfonate
  • NaBBS sodium butylbenzoate
  • DTAB dodecyltrimethylammonium bromide
  • CTAB cetyltrimethylammonium bromide
  • dextrin polystyrene-polyethylene oxide (PS-PEO) and these Characterized in that the one selected from the group consisting of a mixture of.
  • the production method according to the present invention is characterized in that the reducing agent containing a halogen element is selected from the group consisting of HI, HC1 and HBr, preferably HI.
  • the production method according to the present invention is a solution containing a reducing agent containing a halogen element HI
  • It is a mixture of a solution and a weak acid selected from the group consisting of acetic acid, trifluoroacetic acid, carbonic acid, formic acid and benzoic acid, preferably a mixture of HI solution and acetic acid or a mixture of HI solution and trifluoroacetic acid It is done.
  • a weak acid selected from the group consisting of acetic acid, trifluoroacetic acid, carbonic acid, formic acid and benzoic acid, preferably a mixture of HI solution and acetic acid or a mixture of HI solution and trifluoroacetic acid It is done.
  • the method may further include the step of ultrasonication after centrifuging the dispersion before coating on the substrate.
  • the method may further comprise the step of heat treatment, if the substrate is polyethylene terephthalate, heat treatment at a temperature of 80 ⁇ 150 ° C under hydrogen atmosphere, if the substrate is glass or Si / SiO 2, 100 ⁇ under hydrogen atmosphere Heat treatment at a temperature of 1500 ° C.
  • the method may further include doping HN0 3 , H 2 S0 4, or S0C1 2 by exposing the prepared conductive thin film to HN0 3 , H 2 S0 4, or SOCl 2 vapor. .
  • the present invention provides a conductive thin film composed of reduced graphene oxide and carbon nano-rubber.
  • the reduced graphene oxide provides a transparent electrode prepared by reducing the graphene oxide by exposure to the vapor of a reducing agent containing solution containing a halogen element.
  • the carbon nano leubu of the present invention is preferably, the carbon nano leubu of the present invention
  • the transparent electrode according to the present invention is characterized in that it is flexible and is included in a display element or a solar cell.
  • the preparation temperature of the reduced graphene oxide can be reduced to a maximum of minus 10 by using a halogen-containing reducing agent or a halogen-containing reducing agent and a mixture of a weak acid as a reducing agent.
  • a halogen-containing reducing agent or a halogen-containing reducing agent and a mixture of a weak acid as a reducing agent Bar, the production of a conductive thin film containing a reduced graphene oxide in a simple manner to realize the low-temperature process to increase the possibility of mass production, in particular can be applied to a flexible substrate.
  • the conductive thin film composed of the composite material of reduced graphene oxide and carbon nanotubes prepared according to the present invention serves to connect the graphene layer between the graphene layers and the carbon nanolybe on the fiber to efficiently form an electrical network. Therefore, high electrical characteristics can be exhibited.
  • the conductive thin film prepared according to the present invention possesses both the advantages of carbon nanotubes having high transmittance and the advantages of graphene having high electrical conductivity, thereby improving both electrical conductivity and transparency.
  • the conductive thin film manufactured according to the method of the present invention may be used as a transparent electrode, and such a transparent electrode may be used in various display devices, solar cells, and the like.
  • FIG. 29 is a graph showing measurement of sheet resistance of conductive thin films prepared in Examples and Comparative Examples.
  • the method for preparing a conductive thin film composed of reduced graphene oxide and carbon nanotubes comprises the following steps: 1) CNTs surface-modified with graphene oxide and carboxylic acid; Graphene oxide and carbon nanotubes; Or reduced graphene oxide
  • the substrate After coating a dispersion solution in which carbon nanotubes are dispersed in a solvent on a substrate, the substrate is exposed to a vapor of a reducing agent-containing solution containing a halogen element to prepare a conductive thin film, or 2) a dispersion solution in which graphene oxide is dispersed in a solvent.
  • a conductive thin film is coated by coating a dispersion liquid in which carbon nanotubes are dispersed in a solvent.
  • a conductive thin film is prepared by coating each of the dispersion liquids in which carbon nano-leuze is dispersed in a solvent in turn and then simultaneously reducing them in the same manner.
  • a conductive thin film is prepared by simultaneously correlating a dispersion in which carbon nanotubes or graphene oxides surface-modified with carboxylic acid in a solvent are sequentially correlated to a substrate and simultaneously reduced in the same manner.
  • Graphene oxide and reduced graphene oxide according to the present invention can be synthesized from a method known in the art or commercially available materials. For example, graphene oxide is treated with an acid solution of graphite
  • the carbon nanotubes surface-modified with carbon nanoleubes and carboxylic acids according to the present invention may be synthesized from methods known in the art or commercially available materials.
  • CNTs surface-modified with carboxylic acids can be synthesized in a manner obtained by reacting multi-walled or single-walled carbon nanotubes with a mixture of sulfuric acid and nitric acid.
  • the solvent according to the present invention may be appropriately selected depending on the hydrophilic or hydrophobic properties of the starting materials used, and may be selected from water or organic solvents such as ⁇ -methylpyrrolidone (NMP) or dimethylformamide (DMF). Or dimethyl sulfoxide (DMSO) or
  • N, N- dimethylacetamide, etc. can be used.
  • the concentration of the dispersion according to the present invention is determined by the manufacturing process time of the thin film and
  • It is closely related to permeability and the like, and is preferably in the range of 3 to 5 mg / ml, particularly preferably 3 mg / ml.
  • this step it is preferable to use a solution dispersed in a solvent using a small amount of surfactant in the case of using hydrophobic CNTs, because of hydrophobic CNTs and hydrophilic graphene oxide or weakly hydrophilic phosphorus.
  • Surfactants include sodium dodecyl sulfate (SDS), sodium octylbenzene
  • NaOBS sodium dodecyl benzene sulfate
  • SDBS sodium dodecyl benzene sulfate
  • TRITON X-IOO sodium dodecyl sulfonate (SDSA), sodium butylbenzoate (NaBBS), dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB), dextrin,
  • PS-PEO Polystyrene-polyethylene oxide
  • the substrate used in the present invention may be any substrate known in the art.
  • Glass, silicon or plastic substrates may be used, and in particular, as the transparent flexible substrates, polyethylenetetephthalate (PET), polycarbonate (PC), polyimide (PI) or polyethylenenaphthalate (PEN). ), A polystyrene (PS) substrate can be used, but is not limited thereto.
  • PET polyethylenetetephthalate
  • PC polycarbonate
  • PI polyimide
  • PEN polyethylenenaphthalate
  • PS polystyrene
  • glass, Si / SiO, or polyethylene terephthalate is used.
  • the coating method may be spin coating method, dip coating method, bar coater method, or spray coating method, but is not limited thereto.
  • spin coating is used.
  • the number of revolutions of the spin coating method is closely related to the thickness of the thin film. As the number of revolutions increases, the thinner the thinner the film, the greater the permeability. Therefore, it is possible to control the transmittance of the prepared conductive thin film by adjusting the number of revolutions.
  • the manufacturing method of the present invention it is preferable to adjust the rotation speed during the spin coating in the range of 400 to 6000 rpm. Although transparency is excellent in the said range, when it is out of the said range, transparency will fall extremely.
  • the number of repetitions of spin coating is closely related to the thickness of the thin film. As the number of spin coating increases, the thickness of the thin film increases, thereby improving electrical conductivity. Permeability and
  • the maximum number of spin coatings is preferably not more than 1 to 5 times.
  • the substrate is exposed to the vapor of a reducing agent-containing solution containing a halogen element to produce a conductive thin film. More specifically, the substrate is exposed to steam and then dried to complete the conductive thin film. Drying is a common step for residue removal after thin film formation, generally at a temperature of 50-90 ° C., preferably at 80 ° C.
  • the graphene oxide is reduced by a reducing agent containing a halogen element to form a reduced graphene oxide, and a portion of the carboxylic acid of the carbon nanotubes is Reduced.
  • the electrical conductivity may be further improved by the reduction treatment according to the present invention.
  • the reducing agent containing a halogen element according to the present invention is composed of HI, HC1 and HBr.
  • the reducing agent containing a halogen element is particularly selected from the group, the reducing agent containing a halogen element is particularly
  • a mixture of a HI solution and a weak acid selected from the group consisting of acetic acid, trifluoroacetic acid, carbonic acid, formic acid and benzoic acid can be used.
  • the weak acid plays at least two roles in the reduction of graphene oxide.
  • a weak acid is added to the strong acid HI to help the HI dissociate into I-ions more easily and effectively.
  • overreaction can be prevented from proceeding to saturated hydrocarbons (sp 3 ) that may appear when HI is used alone.
  • the yield of the reduced graphene oxide can be improved.
  • the temperature of the reaction may be lowered up to minus 10 ° C. Therefore, according to the manufacturing method of the present invention, Reducing graphene oxide can be produced even at low temperatures below zero, particularly below 10 ° C.
  • the conductive thin film containing the same can be mass-produced at low temperatures and can be applied to flexible substrates.
  • the method may further include the step of ultrasonic treatment after centrifuging the dispersion before coating on the substrate. Centrifugation separates the graphene oxide or the reduced graphene oxide and carbon nanotube mass, and the ultrasonic treatment also effectively separates the carbon nanotube mass and graphene oxide or reduced graphene oxide to improve the surface roughness of the thin film prepared. It works.
  • the method may further include heat treating the manufactured conductive thin film under a hydrogen atmosphere.
  • This step not only effectively removes functional groups containing moisture and oxygen remaining on the surface of the thin film or residues after further doping, but also further reduces the components in the thin film through a hydrogen atmosphere and densifies the thin film.
  • the conductivity and transparency can be further improved.
  • the temperature range of the heat treatment step is determined by the components of the substrate, which can be heat treated at 80 to 150 o C in a hydrogen atmosphere for polyethylene terephthalate substrates and 100 to 1500 o for glass or Si / Si0 2 substrates. You can add heat treatment in C. If the temperature range is less than the above-described effects, the above-described effects cannot be obtained. If the temperature range is exceeded, the substrate may be damaged, crushed or broken, which is not preferable.
  • a material such as HN0 3 , H 2 S0 4, or S0C1 2 may be further doped into the manufactured conductive thin film. More specifically, the doping method is to expose the conductive thin film coated on the substrate of the present invention at room temperature for HN0 3 , H 2 S0 4 or SOCl ⁇ 30 minutes.
  • the additional doping step slightly reduces the permeability while significantly reducing the sheet resistance, which can significantly improve the electrical conductivity of the thin film by slightly reducing the permeability.
  • Whether or not to perform additional doping may be appropriately selected by those skilled in the art.
  • the conductive thin film of the present invention is composed of graphene and carbon nano
  • the transmittance and electrical conductivity is improved can be utilized as a transparent electrode.
  • it since it can be manufactured by a simple process, it has excellent economical efficiency, high conductivity, and excellent film uniformity.
  • it can be manufactured in a large area, and the thickness of the thin film can be freely adjusted by adjusting the number of rotations when coating on the substrate, thereby easily controlling the permeability.
  • the flexible property can be given, it is easy to handle and can be used in a field requiring a bendable transparent electrode.
  • the transparent electrode including the thin film As a field in which the transparent electrode including the thin film is utilized, it is useful in the battery field, for example, a solar cell, including various display devices such as liquid crystal display devices, electronic paper display devices, and organic light emitting display devices. Can be used. According to the invention
  • a transparent electrode including a conductive thin film in a variety of devices, it is preferable to form a thickness of 20 ⁇ 100 nm in consideration of transparency.
  • the thickness of the transparent electrode exceeds 100 nm, transparency may be deteriorated and light efficiency may be deteriorated.
  • the thickness is less than 20 ntn, the sheet resistance may be too low or the film may be uneven, which is not preferable.
  • the display element when the transparent electrode is used for the display element, the display element can be bent freely, thereby increasing convenience.
  • the transparent electrode according to the present invention when the transparent electrode according to the present invention is used, It is possible to have a variety of bending structure according to the direction of movement to enable the efficient use of light it is possible to improve the light efficiency. Since a method of utilizing a transparent electrode in various display devices and solar cells is well known in the art, a detailed discussion is omitted herein.
  • Example 1 Preparation of a Conductive Thin Film Using HI as Reducing Agent
  • the polyethylene terephthalate substrate was spin coated in three steps (15 seconds at 400 rpm; 30 seconds at 6000 rpm; 60 seconds at 3000 rpm).
  • the thin film was dried in vacuo for 2 hours and then spin-coated the dispersion liquid three more times to form a thin film having a thickness of 60 nm.
  • HI solution Aldrich
  • Vapor at room temperature for at least one day the thin film was dried at 80 ° C. to remove residue.
  • Example 6 was carried out in the same manner as in Example 1, except that 6 mg of graphene oxide and 54 mg of carbon nanoleuve surface-modified with carboxylic acid were used.
  • Example 65 The procedure of Example 1 was repeated except that HI solution 0.2 ⁇ and acetic acid 0.5 m «(OCI Company Ltd.) were used instead of 0.7 m £ of HI solution.
  • Example 6 Preparation of a Conductive Thin Film Using HI / Acetic Acid as a Reducing Agent
  • 60 mg of graphene oxide obtained by oxidizing Bay Carbon Inc. SP-1 graphite
  • 60 mg of surface-modified CNTs were dispersed in 20 mi distilled water to set the ultrasonic intensity of the POWER SONIC 420 sonicator to phase and sonicated for one day, followed by centrifugation of the dispersion.
  • the graphene oxide dispersion was spin coated onto a polyethylene terephthalate substrate in three steps (15 seconds at 400 rpm; 30 seconds at 6000 rpm; 60 seconds at 3000 rpm). Drying the prepared thin film in vacuum for 2 hours and then spin coating the dispersion again
  • Example 7 Preparation of a conductive thin film using HI / acetic acid as a reducing agent
  • Example 6 was carried out in the same manner as in Example 6, except that carbon nanotubes were used instead of the carbon nanoleuves surface-modified with the carboxylic acid of Example 6.
  • Example 8 Preparation of a conductive thin film using HI / acetic acid as a reducing agent
  • 60 mg of graphene oxide (obtained by oxidizing Bay Carbon Inc. SP-1 graphite) is dispersed in 20 mi distilled water, sonicated for one day by setting the ultrasonic strength of the POWER SONIC 420 sonicator to phase, and then the dispersion. Centrifugation to obtain a supernatant gave a uniform graphene oxide dispersion.
  • 60 mg of surface-modified CNTs (TOPNANOSYS) were dispersed in 20 distilled water, and the ultrasonic strength of the POWER SONIC 420 sonicator was set to phase, followed by ultrasonic treatment for one day, followed by centrifugation of the dispersion.
  • the graphene oxide dispersion was spin coated onto a polyethylene terephthalate substrate in three steps (15 seconds at 400 rpm; 30 seconds at 6000 rpm; 60 seconds at 3000 rpm). Drying the prepared thin film in vacuum for 2 hours and then spin coating the dispersion again
  • the carbon nanotube dispersion surface-modified with carboxylic acid was spin coated onto the prepared thin film in three steps (15 seconds at 400 rpm; 30 seconds at 6000 rpm; 60 seconds at 3000 rpm). The resulting thin film was dried in vacuo for 2 hours and then again spin coated with the dispersion. HI solution at room temperature (Aldrich) 0.2 ⁇ After exposure to acetic acid 0.5 mi (OCl Company Ltd.) for at least one day, the thin film was dried at 80 ° C. to remove residue.
  • Example 8 the carbon nanotube dispersion surface-modified with carboxylic acid was first
  • Comparative Example 1 Preparation of a conductive thin film using hydrazine hydrate as a reducing agent
  • Example 5 hydrazine solution 7 (Aldrich) was added instead of HI solution and acetic acid.
  • Example 5 carbon nanotubes surface-modified with carboxylic acid were not used.
  • Example 5 was carried out in the same manner as in Example 5, except that graphene oxide was not used.
  • Example 1 HI Room Temperature 500 85
  • Example 2 HI Thread 600 85
  • Example 3 HI Thread 750 87
  • Example 4 HI Thread 900 87
  • Example 5 HI / Acetic Acid 400 400
  • Example 6 HI / Acetic Acid 1200
  • Example 7 HI / Acetic acid room temperature 1000
  • Example 8 HV acetic acid 900
  • Example 9 HI / acetic acid one 850 83
  • the invention uses reduced graphene oxide by using HI or HI / acetic acid as a reducing agent. It can be manufactured at room temperature and the electrical conductivity is improved due to the much lower sheet resistance value while maintaining the similar degree of permeability.
  • the reduction of HI or HI / acetic acid to oxide is significantly superior to that of hydrazine, and the reduction ratio to reducing graphene oxide is considered to be high.
  • Examples 1 to 5 and Comparative Examples 2 and 3 are compared. As a result, the electrical conductivity is improved due to lower sheet resistance values of the thin film composed of carbon nanotubes and the reduced graphene oxide, and the transmittance of the thin film composed of carbon nanotubes is improved.
  • Examples 6 to 9 are graphene oxides, reduced graphene oxides, and
  • FIG. 1 the results of measuring the permeability of the thin films of Examples 1 to 4 manufactured by different compositions of graphene oxide and carbon nanotubes are shown in FIG. 1. From the results of FIG. 1, the content of carbon nanotubes is shown. The higher the permeability is, the more it can be seen. A normal technician in the art will be able to appropriately change the composition of graphene oxide and carbon nanotubes, considering the relationship with electrical conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명은 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극에 관한 것이다. 본 발명에 따른 투명전극은 우수한 전기전도성과 투명성을 보유하여 다양한 표시 소자, 태양전지 등에 활용될 수 있다.

Description

명 세서
발명의 명칭 : 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의 해 제조된 전도성 박막을
포함하는 투명전극
기술분야
[1] 본 발명은 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의
제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명 전극에 관한 것으로, 더욱 상세하게는 저온 공정 및 대량 생산이 가능하며 전기 전도성과 투명성을 모두 향상시킬 수 있는,환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극에 관한 것이다.
배경기술
[2] 투명전극은 이미지센서,태양전지,액정 디스플레이 장치 , 유기 EL 디스플레이, 터치 스크린 패널 등과 같이 광투과 특성과 전기 전도성을 동시에 필요로 하는 각종 전자소자에 폭 넓 게 사용되고 있다ᅳ 투명전극은 투명기판과, 상기 투명기판 상에 형성된 전도성 막으로 구성되며 , 이 러한 전도성 막으로는 박막을 형성하기 쉽고 우수한 광투과 특성과 전기 전도성을 갖는 인듐 주석 산화물 (ΠΌ)이 주로 사용되어 왔다. 이러한 ITO의 사용은 제조비용이 높고, 유연성 이 낮아 플렉시블 디스플레이에 사용할 경우 표면저항이 증가하고 내구성 이 떨어진다는 단점 이 존재하였다.
[3] 이에 따라, 최근에는 높은 전기전도성을 가지면서도 유연성을 갖는
탄소나노류브,그래핀 둥의 저차원 소재를 투명 전극에 적용하려는 시도가 증가하고 있다. 그러나 동일한 조건 하에서 탄소나노튜브로만 구성된 전도성 박막을 투명 전극으로 사용하면, 우수한 투명성에 비해 제조과정 이나 원료 자체에서 수반되는 불순물의 함유로 인하여 전기 전도도가 낮고,그래핀으로만 구성된 전도성 박막을 투명 전극으로 사용하면, 탄소나노류브에 비해
상대적으로 전기전도도는 좋지만 투과도가 낮다는문제점 이 있다. 이 러한 문제점을 극복하기 위해, 탄소나노튜브와 그래핀의 복합 소재를 사용하여, 탄소나노류브 간의 선접촉과 그래핀 간의 면접촉을 통해 탄소나노튜브와 그래핀 사이의 빈 공간을 효율성 있게 연결시켜 줌으로써 전기 전도성을 - 향상시키고자 하는 시도도 존재한다. 그러나,현재까지 밝혀진 그래핀의 대량 합성 기술은 환원제 사용의 제약, 낮은 효율성 및 불순물 포함 등의 문제점으로 인하여 대량 생산하기가 어 려웠다. 특히 , 기존에 알려진
히드라진하이드레이트 (hydrazine hydrate), 소듐보로하이드레이트 (NaBH4), 소듬보로하이드레이트 (NaBH4), 황산 (H2S04) 등의 환원제를 사용하여 그래핀 옥사이드를 환원시키는 경우 반드시 고온에서의 반응이 요구되므로 플렉시블 (flexible) 기판에 적용할 수 없다는 문제점 이 있다.
[4] 이에 본 발명자들은 투명 전극,특히 플렉시블 소자 분야에 사용될 수 있는
전도성 박막의 제조방법을 연구하던 중, 환원 그래핀 옥사이드와
탄소나노류브로 구성된 전도성 박막은 전기 전도도와 투과도가 동시에
개선되며 , 할로겐 원소가 포함된 환원제를 사용하여 제조하는 경우 저은 공정 및 대량 생산이 가능하다는 것을 알게 되어 본 발명을 완성하기에 이르렀다.
발명의 상세한 설명
기술적 과제
[5] 본 발명의 목적은 저온 공정 및 대량 생산이 가능하며,전기전도도 및 투과도가 동시에 개선된 전도성 박막의 제조방법을 제공하는 것이다.
[6] 본 발명의 다른 목적은 상기 전도성 박막을 채용하는 투명전극을 제공하는
것이다.
과제 해결 수단
[7] 상기와 같은 목적을 달성하기 위하여,본 발명은,
[8] (S1) 그래핀 옥사이드와 카르복실산으로 표면 개질된 탄소나노튜브; 그래핀 옥사이드와 탄소나노류브; 또는 환원 그래핀 옥사이드와 탄소나노류브를 용매에 분산시킨 분산액을 기판에 코팅하는 단계; 및 (S2) 상기 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하는 단계를 포함하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법을 제공한다.
[9] 또한, 본 발명은,
[10] (S1) 그래핀 옥사이드를 용매에 분산시킨 분산액을 기판에 코팅하는 단계 ; (S2) 상기 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시키는 단계 ; (S3) S2 단계에서 얻은 기판에 카르복실산으로 표면 개질된 탄소나노류브를 용매에 분산시킨 분산액을 코팅하는 단계 ; 및 (S4) S3 단계에서 얻은 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하는 단계를 포함하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법을 제공한다.
[11] 또한,본 발명은,
[12] (S1) 그래핀 옥사이드를 용매에 분산시킨 분산액을 기판에 코팅하는 단계; (S2) 상기 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시키는 단계 ; 및 (S3) S2 단계에서 얻은 기판에 탄소나노류브를 용매에 분산시킨 분산액을 코팅하여 전도성 박막을 제조하는 단계를 포함하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법을 제공한다.
[13] 또한, 본 발명은,
[14] (S1) 그래핀 옥사이드를 용매에 분산시킨 분산액올 기판에 코팅하는 단계; (S2) 상기 기판에 카르복실산으로 표면 개질된 탄소나노류브를 용매에 분산시킨 분산액을 코팅하는 단계 ; 및 (S3) S2 단계에서 얻은 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하는 단계를 포함하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법을 제공한다.
[15] 또한,본 발명은,
[16] (S1) 카르복실산으로 표면 개질된 탄소나노류브를 용매에 분산시킨 분산액올 기판에 코팅하는 단계; (S2) 상기 기판에 그래핀 옥사이드를 용매에 분산시킨 분산액을 코팅하는 단계 ; 및 (S3) S2 단계에서 얻은 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하는 단계를 포함하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법을 제공한다.
[17] 본 발명에 따른 제조방법은 기판이 유리 , Si/Si02 또는
폴리에틸렌테레프탈레이트인 것을 특징으로 한다.
[18] 본 발명에 따른 제조방법은 스핀 코팅법,딥 코팅법,바코터법 또는 스프레이 코팅 법을 사용하여 기판에 코팅하는 것을 특징으로 하고, 바람직하게는 스핀 코팅 법을 사용하여 기판에 코팅하고, 스핀 코팅시 회전수가 400~6000 rpm인 것을 특징으로 한다.
[19] 본 발명에 따른 제조방법에서 소수성 탄소나노튜브를 사용하는 경우,용매에 분산 시 계면활성제를 더 사용하는 것을 특징으로 하며,계면활성제는 나트륨 도데실 설페이트 (SDS), 나트륨 옥틸벤젠 술포네이트 (NaOBS), 나트륨 도데실 벤젠 설페이트 (SDBS), 트리톤 X-IOO(TRITON X-IOO), 나트륨 도데실
설포네이트 (SDSA), 나트륨 부틸벤조에 이트 (NaBBS), 도데실트리메틸암모늄 브로마이드 (DTAB), 세틸트리메틸암모늄 브로마이드 (CTAB), 덱스트린 (dextrin), 폴리스티 렌-폴리에틸렌옥사이드 (PS-PEO) 및 이들의 흔합물로 이루어진 군으로부터 선택된 1종인 것올 특징으로 한다.
[2이 본 발명에 따른 제조방법은 할로겐 원소가 포함된 환원제가 HI, HC1 및 HBr로 구성된 군에서 선택되고, 바람직하게는 HI인 것을 특징으로 한다.
[21] 본 발명에 따른 제조방법은 할로겐 원소가 포함된 환원제 함유 용액은 HI
용액과 아세트산,트리플루오로아세트산, 탄산, 포름산 및 벤조산으로 구성되는 군으로부터 선택되는 약산의 흔합물이고, 바람직하게는 HI 용액과 아세트산의 흔합물 또는 HI 용액과 트리플루오로아세트산의 흔합물인 것을 특징으로 한다.
[22] 본 발명의 제조방법에 따르면, 기판에 코팅하기 전 분산액을 원심분리한 후 초음파 처리하는 단계를 더 포함할 수 있다.
[23] 본 발명의 제조방법에 따르면, 제조된 전도성 박막을 수소 분위 기 하
열처 리하는 단계를 더 포함할 수 있고, 기판이 폴리에틸렌테레프탈레이트인 경우, 수소 분위기 하 80~150°C의 온도에서 열처 리하고,기판이 유리 또는 Si/SiO 2인 경우, 수소 분위기 하 100~1500oC의 온도에서 열처리하는 것을 특징으로 한다. [24] 본 발명의 제조방법에 따르면, 제조된 전도성 박막을 HN03, H2S04 또는 SOCl2 증기에 노출시켜 HN03, H2S04 또는 S0C12를 도핑하는 단계를 더 포함할 수 있다.
[25] 본 발명은 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막을
포함하는 투명 전극으로서 , 상기 환원 그래핀 옥사이드는 그래핀 옥사이드를 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 환원시켜 제조한 것인 투명 전극을 제공한다. 바람직하게는, 본 발명의 탄소나노류브가
카르복실산으로 표면 개질된 탄소나노튜브를 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 환원시킨 탄소나노튜브인 것을 특징으로 한다. 본 발명에 따른 투명 전극은 플렉시블 (flexible)한 것을 특징으로 하며,표시 소자 또는 태양전지에 포함되는 것을 특징으로 한다.
발명의 효과
[26] 본 발명의 제조방법에 따르면, 환원제로서 할로겐 원소가 포함된 환원제 또는 할로겐 원소가 포함된 환원제와 약산의 흔합물을 사용함으로써 환원 그래핀 옥사이드의 제조 온도를 최 대 영하 10 까지 낮출 수 있는바,환원 그래핀 옥사이드를 포함하는 전도성 박막의 제조를 간단한 방식으로 저온 공정으로 실현하여 대량 생산의 가능성을 높이고, 특히 플렉시블 기판에도 적용이 가능하다.
[27] 또한, 본 발명에 따라 제조된 환원 그래핀 옥사이드와 탄소나노튜브의 복합 재료로 구성된 전도성 박막은 섬유 상의 탄소나노류브가 그래핀 층 사이를 연결해 주는 역할을 하게 되어 전기적 네트워크가 효율적으로 형성되므로, 높은 전기적 특성 이 발휘될 수 있다. 또한, 본 발명에 따라 제조된 전도성 박막은 투과도가 높은 탄소나노튜브의 장점과 전기 전도도가 높은 그래핀의 장점을 모두 보유하므로, 전기 전도성과 투명성 이 모두 향상된다.
[28] 본 발명의 방법에 따라 제조된 전도성 박막은 투명전극으로 사용될 수 있으며 , 이와 같은 투명전극은 다양한 표시 소자, 태양전지 등에 활용될 수 있다.
도면의 간단한 설명
[29] 도】은 실시 예 및 비교예에서 제조된 전도성 박막의 면저항을 측정하여 나타낸 그래프이다.
발명의 실시를 위 한 형 태
[3이 아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의
지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시 예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형 태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며,명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[31] 본원 명세서 전체에서,어떤 부분이 다른 부분과 "연결"되어 있다고 할 때,이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기 적으로 연결"되어 있는 경우도 포함한다.
[32] 본원 명세서 전체에서 , 어떤 부재가 다른 부재 "상에 " 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
[33] 본원 명세서 전체에서,어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때,이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비 양심적 인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "〜의 단계"는 "~를 위한 단계"를 의미하지 않는다.
[34] 본원 명세서 전체에서 , 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 흔합 또는 조합을 의미하는 것으로서,상기 구성 요소들로 이루어진 군에서 선텍되는 하나 이상을 포함하는 것을 의미한다.
[35] 이하, 본 발명을 상세하게 설명한다.
[36] 본 발명에 따른 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법은 1) 그래핀 옥사이드와 카르복실산으로 표면 개질된 탄소나노류브; 그래핀 옥사이드와 탄소나노튜브; 또는 환원 그래핀 옥사이드와
탄소나노튜브를 용매에 분산시킨 분산액을 기판에 코팅한 후 상기 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하거나, 2) 그래핀 옥사이드를 용매에 분산시킨 분산액을 기판에 코팅한 후 분산액이 코팅된 기판올 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 그래핀 옥사이드를 환원시키고,카르복실산으로 표면 개질된 탄소나노튜브를 용매에 분산시킨 분산액을 코팅한 후 동일한 방법으로 환원시켜 전도성 박막을 제조하거나, 3) 그래핀 옥사이드를 용매에 분산시킨 분산액을 기판에 코팅한 후 동일한 방법으로 환원시켜 얻은 기판에
탄소나노튜브를 용매에 분산시킨 분산액을 코팅하여 전도성 박막을
제조하거나, 4) 그래핀 옥사이드 또는 카르복실산으로 표면 개질된
탄소나노류브를 용매에 분산시킨 분산액 각각을 차례로 기판에 코팅 한 후 동일한 방법으로 동시 환원시켜 전도성 박막을 제조하거나,또는 5)
카르복실산으로 표면 개질된 탄소나노튜브 또는 그래핀 옥사이드를 용매에 분산시킨 분산액 각각을 차례로 기판에 코팀한 후 동일한 방법으로 동시 환원시켜 전도성 박막을 제조한다.
[37] 본 발명에 따른 그래핀 옥사이드 및 환원 그래핀 옥사이드는 본 기술 분야에서 공지된 방법으로부터 합성할 수 있거나 시판되는 물질을 사용할 수 있다. 예컨대,그래핀 옥사이드는 그래파이트를 산 용액으로 처 리하여
그래핀옥사이드를 얻는 방식으로 그래파이트로부터 합성할 수 있다.
[38] 본 발명에 따른 탄소나노류브 및 카르복실산으로 표면 개질된 탄소나노튜브는 본 기술 분야에서 공지된 방법으로부터 합성할 수 있거나 시판되는 물질을 사용할 수 있다. 예컨대, 카르복실산으로 표면 개질된 탄소나노류브는 다중벽 또는 단일벽 탄소나노튜브를 황산과 질산의 흔합물과 반웅시켜 얻는 방식으로 합성할 수 있다.
[39] 본 발명에 따른 용매는 사용된 출발물질의 친수성 또는 소수성 특성에 따라 적절하게 선택할 수 있으며 , 물 또는 유기용매, 예를 들어 , Ν-메틸피롤리돈 (NMP) 또는 디메틸포름아미드 (DMF)또는 디메틸설폭사이드 (DMSO)또는
Ν,Ν-디 메틸아세트아마이드 등을 사용할 수 있다.
[40] 본 발명에 따른 분산액의 농도는 박막의 제조 공정 시간과 제조된 박막의
투과도 등과 밀접한 관련이 있으며 , 바람직하게는 3~5 mg/ml의 범위 이고, 특히 바람직하게는 3 mg/ml이다.
[41] 본 발명에 따르면, 카르복실산으로 표면 개질된 친수성 탄소나노류브를
사용하는 것이 특히 바람직한 데, 그 이유는 친수성 인 그래핀 옥사이드와 잘 섞 이도록 하기 위함이다.
[42] 본 단계에서 소수성 탄소나노류브 사용시에는 소량의 계면활성제를 사용하여 용매에 분산시킨 용액을 사용하는 것이 바람직한데,그 이유는 소수성 인 탄소나노튜브와 친수성 인 그래핀옥사이드 또는 약친수성 인
환원그래핀옥사이드를 잘 분산시키기 위함이다. 본 발명에 따른
계면활성제로는 나트륨 도데실 설페이트 (SDS), 나트륨 옥틸벤젠
술포네이트 (NaOBS), 나트륨 도데실 벤젠 설페이트 (SDBS),
트리톤 X-IOO(TRITON X-IOO), 나트륨 도데실 설포네이트 (SDSA), 나트륨 부틸벤조에이트 (NaBBS), 도데실트리메틸암모늄 브로마이드 (DTAB), 세틸트리메틸암모늄 브로마이드 (CTAB), 덱스트린 (dextrin),
폴리스티 렌-폴리에틸렌옥사이드 (PS-PEO) 및 이들의 흔합물로 이루어진 군으로부터 선택된 1종이다.
[43] 본 발명에서 사용되는 기판으로는 본 기술 분야에 공지된 임의의 기판을
사용할 수 있고,예를 들면, 유리 , 실리콘 또는 플라스틱 기판을 사용할 수 있으며,특히,투명 플렉시블 기판으로서는 폴리에틸렌테테프탈레이트 (PET), 폴리카보네이트 (PC), 폴리 이미드 (PI) 또는 폴리에틸렌나프탈레이트 (PEN), 폴리스틸렌 (PS) 기판 둥을 사용할 수 있으나,반드시 이에 한정되는 것은 아니다. 바람직하게는 유리, Si/SiO, 또는 폴리에틸렌테레프탈레이트를 사용한다.
[44] 본 단계에서 코팅 방법은 스핀 코팅법., 딥 코팅법 , 바코터법 , 스프레이 코팅 법 둥을 사용할 수 있으나,이에 한정되는 것은 아니다. 바람직하게는 스핀 코팅법을 사용한다. 스핀 코팅법의 회 전수는 박막의 두께와 밀접한 연관이 있는데, 회전수가 증가할수록 박막의 두께가 얇아지므로 투과도가 증가된다. 따라서 회 전수를 조절함으로써 제조된 전도성 박막의 투과도를 조절할 수 있다. 본 발명의 제조방법에 따르면, 스핀 코팅시 회전수를 400~6000 rpm 범위로 조절하는 것이 바람직하다. 상기 범위 내에서는 투명성 이 우수하지만, 상기 범위를 벗어나면 투명성 이 극히 저하된다. 또한,스핀 코팅의 반복 횟수도 박막의 두께와 밀접한 연관이 있는데, 스핀 코팅 횟수가 증가할수록 박막의 두께가 증가하여 전기전도도가 향상된다. 본 발명에 따라 투과도 및
전기 전도도를 모두 향상시키기 위해서는,회전수를 400~6000 rpm 범위로 조절하여 스핀 코팅을 1~5회 반복 수행하는 것이 가장 바람직하다. 보다 상세하게는, 그래핀 옥사이드,환원 그래핀 옥사이드,탄소나노류브,
카르복실산으로 표면 개질된 탄소나노튜브를 각각을 코팅하거나 2종의 조합을 흔합하여 코팅하는 경우에도 스핀 코팅의 최대 횟수는 1~5회를 넘지 않는 것이 바람직하다.
[45] 본 발명의 환원 단계에서는,기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조한다. 더욱 상세하게는, 기판을 증기에 노출시킨 후 건조를 거쳐 전도성 박막을 완성한다. 건조는 박막 형성 후 잔여물 제거를 위한 통상적인 단계로서 , 일반적으로 50~90oC의 온도,바람직하게는 80°C의 온도에서 건조를 수행한다.
[46] 환원 단계에서 그래핀 옥사이드 또는 카르복실산으로 표면 개질된
탄소나노튜브가 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출되면, 할로겐 원소가 포함된 환원제에 의해 그래핀 옥사이드가 환원되어 환원 그래핀 옥사이드가 제조되고, 탄소나노튜브의 카르복실산의 일부가 환원된다. 특히, 환원 그래핀 옥사이드와 탄소나노튜브를 용매에 분산시킨 용액을 기판에 코팅하는 경우에는 본 발명에 따른 환원 처리에 의해 전기 전도도가 더욱 향상될 수 있다.
[47] 본 발명에 따른 할로겐 원소가 포함된 환원제는 HI, HC1 및 HBr로 구성된
군에서 선택될 수 있으며,할로겐 원소가 포함된 환원제는 HI가 특히
바람직하다. 또한,본 발명에 따른 할로겐 원소가 포함된 환원제 함유
용액으로서 HI 용액과 아세트산, 트리플루오로아세트산,탄산, 포름산 및 벤조산으로 구성되는 군으로부터 선택되는 약산의 흔합물을 사용할 수 있다. 이때, 약산은 그래핀 옥사이드의 환원시에 최소한 두 가지 역할을 수행한다. 첫째, 강산인 HI에 약산을 넣어 HI가 보다 효과적으로 쉽 게 I- 이온으로 해리되는 것을 도와준다. 둘째 , HI 단독 사용보다 약산을 첨가할 경우 HI 단독 사용시에 나타날 수 있는 포화탄화수소 (sp3)로 진행되는 과환원 반웅을 방지할 수 있다. 따라서 HI 용액과 아세트산, 트리플루오로아세트산,탄산,포름산 및 벤조산으로 구성되는 군으로부터 선택되는 약산의 흔합물을 그래핀 옥사이드 환원제로서 사용하면, 생성되는 환원 그래핀 옥사이드의 수율이 향상될 수 있다.
[48] 본 발명에 따른 환원제를 사용하여 그래핀 옥사이드를 환원하는 경우, 반응의 온도를 최대 영하 10°C까지 낮출 수 있다. 따라서 본 발명의 제조방법에 따르면, 영하의 낮은 온도, 특히 영하 10oC에서도 환원 그래핀 옥사이드를 제조할 수 있는바, 이를 포함하는 전도성 박막도 저온에서 대량 생산할 수 있고, 플렉시블 기판에 적용 가능하다는 장점 이 있다.
[49] 본 발명의 다른 구체예에 따르면, 기판에 코팅하기 전 분산액을 원심분리한 후 초음파 처 리하는 단계를 더 포함할 수 있다. 원심분리는 그래핀 옥사이드 또는 환원 그래핀 옥사이드와 탄소나노튜브 덩어리를 분리시키고,초음파 처리도 탄소나노튜브 덩어 리 및 그래핀 옥사이드 또는 환원 그래핀 옥사이드를 효과적으로 분리시켜 제조된 박막의 표면 거칠기를 개선하는 효과가 있다.
[50] 본 발명의 또 다른 구체예에 따르면, 제조된 전도성 박막을 수소 분위기 하에서 열처리하는 단계를 더 포함할 수 있다. 이 러한 단계는 박막 표면에 남아 있는 수분 및 산소를 포함하는 작용기 또는 추가 도핑 후의 잔여물 등을 효과적으로 제거할 뿐만 아니라 수소 분위기를 통해 박막 내 성분을 추가 환원 처리하고 박막을 치밀화함으로써 , 전도성 박막의 전기 전도도 및 투명성을 더욱 향상시킬 수 있다. 기판의 성분에 따라 열처 리 단계의 온도의 범위가 결정되는 데, 폴리에틸렌테레프탈레이트 기판의 경우 수소 분위기 하 80~ 150oC에서 열처 리할 수 있고, 유리 또는 Si/Si02 기판의 경우 100~1500oC에서 열처 리를 추가할 수 있다. 상기 온도 범위 미만이면 전술한 바의 효과를 얻을 수 없고, 상기 온도 범위를 초과하면 기판이 손상되어 찌그러지거나 깨지는 등의 변형 이 일어나 바람직하지 않다.
[51] 본 발명의 또 다른 구체 예에 따르면,제조된 전도성 박막에 HN03, H2S04 또는 S0C12 등과 같은 물질을 추가 도핑 할 수 있다. 더욱 상세하게는, 도핑 방식은 본 발명의 기판에 코팅된 전도성 박막을 실온에서 HN03, H2S04 또는 SOCl^ 30분 동안 노출시키는 것이다. 추가 도핑 단계는 투과도를 약간 감소시키는 반면 면저항을 많이 감소시키므로,약간의 투과도 희 생으로 박막의 전기 전도도를 크게 개선할 수 있는 효과가 있다. 추가 도핑의 실시 여부는 본 발명의 기술 분야에서의 통상의 기술자가 적절하게 선택할 수 있다. 또한, 전기전도성 향상의 측면에서는 도핑을 실시한 후 앞서 설명한 최종 열처 리를 수행하는 것이 바람직하다.
[52] 상기와 같이 얻어진, 본 발명의 전도성 박막은 그래핀과 탄소나노류브의
특징을 유지하면서,투과도 및 전기 전도도가 개선되어 투명전극으로 활용할 수 있다. 특히 간단한 공정으로 제조할 수 있어 경제성 이 우수함은 물론 전도성 이 높고 막의 균일도가 우수한 특성 이 있다. 또한 대면적으로 제조할 수 있고, 기판에 코팅시 회전수를 조절하여 박막의 두께를 자유롭게 조절할 수 있으므로 투과도의 조절이 용이하다. 특히 플렉시블 특성을 부여할 수 있으므로 취급이 용이하고, 구부림 이 가능한 투명전극이 요구되는 분야에 활용할 수 있다.
[53] 상기 박막을 포함하는 투명 전극이 활용되는 분야로서는, 각종 표시소자, 예를 들어 액정 표시소자,전자 종이 표시소자,유기발광 표시소자를 포함하여 , 전지분야, 예를 들어 태양전지 등에 유용하게 사용할 수 있다. 본 발명에 따른 전도성 박막을 포함하는 투명 전극을 다양한 소자에 사용하는 경우, 투명성을 고려하여 20~100 nm의 두께로 형성하는 것이 바람직하다. 상기 투명전극의 두께가 100 nm를 초과하면 투명성이 저하되어 광효율이 불량해질 수 있으며 , 두께가 20 ntn 미만인 경우 면저항이 너무 낮아지거나 박막이 불균일해질 수 있어 바람직하지 않다. 광효율과 면저항의 측면에서 20~80 nm의 두께로 형성하는 것이 특히 바람직하다.
[54] 상술한 바와 같이 상기 표시소자에 상기 투명 전극을 사용하면, 표시소자를 자유롭게 구부리는 것이 가능하게 되어 편리성 이 증대되며 , 태양전지의 경우도 본 발명에 따른 투명 전극을 사용하면 빛의 이동 방향에 따른 다양한 굴곡 구조를 가질 수 있게 되어 광의 효율적 인 사용이 가능해지므로 광효율을 개선하는 것이 가능해진다. 다양한 표시소자 및 태양전지에 투명전극을 활용하는 방법은 본 기술 분야에 공지되어 있으므로,본 명세서에서는 자세한 논의를 생략한다.
[55] 이하에서는,본 발명의 구성을 실시 예를 들어 더욱 상세히 설명하지만,본
발명의 권리범위가 하기 실시 예로만 한정되는 것은 아니 다ᅳ
[56] 실시 예 1: HI를 환원제로 사용한 전도성 박막의 제조
[57] 그래핀 옥사이드 (Bay Carbon Inc. SP-1 그래파이트를 산화시켜 얻음) 54 mg과 카르복실산으로 표면 개질된 탄소나노튜브 (TOPNANOSYS) 6 mg을 20 i 증류수에 분산시켜 , POWER SONIC 420 초음파기의 초음파 세기를 상으로 설정하여 하루 동안 초음파 처 리하였다. 그 후 상기 분산액을 원심분리하여 상층액을 얻음으로써 균일한 분산액을 얻었다. 얻은 분산액을
폴리에틸렌테레프탈레이트 기판에 세 단계 (400 rpm에서 15초; 6000 rpm에서 30초; 3000 rpm에서 60초)로 스핀 코팅하였다. 제조된 박막을 2시간 동안 진공에서 건조한 후 다시 분산액을 스핀 코팅하는 과정을 3회 더 반복하여 60 nm 두께의 박막을 형성하였다. 실온에서 HI 용액 (Aldrich) 0.7 m!> 증기에 하루 이상 노출시킨 후, 박막을 80°C에서 건조하여 잔여물을 제거하였다.
[58] 실시 예 2: HI를 환원제로 사용한 전도성 박막의 제조
[59] 그래핀 옥사이드 42 mg과 카르복실산으로 표면 개질된 탄소나노류브 18 mg을 사용한 것을 제외하고는,실시 예 1과 동일하게 실시하였다.
[60] 실시 예 3: HI를 환원제로 사용한 전도성 박막의 제조
[61] 그래핀 옥사이드 18 mg과 카르복실산으로 표면 개질된 탄소나노튜브 42 mg을 사용한 것을 제외하고는, 실시 예 1과 동일하게 실시하였다.
[62] 실시 예 4: HI를 환원제로 사용한 전도성 박막의 제조
[63] 그래핀 옥사이드 6 mg과 카르복실산으로 표면 개질된 탄소나노류브 54 mg을 사용한 것을 제외하고는,실시 예 1과 동일하게 실시하였다.
[64] 실시 예 5: HI/아세트산을 환원제로 사용한 전도성 박막의 제조
[65] 실시 예 1의 HI 용액 0.7 m£ 대신 HI 용액 0.2 ^와 아세트산 0.5 m«(OCI Company Ltd.)를 사용한 것을 제외하고는, 실시 예 1과 동일하게 실시하였다.
[66] 실시 예 6: HI/아세트산을 환원제로 사용한 전도성 박막의 제조 [67] 그래핀 옥사이드 (Bay Carbon Inc. SP-1 그래파이트를 산화시켜 얻음) 60 mg를 20 i 증류수에 분산시켜 POWER SONIC 420 초음파기의 초음파 세기를 상으로 설정하여 하루 동안 초음파 처 리한 후, 상기 분산액을 원심분리하여 상층액을 얻음으로써 균일한 그래핀 옥사이드 분산액을 얻었다. 또한 카르복실산으로 표면 개질된 탄소나노류브 (TOPNANOSYS) 60 mg를 20 mi 증류수에 분산시켜 POWER SONIC 420 초음파기의 초음파 세기를 상으로 설정하여 하루 동안 초음파 처리한 후, 상기 분산액을 원심분리하여 상층액을 얻음으로써 균일한 카르복실산으로 표면 개질된 탄소나노류브 분산액을 얻었다. 그래핀 옥사이드 분산액을 폴리에틸렌테레프탈레이트 기판에 세 단계 (400 rpm에서 15초; 6000 rpm에서 30초; 3000 rpm에서 60초)로 스핀 코팅하였다. 제조된 박막을 2시간 동안 진공에서 건조한 후 다시 분산액을 스핀 코팅하는 과정을 1회 더
반복하였다. 실온에서 HI 용액 (Aldrich)0.2 ^와 아세트산 0.5 m£(OCI Company Ltd.)에 하루 이상 노출시킨 후,박막을 80°C에서 건조하여 잔여물을 제거하였다. 제조된 박막 위에 카르복실산으로 표면 개질된 탄소나노튜브 분산액을 세 단계 (400 rpm에서 15초; 6000 rpm에서 30초; 3000 rpm에서 60초)로 스핀 코팅하였다. 생성된 박막을 2시간 동안 진공에서 건조한 후 다시 분산액을 스핀 코팅하는 과정을 1회 더 반복하였다. 실온에서 HI 용액 (Aldrich)0.2 ^와 아세트산 0.5 m£(OCI Company Ltd.)에 하루 이상 노출시 킨 후, 박막을 80oC에서 건조하여 잔여물을 제거하였다.
[68] 실시 예 7: HI/아세트산을 환원제로 사용한 전도성 박막의 제조
[69] 실시 예 6의 카르복실산으로 표면 개질된 탄소나노류브 대신 탄소나노튜브를 사용한 것을 제외하고는, 실시 예 6과 동일하게 실시하였다.
[70] 실시 예 8: HI/아세트산을 환원제로 사용한 전도성 박막의 제조
[71] 그래핀 옥사이드 (Bay Carbon Inc. SP-1 그래파이트를 산화시켜 얻음) 60 mg를 20 mi 증류수에 분산시켜 POWER SONIC 420 초음파기의 초음파 세기를 상으로 설정하여 하루 동안 초음파 처리한 후, 상기 분산액을 원심분리하여 상층액을 얻음으로써 균일한 그래핀 옥사이드 분산액을 얻었다. 또한 카르복실산으로 표면 개질된 탄소나노류브 (TOPNANOSYS) 60 mg를 20 증류수에 분산시 켜 POWER SONIC 420 초음파기의 초음파 세기를 상으로 설정하여 하루 등안 초음파 처리한 후, 상기 분산액을 원심분리하여 상층액을 얻음으로써 균일한 카르복실산으로 표면 개질된 탄소나노튜브 분산액을 얻었다. 그래핀 옥사이드 분산액을 폴리에틸렌테레프탈레이트 기판에 세 단계 (400 rpm에서 15초; 6000 rpm에서 30초; 3000 rpm에서 60초)로 스핀 코팅하였다. 제조된 박막을 2시간 동안 진공에서 건조한 후 다시 분산액을 스핀 코팅하는 과정을 1회 더
반복하였다ᅳ 제조된 박막 위에 카르복실산으로 표면 개질된 탄소나노튜브 분산액을 세 단계 (400 rpm에서 15초; 6000 rpm에서 30초; 3000 rpm에서 60초)로 스핀 코팅하였다. 생성된 박막을 2시간 동안 진공에서 건조한 후 다시 분산액을 스핀 코팅하는 과정을 1회 더 반복하였다. 실온에서 HI 용액 (Aldrich)0.2 ^와 아세트산 0.5 mi(OCl Company Ltd.)에 하루 이상 노출시킨 후, 박막을 80°C에서 건조하여 잔여물을 제거하였다.
[72] 실시 예 9: HI 아세트산 혼합물을 환원제로 사용한 전도성 박막의 제조
[73] 실시 예 8에서 , 카르복실산으로 표면 개질된 탄소나노튜브 분산액을 먼저
기판에 코팅한 후 그래핀 옥사이드 분산액을 코팅한 것을 제외하고는,실시 예
8과 동일하게 실시하였다.
[74] 비교예 1: 히드라진 하이드레이트를 환원제로 사용한 전도성 박막의 제조
[75] 실시 예 5에서 HI 용액과 아세트산 대신 히드라진 용액 으7 (Aldrich)를
사용하여 80°C에서 반응시킨 것을 제외하고는, 실시 예 5와 동일하게 실시하였다.
[76] 비교예 2
[77] 실시 예 5에서 카르복실산으로 표면 개질된 탄소나노튜브를 사용하지 않은
것을 제외하고는, 실시 예 5와 동일하게 실시하였다.
[78] 비교예 3
[79] 실시 예 5에서 그래핀 옥사이드를 사용하지 않은 것을 제외하고는,실시 예 5와 동일하게 실시하였다.
[80] 시험 예:면저항 및 투과도의 측정
[81] 실시 예 및 비교예에서 제조한 박막의 면저항 및 투과도를 측정하였다. 측정한 결과를 표 1에 나타낸다.
[82] [표 1]
[83] 면저항 투과도
구분 환원제 환원반웅 온도
(Ω) (%)
실시예 1 HI 실온 500 85 실시예 2 HI 실은 600 85 실시예 3 HI 실은 750 87 실시예 4 HI 실은 900 87 실시예 5 HI/아세트산 실은 400 85 실시예 6 HI/아세트산 1200 83 실시예 7 HI/아세트산 실온 1000 84 실시예 8 HV아세트산 900 82 실시예 9 HI/아세트산 一 850 83
히드라진
비교예 1 80X: 2000 80
하이드레이트
비교예 2 HI/아세트산 실은 650 76 비교예 3 HI/아세트산 실온 1300 89
[84] 상기 표 1에 나타낸 바와 같이,실시 예 1 내지 5와 비교예 1을 비교하면, 본
발명은 HI 또는 HI/아세트산을 환원제로 사용함으로써 환원 그래핀 옥사이드를 실온에서제조할수있으며,투과도는유사한정도로유지하면서훨씬낮은 면저항수치로인해전기전도도가개선됨을확인하였다.이는그래핀
옥사이드에대한 HI또는 HI/아세트산의환원력이히드라진의환원력에비해 현저히우수하여,환원그래핀옥사이드로의환원비율이높았기때문인것으로 판단된다.또한,실시예 1내지 5와비교예 2와 3을비교하면,탄소나노튜브로만 구성된박막에비해환원그래핀옥사이드와탄소나노류브로구성된박막의 면저항수치가더낮아전기전도도가개선되었고,환원그래핀옥사이드로만 구성된박막에비해투과도가개선되었음을확인할수있다.
[85] 또한,실시예 6내지 9는그래핀옥사이드,환원그래핀옥사이드,
탄소나노튜브,카르복실산으로표면개질된탄소나노류브를각각을코팅하거나 2종의조합을흔합하여코팅하는경우에도동일하게전기전도도및투명도가 개선될수있음을입증하는것이다.본발명의제조방법에따르면,사용된물질 각각을코팅하는경우나노두께의 2개의층으로엉성하게층이쌓여져결국 물질이서로섞여섬유상의탄소나노류브가그래핀층사이를연결해주는 역할을하는특유의브릿지효과를얻을수있는것이다.
[86] 한편,그래핀옥사이드와탄소나노튜브의조성을달리하여제조된실시예 1 내지 4의박막의투과도를측정한결과를도 1에나타내었다.도 1의결과로부터, 탄소나노튜브의함량이높아질수록투과도는증가하였음을확인할수있다.본 기술분야의통상의기술자는전기전도도와의관계를고려하여,그래핀 옥사이드와탄소나노튜브의조성을적절하게변화시킬수있을것이다.
[87] 전술한본원의설명은예시를위한것이며,본원이속하는기술분야의통상와 지식을가진자는본원의기술적사상이나필수적인특징을변경하지않고서 다른구체적인형태로쉽게변형이가능하다는것을이해할수있을것이다. 그러므로이상에서기술한실시예들은모든면에서예시적인것이며한정적이 아닌것으로이해해야만한다.예를들어,단일형으로설명되어있는각구성 요소는분산되어실시될수도있으며,마찬가지로분산된것으로설명되어있는 구성요소들도결합된형태로실시될수있다.
[88] 본원의범위는상기상세한설명보다는후술하는특허청구범위에의하여
나타내어지며,특허청구범위의의미및범위그리고그균등개념으로부터 도출되는모든변경또는변형된형태가본원의범위에포함되는것으로 해석되어야한다.

Claims

청구범위
[청구항 1] (51) 그래핀 옥사이드와 카르복실산으로 표면 개질된
탄소나노류브; 그래핀 옥사이드와 탄소나노튜브; 또는 환원 그래핀 옥사이드와 탄소나노류브를 용매에 분산시 킨 분산액을 기판에 코팅하는 단계;및
(52) 상기 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하는 단계
를 포함하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법 .
[청구항 2] (51) 그래핀 옥사이드를 용매에 분산시킨 분산액을 기판에
코팅하는 단계;
(52) 상기 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시키는 단계 ;
(53) S2 단계에서 얻은 기판에 카르복실산으로 표면 개질된 탄소나노튜브를 용매에 분산시킨 분산액을 코팅하는 단계 ; 및
(54) S3 단계에서 얻은 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하는 단계 를 포함하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 .
[청구항 3] (51) 그래핀 옥사이드를 용매에 분산시킨 분산액을 기판에
코팅하는 단계;
(52) 상기 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시키는 단계; 및
(53) S2 단계에서 얻은 기판에 탄소나노튜브를 용매에 분산시킨 분산액을 코팅하여 전도성 박막을 제조하는 단계
를 포함하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 .
[청구항 4] (51) 그래핀 옥사이드를 용매에 분산시킨 분산액을 기판에
코팅하는 단계;
(52) 상기 기판에 카르복실산으로 표면 개질된 탄소나노류브를 용매에 분산시킨 분산액을 코팅하는 단계 ; 및
(53) S2 단계에서 얻은 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 전도성 박막을 제조하는 단계 를 포함하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법 .
[청구항 5] (S1) 카르복실산으로 표면 개질된 탄소나노류브를 용매에
분산시킨 분산액을 기판에 코팅하는 단계; (52) 상기 기판에 그래핀 옥사이드를 용매에 분산시킨 분산액을 코팅하는 단계 ; 및
(53) S2 단계에서 얻은 기판을 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시 켜 전도성 박막을 제조하는 단계
를 포함하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법 .
[청구항 6] 제 1항 내지 제 5항 중 어느 한 항에 있어서 ,
상기 기판은 유리 , Si/Si02 또는 폴리에틸렌테레프탈레이트인 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법
[청구항 7] 제 1항 내지 게 5항 중 어느 한 항에 있어서 ,
스핀 코팅 법 , 딥 코팅법 , 바코터법 또는 스프레이 코팅 법을 사용하여 상기 기판에 코팅하는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 .
[청구항 8] 제 1항 내지 게 5항 중 어느 한 항에 있어서 ,
스핀 코팅법을 사용하여 상기 기판에 코팅하고,스핀 코팅시 회 전수가 400~6000 rpm인 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법 .
[청구항 9] 제 1항 내지 제 5항 중 어느 한 항에 있어서 ,
상기 할로겐 원소가 포함된 환원제가 HI, HC1 및 HBr로 구성된 군에서 선택되는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법ᅳ
[청구항 10] 제 9항에 있어서,
상기 할로겐 원소가 포함된 환원제가 HI인 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 .
[청구항 11] 제】항 내지 제 5항 중 어느 한 항에 있어서 ,
상기 할로겐 원소가 포함된 환원제 함유 용액은 HI 용액과 아세트산, 트리플루오로아세트산, 탄산, 포름산 및 벤조산으로 구성되는 군으로부터 선택되는 약산의 흔합물인 것을 특징으로 하는 전도성 박막의 제조방법 .
청구항 12] 제 11항에 있어서,
상기 할로겐 원소가 포함된 환원제 함유 용액은 HI 용액과 아세트산의 흔합물인 것올 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 .
[청구항 13] 제 11항에 있어서 ,
상기 할로겐 원소가 포함된 환원제 함유 용액은 HI 용액과 트리플루오로아세트산의 흔합물인 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의
제조방법 .
[청구항 14] 제 1항 내지 제 5항 중 어느 한 항에 있어서 ,
상기 기판에 코팅하기 전 분산액을 원심분리한 후 초음파 처 리하는 단계를 더 포함하는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 . 청구항 15] 제 1항 내지 계 5항 중 어느 한 항에 있어서,
제조된 전도성 박막을 수소 분위기 하 열처리하는 단계를 더 포함하는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 .
[청구항 16] 제 15항에 있어서,
상기 기판이 폴리에틸렌테레프탈레이트인 경우,수소 분위기 하 80~150oC의 온도에서 열처리하는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법 .
[청구항 17] 제 15항에 있어서,
상기 기판이 유리 또는 Si/Si02인 경우, 수소 분위기 하
100~1500°C의 온도에서 열처리하는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방 '법 . .
[청구항 18] 제 1항 내지 계 5항 중 어느 한 항에 있어서,
제조된 전도성 박막을 HN03, H2S04 또는 SOCl2 증기에 노출시켜 HN03, H2S04 또는 soa2를 도핑하는 단계를 더 포함하는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법 .
[청구항 19] 제 1항 내지 제 5항 중 어느 한 항에 있어서 ,
소수성 탄소나노류브를 사용하는 경우,용매에 분산시 계면활성제를 더 사용하는 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 .
[청구항 20] 제 19항에 있어서,
상기 계면활성제가 나트륨 도데실 설페이트 (SDS), 나트륨 옥틸벤젠 술포네이트 (NaOBS), 나트륨 도데실 벤젠
설페이트 (SDBS), 트리톤 X-100(TRITON X-100), 나트륨 도데실 설포네이트 (SDSA), 나트륨 부틸벤조에이트 (NaBBS), 도데실트리메틸암모늄 브로마이드 (DTAB), 세틸트리메틸암모늄 브로마이드 (CTAB), 텍스트린 (dextrin),
폴리스티 렌-폴리에틸렌옥사이드 (PS-PEO) 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 환원 그래핀 옥사이드와 탄소나노류브로 구성된 전도성 박막의 제조방법ᅳ
환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막을 포함하는 투명 전극으로서 , 상기 환원 그래핀 옥사이드는 그래핀 옥사이드를 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 환원시켜 제조한 것인 투명 전극.
제 21항에 있어서 ,
상기 탄소나노류브는 카르복실산으로 표면 개질된
탄소나노류브를 할로겐 원소가 포함된 환원제 함유 용액의 증기에 노출시켜 환원시킨 탄소나노류브인 것을 특징으로 하는 투명 전극.
제 21항에 있어서 ,
플렉시블 (flexible)한 것을 특징으로 하는 투명 전극.
제 21항에 있어서 ,
표시 소자 또는 태양전지에 포함되는 것을 특징으로 하는 투명 전극.
PCT/KR2012/000617 2011-01-26 2012-01-26 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극 WO2012102561A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/951,993 US9576707B2 (en) 2011-01-26 2013-07-26 Conductive thin film and transparent electrode including graphene oxide and carbon nanotube, and methods of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0007965 2011-01-26
KR1020110007965A KR101160909B1 (ko) 2011-01-26 2011-01-26 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/951,993 Continuation US9576707B2 (en) 2011-01-26 2013-07-26 Conductive thin film and transparent electrode including graphene oxide and carbon nanotube, and methods of producing the same

Publications (2)

Publication Number Publication Date
WO2012102561A2 true WO2012102561A2 (ko) 2012-08-02
WO2012102561A3 WO2012102561A3 (ko) 2012-09-27

Family

ID=46581295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000617 WO2012102561A2 (ko) 2011-01-26 2012-01-26 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극

Country Status (3)

Country Link
US (1) US9576707B2 (ko)
KR (1) KR101160909B1 (ko)
WO (1) WO2012102561A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833698A (zh) * 2017-10-27 2018-03-23 成都天航智虹知识产权运营管理有限公司 一种制备石墨烯透明导电薄膜的方法
CN110534226A (zh) * 2019-09-20 2019-12-03 史俊 一种耐低温高阻透明导电膜及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832050B (zh) * 2012-08-29 2015-04-15 华东理工大学 分级结构石墨烯/碳纳米管杂化物的制备方法
KR20140091403A (ko) * 2013-01-11 2014-07-21 엘지디스플레이 주식회사 전극구조 및 그 제조방법, 전극구조를 구비한 표시소자, 그 제조방법
KR101496156B1 (ko) * 2013-09-26 2015-02-27 한국과학기술연구원 전도성 복합체 및 그 제조방법
CN103545053B (zh) * 2013-10-25 2016-03-09 深圳市华星光电技术有限公司 透明导电薄膜的制备方法及具有该导电薄膜的cf基板的制备方法
WO2015187412A1 (en) * 2014-06-04 2015-12-10 The Research Foundation For The State University Of New York Highly porous fibrous network materials for gas filtration
KR101670260B1 (ko) * 2014-12-22 2016-10-28 인하대학교 산학협력단 그래핀/탄소나노튜브 복합막의 제조방법
KR101911745B1 (ko) * 2015-03-23 2018-10-25 재단법인 나노기반소프트일렉트로닉스연구단 그래핀 적층체 및 그의 제조방법
KR101830111B1 (ko) * 2016-04-15 2018-02-21 한국과학기술원 탄소 나노튜브 및 그래핀의 제조 방법
CN107910129B (zh) * 2017-10-27 2019-04-16 上海理工大学 一种石墨烯/碳纳米管复合透明导电薄膜的制备方法
CN108962437A (zh) * 2018-07-25 2018-12-07 佛山腾鲤新能源科技有限公司 一种氧化石墨烯复合导电膜的制备方法
CN110885075B (zh) * 2019-11-29 2023-03-17 重庆大学 一种能增强韧性和强度的导电石墨烯复合薄膜及其制备方法
KR20210085240A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 페로브스카이트 광전자 소자 및 이의 제조방법
CN115483502B (zh) * 2022-07-22 2023-12-05 四川新能源汽车创新中心有限公司 改善固态电解质和负极界面稳定性的保护膜及其制备方法、固态电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080001333A (ko) * 2006-06-29 2008-01-03 한국과학기술원 탄소나노튜브 필름을 이용한 투명전극의 제조방법
WO2009085015A1 (en) * 2008-01-03 2009-07-09 National University Of Singapore Functionalised graphene oxide
US20100105834A1 (en) * 2008-08-19 2010-04-29 Tour James M Methods for Preparation of Graphene Nanoribbons From Carbon Nanotubes and Compositions, Thin Films and Devices Derived Therefrom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473148B2 (ja) * 2007-11-14 2014-04-16 チェイル インダストリーズ インコーポレイテッド 導電性が改善された透明導電性フィルム及びその製造方法
KR101435999B1 (ko) * 2007-12-07 2014-08-29 삼성전자주식회사 도펀트로 도핑된 산화그라펜의 환원물, 이를 포함하는 박막및 투명전극
US9105403B2 (en) * 2008-01-14 2015-08-11 The Regents Of The University Of California High-throughput solution processing of large scale graphene and device applications
KR101048490B1 (ko) * 2010-03-29 2011-07-11 성균관대학교산학협력단 할로겐 원소가 포함된 환원제를 포함하는 그래핀옥사이드 환원제, 이에 의한 환원그래핀옥사이드의 제조방법 및 제조된 환원그래핀옥사이드의 용도
KR101388695B1 (ko) * 2011-10-24 2014-04-28 삼성전기주식회사 그래핀 투명전극 및 이의 제조방법
US9177688B2 (en) * 2011-11-22 2015-11-03 International Business Machines Corporation Carbon nanotube-graphene hybrid transparent conductor and field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080001333A (ko) * 2006-06-29 2008-01-03 한국과학기술원 탄소나노튜브 필름을 이용한 투명전극의 제조방법
WO2009085015A1 (en) * 2008-01-03 2009-07-09 National University Of Singapore Functionalised graphene oxide
US20100105834A1 (en) * 2008-08-19 2010-04-29 Tour James M Methods for Preparation of Graphene Nanoribbons From Carbon Nanotubes and Compositions, Thin Films and Devices Derived Therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833698A (zh) * 2017-10-27 2018-03-23 成都天航智虹知识产权运营管理有限公司 一种制备石墨烯透明导电薄膜的方法
CN110534226A (zh) * 2019-09-20 2019-12-03 史俊 一种耐低温高阻透明导电膜及其制备方法
CN112331411A (zh) * 2019-09-20 2021-02-05 张莉 一种耐低温高阻透明导电膜的制备方法

Also Published As

Publication number Publication date
KR101160909B1 (ko) 2012-06-29
WO2012102561A3 (ko) 2012-09-27
US20130306915A1 (en) 2013-11-21
US9576707B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
WO2012102561A2 (ko) 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극
JP5473148B2 (ja) 導電性が改善された透明導電性フィルム及びその製造方法
Sui et al. Flexible and transparent electrothermal film heaters based on graphene materials
US8637122B2 (en) Method of manufacturing transparent conductive film containing carbon nanotubes and binder, and transparent conductive film manufactured thereby
CN101165883B (zh) 利用导电分散剂的透明碳纳米管电极及其制造方法
US20120161192A1 (en) Nitrogen-doped transparent graphene film and manufacturing method thereof
TWI446062B (zh) 包含碳奈米管的透明傳導膜及其觸控式面板
CN106057359B (zh) 一种嵌入式多取向金属纳米线透明导电薄膜的制备方法
CN103531304B (zh) 一种快速制备大面积碳纳米管柔性透明导电薄膜及提高其导电性的方法
WO2013111681A1 (ja) 透明電極付き基板およびその製造方法
WO2007086878A2 (en) Coating compositions containing single wall carbon nanotubes
WO2009064133A2 (en) Conductivity enhanced transparent conductive film and fabrication method thereof
JP2012524966A (ja) 炭素ナノチューブ導電膜及びその製造方法
WO2012076473A2 (en) Hybrid conductive composite
KR20130026687A (ko) 용액 공정을 이용한 환원 그래핀옥사이드의 대량 제조 방법 및 이에 의하여 제조된 환원 그래핀옥사이드, 및 상기 환원 그래핀옥사이드의 용도
CN103390467A (zh) 一种弹性导电纤维的制备方法
TW201525079A (zh) 高分散碳納米管複合導電墨水
US20130213700A1 (en) Manufacturing method of electrode substrate
Souza et al. Conducting, transparent and flexible substrates obtained from interfacial thin films of double-walled carbon nanotubes
TWI466140B (zh) 透明導電膜與其形成方法
KR101296809B1 (ko) 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름
JP5951372B2 (ja) タッチパネルおよびその製造方法
KR20120034370A (ko) 탄소나노튜브를 이용한 투명전도성 및 초소수성 필름의 제조방법
KR20090020139A (ko) 탄소나노튜브 도전막 및 그 제조방법
Bansal et al. Morphological, Optical And Electrical Characterization Of Solution Processed Mwnt–Pedot: Pss Nanocomposite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739665

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739665

Country of ref document: EP

Kind code of ref document: A2