TW201525079A - 高分散碳納米管複合導電墨水 - Google Patents

高分散碳納米管複合導電墨水 Download PDF

Info

Publication number
TW201525079A
TW201525079A TW103144231A TW103144231A TW201525079A TW 201525079 A TW201525079 A TW 201525079A TW 103144231 A TW103144231 A TW 103144231A TW 103144231 A TW103144231 A TW 103144231A TW 201525079 A TW201525079 A TW 201525079A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon nanotubes
dispersion
conductive ink
composite conductive
Prior art date
Application number
TW103144231A
Other languages
English (en)
Inventor
Hai-Yan Hao
xi-liang Cao
Lei Dai
Li-Fei Cai
Original Assignee
Beijing Aglaia Technology & Dev Co Ltd
Guangdong Aglaia Optoelectronic Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Aglaia Technology & Dev Co Ltd, Guangdong Aglaia Optoelectronic Materials Co Ltd filed Critical Beijing Aglaia Technology & Dev Co Ltd
Publication of TW201525079A publication Critical patent/TW201525079A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Capacitors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本發明涉及一種高分散碳納米管複合導電墨水,由改性碳納米管、導電高分子材料和溶劑組成,所述改性碳納米管由普通的碳納米管經由紫外光機照射後,又經強酸氧化後得到的。經過該處理得以的碳納米管在製備導電複合墨水時不需要添加表面活性劑來增加其分散性,使得其製得的導電層具有良好的導電性能和可見光範圍內光學透過率以及柔性。此柔性碳納米高分子透明導電膜導電性為100Ω/□-1MΩ/□,性能處於世界先進水準,具有良好的應用前景。

Description

高分散碳納米管複合導電墨水
本發明涉及一種加入有碳納米管的導電墨水,特別是涉及一種高分散碳納米管複合導電墨水。
在液晶面板、OLED面板、觸控式螢幕、電子紙、太陽能電池等顯示器件和光伏器件中,透明電極都是不可缺少的部分。氧化銦錫(ITO)在玻璃基底上形成ITO薄膜顯示出優異的透光性和導電性,因此目前其在商業化透明電極的應用領域裡佔有主導地位。但隨著科技的發展及透明電極應用領域的多元化,透明電極必須具備低方阻,可見光範圍內良好的透過率、柔性、可實現大面積精細塗布成膜的簡單操作工藝等要求。而ITO透明導電薄膜的不可彎折,自然資源匱乏,成本高等問題的限制其在未來柔性電子產業中的廣泛應用。由此開發新型柔性透明電極材料來替代ITO電極是電子顯示領域和光伏產業等應用領域急需解決的關鍵技術問題。目前柔性透明導電薄膜發展趨勢正朝著高品質、高效率、低成本、環保的方向發展。新型的柔性電極材料中碳納米管材料因為其高電子遷移率,低電阻率被科研和產業界認定為可代替ITO的透明電極。
碳納米管是一種具有典型的層狀中空結構特徵的碳材料,構成碳納米管的管身由六邊形石墨碳環結構單元組成, 是一種具有特殊結構(徑向尺寸為納米量級,軸向尺寸為微米量級)的一維量子材料。它的管壁構成主要為數層到數十層的同軸圓管。層與層之間保持固定的距離,約為0.34nm,直徑一般為2~20nm 。碳納米管上碳原子的P電子形成大範圍的離域π鍵,因此共軛效應顯著。由於碳納米管的結構與石墨的片層結構相同,具有很好的電學性能。然而,由於單壁碳納米管之間很強的范德華作用力(~500eV/µm)和大的長徑比(>1000),通常容易形成大的管束,難以分散,極大地制約了其優異性能的發揮和實際應用的開發。通常碳納米管的分散需借助各種表面活性劑來實現其在溶劑中的分散。這樣在形成的碳納米導電薄膜會由於表面活性劑的不導電性導致其電學性能的降低。
針對上述領域中的缺陷,本發明提供一種高分散碳納米管複合導電墨水,無需外加分散輔助劑,此墨水採用無表面活性劑的碳納米管分散液及導電高分子為原材料,通過溶液的共混工藝技術(超音波分散、機械攪拌、細胞粉碎等工藝方法複合),實現了碳納米管與導電高分子溶液的均勻分散,製備的墨水穩定性和再分散性良好。
一種高分散碳納米管複合導電墨水,由下列成分及其重量百分含量組成: 改性碳納米管                                0.03%-1%, 導電高分子材料                            0.2%-5%, 導電高分子助溶劑                          0.2%-1%, 溶劑                                                  94%-98%, 所述改性碳納米管採用下述方法製得:(1)將碳納米管分散在低沸點醇類或水溶液中,通過超音波分散或細胞粉碎機分散,分散液放入紫外光機中照射30-60分鐘,離心;(2)將紫外光機清洗後的碳納米管用氧化性強酸溶液進行氧化反應,離心;(3)將強酸清洗過的碳納米管通過採用低沸點醇溶劑或水超音波散,離心清洗後,得到高分散性的改性碳納米管。
所述步驟(1)或/和步驟(2)重複1-2次。
所述低沸點醇為乙醇或甲醇。
所述氧化性強酸溶液為三氟乙酸、硝酸、 濃硫酸、或添加有過氧化物的硝酸或濃硫酸。
所述過氧化物為過氧化銨或雙氧水。
所述的碳納米管為單壁碳納米管,雙壁碳納米管,多壁碳納米管。
所述的導電高分子為聚苯胺、聚3, 4-乙撐二氧噻吩、聚乙炔或聚吡咯中的一種或幾種。
所述導電高分子助溶劑為聚苯乙烯磺酸鹽、樟腦磺酸或萘磺酸。
所述溶劑為水,乙醇,甲醇中的一種或幾種。
該複合導電墨水的一種製備方法說明
1、碳納米管分散液的製備方法: 首先將碳納米管粉體分散在低沸點醇類或水溶液中,通過超音波分散或細胞粉碎機分散,分散液放入紫外光機中照射一定時間,可得離心得碳納米管粉體。其次將紫外光機清洗後的碳納米管用強酸控制反應條件,進行清洗。最後將強酸清洗過的碳納米管通過多次離心分離後,重複超音波清洗後,得到均勻的單壁碳納米管分散液。此工藝方法中的工藝步驟可以多次重複和調整。尤其是強酸清洗工藝中,採用不同的強酸對非晶態碳的作用也各不相同,所得碳納米管的可溶性和碳納米管的潔淨度也有很大的差異。碳米管的回收率在80%左右。
2、本發明中採用的強酸有三氟乙酸(TFA),硝酸, 濃硫酸, 雙氧水等在碳納米管表面不會殘留無機鹽的易分解的酸。相應的溶劑有低沸點醇類如甲醇,乙醇;水;N,N-二甲基甲醯胺(DMF)等
3、將無表面活性劑的碳納米管高分散溶液與導電高分子溶液共混,通過機械攪拌結合超音波分散技術,或機械攪拌結合細胞破碎的工藝方法使得共混溶液形成穩定均勻的碳納米管高分子分散體系,最後濃縮到合適的濃度。
該配方中的碳納米管經過改性處理,極大的提高了其在普通溶劑的分散性,結合導電高分子材料,即可製成複合導電墨水,不需要外加表面活性劑來助溶,提高了該導電墨水的導電性能。該高分散碳納米管複合導電墨水,可以在室溫條件下,採用spin coating和鐳射燒蝕技術來製備精細的電極圖案,也可以採用噴墨列印等技術實現微細結構電極圖案的一次性製備。
該複合導電墨水可應用於柔性OLED顯示器件、太陽能電池、液晶顯示,觸控式螢幕面板等器件中的極透明電極材料,與透明高分子基底相容性好,附著力強,可實現透明導電薄膜的柔性,同時也滿足透明柔性電極使用壽命要求。
下面結合實施例對本發明作進一步的詳細說明。
本申請中的聚3,4-乙撐二氧噻吩:聚苯乙烯磺酸鈉水溶液(PEDOT:PSS )為外購產品,其PEDOT的含量在1.8%,聚苯乙烯磺酸鈉的含量為0.5%。可以按下列方法自製:將PEDOT溶解于水中,由於其溶解性不行,需加入25%的PSS水溶液助溶。
實施例1 改性後的單壁碳納米管甲醇溶液                                     10ml 導電高分子水溶液為的1.8%PEDOT:PSS水溶液         20ml 濃縮至15ml體積。 製備方法: 0.05g的單壁碳納米管(SWCNT)在20ml甲醇中超音波分散20min後形成SWNT懸濁液。將此SWCNT懸濁液放入UV光清洗機中處理40 min,得到SWCNT粉體;取20 ml 的去離子水放入單口燒瓶中,再加入10 ml 的 濃HNO3(68 wt%),加入 5 wt%過硫酸銨(APS)水溶液,混合均勻後加入提純過的SWCNT粉體,磁子攪拌,120℃下回流反應5 h。去離子水反復離心沖洗(7000 rpm,10 min)3次,將所得的單壁碳納米管最後用甲醇超音波分散20 min, 再離心,反復兩次,最後得10ml的SWCNT的甲醇分散液。 將20ml的1.8% PEDOT:PSS水溶液與10ml的SWCNT的甲醇分散液混合均勻,濃縮至15ml(稱重約15克)後,形成分散均一的SWCNT/ PEDOT:PSS墨水溶液。
實施例2 改性後的多壁碳納米管(MWCNT)乙醇溶液                         20ml 1.8%PEDOT:PSS水溶液                                                               20ml 製備方法: 0.05g的MWCNT在20ml乙醇中超音波分散20min後形成MWCNT懸濁液。將此MWCNT懸濁液放入UV光清洗機中處理40 min。所得MWCNT粉體用DMF和TFA混合液(9 :1/Vol)20ml超音波清洗30-60 min,在7000rpm轉速下離心分離,再重複超音波清洗,共反復5次,最後用乙醇超音波分散20 min, 再離心,反復兩次,最後得MWCNT的乙醇分散液20ml。 將20ml 1.8%PEDOT:PSS與10ml的MWCNT的乙醇分散液混合均勻,濃縮至15ml(稱重約15克)後,形成分散均一的MWCNT/ PEDOT:PSS墨水溶液。
實施例3 改性後的SWCNT甲醇                                         10ml 1.8%PEDOT:PSS水溶液                                      20ml 製備方法:0.05g的單SWNT分散在20ml甲醇中,超音波分散20min後形成SWNT懸濁液。將此SWNT懸濁液放入UV光清洗機中處理40 min, 得到SWNT粉體; 取20 ml 的濃硫酸放入單口燒瓶中,加入提純過的 單壁SWNT粉體,磁力攪拌,室溫溶脹12h。將SWNT的混合濃硫酸溶液用10:1的水稀釋後,進行離心分離,反復4次。最後得單壁SWNT粉體。將此粉體放入單口燒瓶中,加入20 ml 的去離子水,再加入10 ml 的 濃HNO3(68 wt%),加10ml H2O2,磁力攪拌,85 ℃下回流反應5 h。用去離子水反復離心沖洗(7000 rpm,10 min)3次,將所得的單壁碳納米管最後用甲醇超音波分散20 min, 再離心,反復兩次,最後得SWCNT的甲醇分散液10ml。 將20ml PEDOT:PSS與10ml的SWCNT的甲醇分散液混合均勻,濃縮至15ml(稱重約15克)後,形成分散均一的SWCNT/ PEDOT:PSS墨水溶液
實施例4 取0.05 g SWCNT 加入到 40 ml 乙酸乙酯溶劑中,超音波分散 60 min, 靜置溶脹48 h後,離心,再依次用乙醇,去離子水離心清洗。 將溶脹後的SWCNT加入到體積比為1:1的HNO3 :H2 O2 的30ml混酸溶液中,120℃下反應 3 h, 取出後離心清洗多次至上清液基本澄清。達到離心溶液的PH近於中性。離心分離得到的單壁碳納米管的粉體可二次均勻分散在水和醇類溶劑中。其掃描電子顯微鏡照片見圖1 中的E。將處理後的單壁碳納米管分散在20ml的乙醇溶液中,其吸光度值2542。
碳納米高分子導電薄膜的製備方法
本發明所涉及的高分散碳納米管複合導電墨水,可以在室溫條件下,採用spin coating和鐳射燒蝕技術來製備精細的電極圖案,也可以採用噴墨列印等技術實現微細結構電極圖案的一次性製備。
本發明的複合導電墨水,其工藝可操作性強,可採用噴墨列印技術,旋塗技術以及配套的光刻技術,可實現在玻璃,透明晶體,透明陶瓷,高分子薄膜等表面製備碳納米導電高分子膜層,其膜層表面形貌如圖1、2、3所示。
碳納米管分散液中,碳納米管的分散性能良好,形成了單束網狀分散。碳納米管高分子墨水在PET薄膜表面塗膜後,形成的碳納米管薄膜為較為均一的碳納米高分子鏈結,並且表面粗糙度只有2.79nm。
碳納米導電薄膜膜層性能檢測:
本發明墨水形成的碳納米高分子透明導電膜層具有良好的導電性能和可見光範圍內光學透過率以及柔性。此柔性碳納米高分子透明導電膜導電性可在(100Ω/□-1MΩ/□)可調。此碳納米高分子導電墨水製備成本低,節能環保,產品對人體無毒無副作用,工藝簡單。相比國內外碳納米導電高分子電極材料的性能,本發明所製備的碳納米柔性電極材料性能處於領先的水準。參見表2
本發明所研製的碳納米管高分子柔性電極墨水及其所製備的透明柔性導電薄膜在觸控式螢幕,太陽能電池以及OLED等顯示器件所需的柔性透明電極方面具備良好的應用前景。
圖1 基底PET膜層表面形貌圖AFM照片, 圖2 PET表面的本發明複合導電墨水形成的膜層表面形貌圖AFM照片, 圖3 改性CNT薄膜的掃描電子顯微鏡(SEM)圖,其中A為多壁碳納米管(MWCNT),B為單壁碳納米管(SWCNT)。

Claims (10)

  1. 一種高分散碳納米管複合導電墨水,由下列成分及其重量百分含量組成: 1) 改性碳納米管                              0.03%-1%, 2) 導電高分子材料                          0.2%-5%, 3) 導電高分子助溶劑                      0.2%-1%, 4) 溶劑                                              94%-98%, 所述改性碳納米管採用下述方法製得:(1)將碳納米管分散在低沸點醇類或水溶液中,通過超音波分散或細胞粉碎機分散,分散液放入紫外光機中照射30-60分鐘,離心;(2)將紫外光機清洗後的碳納米管用氧化性強酸溶液進行氧化反應,離心;(3)將強酸清洗過的碳納米管通過採用低沸點醇溶劑或水超音波散,離心清洗後,得到高分散性的改性碳納米管。
  2. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,由下列成分及其重量百分含量組成: 1) 改性碳納米管                              0.1%-0.5%, 2) 導電高分子材料                          1%-4%, 3) 導電高分子助溶劑                      0.3%-0.8%, 4) 溶劑                                              95%-97%。
  3. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,其中所述步驟(1)或/和步驟(2)重複1-2次。
  4. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,其中所述低沸點醇為乙醇或甲醇。
  5. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,其中所述氧化性強酸溶液為三氟乙酸、硝酸、濃硫酸、或添加有過氧化物的硝酸或濃硫酸。
  6. 如申請專利範圍第5項所述的高分散碳納米管複合導電墨水,其中所述過氧化物為過氧化銨或雙氧水。
  7. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,其中所述的碳納米管為單壁碳納米管,雙壁碳納米管,多壁碳納米管。
  8. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,其中所述的導電高分子為聚苯胺、聚3, 4-乙撐二氧噻吩、聚乙炔或聚吡咯中的一種或幾種。
  9. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,其中所述導電高分子助溶劑為聚苯乙烯磺酸鹽、樟腦磺酸或萘磺酸。
  10. 如申請專利範圍第1項所述的高分散碳納米管複合導電墨水,其中所述溶劑為水,乙醇,甲醇中的一種或幾種
TW103144231A 2013-12-23 2014-12-18 高分散碳納米管複合導電墨水 TW201525079A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310716717.1A CN104861785B (zh) 2013-12-23 2013-12-23 高分散碳纳米管复合导电墨水

Publications (1)

Publication Number Publication Date
TW201525079A true TW201525079A (zh) 2015-07-01

Family

ID=53477513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144231A TW201525079A (zh) 2013-12-23 2014-12-18 高分散碳納米管複合導電墨水

Country Status (7)

Country Link
US (1) US20170029646A1 (zh)
JP (1) JP2017508855A (zh)
KR (1) KR20160084387A (zh)
CN (1) CN104861785B (zh)
HK (1) HK1210492A1 (zh)
TW (1) TW201525079A (zh)
WO (1) WO2015096591A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL237572B1 (pl) * 2017-06-28 2021-05-04 Politechnika Slaska Im Wincent Sposób wytwarzania pasty do druku powłok przewodzących prąd elektryczny
JP7142278B2 (ja) * 2017-08-10 2022-09-27 デンカ株式会社 熱電変換材料の製造方法、熱電変換素子の製造方法及び熱電変換材料の改質方法
PL237958B1 (pl) * 2018-01-03 2021-06-14 Politechnika Slaska Im Wincent Kompozycja stanowiąca pastę lub atrament do druku powłok przewodzących prąd elektryczny
CN111710472A (zh) * 2020-06-03 2020-09-25 深圳烯湾科技有限公司 碳纳米管透明导电薄膜及其制备方法
CN113659139A (zh) * 2021-07-12 2021-11-16 中北大学 一种钒位铜掺杂复合碳纳米管的磷酸钒钠电极材料及其制备方法和应用
CN114158148A (zh) * 2021-11-16 2022-03-08 西湖大学 一种3d打印透明电加热电极的制备方法和应用
CN114106624B (zh) * 2021-12-08 2023-02-21 上海永安印务有限公司 一种水性油墨及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074310B2 (en) * 2002-03-04 2006-07-11 William Marsh Rice University Method for separating single-wall carbon nanotubes and compositions thereof
ITMI20021737A1 (it) * 2002-08-01 2004-02-02 Univ Degli Studi Trieste Processo di purificazione di nanotubi di carbonio.
DE60239138D1 (de) * 2002-12-12 2011-03-24 Sony Deutschland Gmbh Lösliche Kohlenstoff-Nanoröhren
CA2556562C (en) * 2004-02-16 2011-12-06 Japan Science And Technology Agency Carbon nanotube structure-selective separation and surface fixation
US20060188723A1 (en) * 2005-02-22 2006-08-24 Eastman Kodak Company Coating compositions containing single wall carbon nanotubes
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US20070292622A1 (en) * 2005-08-04 2007-12-20 Rowley Lawrence A Solvent containing carbon nanotube aqueous dispersions
US20070246689A1 (en) * 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
KR100801670B1 (ko) * 2006-10-13 2008-02-11 한국기계연구원 잉크젯 프린팅법에 의한 나노소재의 미세 전극 패턴 제조방법
CN100491240C (zh) * 2006-11-30 2009-05-27 上海交通大学 光化学修饰碳纳米管的方法
US20080152573A1 (en) * 2006-12-20 2008-06-26 Noriyuki Juni Method for producing carbon nanotubes, method for producing liquid dispersion thereof and optical product
EP2183325A1 (en) * 2007-08-29 2010-05-12 Northwestern University Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP2009238394A (ja) * 2008-03-25 2009-10-15 Fujifilm Corp 導電性ポリマー組成物、導電性ポリマー材料及び電極材料
WO2010051102A2 (en) * 2008-09-09 2010-05-06 Sun Chemical Corporation Carbon nanotube dispersions
TWI395710B (zh) * 2009-01-06 2013-05-11 Univ Tatung 奈米碳管複合材料之製作方法
KR101091744B1 (ko) * 2009-04-15 2011-12-08 한국과학기술연구원 메탈와이어를 이용한 전도성필름 제조방법 및 전도성필름
CN102648249B (zh) * 2009-08-14 2016-04-13 Nano-C公司 具有可移除性添加剂的溶剂基和水基碳纳米管油墨
WO2012057320A1 (ja) * 2010-10-29 2012-05-03 東レ株式会社 カーボンナノチューブ集合体分散液の製造方法
EP2693444B1 (en) * 2011-03-28 2019-03-13 FUJIFILM Corporation An electrically conductive composition, an electrically conductive film using the composition and a method of producing the same
CN102634249B (zh) * 2012-04-10 2014-02-05 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米管墨水的制备方法及晶体管器件的制作方法
CN103305051A (zh) * 2013-05-20 2013-09-18 Kmt纳米科技(香港)有限公司 一种低温辐射电热膜及其制备方法

Also Published As

Publication number Publication date
CN104861785B (zh) 2017-11-14
KR20160084387A (ko) 2016-07-13
WO2015096591A1 (zh) 2015-07-02
JP2017508855A (ja) 2017-03-30
CN104861785A (zh) 2015-08-26
US20170029646A1 (en) 2017-02-02
HK1210492A1 (zh) 2016-04-22

Similar Documents

Publication Publication Date Title
WO2015096591A1 (zh) 高分散碳纳米管复合导电墨水
TWI578336B (zh) 碳奈米管-高分子層狀複合透明柔性電極及其製備方法
JP6244006B2 (ja) 透明カーボンナノチューブ高分子複合導電インク及びその調製方法
JP5473148B2 (ja) 導電性が改善された透明導電性フィルム及びその製造方法
Skakalova et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes
CN103253656B (zh) 一种石墨烯分散液制备方法
Niu Carbon nanotube transparent conducting films
TWI529126B (zh) 單壁碳納米管均勻分散的方法
JP2010509428A (ja) カーボンナノチューブ組成物および透明導電性フィルム
WO2009018261A2 (en) Rheology-controlled conductive materials, methods of production and uses thereof
Yu et al. Carbon nanotube based transparent conductive thin films
Gao et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes
WO2009064133A2 (en) Conductivity enhanced transparent conductive film and fabrication method thereof
CN107221387A (zh) 基于短暂性构架的高电导率石墨烯薄膜的制备方法
Wang et al. Mono-dispersed ultra-long single-walled carbon nanotubes as enabling components in transparent and electrically conductive thin films
TWI578335B (zh) 高分散、黏度可控的碳奈米管透明電極墨水
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing
Hao et al. Enhanced conductivity and color neutrality of transparent conductive electrodes based on CNT/PEDOT: PSS composite with a layer-by-layer structure
Tang et al. Flexible all-carbon photovoltaics with improved thermal stability