WO2012102187A1 - Cmp研磨液及びその製造方法、複合粒子の製造方法、並びに基体の研磨方法 - Google Patents

Cmp研磨液及びその製造方法、複合粒子の製造方法、並びに基体の研磨方法 Download PDF

Info

Publication number
WO2012102187A1
WO2012102187A1 PCT/JP2012/051152 JP2012051152W WO2012102187A1 WO 2012102187 A1 WO2012102187 A1 WO 2012102187A1 JP 2012051152 W JP2012051152 W JP 2012051152W WO 2012102187 A1 WO2012102187 A1 WO 2012102187A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polishing liquid
cmp polishing
liquid
silica
Prior art date
Application number
PCT/JP2012/051152
Other languages
English (en)
French (fr)
Inventor
久貴 南
井上 恵介
知里 吉川
野村 豊
友洋 岩野
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to KR1020137021317A priority Critical patent/KR20140005963A/ko
Priority to SG2013052311A priority patent/SG191877A1/en
Priority to CN201280006424.8A priority patent/CN103339219B/zh
Priority to US13/981,766 priority patent/US9447306B2/en
Publication of WO2012102187A1 publication Critical patent/WO2012102187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a CMP polishing liquid and a method for manufacturing the same, a method for manufacturing composite particles, and a method for polishing a substrate using the CMP polishing liquid.
  • the present invention relates to a CMP polishing liquid used in a planarization process of a surface to be polished of a substrate, a manufacturing method thereof, a manufacturing method of composite particles, and a substrate using the CMP polishing liquid, which is a semiconductor element manufacturing technique.
  • the present invention relates to a polishing method.
  • the present invention relates to a CMP polishing liquid used in a planarization step of a shallow trench isolation insulating film, a premetal insulating film, an interlayer insulating film, and the like, a manufacturing method thereof, a manufacturing method of composite particles, and the CMP polishing liquid.
  • the present invention relates to a polishing method for a substrate used.
  • CMP Chemical Mechanical Polishing
  • STI shallow trench isolation
  • the most frequently used CMP polishing liquid is a silica-based CMP polishing liquid containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains.
  • silica silicon oxide
  • Silica-based CMP polishing liquid is characterized by high versatility, and it can polish a wide variety of films regardless of whether it is an insulating film or a conductive film by appropriately selecting the abrasive content, pH, additives, etc. Can do.
  • CMP polishing liquid containing cerium compound particles as abrasive grains mainly for insulating films such as silicon oxide films
  • a cerium oxide-based CMP polishing liquid containing cerium oxide (ceria) particles as abrasive grains can polish a silicon oxide film at a high speed even with a lower abrasive grain content than a silica-based CMP polishing liquid (for example, Patent Document 1 below) 2).
  • Patent Document 3 a CMP polishing liquid using hydroxide particles of tetravalent metal elements as abrasive grains has been studied, and this technique is disclosed in Patent Document 3 below.
  • This technology makes it possible to achieve both reduction of polishing scratches caused by abrasive grains and improvement of polishing rate by making the mechanical action as small as possible while taking advantage of the chemical action of hydroxide particles of tetravalent metal elements. It is supposed to be.
  • the CMP polishing liquid is required to further improve the polishing rate for the insulating film than the conventional CMP polishing liquid.
  • various additives are generally added to the CMP polishing liquid, but such an approach has its limitations.
  • the present invention is intended to solve such a technical problem, and a CMP polishing liquid capable of improving the polishing rate for an insulating film, a manufacturing method thereof, a manufacturing method of composite particles, and the CMP polishing liquid. It is an object of the present invention to provide a method for polishing a substrate using the above.
  • the inventors of the present invention studied to further improve the polishing ability of the abrasive grains themselves, and conceived that composite particles containing a specific component are used as the abrasive grains. The invention has been completed.
  • the CMP polishing liquid of the present invention is a CMP polishing liquid containing water and abrasive grains, and the abrasive grains include a core containing first particles and second particles provided on the core.
  • the first particles contain silica
  • the second particles contain cerium hydroxide
  • the CMP polishing liquid has a pH of 9.5 or less.
  • the polishing rate for the insulating film (for example, silicon oxide film) can be improved as compared with the conventional CMP polishing liquid.
  • the CMP polishing liquid of the present invention as compared with a conventional CMP polishing liquid that uses silica particles and cerium oxide particles alone as abrasive grains, or a CMP polishing liquid that simply uses a mixture of both.
  • the polishing rate for the insulating film can be remarkably improved.
  • these insulating films can be polished at high speed in the CMP technique for planarizing the shallow trench isolation insulating film, the premetal insulating film, the interlayer insulating film, and the like.
  • the insulating film can be polished with low polishing scratches while improving the polishing rate for the insulating film.
  • the present invention also relates to the use of the CMP polishing liquid in a polishing method for polishing a surface to be polished containing silicon oxide. That is, the CMP polishing liquid of the present invention is preferably used for polishing a surface to be polished containing silicon oxide.
  • the substrate polishing method of the present invention includes a step of polishing a surface to be polished of the substrate using the CMP polishing liquid.
  • the polishing rate for the insulating film can be improved by using a CMP polishing solution having the same configuration as described above, compared with the case of using a conventional polishing solution.
  • the method for producing a CMP polishing liquid according to the present invention is a method for producing a CMP polishing liquid containing water and abrasive grains, wherein the first component contains silica and a first component containing cerium hydroxide precursor. And a second component capable of reacting with the precursor to precipitate second particles containing cerium hydroxide, and the precursor and the second component in an aqueous solution. Reacting to precipitate the second particles, and obtaining a composite particle having a core including the first particle and the second particle provided on the core, wherein the abrasive grains are combined It contains particles, and the pH of the CMP polishing liquid is 9.5 or less. According to the method for producing a CMP polishing liquid of the present invention, it is possible to obtain a CMP polishing liquid that exhibits a good polishing rate for an insulating film.
  • the composite particles are obtained by mixing the liquid containing the first particles and the first component with the liquid containing the second component. Thereby, it is possible to obtain a CMP polishing liquid that exhibits a better polishing rate for the insulating film.
  • the precursor is a tetravalent cerium salt and the second component is a basic compound.
  • the precursor is a tetravalent cerium salt and the second component is a basic compound.
  • the method for producing a CMP polishing liquid of the present invention preferably further comprises a step of dispersing the composite particles in water. Thereby, it is possible to obtain a CMP polishing liquid that exhibits a better polishing rate for the insulating film.
  • the method for producing a CMP polishing liquid of the present invention preferably further comprises a step of cleaning the composite particles. Thereby, the dispersion
  • the method for producing composite particles of the present invention includes a first particle containing silica, a first component containing a precursor of cerium hydroxide, and the first component containing cerium hydroxide by reacting with the precursor.
  • grains the said precursor and the said 2nd component are made to react and the said 2nd particle
  • the composite particles by mixing a liquid containing the first particles and the first component with a liquid containing the second component. This makes it possible to obtain composite particles that are more suitable as abrasive grains of a CMP polishing liquid that exhibits a good polishing rate for the insulating film.
  • the precursor is a tetravalent cerium salt and the second component is a basic compound.
  • the precursor is a tetravalent cerium salt and the second component is a basic compound.
  • a CMP polishing liquid capable of improving the polishing rate for an insulating film, a method for manufacturing the same, a method for manufacturing composite particles, and a method for polishing a substrate using the CMP polishing liquid.
  • a CMP polishing liquid capable of polishing an insulating film at high speed, a manufacturing method thereof, and a composite particle manufacturing method
  • a method for polishing a substrate using the CMP polishing liquid can be provided.
  • a CMP polishing liquid capable of polishing an insulating film with low polishing flaws while improving the polishing rate for the insulating film, a manufacturing method thereof, a manufacturing method of composite particles, and the CMP polishing liquid It is also possible to provide a method of polishing a substrate using
  • FIG. 1 is a diagram for explaining a method of calculating the average particle diameter of particles.
  • CMP polishing liquid according to an embodiment of the present invention, a method for manufacturing the CMP polishing liquid, a method for manufacturing composite particles, and a method for polishing a substrate using the CMP polishing liquid will be described in detail.
  • the CMP polishing liquid of this embodiment is a composition that touches the surface to be polished during polishing.
  • the CMP polishing liquid of this embodiment includes at least water and abrasive grains containing composite particles.
  • each essential component and components that can be optionally added will be described.
  • the CMP polishing liquid of this embodiment includes composite particles containing silica and cerium hydroxide as abrasive grains.
  • Such composite particles may be a CMP polishing liquid that uses silica particles such as fumed silica and colloidal silica, hydroxide particles of tetravalent metal elements such as cerium oxide particles and cerium hydroxide alone, or simply Compared with a CMP polishing liquid in which a plurality of types of particles are mixed and used, the insulating film exhibits a higher polishing rate.
  • composite particles are defined as those in which silica particles and cerium hydroxide particles are combined (for example, adhered or fused) to such an extent that they are not separated into each particle by a simple dispersion treatment.
  • composite particles are particles in which silica particles and cerium hydroxide particles are aggregated in a liquid obtained by adding mixed particles each containing uncomplexed silica particles and cerium hydroxide particles to a medium such as water. Is clearly distinguished.
  • the composite particles have a core including first particles and second particles provided on the core.
  • the first particles are particles containing silica (hereinafter simply referred to as “silica particles”)
  • the second particles are particles containing cerium hydroxide (hereinafter simply referred to as “cerium hydroxide particles”).
  • the core may be composed of a single silica particle, or may be an aggregate of silica particles or a particle formed by association of silica particles.
  • the “cerium hydroxide” in the cerium hydroxide particles may be tetravalent cerium hydroxide (Ce (OH) 4 ), and some OH groups of the tetravalent cerium hydroxide are other than OH groups.
  • a compound substituted with a group for example, Ce (OH) 4 -n X n : where n is an integer of 1 to 3, and X represents a group other than an OH group).
  • the cerium hydroxide particles may be provided on at least part of the surface of the core. That is, a plurality of cerium hydroxide particles may be provided around the core so that the core is completely covered, and the cerium hydroxide particles are provided on the core so that a part of the core is exposed. Also good.
  • the composite particle may be a particle having a core-shell structure having a core (core) and a shell (shell) composed of cerium hydroxide particles provided on the core.
  • the cerium hydroxide particles may be firmly attached to the surface of the silica particles or may be fused to the surface of the silica particles.
  • the cerium hydroxide constituting the shell does not strictly have a particle shape, but such particles are also referred to as “the core including the first particles and on the core. It is included in the “composite particles having the second particles provided”.
  • the silica particles used for the composite particles are not particularly limited, and specific examples include silica particles such as colloidal silica and fumed silica, and colloidal silica particles are preferable.
  • Examples of the silica particles that can be used include silica particles that are not surface-modified, silica particles whose surface hydroxyl groups are modified with a cation group, anion group, nonion group, etc., silica particles whose surface hydroxyl groups are substituted with alkoxy groups, and the like. .
  • the lower limit of the average particle size of the composite particles in the CMP polishing liquid is preferably 5 nm or more, more preferably 10 nm or more, further preferably 15 nm or more, particularly preferably 20 nm or more, in order to avoid the polishing rate becoming too low. 30 nm or more is very preferable, and 40 nm or more is very preferable.
  • the upper limit of the average particle size of the composite particles is preferably 400 nm or less, more preferably 300 nm or less, still more preferably 250 nm or less, particularly preferably 200 nm or less, and particularly preferably 150 nm or less in that the insulating film is less likely to be damaged. preferable.
  • the average particle diameter of the cerium hydroxide particles is preferably smaller than, for example, the average particle diameter of the silica particles. That is, “(average particle diameter of silica particles) ⁇ (average particle diameter of cerium hydroxide particles)> 0” is preferable.
  • the average particle size of the silica particles is not particularly limited, but is, for example, 10 to 350 nm.
  • the average particle size of the cerium hydroxide particles is not particularly limited, but is preferably 0.1 to 100 nm, for example.
  • the upper limit of the average particle diameter of the cerium hydroxide particles is more preferably 80 nm or less, further preferably 50 nm or less, particularly preferably 20 nm or less, from the viewpoint of obtaining a better polishing rate. It is very preferably 10 nm or less, and very preferably less than 10 nm.
  • the lower limit of the average particle diameter of the cerium hydroxide particles is more preferably 0.5 nm or more, and further preferably 1 nm or more, from the viewpoint of ease of production.
  • the average particle diameter of the composite particles, the average particle diameter of the cerium hydroxide particles, and the average particle diameter of the silica particles were observed with an SEM image obtained by observation with a scanning electron microscope or with a transmission electron microscope. It can measure from the TEM image obtained. For example, a plurality of particles (for example, 20 particles) are randomly selected in an SEM image in which a plurality of particles are observed. About the selected particle
  • an appropriate amount of a liquid containing particles to be measured is taken and placed in a container, and a chip obtained by cutting a wafer with pattern wiring into 2 cm square is immersed in the container for about 30 seconds.
  • the chip is transferred to a container containing pure water, rinsed for about 30 seconds, and the chip is blown dry with nitrogen.
  • a chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, particles are observed at an appropriate magnification (for example, 200,000 times), and an image is taken.
  • a plurality of (for example, 20) particles are arbitrarily selected from the obtained image.
  • the particle size of each particle is calculated. For example, when the selected particle has a shape as shown in FIG. 1 in the SEM image, a circumscribed rectangle 2 that circumscribes the particle 1 and has the longest diameter is guided. Then, the biaxial average particle diameter of one particle is calculated with a value “ ⁇ (L ⁇ B)” when the major axis of the circumscribed rectangle 2 is L and the minor axis is B. This operation is performed on any 20 particles, and the average value of the biaxial average particle diameter is defined as the average particle diameter of the particles.
  • the surface of the silica particles may be coated with cerium hydroxide particles, and the shape of the silica particles may not be visible.
  • the average particle diameter of the silica particles is (1) a method of obtaining the average particle diameter by the above procedure from the SEM image obtained by observing the raw silica particles with a scanning electron microscope in the composite particle production stage, (2) from the SEM image obtained by observing a composite particle by a scanning electron microscope, the average particle size of the composite particles (R 1), the average particle diameter (R 2) and the above-mentioned respective cerium hydroxide particles Measured according to the procedure, and determined by one of the methods for obtaining the average particle size of the silica particles by the calculation formula “R 1 -2R 2 ” based on the assumption that the surface of the silica particles is coated with one layer of cerium hydroxide particles can do.
  • the thickness of four shells randomly selected for one particle from the TEM image can be measured, and this average value can be defined as R2.
  • the CMP polishing liquid of the present embodiment uses other types of particles (for example, silica particles, cerium hydroxide particles, alumina particles, etc.) different from the composite particles as long as the characteristics of the composite particles are not impaired. May be included.
  • the abrasive grains have a high content of the composite particles in all the abrasive grains from the viewpoint of obtaining a further excellent polishing rate.
  • the content of the composite particles is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, particularly preferably 40% by mass or more, and 50% by mass based on the entire abrasive grain. The above is extremely preferable.
  • the lower limit of the abrasive content (when other types of particles different from the composite particles are included, the total content of the composite abrasive particles and other types of abrasive particles) is to obtain a more suitable polishing rate.
  • it is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and still more preferably 0.1% by mass or more based on the total mass of the CMP polishing liquid.
  • the upper limit of the content of the abrasive grains is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass based on the total mass of the CMP polishing solution in that the storage stability of the CMP polishing solution can be increased. % Or less is more preferable.
  • the CMP polishing liquid of this embodiment may further contain an additive.
  • the “additive” refers to a substance contained in the CMP polishing liquid in addition to water and abrasive grains in order to adjust the dispersibility, polishing characteristics, storage stability, and the like of the composite particles.
  • additives examples include water-soluble polymers, carboxylic acids, amino acids, amphoteric surfactants, anionic surfactants, nonionic surfactants, and cationic surfactants. These can be used alone or in combination of two or more.
  • the water-soluble polymer has the effect of improving the dispersibility of the composite particles, further improving the polishing rate, and improving the flatness and in-plane uniformity.
  • water-soluble means water-soluble if dissolved in 0.1 g or more per 100 g of water.
  • water-soluble polymer examples include polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan, chitosan, chitosan derivatives, dextran, pullulan; polyaspartic acid, polyglutamic acid, Polycarboxylic acids such as polylysine, polymalic acid, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrene carboxylic acid), polyamic acid ammonium salt, polyamic acid sodium salt, polyglyoxylic acid, and salts thereof; polyvinyl alcohol , Vinyl polymers such as polyvinylpyrrolidone and polyacrolein; acrylic polymers obtained by polymerizing compositions containing acrylic monomers such as acrylic acid, methacrylic acid, acrylamide and dimethylacrylamide as monomer components Lima; polyglycerin, polyethylene glycol, polyoxypropylene, polyoxy
  • polyvinyl alcohol derivatives in which a functional group is introduced into polyvinyl alcohol can be used.
  • the polyvinyl alcohol derivative include reactive polyvinyl alcohol (for example, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: GOHSEFIMAR Z, etc., GOHSEPIMAR is a registered trademark), and cationized polyvinyl alcohol (for example, Nippon Synthetic Chemical).
  • GOHSEIMER K a polyvinyl alcohol
  • anionized polyvinyl alcohol for example, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade names: GOCELAN L, GOHSENAL T, etc., GOCELAN and GOHSENAL are registered trademarks
  • hydrophilic group examples thereof include modified polyvinyl alcohol (for example, trade name: Ecomati (registered trademark) manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Ecomati registered trademark
  • a plurality of water-soluble polymers may be used in combination.
  • Carboxylic acid has the effect of stabilizing the pH.
  • Specific examples of the carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and lactic acid.
  • Amino acids have the effect of improving the dispersibility of the composite particles and further improving the polishing rate of the insulating film (for example, silicon oxide film).
  • Specific examples of amino acids include arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tyrosine, tryptophan, serine, threonine, glycine, alanine, ⁇ -alanine, methionine, cysteine, phenylalanine, Examples include leucine, valine, and isoleucine.
  • amphoteric surfactant has the effect of improving the dispersibility of the composite particles and further improving the polishing rate of the insulating film (for example, silicon oxide film).
  • amphoteric surfactants include betaine, ⁇ -alanine betaine, lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, Examples include lauric acid amidopropyl betaine, coconut oil fatty acid amidopropyl betaine, and lauryl hydroxysulfobetaine. Of these, betaine, ⁇ -alanine betaine, and amide amidopropyl betaine are more preferable from the viewpoint of improving dispersibility stability.
  • the anionic surfactant has an effect of adjusting the flatness and in-plane uniformity of the polishing characteristics.
  • examples of the anionic surfactant include lauryl sulfate triethanolamine, ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and a special polycarboxylic acid type polymer dispersant.
  • Non-ionic surfactant has an effect of adjusting the flatness and in-plane uniformity of polishing characteristics.
  • Nonionic surfactants include, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octylphenyl ether, polyoxyethylene Oxyethylene nonylphenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivatives, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, poly Oxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, tetraoleic acid polio Siethylene sorbite, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol
  • the cationic surfactant has an effect of adjusting the flatness and in-plane uniformity of the polishing characteristics.
  • examples of the cationic surfactant include coconut amine acetate and stearylamine acetate.
  • the lower limit of the content (addition amount) of these additives can further improve the dispersibility, polishing characteristics, and storage stability of the abrasive grains. 0.01 mass% or more is preferable on the basis of the total mass.
  • the upper limit of the content of the additive is preferably 20% by mass or less based on the total mass of the CMP polishing liquid from the viewpoint of preventing sedimentation of the abrasive grains.
  • the CMP polishing liquid of this embodiment contains water. Although there is no restriction
  • the water content is not particularly limited, and may be the balance of the CMP polishing liquid excluding the content of other components.
  • the pH of the CMP polishing liquid of this embodiment is 9.5 or less from the viewpoint of excellent storage stability and polishing rate of the CMP polishing liquid. Aggregation of abrasive grains can be suppressed when the pH of the CMP polishing liquid is 9.5 or less.
  • the pH of the CMP polishing liquid of the present embodiment is preferably 9.0 or less, more preferably 8.5 or less, from the viewpoint of obtaining the stability of the grain size of the abrasive grains and the efficient polishing rate for the insulating film. 8.0 or less is more preferable, 7.5 or less is particularly preferable, and 7.0 or less is very preferable.
  • the pH of the CMP polishing liquid of the present embodiment is preferably 3.0 or more, more preferably 3.5 or more, and further preferably 4.0 or more, in that an efficient polishing rate for the insulating film can be obtained. 4.5 or more is particularly preferable, and 5.0 or more is very preferable.
  • the pH of CMP polishing liquid can be adjusted by adding acid components such as phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid, oxalic acid and citric acid, or alkali components such as ammonia, sodium hydroxide, potassium hydroxide, TMAH and imidazole. It is.
  • a buffer solution may be added to the CMP polishing solution. Examples of such a buffer include acetate buffer and phthalate buffer.
  • the pH of the CMP polishing liquid can be measured with a pH meter (for example, model number: PHL-40, manufactured by Electrochemical Instrument Co., Ltd.).
  • a pH meter for example, model number: PHL-40, manufactured by Electrochemical Instrument Co., Ltd.
  • standard buffer solution phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.), borate pH buffer
  • the solution pH: 9.18 (25 ° C.) is used, and after three points are calibrated, the electrode is put into a CMP polishing solution (25 ° C.), and the value after 2 minutes or more has passed is adopted. it can.
  • the manufacturing method of the CMP polishing liquid of this embodiment includes a composite particle preparation step of preparing composite particles containing silica and cerium hydroxide. Moreover, the manufacturing method of CMP polishing liquid of this embodiment is arbitrarily provided with the washing
  • the composite particles can be manufactured by the following composite particle manufacturing method.
  • a second component capable of precipitating cerium hydroxide particles by reacting with silica particles a first component (reaction component) containing a precursor of cerium hydroxide, and the precursor.
  • reaction component a first component containing a precursor of cerium hydroxide
  • the precursor and the second component are reacted to precipitate cerium hydroxide particles to obtain composite particles.
  • a precursor liquid (first liquid) containing silica particles and a first component and a reaction liquid (second liquid) containing a second component are mixed to obtain a first component.
  • the precursor and the second component can be reacted to obtain composite particles.
  • Composite particles may be produced.
  • Examples of the precursor of cerium hydroxide include a tetravalent cerium salt, and examples of the second component include a basic compound.
  • the precursor of cerium hydroxide is preferably a tetravalent cerium salt, and the reaction solution is preferably an alkaline solution containing a basic compound as the second component.
  • tetravalent cerium salt conventionally known ones can be used without any particular limitation.
  • Ce (NO 3 ) 4 Ce (SO 4 ) 2 , Ce (NH 4 ) 2 (NO 3 ) 6 , Ce (NH 4 ) 4 (SO 4 ) 4 or the like.
  • alkali solution a conventionally known one can be used without particular limitation.
  • the basic compound in the alkaline liquid include organic bases such as imidazole, tetramethylammonium hydroxide (TMAH), guanidine, triethylamine, pyridine, piperidine, pyrrolidine or chitosan, ammonia, potassium hydroxide, sodium hydroxide or hydroxide.
  • organic bases such as imidazole, tetramethylammonium hydroxide (TMAH), guanidine, triethylamine, pyridine, piperidine, pyrrolidine or chitosan, ammonia, potassium hydroxide, sodium hydroxide or hydroxide.
  • inorganic bases such as calcium. Of these, ammonia and imidazole are preferred.
  • silica particles the above-described silica particles can be used, and among them, colloidal silica particles are preferably used.
  • the content of silica particles in the precursor liquid is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and more preferably 0.5% by mass or more based on the total mass of the precursor liquid. Further preferred.
  • the content of the silica particles is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less, based on the total mass of the precursor liquid, from the viewpoint of preventing the particles from aggregation and further increasing the polishing rate. preferable.
  • the concentration of the first component containing the cerium hydroxide precursor is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more from the viewpoint of production efficiency.
  • the concentration of the first component is preferably 80% by mass or less and more preferably 70% by mass or less from the viewpoint of preventing particle aggregation and further increasing the polishing rate.
  • the concentration of the second component (eg, basic compound) in the reaction solution is preferably 0.1% by mass or more and more preferably 0.3% by mass or more from the viewpoint of shortening the production time.
  • the concentration of the second component is preferably 50% by mass or less and more preferably 40% by mass or less from the viewpoint of further increasing the polishing rate.
  • the polishing rate can be further increased by controlling the mixing rate of the precursor solution and the reaction solution.
  • the mixing speed is preferably 0.5 mL / min or more, for example, and preferably 50 mL / min or less.
  • the rotation speed (stirring speed) of the stirring blade is preferably, for example, 30 to 800 min ⁇ 1 in the case of a mixing scale in which a 2 L solution is stirred using a stirring blade having a total length of 4 cm.
  • the upper limit of the rotational speed is more preferably 700 min ⁇ 1 or less, and even more preferably 600 min ⁇ 1 or less, from the viewpoint of suppressing the liquid level from rising excessively.
  • the temperature of the aqueous solution obtained by mixing the precursor solution and the reaction solution is preferably 0 to 70 ° C. in the reaction system, which can be read by installing a thermometer in the reaction system.
  • the temperature of the aqueous solution is more preferably 40 ° C. or less, and further preferably 35 ° C. or less, from the viewpoint of preventing particle aggregation and further increasing the polishing rate.
  • the liquid temperature of the aqueous solution is preferably 0 ° C. or higher from the viewpoint of preventing the liquid from freezing.
  • the composite particles can also be obtained by mixing a precursor liquid containing the first component and a reaction liquid containing silica particles and the second component, and reacting the precursor and the second component.
  • the manufacturing method of the CMP polishing liquid of the present embodiment preferably further includes a cleaning step of cleaning the composite particles synthesized by the above-described method to remove metal impurities from the composite particles after the composite particle manufacturing step.
  • a cleaning step of cleaning the composite particles synthesized by the above-described method to remove metal impurities from the composite particles after the composite particle manufacturing step a method of repeating solid-liquid separation several times by centrifugation or the like can be used. Moreover, it can also wash
  • the manufacturing method of the CMP polishing liquid of this embodiment further includes a dispersion step of dispersing the composite particles in water by an appropriate method when the composite particles containing silica and cerium hydroxide obtained above are aggregated. It is preferable to provide.
  • a method of dispersing the composite particles in water which is a main dispersion medium, mechanical dispersion using a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer.
  • dispersion method for example, the method described in “The Complete Collection of Dispersion Technology” [Information Organization Co., Ltd., July 2005] Chapter 3, “Latest Development Trends and Selection Criteria of Various Dispersers” Can be used.
  • the method of heating and maintaining the dispersion liquid containing composite particles can also be employed. Specifically, for example, a dispersion having a particle content of about 50% by mass or less (preferably 1 to 20% by mass) is prepared, and the dispersion is maintained at 30 to 80 ° C. using a thermostatic bath or the like. The composite particles can also be dispersed by holding the dispersion for 1 to 10 hours.
  • the manufacturing method of the CMP polishing liquid according to the present embodiment may include an abrasive content adjusting process for obtaining a storage liquid for polishing liquid after the cleaning process and the dispersing process.
  • the “reserving liquid for polishing liquid” is a liquid diluted with a liquid medium such as water at the time of use (for example, 2 times or more) and used by adjusting the content of abrasive grains. This makes it possible to easily adjust the content of abrasive grains depending on the type of film to be polished, and further facilitates storage and transportation.
  • the content of abrasive grains in the storage liquid for polishing liquid is adjusted to be higher than the content of abrasive grains used as the CMP polishing liquid, and the storage liquid for polishing liquid is water in the abrasive content adjustment step. And adjusted to the desired abrasive grain content.
  • the stock solution for polishing liquid may be prepared in the washing step or the dispersion step, or may be separately prepared after the washing step or the dispersion step.
  • the dilution ratio of the stock solution for polishing liquid is preferably 2 times or more, more preferably 3 times or more, and still more preferably 5 times or more, because the higher the magnification, the higher the cost reduction effect related to storage, transportation, storage, etc. 10 times or more is particularly preferable.
  • the upper limit of the dilution ratio is not particularly limited, but the higher the ratio, the greater the amount of components contained in the polishing liquid stock solution (the higher the content), and the lower the stability during storage. Therefore, it is preferably 500 times or less, more preferably 200 times or less, still more preferably 100 times or less, and particularly preferably 50 times or less.
  • the CMP polishing liquid of this embodiment can be obtained by mixing the above-described components in each of the above steps.
  • the additive as the component is mixed with the abrasive grains in, for example, a dispersion process or an abrasive content adjustment process. It is preferable to adjust the ratio of the component constituting the CMP polishing liquid so as to obtain a suitable content of each component described above.
  • the polishing rate of the insulating film can be further improved by adjusting the ratio of the components constituting the CMP polishing liquid to the above range.
  • the pH of the CMP polishing liquid when obtaining the CMP polishing liquid, the pH of the CMP polishing liquid may be adjusted using the acid component or the alkali component.
  • the CMP polishing liquid has a desired pH, it is not necessary to adjust the pH of the CMP polishing liquid using the acid component or the alkali component.
  • the buffer solution when obtaining the CMP polishing liquid, the buffer solution may be added to the CMP polishing liquid.
  • the film to be polished of the substrate having the film to be polished (for example, an insulating film) can be polished at a good polishing rate.
  • the substrate polishing method of this embodiment includes at least a polishing step of polishing the surface to be polished of the substrate using the CMP polishing liquid, and the CMP polishing is performed by the CMP polishing liquid manufacturing method of this embodiment before the polishing step.
  • the CMP polishing liquid and the polishing film are polished with the polishing film of the substrate having the polishing film facing the polishing cloth of the polishing platen and the polishing film pressed against the polishing cloth.
  • At least a part of the film to be polished by relatively moving the substrate and the polishing surface plate while supplying a predetermined pressure to the back surface (the surface opposite to the surface to be polished) of the substrate while supplying it to the cloth.
  • the substrate to be polished examples include a substrate in which a film to be polished is formed on a substrate related to the manufacture of a semiconductor element (for example, a semiconductor substrate on which a shallow trench isolation pattern, a gate pattern, a wiring pattern, etc. are formed).
  • a substrate related to the manufacture of a semiconductor element for example, a semiconductor substrate on which a shallow trench isolation pattern, a gate pattern, a wiring pattern, etc. are formed.
  • the film to be polished include an insulating film such as a silicon oxide film formed on these patterns, a polysilicon film, and the like. Note that the film to be polished may be a single film or a plurality of films. When a plurality of films are exposed on the surface to be polished, they can be regarded as a film to be polished.
  • the surface to be polished can be a smooth surface over the entire surface.
  • the CMP polishing liquid of this embodiment is preferably used for polishing a surface to be polished containing silicon oxide.
  • the polishing stopper layer is an insulating film (for example, an oxide film). It is a layer whose polishing rate is lower than that of a silicon film, and is specifically preferably a polysilicon film, a silicon nitride film or the like.
  • a CVD method typified by a low pressure CVD method, a quasi-atmospheric pressure CVD method, a plasma CVD method, etc. And a spin coating method.
  • the silicon oxide film can be obtained, for example, by thermally reacting monosilane (SiH 4 ) and oxygen (O 2 ) using a low pressure CVD method.
  • the silicon oxide film can be obtained by, for example, thermally reacting tetraethoxysilane (Si (OC 2 H 5 ) 4 ) and ozone (O 3 ) using a quasi-atmospheric pressure CVD method.
  • a silicon oxide film can be similarly obtained by causing a plasma reaction between tetraethoxysilane and oxygen.
  • the silicon oxide film is obtained by applying a liquid raw material containing, for example, inorganic polysilazane, inorganic siloxane, etc. on a substrate using a spin coating method and performing a thermosetting reaction in a furnace body or the like.
  • Examples of the method for forming a polysilicon film include a low pressure CVD method in which monosilane is thermally reacted, a plasma CVD method in which monosilane is plasma-reacted, and the like.
  • the silicon oxide film obtained by the above method may contain a small amount of boron (B), phosphorus (P), carbon (C), or the like in order to improve the embedding property.
  • a polishing apparatus for example, a surface plate on which a motor capable of changing the number of rotations and the like can be attached, and a polishing cloth (pad) can be attached, and a holder for holding a substrate are provided.
  • a general polishing apparatus can be used.
  • polishing cloth general nonwoven fabrics, foams, non-foams, etc.
  • material of the polishing cloth for example, polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, Polyethylene, poly-4-methylpentene, cellulose, cellulose ester, nylon (trade name), polyamide such as aramid, polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin, porous Resin such as fluororesin can be used.
  • polyurethane acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, Polyethylene, poly-4-methylpentene, cellulose, cellulose ester, nylon (trade name), polyamide such as aramid, polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polysty
  • foamed polyurethane and non-foamed polyurethane are preferable from the viewpoint of polishing speed and flatness. It is preferable that the polishing cloth is subjected to a groove processing so that the CMP polishing liquid is accumulated.
  • the polishing conditions are not particularly limited, but it is preferable to set the rotation speed of the surface plate to a low rotation of 200 min ⁇ 1 or less so that the substrate does not jump out.
  • the pressure applied to the substrate pressed against the polishing cloth is preferably 4 to 100 kPa, and 6 to 60 kPa from the viewpoint of excellent uniformity in the polished surface of the substrate and flatness of the pattern. Is more preferable.
  • a CMP polishing liquid may be continuously supplied to the surface of the polishing cloth with a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with a CMP polishing liquid.
  • the substrate after polishing (for example, a semiconductor substrate) is preferably washed well under running water to remove particles adhering to the substrate.
  • dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used in combination to increase cleaning efficiency.
  • a spin dryer or the like it is preferable to dry the substrate after removing water droplets adhering to the substrate using a spin dryer or the like.
  • the composite particles, CMP polishing liquid, and polishing method of the present embodiment can be suitably used for forming shallow trench isolation.
  • the selection ratio (insulating film polishing rate / polishing stop layer polishing rate) of the insulating film (a film containing silicon oxide, for example, a silicon oxide film) with respect to the polishing stopper layer is 100.
  • the selection ratio is less than 100, the polishing rate of the insulating film (a film containing silicon oxide, such as a silicon oxide film) with respect to the polishing rate of the polishing stopper layer is small, and a predetermined position is formed when forming the shallow trench isolation. It tends to be difficult to stop polishing.
  • the selection ratio is 100 or more, polishing can be easily stopped, which is more suitable for forming shallow trench isolation. Also, for use in forming shallow trench isolation, it is preferable that scratches are less likely to occur during polishing.
  • the composite particles, CMP polishing liquid, and polishing method of this embodiment can also be used for polishing a premetal insulating film.
  • a constituent material of the premetal insulating film in addition to silicon oxide, for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used, and silicon oxyfluoride, fluorinated amorphous carbon, or the like can also be used.
  • the composite particles, CMP polishing liquid, and polishing method of the present embodiment can also be applied to films other than insulating films such as silicon oxide films.
  • films include high dielectric constant films such as Hf-based, Ti-based, and Ta-based oxides; semiconductor films such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; Examples thereof include a phase change film such as GeSbTe; an inorganic conductive film such as ITO; a polymer resin film such as polyimide, polybenzoxazole, acrylic, epoxy, and phenol.
  • the composite particles, the CMP polishing liquid and the polishing method of the present embodiment are not only film-like objects to be polished, but also various substrates composed of glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, plastic, or the like. It can also be applied to.
  • the composite particles, the CMP polishing liquid and the polishing method of the present embodiment are not only for manufacturing semiconductor elements, but also for image display devices such as TFTs and organic ELs; optical parts such as photomasks, lenses, prisms, optical fibers and single crystal scintillators; Optical elements such as optical switching elements and optical waveguides; light emitting elements such as solid lasers and blue laser LEDs; and magnetic storage devices such as magnetic disks and magnetic heads.
  • the primary particle size, secondary particle size, and degree of association of the colloidal silica used in the examples are shown in Table 1 (both are manufacturer's nominal values).
  • Example 1 Effect of composite particles> CMP polishing liquid containing composite particles containing silica and cerium hydroxide (hereinafter referred to as “silica / cerium hydroxide composite particles”), CMP polishing liquid containing either silica particles or cerium hydroxide particles alone, and silica
  • Sica / cerium hydroxide composite particles CMP polishing liquid containing composite particles containing silica and cerium hydroxide
  • silica CMP polishing liquid containing either silica particles or cerium hydroxide particles alone
  • silica A manufacturing method and various characteristics of a CMP polishing liquid in which particles and cerium hydroxide particles are simply mixed are shown in Example 1 and Comparative Examples 1 to 3.
  • the obtained liquid was centrifuged (3000 min ⁇ 1 , 5 minutes), the supernatant was removed by decantation, and the solid was taken out. After adding an appropriate amount of pure water so that the solid content is about 10% by mass (the amount of pure water to be added can be calculated assuming that all the raw materials have reacted), 60 ° C.
  • the dispersion liquid 1 of the particle A was obtained by carrying out the dispersion process of the said solid for 4 hours.
  • the dispersion 1 was filtered by an ultrafiltration method to wash the particles A, whereby a dispersion 2 of particles A was obtained.
  • part of the obtained particles A was extracted and observed with a TEM.
  • fine particles having an average particle diameter of about 2 to 6 nm meaning a biaxial average particle diameter.
  • a number of “composite particles” adhering to each other and “single particles” having a particle diameter of approximately 2 to 6 nm were observed alone (meaning that they were not composited like composite particles; the same applies hereinafter).
  • the surface of the particle having a particle diameter of about 35 to 60 nm had a part to which fine particles were attached and a part to which fine particles were not attached.
  • the fine particles having a particle size of about 2 to 6 nm are considered to be cerium hydroxide particles, and the particles having a particle size of about 35 to 60 nm are considered to be silica particles. Therefore, the “composite particles” are “silica / cerium hydroxide composite particles” in which cerium hydroxide particles are attached around silica particles, and the single particles are “single particles of cerium hydroxide”.
  • the particles A are considered to be mixed particles of “silica / cerium hydroxide composite particles” and “cerium hydroxide single particles”.
  • a storage liquid for polishing liquid (corresponding to 1.0 mass% as silica particles, water) As cerium oxide particles).
  • a CMP polishing liquid was prepared by diluting the storage liquid for polishing liquid with pure water twice to adjust the content of particles A to 1.0 mass%.
  • the average particle diameter of “silica / cerium hydroxide composite particles” was measured and found to be 66 nm.
  • the pH of the CMP polishing liquid was measured and found to be 3.4.
  • the pH of the CMP polishing liquid and the average particle size of the composite particles were measured according to the following method.
  • Polishing device Made by APPLIED MATERIALS, product name: Mirra CMP polishing liquid flow rate: 200 mL / min Polishing substrate: Silicon substrate having a silicon oxide layer (SiO 2 layer) having a thickness of 1000 nm formed on the entire main surface Polishing cloth: Polyurethane resin with closed cells (Rohm and Haas) Made by Japan, model number: IC1000) Polishing pressure: 15.7 kPa (2 psi) Relative speed between substrate and polishing platen: 80 m / min Polishing time: 1 min / sheet Cleaning: After CMP treatment, cleaning with ultrasonic water was performed and then drying with a spin dryer.
  • Synthesis Example 2 Synthesis of cerium hydroxide particles
  • the same operation as in Synthesis Example 1 was performed except that the silica particles 1 were not added. That is, 100 g of Ce (NH 4 ) 2 (NO 3 ) 6 was dissolved in 5000 g of pure water to obtain a precursor liquid. Next, while adjusting the temperature of the precursor liquid to 20 ° C. and stirring the precursor liquid at 250 min ⁇ 1 using a stirrer, 130 g of ammonia water (10% by mass aqueous solution) was precursor at a mixing rate of 10 mL / min. When it was dropped into the body fluid, yellowish white particles were produced.
  • the obtained liquid was centrifuged (3000 min ⁇ 1 , 5 minutes), the supernatant was removed by decantation, and the solid was taken out. A suitable amount of pure water was added so that the solid content was about 10% by mass, and then the solid was dispersed in a constant temperature bath at 60 ° C. for 4 hours. Got.
  • the dispersion 1 was filtered by an ultrafiltration method to wash the particles B, whereby a dispersion 2 of particles B was obtained.
  • single particle having a particle size of about 4 to 12 nm alone was observed.
  • the single particles were “single particles of cerium hydroxide”.
  • Pure water was added to the dispersion 2 of the particle B to prepare a stock solution for polishing liquid in which the content of the particle B (cerium hydroxide particles) was 1.0% by mass.
  • the polishing liquid stock solution was diluted twice with pure water to prepare a CMP polishing liquid containing 0.5% by mass of cerium hydroxide particles and 99.5% by mass of water.
  • the pH of the CMP polishing liquid and the average particle diameter of the cerium hydroxide particles were measured by the same operation as in Example 1. As a result, the pH was 3.0 and the average particle diameter was 8 nm. . Further, when the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 88 ⁇ / min.
  • ⁇ Comparative Example 2 ⁇ A colloidal silica dispersion of silica particles 1 (silica particle content: 20% by mass) 2.5% by mass (corresponding to 0.5% by mass as silica particles) and 97.5% by mass of water are mixed to produce 1% nitric acid.
  • a CMP polishing liquid containing 0.5% by mass of silica particles was prepared by adjusting the pH to 3.4 with an aqueous solution.
  • ⁇ Comparative Example 3 Colloidal silica dispersion of silica particles 1 (silica particle content: 20% by mass) 2.5% by mass (corresponding to 0.5% by mass as silica particles) and 0.5% by mass of cerium hydroxide particles prepared in Synthesis Example 2 % And 97% by mass of water were mixed to prepare a CMP polishing liquid containing 0.5% by mass of silica particles and cerium hydroxide particles.
  • the pH of the CMP polishing liquid was measured by the same operation as in Example 1, and the pH was 3.5. Further, when the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 54 ⁇ / min.
  • Table 2 shows Example 1 and Comparative Examples 1 to 3.
  • the polishing rate for the silicon oxide layer was significantly improved by using a CMP polishing liquid containing “silica / cerium hydroxide composite particles”. That is, from the comparison between Example 1 and Comparative Examples 1 to 3, the CMP polishing liquid containing “silica / cerium hydroxide composite particles” is a CMP polishing liquid containing silica particles or cerium hydroxide particles alone, and silica. The polishing rate was excellent as compared with a CMP polishing liquid in which particles and cerium hydroxide particles were simply mixed.
  • Example 2 By diluting the storage liquid for polishing liquid obtained in Example 1 (content of particles A: 2.0 mass%) with water and adjusting the pH to 5.8 with a 10 mass% imidazole aqueous solution, A CMP polishing liquid (corresponding to a 10-fold diluted stock solution for polishing liquid) containing 0.2% by mass of mixed particles of composite particles and single particles as particles was prepared.
  • the average particle size of the composite particles was measured by the same operation as in Example 1. As a result, the average particle size was 67 nm. Further, when the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 2721 ⁇ / min.
  • Example 3 By diluting the stock solution for polishing liquid (content of particle A: 2.0 mass%) obtained in Example 1 with water and adjusting the pH to 8.3 with a 10 mass% imidazole aqueous solution, A CMP polishing liquid (corresponding to a 10-fold diluted stock solution for polishing liquid) containing 0.2% by mass of mixed particles of composite particles and single particles as particles was prepared.
  • the average particle diameter of the composite particles was measured by the same operation as in Example 1. As a result, it was 69 nm. Further, when the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 1258 ⁇ / min.
  • Example 4 The polishing liquid stock solution (particle A content: 2.0 mass%) obtained in Example 1 was diluted with water and the pH was adjusted to 9.8 with a 0.1 mass% aqueous potassium hydroxide solution. As a result, a CMP polishing liquid (corresponding to a 10-fold dilution of the storage liquid for polishing liquid) containing 0.2% by mass in total of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, and was found to be 255 kg / min.
  • Table 3 shows Examples 2 to 3 and Comparative Example 4.
  • the polishing rate for the silicon oxide layer was significantly improved by adjusting the pH of the CMP polishing liquid containing “silica / cerium hydroxide composite particles”.
  • an imidazole aqueous solution (10 mass% aqueous solution) is precursor at a mixing rate of 10 mL / min. When it was dropped into the body fluid, yellowish white particles were precipitated.
  • the obtained liquid was centrifuged (3000 min ⁇ 1 , 5 minutes), the supernatant was removed by decantation, and the solid was taken out. A suitable amount of pure water was added so that the solid content was about 10% by mass, and then the solid was dispersed in a constant temperature bath at 60 ° C. for 4 hours. Got.
  • the dispersion 1 was filtered by an ultrafiltration method to wash the particles C, whereby a dispersion 2 of particles C was obtained.
  • the obtained particles C were observed with a TEM.
  • a single “composite particle” in which a large number of fine particles having a particle size of about 2 to 6 nm adhered to the periphery of particles having a particle size of about 35 to 60 nm was used.
  • Single particles having a particle size of about 2 to 6 nm were observed.
  • the surface of the particle having a particle diameter of about 35 to 60 nm had a part to which fine particles were attached and a part to which fine particles were not attached.
  • polishing liquid stock solution is diluted with water and adjusted to pH 6.1 with a 10% by mass imidazole aqueous solution, whereby CMP polishing including 0.2% by mass of mixed particles of single particles and composite particles as abrasive grains A liquid (corresponding to a 10-fold diluted stock solution for polishing liquid) was prepared.
  • the average particle size of the composite particles was measured by the same operation as in Example 1. As a result, the average particle size was 67 nm. Further, the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, and was found to be 3311 ⁇ / min.
  • Example 5 In the same manner as in Example 4 except that the colloidal silica dispersion of silica particles 2 (silica particle content: 20% by mass) was used instead of the colloidal silica dispersion of silica particles 1 and the pH was adjusted to 6.0, A CMP polishing liquid containing 0.2% by mass of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the average particle size of the composite particles was measured by the same operation as in Example 1.
  • the average particle size was 66 nm.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 3866 ⁇ / min.
  • Example 6 A colloidal silica dispersion of silica particles 3 (silica particle content: 20% by mass) was used instead of the colloidal silica dispersion of silica particles 1 and the pH was adjusted to 6.3. A CMP polishing liquid containing 0.2% by mass of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the average particle diameter of the composite particles was measured by the same operation as in Example 1.
  • the average particle diameter was 64 nm.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 3680 ⁇ / min.
  • Example 7 A colloidal silica dispersion of silica particles 4 (silica particle content: 20% by mass) was used instead of the colloidal silica dispersion of silica particles 1 and the pH was adjusted to 6.2. A CMP polishing liquid containing 0.2% by mass of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the average particle diameter of the composite particles was measured by the same operation as in Example 1.
  • the average particle diameter was 72 nm.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 2388 ⁇ / min.
  • Example 8 A colloidal silica dispersion of silica particles 5 (silica particle content: 20% by mass) was used instead of the colloidal silica dispersion of silica particles 1 and the pH was adjusted to 6.1. A CMP polishing liquid containing 0.2% by mass of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the average particle diameter of the composite particles was measured by the same operation as in Example 1. As a result, the average particle diameter was 109 nm. Further, the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, and it was 3796 kg / min.
  • Example 9 A colloidal silica dispersion of silica particles 6 (silica particle content: 20% by mass) was used instead of the colloidal silica dispersion of silica particles 1 and the pH was adjusted to 6.0. A CMP polishing liquid containing 0.2% by mass of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the average particle size of the composite particles was measured by the same operation as in Example 1.
  • the average particle size was 66 nm.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 4896 kg / min.
  • Example 10 A colloidal silica dispersion of silica particles 7 (silica particle content: 20% by mass) was used instead of the colloidal silica dispersion of silica particles 1 and the pH was adjusted to 5.7. A CMP polishing liquid containing 0.2% by mass of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the average particle diameter of the composite particles was measured by the same operation as in Example 1.
  • the average particle diameter was 76 nm.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, and was found to be 3034 kg / min.
  • Example 11 Except for using 633 g of a colloidal silica dispersion of silica particles 8 (silica particle content: 12% by mass) instead of the colloidal silica dispersion of silica particles 1, using 4750 g of pure water, and adjusting the pH to 5.8. In the same manner as in Example 4, a CMP polishing liquid containing 0.2% by mass of mixed particles of composite particles and single particles as abrasive grains was prepared.
  • the average particle diameter of the composite particles was measured by the same operation as in Example 1.
  • the average particle diameter was 21 nm.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 2027 ⁇ / min.
  • the pH of the CMP polishing liquid and the average particle diameter of silica particles were measured by the same operation as in Example 1.
  • the pH was 7.2 and the average particle diameter was 57 nm.
  • the polishing rate of the CMP polishing liquid with respect to the silicon oxide layer was determined by the same operation as in Example 1, it was 1 ⁇ / min.
  • Table 4 shows Examples 4 to 11 and Comparative Example 5.
  • the polishing rate for the silicon oxide layer in the CMP polishing liquid containing silica / cerium hydroxide composite particles is the CMP polishing containing silica particles alone, regardless of which silica particle is used. It was significantly improved compared with the polishing rate of the liquid.
  • the CMP polishing liquid containing silica / cerium hydroxide composite particles and having a pH of not more than a predetermined value is an excellent CMP polishing liquid because the polishing rate for the silicon oxide layer is remarkably high.
  • a CMP polishing liquid capable of improving the polishing rate for an insulating film, a method for manufacturing the same, a method for manufacturing composite particles, and a method for polishing a substrate using the CMP polishing liquid.
  • a CMP polishing liquid capable of polishing an insulating film at high speed, a manufacturing method thereof, and a composite particle manufacturing method
  • a method for polishing a substrate using the CMP polishing liquid can be provided.
  • a CMP polishing liquid capable of polishing an insulating film with low polishing flaws while improving the polishing rate for the insulating film, a manufacturing method thereof, a manufacturing method of composite particles, and the CMP polishing liquid It is also possible to provide a method of polishing a substrate using

Abstract

 本発明のCMP研磨液は、水及び砥粒を含み、砥粒が、第1の粒子を含むコアと、該コア上に設けられた第2の粒子と、を有する複合粒子を含有し、第1の粒子がシリカを含有し、第2の粒子が水酸化セリウムを含有し、CMP研磨液のpHが9.5以下である。

Description

CMP研磨液及びその製造方法、複合粒子の製造方法、並びに基体の研磨方法
 本発明は、CMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法に関する。特に、本発明は、半導体素子の製造技術である、基体の被研磨面の平坦化工程に用いられるCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法に関する。さらに詳しくは、本発明は、シャロートレンチ分離絶縁膜、プリメタル絶縁膜、層間絶縁膜等の平坦化工程において使用されるCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法に関する。
 近年の半導体素子の製造工程では、高密度化・微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、シャロートレンチ・アイソレーション(STI)の形成、プリメタル絶縁膜や層間絶縁膜の平坦化、プラグの形成、埋め込み金属配線の形成等に必須の技術となっている。
 CMP研磨液として最も多用されているのは、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系CMP研磨液である。シリカ系CMP研磨液は汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁膜や導電膜を問わず幅広い種類の膜を研磨することができる。
 一方で、主に酸化珪素膜等の絶縁膜を対象とした、砥粒としてセリウム化合物粒子を含むCMP研磨液の需要も拡大している。例えば、酸化セリウム(セリア)粒子を砥粒として含む酸化セリウム系CMP研磨液は、シリカ系CMP研磨液よりも低い砥粒含有量でも高速に酸化珪素膜を研磨できる(例えば、下記特許文献1、2参照)。
 また、4価金属元素の水酸化物粒子を砥粒として用いたCMP研磨液が検討されており、この技術は下記特許文献3に開示されている。この技術は、4価金属元素の水酸化物粒子が有する化学的作用を活かしつつ機械的作用を極力小さくすることによって、砥粒により生じる研磨傷の低減と、研磨速度の向上とを両立させたものとされている。
特開平10-106994号公報 特開平08-022970号公報 国際公開第02/067309号パンフレット
 しかしながら、CMP研磨液に対しては、従来のCMP研磨液よりも絶縁膜に対する研磨速度を更に向上させることが求められているのが現状である。研磨速度を向上させるためには、一般に種々の添加剤がCMP研磨液に加えられているが、このようなアプローチには限界がある。
 本発明は、このような技術的課題を解決しようとするものであり、絶縁膜に対する研磨速度を向上させることが可能なCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法を提供することを目的とする。
 前記課題を解決するために、本発明の発明者らは、砥粒そのものが有する研磨能力を更に向上させることを検討し、特定成分を含有する複合粒子を砥粒として用いることを着想し、本発明の完成に至った。
 すなわち、本発明のCMP研磨液は、水及び砥粒を含むCMP研磨液であって、砥粒が、第1の粒子を含むコアと、該コア上に設けられた第2の粒子と、を有する複合粒子を含有し、第1の粒子がシリカを含有し、第2の粒子が水酸化セリウムを含有し、前記CMP研磨液のpHが9.5以下である。
 本発明のCMP研磨液によれば、従来のCMP研磨液に比して、絶縁膜(例えば酸化珪素膜)に対する研磨速度を向上させることができる。特に、本発明のCMP研磨液によれば、砥粒としてシリカ粒子及び酸化セリウム粒子をそれぞれ単独で使用した従来のCMP研磨液、又は、両者を単に混ぜ合わせて使用したCMP研磨液と比較して、絶縁膜に対する研磨速度を顕著に向上させることができる。さらに、本発明のCMP研磨液によれば、シャロートレンチ分離絶縁膜、プリメタル絶縁膜、層間絶縁膜等を平坦化するCMP技術において、これらの絶縁膜を高速に研磨することができる。本発明のCMP研磨液によれば、絶縁膜に対する研磨速度を向上させつつ、絶縁膜を低研磨傷で研磨することもできる。
 また、本発明は、酸化珪素を含む被研磨面を研磨する研磨方法への前記CMP研磨液の使用に関する。すなわち、本発明のCMP研磨液は、酸化珪素を含む被研磨面を研磨するために用いられることが好ましい。
 本発明の基体の研磨方法は、前記CMP研磨液を用いて基体の被研磨面を研磨する工程を備える。
 このような構成の研磨方法によれば、前記と同様の構成を有するCMP研磨液を用いることにより、従来の研磨液を用いた場合よりも、絶縁膜に対する研磨速度を向上させることができる。
 本発明のCMP研磨液の製造方法は、水及び砥粒を含むCMP研磨液の製造方法であって、シリカを含有する第1の粒子と、水酸化セリウムの前駆体を含有する第1の成分と、前記前駆体と反応して、水酸化セリウムを含有する第2の粒子を析出させることが可能な第2の成分と、を含む水溶液中で、前記前駆体と前記第2の成分とを反応させて前記第2の粒子を析出させ、前記第1の粒子を含むコアと、該コア上に設けられた前記第2の粒子と、を有する複合粒子を得る工程を備え、砥粒が複合粒子を含有し、CMP研磨液のpHが9.5以下である。本発明のCMP研磨液の製造方法によれば、絶縁膜に対して良好な研磨速度を示すCMP研磨液を得ることができる。
 本発明のCMP研磨液の製造方法においては、前記第1の粒子及び前記第1の成分を含む液と、前記第2の成分を含む液とを混合して前記複合粒子を得ることが好ましい。これにより、絶縁膜に対して更に良好な研磨速度を示すCMP研磨液を得ることができる。
 本発明のCMP研磨液の製造方法においては、前記前駆体が4価のセリウム塩であり、前記第2の成分が塩基性化合物であることが好ましい。これにより、絶縁膜に対して更に良好な研磨速度を示すCMP研磨液を簡便に得ることができる。
 本発明のCMP研磨液の製造方法は、前記複合粒子を水に分散させる工程を更に備えていることが好ましい。これにより、絶縁膜に対して更に良好な研磨速度を示すCMP研磨液を得ることができる。
 本発明のCMP研磨液の製造方法は、前記複合粒子を洗浄する工程を更に備えていることが好ましい。これにより、絶縁膜に対する研磨速度のばらつきを抑制することができる。
 本発明の複合粒子の製造方法は、シリカを含有する第1の粒子と、水酸化セリウムの前駆体を含有する第1の成分と、前記前駆体と反応して、水酸化セリウムを含有する第2の粒子を析出させることが可能な第2の成分と、を含む水溶液中で、前記前駆体と前記第2の成分とを反応させて前記第2の粒子を析出させ、前記第1の粒子を含むコアと、該コア上に設けられた前記第2の粒子と、を有する複合粒子を得る工程を備える。本発明の複合粒子の製造方法によれば、絶縁膜に対して良好な研磨速度を示すCMP研磨液の砥粒として好適な複合粒子を得ることができる。
 本発明の複合粒子の製造方法においては、前記第1の粒子及び前記第1の成分を含む液と、前記第2の成分を含む液とを混合して前記複合粒子を得ることが好ましい。これにより、絶縁膜に対して良好な研磨速度を示すCMP研磨液の砥粒として更に好適な複合粒子を得ることができる。
 本発明の複合粒子の製造方法においては、前記前駆体が4価のセリウム塩であり、前記第2の成分が塩基性化合物であることが好ましい。これにより、絶縁膜に対して良好な研磨速度を示すCMP研磨液の砥粒として更に好適な複合粒子を簡便に得ることができる。
 本発明によれば、絶縁膜に対する研磨速度を向上させることが可能なCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法を提供することができる。本発明によれば、特に、シャロートレンチ分離絶縁膜、プリメタル絶縁膜、層間絶縁膜等を平坦化するCMP技術において、絶縁膜を高速に研磨できるCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法を提供することができる。さらに、本発明によれば、絶縁膜に対する研磨速度を向上させつつ、絶縁膜を低研磨傷で研磨することが可能なCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法を提供することもできる。
図1は、粒子の平均粒径の算出方法を説明するための図である。
 以下、本発明の一実施形態に係るCMP研磨液、該CMP研磨液の製造方法、複合粒子の製造方法、及び、前記CMP研磨液を用いた基体の研磨方法について詳細に説明する。
<CMP研磨液>
 本実施形態のCMP研磨液は、研磨時に被研磨面に触れる組成物である。具体的には、本実施形態のCMP研磨液は、水と、複合粒子を含有する砥粒とを少なくとも含む。以下、各必須成分及び任意に添加できる成分について説明する。
(砥粒)
 本実施形態のCMP研磨液は、砥粒として、シリカ及び水酸化セリウムを含有する複合粒子を含む。このような複合粒子は、ヒュームドシリカやコロイダルシリカ等のシリカ粒子、酸化セリウム粒子、水酸化セリウム等の4価金属元素の水酸化物粒子などを単独で使用するCMP研磨液、又は、単純に複数種の粒子を混合して使用するCMP研磨液と比較して、絶縁膜に対して高い研磨速度を示す。
 ここで、複合粒子とは、シリカ粒子と水酸化セリウム粒子とが、単純な分散処理ではそれぞれの粒子に分離されない程度に複合化(例えば付着や融合)されたものとして定義される。例えば、複合粒子は、複合化していないシリカ粒子と水酸化セリウム粒子とを個々に含む混合粒子を水等の媒体中に添加して得られる液においてシリカ粒子と水酸化セリウム粒子とが凝集した粒子とは明確に区別される。
 複合粒子は、第1の粒子を含むコアと、該コア上に設けられた第2の粒子と、を有する。第1の粒子は、シリカを含有する粒子(以下、単に「シリカ粒子」という)であり、第2の粒子は、水酸化セリウムを含有する粒子(以下、単に「水酸化セリウム粒子」という)である。コアは、単一のシリカ粒子から構成されていてもよく、シリカ粒子の凝集体や、シリカ粒子が会合してなる粒子であってもよい。また、水酸化セリウム粒子における前記「水酸化セリウム」は、四価の水酸化セリウム(Ce(OH))であってもよく、四価の水酸化セリウムの一部のOH基がOH基以外の基によって置換された化合物(例えば、Ce(OH)4-n:式中nは1~3の整数であり、XはOH基以外の基を示す)であってもよい。
 複合粒子において、水酸化セリウム粒子は、コアの表面の少なくとも一部に設けられていればよい。すなわち、コアが完全に被覆されるようにコアの周囲に複数の水酸化セリウム粒子が設けられていてもよく、コアの一部が露出するようにコア上に水酸化セリウム粒子が設けられていてもよい。複合粒子としては、コア(核)と、該コア上に設けられた水酸化セリウム粒子から構成されるシェル(殻)とを有するコアシェル構造を有する粒子であってもよい。水酸化セリウム粒子は、シリカ粒子の表面に強固に付着していてもよく、シリカ粒子の表面に融合していてもよい。なお、コアシェル構造を有する粒子の場合、シェルを構成する水酸化セリウムは、厳密には粒子形状を有さないが、このような粒子も、「第1の粒子を含むコアと、該コア上に設けられた第2の粒子と、を有する複合粒子」に含まれるものとする。
 複合粒子に用いるシリカ粒子としては、特に制限はなく、具体的には、コロイダルシリカやヒュームドシリカ等のシリカ粒子などが挙げられ、コロイダルシリカ粒子が好ましい。シリカ粒子としては、表面修飾をしていないシリカ粒子、表面水酸基をカチオン基、アニオン基、ノニオン基等で修飾したシリカ粒子、表面水酸基をアルコキシ基等で置換したシリカ粒子などを使用することができる。
 CMP研磨液中の複合粒子の平均粒径の下限は、研磨速度が低くなりすぎることを避ける点で、5nm以上が好ましく、10nm以上がより好ましく、15nm以上が更に好ましく、20nm以上が特に好ましく、30nm以上が極めて好ましく、40nm以上が非常に好ましい。また、複合粒子の平均粒径の上限は、絶縁膜に傷がつきにくくなる点で、400nm以下が好ましく、300nm以下がより好ましく、250nm以下が更に好ましく、200nm以下が特に好ましく、150nm以下が極めて好ましい。
 なお、砥粒に含まれる複合粒子において、水酸化セリウム粒子の平均粒径は、例えば、シリカ粒子の平均粒径よりも小さいことが好ましい。すなわち、「(シリカ粒子の平均粒径)-(水酸化セリウム粒子の平均粒径)>0」であることが好ましい。シリカ粒子の平均粒径は、特に制限はないが、例えば10~350nmである。水酸化セリウム粒子の平均粒径は、特に制限はないが、例えば0.1~100nmであることが好ましい。水酸化セリウム粒子の平均粒径の上限は、更に良好な研磨速度が得られる観点から、80nm以下であることがより好ましく、50nm以下であることが更に好ましく、20nm以下であることが特に好ましく、10nm以下であることが極めて好ましく、10nm未満であることが非常に好ましい。水酸化セリウム粒子の平均粒径の下限は、製造容易性の観点から、0.5nm以上がより好ましく、1nm以上が更に好ましい。
 ここで、複合粒子の平均粒径、水酸化セリウム粒子の平均粒径及びシリカ粒子の平均粒径は、走査型電子顕微鏡で観測して得られたSEM画像、又は、透過型電子顕微鏡で観測して得られたTEM画像から測定することができる。例えば、複数の粒子が観察されるSEM画像において粒子を無作為に複数個(例えば20個)選び出す。選び出した粒子について、SEM画像に表示される縮尺を基準に粒径を測定する。粒径は、粒子の最長径と該最長径に対して垂直方向の径との積の平方根(二軸平均粒子径)として求めることができる。得られた複数の測定値の平均値を粒子の平均粒径とする。
 より具体的には、測定対象の粒子を含む液を適量取り容器に入れ、パターン配線付きウエハを2cm角に切ったチップを容器内に約30秒間浸す。次に、純水が入れられた容器にチップを移して約30秒間すすぎ、そのチップを窒素ブロー乾燥する。その後、SEM観察用の試料台にチップを載せ、加速電圧10kVを掛け、適切な倍率(例えば20万倍)にて粒子を観察すると共に画像を撮影する。得られた画像から任意に複数個(例えば20個)の粒子を選択する。
 次に、各粒子の粒径を算出する。例えば、選択した粒子がSEM画像において図1に示すような形状であった場合、粒子1に外接し、その長径が最も長くなるように配置した外接長方形2を導く。そして、その外接長方形2の長径をL、短径をBとしたときの値「√(L×B)」として、1粒子の二軸平均粒子径を算出する。この作業を任意の20個の粒子に対して実施し、二軸平均粒子径の平均値を粒子の平均粒径とする。
 なお、複合粒子において、シリカ粒子の表面が水酸化セリウム粒子で被覆され、シリカ粒子の形状が見えない場合がある。この場合、シリカ粒子の平均粒径は、(1)複合粒子の作製段階において原料のシリカ粒子を走査型電子顕微鏡で観測して得られたSEM画像から上記の手順で平均粒径を求める方法、(2)複合粒子を走査型電子顕微鏡で観測して得られたSEM画像から、複合粒子の平均粒径(R)と、水酸化セリウム粒子の平均粒径(R)とをそれぞれ上記の手順で測定し、シリカ粒子の表面が一層の水酸化セリウム粒子に被覆されているとの仮定に基づき計算式「R-2R」によってシリカ粒子の平均粒径を求める方法のいずれかで決定することができる。
 また、前記複合粒子がコアシェル構造を有する場合は、例えば、TEM画像から一つの粒子に対して無作為に選択した4箇所のシェルの厚みを測定し、この平均値をR2とすることができる。
 なお、本実施形態のCMP研磨液は、前記複合粒子の特性を損なわない範囲で、前記複合粒子とは異なる他の種類の粒子(例えばシリカ粒子、水酸化セリウム粒子、アルミナ粒子等)を砥粒として含んでいてもよい。この場合、砥粒は、更に優れた研磨速度が得られる観点で、全砥粒において前記複合粒子の含有量が多いことが好ましい。例えば、前記複合粒子の含有量は、砥粒全体を基準として10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましく、40質量%以上が特に好ましく、50質量%以上が極めて好ましい。
 砥粒の含有量(複合粒子とは異なる他の種類の粒子を含む場合、複合砥粒及び他の種類の砥粒の合計の含有量をいう)の下限は、更に好適な研磨速度を得ることができる点で、CMP研磨液の全質量を基準として0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、砥粒の含有量の上限は、CMP研磨液の保存安定性を高くできる点で、CMP研磨液の全質量を基準として20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましい。
(添加剤)
 本実施形態のCMP研磨液は、添加剤を更に含んでいてもよい。ここで、「添加剤」とは、複合粒子の分散性、研磨特性、保存安定性等を調整するために、水や砥粒以外にCMP研磨液に含まれる物質を指す。
 前記添加剤としては、水溶性高分子、カルボン酸、アミノ酸、両性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤等が挙げられる。これらは単独で又は二種類以上組み合わせて使用することができる。
 前記のうち水溶性高分子は、複合粒子の分散性を向上させ、研磨速度を更に向上させると共に、平坦性や面内均一性を向上させる効果を有する。ここで、「水溶性」とは、水:100gに対して、0.1g以上溶解すれば水溶性であるとする。
 水溶性高分子の具体例としては、特に制限はなく、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン、キトサン、キトサン誘導体、デキストラン、プルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸)、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩、ポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマ;アクリル酸、メタクリル酸、アクリルアミド、ジメチルアクリルアミド等のアクリル系モノマを単量体成分として含む組成物を重合させて得られるアクリル系ポリマ;ポリグリセリン、ポリエチレングリコール、ポリオキシプロピレン、ポリオキシエチレン-ポリオキシプロピレン縮合物、エチレンジアミンのポリオキシエチレン-ポリオキシプロピレンブロックポリマーなどが挙げられる。前記水溶性高分子が分子中に酸性置換基又は塩基性置換基を含む場合、それぞれの置換基の一部が塩を構成していてもよく、例えば、酸のアンモニウム塩、ナトリウム塩、カリウム塩等が挙げられる。
 また、ポリビニルアルコールに官能基を導入した、ポリビニルアルコール誘導体も利用することができる。ポリビニルアルコール誘導体としては、例えば、反応型ポリビニルアルコール(例えば、日本合成化学工業株式会社製、商品名:ゴーセファイマーZ等、ゴーセファイマーは登録商標)、カチオン化ポリビニルアルコール(例えば、日本合成化学工業株式会社製、商品名:ゴーセファイマーK等)、アニオン化ポリビニルアルコール(例えば、日本合成化学工業株式会社製、商品名:ゴーセランL、ゴーセナールT等、ゴーセラン及びゴーセナールは登録商標)、親水基変性ポリビニルアルコール(例えば、日本合成化学工業株式会社製、商品名:エコマティ(登録商標)等)等が挙げられる。また、複数の水溶性高分子を併用して用いてもよい。
 カルボン酸は、pHを安定化させる効果がある。カルボン酸としては、具体的には、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、乳酸等が挙げられる。
 アミノ酸は、複合粒子の分散性を向上させ、絶縁膜(例えば酸化珪素膜)の研磨速度を更に向上させる効果を有する。アミノ酸としては、具体的には、例えば、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、トレオニン、グリシン、アラニン、β-アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン等が挙げられる。
 両性界面活性剤は、複合粒子の分散性を向上させ、絶縁膜(例えば酸化珪素膜)の研磨速度を更に向上させる効果を有する。両性界面活性剤としては、具体的には、例えば、ベタイン、β-アラニンベタイン、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリン酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、ラウリルヒドロキシスルホベタイン等が挙げられる。中でも、分散性安定性が向上する観点から、ベタイン、β-アラニンベタイン、ラウリン酸アミドプロピルベタインが更に好ましい。
 陰イオン性界面活性剤は、研磨特性の平坦性や面内均一性を調整する効果を有する。陰イオン性界面活性剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、特殊ポリカルボン酸型高分子分散剤等が挙げられる。
 非イオン性界面活性剤は、研磨特性の平坦性や面内均一性を調整する効果を有する。非イオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2-ヒドロキシエチルメタクリレート、アルキルアルカノールアミド等が挙げられる。
 陽イオン性界面活性剤は、研磨特性の平坦性や面内均一性を調整する効果を有する。陽イオン性界面活性剤としては、例えば、ココナットアミンアセテート、ステアリルアミンアセテート等が挙げられる。
 CMP研磨液が前記添加剤を含む場合、これら添加剤の含有量(添加量)の下限は、砥粒の分散性、研磨特性、保存安定性を更に向上させることができることから、CMP研磨液の全質量を基準として0.01質量%以上が好ましい。添加剤の含有量の上限は、砥粒の沈降を防ぐ観点から、CMP研磨液の全質量を基準として20質量%以下が好ましい。
(水)
 本実施形態のCMP研磨液は、水を含有する。水としては、特に制限はないが、脱イオン水、超純水が好ましい。水の含有量は、他の含有成分の含有量を除いたCMP研磨液の残部でよく、特に限定されない。
(pH)
 本実施形態のCMP研磨液のpHは、CMP研磨液の保存安定性や研磨速度に優れる点で、9.5以下である。CMP研磨液のpHが9.5以下であることにより、砥粒の凝集を抑制できる。本実施形態のCMP研磨液のpHは、砥粒の粒径の安定性、及び、絶縁膜に対する効率的な研磨速度が得られる観点で、9.0以下が好ましく、8.5以下がより好ましく、8.0以下が更に好ましく、7.5以下が特に好ましく、7.0以下が極めて好ましい。また、本実施形態のCMP研磨液のpHは、絶縁膜に対する効率的な研磨速度が得られる点で、3.0以上が好ましく、3.5以上がより好ましく、4.0以上が更に好ましく、4.5以上が特に好ましく、5.0以上が極めて好ましい。
 CMP研磨液のpHは、リン酸、塩酸、硫酸、硝酸、シュウ酸、クエン酸等の酸成分、又は、アンモニア、水酸化ナトリウム、水酸化カリウム、TMAH、イミダゾール等のアルカリ成分の添加によって調整可能である。また、pHを安定化させるため、CMP研磨液に緩衝液を添加してもよい。このような緩衝液としては、例えば、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。
 CMP研磨液のpHは、pHメーター(例えば、電気化学計器株式会社製、型番:PHL-40)で測定することができる。pHの測定値としては、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、ホウ酸塩pH緩衝液 pH:9.18(25℃))を用いて、3点校正した後、電極をCMP研磨液(25℃)に入れて、2分以上経過して安定した後の値を採用することができる。
<複合粒子の製造方法、CMP研磨液の製造方法>
 本実施形態のCMP研磨液の製造方法は、シリカ及び水酸化セリウムを含有する複合粒子を作製する複合粒子作製工程を備えている。また、本実施形態のCMP研磨液の製造方法は、複合粒子作製工程の後、洗浄工程と分散工程と砥粒含有量調整工程とを任意に備えている。なお、洗浄工程及び分散工程の順序は特に限定されるものではなく、洗浄工程及び分散工程のそれぞれは複数回繰り返されてもよい。
 複合粒子作製工程において、複合粒子は、以下の複合粒子の製造方法により製造することができる。複合粒子作製工程では、シリカ粒子と、水酸化セリウムの前駆体を含有する第1の成分(反応成分)と、前記前駆体と反応して、水酸化セリウム粒子を析出させることが可能な第2の成分と、を含む水溶液中で、前記前駆体と第2の成分とを反応させて水酸化セリウム粒子を析出させ、複合粒子を得る。
 複合粒子作製工程では、例えば、シリカ粒子及び第1の成分を含む前駆体液(第1の液)と、第2の成分を含む反応液(第2の液)とを混合し、第1の成分の前記前駆体と第2の成分とを反応させて複合粒子を得ることができる。複合粒子作製工程では、シリカ粒子及び第1の成分を含む前駆体液に第2の成分を添加することや、第2の成分を含む反応液にシリカ粒子及び第1の成分を添加することで、複合粒子を作製してもよい。
 水酸化セリウムの前駆体としては、例えば4価のセリウム塩が挙げられ、第2の成分としては、例えば塩基性化合物が挙げられる。また、水酸化セリウムの前駆体が4価のセリウム塩であり、且つ、前記反応液が第2の成分として塩基性化合物を含有するアルカリ液であることが好ましい。
 4価のセリウム塩としては、従来公知のものを特に制限なく使用でき、例えば、Ce(NO、Ce(SO、Ce(NH(NO、Ce(NH(SO等が挙げられる。
 アルカリ液としては、従来公知のものを特に制限なく使用できる。アルカリ液中の塩基性化合物としては、例えばイミダゾール、テトラメチルアンモニウムヒドロキシド(TMAH)、グアニジン、トリエチルアミン、ピリジン、ピペリジン、ピロリジン又はキトサン等の有機塩基、アンモニア、水酸化カリウム、水酸化ナトリウム又は水酸化カルシウム等の無機塩基などが挙げられる。これらのうちアンモニア、イミダゾールが好ましい。
 シリカ粒子としては、前述のシリカ粒子を用いることが可能であり、中でも、コロイダルシリカ粒子を用いることが好ましい。
 前駆体液におけるシリカ粒子の含有量は、製造効率の観点から、前駆体液の全質量を基準として0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が更に好ましい。シリカ粒子の含有量は、粒子の凝集を防ぐと共に研磨速度を更に高める観点から、前駆体液の全質量を基準として20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。
 前駆体液において、水酸化セリウムの前駆体を含む第1の成分の濃度は、製造効率の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。第1の成分の濃度は、粒子の凝集を防ぐと共に研磨速度を更に高める観点から、80質量%以下が好ましく、70質量%以下がより好ましい。
 反応液(例えばアルカリ液)における第2の成分(例えば塩基性化合物)の濃度は、製造時間の短縮の観点から、0.1質量%以上が好ましく、0.3質量%以上がより好ましい。第2の成分の濃度は、研磨速度を更に高める観点から、50質量%以下が好ましく、40質量%以下がより好ましい。
 前駆体液と反応液との混合速度の制御により、研磨速度を更に高めることができる。混合速度は、2Lの溶液を撹拌する混合スケールの場合、例えば0.5mL/min以上が好ましく、50mL/min以下が好ましい。
 撹拌羽の回転速度(撹拌速度)は、全長4cmの撹拌羽を用いて2Lの溶液を撹拌する混合スケールの場合、例えば、30~800min-1であることが好ましい。回転速度の上限は、液面が上昇しすぎることを抑制する点で、700min-1以下がより好ましく、600min-1以下が更に好ましい。
 前駆体液と反応液とを混合して得られる水溶液の液温は、反応系に温度計を設置して読み取れる反応系内の温度が0~70℃であることが好ましい。前記水溶液の液温は、粒子の凝集を防ぐと共に研磨速度を更に高める観点から、40℃以下がより好ましく、35℃以下が更に好ましい。前記水溶液の液温は、液の凍結を防ぐ観点から、0℃以上が好ましい。
 なお、複合粒子は、第1の成分を含む前駆体液と、シリカ粒子及び第2の成分を含む反応液とを混合し、前記前駆体と第2の成分とを反応させて得ることもできる。
 本実施形態のCMP研磨液の製造方法は、複合粒子作製工程の後に、前記方法で合成した複合粒子を洗浄して複合粒子から金属不純物を除去する洗浄工程を更に備えていることが好ましい。複合粒子の洗浄は、遠心分離等で固液分離を数回繰り返す方法等が使用できる。また、遠心分離、透析、限外濾過、イオン交換樹脂等によるイオンの除去などの工程で洗浄することもできる。
 本実施形態のCMP研磨液の製造方法は、前記で得られたシリカと水酸化セリウムとを含む複合粒子同士が凝集している場合、適切な方法で複合粒子を水中に分散させる分散工程を更に備えていることが好ましい。複合粒子を主な分散媒である水中に分散させる方法としては、通常の撹拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式ボールミル等による機械的な分散などを用いることができる。分散方法、粒径制御方法については、例えば、「分散技術大全集」〔株式会社情報機構、2005年7月〕第3章「各種分散機の最新開発動向と選定基準」に記述されている方法を用いることができる。また、分散方法としては、複合粒子を含む分散液を加熱して維持する方法も採用できる。具体的には例えば、粒子の含有量が50質量%以下(好ましくは、1~20質量%)程度である分散液を調製し、恒温槽等を用いて分散液を30~80℃に維持し、1~10時間分散液を保持することによっても複合粒子を分散させることができる。
 本実施形態のCMP研磨液の製造方法は、洗浄工程や分散工程の後に、研磨液用貯蔵液を得る砥粒含有量調整工程を備えていてもよい。ここで、「研磨液用貯蔵液」とは、使用時に水等の液状媒体で希釈(例えば2倍以上)され、砥粒の含有量を調整して使用されるものである。これにより、被研磨膜の種類によって砥粒の含有量を容易に調節できるほか、保管・輸送が更に容易になる。
 研磨液用貯蔵液における砥粒の含有量は、CMP研磨液として使用される砥粒の含有量よりも高い含有量に調整されており、砥粒含有量調整工程において研磨液用貯蔵液が水で希釈されて、所望の砥粒の含有量に調整される。研磨液用貯蔵液は、洗浄工程や分散工程において調製されてもよく、洗浄工程や分散工程の後に別途調製されてもよい。なお、本実施形態のCMP研磨液の製造方法では、砥粒含有量調整工程を行うことなく、複合粒子作製工程、洗浄工程又は分散工程において得られたスラリをそのまま研磨に用いてもよい。
 前記研磨液用貯蔵液の希釈倍率は、倍率が高いほど貯蔵・運搬・保管等に係るコストの抑制効果が高いため、2倍以上が好ましく、3倍以上がより好ましく、5倍以上が更に好ましく、10倍以上が特に好ましい。また、希釈倍率の上限は、特に制限はないが、倍率が高いほど研磨液用貯蔵液に含まれる成分の量が多く(含有量が高く)なり、保管中の安定性が低下する傾向があるため、500倍以下が好ましく、200倍以下がより好ましく、100倍以下が更に好ましく、50倍以下が特に好ましい。
 本実施形態のCMP研磨液は、前記の各工程において前記含有成分を混合することにより得ることができる。前記含有成分である添加剤は、例えば分散工程や砥粒含有量調整工程において砥粒と混合される。CMP研磨液を構成する含有成分の割合は、上述した各含有成分の好適な含有量になるように調整することが好ましい。CMP研磨液を構成する含有成分の割合を前記の範囲に調整することで、絶縁膜の研磨速度を更に向上させることができる。
 本実施形態のCMP研磨液の製造方法では、CMP研磨液を得るに際して、前記酸成分や前記アルカリ成分を用いてCMP研磨液のpHを調整してもよい。なお、CMP研磨液が所望のpHを有している場合には、前記酸成分や前記アルカリ成分を用いてCMP研磨液のpHを調整することを要しない。また、CMP研磨液を得るに際しては、前記緩衝液をCMP研磨液に添加してもよい。
<基体の研磨方法>
 以上説明したCMP研磨液を用いることで、被研磨膜(例えば絶縁膜)を有する基板の該被研磨膜を良好な研磨速度で研磨することが可能となる。
 本実施形態の基体の研磨方法は、前記CMP研磨液を用いて基体の被研磨面を研磨する研磨工程を少なくとも備え、研磨工程の前に、本実施形態のCMP研磨液の製造方法によりCMP研磨液を調製する研磨液調製工程を備えていてもよい。研磨工程では、例えば、被研磨膜を有する基体の該被研磨膜を研磨定盤の研磨布に対向させると共に被研磨膜を研磨布に押圧した状態で、前記CMP研磨液を被研磨膜と研磨布との間に供給しながら、基体の裏面(被研磨面と反対の面)に所定の圧力を加えた状態で、基体と研磨定盤とを相対的に動かして被研磨膜の少なくとも一部を研磨する。
 研磨される基体としては、例えば、半導体素子の製造に係る基板(例えば、シャロートレンチ分離パターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨膜が形成された基板が挙げられる。被研磨膜としては、これらのパターンの上に形成された、酸化珪素膜等の絶縁膜や、ポリシリコン膜などが挙げられる。なお、被研磨膜は、単一の膜であってもよく、複数の膜であってもよい。複数の膜が被研磨面に露出している場合、それらを被研磨膜と見なすことができる。
 このような基板上に形成された被研磨膜(例えば、酸化珪素膜等の絶縁膜や、ポリシリコン膜)を前記CMP研磨液で研磨することによって、被研磨膜の表面の凹凸を解消し、被研磨面を全面にわたって平滑な面とすることができる。本実施形態のCMP研磨液は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 少なくとも表面に酸化珪素を含む絶縁膜(例えば酸化珪素膜)と、該絶縁膜の下層に配置された研磨停止層とを備える基体を研磨対象とする場合、研磨停止層は、絶縁膜(例えば酸化珪素膜)よりも研磨速度が低い層であり、具体的にはポリシリコン膜、窒化珪素膜等であることが好ましい。研磨停止層が露出した時に研磨を停止させることにより、絶縁膜(例えば酸化珪素膜)が過剰に研磨されることを防止できるため、絶縁膜の研磨後の平坦性を向上させることができる。
 本実施形態のCMP研磨液により研磨される被研磨膜の作製方法としては、低圧CVD法、準常圧CVD法、プラズマCVD法等に代表されるCVD法や、回転する基板に液体原料を塗布する回転塗布法などが挙げられる。
 酸化珪素膜は、低圧CVD法を用いて、例えば、モノシラン(SiH)と酸素(O)を熱反応させることにより得られる。また、酸化珪素膜は、準常圧CVD法を用いて、例えば、テトラエトキシシラン(Si(OC)とオゾン(O)を熱反応させることにより得られる。CVD法のその他の例として、テトラエトキシシランと酸素をプラズマ反応させることによっても同様に酸化珪素膜が得られる。
 酸化珪素膜は、回転塗布法を用いて、例えば、無機ポリシラザン、無機シロキサン等を含む液体原料を基板上に塗布し、炉体等で熱硬化反応させることにより得られる。
 ポリシリコン膜の製膜方法としては、例えば、モノシランを熱反応させる低圧CVD法、モノシランをプラズマ反応させるプラズマCVD法等が挙げられる。
 以上のような方法で得られた酸化珪素膜、ポリシリコン膜等の膜質を安定化させるために、必要に応じて200~1000℃の温度で熱処理をしてもよい。また、以上のような方法で得られた酸化珪素膜には、埋込み性を高めるために微量のホウ素(B)、リン(P)、炭素(C)等が含まれていてもよい。
 本実施形態の研磨方法において、研磨装置としては、例えば、回転数を変更可能なモータ等が取り付けてあり、且つ研磨布(パッド)を貼り付け可能な定盤と、基体を保持するホルダーとを有する一般的な研磨装置が使用できる。
 研磨布としては、一般的な不織布、発泡体、非発泡体等が使用でき、研磨布の材質としては、例えば、ポリウレタン、アクリル、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ナイロン(商標名)、アラミド等のポリアミド、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂、多孔質フッ素樹脂などの樹脂が使用できる。研磨布の材質としては、研磨速度や平坦性の観点から、発泡ポリウレタン、非発泡ポリウレタンが好ましい。研磨布には、CMP研磨液がたまるような溝加工が施されていることが好ましい。
 研磨条件には特に制限はないが、基体が飛び出さないように、定盤の回転速度を200min-1以下の低回転にすることが好ましい。研磨布に押し当てた基体へ加える圧力(研磨圧力)は、4~100kPaであることが好ましく、基体の被研磨面内の均一性及びパターンの平坦性に優れる見地から、6~60kPaであることがより好ましい。
 研磨している間、研磨布の表面には、CMP研磨液をポンプ等で連続的に供給してもよい。この供給量に制限はないが、研磨布の表面が常にCMP研磨液で覆われていることが好ましい。
 研磨終了後の基体(例えば半導体基板)は、流水中で良く洗浄して基体に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸やアンモニア水を併用してもよく、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後は、基体に付着した水滴をスピンドライヤ等を用いて払い落としてから基体を乾燥させることが好ましい。
 本実施形態の複合粒子、CMP研磨液及び研磨方法は、シャロートレンチ分離の形成に好適に使用できる。シャロートレンチ分離を形成するためには、研磨停止層に対する絶縁膜(酸化珪素を含む膜、例えば酸化珪素膜)の研磨速度の選択比(絶縁膜の研磨速度/研磨停止層の研磨速度)が100以上であることが好ましい。選択比が100未満であると、研磨停止層の研磨速度に対する絶縁膜(酸化珪素を含む膜、例えば酸化珪素膜)の研磨速度の大きさが小さく、シャロートレンチ分離を形成する際、所定の位置で研磨を停止し難くなる傾向がある。選択比が100以上であれば、研磨の停止が容易になり、シャロートレンチ分離の形成に更に好適である。また、シャロートレンチ分離の形成に使用するためには、研磨時に傷の発生が少ないことが好ましい。
 本実施形態の複合粒子、CMP研磨液及び研磨方法は、プリメタル絶縁膜の研磨にも使用できる。プリメタル絶縁膜の構成材料としては、酸化珪素の他、例えば、リン-シリケートガラスやボロン-リン-シリケートガラスが使用され、更に、シリコンオキシフロリド、フッ化アモルファスカーボン等も使用できる。
 本実施形態の複合粒子、CMP研磨液及び研磨方法は、酸化珪素膜のような絶縁膜以外の膜にも適用できる。このような膜としては、例えば、Hf系、Ti系、Ta系酸化物等の高誘電率膜;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体膜;GeSbTe等の相変化膜;ITO等の無機導電膜;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂膜などが挙げられる。
 本実施形態の複合粒子、CMP研磨液及び研磨方法は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ又はプラスチック等から構成される各種基板にも適用できる。
 本実施形態の複合粒子、CMP研磨液及び研磨方法は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置の製造に用いることができる。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例で用いたコロイダルシリカの1次粒径、2次粒径及び会合度を表1に示す(いずれもメーカ公称値)。
Figure JPOXMLDOC01-appb-T000001
<実験1:複合粒子の影響>
 シリカ及び水酸化セリウムを含む複合粒子(以下「シリカ/水酸化セリウム複合粒子」という)を含むCMP研磨液、シリカ粒子及び水酸化セリウム粒子のいずれか一方を単独で含むCMP研磨液、並びに、シリカ粒子及び水酸化セリウム粒子を単に混ぜ合わせたCMP研磨液の、製造方法及び諸特性について実施例1及び比較例1~3に示す。
{実施例1}
[合成例1:シリカ/水酸化セリウム複合粒子の合成]
 100gのCe(NH(NOを5000gの純水に溶解した。次いで、この溶液にシリカ粒子1のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)190gを混合及び撹拌して、前駆体液を得た。前駆体液において、Ce(NH(NOは水に溶解しており、シリカ粒子は水に分散していた。前駆体液に含まれるシリカ粒子は、前駆体液の全質量を基準として0.7質量%であった。次に、前駆体液の温度を20℃に調整すると共に、攪拌子を用いて250min-1で前駆体液を撹拌しながら、130gのアンモニア水(10質量%水溶液)を10mL/minの混合速度で前駆体液に滴下したところ、黄白色の粒子が生成した。
 得られた液を遠心分離(3000min-1、5分間)し、デカンテーションで上澄み液を除去し、固体を取り出した。ここに固体の含有量が10質量%前後になるように適量の純水を加えた(添加する純水の量は、原料が全て反応したと仮定して計算することができる)後に、60℃の恒温槽に4時間入れて前記固体の分散処理を行うことにより、粒子Aの分散液1を得た。この分散液1を限外濾過法で濾過して粒子Aを洗浄し、粒子Aの分散液2を得た。
 得られた粒子Aを一部抽出してTEMにて観察したところ、粒径(二軸平均粒子径をいう。本実施例について以下同じ。)がおよそ2~6nm程度の微粒子(平均粒径が2~6nmの範囲にあると見なされる。以下同じ。)が、粒径がおよそ35~60nm程度の粒子(平均粒径が35~60nmの範囲にあると見なされる。以下同じ。)の周囲に多数付着している「複合粒子」と、単独に(複合粒子のように複合化していないことを意味する。以下同じ)存在する粒径がおよそ2~6nmの「単独粒子」とが観察された。また、「複合粒子」において、粒径がおよそ35~60nm程度の粒子の表面は、微粒子が付着している部分と、微粒子が付着していない部分とを有していた。
 TEM画像で見られる粒径から、前記粒径がおよそ2~6nm程度の微粒子は水酸化セリウム粒子であり、粒径がおよそ35~60nm程度の粒子はシリカ粒子であると考えられる。従って、前記「複合粒子」は、シリカ粒子の周囲に水酸化セリウム粒子が付着した「シリカ/水酸化セリウム複合粒子」であり、前記単独粒子は、「水酸化セリウムの単独粒子」であり、前記粒子Aは、「シリカ/水酸化セリウム複合粒子」と「水酸化セリウムの単独粒子」の混合粒子であると考えられる。
[研磨液用貯蔵液及びCMP研磨液の調製]
 前記粒子Aの分散液2を適量量り取り、加熱して水を除去した。残った固体の質量を測定することにより、粒子Aの分散液2中の粒子Aの含有量を特定した。
 次に、前記粒子Aの分散液2に純水を加えて粒子Aの含有量を2.0質量%に調整することで、研磨液用貯蔵液(シリカ粒子として1.0質量%相当、水酸化セリウム粒子として1.0質量%相当)を調製した。前記研磨液用貯蔵液を純水で2倍に希釈して粒子Aの含有量を1.0質量%に調整することでCMP研磨液を調製した。
 得られたCMP研磨液において、「シリカ/水酸化セリウム複合粒子」の平均粒径を測定したところ66nmであった。CMP研磨液のpHを測定したところ、3.4であった。CMP研磨液のpH及び複合粒子の平均粒径は下記の方法に従って測定した。
(pH測定)
 測定温度:25±5℃
 pH:電気化学計器株式会社製、型番:PHL-40で測定した。
(平均粒径測定)
 CMP研磨液を適量取り容器に入れ、パターン配線付きウエハを2cm角に切ったチップを容器内に約30秒間浸した。次に、純水が入れられた容器にチップを移して約30秒間すすぎ、そのチップを窒素ブロー乾燥した。その後、SEM観察用の試料台にチップを載せ、走査型電子顕微鏡(日立ハイテク製、商品名S-4800)を用いて、加速電圧10kVを掛け、20万倍にて粒子を観察すると共に、複数枚の画像を撮影した。得られた画像から測定対象の粒子を任意に20個選択した。選び出した粒子のそれぞれについて、SEM画像に表示される縮尺を基準に二軸平均粒子径を求めた。得られた二軸平均粒子径の平均値を粒子の平均粒径とした。
[基板の研磨]
 前記CMP研磨液を用いて、酸化珪素層を有する基板を下記の研磨条件で研磨した。
(CMP研磨条件)
 研磨装置:APPLIED MATERIALS社製、商品名:Mirra
 CMP研磨液流量:200mL/分
 被研磨基板:厚さ1000nmの酸化珪素層(SiO層)を主面全体に形成したシリコン基板
 研磨布:独立気泡を持つ発泡ポリウレタン樹脂(ローム・アンド・ハース・ジャパン株式会社製、型番:IC1000)
 研磨圧力:15.7kPa(2psi)
 基板と研磨定盤との相対速度:80m/分
 研磨時間:1分/枚
 洗浄:CMP処理後、超音波水による洗浄を行った後、スピンドライヤで乾燥させた。
[研磨品評価:研磨速度]
 前記研磨条件で研磨及び洗浄した基板について、酸化珪素層に対する研磨速度(SiORR)を求めた。具体的には、研磨前後での前記酸化珪素層の膜厚差を、光干渉式膜厚測定装置を用いて測定し、次式より求めた。
 (SiORR)=(研磨前後での酸化珪素層の膜厚差(Å))/(研磨時間(min))
このようにしてCMP研磨液の酸化珪素層に対する研磨速度を求めたところ、535Å/minであった。
{比較例1}
[合成例2:水酸化セリウム粒子の合成]
 シリカ粒子1を添加しなかったこと以外は合成例1と同様の操作を行った。すなわち、100gのCe(NH(NOを5000gの純水に溶解して前駆体液を得た。次に、前駆体液の温度を20℃に調整すると共に、攪拌子を用いて250min-1で前駆体液を撹拌しながら、130gのアンモニア水(10質量%水溶液)を10mL/minの混合速度で前駆体液に滴下したところ、黄白色の粒子が生成した。
 得られた液を遠心分離(3000min-1、5分間)し、デカンテーションで上澄み液を除去し、固体を取り出した。ここに固体の含有量が10質量%前後になるように適量の純水を加えた後に、60℃の恒温槽に4時間入れて前記固体の分散処理を行うことにより、粒子Bの分散液1を得た。この分散液1を限外濾過法で濾過して粒子Bを洗浄し、粒子Bの分散液2を得た。
 得られた粒子Bを一部抽出してTEMにて観察したところ、単独に存在する粒径がおよそ4~12nm程度の「単独粒子」が観察された。前記単独粒子は「水酸化セリウムの単独粒子」であった。
[研磨液用貯蔵液及びCMP研磨液の調製]
 前記粒子Bの分散液2を適量量り取り、加熱して水を除去した。残った固体の質量を測定することにより、粒子Bの分散液2中の粒子Bの含有量を特定した。
 前記粒子Bの分散液2に純水を加えて、粒子B(水酸化セリウム粒子)の含有量が1.0質量%である研磨液用貯蔵液を調製した。前記研磨液用貯蔵液を純水で2倍に希釈して、水酸化セリウム粒子0.5質量%と水99.5質量%とを含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、CMP研磨液のpH及び水酸化セリウム粒子の平均粒径を測定したところ、pHは3.0であり、平均粒径は8nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、88Å/minであった。
{比較例2}
 シリカ粒子1のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)2.5質量%(シリカ粒子として0.5質量%相当)と、水97.5質量%とを混合し、1%硝酸水溶液でpHを3.4に調整することにより、シリカ粒子を0.5質量%含有するCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、シリカ粒子の平均粒径を測定したところ、平均粒径は56nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、65Å/minであった。
{比較例3}
 シリカ粒子1のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)2.5質量%(シリカ粒子として0.5質量%相当)と、合成例2で調製した水酸化セリウム粒子0.5質量%と、水97質量%とを混合することにより、シリカ粒子と水酸化セリウム粒子とを0.5質量%ずつ含有するCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、CMP研磨液のpHを測定したところ、pHは3.5であった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、54Å/minであった。
 前記実施例1及び比較例1~3について表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、酸化珪素層に対する研磨速度は「シリカ/水酸化セリウム複合粒子」を含むCMP研磨液を用いることで顕著に向上した。すなわち、実施例1と比較例1~3との対比から、「シリカ/水酸化セリウム複合粒子」を含むCMP研磨液は、シリカ粒子又は水酸化セリウム粒子を単独に含むCMP研磨液、及び、シリカ粒子及び水酸化セリウム粒子を単に混ぜ合わせたCMP研磨液と比較して研磨速度に優れていた。
<実験2:pHの影響>
 「シリカ/水酸化セリウム複合粒子」を含むCMP研磨液において、pHの影響を調べた。
{実施例2}
 前記実施例1で得られた研磨液用貯蔵液(粒子Aの含有量:2.0質量%)を水で希釈すると共に10質量%イミダゾール水溶液でpHを5.8に調整することにより、砥粒として複合粒子及び単独粒子の混合粒子を合計0.2質量%含むCMP研磨液(研磨液用貯蔵液を10倍に希釈したものに相当)を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は67nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、2721Å/minであった。
{実施例3}
 前記実施例1で得られた研磨液用貯蔵液(粒子Aの含有量:2.0質量%)を水で希釈すると共に10質量%イミダゾール水溶液でpHを8.3に調整することにより、砥粒として複合粒子及び単独粒子の混合粒子を合計0.2質量%含むCMP研磨液(研磨液用貯蔵液を10倍に希釈したものに相当)を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、69nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、1258Å/minであった。
{比較例4}
 前記実施例1で得られた研磨液用貯蔵液(粒子Aの含有量:2.0質量%)を水で希釈すると共に0.1質量%の水酸化カリウム水溶液でpHを9.8に調整することにより、砥粒として複合粒子及び単独粒子の混合粒子を合計0.2質量%含むCMP研磨液(研磨液用貯蔵液を10倍に希釈したものに相当)を調製した。
 このCMP研磨液について、pH調整中、pHが9.5付近で粒子の凝集が見られたため、複合粒子の平均粒径は測定しなかった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、255Å/minであった。
 前記実施例2~3及び比較例4について表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、酸化珪素層に対する研磨速度は「シリカ/水酸化セリウム複合粒子」を含むCMP研磨液のpHを調整することで顕著に向上した。
<実験3:シリカ種の違いによる影響>
 異なるシリカ粒子を用いて「シリカ/水酸化セリウム複合粒子」を合成し、pHを6付近に調整したCMP研磨液の特性について調べた。
{実施例4}
[合成例3:シリカ/水酸化セリウム複合粒子の合成]
 100gのCe(NH(NOを5000gの純水に溶解した。次いで、この溶液にシリカ粒子1のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)380gを混合及び撹拌して前駆体液を得た。前駆体液に含まれるシリカ粒子は、前駆体液の全質量を基準として1.4質量%であった。次に、前駆体液の温度を20℃に調整すると共に、攪拌子を用いて250min-1で前駆体液を撹拌しながら、520gのイミダゾール水溶液(10質量%水溶液)を10mL/minの混合速度で前駆体液に滴下したところ、黄白色の粒子が沈殿した。
 得られた液を遠心分離(3000min-1、5分間)し、デカンテーションで上澄み液を除去し、固体を取り出した。ここに固体の含有量が10質量%前後になるように適量の純水を加えた後に、60℃の恒温槽に4時間入れて前記固体の分散処理を行うことにより、粒子Cの分散液1を得た。この分散液1を限外濾過法で濾過して粒子Cを洗浄し、粒子Cの分散液2を得た。
 得られた粒子CをTEMにて観察したところ、粒径がおよそ2~6nm程度の微粒子が、粒径がおよそ35~60nm程度の粒子の周囲に多数付着している「複合粒子」と、単独に存在する粒径がおよそ2~6nm程度の「単独粒子」とが観察された。また、「複合粒子」において、粒径がおよそ35~60nm程度の粒子の表面は、微粒子が付着している部分と、微粒子が付着していない部分とを有していた。
[研磨液用貯蔵液及びCMP研磨液の調製]
 前記粒子Cの分散液2を適量量り取り、加熱して水を除去した。残った固体の質量を測定することにより、粒子Cの分散液2中の粒子Cの含有量を特定した。
 次に、前記粒子Cの分散液2に純水を加えて粒子Cの含有量を2.0質量%に調整することで、研磨液用貯蔵液(シリカ粒子として1.33質量%相当、水酸化セリウム粒子として0.67質量%相当)を得た。次いで、研磨液用貯蔵液を水で希釈すると共に10質量%イミダゾール水溶液でpHを6.1に調整することにより、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液(研磨液用貯蔵液を10倍に希釈したものに相当)を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は67nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、3311Å/minであった。
{実施例5}
 シリカ粒子1のコロイダルシリカ分散液の代わりにシリカ粒子2のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)を用い、pHを6.0に調整した以外は実施例4と同様にして、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は66nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、3866Å/minであった。
{実施例6}
 シリカ粒子1のコロイダルシリカ分散液の代わりにシリカ粒子3のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)を用い、pHを6.3に調整した以外は実施例4と同様にして、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は64nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、3680Å/minであった。
{実施例7}
 シリカ粒子1のコロイダルシリカ分散液の代わりにシリカ粒子4のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)を用い、pHを6.2に調整した以外は実施例4と同様にして、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は72nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、2388Å/minであった。
{実施例8}
 シリカ粒子1のコロイダルシリカ分散液の代わりにシリカ粒子5のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)を用い、pHを6.1に調整した以外は実施例4と同様にして、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は109nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、3796Å/minであった。
{実施例9}
 シリカ粒子1のコロイダルシリカ分散液の代わりにシリカ粒子6のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)を用い、pHを6.0に調整した以外は実施例4と同様にして、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は66nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、4896Å/minであった。
{実施例10}
 シリカ粒子1のコロイダルシリカ分散液の代わりにシリカ粒子7のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)を用い、pHを5.7に調整した以外は実施例4と同様にして、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は76nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、3034Å/minであった。
{実施例11}
 シリカ粒子1のコロイダルシリカ分散液の代わりにシリカ粒子8のコロイダルシリカ分散液(シリカ粒子含有量:12質量%)を633g用い、純水を4750g使用し、pHを5.8に調整した以外は実施例4と同様にして、複合粒子及び単独粒子の混合粒子を砥粒として0.2質量%含むCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、複合粒子の平均粒径を測定したところ、平均粒径は21nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、2027Å/minであった。
{比較例5}
 シリカ粒子1のコロイダルシリカ分散液(シリカ粒子含有量:20質量%)0.665質量%(シリカ粒子として0.133質量%相当)と、水99.335質量%とを混合し、シリカ粒子を0.133質量%含有するCMP研磨液を調製した。
 このCMP研磨液について、実施例1と同様の操作により、CMP研磨液のpH及びシリカ粒子の平均粒径を測定したところ、pHは7.2であり、平均粒径は57nmであった。また、実施例1と同様の操作により、CMP研磨液の酸化珪素層に対する研磨速度を求めたところ、1Å/minであった。
 実施例4~11と比較例5について表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、いずれのシリカ粒子を用いた場合であっても、シリカ/水酸化セリウム複合粒子を含むCMP研磨液における酸化珪素層に対する研磨速度は、シリカ粒子を単独に含むCMP研磨液の研磨速度と比較して顕著に向上した。
 以上より、シリカ/水酸化セリウム複合粒子を含み且つpHが所定値以下であるCMP研磨液は、酸化珪素層に対する研磨速度が著しく速いことから、優れたCMP研磨液であることが明らかとなった。
 本発明によれば、絶縁膜に対する研磨速度を向上させることが可能なCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法を提供することができる。本発明によれば、特に、シャロートレンチ分離絶縁膜、プリメタル絶縁膜、層間絶縁膜等を平坦化するCMP技術において、絶縁膜を高速に研磨できるCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法を提供することができる。さらに、本発明によれば、絶縁膜に対する研磨速度を向上させつつ、絶縁膜を低研磨傷で研磨することが可能なCMP研磨液及びその製造方法、複合粒子の製造方法、並びに前記CMP研磨液を用いた基体の研磨方法を提供することもできる。

Claims (11)

  1.  水及び砥粒を含むCMP研磨液であって、
     前記砥粒が、第1の粒子を含むコアと、該コア上に設けられた第2の粒子と、を有する複合粒子を含有し、
     前記第1の粒子がシリカを含有し、
     前記第2の粒子が水酸化セリウムを含有し、
     前記CMP研磨液のpHが9.5以下である、CMP研磨液。
  2.  酸化珪素を含む被研磨面を研磨するために用いられる、請求項1に記載のCMP研磨液。
  3.  請求項1又は2に記載のCMP研磨液を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。
  4.  水及び砥粒を含むCMP研磨液の製造方法であって、
     シリカを含有する第1の粒子と、水酸化セリウムの前駆体を含有する第1の成分と、前記前駆体と反応して、水酸化セリウムを含有する第2の粒子を析出させることが可能な第2の成分と、を含む水溶液中で、前記前駆体と前記第2の成分とを反応させて前記第2の粒子を析出させ、前記第1の粒子を含むコアと、該コア上に設けられた前記第2の粒子と、を有する複合粒子を得る工程を備え、
     前記砥粒が前記複合粒子を含有し、
     前記CMP研磨液のpHが9.5以下である、CMP研磨液の製造方法。
  5.  前記第1の粒子及び前記第1の成分を含む液と、前記第2の成分を含む液とを混合して前記複合粒子を得る、請求項4に記載のCMP研磨液の製造方法。
  6.  前記前駆体が4価のセリウム塩であり、前記第2の成分が塩基性化合物である、請求項4又は5に記載のCMP研磨液の製造方法。
  7.  前記複合粒子を水に分散させる工程を更に備える、請求項4~6のいずれか一項に記載のCMP研磨液の製造方法。
  8.  前記複合粒子を洗浄する工程を更に備える、請求項4~7のいずれか一項に記載のCMP研磨液の製造方法。
  9.  シリカを含有する第1の粒子と、水酸化セリウムの前駆体を含有する第1の成分と、前記前駆体と反応して、水酸化セリウムを含有する第2の粒子を析出させることが可能な第2の成分と、を含む水溶液中で、前記前駆体と前記第2の成分とを反応させて前記第2の粒子を析出させ、前記第1の粒子を含むコアと、該コア上に設けられた前記第2の粒子と、を有する複合粒子を得る工程を備える、複合粒子の製造方法。
  10.  前記第1の粒子及び前記第1の成分を含む液と、前記第2の成分を含む液とを混合して前記複合粒子を得る、請求項9に記載の複合粒子の製造方法。
  11.  前記前駆体が4価のセリウム塩であり、前記第2の成分が塩基性化合物である、請求項9又は10に記載の複合粒子の製造方法。
     
PCT/JP2012/051152 2011-01-25 2012-01-20 Cmp研磨液及びその製造方法、複合粒子の製造方法、並びに基体の研磨方法 WO2012102187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137021317A KR20140005963A (ko) 2011-01-25 2012-01-20 Cmp 연마액 및 그의 제조 방법, 복합 입자의 제조 방법, 및 기체의 연마 방법
SG2013052311A SG191877A1 (en) 2011-01-25 2012-01-20 Cmp polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material
CN201280006424.8A CN103339219B (zh) 2011-01-25 2012-01-20 Cmp研磨液及其制造方法、复合粒子的制造方法以及基体的研磨方法
US13/981,766 US9447306B2 (en) 2011-01-25 2012-01-20 CMP polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011012890 2011-01-25
JP2011-012890 2011-01-25
JP2011098476 2011-04-26
JP2011-098476 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012102187A1 true WO2012102187A1 (ja) 2012-08-02

Family

ID=46580756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051152 WO2012102187A1 (ja) 2011-01-25 2012-01-20 Cmp研磨液及びその製造方法、複合粒子の製造方法、並びに基体の研磨方法

Country Status (7)

Country Link
US (1) US9447306B2 (ja)
JP (1) JP5953762B2 (ja)
KR (1) KR20140005963A (ja)
CN (1) CN103339219B (ja)
SG (1) SG191877A1 (ja)
TW (1) TWI593791B (ja)
WO (1) WO2012102187A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175860A1 (ja) * 2012-05-22 2013-11-28 日立化成株式会社 砥粒、スラリー、研磨液及びこれらの製造方法
WO2013175853A1 (ja) * 2012-05-22 2013-11-28 日立化成株式会社 砥粒、スラリー、研磨液及びこれらの製造方法
WO2014034379A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2014065029A1 (ja) * 2012-10-22 2014-05-01 日立化成株式会社 Cmp用研磨液、貯蔵液及び研磨方法
WO2018168534A1 (ja) * 2017-03-14 2018-09-20 日立化成株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
WO2021124771A1 (ja) * 2019-12-20 2021-06-24 Jsr株式会社 化学機械研磨用組成物、化学機械研磨方法、及び化学機械研磨用粒子の製造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102028217B1 (ko) * 2011-11-25 2019-10-02 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물
US9932497B2 (en) * 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
EP2976386A1 (en) 2013-03-20 2016-01-27 Cabot Corporation Composite particles and a process for making the same
WO2014179419A1 (en) * 2013-05-03 2014-11-06 Cabot Corporation Chemical mechanical planarization slurry composition comprising composite particles, process for removing material using said composition, cmp polishing pad and process for preparing said composition
JP6428625B2 (ja) * 2013-08-30 2018-11-28 日立化成株式会社 スラリー、研磨液セット、研磨液、及び、基体の研磨方法
US9281210B2 (en) * 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
WO2015095154A1 (en) * 2013-12-20 2015-06-25 Cabot Corporation Metal oxide-polymer composite particles for chemical mechanical planarization
CN103992743B (zh) * 2014-05-09 2018-06-19 杰明纳微电子股份有限公司 含有二氧化铈粉体与胶体二氧化硅混合磨料的抛光液及其制备工艺
JP6563957B2 (ja) * 2014-12-26 2019-08-21 花王株式会社 酸化珪素膜研磨用研磨液組成物
JP6510812B2 (ja) * 2014-12-26 2019-05-08 花王株式会社 酸化珪素膜研磨用研磨粒子
TWI654288B (zh) * 2015-01-12 2019-03-21 美商慧盛材料美國責任有限公司 用於化學機械平坦化組合物之複合硏磨粒及其使用方法
CN104877633A (zh) * 2015-05-26 2015-09-02 上海大学 镁元素掺杂氧化硅溶胶复合磨粒、抛光液及其制备方法
US10032644B2 (en) * 2015-06-05 2018-07-24 Versum Materials Us, Llc Barrier chemical mechanical planarization slurries using ceria-coated silica abrasives
KR101628878B1 (ko) 2015-09-25 2016-06-16 영창케미칼 주식회사 Cmp용 슬러리 조성물 및 이를 이용한 연마방법
KR101944228B1 (ko) * 2015-09-30 2019-04-17 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물
KR101761789B1 (ko) * 2015-12-24 2017-07-26 주식회사 케이씨텍 첨가제 조성물 및 이를 포함하는 포지티브 연마 슬러리 조성물
US10421890B2 (en) * 2016-03-31 2019-09-24 Versum Materials Us, Llc Composite particles, method of refining and use thereof
KR101823083B1 (ko) * 2016-09-07 2018-01-30 주식회사 케이씨텍 표면개질된 콜로이달 세리아 연마입자, 그의 제조방법 및 그를 포함하는 연마 슬러리 조성물
WO2018088088A1 (ja) * 2016-11-14 2018-05-17 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method
WO2018179061A1 (ja) 2017-03-27 2018-10-04 日立化成株式会社 研磨液、研磨液セット及び研磨方法
US10037889B1 (en) * 2017-03-29 2018-07-31 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Cationic particle containing slurries and methods of using them for CMP of spin-on carbon films
WO2019043819A1 (ja) * 2017-08-30 2019-03-07 日立化成株式会社 スラリ及び研磨方法
US20190127607A1 (en) 2017-10-27 2019-05-02 Versum Materials Us, Llc Composite Particles, Method of Refining and Use Thereof
WO2020021680A1 (ja) 2018-07-26 2020-01-30 日立化成株式会社 スラリ及び研磨方法
SG11202008797WA (en) 2018-03-22 2020-10-29 Hitachi Chemical Co Ltd Polishing liquid, polishing liquid set, and polishing method
SG10201904669TA (en) 2018-06-28 2020-01-30 Kctech Co Ltd Polishing Slurry Composition
US10920105B2 (en) * 2018-07-27 2021-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. Materials and methods for chemical mechanical polishing of ruthenium-containing materials
US11549034B2 (en) 2018-08-09 2023-01-10 Versum Materials Us, Llc Oxide chemical mechanical planarization (CMP) polishing compositions
WO2020065723A1 (ja) * 2018-09-25 2020-04-02 日立化成株式会社 スラリ及び研磨方法
US11384254B2 (en) * 2020-04-15 2022-07-12 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing composition containing composite silica particles, method of making the silica composite particles and method of polishing a substrate
CN115247026A (zh) * 2021-04-26 2022-10-28 福建晶安光电有限公司 一种蓝宝石抛光液及其制备方法
CN116042180A (zh) * 2023-03-29 2023-05-02 国科大杭州高等研究院 一种半导体单晶硅片抛光用的纳米硅铈粉末的制备工艺
CN116063930A (zh) * 2023-03-29 2023-05-05 国科大杭州高等研究院 一种半导体硅片抛光用的纳米硅铈复合抛光液的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190626A (ja) * 1988-01-25 1989-07-31 Catalysts & Chem Ind Co Ltd 化粧品組成物
JPH0867867A (ja) * 1994-06-23 1996-03-12 Suzuki Yushi Kogyo Kk 紫外線遮蔽材及びそれを用いた紫外線遮蔽合成樹脂、紫外線遮蔽化粧品、紫外線遮蔽塗膜
JP2009290188A (ja) * 2008-04-30 2009-12-10 Hitachi Chem Co Ltd 研磨剤及び研磨方法
JP2012011525A (ja) * 2010-07-02 2012-01-19 Admatechs Co Ltd 研磨材およびその製造方法
JP2012011526A (ja) * 2010-07-02 2012-01-19 Admatechs Co Ltd 研磨材およびその製造方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
KR960041316A (ko) * 1995-05-22 1996-12-19 고사이 아키오 연마용 입상체, 이의 제조방법 및 이의 용도
EP0810181B1 (en) * 1996-05-27 2002-06-19 Nippon Denko Co.,Ltd. Method for the preparation of silica-cerium oxide composite particles
US6110396A (en) * 1996-11-27 2000-08-29 International Business Machines Corporation Dual-valent rare earth additives to polishing slurries
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
US6602439B1 (en) * 1997-02-24 2003-08-05 Superior Micropowders, Llc Chemical-mechanical planarization slurries and powders and methods for using same
JP2000080352A (ja) * 1998-06-11 2000-03-21 Allied Signal Inc 低誘電率材料用研磨用スラリ―としての水系金属酸化物ゾル
US6270395B1 (en) * 1998-09-24 2001-08-07 Alliedsignal, Inc. Oxidizing polishing slurries for low dielectric constant materials
JP2001200243A (ja) * 2000-01-21 2001-07-24 Sumitomo Osaka Cement Co Ltd 研摩材及びその製造方法、ならびにそれを使用した研摩方法
US6736992B2 (en) * 2000-04-11 2004-05-18 Honeywell International Inc. Chemical mechanical planarization of low dielectric constant materials
DE50014200D1 (de) * 2000-08-19 2007-05-10 Omg Ag & Co Kg Sauerstoff speicherndes Material auf der Basis von Ceroxid, Verfahren zu seiner Herstellung und Verwendung in der Abgasreinigung von Verbrennungsmotoren
KR100512134B1 (ko) * 2001-02-20 2005-09-02 히다치 가세고교 가부시끼가이샤 연마제 및 기판의 연마방법
US20040192172A1 (en) * 2001-06-14 2004-09-30 Dan Towery Oxidizing polishing slurries for low dielectric constant materials
US20030118824A1 (en) 2001-12-20 2003-06-26 Tokarz Bozena Stanislawa Coated silica particles and method for production thereof
US6827639B2 (en) * 2002-03-27 2004-12-07 Catalysts & Chemicals Industries Co., Ltd. Polishing particles and a polishing agent
US6645265B1 (en) * 2002-07-19 2003-11-11 Saint-Gobain Ceramics And Plastics, Inc. Polishing formulations for SiO2-based substrates
US20050028450A1 (en) * 2003-08-07 2005-02-10 Wen-Qing Xu CMP slurry
US20050136670A1 (en) * 2003-12-19 2005-06-23 Ameen Joseph G. Compositions and methods for controlled polishing of copper
US20050194562A1 (en) * 2004-02-23 2005-09-08 Lavoie Raymond L.Jr. Polishing compositions for controlling metal interconnect removal rate in semiconductor wafers
US6971945B2 (en) * 2004-02-23 2005-12-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Multi-step polishing solution for chemical mechanical planarization
US7182798B2 (en) * 2004-07-29 2007-02-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polymer-coated particles for chemical mechanical polishing
US7709053B2 (en) * 2004-07-29 2010-05-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of manufacturing of polymer-coated particles for chemical mechanical polishing
US20060118760A1 (en) * 2004-12-03 2006-06-08 Yang Andy C Slurry composition and methods for chemical mechanical polishing
WO2006099630A1 (en) * 2005-03-17 2006-09-21 Lubrizol Advanced Materials, Inc. Nanoparticle/vinyl polymer composites
WO2006096936A1 (en) * 2005-03-18 2006-09-21 Advanced Nanotechnology Limited Rare earth nanorods
TW200743666A (en) * 2006-05-19 2007-12-01 Hitachi Chemical Co Ltd Chemical mechanical polishing slurry, CMP process and electronic device process
US10087082B2 (en) * 2006-06-06 2018-10-02 Florida State University Research Foundation, Inc. Stabilized silica colloid
FR2917646B1 (fr) * 2007-06-20 2011-06-03 Anan Kasei Co Ltd Oxyde mixte a haute surface specifique de cerium et d'autre terre rare, procede de preparation et utilisation en catalyse
WO2009077412A2 (en) 2007-12-14 2009-06-25 Akzo Nobel N.V. Aqueous slurry comprising inorganic oxygen-containing particulates
TWI615462B (zh) * 2008-04-23 2018-02-21 日商日立化成股份有限公司 研磨劑以及使用該研磨劑的基板研磨方法
CN101302404A (zh) 2008-07-01 2008-11-12 上海大学 纳米氧化铈复合磨粒抛光液的制备方法
JP2010153781A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
JP2010153782A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
WO2010066768A2 (de) * 2008-12-12 2010-06-17 Basf Se Dispersionen enthaltend funktionalisierte oxidische nanopartikel
US8588956B2 (en) * 2009-01-29 2013-11-19 Tayyab Ishaq Suratwala Apparatus and method for deterministic control of surface figure during full aperture polishing
KR101760529B1 (ko) * 2009-06-05 2017-07-21 바스프 에스이 화학 기계적 평탄화(CMP)를 위한 CeO2 나노입자 코팅된 라스베리형 금속 산화물 나노구조체
WO2011013572A1 (ja) * 2009-07-27 2011-02-03 旭硝子株式会社 複合粒子、塗膜形成用組成物、印刷インキ、塗料組成物、塗装物品および塗膜付樹脂フィルム
CN102627914B (zh) * 2009-10-22 2014-10-29 日立化成株式会社 研磨剂、浓缩一液式研磨剂、二液式研磨剂、基板研磨法
CN102844884A (zh) * 2010-04-16 2012-12-26 旭硝子株式会社 太阳能电池模块用背板及太阳能电池模块
US9269952B2 (en) * 2011-01-11 2016-02-23 Gs Yuasa International Ltd. Positive active material for alkaline secondary battery, method for manufacturing the same and alkaline secondary battery
EP2742103B1 (en) * 2011-08-01 2016-09-21 Basf Se A PROCESS FOR THE MANUFACTURE OF SEMICONDUCTOR DEVICES COMPRISING THE CHEMICAL MECHANICAL POLISHING OF ELEMENTAL GERMANIUM AND/OR Si1-xGex MATERIAL IN THE PRESENCE OF A CMP COMPOSITION COMPRISING A SPECIFIC ORGANIC COMPOUND

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190626A (ja) * 1988-01-25 1989-07-31 Catalysts & Chem Ind Co Ltd 化粧品組成物
JPH0867867A (ja) * 1994-06-23 1996-03-12 Suzuki Yushi Kogyo Kk 紫外線遮蔽材及びそれを用いた紫外線遮蔽合成樹脂、紫外線遮蔽化粧品、紫外線遮蔽塗膜
JP2009290188A (ja) * 2008-04-30 2009-12-10 Hitachi Chem Co Ltd 研磨剤及び研磨方法
JP2012011525A (ja) * 2010-07-02 2012-01-19 Admatechs Co Ltd 研磨材およびその製造方法
JP2012011526A (ja) * 2010-07-02 2012-01-19 Admatechs Co Ltd 研磨材およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175860A1 (ja) * 2012-05-22 2013-11-28 日立化成株式会社 砥粒、スラリー、研磨液及びこれらの製造方法
WO2013175853A1 (ja) * 2012-05-22 2013-11-28 日立化成株式会社 砥粒、スラリー、研磨液及びこれらの製造方法
WO2014034379A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2014065029A1 (ja) * 2012-10-22 2014-05-01 日立化成株式会社 Cmp用研磨液、貯蔵液及び研磨方法
WO2018168534A1 (ja) * 2017-03-14 2018-09-20 日立化成株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
JPWO2018168534A1 (ja) * 2017-03-14 2019-12-19 日立化成株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
WO2021124771A1 (ja) * 2019-12-20 2021-06-24 Jsr株式会社 化学機械研磨用組成物、化学機械研磨方法、及び化学機械研磨用粒子の製造方法

Also Published As

Publication number Publication date
TWI593791B (zh) 2017-08-01
CN103339219B (zh) 2015-01-14
TW201235455A (en) 2012-09-01
JP2012238831A (ja) 2012-12-06
US20140051250A1 (en) 2014-02-20
CN103339219A (zh) 2013-10-02
JP5953762B2 (ja) 2016-07-20
KR20140005963A (ko) 2014-01-15
US9447306B2 (en) 2016-09-20
SG191877A1 (en) 2013-08-30

Similar Documents

Publication Publication Date Title
JP5953762B2 (ja) Cmp研磨液及びその製造方法、並びに基体の研磨方法
JP5418590B2 (ja) 研磨剤、研磨剤セット及び基板の研磨方法
JP5569574B2 (ja) 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP6044629B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6044630B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6375623B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
WO2013125441A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
WO2014034379A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP2009272601A (ja) 研磨剤、これを用いた基板の研磨方法並びにこの研磨方法に用いる溶液及びスラリー
JPWO2015098197A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP2010028086A (ja) Cmp研磨剤、このcmp研磨剤を用いた研磨方法
JP2017149798A (ja) 研磨液、研磨液セット及び基体の研磨方法
JP2014187268A (ja) Cmp研磨剤及び基板の研磨方法
JP2009260236A (ja) 研磨剤、これを用いた基板の研磨方法並びにこの研磨方法に用いる溶液及びスラリー
JP2016003278A (ja) 研磨液、研磨液セット及び基体の研磨方法
JP6209845B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
JP2017220588A (ja) 研磨液、研磨液セット及び基体の研磨方法
JP2003158101A (ja) Cmp研磨剤及び製造方法
JP2010087457A (ja) Cmp研磨剤及びこれを用いた研磨方法
JP6728939B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP2016023224A (ja) 研磨剤、研磨剤セット及び基体の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021317

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981766

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12739767

Country of ref document: EP

Kind code of ref document: A1