WO2012101812A1 - 回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 - Google Patents
回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 Download PDFInfo
- Publication number
- WO2012101812A1 WO2012101812A1 PCT/JP2011/051732 JP2011051732W WO2012101812A1 WO 2012101812 A1 WO2012101812 A1 WO 2012101812A1 JP 2011051732 W JP2011051732 W JP 2011051732W WO 2012101812 A1 WO2012101812 A1 WO 2012101812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spiral
- core
- notch
- rotating electrical
- electrical machine
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
- H02K1/148—Sectional cores
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/022—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/024—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
- H02K15/026—Wound cores
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49009—Dynamoelectric machine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53687—Means to assemble or disassemble by rotation of work part
- Y10T29/53691—Means to insert or remove helix
Definitions
- the present invention relates to a method for manufacturing a spiral core for a rotating electrical machine. Especially this invention is used suitably for manufacture of the spiral winding core (helical core) used for a rotary electric machine.
- a stator core of a rotating electrical machine such as a generator or an electric motor (referred to as a stator core in the following description as needed) is formed by laminating metal plates such as electromagnetic steel plates, and extends in the circumferential direction of the stator core. And a plurality of teeth extending in the direction of the rotation axis from the inner peripheral surface of the yoke.
- core pieces having the same shape as the yoke and teeth as viewed from the thickness direction (the shape on the plate surface) are punched from a metal plate, and the core pieces are laminated in the thickness direction. To be done.
- the stator core manufactured in this way is excellent in magnetic characteristics because it does not undergo elastic deformation in the surface direction during its manufacture.
- the inner portion of the yoke is opened except the portion where the teeth are formed. Therefore, when the stator core is manufactured in this manner, many unused portions are generated in the metal plate used for punching. Therefore, the yield of the metal plate is reduced and the material cost is increased.
- a spiral core is used as a stator core in a rotating electrical machine such as a generator for an automobile.
- the spiral core is formed by laminating a band-shaped metal plate formed in a shape corresponding to the yoke and the teeth while being processed into a spiral shape by bending in the plate surface.
- a spiral core is suitably used for a core for a rotating electrical machine having a diameter of 50 mm or more and 300 mm or less.
- the metal plate for the spiral core for example, a strip-shaped metal plate having a thickness of 0.15 mm or more and 0.80 mm or less is preferably used.
- the outer peripheral side of the portion corresponding to the yoke of the strip metal plate extends larger than the inner peripheral side, and the thickness of the outer peripheral side of the strip metal plate (yoke) is increased. There is a risk of being thinner than the thickness on the inner peripheral side.
- Patent Document 1 magnetic powder is filled in the gap formed on the outer peripheral side of the core when the outer peripheral side of the portion corresponding to the yoke of the belt-shaped metal plate extends larger than the inner peripheral side. In this way, the magnetic properties and rigidity of the core can be recovered.
- belt-shaped metal plate formed in the shape corresponding to a yoke and teeth is divided
- the outer periphery of each core piece (the outer periphery of the portion corresponding to the yoke) is arcuate in accordance with the shape of the yoke.
- the core pieces adjacent to each other are connected to each other by connecting portions formed on the outer peripheral side of the side end portions of these core pieces, and the core pieces connected to each other by the connecting portions are linear. It extends to.
- a manufacturing method of a spiral core for a rotating electrical machine includes a yoke portion extending along one direction with respect to a strip-shaped metal plate extending along one direction, and the yoke A first step of forming a plurality of tooth portions projecting in the width direction from one side edge of the width direction of the portion; between the teeth portions of the yoke portion after the first step; A second step of forming a notch at the position; and after the second step, the band-shaped metal plate is bent so as to bend in the width direction in order from the portion where the notch is formed.
- the method for manufacturing a helical core for a rotating electrical machine according to (1) may further include a step of heating the strip metal plate before the third step and after the second step. .
- the method for manufacturing a helical core for a rotating electrical machine according to the above (1) or (2) includes a step of heating the strip metal plate and performing strain relief annealing during or after the third step. Further, it may be included.
- a depth dimension of the notch is 1 ⁇ 2 times or more a width dimension of the yoke portion, and It may be less than the width dimension of the yoke portion.
- the shape of the notch on the plate surface is a base on the one side edge in the width direction of the yoke portion. It may be an isosceles triangle or an equilateral triangle.
- the shape of the notch on the plate surface is a base on the one side edge in the width direction of the yoke portion.
- at least a part of the other side edge in the width direction of the yoke portion may be linear.
- the predetermined dimension may be not less than 10 mm and not more than 1000 mm.
- a manufacturing apparatus for a helical core for a rotating electrical machine includes a yoke portion extending along the one direction with respect to a band-shaped metal plate extending along the one direction, and the yoke.
- a first processing unit that forms a plurality of tooth portions projecting in the width direction from one side edge of the width direction of the portion; forming a notch at a position between the tooth portions of the yoke portion
- a second machining unit that performs bending into the band-shaped metal plate in order from the portion in which the notch is formed so as to bend in the width direction; The distance between the position where the application of the bending is started in the spiral processing unit and the position where the notch is formed in the second processing unit is within a predetermined dimension.
- the manufacturing apparatus for a rotating electrical machine core according to (9) may further include a heating unit that heats the belt-shaped metal plate between the second processing unit and the spiral processing unit.
- the manufacturing apparatus of a spiral core for a rotating electrical machine according to (9) or (10) described above heats the strip metal plate during or after the strip metal plate is spirally processed by the spiral processing unit.
- a strain relief heating unit that performs strain relief annealing may be further provided.
- the manufacturing apparatus for a helical core for a rotating electrical machine according to (9) or (10) described above wherein the belt-shaped metal plate is at least between the first processing unit and the spiral processing unit from the lower side in the vertical direction. You may further provide the guide which supports.
- the predetermined dimension may be not less than 10 mm and not more than 1000 mm.
- the notched portion is formed in the strip-shaped steel plate (strip-shaped metal plate) forming the spiral core for a rotating electrical machine.
- This notch is formed at a position between the tooth portions of the yoke portion.
- the spiral core for rotating electrical machines having good characteristics can be obtained, and the cost of the spiral core for rotating electrical machines can be reduced.
- the yoke portion, the teeth portion, and the notch portion are separately formed on the strip-shaped steel plate, and the strip-shaped steel plate is formed at a position within a predetermined dimension after the notch portion is formed on the strip-shaped steel plate.
- the steel plate is processed into a spiral shape, it is possible to suppress as much as possible the bending of the strip steel plate after forming the notches, and various numbers of sheets (from one to a plurality of sheets) from one strip steel strip.
- a strip-shaped steel strip can be produced flexibly. Therefore, the magnetic characteristics, yield, and production elasticity of the spiral core for rotating electrical machines can be improved, and the cost of the spiral core for rotating electrical machines can be further reduced.
- FIG. 2B is an enlarged view of the vicinity of a broken line portion shown in FIG. 2A. It is the schematic which shows an example of a structure of the manufacturing apparatus of the spiral core for rotary electric machines which concerns on one Embodiment of this invention.
- FIG. 6B is an enlarged view in the vicinity of a broken line portion shown in FIG. 6A.
- FIG. 1 is a schematic diagram illustrating an example of a configuration of a rotating electrical machine as an application example of a spiral core for a rotating electrical machine.
- FIG. 1 shows a cross-sectional view of a rotating electrical machine cut from a direction perpendicular to the rotation axis.
- the rotating electrical machine 10 includes a stator (stator) 11, a rotor (rotor) 12, a case 13, and a rotating shaft 14.
- members such as a coil are omitted for convenience of illustration.
- the stator 11 has a stator core provided with a yoke extending in the circumferential direction of the rotating electrical machine and teeth extending in the direction of the rotating shaft 14 from an inner peripheral side end (end surface) of the yoke. Further, a coil (not shown) is inserted into a slot that is a region between adjacent teeth in the circumferential direction of the rotating electrical machine so as to be wound around the tooth.
- the stator core is a spiral core. In FIG. 1, the case where the number of teeth is 12 is shown as an example, but the number of teeth is not limited to the example shown in FIG. 1.
- cuts 15a to 15l (15) from the inner peripheral surface of the stator 11 to the outer peripheral surface are formed at intermediate positions in the circumferential direction of the slots.
- the mutually opposing surfaces of the cuts 15a to 15l are combined, and there is almost no gap between the cuts 15a to 15l.
- the stress is concentrated in the region on the outer peripheral side of the stator 11 with respect to the cuts 15a to 15l. Therefore, the stress generated in each of the cuts 15a to 15l is preferably as small as possible within a range smaller than the stress generated in the outer peripheral region of the stator 11, and is most preferably zero.
- the length (in the radial direction) of the cut 15 is as long as possible within a range in which the shape of the stator 11 is not impaired when the stator 11 is formed by a method as described later. It is preferable to do this.
- the area on the outer peripheral side of the stator 11 is smaller than the cut 15 as much as possible (that is, making the cut 15 as long as possible), this area can be prevented from being included in the magnetic path.
- the length of the cut 15 is at least 1/2 times the length of the yoke in the radial direction.
- the length of the cut 15 is preferably at least 3/4 times the length in the radial direction of the yoke, and more preferably at least 4/5 times the length in the radial direction of the yoke. However, the length of the cut 15 is less than the length of the yoke in the radial direction.
- the outer peripheral surface of the rotor 12 is disposed at a position facing the tip end surface of the teeth of the stator 11 (that is, the inner peripheral surface of the stator 11) with a predetermined distance therebetween. Further, the axis of the rotor 12 (rotary axis 14) is substantially coincident with the axis of the stator 11 (center of gravity).
- the stator 11 is described as an example of the characteristic part of the spiral core, and therefore the configuration of the rotor 12 is simplified in FIG.
- the case 13 assembly processing such as shrink fitting is performed, so that the case 13 is in close contact with the stator 11 from the periphery (outer periphery) of the stator 11, and the stator 11 may be fixed.
- the stator 11 may be fixed to the case 13 by tightening.
- the case 13 is made of, for example, soft iron or stainless steel.
- FIG. 2A and 2B are schematic views showing an example of a strip steel plate before being processed into a spiral shape.
- FIG. 2A is a view of the belt-shaped steel plate as viewed from a direction perpendicular to the plate surface.
- 2B is an enlarged view of a region surrounded by a broken line in FIG. 2A.
- the steel plate strip-shaped steel plate
- the steel plate is an example of a metal plate (strip-shaped metal plate), and specific examples of the metal plate include electromagnetic steel plates, cold-rolled steel plates, and hot-rolled steel plates.
- the strip-shaped steel plate 21 extending along one direction has a yoke portion 22 corresponding to the yoke of the stator 11 and teeth portions 23a to 23e (23) corresponding to the teeth of the stator 11.
- notches 24a to 24d (24) are formed.
- FIG. 2A only five teeth portions 23 are shown, but the same number of teeth portions 23 as the number of teeth of the stator 11 are formed on the belt-shaped steel plate 21.
- FIG. 2A only four cutouts 24 are shown, but the same number of cutouts 24 as the cuts 15a to 15l are formed in the strip steel plate 21.
- the width direction of the yoke part 22 and the longitudinal direction (extending direction) of the tooth part 23 coincide, and the longitudinal direction of the yoke part 23 and the width direction of the tooth part 23 (a direction perpendicular to the longitudinal direction of the tooth part 23). ) Matches.
- the tooth portion 23 extends along the longitudinal direction (extending direction) of the strip steel plate 21 so as to protrude from one side edge (end portion) in the width direction of the yoke portion 22 toward the width direction. Are formed at regular intervals.
- the notches 24 are formed at positions between the teeth portions 23 of the yoke portion 22.
- the cutout portion 24 is the inner end portion of the yoke portion 22 (one end in the width direction of the yoke portion 22, and the tooth portion 23 is formed in the yoke portion 22.
- the outer end of the yoke 22 of the belt-shaped steel plate 21 (the other end in the width direction of the yoke 22 and the end on the side where the teeth 23 are not formed on the yoke 22) is linear. is there.
- the outer end of the yoke portion 22 of the strip steel plate 21 By forming the outer end of the yoke portion 22 of the strip steel plate 21 in a straight line, it is possible to prevent ununiform deformation and unexpected displacement when the strip steel plate 21 is processed into a spiral shape. Accuracy can be increased. Therefore, it is preferable that at least a part of the outer end portion of the yoke portion 22 of the strip-shaped steel plate 21 is linear. In addition, you may give the attachment groove
- the shape of the notch 24 on the plate surface is an isosceles triangle or an equilateral triangle having a base at the end (one end in the width direction) of the inside of the yoke part 22 (on the teeth part 23 side).
- the width W (width dimension) of the notch 24 at the inner end of the yoke portion 22 is a value corresponding to (proportional to) the difference between the outer peripheral length and the inner peripheral length of the stator 11.
- the length (depth dimension) D of the notch 24 is made as long as possible within the range in which the shape of the stator 11 is not impaired when the stator 11 is formed by a method as described later. preferable. As described above, in this case, the region 25 (see FIG.
- the length D of the notch 24 corresponds to the length of the cut 15, the length D (depth dimension) of the notch 24 is at least the length of the yoke part 22 in the width direction (width dimension).
- the length of the yoke portion 22 (the length between the end portion on the inner side (tooth portion 23 side) and the outer end portion) is 1/2 times or more.
- the length D of the notch 24 is preferably at least 3/4 times the length of the yoke portion 22 in the width direction, and at least 4/5 times the length of the yoke portion 22 in the width direction. More preferred.
- the length D of the notch portion 24 is less than the length of the yoke portion 22 in the width direction.
- the strip steel plate 21 By configuring the strip steel plate 21 as described above, the difference between the outer circumference length and the inner circumference length of the stator 11 can be corrected by the notch 24, and the strip steel plate 21 can be spiraled by a method described later.
- the hypotenuses 26 and 27 (see FIG. 2B) of the notch 24 facing each other can be matched to each other.
- the shape of the notch portion may be different from the shape of the notch portion 24 as long as the opposite oblique sides of the notch portion can be matched with each other.
- the notch part which has a shape different from the notch part 24 is demonstrated. It is assumed that the configuration other than the notch is the same as the configuration described above, and the same components as those described above are denoted by the same reference numerals as those in FIG. Therefore, detailed description is omitted.
- FIG. 5 is a schematic diagram illustrating an example of the configuration of a rotating electrical machine as an application example of the spiral core for the rotating electrical machine.
- the rotating electrical machine 50 includes a stator 51, a rotor 12, a case 13, and a rotating shaft 14.
- cuts 52a to 52l (52) from the inner peripheral surface of the stator 51 to the outer periphery are formed at intermediate positions in the circumferential direction of the slots, and the cuts are made.
- Cylindrical or elliptical columnar holes 53a to 53l (53) are formed at the tips of 52a to 52l (side closer to the outer peripheral end of the stator 51).
- the mutually opposing surfaces of the cuts 52a to 52l are combined with each other, and the stress generated on the facing surfaces (the cuts 52a to 52l) is within a range smaller than the stress generated on the outer peripheral side region of the stator 51. It is preferably as small as possible, and most preferably 0. Further, the total value (in the radial direction) of the cut 52 and the hole 53 is as much as possible within a range in which the shape of the stator 51 is not impaired when the stator 51 is formed by a method as described later. It is preferable to make it longer.
- 6A and 6B are schematic views showing an example of a strip steel plate before being processed into a spiral shape. 6A and 6B correspond to FIGS. 2A and 2B, respectively.
- the strip-shaped steel plate 61 is formed with a yoke portion 22, teeth portions 23a to 23e (23), and notches 62a to 62d (62). Since the spiral core is used as the stator core, the notch 62 (notch) is an end portion on the inner side of the yoke portion 22 (one end in the width direction of the yoke portion 22 and a tooth portion 23 of the yoke portion 22 is formed.
- the shape of the notch 62 on the plate surface is a circle or an ellipse with respect to the apex angle of an isosceles triangle or equilateral triangle having a base at the end (one end in the width direction) of the yoke part 22 (on the teeth part 23 side). It is the shape which added. That is, in the notch 62, the circle or ellipse is arranged to include the apex angle of an isosceles triangle or an equilateral triangle. Further, the width W of the notch 62 at the inner end of the yoke portion 22 is a value corresponding to (proportional to) the difference between the outer peripheral length and the inner peripheral length of the stator 51.
- the length (depth dimension) D of the notch 62 is made as long as possible within the range in which the shape of the stator 51 is not impaired when the stator 51 is formed by a method as described later. preferable. Even if the notch 62 as described above is formed in the yoke part 22, the same effect as that obtained by forming the notch 24 in the yoke part 22 can be obtained.
- FIG. 3 is a schematic diagram illustrating an example of a configuration of a manufacturing apparatus of a spiral core (stator 11) for a rotating electrical machine.
- the manufacturing apparatus of a spiral core for a rotating electrical machine includes a shape processing unit 31 (first processing unit), a notch processing unit 32 (second processing unit), and a spiral processing unit 33.
- the shape processing unit 31 performs processing such as slitter cutting with a roll blade on the rectangular strip steel plate 34 to form the yoke portion 22 and the teeth portion 23 shown in FIG. 2A. At this stage, the notch 24 is not formed.
- the notch processing unit 32 performs a process such as punching on the strip-shaped steel plate 35 on which the yoke portion 22 and the tooth portion 23 are formed, and sequentially performs a predetermined number (one or two or more) of the notch portions 24 shown in FIG. 2A. Form.
- This notch processing unit 32 (position where the notch portion 24 is formed) is disposed at a position that does not interfere with the spiral machining unit 33 and within a predetermined distance (predetermined dimension) from a position where the strip steel plate 36 is processed in a spiral shape. .
- the strip steel plate 36 is processed before the spiral processing due to the presence of the notch portion 24.
- the belt-shaped steel plate 36 is bent, when the belt-shaped steel plate 36 is deformed or processed into a spiral shape, the diagonal sides of the notch portions that are opposed to each other cannot be matched with each other, and the spiral core breaks. 15 may have a gap. In this case, the magnetic properties of the strip steel plate 36 itself are lowered, or the magnetic properties of the spiral core are lowered.
- the strip steel plate 36 is processed into a spiral shape while being bent in the laminating direction, a gap is generated in the laminating direction of the strip steel plate 36, and the shape of the spiral core is deteriorated.
- a large processing strain is introduced into the spiral core, so that the magnetic properties of the spiral core are greatly deteriorated. Therefore, in order to suppress a decrease in magnetic properties due to bending, the winding position of the spiral machining (position where the bending process is started) and the side near the winding position of the notch machining unit 32 that forms the notch 24. It is preferable that the distance (the above-mentioned predetermined dimension) x to the end face of is 1000 mm or less.
- the distance x is more preferably 500 mm or less, and most preferably 300 mm or less.
- this distance x can be suitably set according to the intensity
- the distance x may be set to 500 mm or less when the length D of the notch 24 is 3/4 or more of the length in the width direction of the yoke 22.
- the distance x may be set to 10 mm or more so that the notch processing unit 32 and the spiral processing unit 33 (or the spirally strip-shaped steel plate 36) do not interfere with each other.
- the spiral processing unit 33 bends the strip-shaped steel plate 36 in the plate width direction (direction perpendicular to the sheet passing direction and the plate thickness direction) in order from the portion where the notch portion 24 is formed by the notch processing unit 32. In this way, the layers are laminated while being bent and processed into a spiral shape.
- the spiral processing unit 33 is a belt-shaped non-uniform pressure roll so that the length in the longitudinal direction (circumferential direction) of the yoke portion 22 is longer than the length in the width direction (circumferential direction) of the teeth portion 23.
- the steel plate 36 can be processed into a spiral shape, or the strip-shaped steel plate 36 can be forced into a spiral shape along the guide.
- the yoke portion 22 is disposed on the outer peripheral side of the stator 11, and the tooth portion 23 is disposed on the inner peripheral side of the stator 11.
- the strip-shaped steel plate 36 processed and laminated by the spiral processing unit moves downward in the vertical direction while being wound around a core metal (not shown) of the spiral processing unit.
- the strip steel plate 34 can be passed through without changing the height of the strip steel plate 34.
- the strip-shaped steel plate 36 processed into a spiral shape is bonded at a predetermined portion (for example, in the stacking direction) by a bonding method such as caulking, adhesion, or welding.
- the coupling of the strip-shaped steel plates 36 processed in a spiral manner as described above is completed, and a predetermined process is performed as necessary, whereby the stator 11 is formed.
- the notch 24 is formed on the belt-shaped steel plate 35 at a position immediately before the belt-shaped steel plate 36 is processed into a spiral shape. Is forming. For example, if the notched portion 24 is formed at the same time with the yoke portion 22 and the tooth portion 23 on the strip steel plate, the rigidity of the strip steel plate is reduced, so that the strip steel plate is deformed before the strip steel plate reaches the spiral machining unit 33. The magnetic properties and shape of the spiral core are deteriorated.
- the notch 24 is simultaneously formed together with the yoke 22 and the teeth 23, it is difficult to reuse the processing unit (for example, a mold or CAD data) by changing the dimension such as the length D of the notch 24. This may increase the cost.
- the processing unit for example, a mold or CAD data
- the tooth part 23, and the notch part 24 are formed at a time is immediately before the position where the strip steel plate is processed into a spiral shape, a single rectangular shape as shown in FIG. 4A. Since it becomes difficult to manufacture the several strip steel plates 41 and 42 from this strip steel plate 34a, the production elasticity of a spiral core falls.
- the manufacturing method and manufacturing apparatus for a rotating electrical machine spiral core may include the following configuration as a modification of the present embodiment.
- the apparatus for manufacturing a helical core for a rotating electrical machine may include a guide that suppresses deformation of the strip steel plates 35 and 36.
- this guide is disposed between the shape processing unit 31 and the spiral processing unit 33 so as to support the strip steel plates 35 and 36 at least from the lower side in the vertical direction (for example, the guide 37 shown in FIG. 8).
- this guide may support the strip steel plates 35 and 36 from the upper side and the lower side in the vertical direction.
- a heating unit 38 that heats the strip steel plate 36 may be disposed, and the strip steel plate 36 may be heated after the notch processing.
- the heating temperature by the heating unit 38 can be determined according to the steel plate. For example, this heating temperature is about 300 ° C. for a 3% Si-based electrical steel sheet.
- distortion for example, punching distortion or bending distortion
- this strain reduces the magnetic properties of the spiral core, it is preferable to perform heating to remove the strain.
- the strip-shaped steel plate 36 is wound around a core bar (not shown) of the spiral processing unit 33, and a distortion like an induction heating furnace is performed.
- the strain relief heat treatment (SRA) may be performed online using the take-off heating unit 39.
- the core after the spiral processing may be subjected to strain relief heat treatment in another line using an external heating unit such as an induction heating furnace or a box furnace.
- the strain relief annealing as described above is preferably performed as appropriate according to the characteristics required for the spiral core and the steel type of the strip steel plate 36.
- the annealing temperature of the strain relief annealing is about 750 ° C.
- the notch processing unit may be installed so as to be movable or rotatable in the width direction of the strip steel plate to be passed.
- the depth dimension of the notch and the position of the notch can be adjusted flexibly without changing the machining unit.
- FIG. 4A and 4B are schematic views showing an example of a state (cutting position) in which the yoke portion 22 and the tooth portion 23 are formed on the rectangular belt-shaped steel plate 34.
- FIG. 4A and 4B are schematic views showing an example of a state (cutting position) in which the yoke portion 22 and the tooth portion 23 are formed on the rectangular belt-shaped steel plate 34.
- the front end side of the teeth part 23 of one strip steel plate 41 (42) is arranged in a region corresponding to the slot of the other strip steel plate 42 (41) (that is, one strip steel plate 41 (42).
- the rectangular strip steel plate 34a is processed so that the teeth 23 of the other strip and the teeth 23 of the other strip steel plate 42 (41) are alternately arranged.
- unnecessary portions of the strip-shaped steel plate 34 can be reduced as much as possible, and a decrease in the yield of the strip-shaped steel plate 34a can be prevented as much as possible.
- the shape of one strip steel plate 41 (42) and the shape of the other strip steel plate 42 (41) may be different from each other. For example, dimensions such as the length of the tooth portion 23 in the longitudinal direction and the width of the yoke portion 22 can be appropriately changed.
- strip steel plates 41, 42 from one rectangular strip steel plate 34a as shown in FIG. 4A, and from one rectangular strip steel plate 34b to 1 as shown in FIG. 4B.
- a sheet of strip steel plate 43 may be formed.
- the outer end portion (one end) of the yoke portion 22 is linear, even if the strip-shaped steel plate 43 is formed as shown in FIG. 4B, the region outside the yoke portion 22 (the one end side). The unnecessary portion of the rectangular strip steel plate 34b can be reduced as compared with the prior art.
- FIG. 7A is a schematic view of an example (first arrangement example) of a manufacturing apparatus of a spiral core for a rotating electrical machine including a plurality of spiral machining units as viewed from above in the vertical direction.
- FIG. 7A is a schematic view of an example (first arrangement example) of a manufacturing apparatus of a spiral core for a rotating electrical machine including a plurality of spiral machining units as viewed from above in the vertical direction.
- FIG. 7A is a schematic view of an example (second arrangement example) of a manufacturing apparatus of a spiral core for a rotating electrical machine including a plurality of spiral machining units as viewed from the horizontal direction.
- FIG. 7B is a schematic view of an example (second arrangement example) of a manufacturing apparatus of a spiral core for a rotating electrical machine including a plurality of spiral machining units as viewed from the horizontal direction.
- two spiral machining units 33a and 33b are arranged side by side in the vertical direction, and a notch machining unit 32a (32b) is arranged immediately before each spiral machining unit 33a (33b).
- a notch machining unit 32a 32b
- the same power can be used for the spiral processing units 33a and 33b.
- one spiral machining unit in FIG. 7B may be shifted in the horizontal direction.
- the arrangement method of the two spiral machining units is not particularly limited.
- the strip steel plates 41 and 42 are separated and transported in different directions. Therefore, when the transport distance from the shape processing unit to the spiral processing unit is shortened, the strip steel plates 41 and 42 are It may be deformed and the magnetic properties and shape of the spiral core may deteriorate. Therefore, it is preferable that the transport distance from the shape processing unit 31 to the spiral processing unit 33 is equal to or greater than a predetermined value so that the angle formed by each transport direction when the strip steel plates 41 and 42 are separated can be sufficiently reduced.
- the transport distance from the shape processing unit 31 to the spiral processing unit 33 is equal to or greater than a predetermined value so that the angle formed by each transport direction when the strip steel plates 41 and 42 are separated can be sufficiently reduced.
- a steel plate will deform
- the transport distance from the shape processing unit 31 to the spiral processing unit 33 becomes long.
- a plurality of notch processing units 32 (32a, 32b) are required in addition to the shape processing unit 31, and each notch processing unit 32 is processed by each spiral processing.
- the unit 33 (33a, 33b) is disposed at a position within a predetermined distance (predetermined dimension).
- the notch portion 24 is formed by the notch processing unit 32 at a position immediately before being processed into a spiral shape.
- the strip-shaped steel plate is processed into a spiral shape while giving a curvature to the strip-shaped steel plate in order from the portion where the cutout portion 24 is formed. Therefore, before the strip steel plate is processed into a spiral shape, it is possible to prevent the strip steel plate from being bent due to the presence of the notch 24 as much as possible.
- the strip-shaped steel plate 21 when forming the spiral core for a rotating electrical machine includes a rectangular yoke portion 22 and a width of the yoke portion 22.
- the teeth part 23 which protrudes from the one end in a direction at equal intervals, and the notch part 24 are provided.
- the notch 24 is formed at an end portion (the one end) on the side where the tooth portion 23 of the yoke portion 22 is formed, and at an intermediate position between the adjacent tooth portions 23.
- stator 11 spiral core for rotating electrical machine
- the outer peripheral side thickness of the yoke from becoming thinner than the inner peripheral side thickness.
- stress can be concentrated on the region 25 on the outer peripheral side of the yoke portion 22 (yoke) with respect to the notch portion 24 (cut 15).
- the spiral core for a rotating electrical machine having good characteristics (for example, a spiral core for a rotating electrical machine having excellent dimensional accuracy such as roundness and thickness and magnetic characteristics). And the cost of the spiral core for a rotating electrical machine can be reduced. Moreover, since the strip-shaped steel plate 41 shown in FIG. 4A can be formed, unnecessary portions of the rectangular strip-shaped steel plate 34a can be further reduced, and the cost of the spiral core for rotating electrical machines can be further reduced. Can do.
- a strip-shaped steel plate having the shape shown in FIG. 2A was produced to produce a 30 mm thick spiral core stator.
- the outer diameter of the stator was 120 mm ⁇
- the inner diameter of the teeth root portion was 90 mm ⁇ .
- Tables 1 and 2 also show the relationship between the ratio of the notches and the stator yield (“excellent” or “impossible”). Moreover, the yield of the stator was better when the spiral core was produced than when the round core was punched from each product hoop. In addition, since the notch processing unit is arranged immediately before the spiral processing unit, the yield of the stator is good even when the notch is formed in the yoke portion and the ratio of the notch is increased.
- a strip steel plate having the shape shown in FIG. 2A was produced to produce a 30 mm thick spiral core stator.
- the outer diameter of the stator was 200 mm ⁇
- the inner diameter of the tooth root portion was 180 mm ⁇ .
- the depth dimension of the cut 15 shown in FIG. 1 is variously changed with respect to the length in the width direction of the yoke (hereinafter, the depth dimension of the cut 15 with respect to the length in the width direction of the yoke is changed to the notch portion). Called ratio).
- an integrated round core was also produced as a comparative example.
- Table 3 shows the ratio of the notch portion and the evaluation result of the shape of the steel sheet in the region 25 (stress concentration portion) shown in FIG. 2B.
- Table 3 shows the ratio of the notch portion and the evaluation result of the shape of the steel sheet in the region 25 (stress concentration portion) shown in FIG. 2B.
- Table 3 shows the ratio of the notch portion and the evaluation result of the shape of the steel sheet in the region 25 (stress concentration portion) shown in FIG. 2B.
- Table 3 shows the ratio of the notch portion and the evaluation result of the shape of the steel sheet in the region 25 (stress concentration portion) shown in FIG. 2B.
- Table 3 shows the ratio of the notch portion and the evaluation result of the shape of the steel sheet in the region 25 (stress concentration portion) shown in FIG. 2B.
- Table 3 shows the ratio of the notch portion and the evaluation result of the shape of the steel sheet in the region 25 (stress concentration portion) shown in FIG. 2B.
- Table 3 shows the ratio of the notch portion and the evaluation result
- a strip-shaped steel plate having the shape shown in 6A was produced to produce a 30 mm thick spiral core stator.
- the outer diameter of the stator was 120 mm ⁇
- the inner diameter of the tooth root portion was 90 mm ⁇ .
- the depth dimension of the cut 52 shown in FIG. 5 is variously changed with respect to the length in the width direction of the yoke (hereinafter, the depth dimension of the cut 15 with respect to the length in the width direction of the yoke is changed to the notch portion). Called ratio).
- Table 4 (50A470) and Table 5 show the ratio of the notch portions and the evaluation results of the shape of the steel plate in the stress concentration portion in the vicinity of the circular portion of the notch portion 62 shown in FIG. 6B for the helical core stators manufactured from the respective product hoops. (50A800).
- the evaluation method it evaluated using the same reference
- the ratio of the notch portions was changed to 0.5, 0.75, and 0.80, the shape of the stress concentration portion was greatly improved. Also, the yield of the stator was better when the spiral core was produced than when the round core was punched from the product hoop. In addition, since the notch processing unit is arranged immediately before the spiral processing unit, the yield of the stator is good even when the notch is formed in the yoke portion and the ratio of the notch is increased.
- a yoke part and a tooth part are formed on the belt-like steel sheet by a first-stage die (punching).
- FIG. A sheet of steel strip was produced.
- two 30 mm-thick spiral core stators were manufactured with two non-uniform pressure rolls.
- the outer diameter of the stator was 120 mm ⁇
- the inner diameter of the teeth root portion was 90 mm ⁇ .
- the ratio of the notch was set to 0.5.
- the spiral core was produced by changing various distances from the mold for forming the notch portion to the non-uniform pressure roll for spiral processing.
- the distance from the first-stage mold to the non-uniform pressure roll is set to the same distance for the two lines. Further, one line of the same spiral core manufacturing apparatus as described above was selected, and a single strip-shaped steel plate as shown in FIG. 4B was also produced.
- a spiral core was manufactured under the condition that a yoke part, a tooth part, and a notch part are simultaneously formed using a mold (a condition in which a die as a notch processing unit is not arranged).
- Table 6 SPCC-SD
- Table for the spiral core stator manufactured from each product hoop the distance from the mold forming the notch to the non-uniform pressure roll, and the evaluation results of the shape and magnetic properties of the spiral core. 7 (Electromagnetic steel sheet).
- the evaluation method of the shape and magnetic characteristics of the spiral core the case where the yoke part, the tooth part and the notch part are simultaneously formed using a die (when there is no die as a notch processing unit) is “0”.
- Tables 6 and 7 also show the relationship between the distance from the mold forming the notch to the non-uniform pressure roll and the yield of the stator (“excellent”, “good” or “impossible”). The yield of the stator was good under all conditions, and the yield was further improved by producing two strip steel plates from one strip steel plate.
- the magnetic properties, yield, and production elasticity of the helical core for rotating electrical machines can be improved, and the cost of the helical core for rotating electrical machines can be reduced as compared with the prior art.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
さらに、特許文献3では、長尺帯状の珪素鋼板を打ち抜いて、橋絡部を残すようにティースと切欠きとを一度に形成し、単位鉄心素板を作製している。さらに、この単位鉄心素板から積層鉄心を形成した後、積層鉄心に絶縁層を形成している。このような切欠きを単位鉄心素板に形成することにより、単位鉄心素板の材料ロスを少なくし、絶縁層を積層鉄心に形成することにより、切欠き形成に伴う積層鉄心の強度を改善している。
また、特許文献2に開示された技術では、各コア片の外周が円弧状であると共に、連結部に相当する部分を除いて各コア片の間の金属板が無駄になる。したがって、打ち抜きに使用される金属板のうち、ステータコアとして使用されない部分が必ずしも十分に低減されているとは言えない。すなわち、特許文献2に開示された技術では、ステータコアとして螺旋コアを使用しても、金属板の歩留まりが十分に低減されているとは言えない。また、特許文献2に開示された帯状金属板は、複雑な形状を有する。以上のことから、特許文献2に開示された技術でも、回転電機用螺旋コアのコストを十分に低減することが困難である。
さらに、特許文献3に開示された技術では、ティースと切欠きとを同時に打ち抜くため、珪素鋼板を打ち抜く工程から積層鉄心を形成する工程までの単位鉄心素板の強度が低下し、単位鉄心素板を通板中に単位鉄心素板が変形して(撓んで)しまう虞がある。この場合、積層鉄心の形状が悪化し、積層鉄心の磁気特性が低下してしまう。
本発明は、このような問題点に鑑みてなされたものであり、回転電機用螺旋コアのコストを従来よりも低減することを目的とする。
(2)上記(1)に記載の回転電機用螺旋コアの製造方法は、前記第三の工程の前でかつ前記第二の工程の後に、前記帯状金属板を加熱する工程をさらに含んでもよい。
(3)上記(1)または(2)に記載の回転電機用螺旋コアの製造方法は、前記第三の工程の間又は後に、前記帯状金属板を加熱して、歪取り焼鈍を行う工程をさらに含んでもよい。
(4)上記(1)または(2)に記載の回転電機用螺旋コアの製造方法では、前記切欠きの深さ寸法が、前記ヨーク部の幅寸法の1/2倍以上であり、且つ、前記ヨーク部の幅寸法未満であってもよい。
(5)上記(1)または(2)に記載の回転電機用螺旋コアの製造方法では、前記切欠きの板面上における形状が、前記ヨーク部の前記幅方向における前記一側縁上に底辺を有する二等辺三角形又は正三角形であってもよい。
(6)上記(1)または(2)に記載の回転電機用螺旋コアの製造方法では、前記切欠きの板面上における形状は、前記ヨーク部の前記幅方向における前記一側縁上に底辺を有する二等辺三角形又は正三角形の頂角に対して円又は楕円を加えた形状であってもよい。
(7)上記(1)または(2)に記載の回転電機用螺旋コアの製造方法では、前記ヨーク部の前記幅方向における他の側縁の少なくとも一部が直線状であってもよい。
(8)上記(1)または(2)に記載の回転電機用螺旋コアの製造方法では、前記所定寸法は、10mm以上1000mm以下であってもよい。
(10)上記(9)に記載の回転電機用コアの製造装置は、前記第二の加工ユニットと前記螺旋加工ユニットとの間に前記帯状金属板を加熱する加熱ユニットをさらに備えてもよい。
(11)上記(9)または(10)に記載の回転電機用螺旋コアの製造装置は、前記螺旋加工ユニットにより前記帯状金属板が螺旋状に加工される間又は後に、前記帯状金属板を加熱して、歪取り焼鈍を行う歪取り加熱ユニットをさらに備えてもよい。
(12)上記(9)または(10)に記載の回転電機用螺旋コアの製造装置は、前記第一の加工ユニットと前記螺旋加工ユニットとの間に、少なくとも鉛直方向下側から前記帯状金属板を支持するガイドをさらに備えてもよい。
(13)上記(9)または(10)に記載の回転電機用螺旋コアの製造装置では、前記所定寸法が、10mm以上1000mm以下であってもよい。
このような回転電機用螺旋コアを製造する際に、帯状鋼板にヨーク部及びティース部と切欠部とが別々に形成され、帯状鋼板に切欠部を形成してから所定寸法以内の位置で、帯状鋼板が螺旋状に加工されるので、切欠きを形成した後の帯状鋼板の撓みを可及的に抑制することができ、1枚の帯状鋼帯から各種枚数(1枚から複数枚まで)の帯状鋼帯を柔軟に作製することができる。したがって、回転電機用螺旋コアの磁気特性、歩留まり及び生産弾力性を高め、回転電機用螺旋コアのコストをさらに低減することができる。
まず、本実施形態に係る回転電機用螺旋コアの製造方法によって製造される螺旋コアの一例について説明する。
図1は、回転電機用螺旋コアの適用例としての回転電機の構成の一例を示す概略図である。具体的に、図1は、回転電機を、その回転軸に垂直な方向から切った断面図を示している。
図1において、回転電機10は、固定子(ステータ)11と、回転子(ロータ)12と、ケース13と、回転軸14とを備えている。尚、図1では、図示の都合上、コイル等の部材を省略している。
具体的に、切れ目15の長さは、少なくともヨークの径方向の長さの1/2倍以上である。この切れ目15の長さは、ヨークの径方向の長さの3/4倍以上であることが好ましく、ヨークの径方向の長さの4/5倍以上であることがより好ましい。ただし、切れ目15の長さは、ヨークの径方向の長さ未満である。
なお、ヨーク部22の幅方向と、ティース部23の長手方向(延在方向)が一致し、ヨーク部23の長手方向と、ティース部23の幅方向(ティース部23の長手方向に垂直な方向)が一致している。
切欠部24(切欠き)は、ヨーク部22の、各ティース部23間の位置に形成される。本実施例では、螺旋コアがステータコアとして使用されるため、切欠部24は、ヨーク部22の内側の端部(ヨーク部22の幅方向における一端であり、かつヨーク部22にティース部23が形成されている側の端部)であって、かつ各スロットの底に対応するヨーク部22の端部の長手方向における中間(相互に隣接するティース部23の中間)である位置に形成される。尚、切欠部24は、スロットに対応する領域(スロットの底に対応するヨーク部22の端部)の全てに1つずつ形成されている。
なお、帯状鋼板21のヨーク部22の外側の端部(ヨーク部22の幅方向における他端であり、かつヨーク部22にティース部23が形成されていない側の端部)は、直線状である。帯状鋼板21のヨーク部22の外側の端部を直線状にすることにより、帯状鋼板21を螺旋状に加工する際に不均圧な変形及び予期せぬずれを防止し、帯状鋼板21の形状精度を高めることができる。そのため、帯状鋼板21のヨーク部22の外側の端部の少なくとも一部が直線状であることが好ましい。なお、帯状鋼板21のヨーク部22の外側の端部には、例えば、ケース13への取付け溝を施しても良い。
図5において、回転電機50は、固定子51と、回転子12と、ケース13と、回転軸14とを備えている。
図5に示すように、本実施形態では、各スロットの周方向における中間の位置において、固定子51の内周面から外周に向かう切れ目52a~52l(52)が形成されており、且つ、切れ目52a~52lの先端(固定子51の外周側の端部に近い側)に円柱状又は楕円柱状の孔53a~53l(53)が形成されている。各切れ目52a~52lの相互に対向する面は相互に合わさっており、この対向面(各切れ目52a~52l)に生じる応力は、上記固定子51の外周側の領域に生じる応力よりも小さい範囲で可及的に小さいのが好ましく、0であるのが最も好ましい。また、切れ目52と孔53との(径方向の)長さの合計値は、後述するような方法により固定子51を形成する際に、固定子51の形状が損なわれない範囲で可及的に長くするのが好ましい。
図6Aに示すように、帯状鋼板61には、ヨーク部22と、ティース部23a~23e(23)と、切欠部62a~62d(62)とが形成されている。
螺旋コアがステータコアとして使用されるため、切欠部62(切欠き)は、ヨーク部22の内側の端部(ヨーク部22の幅方向における一端であり、かつヨーク部22のティース部23が形成されている側の端部)であって、かつ各スロットの底に対応するヨーク部22の端部の長手方向における中間(相互に隣接するティース部23の中間)である位置に形成される。尚、切欠部62は、スロットに対応する領域(スロットの底に対応するヨーク部22の端部)の全てに1つずつ形成されている。
以上のような切欠部62をヨーク部22に形成しても、ヨーク部22に切欠部24を形成した効果と同様の効果を得ることができる。
まず、回転電機用螺旋コアの製造方法及び製造装置の基本構成について説明する。
図3は、回転電機用螺旋コア(固定子11)の製造装置の構成の一例を示す概略図である。尚、図3に示す白抜きの矢印は、帯状鋼板が移動する方向を示す。
図3において、回転電機用螺旋コアの製造装置は、形状加工ユニット31(第一の加工ユニット)と、切欠加工ユニット32(第二の加工ユニット)と、螺旋加工ユニット33とを備える。
この場合には、帯状鋼板36自体の磁気特性が低下したり、螺旋コアの磁気特性が低下したりする。さらには、帯状鋼板36がその積層方向に撓んだ状態で螺旋状に加工されるため、帯状鋼板36の積層方向に隙間が生じ、螺旋コアの形状が悪化する。また、このような螺旋コアの形状を強制的に矯正した場合、大きな加工歪が螺旋コアに導入されるため、螺旋コアの磁気特性が大きく低下する。したがって、撓みに伴う磁気特性の低下を抑制するために、螺旋加工の巻付位置(曲げ加工が開始される位置)と、切欠部24を形成する切欠加工ユニット32の上記巻付位置に近い側の端面との距離(上記所定寸法)xが、1000mm以下であることが好ましい。より螺旋コアの磁気特性を改善するために、この距離xは、500mm以下であることがより好ましく、300mm以下であることが最も好ましい。なお、この距離xは、帯状鋼板の強度及び厚み、切欠部の深さ寸法に応じて適宜設定することができる。例えば、切欠部24の長さDがヨーク部22の幅方向の長さの3/4倍以上である場合に、距離xを500mm以下に設定してもよい。また、切欠加工ユニット32と、螺旋加工ユニット33(もしくは、螺旋加工された帯状鋼板36)とが干渉しないように、距離xを10mm以上に設定してもよい。
螺旋状に加工された帯状鋼板36は、例えば、カシメ、接着、溶接等の結合方法によって所定の部分(例えば、積層方向)で結合される。以上のようにして螺旋状に加工された帯状鋼板36の結合が終了し、必要に応じて所定の処理が行われることにより、固定子11が形成される。
回転電機用螺旋コアの製造装置は、帯状鋼板35、36の変形を抑制するガイドを備えてもよい。例えば、このガイドは、少なくとも鉛直方向下側から帯状鋼板35、36を支持するように、形状加工ユニット31と螺旋加工ユニット33との間に配置される(例えば、図8に示すガイド37)。また、このガイドが鉛直方向の上側及び下側から帯状鋼板35、36を支持してもよい。
11、51 固定子
12 回転子
13 ケース
14 回転軸
15 切れ目
21、61 帯状鋼板
22 ヨーク部
23 ティース部
24、62 切欠部(切欠き)
31 形状加工ユニット(第一の加工ユニット)
32 切欠加工ユニット(第二の加工ユニット)
33 螺旋加工ユニット
37 ガイド
38 加熱ユニット
39 歪取り加熱ユニット
52 切れ目
53 孔
Claims (13)
- 一方向に沿って延在する帯状金属板に対して、前記一方向に沿って延在するヨーク部と、このヨーク部の幅方向の一側縁より前記幅方向に向かって突出する複数のティース部と、を形成する第一の工程と;
この第一の工程の後、前記ヨーク部の、前記各ティース部間の位置に切欠きを形成する第二の工程と;
この第二の工程の後、前記帯状金属板を、前記切欠きが形成された部分から順に、前記幅方向に向かって湾曲するように曲げを付与して螺旋状に加工する第三の工程と;
を備え、
前記第三の工程で、前記曲げの付与を開始する位置と、前記切欠きを形成する位置との間の距離を、所定寸法内に制限する
ことを特徴とする回転電機用螺旋コアの製造方法。 - 前記第三の工程の前でかつ前記第二の工程の後に、前記帯状金属板を加熱する工程をさらに含むことを特徴とする請求項1に記載の回転電機用螺旋コアの製造方法。
- 前記第三の工程の間又は後に、前記帯状金属板を加熱して、歪取り焼鈍を行う工程をさらに含むことを特徴とする請求項1または2に記載の回転電機用螺旋コアの製造方法。
- 前記切欠きの深さ寸法が、前記ヨーク部の幅寸法の1/2倍以上であり、且つ、前記ヨーク部の幅寸法未満であることを特徴とする請求項1または2に記載の回転電機用螺旋コアの製造方法。
- 前記切欠きの板面上における形状が、前記ヨーク部の前記幅方向における前記一側縁上に底辺を有する二等辺三角形又は正三角形であることを特徴とする請求項1又は2に記載の回転電機用螺旋コアの製造方法。
- 前記切欠きの板面上における形状が、前記ヨーク部の前記幅方向における前記一側縁上に底辺を有する二等辺三角形又は正三角形の頂角に対して円又は楕円を加えた形状であることを特徴とする請求項1又は2に記載の回転電機用螺旋コアの製造方法。
- 前記ヨーク部の前記幅方向における他の側縁の少なくとも一部が直線状であることを特徴とする請求項1又は2に記載の回転電機用螺旋コアの製造方法。
- 前記所定寸法が10mm以上1000mm以下であることを特徴とする請求項1又は2に記載の回転電機用螺旋コアの製造方法。
- 一方向に沿って延在する帯状金属板に対して、前記一方向に沿って延在するヨーク部と、このヨーク部の幅方向の一側縁より前記幅方向に向かって突出する複数のティース部と、を形成する第一の加工ユニットと;
前記ヨーク部の、前記各ティース部間の位置に切欠きを形成する第二の加工ユニットと;
前記帯状金属板を、前記切欠きが形成された部分から順に、前記幅方向に向かって湾曲するように曲げを付与して螺旋状に加工する螺旋加工ユニットと;
を備え、
前記螺旋加工ユニットで前記曲げの付与を開始する位置と、前記第二の加工ユニットで前記切欠きを形成する位置との間の距離が、所定寸法内である
ことを特徴とする回転電機用螺旋コアの製造装置。 - 前記第二の加工ユニットと前記螺旋加工ユニットとの間に前記帯状金属板を加熱する加熱ユニットをさらに備えることを特徴とする請求項9に記載の回転電機用螺旋コアの製造装置。
- 前記螺旋加工ユニットにより前記帯状金属板が螺旋状に加工される間又は後に、前記帯状金属板を加熱して、歪取り焼鈍を行う歪取り加熱ユニットをさらに備えることを特徴とする請求項9または10に記載の回転電機用螺旋コアの製造装置。
- 前記第一の加工ユニットと前記螺旋加工ユニットとの間に、少なくとも鉛直方向下側から前記帯状金属板を支持するガイドをさらに備えることを特徴とする請求項9または10に記載の回転電機用螺旋コアの製造装置。
- 前記所定寸法が10mm以上1000mm以下であることを特徴とする請求項9または10に記載の回転電機用螺旋コアの製造装置。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/995,280 US9647517B2 (en) | 2009-10-07 | 2011-01-28 | Manufacturing method for helical core for rotating electrical machine and manufacturing device for helical core for rotating electrical machine |
EP11856870.8A EP2670030B1 (en) | 2011-01-28 | 2011-01-28 | Manufacturing method for helical core for rotating electrical machine and manufacturing device for helical core for rotating electrical machine |
CN201180065880.5A CN103329408B (zh) | 2011-01-28 | 2011-01-28 | 旋转电机用螺旋铁心的制造方法及旋转电机用螺旋铁心的制造装置 |
PCT/JP2011/051732 WO2012101812A1 (ja) | 2011-01-28 | 2011-01-28 | 回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 |
JP2011522174A JP4932967B1 (ja) | 2011-01-28 | 2011-01-28 | 回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 |
PL11856870T PL2670030T3 (pl) | 2011-01-28 | 2011-01-28 | Sposób wytwarzania spiralnego rdzenia dla wirującej maszyny elektrycznej i urządzenie wytwarzające spiralny rdzeń dla wirującej maszyny elektrycznej |
KR1020137019529A KR101501862B1 (ko) | 2011-01-28 | 2011-01-28 | 회전 전기 기기용 나선 코어의 제조 방법 및 회전 전기 기기용 나선 코어의 제조 장치 |
HK14102034.8A HK1189100A1 (zh) | 2011-01-28 | 2014-02-28 | 旋轉電機用螺旋鐵心的製造方法及旋轉電機用螺旋鐵心的製造裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/051732 WO2012101812A1 (ja) | 2011-01-28 | 2011-01-28 | 回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012101812A1 true WO2012101812A1 (ja) | 2012-08-02 |
Family
ID=46395274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051732 WO2012101812A1 (ja) | 2009-10-07 | 2011-01-28 | 回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9647517B2 (ja) |
EP (1) | EP2670030B1 (ja) |
JP (1) | JP4932967B1 (ja) |
KR (1) | KR101501862B1 (ja) |
CN (1) | CN103329408B (ja) |
HK (1) | HK1189100A1 (ja) |
PL (1) | PL2670030T3 (ja) |
WO (1) | WO2012101812A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161114A (ja) * | 2011-01-28 | 2012-08-23 | Nippon Steel Corp | 回転電機用螺旋コアの製造方法および回転電機用螺旋コアの製造装置 |
JP2014175649A (ja) * | 2013-03-11 | 2014-09-22 | Tempel Steel Company | 自動車用オルタネータに使用される螺旋巻鉄心の焼鈍方法 |
JP2015033329A (ja) * | 2013-08-05 | 2015-02-16 | ゼネラル・エレクトリック・カンパニイ | トルクリップルが低減されたスポーク永久磁石機械およびその製造方法 |
JP2015100153A (ja) * | 2013-11-18 | 2015-05-28 | 株式会社デンソー | 回転電機の固定子鉄心およびその製造方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202076857U (zh) * | 2011-01-06 | 2011-12-14 | 德昌电机(深圳)有限公司 | 电机定子 |
US10333360B2 (en) * | 2013-05-10 | 2019-06-25 | Mitsubishi Electric Corporation | Iron core member with divided yoke and tooth portions with V-shaped end joint portions |
CN103683719B (zh) * | 2013-12-26 | 2015-10-21 | 重庆市林正机械有限公司 | 卷绕式电机定子铁芯的加工工艺 |
CN105180416A (zh) * | 2015-01-24 | 2015-12-23 | 吴新祥 | 热水器及其所包含的散热利用结构以及螺旋导流板 |
CN105490472A (zh) * | 2015-12-24 | 2016-04-13 | 福建农林大学 | 一种电机定子卷铁心制备方法及其毛坯带料 |
CN106936227A (zh) * | 2017-04-20 | 2017-07-07 | 信质电机股份有限公司 | 汽车发电机卷绕自粘接定、转子铁芯及其加工工艺和设备 |
CN106862384B (zh) * | 2017-04-26 | 2018-10-16 | 佛山市传恒机电制造有限公司 | 一种铁芯制作方法及铁芯 |
CN107492993A (zh) * | 2017-08-04 | 2017-12-19 | 北京首钢股份有限公司 | 一种卷绕式定子加工方法 |
CN111033980B (zh) * | 2017-08-25 | 2022-05-10 | 三菱电机株式会社 | 分割铁芯连结体及电枢的制造方法 |
US10910927B2 (en) * | 2018-03-20 | 2021-02-02 | Ford Global Technologies, Llc | Localized induction heat treatment of electric motor components |
WO2020088488A1 (zh) * | 2018-10-31 | 2020-05-07 | 淮安威灵电机制造有限公司 | 横向磁通电机 |
CN109687657A (zh) * | 2018-12-21 | 2019-04-26 | 重庆长基科技有限公司 | 一种定子组件及其制作方法 |
CN110868028A (zh) * | 2019-12-09 | 2020-03-06 | 珠海格力精密模具有限公司 | 一种成型定转子铁芯的方法 |
CN112260490A (zh) * | 2020-09-10 | 2021-01-22 | 东风电驱动系统有限公司 | 一种电机转子结构的装配方法及电机转子结构 |
CN116033646B (zh) * | 2022-07-15 | 2023-11-24 | 荣耀终端有限公司 | Pcb组件及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0223048A (ja) * | 1988-07-08 | 1990-01-25 | Tamagawa Seiki Co Ltd | 電機用鉄芯の製造方法 |
JPH0644353U (ja) * | 1992-11-18 | 1994-06-10 | 黒田精工株式会社 | 回転電機用固定子鉄芯に用いる帯状鋼板 |
JPH08163835A (ja) * | 1994-11-30 | 1996-06-21 | Nippon Steel Corp | ディスク型回転機用巻きコアの製造方法とその回転機コア |
JP2000116037A (ja) | 1998-09-29 | 2000-04-21 | Toshiba Corp | モータの積層鉄心の製造方法、モータおよび洗濯機 |
JP2005185014A (ja) | 2003-12-19 | 2005-07-07 | Toyota Motor Corp | 回転電機の螺旋巻コア |
JP2008283736A (ja) * | 2007-05-08 | 2008-11-20 | Hitachi Ltd | 回転電機の固定子組立方法及び固定子組立装置 |
JP2009153266A (ja) | 2007-12-19 | 2009-07-09 | Mitsui High Tec Inc | 積層鉄心の製造方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2565530A (en) * | 1950-11-02 | 1951-08-28 | Vincent K Smith | Dynamoelectric machine and method of making same |
US2985780A (en) * | 1958-03-21 | 1961-05-23 | American Mach & Foundry | Slot liner for dynamo electric machines |
US3062267A (en) * | 1959-12-08 | 1962-11-06 | Gen Electric | Method and apparatus for helically winding strip material |
JPS5623337A (en) * | 1979-08-03 | 1981-03-05 | Honda Motor Co Ltd | Manufacture of outer wheel for uniform speed universal joint |
US4613780A (en) * | 1984-10-12 | 1986-09-23 | General Electric Company | Lanced strip and edgewise wound core |
JPH0644353A (ja) | 1992-07-22 | 1994-02-18 | Toshiba Corp | 画像表示装置 |
JPH0779551A (ja) * | 1993-09-09 | 1995-03-20 | Sankyo Seiki Mfg Co Ltd | 電機用鉄心の製造方法 |
US5429687A (en) * | 1994-01-03 | 1995-07-04 | Ateliers Thome-Genot | Process for manufacturing alternator pole piece |
US5986377A (en) * | 1997-04-11 | 1999-11-16 | Kabushiki Kaisha Toshiba | Stator for dynamoelectric machine |
JP2000245081A (ja) | 1999-02-17 | 2000-09-08 | Toyota Motor Corp | 直流電動機用ステータ及びその製造方法 |
DE19934858A1 (de) * | 1999-07-24 | 2001-01-25 | Abb Research Ltd | Rotierende elektrische Maschine und Verfahren zu deren Herstellung |
FR2804552B1 (fr) * | 2000-01-28 | 2003-01-03 | Leroy Somer | Procede de fabrication d'un circuit de machine electrique |
TW508891B (en) * | 2000-02-21 | 2002-11-01 | Misubishi Electric Corp | Stator iron core of electric motor, manufacturing method thereof, electric motor, and compresor |
FR2806495A1 (fr) | 2000-03-14 | 2001-09-21 | Bealach No Bo Finne Teo Ta Gal | Procede d'analyse d'un logiciel de test |
DE10037410A1 (de) * | 2000-08-01 | 2002-02-14 | Abb Research Ltd | Rotierende elektrische Maschine und Verfahren zu deren Herstellung |
EP1248347B1 (en) | 2000-08-29 | 2008-01-23 | Mitsubishi Denki Kabushiki Kaisha | Stacked stator core and production method therefor |
FR2835977B1 (fr) * | 2002-02-11 | 2004-07-02 | Leroy Somer Moteurs | Procede et machine pour la fabrication d'un circuit magnetique de machine electrique |
SE0301116D0 (sv) * | 2003-04-15 | 2003-04-15 | Hoeganaes Ab | Core back of an electrical machine and method for making the same |
US6919665B2 (en) * | 2003-09-30 | 2005-07-19 | Nidec Shibaura Corporation | Stator core, an electric motor in which it is utilized, and method of manufacturing a stator core |
JP2007068310A (ja) * | 2005-08-30 | 2007-03-15 | Aisin Seiki Co Ltd | 回転機の積層巻きコア |
US7777387B2 (en) * | 2007-04-27 | 2010-08-17 | Mitsui High-Tec, Inc. | Laminated core and method for manufacturing the same |
JP2008178199A (ja) * | 2007-01-17 | 2008-07-31 | Toyota Motor Corp | コイル製造方法、モータのコイル、及びモータの固定子 |
JP4316626B2 (ja) * | 2007-01-30 | 2009-08-19 | 三菱電機株式会社 | 回転電機 |
JP2008211948A (ja) * | 2007-02-28 | 2008-09-11 | Aisin Seiki Co Ltd | 積層回転子鉄心の製造方法 |
WO2008139843A1 (ja) * | 2007-05-09 | 2008-11-20 | Mitsui High-Tec, Inc. | 積層鉄心及びその製造方法 |
JP4948474B2 (ja) * | 2008-05-16 | 2012-06-06 | 株式会社富士通ゼネラル | 電動機 |
JP5620126B2 (ja) * | 2009-05-15 | 2014-11-05 | 株式会社三井ハイテック | 積層鉄心 |
-
2011
- 2011-01-28 PL PL11856870T patent/PL2670030T3/pl unknown
- 2011-01-28 JP JP2011522174A patent/JP4932967B1/ja active Active
- 2011-01-28 US US13/995,280 patent/US9647517B2/en active Active
- 2011-01-28 KR KR1020137019529A patent/KR101501862B1/ko active IP Right Grant
- 2011-01-28 CN CN201180065880.5A patent/CN103329408B/zh active Active
- 2011-01-28 WO PCT/JP2011/051732 patent/WO2012101812A1/ja active Application Filing
- 2011-01-28 EP EP11856870.8A patent/EP2670030B1/en active Active
-
2014
- 2014-02-28 HK HK14102034.8A patent/HK1189100A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0223048A (ja) * | 1988-07-08 | 1990-01-25 | Tamagawa Seiki Co Ltd | 電機用鉄芯の製造方法 |
JPH0644353U (ja) * | 1992-11-18 | 1994-06-10 | 黒田精工株式会社 | 回転電機用固定子鉄芯に用いる帯状鋼板 |
JPH08163835A (ja) * | 1994-11-30 | 1996-06-21 | Nippon Steel Corp | ディスク型回転機用巻きコアの製造方法とその回転機コア |
JP2000116037A (ja) | 1998-09-29 | 2000-04-21 | Toshiba Corp | モータの積層鉄心の製造方法、モータおよび洗濯機 |
JP2005185014A (ja) | 2003-12-19 | 2005-07-07 | Toyota Motor Corp | 回転電機の螺旋巻コア |
JP2008283736A (ja) * | 2007-05-08 | 2008-11-20 | Hitachi Ltd | 回転電機の固定子組立方法及び固定子組立装置 |
JP2009153266A (ja) | 2007-12-19 | 2009-07-09 | Mitsui High Tec Inc | 積層鉄心の製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161114A (ja) * | 2011-01-28 | 2012-08-23 | Nippon Steel Corp | 回転電機用螺旋コアの製造方法および回転電機用螺旋コアの製造装置 |
JP2014175649A (ja) * | 2013-03-11 | 2014-09-22 | Tempel Steel Company | 自動車用オルタネータに使用される螺旋巻鉄心の焼鈍方法 |
EP2779381A3 (en) * | 2013-03-11 | 2016-04-13 | Tempel Steel Company | Process for annealing of helical wound cores used for automotive alternator applications |
JP2015033329A (ja) * | 2013-08-05 | 2015-02-16 | ゼネラル・エレクトリック・カンパニイ | トルクリップルが低減されたスポーク永久磁石機械およびその製造方法 |
JP2015100153A (ja) * | 2013-11-18 | 2015-05-28 | 株式会社デンソー | 回転電機の固定子鉄心およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4932967B1 (ja) | 2012-05-16 |
JPWO2012101812A1 (ja) | 2014-06-30 |
EP2670030B1 (en) | 2019-03-13 |
US9647517B2 (en) | 2017-05-09 |
CN103329408B (zh) | 2015-11-25 |
CN103329408A (zh) | 2013-09-25 |
KR20130118926A (ko) | 2013-10-30 |
PL2670030T3 (pl) | 2019-08-30 |
EP2670030A1 (en) | 2013-12-04 |
EP2670030A4 (en) | 2018-03-28 |
KR101501862B1 (ko) | 2015-03-12 |
HK1189100A1 (zh) | 2014-05-23 |
US20130276297A1 (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4932967B1 (ja) | 回転電機用螺旋コアの製造方法及び回転電機用螺旋コアの製造装置 | |
CN105846565A (zh) | 电机电枢及其制造方法 | |
JP2007267585A (ja) | 積層鉄心及びその製造方法 | |
JP5751534B2 (ja) | 回転電機の固定子鉄心の製造方法 | |
JP2010193715A (ja) | 積層鉄心及びその製造方法 | |
JP5390869B2 (ja) | 積層鉄心及びその製造方法 | |
JP5144238B2 (ja) | 積層鉄心の製造方法および帯状鉄心片 | |
JP5150952B2 (ja) | 積層鉄心の製造方法 | |
JP4630858B2 (ja) | 積層鉄心およびその製造方法 | |
JP2012217279A (ja) | 回転電機用ステータコア、回転電機、および、回転電機用ステータコアの製造方法 | |
JP6094146B2 (ja) | 回転電機の固定子鉄心の製造方法 | |
JP2013093932A (ja) | 螺旋コア形成用帯状金属板、回転電機の螺旋コア、及び螺旋コアの製造方法 | |
JP5438441B2 (ja) | 積層鉄心の製造方法及びこれを用いて製造した積層鉄心 | |
JP2007028760A (ja) | クローポール型モータの固定子鉄心の製造方法 | |
CN110366807B (zh) | 旋转电机的层叠铁芯、旋转电机的层叠铁芯的制造方法、以及旋转电机 | |
JP7133803B2 (ja) | 回転電機のハウジングの製造方法 | |
JP7057831B2 (ja) | 回転電機 | |
JP5306796B2 (ja) | アウターロータ型モータ用積層鉄心及びその製造方法 | |
JP2008061315A (ja) | 積層鉄心の製造方法および製造装置 | |
JP7357811B2 (ja) | 分割コア、回転電機、分割コアの製造方法、および、回転電機の製造方法 | |
TWI455452B (zh) | 用於旋轉電機之螺旋核之製造方法及用於旋轉電機之螺旋核之製造裝置 | |
JP2011072058A (ja) | 回転電機 | |
JP5893396B2 (ja) | 積層鉄心 | |
JP2008278598A (ja) | 積層鉄心の製造方法およびそれによって製造された積層鉄心 | |
JP2011250602A (ja) | 固定子積層鉄心およびこれを用いた回転電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011522174 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11856870 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13995280 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011856870 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137019529 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |