TWI529126B - 單壁碳納米管均勻分散的方法 - Google Patents

單壁碳納米管均勻分散的方法 Download PDF

Info

Publication number
TWI529126B
TWI529126B TW103144212A TW103144212A TWI529126B TW I529126 B TWI529126 B TW I529126B TW 103144212 A TW103144212 A TW 103144212A TW 103144212 A TW103144212 A TW 103144212A TW I529126 B TWI529126 B TW I529126B
Authority
TW
Taiwan
Prior art keywords
acid
walled carbon
carbon nanotubes
dispersion
carbon nanotube
Prior art date
Application number
TW103144212A
Other languages
English (en)
Other versions
TW201527209A (zh
Inventor
好海燕
曹西亮
戴雷
蔡麗菲
Original Assignee
北京阿格蕾雅科技發展有限公司
廣東阿格蕾雅光電材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京阿格蕾雅科技發展有限公司, 廣東阿格蕾雅光電材料有限公司 filed Critical 北京阿格蕾雅科技發展有限公司
Publication of TW201527209A publication Critical patent/TW201527209A/zh
Application granted granted Critical
Publication of TWI529126B publication Critical patent/TWI529126B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/845Purification or separation of fullerenes or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

單壁碳納米管均勻分散的方法
本發明涉及碳納米管的一種處理方法,特別是涉及單壁碳納米管均勻分散的方法。
碳納米管是一種具有典型的層狀中空結構特徵的碳材料,構成碳納米管的管身由六邊形石墨碳環的結構單元組成,是一種具有特殊結構(徑向尺寸為納米量級,軸向尺寸為微米量級)的一維量子材料。它的管壁構成主要為數層到數十層的同軸圓管。層與層之間保持固定的距離,約為0.34nm,直徑一般為2~20nm 。碳納米管上碳原子的P電子形成大範圍的離域π鍵,由於共軛效應顯著。由於碳納米管的結構與石墨的片層結構相同,具有很好的電學性能。單壁碳納米管材料因為其高電子遷移率,低電阻率尤其被科研和產業界認定為可代替ITO的透明電極。然而,由於單壁碳納米管之間很強的范德華作用力(~500eV/µm)和大的長徑比(>1000),通常容易形成大的管束,難以分散,極大地制約了其優異性能的發揮和實際應用。
目前,碳納米管在溶劑中的主要分散方法為:非共價功能化、共價功能化和溶劑剝離。這些方法的共性是都需要借助較大的機械力,如以高頻超音波、球磨等促進碳納米管的分散,然後採用高速離心分離去除大的管束。大的機械力不可避免地會損傷碳納米管,高速離心分離出大的管束而損失碳納米管。此外,非共價功能化法會引入難以完全去除的表面活性劑或聚合物等輔助碳納米管分散的添加劑,降低了碳納米管網路本身的電學,熱力學性能;共價功能化法會破壞碳納米管功能化位元點的sp2結構;溶劑剝離法所用溶劑通常毒性大、沸點高且分散效率低。因此,在保持結構完整和無添加劑的前提下,將碳納米管在普通溶劑中進行有效分散仍是單壁碳納米管研究與應用面臨的重要問題。
在碳納米管中,單壁碳納米管的導電性最高。但是,單壁碳納米管在溶劑中最難以分散。分散溶劑通常採用水、低沸點醇類(例如甲醇、2-丙醇等醇)等溶劑,此類溶劑對單壁碳納米管的潤濕性差,分散性差。此外有機溶劑,如四氫呋喃、二甲基甲醯胺等有機溶劑相比水和醇類的溶劑分散性略好一些。但是,四氫呋喃的毒性高。而且二甲基甲醯胺的沸點過高。因此通過單一的溶劑來分散單壁碳納米管的方法製備的碳納米管分散液的濃度很小。
此外,在水或醇類溶劑加入表面活性劑十二烷基苯磺酸鈉,辛基苯酚聚乙二醇酯,聚乙烯基吡咯烷酮等來輔助分散單壁碳納米管,但使用表面活性劑量大,有的表面活性劑濃度達到10%以上,但可分散的單壁碳納米管的濃度還是很低。在分散液中由於大量表面活性劑的影響,形成單壁碳納米管膜導電性和傳熱性能較差。
針對上述領域中的缺陷,本發明提供一種單壁碳納米管均勻分散的方法,無需外加表面活性助劑,在單壁碳納米管的結構完整性的前提下,實現單壁碳納米管均勻分散。並以此單壁碳納米管乙醇分散液為原材料在PET薄膜表面開發碳納米管複合透明電極薄膜材料。
單壁碳納米管均勻分散的方法,包括如下步驟: (1)將單壁碳納米管粉體分散在低沸點醇類或水或N,N-二甲基甲醯胺(DMF)中,放入紫外光機中紫外光照射氧化; (2)將紫外光機清洗後的碳納米管用強酸進行氧化反應,再離心清洗; (3)強酸清洗過的單壁碳納米管通過2-3次乙醇或水超音波分散、離心清洗後,溶於低沸點醇或水或DMF溶液中得到單壁碳納米管分散液。
所述紫外光機的照射功率為250W-500W,照射時間為30-60分鐘。
所述氧化反應在強氧化性酸或強酸與氧化劑混合物存在下進行。
所述強氧化性酸為濃硝酸、濃硫酸或三氟乙酸中的一種或多種,所述強酸與氧化劑混合物為加入有過氧化物的濃硝酸或濃硫酸。
所述過氧化物為雙氧水或過氧化銨。
所述強氧化性酸為濃硝酸、濃硫酸,或者所述強酸與氧化劑混合物為加入有過氧化物的濃硝酸或濃硫酸時,其反應條件為於80-120℃下,反應0.5-5小時;或者強氧化性酸為三氟乙酸時,其反應條件為於常溫超音波分散30-120分鐘,再離心清洗,重複常溫氧化2-5次。
所述步驟(1)或/和步驟(2)重複1-2次。
所述步驟(1)中的分散為通過超音波分散或細胞粉碎機分散。
所述低沸點醇為甲醇,乙醇。
本發明結合紫外光機氧化的工藝方法和化學氧化的濕化學工藝方法實現了對單壁碳納米管粉體進行清洗,減少或消除吸附在單壁碳納米管表面的雜質,使得單壁碳納米管表面嫁接了功能化的基團,從而達到了單壁碳納米管在極性溶劑中的分散。
該發明的原理主要是基於單壁碳納米管表面或單壁碳納米管之間通常含有高化學活性和低結晶性的無定形碳、碳納米顆粒以及碳片段等碳質副產物和金屬催化劑,通過控制紫外光照射功率和時間以及控制濕化學氧化條件可實現單壁碳納米管表面選擇性功能化,達到單壁碳納米管在溶劑中的均勻分散而碳納米管的結構和性能基本不受影響。
本發明所涉及的工藝技術是首先利用紫外光機將單壁碳納米管表面附著的小分子物質,易分解有機物質等氧化分解或改變其在單壁碳納米管表面的形態,然後通過控制強酸性物質使碳納米管功能化的條件,使活性較大的依附在碳納米管表面的碳質副產物等被羧基化,進而使得完整的碳納米管表面嫁接了功能化的基團,實現了單壁碳納米管的可溶性,同時也保持了單壁碳納管本身的結構完整性和本身的電學特性。
具體工藝方法如下 步驟一:將單壁碳納米管粉體分散在低沸點醇類或水溶液中,通過超音波分散或細胞粉碎機分散,分散液經過濾後,所得濾液放入紫外光機中照射一定時間。紫外光機的功率控制在250-500W之間,照射時間控制在10-60min 步驟二:將紫外光機照射清洗後的碳納米管用強酸控制反應條件,進行清洗。 步驟三:強酸清洗過的單壁碳納米管通過多次離心分離,重複超音波清洗後,得到均勻的單壁碳納米管分散液。
此工藝方法中的工藝步驟需要多次重複和調整。尤其是工藝步驟二中,採用不同的強酸對非晶態碳的作用也各不相同。所得單壁碳納米管的可溶性和碳納米管的潔淨度也有很大的差異。本發明中採用的強酸有三氟乙酸(TFA),硝酸, 濃硫酸, 雙氧水等在碳納米管表面不會殘留無機鹽的易分解的酸。相應的溶劑有低沸點醇類如甲醇,乙醇;水;N,N-二甲基甲醯胺(DMF)等。
不同的酸處理工藝不同其中,DMF和TFA混合酸的處理溫度是常溫,處理時間是40-120min,其餘的酸或混酸其處理溫度控制80-120攝氏度,處理時間控制在30-300min內。
本發明以開發碳納米複合透明電極材料為應用基礎,開發了無需外加分散輔助劑,在單壁碳納米管的結構完整性的前提下,實現單壁碳納米管在水或醇類溶劑中均勻分散。通過碳納米管分散液的吸光度值來表徵碳納米管濃度。一般來說分散不好的碳納米管的吸光度值大約是16000-17000之間。而本發明所設計到的碳納米管分散液的吸光度值可降低10倍,達到1500左右。並以此單壁碳納米管乙醇分散液為原材料在PET薄膜表面開發碳納米管複合透明電極薄膜材料。
得到的具有良好分散性的單壁碳納米管分散液,作為導電質加入導電高分子體系中,在無需加入表面活性劑的情況下,能製備高性能碳納米複合柔性透明電極材料,透過率高,方阻小。
得到的具有良好分散性的單壁碳納米管分散液可作為納米催化劑或其它功能化納米質的載體,實現其在特殊環境中的應用。
下面結合附圖對本發明作進一步的詳細說明。
實施例1 0.05g的單壁碳納米管在20ml乙醇中超音波分散20min後形成單壁碳納米管懸濁液。將此單壁碳納米管懸濁液放入UV光清洗機中處理40 min。所得單壁碳納米管粉體用DMF和TFA混合液(9 :1/Vol)20ml超音波清洗30-60 min,在7000rpm轉速下離心分離,再重複超音波清洗,共反復5次,最後用乙醇超音波分散20 min, 再離心,反復兩次,最後得SWCNT的乙醇分散液。單壁碳納米管分散情況見圖1。測定其吸光度值 1655。
實施例2 0.05g的單壁碳納米管在20ml乙醇中超音波分散20min後形成單壁碳納米管懸濁液。將此單壁碳納米管懸濁液放入UV光清洗機中處理40 min,得到單壁碳納米管粉體;取20 ml 的去離子水放入單口燒瓶中,再加入10 ml 的 濃HNO3 (68 wt%),加入 5 wt%過硫酸銨(APS)水溶液,混合均勻後加入提純過的單壁碳納米管粉體,磁子攪拌,120℃下回流反應5 h。去離子水反復離心沖洗(7000 rpm,10 min)3次,將所得的單壁碳納米管最後用乙醇超音波分散20 min, 再離心,反復兩次,最後得SWCNT的乙醇分散液。單壁碳納米管分散情況見圖1。測定其吸光度值為1745。
實施例3 0.05g的單壁碳納米管分散在20ml乙醇中,超音波分散20min後形成單壁碳納米管懸濁液。將此單壁碳納米管懸濁液放入UV光清洗機中處理40 min, 所得單壁碳納米管粉體用DMF和TFA混合液(9 :1/Vol)20 ml超音波清洗30 min,離心分離後再重複超音波清洗,共反復5次。然後用乙醇超音波清洗20 min, 再離心,反復兩次。最後將SWCNT的乙醇分散液倒入培養皿中,放入UV光清洗機中處理40min得到單壁碳納米管粉體;取20 ml 的去離子水放入單口燒瓶中,再加入10 ml 的 濃HNO3 (68 wt%),加入 1.5 g過硫酸銨(APS),混合均勻後加入提純過的單壁碳納米管粉體,磁力攪拌,85 ℃下回流反應5 h。 用去離子水反復離心沖洗(7000 rpm,10 min)3次,將所得的單壁碳納米管最後用乙醇超音波分散20 min, 再離心,反復兩次,最後得SWCNT的乙醇分散液。單壁碳納米管分散情況見圖1。測定其吸光度值1544。
實施例4 0.05g的單壁碳納米管分散在20ml乙醇中,超音波分散20min後形成單壁碳納米管懸濁液。將此單壁碳納米管懸濁液放入UV光清洗機中處理40 min, 得到單壁碳納米管粉體;取20 ml 的濃硫酸放入單口燒瓶中,加入提純過的單壁碳納米管粉體,磁力攪拌,室溫溶脹12h。將單壁碳納米管的混合濃硫酸溶液用10:1的水稀釋後,進行離心分離,反復4次。最後得單壁碳納米管粉體。將此粉體放入單口燒瓶中,加入20 ml 的去離子水,再加入10 ml 的 濃HNO3 (68 wt%),加入 1.5 g過硫酸銨(APS),磁力攪拌,85 ℃下回流反應5 h。 用去離子水反復離心沖洗(7000 rpm,10 min)3次,將所得的單壁碳納米管最後用乙醇超音波分散20 min, 再離心,反復兩次,最後得SWCNT的乙醇分散液。單壁碳納米管分散情況見圖1。測定其吸光度值1487。
實施例5 0.05g的單壁碳納米管分散在20ml乙醇中,超音波分散20min後形成單壁碳納米管懸濁液。將此單壁碳納米管懸濁液放入UV光清洗機中處理40 min, 得到單壁碳納米管粉體; 取20 ml 的濃硫酸放入單口燒瓶中,加入提純過的 單壁碳納米管粉體,磁力攪拌,室溫溶脹12h。將單壁碳納米管的混合濃硫酸溶液用10:1的水稀釋後,進行離心分離,反復4次。最後得單壁碳納米管粉體。將此粉體放入單口燒瓶中,加入20 ml 的去離子水,再加入10 ml 的 濃HNO3 (68 wt%),加10ml H2 O2 ,磁力攪拌,85 ℃下回流反應5 h。 用去離子水反復離心沖洗(7000 rpm,10 min)3次,將所得的單壁碳納米管最後用乙醇超音波分散20 min, 再離心,反復兩次,最後得SWCNT的乙醇分散液。單壁碳納米管分散情況見圖1。測定其吸光度值1766。
實施例6 將實施例1 中的碳納米管分散液中加入10ml PEDOT:PSS(聚3,4-乙撐二氧噻吩:聚苯乙烯磺酸鈉水溶液,市售,含1.8% PEDOT),超音波分散後,得碳納米管墨水溶液。將此墨水溶液在PET薄膜表面通過旋塗工藝製備透明導電電極薄膜。控制勻膜工藝為3000rpm 40s。 製備的透明電極薄膜在光波長550nm的透過率是80%以上。方阻是100-150Ω/□。
本發明製備的有良好分散性的單壁碳納米管分散液作為導電質加入導電高分子體系中,不需要加入表面活性劑的情況下,製備高性能碳納米複合柔性透明電極材料,其透過性度,方阻小。
本發明製備的具有良好分散性的單壁碳納米管分散液可作為納米催化劑或其它功能化納米質的載體,實現其在特殊環境中的應用。
圖1單壁碳納米管的掃描電子顯微鏡(SEM)照片,其中A為未處理前單壁碳納米管,B實施例1處理後的單壁碳納米管,C實施例2處理後的單壁碳納米管,D實施例3處理後的單壁碳納米管,E實施例4處理後的單壁碳納米管,F實施例5處理後的單壁碳納米管。

Claims (9)

  1. 一種單壁碳納米管均勻分散的方法,包括如下步驟: (1)將單壁碳納米管粉體分散在低沸點醇類或水或DMF中,放入紫外光機中紫外光照射氧化; (2)將紫外光機清洗後的碳納米管用強酸進行氧化反應,再離心清洗; (3)強酸清洗過的單壁碳納米管通過2-3次乙醇或水超音波分散、離心清洗後,溶於低沸點醇或水或DMF溶液中得到單壁碳納米管分散液。
  2. 如申請專利範圍第1項所述的方法,其中所述紫外光機的照射功率為250W-500W,照射時間為30-60分鐘。
  3. 如申請專利範圍第1項所述的方法,其中所述氧化反應在強氧化性酸或強酸與氧化劑混合物存在下進行。
  4. 如申請專利範圍第3項所述的方法,其中所述強氧化性酸為濃硝酸、濃硫酸或三氟乙酸中的一種或多種,所述強酸與氧化劑混合物為加入有過氧化物的濃硝酸或濃硫酸。
  5. 如申請專利範圍第4項所述的方法,其中所述過氧化物為雙氧水或過氧化銨。
  6. 如申請專利範圍第5項所述的方法,其中所述強氧化性酸為濃硝酸、濃硫酸,或者所述強酸與氧化劑混合物為加入有過氧化物的濃硝酸或濃硫酸時,其反應條件為於80-120℃下,反應0.5-5小時;或者強氧化性酸為三氟乙酸時,其反應條件為於常溫超音波分散30-120分鐘,再離心清洗,重複常溫氧化2-5次。
  7. 如申請專利範圍第1項所述的方法,其中所述步驟(1)或/和步驟(2)重複1-2次。
  8. 如申請專利範圍第1項所述的方法,其中所述步驟(1)中的分散為通過超音波分散或細胞粉碎機分散。
  9. 如申請專利範圍第1項所述的方法,其中所述低沸點醇為甲醇,乙醇。
TW103144212A 2013-12-23 2014-12-18 單壁碳納米管均勻分散的方法 TWI529126B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310717024.4A CN104724692B (zh) 2013-12-23 2013-12-23 单壁碳纳米管均匀分散的方法

Publications (2)

Publication Number Publication Date
TW201527209A TW201527209A (zh) 2015-07-16
TWI529126B true TWI529126B (zh) 2016-04-11

Family

ID=53449197

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144212A TWI529126B (zh) 2013-12-23 2014-12-18 單壁碳納米管均勻分散的方法

Country Status (7)

Country Link
US (1) US9745477B2 (zh)
JP (1) JP6152492B2 (zh)
KR (1) KR101812552B1 (zh)
CN (1) CN104724692B (zh)
HK (1) HK1206705A1 (zh)
TW (1) TWI529126B (zh)
WO (1) WO2015096592A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142278B2 (ja) * 2017-08-10 2022-09-27 デンカ株式会社 熱電変換材料の製造方法、熱電変換素子の製造方法及び熱電変換材料の改質方法
WO2019064504A1 (ja) * 2017-09-29 2019-04-04 日本電気株式会社 ナノカーボンインクおよびそれを用いた半導体デバイスの製造方法
WO2020105968A1 (ko) * 2018-11-23 2020-05-28 한국기계연구원 단분자가 결합된 질화붕소 나노튜브와 이를 이용한 콜로이드 용액의 제조 방법
CN110130102A (zh) * 2019-05-09 2019-08-16 常州大学 一种纳米碳纤维表面修饰方法
CN111564632A (zh) * 2020-05-20 2020-08-21 苏州柔能纳米科技有限公司 用于柔性电池的电极浆料的制备方法
CN115228434B (zh) * 2022-07-21 2023-09-01 南京信息工程大学 一种表面包裹γ-Al2O3:Dy3+颗粒的碳纳米管吸附剂及其制备方法
WO2024025084A1 (ko) * 2022-07-29 2024-02-01 한국생산기술연구원 다주파 분산을 이용한 탄소재 분산용액의 제조방법 및 그를 포함하는 양극의 제조방법
KR102590699B1 (ko) 2022-08-16 2023-10-17 한국전기연구원 기계적 함침을 이용한 비산화 탄소나노튜브 분산용액의 제조방법, 이로부터 제조되는 비산화 탄소나노튜브 분산용액
KR102590700B1 (ko) 2022-08-17 2023-10-17 한국전기연구원 비산화 탄소나노튜브 고농도 슬러리의 제조방법, 이로부터 제조되는 탄소나노튜브 고농도 슬러리

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074310B2 (en) * 2002-03-04 2006-07-11 William Marsh Rice University Method for separating single-wall carbon nanotubes and compositions thereof
ITMI20021737A1 (it) * 2002-08-01 2004-02-02 Univ Degli Studi Trieste Processo di purificazione di nanotubi di carbonio.
DE60239138D1 (de) * 2002-12-12 2011-03-24 Sony Deutschland Gmbh Lösliche Kohlenstoff-Nanoröhren
JP4807817B2 (ja) * 2004-08-05 2011-11-02 三菱レイヨン株式会社 導電性成形体の製造方法、及び導電性成形体
US20060188723A1 (en) * 2005-02-22 2006-08-24 Eastman Kodak Company Coating compositions containing single wall carbon nanotubes
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US20070292622A1 (en) * 2005-08-04 2007-12-20 Rowley Lawrence A Solvent containing carbon nanotube aqueous dispersions
CN100491240C (zh) * 2006-11-30 2009-05-27 上海交通大学 光化学修饰碳纳米管的方法
US20080152573A1 (en) * 2006-12-20 2008-06-26 Noriyuki Juni Method for producing carbon nanotubes, method for producing liquid dispersion thereof and optical product
EP2183325A1 (en) * 2007-08-29 2010-05-12 Northwestern University Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
CN102583323A (zh) * 2008-03-20 2012-07-18 中国医学科学院基础医学研究所 一种高浓度稳定碳纳米管水溶液
JP5266889B2 (ja) * 2008-06-04 2013-08-21 ソニー株式会社 光透過性導電体の製造方法
WO2010051102A2 (en) * 2008-09-09 2010-05-06 Sun Chemical Corporation Carbon nanotube dispersions
TWI395710B (zh) * 2009-01-06 2013-05-11 Univ Tatung 奈米碳管複合材料之製作方法
CN102648249B (zh) * 2009-08-14 2016-04-13 Nano-C公司 具有可移除性添加剂的溶剂基和水基碳纳米管油墨
JP5558935B2 (ja) * 2010-06-28 2014-07-23 株式会社豊田中央研究所 炭素窒素含有繊維状集合体及びその製造方法
JP5561729B2 (ja) * 2010-08-27 2014-07-30 独立行政法人産業技術総合研究所 カーボン材料の表面酸化方法
CN101941690A (zh) * 2010-09-09 2011-01-12 同济大学 一种提高单壁碳纳米管在水溶液中分散性的方法
WO2012057320A1 (ja) * 2010-10-29 2012-05-03 東レ株式会社 カーボンナノチューブ集合体分散液の製造方法
CN102424379B (zh) * 2011-09-20 2013-11-20 奇瑞汽车股份有限公司 一种高分散性碳纳米管的制备方法

Also Published As

Publication number Publication date
CN104724692B (zh) 2016-11-16
JP2017502915A (ja) 2017-01-26
JP6152492B2 (ja) 2017-06-21
TW201527209A (zh) 2015-07-16
HK1206705A1 (zh) 2016-01-15
KR20160062172A (ko) 2016-06-01
US20170029634A1 (en) 2017-02-02
WO2015096592A1 (zh) 2015-07-02
US9745477B2 (en) 2017-08-29
KR101812552B1 (ko) 2017-12-27
CN104724692A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
TWI529126B (zh) 單壁碳納米管均勻分散的方法
TWI529125B (zh) 一種提高單壁碳納米管分散性的方法
CN103253656B (zh) 一种石墨烯分散液制备方法
CN105949512B (zh) 插层组装氮化硼-石墨烯复合材料、应用及其制备方法
TWI578336B (zh) 碳奈米管-高分子層狀複合透明柔性電極及其製備方法
JP6208364B2 (ja) グラフェンの製造方法と、グラフェンの分散組成物
Liu et al. Additive‐free dispersion of single‐walled carbon nanotubes and its application for transparent conductive films
Fei et al. Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate
JP5024312B2 (ja) 導電膜およびその製造方法ならびに電子装置およびその製造方法
WO2016101208A1 (zh) 单层石墨烯分散液及其制备方法
CA2562475A1 (en) Fugitive viscosity and stability modifiers for carbon nanotube compositions
JP2016505649A (ja) グラフェン材料及び導電性ポリマーを含むフィルム形成組成物
WO2015096591A1 (zh) 高分散碳纳米管复合导电墨水
JP2009193964A (ja) カーボンナノチューブ膜を調製するための方法、サンドイッチ構造を有するカーボンナノチューブ膜、該カーボンナノチューブ膜を含むアノードならびに該アノードおよびカーボンナノチューブデバイスを含む有機発光ダイオード
CN107163686B (zh) 一种石墨烯复合导电油墨的制备方法及其应用
Agrawalla et al. A facile synthesis of a novel three‐phase nanocomposite: Single‐wall carbon nanotube/silver nanohybrid fibers embedded in sulfonated polyaniline
Xie et al. Dispersing and doping carbon nanotubes by poly (p-styrene-sulfonic acid) for high-performance and stable transparent conductive films
KR101371289B1 (ko) 탄소 나노박막의 제조방법
TWI578335B (zh) 高分散、黏度可控的碳奈米管透明電極墨水
Hsu et al. Synthesis and characterization of nano silver-modified graphene/PEDOT: PSS for highly conductive and transparent nanocomposite films
KR20170107230A (ko) 비산화-환원 방식의 그래핀 잉크 제조방법
KR20110050189A (ko) 초음파 분쇄기를 이용한 탄소 나노튜브의 수분산 방법 및 이를 이용한 탄소 나노튜브 박막 필름의 제조
KR20160024245A (ko) 산화된 나노탄소 기반의 투명 전도성 필름의 제조방법
Kim Purification and Preparation of Single-Walled Carbon Nanotube Films

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees