CN104724692B - 单壁碳纳米管均匀分散的方法 - Google Patents

单壁碳纳米管均匀分散的方法 Download PDF

Info

Publication number
CN104724692B
CN104724692B CN201310717024.4A CN201310717024A CN104724692B CN 104724692 B CN104724692 B CN 104724692B CN 201310717024 A CN201310717024 A CN 201310717024A CN 104724692 B CN104724692 B CN 104724692B
Authority
CN
China
Prior art keywords
swcn
acid
strong
carbon nano
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310717024.4A
Other languages
English (en)
Other versions
CN104724692A (zh
Inventor
郝海燕
曹西亮
戴雷
蔡丽菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aglaia Technology Development Co Ltd
Guangdong Aglaia Optoelectronic Materials Co Ltd
Original Assignee
Beijing Aglaia Technology Development Co Ltd
Guangdong Aglaia Optoelectronic Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201310717024.4A priority Critical patent/CN104724692B/zh
Application filed by Beijing Aglaia Technology Development Co Ltd, Guangdong Aglaia Optoelectronic Materials Co Ltd filed Critical Beijing Aglaia Technology Development Co Ltd
Priority to JP2016559486A priority patent/JP6152492B2/ja
Priority to KR1020167012296A priority patent/KR101812552B1/ko
Priority to PCT/CN2014/092467 priority patent/WO2015096592A1/zh
Priority to US15/106,733 priority patent/US9745477B2/en
Priority to TW103144212A priority patent/TWI529126B/zh
Publication of CN104724692A publication Critical patent/CN104724692A/zh
Priority to HK15107272.7A priority patent/HK1206705A1/zh
Application granted granted Critical
Publication of CN104724692B publication Critical patent/CN104724692B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/845Purification or separation of fullerenes or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明涉及单壁碳纳米管均匀分散的方法。本发明首先利用紫外光机将单壁碳纳米管表面附着的小分子物质,易分解有机物质等氧化分解或改变其在单壁碳纳米管表面的形态,然后控制强酸性物质使碳纳米管功能化的条件使活性较大的依附在碳纳米管表面的碳质副产物等被羧基化。通过此工艺可使得完整的碳纳米管表面嫁接了功能化的基团,实现了单壁碳纳米管的可溶性,同时也保持了单壁碳纳管本身的结构完整性和本身的电学特性,在无需外加分散辅助剂和单壁碳纳米管的结构完整性的前提下,实现单壁碳纳米管在水或醇类溶剂中均匀分散,在导电高分子体系中,无需加入表面活性剂的情况下,能制备高性能碳纳米复合柔性透明电极材料,透过率高,方阻小。

Description

单壁碳纳米管均匀分散的方法
技术领域
本发明涉及碳纳米管的一种处理方法,特别是涉及单壁碳纳米管均匀分散的方法。
背景技术
碳纳米管是一种具有典型的层状中空结构特征的碳材料,构成碳纳米管的管身由六边形石墨碳环结构单元组成,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级)的一维量子材料。它的管壁构成主要为数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。碳纳米管上碳原子的P电子形成大范围的离域π键,因此共轭效应显著。由于碳纳米管的结构与石墨的片层结构相同,具有很好的电学性能。单壁碳纳米管材料因为其高电子迁移率,低电阻率尤其被科研和产业界认定为可代替ITO的透明电极。然而,由于单壁碳纳米管之间很强的范德华作用力(~500eV/μm)和大的长径比(>1000),通常容易形成大的管束,难以分散,极大地制约了其优异性能的发挥和实际应用。
目前,碳纳米管在溶剂中的主要分散方法为:非共价功能化、共价功能化和溶剂剥离。这些方法的共性是都需要借助较大的机械力,如以高频超声、球磨等促进碳纳米管的分散,然后采用高速离心分离去除大的管束。大的机械力不可避免地会损伤碳纳米管,高速离心分离出大的管束而损失碳纳米管。此外,非共价功能化法会引入难以完全去除的表面活性剂或聚合物等辅助碳纳米管分散的添加剂,降低了碳纳米管网络本身的电学,热力学性能;共价功能化法会破坏碳纳米管功能化位点的sp2结构;溶剂剥离法所用溶剂通常毒性大、沸点高且分散效率低。因此,在保持结构完整和无添加剂的前提下,将碳纳米管在普通溶剂中进行有效分散仍是单壁碳纳米管研究与应用面临的重要问题。
在碳纳米管中,单壁碳纳米管的导电性最高。但是,单壁碳纳米管在溶剂中最难以分散。分散溶剂通常采用水、低沸点醇类(例如甲醇、2-丙醇等醇)等溶剂,此类溶剂对单壁碳纳米管的润湿性差,分散性差。此外有机溶剂,如四氢呋喃、二甲基甲酰胺等有机溶剂相比水和醇类的溶剂分散性略好一些。但是,四氢呋喃的毒性高。而且二甲基甲酰胺的沸点过高。因此通过单一的溶剂来分散单壁碳纳米管的方法制备的碳纳米管分散液的浓度很小。
此外,在水或醇类溶剂加入表面活性剂十二烷基苯磺酸钠,辛基苯酚聚乙二醇酯,聚乙烯基吡咯烷酮等来辅助分散单壁碳纳米管,但使用表面活性剂量大,有的表面活性剂浓度达到10%以上,但可分散的单壁碳纳米管的浓度还是很低。在分散液中由于大量表面活性剂的影响,形成单壁碳纳米管膜导电性和传热性能较差。
发明内容
针对上述领域中的缺陷,本发明提供一种单壁碳纳米管均匀分散的方法,无需外加表面活性助剂,在单壁碳纳米管的结构完整性的前提下,实现单壁碳纳米管均匀分散。并以此单壁碳纳米管乙醇分散液为原材料在PET薄膜表面开发碳纳米管复合透明电极薄膜材料。
单壁碳纳米管均匀分散的方法,包括如下步骤:
(1)将单壁碳纳米管粉体分散在低沸点醇类或水或DMF中,放入紫外光机中紫外光照射氧化;
(2)将紫外光机清洗后的碳纳米管用强酸进行氧化反应,再离心清洗,
(3)强酸清洗过的单壁碳纳米管通过2-3次乙醇或水超声分散、离心清洗后,溶于低沸点醇或水或DMF溶液中得到单壁碳纳米管分散液。
所述紫外光机的照射功率为250W-500W,照射一定30-60分钟。
所述氧化反应在强氧化性酸或强酸与氧化剂混合物存在下进行。
所述强氧化性酸为浓硝酸、浓硫酸或三氟乙酸中的一种或多种,所述强酸与氧化剂混合物为加入有过氧化物的浓硝酸或浓硫酸。
所述过氧化物为双氧水或过氧化铵。
所述强氧化性酸为浓硝酸、浓硫酸,或者所述强酸与氧化剂混合物为加入有过氧化物的浓硝酸或浓硫酸时,其反应条件为于80-120℃下,反应0.5-5小时;或者强氧化性酸为三氟乙酸时,其反应条件为于常温超声分散30-120分钟,再离心清洗,重复常温氧化2-5次。
所述步骤(1)或/和步骤(2)重复1-2次。
所述步骤(1)中的分散为通过超声波分散或细胞粉碎机分散。
所述低沸点醇为甲醇,乙醇。
本发明结合紫外光机氧化的工艺方法和化学氧化的湿化学工艺方法实现了对单壁碳纳米管粉体进行清洗,减少或消除吸附在单壁碳纳米管表面的杂质,使得单壁碳纳米管表面嫁接了功能化的基团,从而达到了单壁碳纳米管在极性溶剂中的分散。
该发明的原理主要是基于单壁碳纳米管表面或单壁碳纳米管之间通常含有高化学活性和低结晶性的无定形碳、碳纳米颗粒以及碳片段等碳质副产物和金属催化剂,通过控制紫外光照射功率和时间以及控制湿化学氧化条件可实现单壁碳纳米管表面选择性功能化,达到单壁碳纳米管在溶剂中的均匀分散而碳纳米管的结构和性能基本不受影响。
本发明所涉及的工艺技术是首先利用紫外光机将单壁碳纳米管表面附着的小分子物质,易分解有机物质等氧化分解或改变其在单壁碳纳米管表面的形态,然后通过控制强酸性物质使碳纳米管功能化的条件,使活性较大的依附在碳纳米管表面的碳质副产物等被羧基化,进而使得完整的碳纳米管表面嫁接了功能化的基团,实现了单壁碳纳米管的可溶性,同时也保持了单壁碳纳管本身的结构完整性和本身的电学特性。
具体工艺方法如下
步骤一:将单壁碳纳米管粉体分散在低沸点醇类或水溶液中,通过超声波分散或细胞粉碎机分散,分散液经过滤后,所得滤液放入紫外光机中照射一定时间。紫外光机的功率控制在250-500W之间,照射时间控制在10-60min
步骤二:将紫外光机照射清洗后的碳纳米管用强酸控制反应条件,进行清洗。
步骤三:强酸清洗过的单壁碳纳米管通过多次离心分离,重复超声波清洗后,得到均匀的单壁碳纳米管分散液。
此工艺方法中的工艺步骤需要多次重复和调整。尤其是工艺步骤二中,采用不同的强酸对非晶态碳的作用也各不相同。所得单壁碳纳米管的可溶性和碳纳米管的洁净度也有很大的差异。本发明中采用的强酸有三氟乙酸(TFA),硝酸,浓硫酸,双氧水等在碳纳米管表面不会残留无机盐的易分解的酸。相应的溶剂有低沸点醇类如甲醇,乙醇;水;N,N-二甲基甲酰胺(DMF)等。
不同的酸处理工艺不同其中,DMF和TFA混合酸的处理温度是常温,处理时间是40-120min,其余的酸或混酸其处理温度控制80-120摄氏度,处理时间控制在30-300min内。
本发明以开发碳纳米复合透明电极材料为应用基础,开发了无需外加分散辅助剂,在单壁碳纳米管的结构完整性的前提下,实现单壁碳纳米管在水或醇类溶剂中均匀分散。通过碳纳米管分散液的吸光度值来表征碳纳米管浓度。一般来说分散不好的碳纳米管的吸光度值大约是16000-17000之间。而本发明所设计到的碳纳米管分散液的吸光度值可降低10倍,达到1500左右。并以此单壁碳纳米管乙醇分散液为原材料在PET薄膜表面开发碳纳米管复合透明电极薄膜材料。
得到的具有良好分散性的单壁碳纳米管分散液,作为导电质加入导电高分子体系中,在无需加入表面活性剂的情况下,能制备高性能碳纳米复合柔性透明电极材料,透过率高,方阻小。
得到的具有良好分散性的单壁碳纳米管分散液可作为纳米催化剂或其它功能化纳米质的载体,实现其在特殊环境中的应用。
附图说明
图1单壁碳纳米管的SEM照片
其中A为未处理前单壁碳纳米管,B实施例1处理后的单壁碳纳米管,C实施例2处理后的单壁碳纳米管,D实施例3处理后的单壁碳纳米管,E实施例4处理后的单壁碳纳米管,F实施例5处理后的单壁碳纳米管。
具体实施方式
下面结合实施例对本发明做进一步的详细说明
实施例1:
0.05g的单壁碳纳米管在20ml乙醇中超声分散20min后形成单壁碳纳米管悬浊液。将此单壁碳纳米管悬浊液放入UV光清洗机中处理40min。所得单壁碳纳米管粉体用DMF和TFA混合液(9:1/Vol)20ml超声清洗30-60min,在7000rpm转速下离心分离,再重复超声清洗,共反复5次,最后用乙醇超声分散20min,再离心,反复两次,最后得SWCNT的乙醇分散液。单壁碳纳米管分散情况见图1。测定其吸光度值1655。
实施例2
0.05g的单壁碳纳米管在20ml乙醇中超声分散20min后形成单壁碳纳米管悬浊液。将此单壁碳纳米管悬浊液放入UV光清洗机中处理40min,得到单壁碳纳米管粉体;取20ml的去离子水放入单口烧瓶中,再加入10ml的浓HNO3(68wt%),加入5wt%过硫酸铵(APS)水溶液,混合均匀后加入提纯过的单壁碳纳米管粉体,磁子搅拌,120℃下回流反应5h。去离子水反复离心冲洗(7000rpm,10min)3次,将所得的单壁碳纳米管最后用乙醇超声分散20min,再离心,反复两次,最后得SWCNT的乙醇分散液。单壁碳纳米管分散情况见图1。测定其吸光度值为1745。
实施例3
0.05g的单壁碳纳米管分散在20ml乙醇中,超声分散20min后形成单壁碳纳米管悬浊液。将此单壁碳纳米管悬浊液放入UV光清洗机中处理40min,所得单壁碳纳米管粉体用DMF和TFA混合液(9:1/Vol)20ml超声清洗30min,离心分离后再重复超声清洗,共反复5次。然后用乙醇超声清洗20min,再离心,反复两次。最后将SWCNT的乙醇分散液倒入培养皿中,放入UV光清洗机中处理40min得到单壁碳纳米管粉体;取20ml的去离子水放入单口烧瓶中,再加入10ml的浓HNO3(68wt%),加入1.5g过硫酸铵(APS),混合均匀后加入提纯过的单壁碳纳米管粉体,磁力搅拌,85℃下回流反应5h。
用去离子水反复离心冲洗(7000rpm,10min)3次,将所得的单壁碳纳米管最后用乙醇超声分散20min,再离心,反复两次,最后得SWCNT的乙醇分散液。单壁碳纳米管分散情况见图1。测定其吸光度值1544。
实施例4
0.05g的单壁碳纳米管分散在20ml乙醇中,超声分散20min后形成单壁碳纳米管悬浊液。将此单壁碳纳米管悬浊液放入UV光清洗机中处理40min,得到单壁碳纳米管粉体;取20ml的浓硫酸放入单口烧瓶中,加入提纯过的单壁碳纳米管粉体,磁力搅拌,室温溶胀12h。将单壁碳纳米管的混合浓硫酸溶液用10:1的水稀释后,进行离心分离,反复4次。最后得单壁碳纳米管粉体。将此粉体放入单口烧瓶中,加入20ml的去离子水,再加入10ml的浓HNO3(68wt%),加入1.5g过硫酸铵(APS),磁力搅拌,85℃下回流反应5h。
用去离子水反复离心冲洗(7000rpm,10min)3次,将所得的单壁碳纳米管最后用乙醇超声分散20min,再离心,反复两次,最后得SWCNT的乙醇分散液。单壁碳纳米管分散情况见图1。测定其吸光度值1487。
实施例5
0.05g的单壁碳纳米管分散在20ml乙醇中,超声分散20min后形成单壁碳纳米管悬浊液。将此单壁碳纳米管悬浊液放入UV光清洗机中处理40min,得到单壁碳纳米管粉体;取20ml的浓硫酸放入单口烧瓶中,加入提纯过的单壁碳纳米管粉体,磁力搅拌,室温溶胀12h。将单壁碳纳米管的混合浓硫酸溶液用10:1的水稀释后,进行离心分离,反复4次。最后得单壁碳纳米管粉体。将此粉体放入单口烧瓶中,加入20ml的去离子水,再加入10ml的浓HNO3(68wt%),加10ml H2O2,磁力搅拌,85℃下回流反应5h。
用去离子水反复离心冲洗(7000rpm,10min)3次,将所得的单壁碳纳米管最后用乙醇超声分散20min,再离心,反复两次,最后得SWCNT的乙醇分散液。单壁碳纳米管分散情况见图1。测定其吸光度值1766。
实施例6:
将实施例1中的碳纳米管分散液中加入10mlPEDOT:PSS(聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸钠水溶液,市售,含1.8%PEDOT),超声分散后,得碳纳米管墨水溶液。将此墨水溶液在PET薄膜表面通过旋涂工艺制备透明导电电极薄膜。控制匀膜工艺为3000rpm40s。
制备的透明电极薄膜在光波长550nm的透过率是80%以上。方阻是100-150Ω/□。
本发明制备的有良好分散性的单壁碳纳米管分散液作为导电质加入导电高分子体系中,不需要加入表面活性剂的情况下,制备高性能碳纳米复合柔性透明电极材料,其透过性度,方阻小。
本发明制备的具有良好分散性的单壁碳纳米管分散液可作为纳米催化剂或其它功能化纳米质的载体,实现其在特殊环境中的应用。

Claims (9)

1.单壁碳纳米管均匀分散的方法,包括如下步骤:
(1)将单壁碳纳米管粉体分散在低沸点醇类或水或DMF中,放入紫外光机中紫外光照射氧化;
(2)将紫外光机清洗后的碳纳米管用强酸进行氧化反应,再离心清洗,
(3)强酸清洗过的单壁碳纳米管通过2-3次乙醇或水超声分散、离心清洗后,溶于低沸点醇或水或DMF溶液中得到单壁碳纳米管分散液。
2.根据权利要求1所述的方法,所述紫外光机的照射功率为250W-500W,照射30-60分钟。
3.根据权利要求1所述的方法,所述氧化反应在强氧化性酸或强酸与氧化剂混合物存在下进行。
4.根据权利要求3所述的方法,所述强氧化性酸为浓硝酸、浓硫酸或三氟乙酸中的一种或多种,所述强酸与氧化剂混合物为加入有过氧化物的浓硝酸或浓硫酸。
5.根据权利要求4所述的方法,所述过氧化物为双氧水或过氧化铵。
6.根据权利要求5所述的方法,所述强氧化性酸为浓硝酸、浓硫酸,或者所述强酸与氧化剂混合物为加入有过氧化物的浓硝酸或浓硫酸时,其反应条件为于80-120℃下,反应0.5-5小时;或者强氧化性酸为三氟乙酸时,其反应条件为于常温超声分散30-120分钟,再离心清洗,重复常温氧化2-5次。
7.根据权利要求1所述的方法,所述步骤(1)或/和步骤(2)重复1-2次。
8.根据权利要求1所述的方法,所述步骤(1)中的分散为通过超声波分散或细胞粉碎机分散。
9.根据权利要求1所述的方法,所述低沸点醇为甲醇,乙醇。
CN201310717024.4A 2013-12-23 2013-12-23 单壁碳纳米管均匀分散的方法 Active CN104724692B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201310717024.4A CN104724692B (zh) 2013-12-23 2013-12-23 单壁碳纳米管均匀分散的方法
KR1020167012296A KR101812552B1 (ko) 2013-12-23 2014-11-28 단일벽 탄소나노튜브를 균일하게 분산시키는 방법
PCT/CN2014/092467 WO2015096592A1 (zh) 2013-12-23 2014-11-28 单壁碳纳米管均匀分散的方法
US15/106,733 US9745477B2 (en) 2013-12-23 2014-11-28 Method for uniform dispersion of single-wall carbon nanotubes
JP2016559486A JP6152492B2 (ja) 2013-12-23 2014-11-28 単層カーボンナノチューブを均一に分散させる方法
TW103144212A TWI529126B (zh) 2013-12-23 2014-12-18 單壁碳納米管均勻分散的方法
HK15107272.7A HK1206705A1 (zh) 2013-12-23 2015-07-29 單壁碳納米管均勻分散的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310717024.4A CN104724692B (zh) 2013-12-23 2013-12-23 单壁碳纳米管均匀分散的方法

Publications (2)

Publication Number Publication Date
CN104724692A CN104724692A (zh) 2015-06-24
CN104724692B true CN104724692B (zh) 2016-11-16

Family

ID=53449197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310717024.4A Active CN104724692B (zh) 2013-12-23 2013-12-23 单壁碳纳米管均匀分散的方法

Country Status (7)

Country Link
US (1) US9745477B2 (zh)
JP (1) JP6152492B2 (zh)
KR (1) KR101812552B1 (zh)
CN (1) CN104724692B (zh)
HK (1) HK1206705A1 (zh)
TW (1) TWI529126B (zh)
WO (1) WO2015096592A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142278B2 (ja) * 2017-08-10 2022-09-27 デンカ株式会社 熱電変換材料の製造方法、熱電変換素子の製造方法及び熱電変換材料の改質方法
WO2019064504A1 (ja) * 2017-09-29 2019-04-04 日本電気株式会社 ナノカーボンインクおよびそれを用いた半導体デバイスの製造方法
WO2020105968A1 (ko) * 2018-11-23 2020-05-28 한국기계연구원 단분자가 결합된 질화붕소 나노튜브와 이를 이용한 콜로이드 용액의 제조 방법
CN110130102A (zh) * 2019-05-09 2019-08-16 常州大学 一种纳米碳纤维表面修饰方法
CN111564632A (zh) * 2020-05-20 2020-08-21 苏州柔能纳米科技有限公司 用于柔性电池的电极浆料的制备方法
CN115228434B (zh) * 2022-07-21 2023-09-01 南京信息工程大学 一种表面包裹γ-Al2O3:Dy3+颗粒的碳纳米管吸附剂及其制备方法
WO2024025084A1 (ko) * 2022-07-29 2024-02-01 한국생산기술연구원 다주파 분산을 이용한 탄소재 분산용액의 제조방법 및 그를 포함하는 양극의 제조방법
KR102590699B1 (ko) 2022-08-16 2023-10-17 한국전기연구원 기계적 함침을 이용한 비산화 탄소나노튜브 분산용액의 제조방법, 이로부터 제조되는 비산화 탄소나노튜브 분산용액
KR102590700B1 (ko) 2022-08-17 2023-10-17 한국전기연구원 비산화 탄소나노튜브 고농도 슬러리의 제조방법, 이로부터 제조되는 탄소나노튜브 고농도 슬러리

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986398A (zh) * 2006-11-30 2007-06-27 上海交通大学 光化学修饰碳纳米管的方法
CN102583323A (zh) * 2008-03-20 2012-07-18 中国医学科学院基础医学研究所 一种高浓度稳定碳纳米管水溶液

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074310B2 (en) * 2002-03-04 2006-07-11 William Marsh Rice University Method for separating single-wall carbon nanotubes and compositions thereof
ITMI20021737A1 (it) * 2002-08-01 2004-02-02 Univ Degli Studi Trieste Processo di purificazione di nanotubi di carbonio.
DE60239138D1 (de) * 2002-12-12 2011-03-24 Sony Deutschland Gmbh Lösliche Kohlenstoff-Nanoröhren
JP4807817B2 (ja) * 2004-08-05 2011-11-02 三菱レイヨン株式会社 導電性成形体の製造方法、及び導電性成形体
US20060188723A1 (en) * 2005-02-22 2006-08-24 Eastman Kodak Company Coating compositions containing single wall carbon nanotubes
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US20070292622A1 (en) * 2005-08-04 2007-12-20 Rowley Lawrence A Solvent containing carbon nanotube aqueous dispersions
US20080152573A1 (en) * 2006-12-20 2008-06-26 Noriyuki Juni Method for producing carbon nanotubes, method for producing liquid dispersion thereof and optical product
EP2183325A1 (en) * 2007-08-29 2010-05-12 Northwestern University Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP5266889B2 (ja) * 2008-06-04 2013-08-21 ソニー株式会社 光透過性導電体の製造方法
WO2010051102A2 (en) * 2008-09-09 2010-05-06 Sun Chemical Corporation Carbon nanotube dispersions
TWI395710B (zh) * 2009-01-06 2013-05-11 Univ Tatung 奈米碳管複合材料之製作方法
CN102648249B (zh) * 2009-08-14 2016-04-13 Nano-C公司 具有可移除性添加剂的溶剂基和水基碳纳米管油墨
JP5558935B2 (ja) * 2010-06-28 2014-07-23 株式会社豊田中央研究所 炭素窒素含有繊維状集合体及びその製造方法
JP5561729B2 (ja) * 2010-08-27 2014-07-30 独立行政法人産業技術総合研究所 カーボン材料の表面酸化方法
CN101941690A (zh) * 2010-09-09 2011-01-12 同济大学 一种提高单壁碳纳米管在水溶液中分散性的方法
WO2012057320A1 (ja) * 2010-10-29 2012-05-03 東レ株式会社 カーボンナノチューブ集合体分散液の製造方法
CN102424379B (zh) * 2011-09-20 2013-11-20 奇瑞汽车股份有限公司 一种高分散性碳纳米管的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986398A (zh) * 2006-11-30 2007-06-27 上海交通大学 光化学修饰碳纳米管的方法
CN102583323A (zh) * 2008-03-20 2012-07-18 中国医学科学院基础医学研究所 一种高浓度稳定碳纳米管水溶液

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effect of photochemically oxidized carbon nanotubes on the deposition of platinum nanoparticles for fuel cell catalysts;In Young Jang et al.;《Electrochemistry Communications》;20090527;第11卷;第1472-1475页 *
Selective Photochemical Functionalization of Surfactant-Dispersed Single Wall Carbon Nanotubes in Water;Noe T. Alvarez et al.;《Journal of the American Chemical Society》;20081001;第130卷(第43期);第14227页摘要 *

Also Published As

Publication number Publication date
TWI529126B (zh) 2016-04-11
JP2017502915A (ja) 2017-01-26
JP6152492B2 (ja) 2017-06-21
TW201527209A (zh) 2015-07-16
HK1206705A1 (zh) 2016-01-15
KR20160062172A (ko) 2016-06-01
US20170029634A1 (en) 2017-02-02
WO2015096592A1 (zh) 2015-07-02
US9745477B2 (en) 2017-08-29
KR101812552B1 (ko) 2017-12-27
CN104724692A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
CN104724692B (zh) 单壁碳纳米管均匀分散的方法
CN104724691B (zh) 一种提高单壁碳纳米管分散性的方法
CN105321592B (zh) 碳纳米管‑高分子层状复合透明柔性电极及其制备方法
CN101104668B (zh) 一种功能化碳纳米管的制备方法及其应用
CN106185902B (zh) 一种清洁氧化技术制备尺寸可控的氧化石墨烯的方法
Zhao et al. Electrical conductivity of poly (vinylidene fluoride)/carbon nanotube composites with a spherical substructure
CN104861785B (zh) 高分散碳纳米管复合导电墨水
CN101899185A (zh) 一种碳纳米管/聚苯乙烯复合导电材料的制作方法
CN108706575A (zh) 一种液相球磨剥离石墨烯的制备方法
CN104313549B (zh) 一种具有自清洁功能石墨烯基薄膜的制备方法
CN103937016A (zh) 一种制备石墨烯/高分子乳液复合薄膜材料的喷涂方法
CN106120025A (zh) 一种石墨烯纤维及其制备方法
CN106046404B (zh) NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法
CN104947227A (zh) 聚乙烯吡咯烷酮/石墨烯复合纳米纤维材料及其制备方法
Wei et al. Polymer composites with functionalized carbon nanotube and graphene
CN106430153A (zh) 一种高分散性超短碳纳米管的制备方法
CN106672957A (zh) 一种芬顿氧化法制备氧化石墨烯的方法
CN105174381A (zh) 一种采用氧化石墨烯辅助制作Ti-石墨烯电极的方法
Gao et al. Preparation of high-aspect-ratio cellulose nanocrystals by solvothermal synthesis followed by mechanical exfoliation
CN103626152B (zh) 碳纳米管的改性方法
CN108529608B (zh) 一种由碳纳米管制备高质量石墨烯纳米片的方法
CN107857256A (zh) 一种石墨烯及其制备方法
Liu et al. Alternating current assisted preparation of three-dimensional graphene aerogels and the application in electromagnetic interference shielding
Dutta et al. Energy Advances

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1206705

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1206705

Country of ref document: HK