WO2012098911A1 - 光信号増幅装置 - Google Patents

光信号増幅装置 Download PDF

Info

Publication number
WO2012098911A1
WO2012098911A1 PCT/JP2012/000360 JP2012000360W WO2012098911A1 WO 2012098911 A1 WO2012098911 A1 WO 2012098911A1 JP 2012000360 W JP2012000360 W JP 2012000360W WO 2012098911 A1 WO2012098911 A1 WO 2012098911A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phase
optical
signal
sum frequency
Prior art date
Application number
PCT/JP2012/000360
Other languages
English (en)
French (fr)
Inventor
遊部 雅生
毅伺 梅木
圓佛 晃次
明雄 登倉
宮本 裕
高良 秀彦
弘和 竹ノ内
勲 富田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP12736206.9A priority Critical patent/EP2672318B1/en
Priority to US13/980,756 priority patent/US9065243B2/en
Priority to JP2012553644A priority patent/JP5856083B2/ja
Priority to CN201280005966.3A priority patent/CN103403616B/zh
Publication of WO2012098911A1 publication Critical patent/WO2012098911A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3536Four-wave interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Definitions

  • the present invention relates to an optical amplifying device, and more specifically to an optical amplifying device used in an optical communication system and an optical measurement system, and an optical transmitting device and an optical receiving device provided with the optical amplifying device.
  • an identification regenerative optical repeater that converts an optical signal into an electrical signal and regenerates the optical signal after identifying the digital signal is used to reproduce the signal attenuated by propagating through the optical fiber. It was done.
  • this identification / reproduction optical repeater has problems such as limited response speed of electronic components that convert optical signals into electrical signals, and increased power consumption as the speed of transmitted signals increases. .
  • a fiber laser amplifier and a semiconductor laser amplifier for amplifying signal light by making excitation light incident on an optical fiber doped with rare earth elements such as erbium and praseodymium. Since the fiber laser amplifier and the semiconductor laser amplifier can amplify the signal light as it is, there is no limitation on the electrical processing speed that has been a problem in the identification reproduction optical repeater. In addition, there is an advantage that the device configuration is relatively simple. However, these laser amplifiers do not have a function of shaping a deteriorated signal light pulse waveform.
  • phase-sensitive optical amplifier As a means for overcoming the limitations of such conventional laser amplifiers, a phase sensitive optical amplifier (PSA) has been studied.
  • This phase-sensitive optical amplifier has a function for shaping a signal light pulse waveform that has deteriorated due to the influence of dispersion of the transmission fiber.
  • spontaneous emission light having a quadrature phase irrelevant to the signal can be suppressed, it is possible in principle to keep the S / N ratio of the signal light unchanged before and after amplification.
  • Fig. 1 shows the basic configuration of a conventional phase sensitive optical amplifier.
  • This optical amplifier includes a phase sensitive light amplification unit 101, a pumping light source 102, a pumping light phase control unit 103, and two optical branching units 104-1 and 104-2.
  • the input signal light 110 is amplified when the phase of the signal light and the pumping light in the phase sensitive light amplification unit 101 satisfies a specific relationship described later, and the phase of both is shifted by 90 degrees from the specific relationship described later.
  • the input signal light 110 has a characteristic of attenuating. Using this characteristic, the phase between the pumping light and the signal light is controlled and synchronized so that the amplification gain is maximized, so that spontaneous emission light having a quadrature phase with the signal light is not generated, that is, the S / N ratio.
  • the signal light can be amplified without degrading.
  • the phase of the pumping light 111 is controlled so as to be synchronized with the phase of the input signal light 110 branched by the optical branching unit 104-1.
  • the pumping light phase control unit 103 detects a part of the output signal light 112 branched by the optical branching unit 104-2 with a narrow-band detector and controls the phase of the pumping light 111 so that the output signal becomes maximum. To do.
  • the phase sensitive light amplifying unit 101 is controlled so that the phase of the signal light and the phase of the pumping light are synchronized, so that optical amplification without deterioration of the S / N ratio can be realized.
  • the pumping light phase control unit 103 may be configured to directly control the phase of the pumping light source 102 in addition to the configuration of controlling the phase of the pumping light on the output side of the pumping light source 102 as shown in FIG.
  • the light source that generates the signal light is arranged near the phase sensitive light amplification unit, a part of the light source for signal light can be branched and used as excitation light.
  • phase-sensitive light amplification unit A medium having a second-order or third-order nonlinear optical effect is used for the phase-sensitive light amplification unit.
  • phase sensitive optical amplifiers have been mainly used in basic research fields such as squeezing for controlling the quantum state of light.
  • studies using second-order nonlinear optical crystals have been reported.
  • Non-Patent Document 1 When using the second-order nonlinear optical effect, as shown in Non-Patent Document 1, an optical crystal or the like is used as a nonlinear medium, a wavelength corresponding to the second harmonic of signal light is used as excitation light, and excitation light is used. And signal light are incident on a nonlinear medium, and phase-sensitive amplification is achieved by performing degenerate parametric amplification (OPA) using three-wave mixing.
  • OPA degenerate parametric amplification
  • a laser beam having a relatively high intensity from a laser light source 201 is branched, one is incident on a SHG (Second Harmonic Generation) crystal 202, and the other is used as a signal light 210.
  • the excitation light 211 and the signal light 210 converted to the second harmonic are incident on the nonlinear optical crystal 203 capable of degenerate optical parametric amplification, and phase sensitive amplification is performed.
  • phase sensitive optical amplifier In the phase sensitive optical amplifier, an amplification action occurs only when the phase of the signal light satisfies a specific relationship with the phase of the excitation light. Specifically, the phase of the signal light and the excitation light needs to match or be shifted by ⁇ radians. That is the case of using second-order nonlinear optical effect, that the phase phi 2Omegaesu of the excitation light is a wavelength corresponding to the second harmonic, and the phases phi .omega.s of the signal light satisfy the following equation (1) Necessary.
  • FIG. 3 is a graph showing the relationship between the phase difference ⁇ between the input signal light and the pump light and the gain (dB) in the conventional phase sensitive optical amplifier using the second-order nonlinear optical effect. It can be seen that the gain is maximum when ⁇ is ⁇ , 0, or ⁇ .
  • a part of the output signal light is branched and detected by a narrow-band detector, and the phase of the excitation light is controlled so that the output signal becomes maximum.
  • phase synchronization between the signal light and the pumping light can be achieved.
  • the degenerate parametric amplification described above is a special case in which the wavelengths of the signal light and the idler light coincide with each other in the non-degenerate parametric amplification.
  • the phase ⁇ SH of the pumping light, the wavelength corresponding to the second harmonic, the phase ⁇ S of the signal light, and the phase ⁇ i of the idler light are expressed by the following (formula 2):
  • phase sensitive optical amplifiers to optical communication
  • the application of phase sensitive optical amplifiers to optical communication is attracting attention.
  • the field of optical communication there is a report of a configuration using the third-order nonlinear optical effect of an optical fiber having high compatibility with optical components for communication.
  • an optical fiber or the like is used as the nonlinear medium, and as shown in Non-Patent Document 2, one excitation light having the same wavelength as the signal light is used, and the excitation light and the signal light are combined.
  • Phase-sensitive amplification can be achieved by entering a nonlinear medium and performing degenerate parametric amplification using four-wave mixing.
  • Non-Patent Document 3 when the optical frequency of the signal light is ⁇ s , optical frequencies ⁇ p1 and ⁇ p2 satisfying (Equation 4) are set. You may use the two excitation light which each has.
  • phase of the signal light and the pumping light can be achieved by controlling the phase of the light.
  • Non-Patent Document 2 there is a method using one pumping light having the same wavelength as the signal light or two pumping lights having different wavelengths from the signal light.
  • the signal light and the pump light are separated using a loop type fiber interferometer.
  • phase characteristics due to GAWBS guided acoustic waves wave Brillouin scattering
  • a method using two excitation lights as shown in Non-Patent Document 3 has been well studied in recent years.
  • FIG. 4 shows a configuration in which an optical fiber is used and two excitation lights are used.
  • two excitation lights (411-1, 411-2) synchronized with the average phase of the incident signal 410 are obtained using means such as four-wave mixing in an optical fiber.
  • the two pumping lights (411-1, 411-2) and the signal light 410 are amplified by an erbium-doped fiber laser amplifier (EDFA) 402 and are incident on a highly nonlinear optical fiber 403.
  • EDFA erbium-doped fiber laser amplifier
  • the signal light 410 and the two excitation lights (411-1, 411-2) are combined and amplified by the EDFA, but only the two excitation lights are amplified by the EDFA, It is considered that the same effect can be obtained even if the light enters the optical fiber after being multiplexed.
  • the phase so that the relationship shown in the above (Formula 5) is established between the signal light and the two excitation lights, phase-sensitive amplification by four-wave mixing can be achieved.
  • the conventional techniques described above have the following problems.
  • FIG. 4 shows a configuration in which necessary power is obtained by an optical fiber amplifier such as an EDFA so that the nonlinear optical effect in the optical fiber can be used.
  • ASE light is superimposed on the excitation light as noise.
  • the wavelength of the excitation light and the wavelength of the signal light are close to each other, it is difficult to remove the ASE light, and the ASE light generated from the EDFA is also superimposed on the signal light wavelength. As a result, the S / N ratio of the signal light deteriorates, and optical amplification with low noise cannot be performed.
  • An object of the present invention is to provide a phase sensitive optical amplifying apparatus that can be applied to optical communication and can be amplified with low noise in view of the above-described problems of the prior art.
  • optical OFDM Orthogonal Frequency Frequency Division Multiplexing
  • a data transmission / reception method called a super channel that performs modulation is being studied.
  • an optical comb composed of carriers of optical frequencies arranged at equal intervals is generated using a mode-locked laser or an optical modulator. .
  • the generated optical comb is distributed by a demultiplexer, data modulation is performed on each carrier wave using an optical modulator, and the signals are combined again and guided to a transmission line.
  • Non-Patent Document 6 a method of generating an optical comb by using a light source having a single wavelength by a modulator has also been proposed. In addition, the optical power is reduced by the conversion efficiency into a plurality of carrier waves.
  • phase-sensitive optical amplifier uses degenerate parametric amplification, the signal wavelength that can be amplified is one, and multiple carriers can be simultaneously transmitted. It cannot be amplified.
  • FIG. 5 shows a schematic diagram of a conventional method for amplifying multiple wavelengths using four-wave mixing in an optical fiber.
  • a plurality of modulated light and excitation light are incident on the first optical fiber 501 in the copier portion, and idler light whose phase is inverted from that of the input modulated light is generated by wavelength conversion using four-wave mixing.
  • idler light groups corresponding to the plurality of modulated light groups are incident on the second optical fiber 502, and non-degenerate parametric amplification is performed.
  • this configuration it is possible to amplify the phase of signal light having a plurality of wavelengths.
  • optical fiber amplifier 503 is used for generating and amplifying pumping light. Since amplified spontaneous emission (ASE) generated from the optical fiber amplifier is mixed in the amplified signal light, the output S / N ratio is increased. Had a problem that it deteriorated more than the input.
  • ASE amplified spontaneous emission
  • the present invention relates to a phase-sensitive optical amplifying device that amplifies signal light by optical mixing using a nonlinear optical effect, an optical fiber laser amplifier that amplifies fundamental light, and a second-order nonlinear optical material that is periodically poled.
  • a second-order nonlinear optical element having an optical waveguide for generating sum frequency light from the fundamental light, a filter for separating only the sum frequency light from the fundamental light and the sum frequency light, signal light, and excitation
  • a multiplexer for multiplexing the sum frequency light, which is light, and an optical waveguide for performing parametric amplification of the signal light using the excitation light, composed of a periodically nonlinearly-polarized second-order nonlinear optical material
  • a second-order nonlinear optical element, a filter that separates amplified signal light and excitation light, and means for synchronizing the phase of the signal light and the phase of the excitation light are provided.
  • the sum frequency light is a second harmonic.
  • the parametric amplification is a degenerate parametric amplification.
  • the parametric amplification is non-degenerate parametric amplification.
  • the signal light is a pair of one or more signal lights that are symmetrical about the optical frequency that is half the sum frequency light that is the excitation light and that have the same or inverted phase information. It is characterized by comprising.
  • the means for synchronizing the phase of the signal light and the phase of the excitation light includes a phase modulator and an optical length expander, and a part of the amplified signal light or a part of the excitation light. Based on the intensity change of the light detected by the detecting means, and means for detecting the intensity change of the light branched by the means for branching corresponding to the phase change modulated by the phase modulator And a phase-locked loop circuit that performs feedback so as to maximize the intensity of the amplified signal light in the optical length expander.
  • the means for synchronizing the phase of the signal light and the phase of the excitation light is a semiconductor laser that generates fundamental light or a semiconductor laser that generates light that is phase-synchronized with the fundamental light or excitation light.
  • a phase-locked loop that provides feedback to the drive current of a semiconductor laser that generates fundamental light or a semiconductor laser that generates light that is phase-synchronized with the fundamental or pump light so as to maximize the intensity of the amplified signal light And a circuit.
  • the signal light further comprises a pilot tone of continuous wave light
  • the phase sensitive optical amplifying device further comprises means for branching a part of the signal light and a semiconductor laser light source, and a semiconductor laser
  • the light source is characterized in that light injection-locked by a pilot tone of continuous-wave light and phase-locked to the injected light and output from the semiconductor laser light source is used as fundamental light.
  • the semiconductor laser light source further includes means for branching a part of the signal light and a semiconductor laser light source, and the semiconductor laser light source is injected with the sum frequency light output from the filter that separates only the sum frequency light.
  • the continuous light output from the semiconductor laser light source that is synchronized and phase-synchronized with the injection light is used as excitation light.
  • a means for branching a part of signal light a semiconductor laser light source, a light source for generating first fundamental wave light, and a second-order nonlinear optical material that is periodically poled
  • a second-order nonlinear optical element having an optical waveguide for generating a difference frequency light with respect to one fundamental wave light, and the semiconductor laser is injection-locked by the generated difference frequency light and is phase-shifted to the injection light.
  • Second-order nonlinear optical element provided To generate sum frequency light.
  • a means for branching a part of signal light, a semiconductor laser light source, a light source for generating first fundamental wave light, and a second-order nonlinear optical material that is periodically poled A second-order nonlinear optical element comprising an optical waveguide for generating a second harmonic of signal light and for generating a difference frequency light between the generated second harmonic and the first fundamental light
  • the generated difference frequency light is injection-locked to the semiconductor laser, and the continuous light output from the semiconductor laser light source, phase-locked to the injection light, is used as the second fundamental wave light, and the first fundamental wave light and the first Using the second fundamental wave light, the sum frequency light is generated by a second-order nonlinear optical element having an optical waveguide for generating the sum frequency light from the fundamental wave light.
  • the fundamental wave light and the filter that separates only the sum frequency light from the sum frequency light is a dichroic mirror using a dielectric film or an optical demultiplexing element using multimode interference.
  • the multiplexer that combines the signal light and the sum frequency light that is the excitation light is a dichroic mirror that uses a dielectric film or an optical multiplexing element that uses multimode interference. It is characterized by.
  • the filter that separates the amplified signal light and the excitation light is a dichroic mirror using a dielectric film or an optical demultiplexing device using multimode interference.
  • the sum frequency light is transmitted through a single-mode polarization maintaining fiber at the wavelength of the sum frequency light.
  • a band pass filter is further provided between the optical fiber laser amplifier and a second-order nonlinear optical element including an optical waveguide for generating sum frequency light.
  • the second-order nonlinear optical element having an optical waveguide for generating sum frequency light and the second-order nonlinear optical element having an optical waveguide for performing parametric amplification are individually temperature-controlled. It is adjustable.
  • an optical receiver comprising a phase sensitive optical amplifying device and a photodiode, wherein the phase sensitive optical amplifying device is a light that is subordinately connected to the phase sensitive optical amplifying device. It further comprises a fiber laser amplifier and a bandpass filter that transmits wavelengths in the vicinity of the amplified signal light.
  • an optical transmission device including a phase-sensitive optical amplification device, a light source that generates signal light, an optical modulator, and a unit that branches a part of the output from the light source.
  • a part of the output from the branched light source is used as the fundamental wave light.
  • a phase modulator is further provided on the output side of the optical fiber laser amplifier, and the phase modulator is composed of an optical waveguide manufactured by a direct bonding method.
  • a phase modulator is further provided, the phase modulator is integrated in a second-order nonlinear optical element including an optical waveguide for generating sum frequency light, and the phase modulator is sum frequency light. It is formed adjacent to the same waveguide as the optical waveguide for generating light, and is connected to the front stage or the rear stage of the optical waveguide for generating sum frequency light.
  • a phase modulator is further provided, a phase modulator, a fundamental wave light, a filter that separates only the sum frequency light from the sum frequency light, and a signal light and excitation light that are combined.
  • a waver is integrated in a second-order nonlinear optical element having an optical waveguide for generating sum frequency light, and a filter and a multiplexer are formed on the same waveguide as the optical waveguide,
  • the phase modulator is connected to the front stage of the multiplexer, the filter is connected to the front stage of the multiplexer, and the optical waveguide for generating the sum frequency light is connected to the front stage of the filter and the multiplexer. It is characterized by.
  • a phase modulator is further provided, a phase modulator, a fundamental wave light, a filter that separates only the sum frequency light from the sum frequency light, and a signal light and excitation light that are combined.
  • a waver is integrated in a second-order nonlinear optical element having an optical waveguide for performing parametric amplification, and a phase modulator and a multiplexer are formed adjacent to the same waveguide as the optical waveguide,
  • the filter is connected to the front stage of the multiplexer, the optical waveguide is connected to the rear stage of the multiplexer, and the phase modulator is connected to the front stage of the multiplexer.
  • a phase modulator is further provided, a phase modulator, a filter that separates only the sum frequency light from the fundamental wave light and the sum frequency light, and a multiplexing that combines the signal light and the excitation light.
  • a phase modulator is further provided, a phase modulator, a filter that separates only the sum frequency light from the fundamental wave light and the sum frequency light, and a multiplexing that combines the signal light and the excitation light.
  • the second-order nonlinear optical element is integrated as one optical element, an optical waveguide for generating sum frequency light, a filter that separates only the sum frequency light from the fundamental wave light and the sum frequency light, signal light and excitation light And the optical waveguide for performing parametric amplification are formed adjacent to each other on the same waveguide, and the phase modulator combines the signal light and the excitation light.
  • the filter that separates only the sum frequency light from the light is connected to the preceding stage of the multiplexer, and the optical waveguide for generating the sum frequency light is a filter that separates only the sum frequency light from the fundamental wave light and the sum frequency light.
  • the optical waveguide connected to the preceding stage of the multiplexer and used for parametric amplification is connected to the subsequent stage of the multiplexer.
  • fundamental light is incident on a second-order nonlinear optical element that includes a phase modulator, means for reflecting sum frequency light, and an optical waveguide for generating sum frequency light from the fundamental light.
  • an optical circulator that transmits the amplified signal light, a first light used for the input of the signal light, and the output of the fundamental light separated by the filter that separates only the sum frequency light from the fundamental light and the sum frequency light.
  • a waveguide, and a second optical waveguide connecting the reflection means and the multiplexer, and the filter, the multiplexer, the first optical waveguide, and the second optical waveguide generate sum frequency light.
  • Optical waveguide of a second-order nonlinear optical element that is integrated in a second-order nonlinear optical element having a plurality of optical waveguides and generates a sum frequency light from the fundamental light, and a parametric signal light using pump light Amplify
  • the optical waveguide of the second-order nonlinear optical element having the optical waveguide for use is shared, the filter and the multiplexer are shared, and the shared optical waveguide and the shared optical waveguide are combined with the second optical waveguide. Is formed adjacent to the same waveguide, and the shared optical waveguide, the first optical waveguide, and the second optical waveguide are connected to a multiplexer.
  • the cross section of the first optical waveguide opposite to the contact surface connected to the multiplexer forms an angle greater than 0 ° and less than 90 ° with the axis of the first optical waveguide.
  • at least one input / output end portion of the shared optical waveguide is end-treated so as to form an angle greater than 0 ° and less than 90 ° with the shared optical waveguide axis. .
  • the phase modulator is integrated in a second-order nonlinear optical element having an optical waveguide for generating sum frequency light from the fundamental wave, and the phase modulator is on the same waveguide as the multiplexer. It is formed adjacent to.
  • the periodically nonlinearly inverted second-order nonlinear optical material is LiNbO 3 , KNbO 3 , LiTaO 3 , LiNb x Ta 1-x O 3 (0 ⁇ x ⁇ 1), KTiOPO 4 , Alternatively, they contain at least one selected from the group consisting of Mg, Zn, Fe, Sc, and In as an additive.
  • an optical waveguide for generating sum frequency light and an optical waveguide for performing parametric amplification have a refractive index that is higher than that of the first substrate having a nonlinear optical effect and the first substrate. It is a directly bonded optical waveguide manufactured by directly bonding a small second substrate.
  • parametric light amplification is used from weak optical power used in optical communication.
  • the optical fiber amplifier can be used to obtain a sufficient power for the optical signal, and the phase sensitive optical amplifier can be configured without superimposing the ASE light generated along with the optical amplification on the signal light. High-quality optical signal amplification is possible while preventing deterioration of the ratio.
  • the present invention it is possible to amplify a plurality of wavelengths at once, and selectively amplifying signal light having a phase correlation with the excitation light, thereby causing noise caused by uncorrelated light such as ASE light. Can be suppressed.
  • the S / N ratio of the signal in the optical fiber can be improved by the phase sensitive optical amplifier that can be applied to optical communication and can be amplified with low noise. It is possible to transmit up to a distance.
  • the phase sensitive optical amplifier that can be applied to optical communication and can be amplified with low noise. It is possible to transmit up to a distance.
  • the influence of signal degradation due to wavelength dispersion of the optical fiber is reduced, and the transmission distance of the amplified signal light can be extended. It becomes possible.
  • the S / N ratio of the optical signal once deteriorated can be improved.
  • by selectively amplifying the phase-correlated signal light it is possible to improve the S / N ratio of the signal light degraded by the beat noise between the ASE light and the signal light.
  • phase sensitive optical amplifier which concerns on the 5th Embodiment of this invention including the carrier wave phase extraction method of signal light. It is a figure explaining the concept of the phase sensitive optical amplifier which concerns on the 5th Embodiment of this invention including the carrier wave phase extraction method of signal light. It is a figure explaining the concept of the phase sensitive optical amplifier which concerns on the 5th Embodiment of this invention including the carrier wave phase extraction method of signal light. It is a figure explaining the concept of the phase sensitive optical amplifier which concerns on the 5th Embodiment of this invention including the carrier wave phase extraction method of signal light. It is an optical spectrum figure for demonstrating operation
  • FIG. 6 shows the configuration of this embodiment.
  • the fundamental light 621 is amplified by using a fiber laser amplifier (EDFA) 601 in order to obtain sufficient power from the weak laser light used for optical communication to obtain a nonlinear optical effect.
  • the amplified fundamental wave light 621 is incident on the first second-order nonlinear optical element 602-1 to generate the second harmonic 622.
  • Phase sensitive amplification is performed by making the signal light 620 and the second harmonic 622 incident on the second second-order nonlinear optical element 602-2 and performing degenerate parametric amplification.
  • the configuration of such a phase sensitive optical amplifying device is a basic feature of the present invention.
  • FIGS. 7A and 7B are diagrams schematically showing the spectrum of the signal light / excitation light used in the phase-sensitive optical amplification
  • FIG. 7A shows the conventional fiber laser amplifier shown in FIG. 4 and an optical fiber as a nonlinear medium
  • FIG. 7B is a diagram illustrating a case where the configuration according to the present embodiment illustrated in FIG. 6 is used.
  • a conventional phase sensitive optical amplifier using an optical fiber uses four-wave mixing. For this reason, in order for the wavelengths of the pumping light and the signal light for performing parametric light amplification to satisfy the phase matching condition, these wavelengths must be close to each other.
  • the entire configuration is simplified. It is desirable to amplify two pump lights with one optical fiber amplifier. However, at that time, ASE light 703 generated by the optical fiber amplifier is generated in the vicinity of the pumping light wavelength. In order to prevent ASE light from being generated in the signal wavelength band, it is possible to make a configuration in which the signal light does not pass through the optical fiber amplifier. However, since both wavelengths are close when the excitation light is combined with the signal light, it is difficult to realize an optical filter with good wavelength selectivity, and the ASE light cannot be completely cut. . As a result, the ASE light generated in the signal wavelength band is superimposed on the signal wavelength, and the S / N ratio of the signal light is deteriorated due to mixing of the ASE light.
  • the wavelength of the signal light 701 and the wavelength of the fundamental light 704 are the same.
  • the fundamental light 704 is amplified by an optical fiber amplifier in order to obtain sufficient power for using the parametric light amplification from the weak light power used in optical communication.
  • the ASE light 703 is superimposed in the vicinity of the wavelength of the fundamental wave light 704.
  • the fundamental wave light 704 superimposed with the ASE light 703 is incident on the first second-order nonlinear optical element to generate the second harmonic 705.
  • the wavelength band of the second harmonic 705 used as the excitation light a wide-band ASE light that becomes noise is not generated except for the slight generation of the second harmonic of the ASE light 703.
  • the wavelength of the second harmonic 705 is half the wavelength of the fundamental light 704, and the two wavelengths are sufficiently separated. Therefore, it is relatively easy to realize a filter having a high extinction ratio that separates only the second harmonic from the fundamental wave light and the second harmonic with a dichroic mirror or the like.
  • the configuration of this embodiment will be described in detail with reference to FIG. 6 again.
  • a part of the signal light 620 is branched by the light branching unit 603-1 and used as the fundamental light 621.
  • the fundamental light 621 is amplified using an erbium-doped fiber laser amplifier (EDFA) 601.
  • EDFA erbium-doped fiber laser amplifier
  • the amplified fundamental wave light 621 is input to the first second-order nonlinear optical element 602-1.
  • the second-order nonlinear optical element 602 includes an optical waveguide 605 made of lithium niobate (PPLN) that is periodically poled.
  • PPLN waveguide 605 can use the highest nonlinear optical constant d33 of lithium niobate by quasi-phase matching, and a high optical power density can be obtained by the optical waveguide structure. High wavelength conversion efficiency can be obtained.
  • Non-Patent Document 4 describes that such a problem does not occur.
  • a waveguide made by the direct bonding shown is used.
  • the fluctuation of the phase matching wavelength is suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent light damage resistance. Moreover, high wavelength conversion efficiency was realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • the second harmonic 622 and the fundamental light 623 emitted from the first PPLN waveguide 605-1 were separated using a dichroic mirror 606-1.
  • the 0.77 ⁇ m second harmonic wave 622 reflected by the dichroic mirror 606-1 passes through the polarization maintaining fiber 607 having a single mode propagation characteristic at the wavelength of 0.77 ⁇ m, and the second second-order nonlinear optical element 602. -2.
  • the wavelength is about 1.54 ⁇ m emitted from the first PPLN waveguide 605-1 and passing through the dichroic mirror 606-1 and the polarization maintaining fiber 607.
  • the residual component of the fundamental wave light 621 and the ASE light can be effectively removed.
  • the signal light 620 and the second harmonic 622 are combined and enter the second PPLN waveguide 605-2.
  • the second PPLN waveguide 605-2 has the same performance and phase matching wavelength as the first PPLN waveguide 605-1, and the signal light can be phase-sensitively amplified by degenerate parametric amplification.
  • the two PPLN waveguides 605-1 and 605-2 are each controlled to have a constant temperature by individual temperature controllers. It is conceivable that the phase matching wavelengths do not match at the same temperature due to manufacturing errors of the two PPLN waveguides, but even in such a case, the phase matching wavelengths of both must be matched by individually controlling the temperatures. Can do.
  • the light emitted from the second PPLN waveguide 605-2 is separated by the dichroic mirror 606-3 into the second harmonic that is the excitation light and the amplified signal light. Also at this time, since the second harmonic and the amplified signal light have completely different wavelengths, it is possible to effectively remove unnecessary second harmonic components in the output.
  • phase sensitive amplification it is necessary to synchronize the phases of the excitation light and the signal light.
  • a part of the output amplified signal light is branched by the optical branching unit 603-2 and is detected by the photodetector 608.
  • phase synchronization was performed by a phase locked loop circuit (PLL) 609.
  • PLL phase locked loop circuit
  • the optical detector 608 and the PLL circuit 609 detect the phase shift of the phase modulation, and feed back to the drive voltage of the optical fiber stretcher 611 and the bias voltage of the phase modulator 610 by PZT arranged in front of the EDFA 601. As a result, optical phase fluctuations due to vibration of optical fiber parts and temperature fluctuations are absorbed, and phase-sensitive amplification can be performed stably.
  • an LN Mach-Zehnder modulator is used as the intensity modulator 624, and the amplification characteristic when a 10 Gb / s NRZ signal is input is evaluated.
  • FIG. 8A, 8B, and 8C are diagrams for explaining a time waveform of a signal amplified by the phase-sensitive optical amplifier according to the present embodiment.
  • FIG. 8A shows the output waveform of the incident signal light when the excitation light is not incident
  • FIG. 8B shows the output waveform when the phase of the excitation light and the signal light is set to satisfy the relationship of (Equation 1) by the PLL
  • 8C shows output waveforms when the phase of the excitation light and the signal light is set to be shifted by 90 degrees from the relationship of (Equation 1) by the PLL.
  • the power of the second harmonic 622 incident on the second PPLN waveguide 605-2 is obtained by synchronizing the phase of the pumping light and the phase of the signal light so as to satisfy the relationship of (Equation 1).
  • a gain of about 11 dB could be obtained under the condition of 300 mW.
  • the optical fiber amplifier by using the optical fiber amplifier, it is possible to realize the operation by the pumping light of CW light, which is an indispensable condition for application to optical communication. Further, by adopting the configuration according to the present embodiment, it is possible to prevent the ASE light generated from the optical fiber amplifier from being mixed while using the optical fiber amplifier, and therefore, it is possible to perform the phase sensitive amplification while preventing the deterioration of the S / N ratio. Became possible.
  • an optical waveguide manufactured by a direct bonding method is applied to a second-order nonlinear optical element that performs sum frequency generation and parametric amplification.
  • this technique is not limited to this embodiment, and in other embodiments
  • the signal light phase and the excitation light phase are set to be orthogonal, only the phase chirp component is phase-sensitive amplified. This means that in the state where the phase is matched to the ON state of the signal light, even if the input signal contains phase chirp, the chirp component can be removed and shaped and amplified as a signal without chirp. Show.
  • Non-Patent Document 5 In a conventional configuration in which phase-sensitive amplification is performed using two pump lights using four-wave mixing in an optical fiber, as shown in Non-Patent Document 5, between two pump lights centered on the signal light wavelength.
  • the four-wave mixing does not occur, and the condition for phase matching is satisfied between various wavelengths. Therefore, for example, a process in which the signal light is converted into another wavelength with one pumping light as the center also occurs, and the amplified signal light is successively copied to generate a plurality of signals. For this reason, the power of the amplified signal light is dissipated, and the power that can amplify the desired signal light is limited.
  • FIG. 9 shows the configuration of this embodiment.
  • ECL external resonator type semiconductor LD
  • EA electroabsorption type
  • Electroabsorption (EA) modulators can be manufactured using semiconductors and can be produced in large quantities at low cost. However, since electric field absorption is used, a frequency chirp component is superimposed on the modulation signal, thereby degrading the signal quality. That is, the phase of the output of the modulator fluctuates when transitioning between ON and OFF, and a quadrature component occurs when the ON state is used as a reference. When such a signal is used, it is known that long-distance transmission is difficult because the waveform deteriorates due to dispersion in the fiber.
  • FIG. 10 is a diagram for explaining a time waveform of a signal amplified by the phase sensitive optical amplifier according to the present embodiment.
  • FIG. 10A shows a modulated signal before amplification
  • FIG. 10B shows a phase locked loop circuit (PLL) when the pumping light phase and the signal light phase are set so as to satisfy the relationship of (Equation 1).
  • FIG. 10C shows the output waveforms when the excitation light phase and the signal light phase are set so as to be shifted by 90 degrees from the relationship of (Equation 1), respectively.
  • PLL phase locked loop circuit
  • the dispersion resistance was compared by transmitting the signal before passing through the phase sensitive optical amplifier and the signal after passing through the phase sensitive optical amplifier through a single mode fiber (SMF).
  • SMF single mode fiber
  • FIG. 11A and FIG. 11B are diagrams for explaining a time waveform of a signal after being transmitted through a single mode fiber (SMF).
  • FIG. 11A shows an output waveform after transmitting a modulated signal before amplification through a single mode fiber (SMF) having a length of 1.2 km, 2.4 km, 3.6 km, and 4.8 km, respectively.
  • SMF single mode fiber
  • FIG. 11B After passing through the phase sensitive optical amplifier according to the present invention in FIG. 11B, it is transmitted through a single mode fiber (SMF) having a length of 1.2 km, 2.4 km, 3.6 km, and 4.8 km, respectively.
  • the output waveform is shown.
  • the bit error rate was measured under the respective conditions shown in FIGS. 11A and 11B.
  • the bit error rate becomes very large.
  • the signal before passing through the phase sensitive optical amplifier is transmitted through a single mode fiber (SMF) longer than 2.4 km.
  • the signal before passing through the phase sensitive optical amplifier is transmitted by 2.4 km.
  • a bit error rate comparable to that of the signal was obtained. That is, by using the transmitter configuration according to the present embodiment, it was possible to double the dispersion tolerance for transmission.
  • an amplifier that can be shaped and amplified as a chirp-free signal can be realized.
  • an electroabsorption (EA) modulator is used as the modulator, but other modulators may be used.
  • FIG. 12 shows the configuration of this embodiment.
  • the signal light 1240 subjected to data modulation propagates through a transmission medium such as an optical fiber, and a signal is transmitted.
  • FIG. 12 shows a configuration example in which the present phase sensitive optical amplifier is used as a relay amplifier that performs an optical amplifier in order to compensate for the loss of light intensity in the transmission medium.
  • phase sensitive optical amplifier When a light source that generates signal light is arranged near the phase sensitive light amplification unit, a part of the light source for signal light can be branched and used as fundamental light.
  • phase sensitive optical amplifier when a phase sensitive optical amplifier is used as a relay amplifier in optical transmission, it is necessary to synchronize the phases of the fundamental wave light and the signal light in the phase sensitive optical amplifying device using, for example, a phase synchronization means described below.
  • an optical signal subjected to data modulation is superimposed on one polarization of the signal light, and unmodulated CW light is multiplexed on the other polarization.
  • Signal light is used as the input signal light.
  • FIG. 13 shows the configuration used to generate the input signal light used in this embodiment.
  • CW light is generated using an external resonator type semiconductor laser 1300 and branched into two optical paths using an optical splitter 1301.
  • an LN Mach-Zehnder modulator 1302 was used as an intensity modulator and a 10 Gb / s NRZ signal was superimposed.
  • a polarizer 1304 was inserted into the other branch path, and the polarization was rotated by 90 °, and the polarization was adjusted so as to be orthogonal to the light on which the intensity signal was superimposed.
  • the two signals were combined using a polarizing beam splitter (PBS) 1305 to generate modulated signal light 1310 in which a pilot tone of CW light was mixed with orthogonal polarization.
  • PBS polarizing beam splitter
  • the phase sensitive optical amplifying device is configured as shown in FIG. 12, but since this is the same configuration as the second embodiment, the description is omitted (see FIG. 9).
  • Modulated signal light 1240 obtained by mixing a pilot tone of CW light into orthogonal polarization is transmitted through a transmission medium.
  • An optical fiber was used as the transmission medium.
  • the polarization controller 1230 After the polarization rotation in the optical fiber was corrected by the polarization controller 1230, only the pilot tone of the CW light was separated using the polarization beam splitter (PBS) 1231.
  • PBS polarization beam splitter
  • the light intensity of the branched CW light pilot tone was adjusted by an attenuator (ATT) 1212, and then light injection synchronization was performed through the circulator 1213 to the CW light source 1214 in the phase sensitive light amplifying apparatus.
  • a DFB type semiconductor laser was used as the CW light source.
  • the oscillation wavelength of the DFB laser was shifted by 0.04 nm from the wavelength of the pilot tone of the CW light, the light intensity input to the CW light source was changed using an attenuator (ATT) 1212, and the state was observed with an optical spectrum analyzer.
  • FIG. 14 shows an optical spectrum diagram in which the state of operation is measured when the light intensity is set to several hundred ⁇ W.
  • the solid line represents the optical spectrum before injecting the pilot tone of the CW light
  • the broken line represents the optical spectrum after injecting the pilot tone of the CW light, so that the wavelength of the semiconductor laser is the pilot tone wavelength.
  • the CW light source in the phase sensitive optical amplifying device is phase-synchronized with the pilot tone, so that it is possible to generate fundamental light having a good S / N ratio from the pilot tone of the signal light having a deteriorated S / N ratio.
  • phase sensitive amplification can be achieved by using the above-described phase synchronization means even in relay amplification where the light source that generates the signal light is not arranged near the phase sensitive optical amplification unit. could be done.
  • FIG. 15 shows a configuration according to this embodiment.
  • the apparatus according to the present embodiment can amplify a binary phase modulation (BPSK) or binary differential phase modulation (DPSK) signal or a signal such as normal intensity modulation without adding noise.
  • BPSK binary phase modulation
  • DPSK binary differential phase modulation
  • the signal light is branched by the optical branching unit 1503-1, and the branched signal light is amplified by the EDFA 1501.
  • the amplified signal light is incident on the first PPLN waveguide 1505-1 in the first second-order nonlinear optical element 1502-1 to generate the second harmonic of the signal light.
  • a dichroic mirror 1506-1 is used to separate only the second harmonic 1522 from the light emitted from the first PPLN waveguide 1505-1.
  • Injection locking is performed by making the separated second harmonic 1522 incident on a semiconductor laser 1512 that oscillates at a wavelength of 0.77 ⁇ m.
  • the output of the semiconductor laser 1512 is amplified by a semiconductor optical amplifier 1513 having a gain in the same wavelength band as that of the semiconductor laser 1512 and is combined with signal light 1520 having a wavelength of 1.54 ⁇ m using a dichroic mirror 1506-2.
  • the signal light 1520 and the second harmonic wave 1522 having a wavelength of 0.77 ⁇ m used as excitation light are combined and then incident on the second PPLN waveguide 1505-2, and the signal light is phase-shifted by degenerate parametric amplification. Sensitive amplification is possible.
  • ⁇ s is the phase of the signal light. Therefore, the phase of the second harmonic with respect to the signal whose phase is modulated into binary values of 0 and ⁇ is binary of 0 and 2 ⁇ , and is output as light in which the phase fluctuation due to phase modulation is canceled.
  • the second harmonic from which the phase modulation component is removed is synchronized with the average phase of the signal light using injection locking as in this embodiment, It is desirable to use excitation light having a half wavelength of signal light.
  • excitation light without intensity modulation synchronized with the average phase is generated from the signal light subjected to phase modulation using injection locking.
  • phase modulation using injection locking.
  • a part of the output amplified signal light is branched by the optical branching unit 1503-2 and received by the photodetector 1508, and then oscillated from the phase locked loop circuit (PLL) 1509 at 0.77 ⁇ m.
  • PLL phase locked loop circuit
  • the EDFA 1501 is used to obtain power that enables the second harmonic generation in the first PPLN 1505-1.
  • the second PPLN in which the ASE light generated from the EDFA 1501 performs phase-sensitive amplification. Since the light does not enter the waveguide 1505-2, the S / N ratio deterioration of the signal light due to the ASE light of the optical amplifier can be prevented.
  • ASE light is generated from the semiconductor optical amplifier 1513 operating at a wavelength of 0.77 ⁇ m, but since this light is completely different in wavelength from the signal light, the dichroic mirrors (1506-2, 1506-3) are almost completely used. It can be removed. Therefore, in a repeater in optical communication, it is possible to perform phase sensitive amplification within a single polarization without degrading the S / N ratio of signal light and without using orthogonal polarization components.
  • the wavelength of the second harmonic light which is the light used as the excitation light, becomes half the wavelength of the signal light.
  • an optical component having a wavelength different from the communication wavelength band for an optical device for performing carrier phase extraction or the like.
  • optical amplifiers In a region where the wavelength is shorter than the communication wavelength such as the second harmonic, an optical fiber laser amplifier or the like cannot be used. There are some that have been put into practical use by amplifiers that use semiconductors, but due to problems such as amplification factor and saturation intensity, sufficient light intensity cannot be obtained as excitation light used for phase sensitive amplification, or There is a problem that the S / N ratio of the pumping light used in the phase sensitive optical amplifier is deteriorated due to the noise figure (NF) of the semiconductor amplifier.
  • NF noise figure
  • optical devices for light having a shorter wavelength than the communication wavelength such as second harmonics
  • the phase sensitive optical amplifier including the carrier phase extraction means is configured using only the optical components in the communication wavelength band.
  • Non-Patent Document 3 a carrier phase extraction method using four-wave mixing in an optical fiber having a third-order nonlinear effect is shown.
  • the conventional method uses four-wave mixing, the wavelength of the signal light and the wavelength of the excitation light are close to each other, and amplification is performed when performing optical amplification with an EDFA or the like.
  • ASE light spontaneous emission light
  • the wavelength of the pumping light and the wavelength of the signal light are close to each other, it is difficult to remove the ASE light, and the ASE light generated from the EDFA is also superimposed on the signal light wavelength.
  • the light S / N ratio deteriorates, and there is a problem that light amplification cannot be performed with low noise.
  • This embodiment provides a phase-sensitive optical amplifying device that can be applied to optical communication and can be amplified with low noise in view of the above-described problems of the prior art.
  • a phase sensitive optical amplifying apparatus that can be applied as a relay amplifier in optical transmission, including means for extracting a signal carrier wave phase, is provided using only optical components in the communication wavelength band.
  • FIG. 16 shows the configuration of this embodiment.
  • a part of the signal light 1640 is converted using a fiber laser amplifier (EDFA) 1601-1.
  • EDFA fiber laser amplifier
  • Amplify The amplified signal light and the first fundamental wave light 1641-1 generated by the external cavity laser 1631 having an oscillation wavelength of 1534 nm are combined and amplified, and then incident on the third second-order nonlinear optical element 1602-3.
  • the second harmonic of the signal light is generated inside the third second-order nonlinear optical element 1602-3, and the carrier wave phase is generated by the difference frequency generation between the generated second harmonic and the first fundamental light 1641-1. Perform extraction.
  • the difference frequency light is injection-locked to the second fundamental wave light 1641-2 oscillated at the same wavelength and then multiplexed with the first fundamental wave light 1641-1.
  • a fundamental laser light 1642 composed of the fundamental light 1641-1 and the fundamental light 1641-2 is amplified using a fiber laser amplifier (EDFA) 1601-2.
  • the amplified fundamental wave light is incident on the first second-order nonlinear optical element 1602-1 to generate sum frequency light as excitation light.
  • the signal light 1640 and the sum frequency light are incident on the second second-order nonlinear optical element 1602-2 to perform degenerate parametric amplification, thereby performing phase sensitive amplification.
  • the details of the configuration shown in FIG. 16 will be described later. When such a configuration is adopted, effects that cannot be obtained by the prior art as described below can be obtained.
  • FIG. 17A and 17B are diagrams schematically showing the spectrums of signal light, pumping light, and fundamental wave light used in phase-sensitive optical amplification.
  • FIG. 17A shows the conventional fiber laser amplifier and nonlinear medium shown in FIG.
  • FIG. 17B is a diagram showing a case where the configuration according to the present embodiment shown in FIG. 16 is used.
  • a conventional phase sensitive optical amplifier using an optical fiber uses four-wave mixing. For this reason, in order for the wavelengths of the pumping light and the signal light for performing parametric light amplification to satisfy the phase matching condition, these wavelengths must be close to each other. As exemplified in FIG. 17A (a-1), when the signal light 1701 and the pumping light 1702 have the same wavelength band of 1.55 ⁇ m band and two pumping lights 1702-1 and 1702-2 are used, the overall configuration In order to simplify the above, it is desirable to amplify the two pump lights with one optical fiber amplifier.
  • ASE light 1703 generated by the optical fiber amplifier is generated in the vicinity of the excitation light wavelength.
  • the excitation light is combined with the signal light and the excitation light, the wavelength of the excitation light and the wavelength of the signal light are close, so it is difficult to realize an optical filter with good wavelength selectivity. Yes, the ASE light cannot be cut completely.
  • the ASE light generated in the signal wavelength band is superimposed on the signal wavelength, and the S / N ratio of the signal light deteriorates due to the mixing of the ASE light (FIG. 17A (a-3)). ).
  • the wavelength of the signal light 1701 and the wavelength of the fundamental wave light (1702-1, 1702-2) are close to each other (see FIG. 17B (b-1)).
  • the fundamental light (1702-1, 1702-2) is amplified by an optical fiber amplifier.
  • the ASE light 1703 is superimposed in the vicinity of the wavelength of the fundamental light (see FIG. 17B (b-2)).
  • sum frequency light 1704 as excitation light is generated from fundamental wave light 1702-1 and 1702-2 on which ASE light 1703 is superimposed.
  • the sum frequency light 1704 is used as excitation light in degenerate parametric amplification.
  • no broadband ASE light that causes noise other than the slight sum frequency light of the ASE light is generated (see FIG. 17B (b-3)).
  • the wavelength of the sum frequency light 1704 is approximately half of the wavelength of the fundamental wave lights 1702-1 and 1702-2, and the two wavelengths are sufficiently separated. Accordingly, a filter having a high extinction ratio that separates only the sum frequency light (1704) from the fundamental light (1702-1, 1702-2) and the sum frequency light (1704) is realized by a dichroic mirror or the like. It is relatively easy. By connecting such a filter to the output of the first second-order nonlinear optical element, the fundamental wave light (1702-1) existing in the wavelength band of the sum frequency light (1704) used as the excitation light in the degenerate parametric amplification. , 1702-2) and the ASE light (1703) can be completely removed (see FIG. 17B (b-3)).
  • phase sensitive optical amplification including a carrier phase extraction means for amplifying 1.54 ⁇ m signal light subjected to binary phase modulation (BPSK) or binary differential phase modulation (DPSK).
  • BPSK binary phase modulation
  • DPSK binary differential phase modulation
  • a part of the signal light 1640 is adjusted in polarization through the polarization controller 1630, branched by the optical branching unit 1603-1, and combined with the first fundamental wave light 1641-1, and then added with erbium Amplified by a fiber laser amplifier (EDFA) 1601-1.
  • EDFA fiber laser amplifier
  • the amplified signal light and the first fundamental light are input to the third second-order nonlinear optical element 1602-3.
  • the second-order nonlinear optical element 1602-3 of the present embodiment includes an optical waveguide 1605-3 made of lithium niobate (PPLN) that is periodically poled.
  • PPLN lithium niobate
  • the quasi phase matching condition that enables the second harmonic generation of the signal light and the difference frequency generation between the generated second harmonic and the first fundamental light 1641-1 is set.
  • a periodic polarization reversal to satisfy is formed.
  • a second harmonic 1805 having a half wavelength with respect to the wavelength of the signal light is generated.
  • difference frequency light between the second harmonic wave generated inside and the first fundamental wave light is generated.
  • a relationship satisfying the following (Equation 7) is established among the phase ⁇ s of the signal light, the phase ⁇ p1 of the first fundamental wave light, and the phase ⁇ p2 of the difference frequency light.
  • phase ⁇ p2 of the difference frequency light is expressed by using the phase ⁇ s of the signal light and the phase ⁇ p1 of the first fundamental wave light as shown in (Equation 8) below.
  • the phase ⁇ s of the signal light can be doubled. Since the normal data signals rests modulation, it is difficult to extract the phase of the carrier, by the phase phi s of the signal light is doubled, it is possible to eliminate the phase modulation of the binary. Furthermore, by using the difference frequency generation, the difference frequency light including the phase information of the carrier wave can be extracted in the 1.55 ⁇ m band which is the same wavelength band as the signal light. At this time, the phase matching condition is uniquely determined by using a PPLN waveguide which is a second-order nonlinear optical element instead of four-wave mixing of fibers, and only desired light is extracted without generating secondary converted light. be able to.
  • the difference frequency light has no modulation effect.
  • the phase noise is superimposed on the optical signal propagating through the transmission line such as a fiber, a complete binary phase modulation state is not achieved. Therefore, the difference frequency light actually obtained remains affected by the non-uniformity of modulation.
  • the weak signal light was originally further demultiplexed and input to the third second-order nonlinear optical element, the light intensity of the obtained difference frequency light was weak. In order to solve these problems, light injection locking was performed using difference frequency light.
  • the signal light, the first fundamental wave light, and the difference frequency light output from the third second-order nonlinear optical element 1602-3 pass through the optical circulator 1613 and then the respective lights. Is demultiplexed.
  • an arrayed waveguide grating (AWG) type wavelength multiplexer / demultiplexer 1612 was used.
  • the signal light output from the demultiplexer 1612 is emitted to the space system.
  • the first fundamental wave light output from the demultiplexer 1612 was quenched using the isolator 1634.
  • a semiconductor laser 1632 that oscillates at substantially the same wavelength as the difference frequency light is connected to the output port of the duplexer 1612 having a wavelength that matches the difference frequency light. After adjusting the light intensity of the difference frequency light to be 10 ⁇ W to 100 ⁇ W, it is input to the semiconductor laser 1632 to perform light injection synchronization.
  • the second fundamental wave light 1641-2 having the same phase as the difference frequency light can be generated by the light injection locking.
  • the second fundamental wave light 1641-2 has the same phase as the difference frequency light phase phi p2. Since the light intensity is determined by the output of the semiconductor laser, the second fundamental wave light of several tens of mW or more can be obtained using the weak difference frequency light of about several tens of ⁇ W.
  • the first fundamental wave light was incident from the multiplexing side of the AWG multiplexer / demultiplexer 1612, combined with the second fundamental wave light, and then extracted using the circulator 1613.
  • the first fundamental wave light and the second fundamental wave light in which the signal light carrier phase is extracted by the nonlinear element and the light injection synchronization, are used as the fundamental wave light.
  • the fundamental light is amplified using an erbium-doped fiber laser amplifier (EDFA) 1601-2.
  • the amplified fundamental wave light is input to the first second-order nonlinear optical element 1602-1.
  • the EDFA 1601-1 and the first second-order nonlinear optical element 1602- A band-pass filter 1604 was inserted between 1 and 1 to cut unnecessary ASE light.
  • the second-order nonlinear optical elements 1602-1 and 1602-2 include optical waveguides 1605-1 and 1605-2 made of lithium niobate (PPLN) whose polarization is periodically inverted.
  • PPLN waveguide can use the highest nonlinear optical constant d33 of lithium niobate by quasi-phase matching, and a high optical power density can be obtained by the optical waveguide structure. High wavelength conversion efficiency can be obtained.
  • the phase matching wavelength may change due to optical damage due to the photorefractive effect.
  • Non-Patent Document 4 describes that such a problem does not occur.
  • a waveguide made by the direct bonding shown is used.
  • the fluctuation of the phase matching wavelength is suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent light damage resistance. Moreover, high wavelength conversion efficiency was realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • the sum frequency light and the fundamental light emitted from the first PPLN waveguide 1605-1 were separated using a dichroic mirror 1606-2.
  • the 0.77 ⁇ m sum frequency light reflected by the dichroic mirror 1606-2 passes to the second second-order nonlinear optical element 1602-2 via a polarization maintaining fiber having a single mode propagation characteristic at this wavelength of 0.77 ⁇ m. It is led with.
  • the fundamental wave light and ASE light in the vicinity of a wavelength of 1.54 ⁇ m that could not be completely removed by the dichroic mirror 1606-2 are also incident on the polarization maintaining fiber, but this fiber that is single mode at 0.77 ⁇ m. Since light confinement is weak with respect to light having a wavelength of 1.54 ⁇ m, it is possible to effectively attenuate such unnecessary light by propagating a length of about 1 m.
  • the sum frequency light guided by the polarization maintaining fiber is combined with the signal light 1640 having a wavelength of 1.54 ⁇ m using the dichroic mirror 1606-3.
  • the dichroic mirror 1606-3 emits light from the first PPLN waveguide 1605-1 to reflect only the sum frequency light, and passes through the dichroic mirror 1606-2 and the polarization maintaining fiber. Residual components of the fundamental wave light and the ASE light can be effectively removed.
  • the signal light and the sum frequency light are combined and incident on the second PPLN waveguide 1605-2.
  • the second PPLN waveguide 1605-2 has the same performance and phase matching wavelength as the first PPLN waveguide 1605-1, and the signal light can be phase-sensitively amplified by degenerate parametric amplification.
  • the two PPLN waveguides 1605-1 and 1605-2 are each controlled to have a constant temperature by individual temperature controllers. It is conceivable that the phase matching wavelengths do not match at the same temperature due to manufacturing errors of the two PPLN waveguides, but even in such a case, the phase matching wavelengths of both must be matched by individually controlling the temperatures. Can do.
  • the light emitted from the second PPLN waveguide 1605-2 is separated into sum frequency light as excitation light and amplified signal light by the dichroic mirror 1606-4. Also at this time, since the wavelength of the sum frequency light and the amplified signal light are completely different, the unnecessary second harmonic component in the output can be effectively removed.
  • phase sensitive amplification it is necessary to synchronize the phases of the excitation light and the signal light.
  • a part of the output amplified signal light is branched by the optical branching unit 1603-4 and is detected by the photodetector 1608.
  • phase synchronization was performed by a phase locked loop circuit (PLL) 1609.
  • PLL phase locked loop circuit
  • phase shift of the phase modulation is detected by the photodetector 1608 and the PLL circuit 1609, and the drive voltage of the stretcher of the optical fiber 1611 by the PZT disposed in front of the AWG type multiplexer 1612 and the bias of the phase modulator 1610
  • PZT disposed in front of the AWG type multiplexer 1612 and the bias of the phase modulator 1610
  • the sum frequency light 1804 is generated using the first fundamental wave light 1802 and the second fundamental wave light 1803.
  • the following relationship (Equation 9) is established among the first fundamental wave light phase ⁇ p1 , the second fundamental wave light phase ⁇ p2, and the sum frequency light phase ⁇ SF .
  • phase sensitive amplification is performed by parametric amplification of signal light and sum frequency light.
  • the gain becomes maximum when ⁇ is ⁇ , 0, or ⁇ .
  • an amplification characteristic when a 40 Gb / s binary phase modulation (BPSK) signal is input using an LN Mach-Zehnder modulator as a phase modulator was evaluated.
  • the wavelength of the signal light was set to about 1536 nm.
  • the signal light is converted into a third second-order nonlinear optical element (see FIG. 16, reference numeral 1602-3 is The second harmonic generated inside was observed.
  • FIG. 19A shows a spectrum of signal light measured by an optical spectrum analyzer. Since binary phase modulation is performed, no peak is observed at the center wavelength of the carrier when viewed on the wavelength axis.
  • FIG. 19B shows a spectrum with respect to the second harmonic of the signal light subjected to binary phase modulation. A strong peak is observed at the wavelength corresponding to the second harmonic. This indicates that the phase modulation is canceled by the second harmonic generation of the signal light.
  • FIG. 20 shows the result of measuring the light output from the third second-order nonlinear optical element with an optical spectrum analyzer. Due to the difference frequency generation between the second harmonic wave of the signal light generated in the third second-order nonlinear optical element and the first fundamental wave light, the difference frequency light is generated in the vicinity of the wavelength of about 1538 nm. It can be seen from the shape of the spectrum that no phase modulation is superimposed on the difference frequency light.
  • the difference frequency light was separated by a wavelength multiplexer / demultiplexer and then input to a semiconductor laser that oscillates at substantially the same wavelength as the difference frequency light. After the output of the semiconductor laser and the first fundamental wave light were multiplexed by the wavelength multiplexer / demultiplexer, the first fundamental wave light and the second fundamental wave light used as the fundamental wave light were taken out using the optical circulator.
  • FIG. 21A and 21B show spectra obtained when the output after the circulator is measured with a spectrum analyzer.
  • FIG. 21A is a diagram illustrating a spectrum of fundamental light when no difference frequency light is incident on a semiconductor laser.
  • FIG. 21B is a diagram showing a spectrum of the fundamental wave light when the difference frequency light is incident on the semiconductor laser and the difference frequency light is synchronized with light injection.
  • FIG. 21A and FIG. 21B show a spectrum around about 1538 nm corresponding to the second fundamental wave wavelength, and it can be seen that the original semiconductor laser is changed by the light injection synchronization.
  • the semiconductor laser oscillates at the same frequency as the difference frequency light including phase information by the light injection locking. At this time, the difference frequency light incident on the semiconductor laser is gradually increased.
  • the injection amount reaches about several tens of ⁇ W, the wavelength of the semiconductor laser shifts to the difference frequency light wavelength, so that the light injection synchronization is also achieved. I was able to observe what was going on.
  • the first fundamental wave light used as the fundamental wave light and the light intensity of the second fundamental wave light are amplified by an erbium-doped fiber laser amplifier.
  • the amplified fundamental wave light is incident on the second-order nonlinear optical element to generate sum frequency light.
  • phase sensitive amplification was performed by injecting the signal light and the generated sum frequency light into the secondary nonlinear optical element and performing degenerate parametric amplification.
  • the gain of the amplified signal was examined.
  • a gain of about 11 dB can be obtained under the condition that the power of the sum frequency light incident on the PPLN waveguide is 300 mW by matching the phase of the excitation light with the phase of the signal light by the PLL.
  • the optical fiber amplifier by using the optical fiber amplifier, it is possible to realize the operation by the pumping light of the CW light, which is an essential condition in the application to optical communication. Further, by adopting the configuration according to the present embodiment, it is possible to prevent the ASE light generated from the optical fiber amplifier from being mixed while using the optical fiber amplifier, and therefore, it is possible to perform the phase sensitive amplification while preventing the deterioration of the S / N ratio. Became possible.
  • CW light is used as excitation light in order to apply to optical communication.
  • the use of CW light as excitation light is not limited to this embodiment, and functions effectively in other embodiments. To do.
  • FIG. 22 shows a second configuration of the present embodiment.
  • the device was configured to amplify a 1.54 ⁇ m signal.
  • 16 is the same as the configuration shown in FIG. 16 in that, after extracting the carrier phase of signal light using three PPLN waveguides, degenerate parametric amplification is performed by generating sum frequency light.
  • the difference is the method of separating the sum frequency light from the fundamental wave light and the method of combining the sum frequency light and the signal light. Further, in this configuration, the means for extracting the carrier phase of the signal light is configured more simply.
  • phase sensitive amplification can be performed while suppressing the deterioration of the S / N ratio of the signal light caused by the ASE light generated from the optical fiber amplifier.
  • the effect can be used effectively. I made it.
  • a dichroic mirror is used for separating the sum frequency light from the fundamental light and for combining the sum frequency light and the signal light.
  • a dichroic mirror that reflects light of one wavelength and transmits light of the other wavelength is often used to separate or multiplex two lights having different wavelengths.
  • the apparatus is configured based on such a concept.
  • a part of the signal light 2240 is adjusted in polarization by using the polarization controller 2230, branched by the optical branching unit 2203-1, and combined with the first fundamental light, and then an erbium-doped fiber laser amplifier (EDFA). Amplified at 2201-1.
  • EDFA erbium-doped fiber laser amplifier
  • the first fundamental wave light from the external cavity laser 2231 is multiplexed after passing through the LN phase modulator 2210 for phase synchronization.
  • the amplified signal light and the first fundamental wave light are input to the third second-order nonlinear optical element 2202-3.
  • the second-order nonlinear optical element of this configuration includes an optical waveguide made of lithium niobate (PPLN) periodically poled.
  • the second harmonic wave of the signal light is generated, and the difference frequency light is generated by the difference frequency generation between the generated second harmonic wave and the first fundamental wave light.
  • the signal light, the first fundamental wave light, and the difference frequency light output from the third second-order nonlinear optical element 2202-3 were passed through the optical circulator and then demultiplexed.
  • an arrayed waveguide grating (AWG) type wavelength multiplexer / demultiplexer 2212 was used for demultiplexing.
  • the signal light output from the demultiplexer 2212 is emitted to the space system.
  • a semiconductor laser 2232 that oscillates at substantially the same wavelength as the difference frequency light is connected to the duplexer output port having a wavelength that matches the difference frequency light. After adjusting the light intensity of the difference frequency light to be 10 ⁇ W to 100 ⁇ W, it is input to the semiconductor laser 2232 to perform light injection synchronization.
  • the second fundamental wave light having the same phase as the difference frequency light can be generated by the light injection locking.
  • the first fundamental wave light output from the demultiplexer 2212 was reflected by a fiber-type mirror 2214, and was returned to the wavelength multiplexer / demultiplexer 2212 and input.
  • the first fundamental wave light was incident from the multiplexing side of the AWG type multiplexer / demultiplexer 2212, combined with the second fundamental wave light, and extracted using the circulator 2213.
  • the first fundamental wave light and the second fundamental wave light in which the carrier phase of the signal light is extracted by the nonlinear element and light injection locking, are used as the fundamental wave light.
  • the fundamental light amplified by the EDFA 2201-2 is incident on the first PPLN waveguide 2205-1 in the first second-order nonlinear optical element 2202-1 to generate sum frequency light.
  • a dichroic mirror 2206-1 that reflects the 1.55 ⁇ m band and transmits the 0.77 ⁇ m band is provided after the first PPLN waveguide 2205-1.
  • the sum frequency light having a wavelength of 0.77 ⁇ m is guided to the second second-order nonlinear optical element 2202-2 via a polarization-maintaining fiber having a single mode propagation characteristic at this wavelength. Similar to (first configuration), this fiber, which is single mode at 0.77 ⁇ m, is weak in confinement of light with respect to light having a wavelength of 1.54 ⁇ m. Unnecessary fundamental wave light and ASE light in the vicinity of 1.54 ⁇ m can be effectively attenuated.
  • the sum frequency light guided by the polarization maintaining fiber is combined with the signal light 2240 having a wavelength of 1.54 ⁇ m using the dichroic mirror 2206-2.
  • the 1.54 ⁇ m band is reflected and the 0.77 ⁇ m band is reflected so that the residual components of the fundamental wave light and the ASE light near the wavelength of 1.54 ⁇ m that pass through the polarization maintaining fiber can be effectively removed.
  • the signal light and the sum frequency light are combined, they are incident on the second PPLN waveguide 2205-2, and the signal light can be phase-sensitive amplified by degenerate parametric amplification.
  • the light emitted from the second PPLN waveguide 2205-2 is separated into sum frequency light and amplified signal light by the dichroic mirror 2206-3.
  • a dichroic mirror that reflects the 0.77 ⁇ m band and transmits the 1.54 ⁇ m band is used as the dichroic mirror 2206-3 to effectively remove the sum frequency light unnecessary for the output.
  • a part of the output amplified signal light is branched by the optical branching unit 2203-3 and received by the photodetector 2208, and then phase-locked by a phase-locked loop circuit (PLL) (not shown).
  • PLL phase-locked loop circuit
  • FIG. 23 shows a third configuration of the present embodiment.
  • the device was configured to amplify a 1.54 ⁇ m signal.
  • the point that the sum frequency light is generated and the degenerate parametric amplification is performed is the same as the configuration shown in (first configuration) and (second configuration).
  • the difference of (third configuration) from these configurations is the configuration of the carrier wave extracting means.
  • An optical amplifier in optical communication is required to be able to amplify even if the optical power of signal light is weak.
  • the signal light is extremely weak because it is branched and used for carrier wave extraction.
  • the second high harmonic generation and the difference frequency light generation process are performed at the same time, so that the ASE generated when the branched extremely weak signal light is amplified by the fiber amplifier becomes excessive. In that case, ASE noise is superimposed on the obtained difference frequency light, and the S / N ratio of the difference frequency light is deteriorated. If the S / N ratio is sufficient, the S / N ratio can be improved by light injection locking, but the S / N ratio deterioration of the difference frequency light increases as the original signal light becomes weaker. It becomes difficult to maintain a sufficient S / N ratio as the first fundamental wave light.
  • Securing the S / N ratio of the pumping light is important because the S / N ratio of the pumping light needs to be good in order to operate the low-noise phase sensitive amplification.
  • This configuration is configured for the purpose of preventing the S / N ratio deterioration of the difference frequency light.
  • a part of the signal light 2340 is adjusted in polarization by using the polarization controller 2330, branched by the optical branching unit 2301-1, and then amplified by an erbium-doped fiber laser amplifier (EDFA) 2301-1.
  • EDFA erbium-doped fiber laser amplifier
  • the amplified signal light is input to the second-order nonlinear optical element 2302-3.
  • the second-order nonlinear optical element 2302-3 includes an optical waveguide 2305-3 made of lithium niobate (PPLN) periodically poled.
  • PPLN lithium niobate
  • the second harmonic extracted from the second-order nonlinear optical element 2302-3 and the first fundamental wave light are incident on the second-order nonlinear optical element 2302-4.
  • the second-order nonlinear optical element 2302-4 includes dichroic mirrors 2306-6 and 2306-7 for input and output.
  • the second harmonic wave and the first fundamental wave light are multiplexed by the dichroic mirror 2306-6 and input to the PPLN waveguide 2305-4 in the second-order nonlinear optical element 2302-4.
  • the difference frequency light is obtained by the difference frequency generation between the second harmonic wave and the first fundamental wave light.
  • the signal light, the first fundamental wave light, and the difference frequency light output from the second-order nonlinear optical element 2302-4 were demultiplexed into each light after passing through the optical circulator 2313.
  • an arrayed waveguide grating (AWG) type wavelength multiplexer / demultiplexer 2312 was used for demultiplexing.
  • the signal light output from the demultiplexer 2312 is emitted to the space system.
  • the first fundamental wave light output from the demultiplexer 2312 was quenched using the isolator 2315.
  • a semiconductor laser 2332 that oscillates at substantially the same wavelength as the difference frequency light is connected to the output port of the wavelength multiplexer / demultiplexer 2312 having a wavelength that matches the difference frequency light.
  • the second fundamental wave light having the same phase as the difference frequency light can be generated by the light injection locking. Since the difference frequency light having a high S / N ratio was used, the second fundamental wave light could be generated while maintaining the high S / N ratio.
  • the first fundamental wave light was incident from the multiplexing side of the AWG type multiplexer / demultiplexer 2312, combined with the second fundamental wave light, and then extracted using the circulator 2313.
  • the first fundamental wave light and the second fundamental wave light in which the signal light carrier phase is extracted by the nonlinear element and the light injection synchronization, are used as the fundamental wave light.
  • the light intensity of the first fundamental wave light and the second fundamental wave light used as the fundamental wave light is adjusted to be approximately the same, and then amplified by the erbium-doped fiber laser amplifier 2301-2.
  • the amplified fundamental wave light is incident on the second-order nonlinear optical element 2302-1 to generate sum frequency light.
  • the PPLN waveguide has a parametric gain of 11 dB when a second harmonic of 300 mW is incident at present, a weak signal incident on the optical receiver is received by a PD (photodiode) with a high S / N ratio. There is not enough gain to do that. Therefore, the amplifier according to the above-described embodiment cannot be used as the amplifier of the optical receiver.
  • the gain of an EDFA often used in an optical receiver is about 30 dB to 40 dB, and an output of about 0 dB to +5 dBm can be obtained even if the light level incident on the optical receiver is ⁇ 35 dBm.
  • these problems are solved.
  • FIG. 24 shows the configuration of this embodiment.
  • a weak input signal 2420 is amplified by using a phase sensitive optical amplifier using a PPLN waveguide described in the portion indicated as “phase sensitive amplifier” in FIG.
  • the amplified signal light is further amplified by the optical fiber laser amplifier 2401-1, and unnecessary background light is removed by the band pass filter 2404-1.
  • the signal light enters a photodiode (PD) 2408-2 that operates as a photodetector, and is converted into an electrical signal.
  • the electric signal is finally connected to the discriminator 2413 and reproduced as a digital signal. Details of this embodiment will be described later.
  • a feature of this embodiment is that a weak input signal is amplified by a phase sensitive optical amplifier, further amplified by an optical fiber laser amplifier, and then incident on a PD to perform photoelectric conversion.
  • the dispersion ⁇ PSA of the number of photons of the amplified signal is given by the following (formula 11). However, it is assumed that the excitation light and the signal light are completely synchronized with no phase difference.
  • ⁇ n in > is the average number of input light photons
  • G is the gain of the phase-sensitive optical amplifier
  • ⁇ f is the band of parametric fluorescence incident on the light receiver.
  • ⁇ f is the band of the filter when a filter is arranged behind the phase sensitive optical amplifier, and the band of the parametric amplification medium when no filter is provided.
  • the first term on the right side of (Expression 11) is shot noise of amplified light
  • the second term is shot noise of parametric fluorescence generated by the parametric amplification effect
  • the third term is beat noise of amplified light and parametric fluorescence
  • the fourth term is parametric. Corresponds to beat noise between fluorescence.
  • Equation 11 The noise power when the amplified light is detected by the PD using the dispersion ⁇ PSA of the number of photons shown in (Equation 11) is assumed that the receiving system band is B and the load resistance for performing the current-voltage conversion is RL. It is given by the following (Equation 12). However, here, for simplicity, it is assumed that the quantum efficiency of the PD is 100%.
  • the signal power is given by (Equation 13) considering the case of detecting the NRZ code of mark ratio 1/2 and time slot T.
  • the amplified signal light as the first output component and the parametric fluorescence as the second output component are output in descending order of output. It is considered that the light consists of light amplified by the laser amplifier and ASE light generated by the laser amplifier that is the third output component.
  • the dispersion of the number of photons from the amplifier at this time is considered to be given by the sum of the following eight components.
  • First dispersion shot noise of the first output component (amplified signal light)
  • Second dispersion Shot noise of the second output component (light obtained by amplifying parametric fluorescence by a laser amplifier)
  • Third dispersion Shot noise of the third output component (ASE light generated by the laser amplifier)
  • Fourth dispersion beat noise between the first output component and the second output component
  • Fifth variance beat noise between the first output component and the third output component
  • Sixth variance beat noise between the second output component and the third output component
  • Seventh variance beat noise between the second output components
  • Eighth dispersion beat noise between third output components
  • the PPLN waveguide used in this embodiment has a very wide parametric gain band of about 60 nm. Therefore, even if the spectral density of the second output component (the light in which the parametric fluorescence is amplified by the laser amplifier) is smaller than the component 1, if the light in which the parametric fluorescence in the entire band is amplified by the laser amplifier is integrated, Of the sixth to seventh variances, the contribution of beat noise between the second output components, which is the seventh variance, cannot be ignored.
  • the contribution of the second output component (light obtained by amplifying the parametric fluorescence by the laser amplifier) other than the band of the signal component and the third output component (ASE generated by the laser amplifier).
  • a band-pass filter is arranged after the laser amplifier so that the contribution of light) is reduced, and light in only the signal band is extracted.
  • G 1 is the gain of the phase sensitive optical amplifier
  • G 2 is the gain of the laser amplifier
  • FPSA is the noise figure of the phase sensitive optical amplifier described above
  • FPIA is the noise figure of the laser amplifier.
  • a band is used to remove background light other than the signal band. It is desirable to provide a pass filter.
  • the band pass filter can be placed between the phase sensitive optical amplifier and the laser amplifier, or after the laser amplifier. In particular, when the band pass filter is arranged only after the laser amplifier, the band pass filter is inserted. Degradation of the S / N ratio due to loss can be suppressed with a small number of parts, which is effective.
  • the signal light 2420 and the fundamental light 2421 are generated from a light source having a wavelength of 1.54 ⁇ m. Further, in order to verify the sensitivity of the optical receiver, the power of the signal light was attenuated and entered the optical receiver.
  • the fundamental light 2421 is amplified using a fiber laser amplifier (EDFA) 2401-2 in order to obtain sufficient power from the weak fundamental light to obtain the nonlinear optical effect.
  • the amplified fundamental wave light is incident on the first second-order nonlinear optical element 2402-1 to generate the second harmonic 2422.
  • the signal light 2420 and the second harmonic 2422 are incident on the second second-order nonlinear optical element 2402-2 to perform degenerate parametric amplification, thereby performing phase sensitive amplification.
  • phase sensitive amplification it is necessary to synchronize the phases of the excitation light and the signal light.
  • a part of the output amplified signal light 2423 is branched by the optical branching unit 2403 and is detected by the photodetector 2408-1.
  • phase synchronization was performed by a phase locked loop circuit (PLL) 2409.
  • the fundamental light 2421 was subjected to weak phase modulation by a sine wave using a phase modulator 2410 disposed in front of the EDFA 2401-2.
  • the photodetector 2408-1 and the PLL circuit 2409 detect the phase shift of the phase modulation, and the driving voltage of the extender of the optical fiber 2411 by the PZT disposed before the EDFA 2401-2 and the bias of the phase modulator 2410 Feedback with voltage. As a result, the fluctuation of the optical phase due to the vibration of the optical fiber component and the temperature fluctuation is absorbed, and the phase sensitive amplification can be stably performed.
  • the fundamental light 2421 is amplified using the EDFA 2401-2.
  • the amplified fundamental wave light 2421 is input to the first second-order nonlinear optical element 2402-1.
  • the EDFA 2401-2 and the first second-order nonlinear optical element 2402- A band pass filter 2404-2 was inserted between the ASE 1 and unnecessary ASE light.
  • the second-order nonlinear optical elements (2402-1, 2402-2) are optical waveguides (2405-1, 240-1) made of lithium niobate (PPLN) periodically poled. 2405-2).
  • the PPLN waveguide (2405-1, 2405-2) can use the highest nonlinear optical constant d33 of lithium niobate by quasi-phase matching, and a high optical power density can be obtained by the optical waveguide structure. Therefore, high wavelength conversion efficiency can be obtained by using the configuration as shown in the figure.
  • Non-Patent Document 4 describes that such a problem does not occur.
  • a waveguide made by the direct bonding shown is used.
  • the fluctuation of the phase matching wavelength is suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent light damage resistance. Moreover, high wavelength conversion efficiency was realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • the fundamental light and the second harmonic are emitted from the first PPLN waveguide 2405-1.
  • Second harmonic wave 2422 and fundamental wave light 2421 were separated using dichroic mirror 2406-1.
  • the second harmonic 2422 of 0.77 ⁇ m transmitted through the dichroic mirror 2406-1 is passed through the polarization maintaining fiber 2407 having a single mode propagation characteristic at this wavelength, that is, a wavelength of 0.77 ⁇ m. It is led to the optical element 2402-2.
  • the second harmonic 2422 guided to the second second-order nonlinear optical element 2402-2 via the polarization maintaining fiber 2407 is combined with the signal light 2420 having a wavelength of 1.54 ⁇ m by the dichroic mirror 2406-2. Since the dichroic mirror 2406-2 transmits only the second harmonic 2422, the wavelength is about 1.54 ⁇ m emitted from the first PPLN waveguide 2405-1 and passing through the dichroic mirror 2406-1 and the polarization maintaining fiber 2407. The residual component of the fundamental wave light 2421 and the ASE light can be effectively removed.
  • the signal light 2420 and the second harmonic 2422 are combined and enter the second PPLN waveguide 2405-2.
  • the second PPLN waveguide 2405-2 has the same performance and phase matching wavelength as the first PPLN waveguide 2405-1, and the signal light can be phase-sensitively amplified by degenerate parametric amplification.
  • the light emitted from the second PPLN waveguide 2405-2 is separated by the dichroic mirror 2406-3 into the second harmonic that is the excitation light and the amplified signal light 2423. Also at this time, since the second harmonic and the amplified signal light have completely different wavelengths, it is possible to effectively remove unnecessary second harmonic components in the output.
  • a dichroic mirror that reflects light of one wavelength and transmits light of the other wavelength is used in order to separate or multiplex two lights having different wavelengths.
  • This embodiment is configured based on such a concept. By adopting such a configuration, it is possible to completely suppress the mixing of ASE light from the EDFA that accompanyingly degrades the S / N ratio of the phase sensitive optical amplifier, and it becomes possible to amplify with low noise.
  • the parametric gain obtained by the second PPLN waveguide 2405-2 is 11 dB, and the insertion loss between the fibers when the second PPLN waveguide is modularized is 5 dB.
  • the gain of the amplifier was 6 dB.
  • the signal light 2423 thus phase-sensitized and amplified is incident on the EDFA 2401-1 for further amplification.
  • the output from the EDFA is passed through a bandpass filter 2404-1 having a bandwidth of 1 nm, and the component outside the signal band of the light obtained by amplifying the parametric fluorescence generated from the phase sensitive optical amplifier by the EDFA and the ASE light generated from the EDFA. Removed.
  • FIG. 25 shows an example of an optical spectrum when optical amplification is performed using this embodiment.
  • the solid line represents the optical spectrum of the signal amplified by the present embodiment
  • the dotted line represents the optical spectrum of the signal amplified by the conventional optical amplifier.
  • the optical spectrum when amplified only with EDFA and bandpass filter was also measured.
  • the input signal was compared with a signal modulated with a sine wave having a frequency of 15 GHz after being attenuated to -20 dBm and the total gain was 18 dB.
  • the level of background light (light obtained by amplifying ASE light or parametric fluorescence) observed around the amplified signal light is amplified by the phase sensitive optical amplifier and then amplified by the EDFA. It turns out that it is suppressed by this.
  • a phase-sensitive optical amplifier is disposed in the preceding stage, so that a gain equivalent to that of a conventional laser amplifier is obtained, but more than the conventional one.
  • the noise level can be kept low, and a higher S / N ratio than before can be obtained.
  • FIG. 26 shows the result of evaluating the noise floor by photoelectrically converting the amplified signal modulated with a sine wave having a frequency of 15 GHz with a commercially available electric spectrum analyzer with a built-in OE converter.
  • the solid line indicates the electrical spectrum obtained by photoelectrically converting the signal amplified by the present embodiment
  • the dotted line indicates the electrical spectrum obtained by photoelectrically converting the signal amplified by the conventional optical amplifier.
  • the noise level is suppressed to about 1.5 dB in all bands from 1 GHz to 14 GHz even after photoelectric conversion compared with the case of amplification with a conventional EDFA. It could be confirmed.
  • noise is not lower than that of EDFA only in a part of the band due to noise caused by GAWBS.
  • low noise over a wide frequency band is achieved. Amplification could be realized while obtaining a sufficient gain.
  • Such low-noise amplification characteristics indicate that this embodiment is useful not only as an optical receiver but also as an optical amplifier that operates as an optical repeater.
  • the signal light was modulated with a 40 Gb / s NRZ signal, and the receiving characteristics when it was input were evaluated.
  • the gain of the subsequent EDFA was set so that the power incident on the PD via the bandpass filter would be 0 dBm. Since the gain of the phase sensitive optical amplifier in this embodiment is 6 dB, the gain of the EDFA is set to 24 dB when the power of the input light is, for example, ⁇ 30 dBm.
  • the evaluation was also made on the case where only the conventional EDFA and band-pass filter were used as the preamplifier. Also in this case, since the power incident on the PD through the bandpass filter is set to 0 dBm, when the input light power is, for example, ⁇ 30 dBm, the gain of the EDFA is set to 30 dB.
  • FIG. 27 shows the result of evaluating the reception sensitivity of the present embodiment from error rate measurement by attenuating the input signal with an optical attenuator.
  • FIG. 27 is a diagram illustrating error rate characteristics for evaluating reception sensitivity.
  • the incident power for obtaining an error rate of 10 ⁇ 9 is ⁇ 28.8 dBm when a conventional EDFA is used, whereas in this embodiment, the same error rate is about ⁇ 30.3 dBm, which is about 1.5 dBm lower. was gotten.
  • the reception sensitivity can be improved by the optical reception using the low-noise optical amplification according to the present embodiment. Such an effect can be realized only by the configuration of the present invention in which low noise is obtained over a wide frequency band.
  • the fundamental light generation method for phase synchronization uses light directly branched from the signal light and does not use the phase synchronization means from the modulated optical signal.
  • the generation method the method described in the third to fifth embodiments may be used.
  • an optical receiver is taken as an example, and a configuration that can achieve both low noise and high gain has been described, but even when used as a linear repeater, the relay interval must be extended, etc.
  • a configuration in which the phase sensitive amplifier and the EDFA as described in this embodiment are connected in multiple stages is extremely useful.
  • FIG. 28B are explanatory diagrams of a phase-sensitive optical amplifier according to the seventh embodiment of the present invention.
  • a fundamental laser beam is used by using a fiber laser amplifier (EDFA) 2801.
  • EDFA fiber laser amplifier
  • Amplify 2821 The amplified fundamental wave light is incident on the first second-order nonlinear optical element 2802-1 to generate the second harmonic wave 2822.
  • the signal light 2820 and the second harmonic wave 2822 are incident on the second second-order nonlinear optical element 2802-2 to perform degenerate parametric amplification, thereby performing phase sensitive amplification.
  • CW light having a wavelength of 1.54 ⁇ m is used as the fundamental wave light.
  • the signal light group and the fundamental wave light are phase-synchronized with each other, and such signal light and fundamental wave light can be generated, for example, by branching the same light source and generating one sideband wave with an optical modulator. it can.
  • the fundamental light 2821 passes through a phase expander 2811 using a phase modulator 2810 and PZT, and is amplified by an erbium-doped optical fiber amplifier (EDFA) 2801.
  • EDFA erbium-doped optical fiber amplifier
  • the fundamental wave light is incident on the PPLN waveguide 2805-1 in the first second-order nonlinear optical element 2802-1 after removing excessive spontaneous emission light generated from the EDFA 2801 using the bandpass filter 2804. Then, it is converted into light 2822 having a wavelength of 0.77 ⁇ m, which is the second harmonic of the fundamental wave light 2821.
  • the signal light group 2820 and the second harmonic wave 2822 of the fundamental light are multiplexed by the dichroic mirror 2806-2, and then incident on the PPLN waveguide 2805-2 in the second second-order nonlinear optical element 2802-2. Is done.
  • the signal light group is amplified by parametric amplification in the PPLN waveguide 2805-2.
  • a non-linear amplification is performed by entering three light beams of excitation light (second harmonic wave 2822 of the fundamental wave light in this embodiment), signal light, and idler light into the second-order nonlinear optical element, and performing non-linear interaction of the three.
  • parametric amplification of both signal light and idler light is performed when the three phases satisfy the following (formula 21).
  • ⁇ SH ⁇ S + ⁇ i + 2n ⁇ (n is an integer) (wherein 21)
  • phi SH, phi S, respectively phi i, the second harmonic of the fundamental wave light, a signal light, idler light phase. Assuming that the signal and idler have the same phase as the pair of signal s + 1 and signal s-1 in this embodiment, ⁇ i ⁇ S
  • ⁇ p is the phase of the fundamental wave light.
  • ⁇ SH is expressed by 2 ⁇ p .
  • FIGS. 29 and 30 are diagrams schematically showing spectrums of signal light / excitation light having a plurality of wavelengths used in phase-sensitive optical amplification.
  • FIG. 29 shows the conventional fiber laser amplifier and nonlinear medium shown in FIG.
  • FIG. 30 is a diagram showing a case where the configuration according to the present embodiment shown in FIG. 28B is used.
  • a conventional phase sensitive optical amplifier using an optical fiber uses four-wave mixing. For this reason, in order for the wavelengths of the pumping light for performing parametric light amplification and the signal light having a plurality of wavelengths to satisfy the phase matching condition, these wavelengths must be close to each other. As illustrated in FIG. 29, the signal light 2901 and the pump light 2902 having a plurality of wavelengths have the same 1.55 ⁇ m wavelength band, and when the pump light 2902 is amplified by the optical fiber amplifier, the light is in the vicinity of the pump light wavelength. The ASE light 2903 is generated by the fiber amplifier.
  • the fundamental light 3002 is amplified by an optical fiber amplifier in order to obtain sufficient power from the weak optical power used in optical communication to use parametric optical amplification.
  • the ASE light 3003 is superimposed in the vicinity of the wavelength of the fundamental wave light 3002 (FIG. 30B).
  • the fundamental wave light 3002 on which the ASE light 3003 is superimposed is incident on the first second-order nonlinear optical element to generate the second harmonic 3004.
  • no broadband ASE light that causes noise is generated except for the slight second harmonic of the ASE light.
  • the wavelength of the second harmonic 3004 is half of the wavelength of the fundamental light 3002, and the two wavelengths are sufficiently separated. Therefore, it is relatively easy to implement a filter having a high extinction ratio that separates only the second harmonic 3004 from the fundamental light 3002 and the second harmonic 3004 of the fundamental light with a dichroic mirror or the like (FIG. 30 (c)). By connecting such a filter to the output of the first second-order nonlinear optical element, the fundamental wave light and the ASE light in the excitation light wavelength band can be completely removed.
  • the signal light 3001 having a plurality of wavelengths and only the second harmonic 3004 are combined and incident on the second second-order nonlinear optical element, thereby realizing phase-sensitive amplification by non-degenerate parametric amplification (FIG. 30). (D)).
  • Non-Patent Document 7 In a configuration in which phase-sensitive amplification of signal light having a plurality of wavelengths is performed using four-wave mixing in a conventional optical fiber, as shown in Non-Patent Document 7, the signal light having a plurality of wavelengths centered on the excitation light wavelength is used. Not only four-wave mixing occurs in between, but the condition for phase matching is satisfied between various wavelengths. Therefore, for example, a secondary process in which the signal light is converted into another wavelength centering on the excitation light also occurs, and the amplified signal light is successively copied to generate a plurality of signals. (2904 in FIG. 29C).
  • the power of the amplified signal light is dissipated, and the power that can amplify the desired signal light is limited. Furthermore, since the signals generated in a secondary manner are generated between the wavelengths of the signal light having a plurality of wavelengths, it is extremely difficult to remove the redundant signals generated in a secondary manner. . Although a method of using an ultra-narrow band optical filter or the like for separation is conceivable, the signal loss due to the filter increases as the band of the optical filter becomes narrower. As the number of multiplexed wavelengths of signal light having a plurality of wavelengths increases, the quantity of signals that are generated secondarily increases. As a result, the secondary signal may be superimposed within the band of the original signal light. In such a case, separation by an optical filter is impossible, and the S / N ratio of the optical signal deteriorates.
  • the fundamental light 2821 is amplified using an erbium-doped fiber laser amplifier (EDFA) 2801.
  • EDFA erbium-doped fiber laser amplifier
  • the amplified fundamental wave light is input to the first second-order nonlinear optical element 2802-1.
  • a band-pass filter 2804 was inserted into the filter to cut unnecessary ASE light.
  • the second-order nonlinear optical element (2802-1, 2802-2) of this embodiment includes an optical waveguide (2805-1, 2805-2) made of lithium niobate (PPLN) periodically poled.
  • PPLN lithium niobate
  • Non-Patent Document 4 describes that such a problem does not occur.
  • a waveguide made by the direct bonding shown is used.
  • the fluctuation of the phase matching wavelength is suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent light damage resistance. Moreover, high wavelength conversion efficiency was realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • the second harmonic wave 2822 and the fundamental wave light 2821 emitted from the first PPLN waveguide 2805-1 were separated using a dichroic mirror 2806-1.
  • the second harmonic 2822 having a wavelength of 0.77 ⁇ m reflected by the dichroic mirror 2806-1 passes through the polarization maintaining fiber 2807 having a single mode propagation characteristic at the wavelength of 0.77 ⁇ m, and the second second-order nonlinear optical element. 2802-2.
  • fundamental light and ASE light in the vicinity of a wavelength of 1.54 ⁇ m that could not be completely removed by the dichroic mirror 2806-1 are also incident on the polarization maintaining fiber 2807, but this is a single mode at 0.77 ⁇ m. Since the fiber is weakly confined with respect to light having a wavelength of 1.54 ⁇ m, it is possible to effectively attenuate these unnecessary lights by propagating a length of about 1 m.
  • the second harmonic guided by the polarization maintaining fiber 2807 is combined with the signal light 2820 having a wavelength of 1.54 ⁇ m using the dichroic mirror 2806-2.
  • the dichroic mirror 2806-2 is emitted from the first PPLN waveguide 2805-1 and reflects the wavelength of about 1.54 ⁇ m coming through the dichroic mirror 2806-1 and the polarization maintaining fiber 2807 in order to reflect only the second harmonic.
  • the residual components of the fundamental wave light and the ASE light can be effectively removed.
  • the signal light 2820 and the second harmonic wave 2822 are combined by the dichroic mirror 2806-2 and then incident on the second PPLN waveguide 2805-2.
  • the second PPLN waveguide 2805-2 has the same performance and phase matching wavelength as the first PPLN waveguide 2805-1, and can perform phase-sensitive amplification of signal light by non-degenerate parametric amplification. .
  • the two PPLN waveguides (2805-1, 2805-2) are controlled to have a constant temperature by individual temperature controllers. It is conceivable that the phase matching wavelengths do not match at the same temperature due to manufacturing errors of the two PPLN waveguides, but even in such a case, the phase matching wavelengths of both must be matched by individually controlling the temperatures. Can do.
  • the light emitted from the second PPLN waveguide 2805-2 is separated by the dichroic mirror 2806-3 into the second harmonic that is the excitation light and the amplified signal light. Also at this time, since the second harmonic and the amplified signal light have completely different wavelengths, it is possible to effectively remove unnecessary second harmonic components in the output.
  • phase sensitive amplification it is necessary to synchronize the phases of the excitation light and the signal light.
  • a part of the output amplified signal light is branched by the optical branching unit 2803 and received by the photodetector 2808. Later, phase synchronization was performed by a phase-locked loop circuit (PLL) 2809.
  • PLL phase-locked loop circuit
  • the photodetector 2808 and the PLL circuit 2809 detect the phase shift of the phase modulation, and feed back to the drive voltage of the optical fiber stretcher 2811 and the bias voltage of the phase modulator 2810 by PZT arranged before the EDFA 2801. As a result, optical phase fluctuations due to vibration of optical fiber parts and temperature fluctuations are absorbed, and phase-sensitive amplification can be performed stably.
  • the S / N ratio deteriorates due to a large loss due to modulation.
  • the optical power is reduced by the loss of the modulator and the conversion efficiency into a plurality of carriers, and the S / N ratio is deteriorated.
  • an optical comb whose optical power is attenuated is amplified by a laser optical amplifier such as EDFA, spontaneous emission light (ASE light) is mixed, and the S / N ratio is further deteriorated along with the amplification.
  • FIGS. 31A and 31B are diagrams for explaining the effect when the phase sensitive optical amplifier according to the present embodiment is used.
  • FIG. 31A is a signal light in which ASE light generated from the EDFA is intentionally mixed.
  • FIG. 31B shows the optical spectrum of the group, when the signal light group intentionally mixed with the ASE light generated from the EDFA is amplified by the phase sensitive optical amplifier using the configuration according to the seventh embodiment of the present invention. The optical spectrum of the output of is shown.
  • the difference between the amplified signal light and the ASE light that is, the optical S / N ratio (OSNR) is surprising by amplification with the phase sensitive optical amplifier according to this embodiment. It can be seen that 3 dB is improved compared to the input.
  • OSNR optical S / N ratio
  • the signal light of the input light was measured with a resolution of 0.01 nm and had an OSNR of 23 dB as shown in FIG. 31A.
  • the amplified output signal has an OSNR of 26 dB, and the optical S / N ratio is improved by about 3 dB compared to the input light. Since the amplifier according to the present embodiment has polarization dependency, a polarizer should be inserted when evaluating the input spectrum in order to evaluate the S / N ratio in a fair manner. Comparison of only the polarization components.
  • a signal light pair having a phase relationship with the excitation light is input.
  • a signal light pair having the same phase is incident at a wavelength corresponding to the signal light wavelength and the idler light wavelength as in the present embodiment, all components of the signal light can be obtained as long as the phase with the excitation light can be synchronized as described above. Is amplified.
  • antiphase information ⁇ i ⁇ s + ⁇ ( ⁇ is the optical length of the fiber or the like) conjugate with the signal light by some wavelength conversion process using an optical fiber or PPLN.
  • is the optical length of the fiber or the like
  • parametric amplification is performed when the phase relationship among the SH light, signal light, and idler light satisfies the following (Equation 23).
  • the ASE when considering the relative phase from the second harmonic phase ⁇ SH , the ASE generates light having a random phase. It is considered that the component and the component of quadrature phase are included equally.
  • the phase of the ASE generated at the signal wavelength is ⁇ S-ASE
  • the phase of the ASE generated at the idler wavelength is ⁇ S-ASE
  • Is ⁇ i -ASE only the components satisfying the following (Equation 24) are parametrically amplified.
  • ⁇ SH ⁇ S-ASE + ⁇ i-ASE + 2n ⁇ (where n is an integer) (Formula 24)
  • phase ⁇ S-ASE and ⁇ i-ASE of the ASE generated at the signal wavelength and the idler wavelength are random and have no correlation with each other.
  • ⁇ S-ASE and ⁇ i-ASE have no correlation with the second harmonic phase ⁇ SH . Therefore, when ⁇ S-ASE is fixed, a component having a phase conjugate to ⁇ S-ASE with respect to the phase ⁇ S of the second harmonic of ⁇ i-ASE that can take a random value. Only will undergo parametric amplification.
  • the gain for the ASE is half that of the correlated signal light. Therefore, the S / N ratio when compared in the optical spectrum can be improved by the optical amplifier according to the present embodiment.
  • the pumping light, the signal light, and the idler light are all in the 1.55 ⁇ m band, and the pumping light is usually generated using EDFA or the like. Since the ASE light generated from the EDFA is mixed in the wavelength band of the signal light and idler light close to the optical wavelength, and the power of the excitation light is often relatively larger than the signal light and idler light. This is because the influence of noise due to ASE light mixed from the outside is large. Therefore, unlike the present embodiment, it is not possible to obtain a remarkable effect that can improve the S / N ratio with respect to input / output.
  • the fundamental light is amplified by the EDFA and then converted to the second harmonic, and the ASE light in the 1.55 ⁇ m band is also removed, and then incident on the parametric medium and non-degenerate parametric amplification. Therefore, mixing of the ASE light generated from the EDFA used for generating the excitation light can be prevented. Therefore, in this embodiment, it is possible to obtain an S / N ratio improvement effect using phase sensitivity to signal light and idler light.
  • signal light having the same wavelength as twice the wavelength of the excitation light is also incident. Even at this wavelength, as long as the optical spectrum of FIGS. 31A and 31B is viewed, S / The N ratio is improving. However, as described below, when degenerate parametric amplification is performed in which the wavelength of the excitation light is twice the wavelength of the signal light, the S / N ratio is improved by comparing the input and output after photoelectric conversion. None do. In degenerate parametric amplification amplification when the following equation (25) holds between the signal light phase phi S and the pump light phase phi p is performed.
  • the component in phase with the signal light in the input ASE light is amplified and the quadrature component is attenuated.
  • This quadrature component is not amplified will appear as a difference in gain when viewed in terms of optical power, but components that originally have quadrature phase with signal light will generate intensity noise even if it interferes with signal light. There is no.
  • the in-phase component of the ASE light that interferes with the signal light and causes intensity noise is amplified by receiving the same gain as the signal. Therefore, in the phase sensitive parametric amplification at the degeneracy point, the component of the ASE light that interferes with the signal light is not reduced, so that the S / N ratio after photoelectric conversion of the optical signal does not change.
  • the gain received by ASE light is half that of signal light. Focusing on the phase of the amplified ASE light at this time, only the component satisfying the following (Equation 26) is amplified among the ASE light components respectively input to the wavelengths of the signal light and the idler light as described above.
  • ⁇ SH ⁇ S-ASE + ⁇ i-ASE + 2n ⁇ (where n is an integer) (Formula 26)
  • the amplified ASE light includes a component having the same phase as that of the signal light in the same manner as the quadrature phase component of the signal light.
  • the phase of the ASE light is random for both input and output, and the gain received by the ASE light is half of the gain received by the signal, the S / N ratio determined by beat noise with the ASE light after photoelectric conversion is 3 dB after amplification. Will improve.
  • the intensity of the in-phase ASE light contributing to the intensity noise in the non-degenerate operation is half of the intensity of the in-phase ASE light in the degenerate operation, and the power of the amplified ASE light as a whole is a degenerate operation.
  • the SN ratio is improved by 3 dB compared to the degenerate operation in the non-degenerate operation. become.
  • one desired carrier wave is cut out by a band pass filter in the optical comb signal and the amplified optical comb signal input to the amplifier of the present invention, and the average power is made the same by the optical attenuator.
  • the beat noise levels of signal light and ASE light at the input and output were compared using an electric spectrum analyzer with a built-in / E converter.
  • FIG. 32A and 32B show the results of measuring the level of beat noise of signal light and ASE light at the input and output with an electric spectrum analyzer.
  • the peak of the degeneracy point is observed as shown in FIG. 32A, no difference is seen in the noise level at the input / output of the amplifier, whereas the peak of the non-degeneration point is shown as shown in FIG. 32B.
  • the noise level was lowered by 3 dB due to amplification, that is, the S / N ratio was improved by 3 dB.
  • the present embodiment by amplifying a signal having a deteriorated S / N ratio by a laser amplifier or the like, it is possible to obtain a very remarkable effect that the S / N ratio can be improved over the input.
  • a signal subjected to data modulation was made incident on the phase sensitive optical amplifier according to this embodiment, and the effect of improving the S / N ratio according to this embodiment was examined.
  • FIG. 33 shows an experimental configuration for examining the effect of improving the S / N ratio using a signal obtained by performing data modulation on an optical comb.
  • the optical comb generated by modulating the single wavelength light source 3301 by the optical modulator 3303 is subjected to BPSK modulation by the LN modulator 3305 and is incident on the phase sensitive optical amplifier according to the present embodiment shown in FIG. 28B.
  • a signal is amplified later using a laser amplifier such as an EDFA in order to compensate for loss during optical comb generation and data modulation. At this time, signal noise due to ASE light is added.
  • a laser amplifier such as an EDFA
  • ASE noise is intentionally added to the optical comb signal subjected to data modulation via the EDFA 3306 in order to investigate the improvement effect of the S / N ratio.
  • the fundamental wave light of the phase sensitive optical amplifier was branched from the single wavelength light source 3301 used to generate the optical comb.
  • the peak at the non-degenerate point was separated from the signal before and after amplification by a duplexer, the received power was adjusted by an optical attenuator, and received by a receiver.
  • Fig. 34 shows the error rate data for the measured received power.
  • a laser optical amplifier such as EDFA
  • spontaneous emission light ASE light
  • S / N ratio is increased with the amplification.
  • the data error rate of the output signal obtained by intentionally injecting the signal to which the ASE noise is added to the phase sensitive optical amplifier according to the present embodiment is significantly larger than that of the input signal to which the original ASE noise is added. There was an improvement in the received power.
  • an error rate of 10 ⁇ 9 when the phase sensitive optical amplifier according to the present invention was used, a remarkable effect of improving the power penalty due to ASE noise by 3 dB was observed.
  • FIG. 35 shows the configuration of a phase sensitive optical amplifier according to the eighth embodiment of the present invention.
  • an optical comb generator composed of a single wavelength light source 3501 and an optical modulator 3503 is adopted.
  • a method using a mode-locked laser as a light source a method using a nonlinear medium for optical comb generation, etc.
  • Other methods may be used to generate the optical comb.
  • a duplexer 3504 designed to output two pairs of wavelengths symmetrically separated from one of a plurality of wavelengths of the generated optical comb signal by the same optical frequency difference to the same optical path. Each wavelength was separated.
  • a waveguide type multiplexer / demultiplexer represented by an arrayed waveguide grating (AWG: Arrayed Waveguide ⁇ Grating) or a WSS (Wavelength Selective Switch) using MEMS may be used.
  • a multiplexer / demultiplexer using a spatial optical system may be used.
  • An optical modulator 3505 is connected to each output of the demultiplexer 3504, and performs data modulation on each pair of signal lights.
  • the signal is amplified by a laser amplifier 3507 such as an EDFA.
  • the data modulation signals are combined and then amplified together.
  • a device in which a semiconductor modulator is used for data modulation and a semiconductor amplifier such as SOA is integrated in the modulator is used.
  • the signal pairs may be amplified by laser amplifiers as shown in FIG. 36 and then combined.
  • the same data modulation is performed on each signal pair by using a duplexer in which two pairs of wavelengths separated symmetrically by the optical frequency difference are output to the same optical path.
  • a demultiplexer 3704 for separating each wavelength of the optical comb and an optical modulator 3705 respectively connected to each output of the demultiplexer A configuration may be used in which signal pairs that are symmetrically separated by the same optical frequency difference are modulated with the same data.
  • the optical power is reduced by the loss of the modulator and the conversion efficiency to multiple carriers.
  • the optical comb is demultiplexed by a demultiplexer, data modulated by a modulator, and multiplexed by a multiplexer, the optical power is significantly attenuated compared to the original optical comb due to the insertion loss of each component. Resulting in.
  • the signal S / N ratio is significantly deteriorated because the input power to the optical amplifier is small.
  • phase-sensitive optical amplifier uses degenerate parametric amplification, the signal wavelength that can be amplified is one, and multiple carriers can be simultaneously transmitted. It cannot be amplified.
  • phase sensitive optical amplifier According to the present embodiment, it becomes possible to amplify an optical comb having a plurality of wavelengths with low noise. Furthermore, regarding the S / N ratio caused by the beat noise between the signal light and the ASE light, the S / N ratio can be improved more than the input by using the phase sensitive optical amplifier according to the present embodiment. .
  • the fundamental light of the phase sensitive optical amplifier was branched from the single wavelength light source used to generate the optical comb.
  • the optical comb signal is incident on the phase sensitive optical amplifier according to the present embodiment.
  • OSNR optical S / N ratio
  • the S / N ratio of the output signal is 3 dB compared to the S / N ratio of the input signal.
  • An improvement was seen.
  • the S / N ratio due to the beat noise between the signal light and the ASE light, which is intensity noise, is improved.
  • a synergistic effect of the suppression effect of the phase chirp component by attenuating the orthogonal phase can be obtained by using the configuration according to the present embodiment.
  • the signal light after amplification was observed and the time waveform was examined.
  • 38A, 38B, and 38C are diagrams for explaining the time waveform of the signal amplified by the phase-sensitive optical amplifier according to the present embodiment.
  • 38A shows the output waveform of the incident signal light when no excitation light is incident
  • FIG. 38B shows the output waveform when the phase of the excitation light and the phase of the signal light are matched by the PLL
  • FIG. 38C shows the output waveform by the PLL.
  • the output waveforms when the optical phase and the phase of the signal light are set so as to be shifted by 90 degrees are respectively shown.
  • phase sensitive amplification is achieved from the state in which the ON level of the signal is attenuated as shown in FIG. 38C. Further, a waveform in which only a transitional portion between the ON and OFF levels of the signal was amplified was observed. This indicates that phase noise is superimposed on the signal light.
  • chirp is generated by the data modulator. That is, the phase of the output of the modulator fluctuates when transitioning between ON and OFF, and a quadrature phase component is generated based on the ON state. For this reason, if the signal light phase and the excitation light phase are set to be orthogonal, only the phase chirp component is phase-sensitive amplified. This means that in the state where the phase is matched to the ON state of the signal light, even if the input signal contains phase chirp, the chirp component can be removed and shaped and amplified as a signal without chirp. Show.
  • the signal generated using the configuration in the second embodiment is transmitted through the optical fiber, and as a result, the beat noise is removed from the intensity light of the signal light and the ASE light.
  • the transmission distance can be tripled by the effect of suppressing the phase chirp component.
  • FIG. 39 shows another configuration of the phase sensitive optical amplifier according to the eighth embodiment of the present invention.
  • a single wavelength light source 3901 and a modulator 3903 a pair of signal lights (s + 1 and s ⁇ 1, s + 1 and s ⁇ 1, symmetrically separated by the same optical frequency difference around the optical frequency corresponding to twice the wavelength of the excitation light. s + 2 and s-2, s + 3 and s-3, s + 4 and s-4, and so on).
  • the optical comb signal is amplified using a normal laser amplifier 3904 such as an EDFA in order to compensate for the loss of the modulator and the loss due to the conversion to a plurality of carriers in the optical comb generation process.
  • a normal laser amplifier 3904 such as an EDFA
  • As the fundamental wave light of the phase sensitive optical amplifier a signal branched from the single wavelength light source 3901 used to generate the optical comb was used, and the optical comb signal was incident on the phase sensitive optical amplifier according to the present invention and amplified.
  • the optical comb signal was incident on the phase sensitive optical amplifier according to the present invention.
  • OSNR optical S / N ratio
  • the S / N ratio in the input signal is obtained.
  • an S / N ratio improvement of 3 dB was observed in the output signal of the phase sensitive optical amplifier according to the present embodiment.
  • FIG. 39 after an optical comb signal was amplified using a normal laser amplifier 3904, an optical comb signal having a high S / N ratio could be generated by using the phase sensitive optical amplifier according to the present invention.
  • Each of the combs is individually subjected to data modulation using a demultiplexer 3906 that separates the respective wavelengths of the optical comb and an optical modulator 3907 connected to each output of the demultiplexer 3906, and then an optical multiplexer An optical comb signal was incident on one optical fiber using 3908, and the signal was transmitted.
  • the transmission distance could be increased.
  • FIG. 40 shows the configuration of a phase-sensitive optical amplifier according to the ninth embodiment of the present invention that uses a center wavelength signal as phase synchronization means.
  • a data signal using a center wavelength signal of signal light having a plurality of wavelengths as a pilot tone of CW light is used as an input signal.
  • Signal light pairs (s + 1 and s-1, s + 2 and s-2, s + 3 and s-3, s + 4 and s-4, symmetrically separated by the same optical frequency difference from the optical frequency)
  • binary phase modulation is applied, and a signal having a plurality of wavelengths that can be used as a pilot tone of CW light without modulation of a center wavelength signal is used as the signal light 4030.
  • Modulated signal light 4030 having a pilot tone of CW light at the center wavelength is transmitted through the transmission medium.
  • An optical fiber was used as the transmission medium. After the polarization rotation in the optical fiber was corrected by the polarization controller 4020, only the pilot tone of the CW light was separated using a notch type filter 4021 that cuts out only the center wavelength.
  • the light intensity of the signal is very small due to the loss of light intensity due to the transmission optical fiber, and the S / N ratio is deteriorated.
  • light injection synchronization was performed with a fundamental wave light source 4013 in the phase sensitive optical amplifying device through a circulator 4012.
  • a DFB type semiconductor laser was used as the fundamental wave light source 4013.
  • the wavelength of the semiconductor laser is drawn into the pilot tone wavelength when the light intensity is set to several tens of ⁇ W. It was observed that the fundamental light source in the phase sensitive optical amplifying device was phase-synchronized with the pilot tone. As a result, it was possible to generate excitation light having a good S / N ratio from the pilot tone of the signal light having a deteriorated S / N ratio.
  • a signal having a plurality of wavelengths transmitted through an optical fiber has a phase shift between a pair of signal lights that are symmetrically separated due to a dispersion effect in the optical fiber.
  • a dispersion compensation (adjustment) medium 4022 is configured in the phase sensitive optical amplifier.
  • the dispersion compensation (adjustment) medium a phase adjuster using liquid crystal such as LCOS was used. The phase may be adjusted using another means such as using a fiber having inverse dispersion.
  • a phase adjuster (not shown) matched the phase between the signal light pair.
  • phase synchronization means is also used in the relay amplification and the preamplifier at the receiving end in which the light source that generates the signal light is not arranged near the phase sensitive light amplification unit. Sensitive amplification could be performed.
  • the signal of the degenerate wavelength is phase-synchronized with the pilot tone, but other methods may be used. Any of the phase synchronization method and the carrier phase extraction method of the methods shown in the third to fifth embodiments described for amplification of the degenerate signal may be used.
  • FIG. 41 shows the configuration of this embodiment.
  • the apparatus is configured to amplify a 1.54 ⁇ m signal as in the first embodiment.
  • the point that the second harmonic 4122 is generated and the degenerate parametric amplification is performed using the two PPLN waveguides 4105-1 and 4105-2 is the same as that of the first embodiment.
  • the difference lies in the method of separating the second harmonic 4122 from the fundamental wave light 4121 and the method of multiplexing the second harmonic 4122 and the signal light 4120.
  • phase sensitive amplification can be performed while suppressing the deterioration of the S / N ratio of the signal light caused by the ASE light generated from the optical fiber amplifier.
  • the effect can be used effectively. I did it.
  • dichroic mirrors 4106-1 and 4106-2 are used for separating the second harmonic 4122 and for combining the second harmonic 4122 and the signal light 4120.
  • a dichroic mirror that reflects light of one wavelength and transmits light of the other wavelength is often used to separate or multiplex two lights having different wavelengths.
  • the apparatus is configured based on such a concept.
  • the fundamental light 4121 having a wavelength of 1.54 ⁇ m is branched from the signal light 4120 and amplified by the EDFA 4101 via the LN phase modulator 4110 for phase synchronization and the optical fiber expander 4111 by PZT.
  • the amplified fundamental light is incident on the first PPLN waveguide 4105-1 in the first second-order nonlinear optical element 4102-1 to generate the second harmonic 4122.
  • only the second harmonic 4122 is effectively extracted from the fundamental light emitted from the first PPLN waveguide 4105-1 and its second harmonic, and the ASE light generated from the EDFA 4101 is effectively extracted.
  • the dichroic mirror 4106-1 that reflects the 1.55 ⁇ m band and transmits the 0.77 ⁇ m band after the first PPLN waveguide 4105-1.
  • the second harmonic 4122 having a wavelength of 0.77 ⁇ m is guided to the second second-order nonlinear optical element 4105-2 through the polarization-maintaining fiber 4107 having single-mode propagation characteristics at this wavelength.
  • this fiber which is a single mode at 0.77 ⁇ m, has a weak light confinement with respect to light having a wavelength of 1.54 ⁇ m. Therefore, it is unnecessary to propagate a length of about 1 m. It is possible to effectively attenuate fundamental wave light and ASE light in the vicinity of a wavelength of 1.54 ⁇ m.
  • the second harmonic 4122 guided by the polarization maintaining fiber 4107 is combined with signal light having a wavelength of 1.54 ⁇ m using the dichroic mirror 4106-2.
  • the 1.54 ⁇ m band is reflected and 0.77 ⁇ m so that the residual components of the fundamental wave light and the ASE light in the vicinity of the wavelength of 1.54 ⁇ m passing through the polarization maintaining fiber can be effectively removed.
  • a dichroic mirror that transmits the band was used.
  • the signal light 4120 and the second harmonic 4122 are combined, they are incident on the second PPLN waveguide 4105-2, and the signal light can be phase-sensitive amplified by degenerate parametric amplification.
  • the light emitted from the second PPLN waveguide 4105-2 is separated into the second harmonic and the amplified signal light by the dichroic mirror 4106-3.
  • a dichroic mirror that reflects the 0.77 ⁇ m band and transmits the 1.54 ⁇ m band is used for the dichroic mirror 4106-3 in order to effectively remove the second harmonic that is not necessary for the output.
  • a part of the output amplified signal light is branched by the optical branching unit 4103-2 and received by the photodetector 4108, and then phase-shifted by the phase-locked loop circuit (PLL) 4109.
  • PLL phase-locked loop circuit
  • dichroic mirrors having different characteristics are used for separating the second harmonic from the fundamental light and for combining the second harmonic and the signal light, particularly the signal S / N ratio is adversely affected.
  • a phase sensitive optical amplifier capable of obtaining high signal quality without mixing ASE light from the EDFA providing the signal light into the signal light.
  • the amplification method is a degenerate parametric method, and the second harmonic wave from the fundamental wave light is used as excitation light, and the fundamental wave light for phase synchronization is used.
  • the light directly branched from the signal light is used and the phase synchronization means from the modulated optical signal is not used.
  • this embodiment is described in the first to ninth embodiments. It does not interfere with any of the amplification methods, types of pumping light, generation method of fundamental light for phase synchronization, and a simple combination thereof.
  • the non-degenerate parametric method described in the seventh to ninth embodiments may be adopted as the amplification method.
  • a method for obtaining excitation light a method of generating a sum frequency of two different wavelengths as in the fifth embodiment may be employed.
  • FIG. 42 shows a basic configuration of the phase sensitive optical amplifier according to this embodiment.
  • This optical amplifier includes a phase sensitive light amplifying unit 4201, a pumping light source 4202, a pumping light phase control unit 4203, and two light branching units 4204-1 and 4204-2.
  • the input signal light 4210 is amplified when the phase of the signal light and the pumping light in the phase sensitive light amplifying unit 4201 satisfies the relationship of (Expression 1) described above, and the phase of both is determined by the relationship of (Expression 1).
  • the orthogonal phase relationship is shifted by 90 degrees, the input signal light 4210 has a characteristic of attenuation.
  • phase between the pumping light and the signal light is synchronized so that the amplification gain is maximized using this characteristic, the S / N ratio is deteriorated without generating the spontaneous emission light having the quadrature phase with the signal light.
  • Signal light can be amplified.
  • This embodiment is different from the first embodiment in a method for mainly achieving phase synchronization, as will be described later.
  • the phase of the pump light 4211 is satisfied so as to satisfy the relationship of (Equation 1) with the phase of the input signal light 4210 branched by the optical branching unit 4204-1.
  • the second harmonic wave 4213 as the excitation light is detected by a narrow-band detector so that the output signal of the second harmonic wave 4213 is minimized.
  • the pumping light phase controller 4203 controls the phase of the pumping light 4211.
  • the phase sensitive light amplification unit 4201 is controlled so that the phase of the signal light and the phase of the excitation light are synchronized so as to satisfy the relationship of (Equation 1), and optical amplification without degradation of the S / N ratio is performed.
  • the pumping light phase control unit 4203 may be configured to directly control the phase of the pumping light source 4202 in addition to the configuration of controlling the phase of the pumping light on the output side of the pumping light source 4202 as shown in FIG.
  • the light source that generates the signal light is arranged near the phase sensitive light amplification unit, a part of the light source for signal light can be branched and used as excitation light.
  • FIG. 43 is a graph showing the relationship between the phase difference ⁇ between the input signal light and the pumping light and the gain (dB) of the second harmonic in the phase sensitive optical amplifier according to this embodiment. It can be seen that when ⁇ is ⁇ , 0, or ⁇ , the gain of the signal light by the parametric amplification is maximized, so that the gain of the second harmonic used for amplification is minimized.
  • FIG. 44 shows the configuration of this embodiment.
  • an LN Mach-Zehnder modulator is used as the data signal intensity modulator 4424, and the amplification characteristic when a 10 Gb / s NRZ signal is input is evaluated.
  • the fundamental light 4421 is amplified using a fiber laser amplifier (EDFA) 4401 in order to obtain sufficient power from the weak laser light used for optical communication to obtain a nonlinear optical effect.
  • the amplified fundamental wave light is incident on the first second-order nonlinear optical element 4402-1 to generate the second harmonic 4422.
  • the signal light 4420 and the second harmonic 4422 are incident on the second second-order nonlinear optical element 4402-2 to perform degenerate parametric amplification, thereby performing phase sensitive amplification.
  • part of the signal light is branched by the light branching unit 4403 and used as the fundamental wave light 4421.
  • the fundamental light 4421 is amplified using an erbium-doped fiber laser amplifier (EDFA) 4401.
  • EDFA erbium-doped fiber laser amplifier
  • the amplified fundamental wave light is input to the first second-order nonlinear optical element 4402-1.
  • a band-pass filter 4404 was inserted into the filter to cut unnecessary ASE light.
  • the second-order nonlinear optical elements (4402-1, 4402-2) of the present embodiment include optical waveguides (4405-1, 4405-2) made of periodically polarized lithium niobate (PPLN).
  • the PPLN waveguide can use the highest nonlinear optical constant d33 of lithium niobate by quasi-phase matching, and a high optical power density can be obtained by the optical waveguide structure. High wavelength conversion efficiency can be obtained.
  • Non-Patent Document 4 describes that such a problem does not occur.
  • a waveguide made by the direct bonding shown is used.
  • the fluctuation of the phase matching wavelength is suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent light damage resistance. Moreover, high wavelength conversion efficiency was realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • Second harmonic 4422 and fundamental light 4421 emitted from first PPLN waveguide 4405-1 are separated using dichroic mirror 44406-1.
  • the second harmonic wave having a wavelength of 0.77 ⁇ m reflected by the dichroic mirror 4406-1 passes through the polarization maintaining fiber 4407 having a single mode propagation characteristic at the wavelength of 0.77 ⁇ m, and the second second-order nonlinear optical element 4402. -2.
  • the second harmonic 4422 guided by the polarization maintaining fiber 4407 is combined with the signal light 4420 having a wavelength of 1.54 ⁇ m using the dichroic mirror 4406-2.
  • the dichroic mirror 4406-2 is emitted from the first PPLN waveguide 4405-1 and reflects through the dichroic mirror 4406-1 and the polarization maintaining fiber 4407 in order to reflect only the second harmonic, and has a wavelength of about 1.54 ⁇ m.
  • the residual components of the fundamental wave light and the ASE light can be effectively removed.
  • the signal light 4420 and the second harmonic 4422 are combined and enter the second PPLN waveguide 4405-2.
  • the second PPLN waveguide 4405-2 has the same performance and phase matching wavelength as the first PPLN waveguide 4405-1, and the signal light can be phase-sensitively amplified by degenerate parametric amplification.
  • the two PPLN waveguides (4405-1, 4405-2) are controlled to have a constant temperature by individual temperature controllers. It is conceivable that the phase matching wavelengths do not match at the same temperature due to manufacturing errors of the two PPLN waveguides, but even in such a case, the phase matching wavelengths of both must be matched by individually controlling the temperatures. Can do.
  • the light emitted from the second PPLN waveguide 4405-2 is separated by the dichroic mirror 4406-3 into the second harmonic 4422 as excitation light and the amplified signal light. Also at this time, since the second harmonic 4422 and the amplified signal light have completely different wavelengths, the amplified signal light and the second harmonic are effectively separated at the output.
  • phase sensitive amplification it is necessary to synchronize the phases of the excitation light and the signal light.
  • the second harmonic 4422 as excitation light separated by the dichroic mirror 4406-3 is used.
  • phase synchronization was performed by a phase locked loop circuit (PLL) 4409.
  • PLL phase locked loop circuit
  • the light in the 1.54 ⁇ m band reflected by the dichroic mirror 4406-3 is included in the 0.77 ⁇ m band light used for phase synchronization, and may be a noise component in performing phase synchronization. Therefore, as shown in FIG. 44, a high-pass filter 4425 may be inserted to cut light in the 1.54 ⁇ m band.
  • phase modulator 4410 disposed in front of the EDFA 4401, a weak phase modulation is applied to the fundamental light by a sine wave.
  • the phase shift of the phase modulation is detected by the photodetector 4408 and the PLL circuit 4409, and feedback is made to the drive voltage of the optical fiber stretcher 4411 and the bias voltage of the phase modulator 4410 by PZT arranged before the EDFA 4401.
  • PZT arranged before the EDFA 4401.
  • all of the amplified signal light is synchronized by synchronizing the phase of the excitation light and the phase of the signal light so as to satisfy the relationship of (Equation 1) using the second harmonic that is the excitation light. Since it can be utilized, the gain of the amplified signal light is increased by about 15% compared to the first embodiment.
  • the chirp component is removed to obtain a signal without the chirp. It can be shaped and amplified.
  • the dichroic mirror is used as a filter that separates the second harmonic wave that is the excitation light and the amplified signal light.
  • An optical multiplexer / demultiplexer 4526 using multi-mode interference (MMI) arranged at the subsequent stage of the optical element 4502-2 can also be used.
  • MMI multi-mode interference
  • phase sensitive optical amplifier By integrating the MMI type multiplexer / demultiplexer 4526 designed to separate the second harmonic 4522 and the amplified signal light 4523 on the same substrate, a more compact phase sensitive optical amplifier can be obtained. is there. A similar small phase sensitive optical amplifier can be obtained by using an optical multiplexer / demultiplexer using directional coupling instead of the MMI type multiplexer / demultiplexer.
  • FIG. 46 shows this configuration.
  • the apparatus is configured to amplify a signal of 1.54 ⁇ m as in the configuration shown in FIG. 44 is the same as the configuration shown in FIG. 44 in that the second harmonic is generated and degenerate parametric amplification is performed using two PPLN waveguides (4605-1, 4605-2).
  • phase sensitive amplification can be performed while suppressing deterioration of the S / N ratio of signal light caused by ASE light generated from an optical fiber amplifier. In this configuration, the effect can be effectively used. I did it.
  • dichroic mirrors (4606-1, 4606-2) are used for separating the second harmonic 4622 from the fundamental light 4621 and for combining the second harmonic 4622 and the signal light 4620.
  • a dichroic mirror that reflects light of one wavelength and transmits light of the other wavelength is often used to separate or multiplex two lights having different wavelengths.
  • the apparatus is configured based on such a concept.
  • the fundamental wave light 4621 having a wavelength of 1.54 ⁇ m is branched from the signal light, and amplified by the EDFA 4601 through the LN phase modulator 4610 for phase synchronization and the optical fiber stretcher 4611 by PZT.
  • the amplified fundamental wave light is incident on the first PPLN waveguide 4605-1 in the first second-order nonlinear optical element 4602-1 to generate the second harmonic 4622.
  • the second harmonic is effectively extracted from the fundamental wave light emitted from the first PPLN waveguide 4605-1 and its second harmonic, and the ASE light generated from the EDFA 4601 is effectively removed.
  • a dichroic mirror 4606-1 that reflects the 1.55 ⁇ m band and transmits the 0.77 ⁇ m band is provided after the first PPLN waveguide 4605-1.
  • the second harmonic 4622 having a wavelength of 0.77 ⁇ m is guided to the second second-order nonlinear optical element 4602-2 via a polarization-maintaining fiber 4607 having single-mode propagation characteristics at this wavelength. Similar to the configuration described above, this fiber 4607, which is a single mode at 0.77 ⁇ m, has a weak light confinement with respect to light having a wavelength of 1.54 ⁇ m. The fundamental wave light and the ASE light in the vicinity of the wavelength of 1.54 ⁇ m can be effectively attenuated.
  • the second harmonic guided by the polarization maintaining fiber 4607 is combined with the signal light 4620 having a wavelength of 1.54 ⁇ m by the dichroic mirror 4606-2.
  • the 1.54 ⁇ m band is reflected and 0.77 ⁇ m so that the residual components of the fundamental wave light and the ASE light in the vicinity of the wavelength of 1.54 ⁇ m passing through the polarization maintaining fiber 4607 can be effectively removed.
  • a dichroic mirror 4606-2 that transmits the band was used. After the signal light and the second harmonic are combined, they are incident on the second PPLN waveguide 4605-2, and the signal light can be phase-sensitive amplified by degenerate parametric amplification.
  • the light emitted from the second PPLN waveguide 4605-2 is separated into the second harmonic 4622 and the amplified signal light 4623 by the dichroic mirror 4606-3.
  • a dichroic mirror that reflects the 0.77 ⁇ m band and transmits the 1.54 ⁇ m band is used as the dichroic mirror 4606-3.
  • phase-sensitive amplification can be stably performed by performing phase synchronization by the phase-locked loop circuit (PLL) 4609 after receiving the separated second harmonic 4622 as excitation light by the photodetector 4608.
  • PLL phase-locked loop circuit
  • the dichroic mirrors (4606-1 and 4606-2) having different characteristics are used for separating the fundamental wave light and the second harmonic wave and for combining the second harmonic wave and the signal light.
  • a phase sensitive optical amplifier capable of obtaining high signal quality without mixing ASE light from the EDFA that adversely affects the S / N ratio of the signal into the signal light.
  • the light branched from the signal light is used as the fundamental light. That is, the fundamental light is obtained by amplifying the same light source as the signal light. For example, when used for a transmitter in optical communication, it is considered that the same light source as described above is used for signal light and fundamental light, and that the necessary light is added to the signal light after branching the fundamental light. It is done.
  • the apparatus is configured as shown in FIG. 47 so that the signal light modulated in advance can be amplified.
  • the apparatus according to this configuration can amplify a binary phase modulation (BPSK) or binary differential phase modulation (DPSK) signal or a signal such as normal intensity modulation without adding noise.
  • BPSK binary phase modulation
  • DPSK binary differential phase modulation
  • the signal light is branched by the optical branching unit 4703, and the branched signal light is amplified by the EDFA 4701.
  • the amplified signal light is incident on the first PPLN waveguide 4705-1 in the first second-order nonlinear optical element 4702-1 to generate the second harmonic 4722 of the signal light.
  • a dichroic mirror 4706-1 is used to separate only the second harmonic from the light emitted from the first PPLN waveguide 4705-1.
  • Injection locking is performed by making the separated second harmonic incident on a semiconductor laser 4712 that oscillates at a wavelength of 0.77 ⁇ m.
  • the output of the semiconductor laser 4712 is amplified by a semiconductor optical amplifier 4713 having a gain in the same wavelength band as that of the semiconductor laser, and is combined with signal light 4720 having a wavelength of 1.54 ⁇ m using a dichroic mirror 4706-2.
  • the signal light 4720 and the second harmonic 4722 which is excitation light having a wavelength of 0.77 ⁇ m, are combined and then incident on the second PPLN waveguide 4705-2, and the signal light is phase-sensitive amplified by degenerate parametric amplification. can do.
  • the second harmonic wave from which the phase modulation component has been removed is injected into the average phase of the signal light using injection locking as in this configuration. Similar to the fourth embodiment, it is desirable to synchronize and use the half-wavelength excitation light of the signal light.
  • excitation light without intensity modulation synchronized with the average phase is generated from the signal light subjected to phase modulation using injection locking.
  • phase noise is added to the signal light
  • the phase component orthogonal to the original signal can be attenuated by phase sensitive amplification, so that the signal phase and quadrature phase noise components are removed.
  • Such signal reproduction can be performed.
  • phase control is performed through the drive current so that the output of the output second harmonic 4722 as excitation light is minimized. Since all the amplified signal light can be used even in this configuration, the gain of the amplified signal light is increased by about 15% compared to the fourth embodiment.
  • the EDFA 4701 is used to obtain power that enables the second harmonic generation in the first PPLN 4705-1.
  • the ASE light generated from the EDFA 4701 performs phase sensitive amplification. Since the light does not enter the waveguide 4705-2, the S / N ratio deterioration of the signal light due to the ASE light of the optical amplifier can be prevented also in this configuration.
  • ASE light is generated from the semiconductor optical amplifier 4713 operating at a wavelength of 0.77 ⁇ m. However, since this light has a wavelength completely different from that of the signal light, it is almost completely removed by the dichroic mirrors 4706-2 and 4706-3. It is possible to perform phase sensitive amplification without degrading the S / N ratio of the signal light.
  • the amplification method is a degenerate parametric method and the second harmonic from the fundamental wave light is used as the excitation light.
  • the eleventh embodiment It does not interfere with any of the amplification methods, the types of excitation light, the generation method of the fundamental wave light for phase synchronization, and the simple combination of the methods described in the first to tenth embodiments. .
  • the non-degenerate parametric method described in the seventh to ninth embodiments may be adopted as the amplification method.
  • a method for obtaining excitation light a method of generating a sum frequency of two different wavelengths as in the fifth embodiment may be employed.
  • the excitation light that is detected and fed back to obtain phase synchronization is not the second harmonic but the sum frequency.
  • the generation method of the fundamental wave light for phase synchronization was also modulated by a method of sending a pilot tone signal separately from the signal light described in the third embodiment, or as described in the fourth and fifth embodiments.
  • a method of extracting and restoring a carrier wave signal from signal light may be used.
  • phase sensitive amplification can be realized with a simple configuration according to the first embodiment.
  • the first embodiment has the following problems. This will be described with reference to FIG.
  • the phase modulator 610 used for phase synchronization is arranged in front of the EDFA 601, and the incident power to the EDFA is reduced by the insertion loss of the phase modulator.
  • a laser amplifier such as an EDFA
  • the S / N ratio deteriorates by that amount (see Non-Patent Document 8). If the S / N ratio of the pumping light deteriorates due to the insertion loss of the phase modulator in this way, the noise component is converted to the noise of the amplified light by the parametric amplification process, and low-noise amplification is performed. I can't. However, in the twelfth embodiment of the present invention described below, this noise problem is solved.
  • the same configuration as that of the first embodiment, that is, the amplification method is a degenerate parametric method
  • the excitation light is the second harmonic from the fundamental wave light
  • the fundamental wave light for phase synchronization.
  • the light directly branched from the signal light is used, and the phase synchronization means from the modulated optical signal is not used.
  • any of the amplification methods, the types of pumping light, the generation method of the fundamental light for phase synchronization, the phase synchronization method, and the methods described in the first to eleventh embodiments are described. It does not disturb the configuration which is a simple combination.
  • the non-degenerate parametric method described in the seventh to ninth embodiments may be adopted.
  • two different wavelengths are used as the excitation light.
  • a method of generating the sum frequency of As a method of generating the fundamental light for phase synchronization, a method of sending a pilot tone signal separately from the signal light as described in the third embodiment may be used.
  • a method of extracting and restoring a carrier wave signal from modulated signal light as described in the embodiment may be used.
  • a phase synchronization method a phase synchronization method that performs feedback with excitation light as described in the eleventh embodiment may be used.
  • this embodiment is as shown in FIG. The configuration.
  • Non-Patent Document 8 when there is a loss at the front stage of the laser amplifier, the S / N ratio deteriorates by the loss, whereas there is a loss at the rear stage of the laser amplifier. Although the output is reduced by the loss, the S / N ratio is not deteriorated.
  • the phase modulator 4810 is arranged on the output side from the optical fiber laser amplifier 4801 as shown in FIG.
  • the configuration as shown in FIG. 48 cannot be adopted.
  • many of the existing phase modulators are made of an optical waveguide in which Ti is diffused in a LiNbO 3 (LN) crystal. Since optical damage is significant in Ti diffusion waveguides, when a large optical power is incident, a refractive index change occurs due to the photorefractive effect, which causes a drift phenomenon in which the voltage for obtaining the same phase condition changes in order to cause a phase change. End up. For this reason, the optical power that can be input to the phase modulator is limited to about +20 dBm.
  • phase modulator with a large insertion loss is placed after the laser amplifier, the power of the pumping light is attenuated, and sufficient pumping light power cannot be obtained to produce the optical parametric effect. It is impossible to achieve phase sensitive amplification.
  • connection loss between elements is reduced by integrating the optical waveguide 4805-1 for generating the second harmonic 4822, which is excitation light, and the waveguide used for phase modulation on the same substrate.
  • the phase modulator 4810 can be arranged on the output side of the EDFA 4801.
  • a method of forming a waveguide that is more resistant to optical damage than Ti diffusion is generally used, and it is possible to use a larger excitation power by configuring the phase modulator using an optical waveguide similar to that of the second harmonic generator.
  • a part of the signal light 4820 is branched by the branching unit 4803-1 and used as the fundamental light 4821.
  • the fundamental light 4821 is amplified using an erbium-doped fiber laser amplifier (EDFA) 4801 and input to an optical waveguide in which a phase modulator 4810 and a first second-order nonlinear optical element 4805-1 are integrated.
  • the second-order nonlinear optical elements include optical waveguides (4805-1, 4805-2) made of lithium niobate (PPLN) whose polarization is periodically inverted.
  • the PPLN waveguide can use the highest nonlinear optical constant d33 of lithium niobate by quasi-phase matching and can obtain a high optical power density by the optical waveguide structure, high wavelength conversion efficiency can be obtained.
  • the phase matching wavelength may change due to optical damage caused by the photorefractive effect. In the present embodiment, however, such a problem is not directly caused.
  • a waveguide manufactured by bonding was used (see Non-Patent Document 4).
  • the fluctuation of the phase matching wavelength is suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent optical damage resistance.
  • high wavelength conversion efficiency was realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • a phase modulator 4810 having no periodic polarization inversion structure was integrated on the same substrate on which the PPLN waveguide 4805-1 was formed by the same waveguide formation method.
  • An electrode for applying an electric field is formed on the waveguide in the phase modulation section, and phase modulation by the electro-optic (EO) effect is made possible.
  • this waveguide formation method is excellent in optical damage resistance, even when the power of the fundamental wave light 4821 amplified by the EDFA 4801 increases, an optical phase-locked loop circuit ( Phase modulation of the pilot tone for the PLL) can be applied to the fundamental wave light 4821.
  • Phase modulation of the pilot tone for the PLL Phase modulation of the pilot tone for the PLL
  • the refractive index change due to the electro-optic effect is used as the phase modulator.
  • the present technique is not limited to the present embodiment, and the electro-optic effect is basically used in other embodiments. It is possible to apply a phase modulator.
  • the fundamental wave light 4821 and the second harmonic wave 4822 emitted from the first PPLN waveguide 4805-1 are separated using a dichroic mirror 4806-1.
  • the second harmonic 4822 having a wavelength of 0.77 ⁇ m transmitted through the dichroic mirror is guided to the second second-order nonlinear optical element 4802-2 via the polarization-maintaining fiber 4807 having single-mode propagation characteristics at this wavelength. It is.
  • the second harmonic 4822 guided by the polarization maintaining fiber 4807 is combined with the signal light 4820 having a wavelength of 1.54 ⁇ m using the dichroic mirror 4806-2.
  • the dichroic mirror 4806-2 is emitted from the first PPLN waveguide 4805-1 and passes through the dichroic mirror 4806-1 and the polarization maintaining fiber 4807 so as to transmit only the second harmonic 4822. Residual components of the fundamental wave light 4821 in the vicinity of 54 ⁇ m and the ASE light can be effectively removed.
  • the signal light 4820 and the second harmonic 4822 combined by the dichroic mirror 4806-2 are incident on the second PPLN waveguide 4805-2.
  • the second PPLN waveguide 4805-2 has the same performance and phase matching wavelength as the first PPLN waveguide 4805-1, and the signal light can be phase-sensitively amplified by degenerate parametric amplification.
  • the light emitted from the second PPLN waveguide 4805-2 is separated into the second harmonic 4822 of the fundamental light 4822 and the amplified signal light 4823 by the dichroic mirror 4806-3. Also at this time, since the wavelength of the amplified signal light is completely different from that of the second harmonic wave, the second harmonic wave 4822 unnecessary for the output can be effectively removed.
  • phase sensitive amplification it is necessary to synchronize the phases of the pumping light and the signal light.
  • a part of the output amplified signal light 4823 is branched by the optical branching unit 4803-2 to detect the photodetector 4808. Then, phase synchronization was performed by a phase-locked loop circuit (PLL) 4809.
  • PLL phase-locked loop circuit
  • weak phase modulation with a sine wave is made fundamental light using an LN phase modulator 4810 integrated on the same substrate as the second harmonic generation PPLN 4805-1 and disposed on the output side of the EDFA.
  • the optical detector 4808 and the PLL circuit 4809 detect the phase shift of the phase modulation, and the drive voltage of the optical fiber stretcher 4811 and the bias voltage of the LN phase modulator 4810 by PZT arranged before the EDFA 4801 are detected.
  • the optical phase fluctuation due to vibration of the optical fiber component and temperature fluctuation is absorbed, and the phase sensitive amplification can be stably performed.
  • an LN Mach-Zehnder modulator was used as the data signal modulator 4810, and the amplification characteristic when a 10 Gb / s NRZ signal was input as the input signal was evaluated.
  • a gain of about 11 dB can be obtained under the condition that the power of the second harmonic 4822 incident on the second PPLN waveguide 4805-2 is 300 mW.
  • the output power of the EDFA 4801 was about 1 W, and the input power to the direct junction waveguide was 630 mW.
  • Phase-locking operation can be realized.
  • the S / N ratio of the fundamental wave light 4821 is improved by about 5 dB because the phase modulator 4810 is not in the input stage of the EDFA 4801 in this embodiment. I was able to. Further, by integrating the PPLN 4805-1 and the phase modulator 4810, the output of the EDFA 4801 can be efficiently converted to the second harmonic 4822 without excessive loss. As a result, it is possible to perform a low noise amplification operation by phase sensitive amplification while suppressing the S / N ratio degradation of the fundamental wave light 4821 in the EDFA 4801 compared to the conventional case.
  • the apparatus is configured to amplify the 1.54 ⁇ m signal 4920 as in the configuration shown in FIG.
  • Two PPLN waveguides 4905-1, 4905-2) are used, one PPLN waveguide (4905-1) is integrated with a phase modulation waveguide, and second harmonic 4922 is generated.
  • the point that degenerate parametric amplification is performed is the same as the configuration shown in FIG.
  • the main difference is that a PPLN waveguide 4905-1 for generating the second harmonic 4922 is arranged on the signal input side from the synchronization phase modulator 4910.
  • the LN phase modulator 4910 is arranged on the output side from the second harmonic generation PPLN waveguide 4905-1, so that the drive voltage required for phase modulation is reduced compared to the configuration shown in FIG. Succeeded in halving.
  • the half-wave drive voltage that is, the voltage necessary for phase modulation
  • the drive power supply can be reduced in size and power consumption can be reduced.
  • the driving voltage required for synchronization is about 0.1 V.
  • the optical PLL phase modulator 4910 is arranged on the output side from the PPLN waveguide 4905-1, so that The drive voltage required for synchronization could be greatly reduced to 50 mV.
  • the operating voltage drift of the phase modulation unit is achieved by using a direct junction waveguide using Zn niobate doped with excellent light damage resistance as a core. It was possible to suppress.
  • the waveguide of the phase modulation unit 4910 is designed to be a single mode at a fundamental wavelength of 1.54 ⁇ m, like the PPLN waveguide unit.
  • the second harmonic 4922 generated in the PPLN unit 4905-1 propagates only in the base mode due to restrictions due to the phase matching condition, the waveguide design of the PPLN unit 4905-1 and the phase modulation unit 4910 is the same. Thus, it is possible to obtain a stable phase synchronization operation even in a simple waveguide.
  • the apparatus was configured to amplify a 1.54 ⁇ m signal 5020, similar to the configuration shown in FIGS.
  • the use of two PPLN waveguides 5005-1 and 5005-2 and the generation of the second harmonic 5022 to perform degenerate parametric amplification are the same as the configurations shown in FIGS.
  • a multi-mode interferometer (MMI) 5012 is used as a multiplexer of the signal light 5020 and the second harmonic 5022.
  • MMI 5012 the pilot tone phase modulator 5010 for the optical PLL, and the second PPLN waveguide 5005-2 for performing degenerate parametric amplification are integrated on the same substrate fabricated by the direct bonding method. .
  • a ridge shape was formed by dry etching on a waveguide layer produced by directly joining an LN substrate whose polarization was inverted only in the region where degenerate parametric amplification was performed. Furthermore, a metal electrode for electric field application was integrated on the ridge of the MMI signal light input port.
  • the MMI 5012 which is a multiplexer integrated on the substrate, is optimally designed in terms of width, length, and input / output port position. Both the signal light and the pump light have an insertion loss of 1 dB or less, and the second PPLN waveguide. It has the characteristic of being multiplexed to 5005-2.
  • the MMI shape is optimized so that signal light components remaining in the excitation light port are not combined. As a result, it is possible to minimize the influence of the connection loss between the phase modulator and the multiplexer and between the multiplexer and the second PPLN waveguide, which cannot be avoided in the configuration shown in FIG. It became possible.
  • the phase modulator 5010 since the phase modulator 5010 is integrated in the signal light port, the connection loss between the PPLN waveguide 5005-2 and the phase modulator 5010 can be minimized. As a result, the insertion loss of the phase sensitive optical amplifier as a whole can be minimized.
  • the insertion loss at the input end of the phase sensitive optical amplifier leads directly to an increase in noise figure as an amplifier.
  • a phase modulator independent of PPLN is used, and the connection loss causes an increase in noise figure.
  • This configuration is the same as the configuration shown in FIG. 50 in that an integrated MMI 5112, a phase modulator 5110, and a second PPLN waveguide 5105-2 that performs degenerate parametric amplification are used.
  • the excitation light 5122 generated from the second-order nonlinear optical element 5102-1 for generating the second harmonic is input to the port side of the phase modulator 5110, and the signal The point is that the light 5120 is input to the other port.
  • the phase modulation can be performed on the excitation light whose wavelength is converted to 1 ⁇ 2 of the signal, as in the configuration shown in FIG.
  • the drive voltage required for phase modulation could be halved while maintaining the same S / N ratio and amplification factor characteristics.
  • the phase modulator 5110 can be disposed behind the EDFA 5101 for generating the fundamental light, and the amplification operation can be performed while minimizing the S / N ratio deterioration in the EDFA 5101.
  • a dichroic mirror is used as a filter to separate only signal light from an element in which an MMI, a phase modulator, and a PPLN waveguide are integrated. It is also possible to obtain a smaller phase sensitive optical amplifier by integrating MMIs designed to separate only signal light on the same substrate.
  • the apparatus is configured to amplify the 1.54 ⁇ m signal 5220 in the same manner as the configuration shown in FIG.
  • the use of the two PPLN waveguides 5205-1 and 5205-2 and the generation of the second harmonic 5222 to perform degenerate parametric amplification are the same as the configuration shown in FIG.
  • the configuration shown in FIG. 52 is different from the configuration shown in FIG. 51 in that a PPLN waveguide 5205-1 for generating pump light, a pilot tone phase modulator 5210 for optical PLL, and pump light and signal
  • An MMI 5212 for multiplexing light is fabricated and integrated by a direct bonding method on the same LN crystal substrate on which the first PPLN waveguide 5205-1 for generating the second harmonic is formed.
  • the MMI 5212 which is a multiplexer integrated on the substrate, is designed to have an optimum width, length, and input / output port position, and has a characteristic of combining signal light and excitation light with an insertion loss of 1 dB or less.
  • FIG. 53 shows a configuration of an optical receiver including the phase sensitive optical amplifier according to the present embodiment.
  • the apparatus is configured to amplify a 1.54 ⁇ m signal as in the sixth embodiment.
  • the sixth embodiment is that two PPLN waveguides are used, second harmonics are generated and degenerate parametric amplification is performed, and phase synchronization is performed by an optical phase-locked loop circuit (PLL) using a phase modulator. (See FIG. 24).
  • PLL optical phase-locked loop circuit
  • the embodiment shown in FIG. 53 is different from the embodiment shown in FIG. 24 in that a phase modulation waveguide is integrated in one PPLN, so that a differential phase modulation (DPSK) signal can be received. That is, the entire receiving apparatus is configured.
  • DPSK differential phase modulation
  • phase modulator for phase synchronization is used.
  • the loss of the phase modulator is large, the input to the first EDFA used to generate the fundamental light becomes small, and the S / N ratio will deteriorate. If there is a loss in the subsequent stage of the laser amplifier in order to suppress this effect, the output will be reduced by the amount of the loss, but the S / N ratio will not deteriorate.
  • the phase modulator 5310 is arranged on the output side from the optical fiber laser amplifier 5301-2.
  • the optical waveguide 5305-1 for generating the second harmonic wave that is the excitation light and the waveguide used for the phase modulator 5310 are integrated on the same substrate to reduce the connection loss between the elements. Further, a phase modulator 5310 is arranged on the output side from the optical fiber laser amplifier 5301-2.
  • the fluctuation of the phase matching wavelength is suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent optical damage resistance.
  • high wavelength conversion efficiency was realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • a phase modulator without a periodically poled structure was integrated on the same substrate on which the PPLN waveguide was formed by the same waveguide formation method.
  • an electric field application electrode was formed on the waveguide, enabling phase modulation by the EO effect.
  • phase sensitive amplification is the same as in the sixth embodiment.
  • the fundamental light 5321 is amplified using a first fiber laser amplifier (EDFA) 5301-2.
  • the amplified fundamental wave light is incident on the first second-order nonlinear optical element 5302-1 to generate the second harmonic 5322.
  • the signal light 5320 and the second harmonic 5322 are incident on the second second-order nonlinear optical element 5302-2 and degenerate parametric amplification is performed, thereby performing phase sensitive amplification.
  • a band pass filter 5304-2 was inserted between the EDFA 5301-2 and the first second-order nonlinear optical element 5302-1 to cut unnecessary ASE light.
  • a part of the output amplified signal light is branched by the optical branching unit 5303 and received by the photodetector 5308, and then phase locked by the phase locked loop circuit (PLL) 5309.
  • PLL phase locked loop circuit
  • phase modulator 5310 integrated in the first PPLN waveguide 5305-1 Using the phase modulator 5310 integrated in the first PPLN waveguide 5305-1, a weak phase modulation is applied to the fundamental wave light 5321 using a sine wave.
  • the optical detector 5308 and the PLL circuit 5309 detect the phase shift of the phase modulation, and the driving voltage of the expander of the optical fiber stretcher 5311 by the PZT disposed before the EDFA 5301-2 and the bias voltage of the phase modulator 5310 By providing feedback, the optical phase fluctuation due to vibration of optical fiber parts and temperature fluctuation is absorbed, and phase-sensitive amplification can be stably performed.
  • the apparatus is configured to receive an NRZ signal.
  • a delay interferometer 5314, a balanced PD 5315, and a limiting amplifier 5312 are arranged after the preamplifier, so that the differential The signal of phase modulation can be received.
  • FIG. 54 shows the result of evaluating the reception sensitivity of the optical receiver according to this embodiment from error rate measurement.
  • the incident power for obtaining an error rate of 10 ⁇ 9 is ⁇ 32.9 dBm when the conventional EDFA is used, whereas it is about 1.6 dB lower when this embodiment is used.
  • the same error rate was obtained at ⁇ 34.5 dBm, and it was confirmed that the reception sensitivity was improved by optical reception using low-noise optical amplification according to this embodiment.
  • the apparatus is configured to receive DPSK.
  • the signal format to be received is not limited to this, and for example, a pre-optical amplifier for other signal formats such as optical duo binary.
  • a pre-optical amplifier for other signal formats such as optical duo binary.
  • the improvement in reception sensitivity is about 1.6 dB, but there is room for further improvement. This is because if there is a coupling loss between the second PPLN waveguide that performs parametric amplification of the phase-sensitive optical amplifier and the input fiber, the entire noise figure deteriorates accordingly.
  • the coupling loss between the input fiber and the PPLN waveguide is 2 dB. If the optical system used for optical coupling is optimized, the receiving sensitivity can be improved by the reduction of the coupling loss.
  • the synchronizing phase modulator (5310 in FIG. 53) is disposed in front of the PPLN waveguide (5305-1 in FIG. 53) for generating the second harmonic, but this order is reversed. Then, the phase of the second harmonic is modulated, and the voltage required for the phase modulation can be halved.
  • each PPLN waveguide is combined with a dichroic mirror so that the fundamental wave and the second harmonic are multiplexed / demultiplexed. May be integrated on the same substrate as the PPLN using a multiplexer / demultiplexer based on a waveguide circuit. If the loss of signal light and pumping light can be reduced by such integration, the S / N ratio as a whole can be further improved.
  • the same configuration as that of the first embodiment, that is, the amplification method is a degenerate parametric method
  • the excitation light is the second harmonic from the fundamental wave light
  • the fundamental wave light for phase synchronization.
  • the light directly branched from the signal light is used, and the phase synchronization means from the modulated optical signal is not used.
  • the non-degenerate parametric method described in the seventh to ninth embodiments may be adopted.
  • two different wavelengths are used as the excitation light.
  • a method of generating the sum frequency of As a method of generating the fundamental light for phase synchronization, a method of sending a pilot tone signal separately from the signal light as described in the third embodiment may be used.
  • a method of extracting and restoring a carrier wave signal from modulated signal light as described in the embodiment may be used.
  • a phase synchronization method a phase synchronization method that performs feedback with excitation light as described in the eleventh embodiment may be used.
  • FIG. 55 shows the configuration of the phase sensitive optical amplifier according to this embodiment.
  • the apparatus is configured to amplify a signal 5520 of 1.54 ⁇ m (see FIG. 52).
  • the use of two PPLN waveguides 5505-1 and 5505-2 and the generation of the second harmonic 5522 to perform degenerate parametric amplification are the same as in the twelfth embodiment.
  • a first PPLN waveguide 5505-1 for generating pumping light, a pilot tone phase modulator 5510 for optical PLL, The MMI 5512 for combining the excitation light and the signal light and the second PPLN waveguide 5505-2 for performing degenerate parametric amplification are manufactured and integrated on the same substrate by a direct bonding method.
  • the same configuration as that of the first embodiment, that is, the amplification method is a degenerate parametric method
  • the excitation light is the second harmonic from the fundamental wave light
  • the fundamental wave light for phase synchronization.
  • the light directly branched from the signal light is used, and the phase synchronization means from the modulated optical signal is not used.
  • the non-degenerate parametric method described in the seventh to ninth embodiments may be adopted.
  • two different wavelengths are used as the excitation light.
  • a method of generating the sum frequency of As a method of generating the fundamental light for phase synchronization, a method of sending a pilot tone signal separately from the signal light as described in the third embodiment may be used.
  • a method of extracting and restoring a carrier wave signal from modulated signal light as described in the embodiment may be used.
  • a phase synchronization method a phase synchronization method that performs feedback with excitation light as described in the eleventh embodiment may be used.
  • FIG. 56 An example of the configuration of the phase sensitive optical amplifier according to the present embodiment will be described with reference to FIG. The purpose of the configuration of the amplifier as shown in FIG. 56 is the second harmonic generation (SHG) PPLN, the signal light and second harmonic multiplexer / demultiplexer, and the degenerate parametric, which were problems in the prior art. This is to prevent an increase in the substrate size that cannot be avoided when the amplification (DPA) PPLN is integrated on the same substrate.
  • SHG second harmonic generation
  • DPA amplification
  • a PPLN5621 that performs both generation of second harmonics and degenerate parametric amplification and a multimode interferometer (MMI) 5622 as a multiplexer / demultiplexer are integrated, and the wavelength inputted through the optical isolator 5623 A signal light 5615 of 1.56 ⁇ m is amplified.
  • MMI multimode interferometer
  • the integrated MMI 5622 couples signal light having a wavelength of 1.56 ⁇ m to a low loss degenerate parametric amplification PPLN 5621 having an insertion loss of about 1.0 dB by optimally designing the waveguide width, waveguide length, and input / output port position. It was a characteristic.
  • a part of the signal light is branched by the coupler 5603 and used as the fundamental wave light 5616.
  • the fundamental wave light 5616 is input to the EDFA 5605 through a phase modulator 5604 for phase synchronization of signal light and pumping light.
  • the fundamental wave light 5616 is amplified by the EDFA 5605, it is input from the right end of the substrate via the optical circulator 5625.
  • the amplified fundamental light 5618 input from the right end propagates through the PPLN waveguide 5621 where both the second harmonic generation and the degenerate parametric amplification are performed, and is almost entirely converted into the second harmonic component before reaching the MMI 5622.
  • the MMI 5622 has a low loss for coupling the second harmonic to the lower output waveguide 5628 with an insertion loss of 1.0 dB.
  • the second harmonic 5617 is reflected at the left end of the substrate with high efficiency by an optical multilayer filter having a high reflectance of 99.99% at a wavelength of 0.78 ⁇ m.
  • the second harmonic 5617 is coupled to the PPLN waveguide 5621 where the second harmonic generation and the degenerate parametric amplification are both performed again through the MMI, and propagates in the PPLN waveguide 5621. While propagating through the PPLN waveguide 5621, the second harmonic 5617 is optically mixed with the signal light 5615 combined by the MMI, and the signal light is amplified by degenerate parametric amplification.
  • the left two waveguides 5627 and 5628 are formed in different shapes. Specifically, the optical waveguide 5627 for signal light having a wavelength of 1.56 ⁇ m is formed to have a curved portion, and the waveguide 5328 for excitation light (second harmonic) having a wavelength of 0.78 ⁇ m is: It is formed in a straight line. One end face common to the input portions of these two waveguides is determined, and end face processing is performed by cutting out the two waveguides along this end face.
  • the end face is processed by adjusting the shape of the output end to a position where the 1.56 ⁇ m signal light waveguide 5627 is inclined with respect to the end face and perpendicular to the 0.78 ⁇ m excitation light waveguide 5638. Apply. Accordingly, the end face of the 1.56 ⁇ m signal light waveguide 5627 can be processed into a shape having an angle of 6 °. Further, at the right end to which the fundamental wave light is input, the end face processing is performed so that the angle becomes 6 ° with respect to the PPLN waveguide, similarly to the left end.
  • an antireflection (AR) film 5629 for 1.56 ⁇ m light and a high reflection (HR) film 5630 for 0.78 ⁇ m light were formed by sputtering on the left end.
  • antireflection (AR) films 5629 and 5631 for 1.56 ⁇ m and 0.78 ⁇ m light were formed on the right end of the substrate by sputtering in the same manner as the left end. With the above processing, a waveguide end face having a reflection function or a non-reflection function with respect to light having a desired wavelength is realized.
  • the parametric amplification operation itself by the non-linear optical medium in the phase sensitive optical amplifier is essentially capable of light amplification with low noise.
  • there is the following incidental noise it is conceivable that the noise contained in the pump light itself is converted into the noise of the amplified light by the parametric amplification process.
  • the phase modulator 5604 used for phase synchronization is arranged in front of the EDFA 5605, and the incident power to the EDFA is reduced by the insertion loss of the phase modulator.
  • a laser amplifier such as an EDFA
  • the S / N ratio deteriorates by that amount (see Non-Patent Document 8). If the S / N ratio of the pumping light deteriorates due to the insertion loss of the phase modulator in this way, the noise component is converted to the noise of the amplified light by the parametric amplification process, and low-noise amplification is performed. I can't.
  • this noise problem is solved.
  • Non-Patent Document 8 when there is a loss in the previous stage of the laser amplifier, the S / N ratio is deteriorated by the loss, whereas in the latter stage of the laser amplifier. If there is a loss, the output will decrease by the amount of the loss, but the S / N ratio will not deteriorate. Therefore, by utilizing this property, in this configuration, the phase modulator 5704 is arranged on the output side from the optical fiber laser amplifier 5705 as shown in FIG.
  • the configuration as shown in FIG. 57 cannot be adopted.
  • many of the existing phase modulators are made of an optical waveguide in which Ti is diffused in a LiNbO 3 (LN) crystal. Since light damage is significant in the Ti diffusion waveguide, when a large light power is incident, a refractive index change occurs due to a photorefractive effect, which causes a drift phenomenon in which the voltage for obtaining the same phase change amount changes. For this reason, the optical power that can be input to the phase modulator is limited to about +20 dBm.
  • phase modulator with a large insertion loss is placed after the laser amplifier, the power of the fundamental wave light is attenuated, so that sufficient pumping light power to produce the optical parametric effect cannot be obtained, resulting in a large amplification factor. Phase sensitive amplification cannot be realized.
  • the phase modulator 5704 can be arranged on the output side from the EDFA 5705.
  • the S / N ratio of the excitation light can be improved by about 5 dB.
  • a gain of about 11 dB could be obtained under the condition that the power of the second harmonic incident on the PPLN waveguide was 300 mW. At this time, the output power of the EDFA was about 1 W, and the input power to the direct junction waveguide was 630 mW. However, even when such high-power light is incident, it is stable without causing a drift phenomenon of the operating voltage. Phase-locking operation can be realized.
  • the phase matching wavelength when a high intensity power is incident on the PPLN waveguide, the phase matching wavelength may change due to optical damage caused by the photorefractive effect.
  • the phase modulator 5704 used in the configuration shown in FIG. 57 it is manufactured by a direct bonding method which is a method of forming a waveguide having a high optical damage resistance. It is also possible to use second order nonlinear optical devices. It was confirmed that the variation of the phase matching wavelength can be suppressed by using a direct junction waveguide using, as a core, lithium niobate doped with Zn having excellent optical damage resistance. Also, high wavelength conversion efficiency could be realized by reducing the core diameter to about 4 ⁇ m by dry etching.
  • FIG. 58 uses a second-order nonlinear optical device that is end-face processed and manufactured by a direct bonding method.
  • the difference between the configuration shown in FIG. 58 and the configuration described above is that the phase modulator for synchronizing the signal light and the excitation light is integrated on the same substrate as the nonlinear optical crystal.
  • the arrangement is such that phase modulation is performed in the second harmonic folding waveguide of the fundamental light.
  • phase modulator 5834 having no periodic polarization inversion structure was integrated on the same substrate on which the PPLN waveguide was formed by the same waveguide formation method as described above.
  • an electric field application electrode 5835 is formed on the waveguide to enable phase modulation by the electro-optic (EO) effect.
  • this waveguide forming method is excellent in optical damage resistance. Therefore, even when the power of the fundamental light amplified by the EDFA 5805 is increased, the pilot tone for the optical PLL is generated without causing the operating voltage drift phenomenon. Can be applied to the fundamental light.
  • the size of the device was successfully reduced by forming the phase modulator electrode on the second harmonic folding waveguide of the excitation light.
  • the half-wave drive voltage that is, the voltage required for phase modulation
  • the half-wave drive voltage can be halved and greatly reduced by the arrangement employed in the configuration shown in FIG. 58 as compared with the arrangement shown in the first embodiment.
  • this second harmonic is efficiently reflected by the end face processing at the left end and again passes through the same phase modulator, the same amount of phase change is added as the amount of phase change in the forward path, so the total phase change is doubled. It becomes. Therefore, due to these synergistic effects, when the phase modulation voltage is constant, the required optical path length, that is, the length of the phase modulation section can be significantly reduced.
  • the waveguide of the phase modulation unit is designed to be single mode at a fundamental wavelength of 1.54 ⁇ m, like the PPLN waveguide unit, so that the multimode is used at the second harmonic wavelength of 0.77 ⁇ m.
  • the second harmonic generated in the PPLN part propagates only in the fundamental mode due to restrictions due to the phase matching condition, it is stable even in a simple waveguide having the same waveguide design for the PPLN part and the phase modulation part. It was possible to obtain a phase synchronization operation.
  • the configuration shown in FIG. 59 uses a second-order nonlinear optical device that is end-face processed and manufactured by a direct bonding method, and integrates a phase modulator for synchronizing signal light and excitation light on the same substrate as the nonlinear optical crystal. Is the same as the configuration shown in FIG.
  • phase modulator 5934 for synchronizing the signal light and the pumping light converts the signal light into the signal light waveguide in the integrated second-order nonlinear optical device.
  • the arrangement is such that phase modulation is performed.
  • the arrangement in which the optical PLL phase modulator functions with respect to the pumping light is adopted.
  • the arrangement in which the phase modulator functions with respect to the signal light as shown in FIG. Even if it is taken, phase synchronization can be realized in exactly the same way.
  • phase sensitive optical amplifying device When a phase sensitive optical amplifying device is configured by inserting a commercially available phase modulator on the signal light side, the influence of the insertion loss of the phase modulator is relatively large, and the signal light is transmitted before reaching the degenerate parametric conversion (DPA) section. It will attenuate. Therefore, the S / N ratio deterioration of the amplifier is inevitable.
  • DPA degenerate parametric conversion
  • the function of phase modulation for signal light is integrated in the same substrate. With the configuration shown in FIG. 59, the S / N ratio was improved by 3 dB compared to the case where a commercially available phase modulator was inserted on the signal light side.
  • the same configuration as that of the first embodiment, that is, the amplification method is a degenerate parametric method
  • the excitation light is the second harmonic from the fundamental wave light
  • the fundamental wave light for phase synchronization.
  • the light directly branched from the signal light is used, and the phase synchronization means from the modulated optical signal is not used.
  • the non-degenerate parametric method described in the seventh to ninth embodiments may be adopted.
  • two different wavelengths are used as the excitation light.
  • a method of generating the sum frequency of As a method of generating the fundamental light for phase synchronization, a method of sending a pilot tone signal separately from the signal light as described in the third embodiment may be used.
  • a method of extracting and restoring a carrier wave signal from modulated signal light as described in the embodiment may be used.
  • a phase synchronization method a phase synchronization method that performs feedback with excitation light as described in the eleventh embodiment may be used.
  • Phase-sensitive light amplification unit 102
  • Excitation light source 103
  • Excitation light transfer control units 104-1 and 104-2
  • Optical branching unit 110
  • Input signal light 111
  • Output signal light 201
  • Laser light source 202
  • OPA crystal 210
  • Signal light 211
  • Pumping light phase synchronization means 402 Erbium-doped fiber laser amplifier (EDFA) 403
  • Optical fiber 404 Filter 410 Input signal light 411-1, 411-2 Excitation light 412 Output signal light 501
  • Optical fiber amplifier 601 Erbium-doped fiber laser amplifier (EDFA) 602-1, 602-2 Second-order nonlinear optical elements 603-1, 603-2
  • Optical branching section 604 Bandpass filters 605-1, 605-2 PPLN waveguides 606-1, 606-2, 606-3 Dichroic mirror 607 Polarization maintaining fiber 608 Photodet

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明の目的は、光通信に適用可能であり、かつ低雑音での増幅が可能な位相感応光増幅装置を提供することである。本発明に係る位相感応光増幅装置は、非線形光学効果を用いた光混合により信号光を増幅する位相感応型光増幅装置であり、第1の二次非線形光学素子(602-1)と、第2の二次非線形光学素子(602-2)とを備える。第1の二次非線形光学素子(602-1)は、基本波光(621)から励起光として用いられる第二高調波光(622)を発生させ、基本波光および第二高調波光から、第二高調波光のみを分離するフィルタ(606-1)を備える。第2の二次非線形光学素子(602-2)は、信号光と第二高調波光とを合波する合波器(606-2)を備え、合波された信号光と第二高調波光とを用いてパラメトリック増幅を行い、第二高調波光および増幅された信号光から、増幅された信号光のみを分離するフィルタ(606-3)を備える。

Description

光信号増幅装置
 本発明は光増幅装置に関し、具体的には、光通信システムや光計測システムにおいて用いられる光増幅装置ならびにこの光増幅装置を備えた光送信装置及び光受信装置に関する。
 従来の光伝送システムでは、光ファイバを伝搬することにより減衰した信号を再生するために、光信号を電気信号に変換し、デジタル信号を識別した後に光信号を再生する識別再生光中継器が用いられていた。しかしながら、この識別再生光中継器では、光信号を電気信号に変換する電子部品の応答速度に制限があることや、伝送する信号のスピードが速くなると、消費電力が大きくなるなどの問題があった。
 この問題を解決する増幅手段として、エルビウムやプラセオジム等の希土類元素を添加した光ファイバに励起光を入射して信号光を増幅するファイバレーザー増幅器や、半導体レーザー増幅器がある。ファイバレーザー増幅器や半導体レーザー増幅器は、信号光を光のままで増幅することができるので、識別再生光中継器で問題になっていた電気的な処理速度の制限が存在しない。加えて、機器構成も比較的単純であるという利点を有する。しかし、これらのレーザー増幅器は、劣化した信号光パルス波形を整形する機能を有さない。また、これらのレーザー増幅器においては、不可避的かつランダムに発生する自然放出光が信号成分とは全く無関係に混入されるので、信号光のS/N比が増幅前後で少なくとも3dB低下する。これらは、デジタル信号伝送時における伝送符号誤り率の上昇につながり、伝送品質を低下させる要因になっている。
 このような従来のレーザー増幅器の限界を打開する手段として、位相感応光増幅器(Phase Sensitive Amplifier:PSA)が検討されている。この位相感応光増幅器は、伝送ファイバの分散の影響による劣化した信号光パルス波形を整形するための機能を有する。また、信号とは無関係の直交位相を持つ自然放出光を抑圧できるために、増幅前後で信号光のS/N比を劣化させず同一に保つことが原理的に可能である。
J. A. Levenson, I. Abram, T. Rivera, and P. Grainger, "Reduction of quantum noise in optical parametric amplification," J. Opt. Soc. Am. B, vol. 10, pp. 2233-2238 (1993). W. Imajuku, and A. Takada, "Gain characteristics of coherent optical amplifiers using a Mach-Zehnder interferometer with Kerr Media," IEEE J. Quantum Electron., vol. 35, no. 11, pp. 1657-1665 (1999). R. Slavik et al., "All-optical phase and amplitude regenerator for next-generation telecommunications system," Nature Photonics., vol. 4, pp. 690-695 (2010). T. Umeki, O. Tadanaga, and M. Asobe, "Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide," IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1003-1008 (2010). R. Slavik et al., "All-optical phase-regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier," In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2010, Torino, Italy) MO.1.A.2. 諸橋 功,坂本 高秀,外林 秀之,川西 哲也,寳迫 巌, "マッハツェンダー変調器ベース光コム発生器およびソリトン圧縮による100fs 級パルス発生," 第72 回応用物理学会学術講演会 講演予稿 (応用物理学会2011 秋 山形大学) 30a-P3-1 R. Tang et al., "In-line phase-sensitive amplification of multichannel CW signals based on frequency nondegenerate four-wave-mixing in fiber," Optics Express., vol. 16, pp. 9046-9053 (2008). 中川清司、他3名、「光増幅器とその応用」、オーム社、1992/05、p.26 西原他、「光集積回路」、オーム社
 しかしながら、上述した従来技術では以下に述べるような問題が存在する。
 従来の位相感応光増幅器の基本的な構成を図1に示す。この光増幅器は、位相感応光増幅部101と、励起光源102と、励起光位相制御部103と、2つの光分岐部104-1、104-2とから構成される。
 この光増幅器は、位相感応光増幅部101における信号光と励起光の位相が後述する特定の関係を満たすと入力信号光110は増幅され、両者の位相が後述する特定の関係から90度ずれた直交位相関係になると、入力信号光110は減衰する特性を有する。この特性を利用して増幅利得が最大となるように励起光―信号光間の位相を制御し、同期させると、信号光と直交位相の自然放出光を発生させずに、つまりS/N比を劣化させずに信号光を増幅することができる。
 信号光と励起光の位相同期を達成するために、光分岐部104-1で分岐された入力信号光110の位相に同期するように励起光111の位相を制御する。励起光位相制御部103は、光分岐部104-2で分岐された出力信号光112の一部を狭帯域の検出器で検波し、出力信号が最大となるように励起光111の位相を制御する。その結果、位相感応光増幅部101において、信号光の位相と、励起光の位相とが同期するように制御され、S/N比の劣化のない光増幅を実現することができる。
 なお、励起光位相制御部103は、図1に示すような励起光源102の出力側で励起光の位相を制御する構成の他に、励起光源102の位相を直接制御する構成としてもよい。また信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して励起光として用いることもできる。
 位相感応光増幅部には2次もしくは3次の非線形光学効果を有する媒質が用いられる。従来、これらの位相感応光増幅器は主に、光の量子状態を制御するスクィージング等の基礎研究分野で用いられてきた。初期の位相感応光増幅器の研究では二次非線形光学結晶を用いた研究が報告されている。
 2次の非線形光学効果を利用する場合は、非特許文献1に示されるように、光学結晶等を非線形媒質として用い、信号光の第二高調波に相当する波長を励起光として用い、励起光と信号光を、非線形媒質に入射し、三光波混合を利用した縮退パラメトリック増幅(Optical Parametric Amplifier:OPA)を行うことにより位相感応増幅が達成される。
 図2に示すように、従来技術では、レーザー光源201からの比較的高い強度を持つレーザー光を分岐し一方をSHG(Second Harmonic Generation)結晶202に入射し、他方を信号光210として用いる。第二高調波に変換された励起光211と信号光210とを縮退光パラメトリック増幅の可能な非線形光学結晶203に入射して、位相感応増幅を行う。
 位相感応光増幅器においては、信号光の位相が励起光の位相と特定の関係を満たす場合にのみ増幅作用が起こる。具体的には、信号光と励起光の位相が一致、もしくはπラジアンだけずれている必要がある。すなわち2次の非線形光学効果を用いる場合は、第二高調波に相当する波長である励起光の位相φ2ωsと、信号光の位相φωsとが以下の(式1)の関係を満たすことが必要となる。
 Δφ=1/2φ2ωs-φωs=nπ(ただし、nは整数)   (式1)
 図3は、従来の二次非線形光学効果を利用した位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、利得(dB)との関係を示すグラフである。Δφが-π、0、またはπのときに、利得が最大となっていることがわかる。
 図2に示した構成においても、図1で示したように出力信号光の一部を分岐して狭帯域の検出器で検波し、出力信号が最大となるように励起光の位相を制御して信号光と励起光の位相同期を達成することができる。
 また、詳細は後述するが、上記で説明した縮退パラメトリック増幅は、非縮退パラメトリック増幅において、信号光とアイドラ光の波長が一致した特別な場合である。2次の非線形光学効果を用いる場合は、第二高調波に相当する波長である励起光の位相φSHと、信号光の位相φ、アイドラ光の位相φが以下の(式2)の関係を満たすことで、非縮退パラメトリック増幅による位相感応増幅を行うことが可能である。
Δφ=1/2φSH-1/2(φ+φ)=nπ(ただし、nは整数)   (式2)
 近年光通信の高度化が進むにつれて、位相感応光増幅器の光通信への応用が注目を集めつつある。光通信の分野では通信用光部品との親和性が高い光ファイバの三次非線形光学効果を利用した構成の報告がある。3次の非線形光学効果を用いる場合は、光ファイバ等を非線形媒質として用い、非特許文献2に示されるように、信号光と同じ波長の1つの励起光を用い、励起光と信号光とを、非線形媒質に入射し、四光波混合を利用した縮退パラメトリック増幅を行うことにより位相感応増幅を達成することができる。
 3次の非線形媒質を用い、信号光と同じ波長の1つの励起光を用いる場合は、励起光の位相φωpと信号光の位相φωsとが以下の(式3)の関係を満たすことが必要となる。
 Δφ=φωp-φωs=nπ(ただし、nは整数)   (式3)
 信号光と同じ波長の1つの励起光の代わりに、非特許文献3に示されるように、信号光の光周波数をωとするときに(式4)を満たす光周波数ωp1,ωp2をそれぞれ有する2つの励起光を用いてもよい。
 2ω=ωp1+ωp2   (式4)
 3次の非線形媒質を用い、2つの光周波数ωp1,ωp2に相当する波長の2つの励起光を用いる場合は、励起光の位相φωp1,φωp2と信号光の位相φωsとが以下の(式5)の関係を満たすことが必要となる。
 Δφ=1/2(φωp1+φωp2)-φωs=nπ(ただし、nは整数)   (式5)
 3次の非線形媒質を用いる場合でも、2次の非線形光学効果を用いる場合と同様に出力信号光の一部を分岐して狭帯域の検出器で検波し、出力信号が最大となるように励起光の位相を制御して信号光と励起光の位相同期を達成することができる。
 光ファイバを用いた方式には前述のように信号光と同じ波長の1つの励起光か、信号光とは異なる2つの波長の励起光を用いる方式がある。1つの励起光を用いる場合は、励起光を信号光から分離する必要があるために、非特許文献2に示されるようにループ型のファイバ干渉計を用いて、信号光と励起光を分離する。しかし、この方式では、光ファイバ中のGAWBS(guided acoustics wave Brillouin scattering)による位相変調がファイバをそれぞれ逆方向へ伝搬する光に相関のない形で加わるために、雑音特性が劣化してしまう。この問題を避けるために、近年は非特許文献3に示されるような2つの励起光を用いる方法が良く研究されている。
 図4に、光ファイバを用い、2つの励起光を用いた場合の構成を示す。非特許文献3に示されるように、光ファイバ中の四光波混合等の手段を用いて、入射する信号410の平均的な位相と同期した2つの励起光(411-1,411-2)をまず生成する。次に、2つの励起光(411-1,411-2)と、信号光410とをエルビウム添加ファイバレーザー増幅器(EDFA)402にて増幅し、高非線形性光ファイバ403に入射する。図4では信号光410と2つの励起光(411-1,411-2)を合波してEDFAで増幅する構成となっているが、2つの励起光だけをEDFAで増幅し、信号光と合波してから光ファイバに入射しても同様の効果が得られると考えられる。信号光と2つの励起光との間に上述の(式5)で示した関係が成立するように位相を調整することにより、四光波混合による位相感応増幅を達成することができる。しかしながら、上述してきた従来技術では以下のような問題点がある。
 二次非線形光学結晶を用いた従来の位相感応光増幅器においては、主にSHGやパラメトリック増幅を起こすのに十分な高い出力のパルスレーザー光源を用いて動作させることのできる構成しか示されておらず、一般的に微弱な光を扱う光通信のシステムに適用できるような構成は、未だ公開されていない。
 光ファイバを用いた位相感応増幅においては、光通信のシステムに適用可能な構成は示されているものの、四光波混合を用いるため、信号光、励起光の波長が近接する構成となっている。特に図4には、光ファイバ中の非線形光学効果を利用できるようにEDFAなどの光ファイバ増幅器により必要なパワーを得る構成が示されているが、EDFAで光増幅を行う際に増幅自然放出光(ASE光)が雑音として励起光に重畳してしまう。ここで、励起光の波長と信号光の波長とが接近しているために、ASE光を取り除くことが困難であり、信号光波長にもEDFAから発生するASE光が重畳してしまう。結果として、信号光のS/N比が劣化してしまい、低雑音での光増幅を行うことができない。
 本発明の目的は、上記のような従来技術の問題を鑑みて、光通信に適用可能であり、かつ低雑音での増幅が可能な位相感応光増幅装置を提供することである。
 ところで近年の光通信技術においては大容量の信号を高い周波数利用効率で送るための方法として、光OFDM(Orthogonal Frequency Division Multiplexing)に代表されるように、高速データを複数の光キャリアに分割して変調を行うようなスーパチャネルと呼称されるデータの送受信方法が検討されている。上記のような複数の搬送波にデータ変調を行うような方式を光領域で行うためには、モード同期レーザーや光変調器を用いて等間隔で並んだ光周波数の搬送波からなる光コムを発生する。発生した光コムは分波器により分配され、それぞれの搬送波に光変調器を用いてデータ変調が行われ、再び合波されて伝送路へ導かれる。
 しかしながら、上述した従来技術では以下に述べるような問題点がある。一般に複数の搬送波からなる光コムを分波器で分波し変調器で変調して、合波器で合波する場合、それぞれの構成要素の挿入損失が大きいため、元の光コムに比べて光パワーが著しく減衰してしまう。また、例えば非特許文献6に示されるように単一波長の光源を変調器によって光コムを発生する方法も提案されているが、そのような構成では光コムを発生するだけでも変調器の損失や複数搬送波への変換効率の分だけ光パワーが小さくなってしまう。
 近年の光通信では周波数利用効率の向上が求められており、シャノンの通信理論で知られるように高い周波数利用効率を得るためには信号のS/N比が大きいことが求められる。ところが、上記のような光コムの変調を行うような送信方法では光の発生、変調に伴う光パワーの損失が大きく、光信号を発生した後に通常のレーザー媒質を用いた光増幅器で光ファイバでの伝送に必要なパワーまで増幅を行うと、光増幅器への入力パワーが小さいために信号のS/N比を著しく劣化させてしまう。
 位相感応光増幅器による低雑音な光増幅の原理は知られているものの、一般的に位相感応光増幅器では縮退パラメトリック増幅を用いるために、増幅できる信号波長は1つであり、複数の搬送波を同時に増幅することはできない。
 複数波長を同時に増幅できる方法として、非特許文献7に示されるように光ファイバ中の四光波混合を用いた非縮退パラメトリック増幅を用いる位相感応光増幅器の構成が提案されている。図5に従来の光ファイバ中の四光波混合を用いた複数波長の増幅方法の概略図を示す。この方法ではまず、Copier部内の第1の光ファイバ501に複数の変調光と励起光を入射し四光波混合を用いた波長変換により、入力変調光と位相の反転したアイドラ光を生成する。次いで、複数の変調光群と対応するアイドラ光群を第2の光ファイバ502に入射し、非縮退パラメトリック増幅を行う。この構成を用いれば複数波長の信号光を位相感応増幅することができる。
 しかしながら、このように光ファイバの四光波混合を用いた光増幅では、励起光と信号光の全てが同じ1.55μm帯の通信波長帯に配置される。励起光の発生・増幅に光ファイバ増幅器503が用いられるが、その光ファイバ増幅器から発生する増幅された自然放出光(ASE)が増幅信号光に混入してしまうために、出力のS/N比は入力よりも劣化してしまうという問題があった。
 本発明は、非線形光学効果を用いた光混合によって信号光を増幅する位相感応型光増幅装置であり、基本波光を増幅する光ファイバレーザー増幅器と、周期的に分極反転された二次非線形光学材料から成る、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子と、基本波光と、和周波光とから和周波光のみを分離するフィルタと、信号光と、励起光である和周波光とを合波する合波器と、周期的に分極反転された二次非線形光学材料から成る、励起光を用いて信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子と、増幅された信号光と、励起光とを分離するフィルタと、信号光の位相と、励起光の位相とを同期する手段とを備えたことを特徴とする。
 本発明の一実施形態において、和周波光は、第二高調波であることを特徴とする。
 本発明の一実施形態において、パラメトリック増幅は、縮退パラメトリック増幅であることを特徴とする。
 本発明の一実施形態において、パラメトリック増幅は、非縮退パラメトリック増幅であることを特徴とする。
 本発明の一実施形態において、信号光は、励起光である和周波光の半分の光周波数を中心として対称関係にありかつ同一のまたは反転した位相情報を持つ、1または複数の信号光の対から成ることを特徴とする。
 本発明の一実施形態において、信号光の位相と、励起光の位相とを同期する手段は、位相変調器および光学長の伸長器と、増幅された信号光の一部または励起光の一部を分岐する手段と、位相変調器によって変調された位相変化に対応した分岐する手段により分岐された光の強度変化の検出手段と、検出手段によって検出した光の強度変化をもとに位相変調器及び光学長の伸長器に増幅された信号光の強度を最大化するように帰還を行う位相同期ループ回路とから構成されることを特徴とする。
 本発明の一実施形態において、信号光の位相と、励起光の位相とを同期する手段は、基本波光を発生する半導体レーザーもしくは基本波光または励起光に位相同期している光を発生する半導体レーザーと、増幅された信号光の一部または励起光の一部を分岐する手段と、分岐する手段により分岐された光の強度変化の検出手段と、検出手段によって検出した光の強度変化をもとに増幅された信号光の強度を最大化するように、基本波光を発生する半導体レーザーもしくは基本波光または励起光に位相同期している光を発生する半導体レーザーの駆動電流に帰還を行う位相同期ループ回路とから構成されることを特徴とする。
 本発明の一実施形態において、信号光は、連続波光のパイロットトーンをさらに備え、位相感応型光増幅装置は、信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、半導体レーザー光源は、連続波光のパイロットトーンにより光注入同期され、注入光に位相同期した、半導体レーザー光源から出力された連続光は、基本波光として用いられることを特徴とする。
 本発明の一実施形態において、信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、半導体レーザー光源は、和周波光のみを分離するフィルタから出力された和周波光により光注入同期され、注入光に位相同期した、半導体レーザー光源から出力された連続光は、励起光として用いられることを特徴とする。
 本発明の一実施形態において、信号光の一部を分岐する手段と、半導体レーザー光源と、第1の基本波光を発生させるための光源と、周期的に分極反転された二次非線形光学材料から成る、信号光の第二高調波を発生させるための光導波路を備えた二次非線形光学素子と、周期的に分極反転された二次非線形光学材料から成る、発生させた第二高調波と第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子とをさらに備え、半導体レーザーは、発生させた差周波光により注入同期され、注入光に位相同期した、半導体レーザー光源から出力された連続光を第2の基本波光とし、第1の基本波光と第2の基本波光とを用いて、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、和周波光を発生させることを特徴とする。
 本発明の一実施形態において、信号光の一部を分岐する手段と、半導体レーザー光源と、第1の基本波光を発生させるための光源と、周期的に分極反転された二次非線形光学材料から成る、信号光の第二高調波を発生させるためのかつ発生させた第二高調波と第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子とをさらに備え、発生させた差周波光を半導体レーザーに注入同期し、注入光に位相同期した、半導体レーザー光源から出力された連続光を第2の基本波光とし、第1の基本波光と第2の基本波光とを用いて、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、和周波光を発生させることを特徴とする。
 本発明の一実施形態において、基本波光と、和周波光から和周波光のみを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする。
 本発明の一実施形態において、信号光と、励起光である和周波光とを合波する合波器は、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光合波素子であることを特徴とする。
 本発明の一実施形態において、増幅された信号光と、励起光とを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする。
 本発明の一実施形態において、和周波光は、和周波光の波長においてシングルモードの偏波保持ファイバで伝送されることを特徴とする。
 本発明の一実施形態において、バンドパスフィルタを、光ファイバレーザー増幅器と和周波光を発生させるための光導波路を備えた二次非線形光学素子との間にさらに備えたことを特徴とする。
 本発明の一実施形態において、和周波光を発生させるための光導波路を備えた二次非線形光学素子と、パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子とは、個別に温度調整可能であることを特徴とする。
 本発明の一実施形態において、位相感応型光増幅装置と、フォトダイオードとから構成された光受信装置であって、位相感応型光増幅装置は、位相感応型光増幅装置に従属接続された光ファイバレーザー増幅器と、増幅された信号光の近傍の波長を透過するバンドパスフィルタとをさらに備えたことを特徴とする。
 本発明の一実施形態において、位相感応型光増幅装置と、信号光を生成する光源と、光変調器と、光源からの出力の一部を分岐する手段とから構成された光送信装置であって、分岐された光源からの出力の一部を基本波光として用いることを特徴とする。
 本発明の一実施形態において、光ファイバレーザー増幅器よりも出力側に、位相変調器をさらに備え、位相変調器は、直接接合法により作製された光導波路からなることを特徴とする。
 本発明の一実施形態において、位相変調器をさらに備え、位相変調器は、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、位相変調器は、和周波光を発生させるための光導波路と同一導波路上に隣接して形成され、和周波光を発生させるための光導波路の前段または後段に接続されたことを特徴とする。
 本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と、和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、フィルタと、合波器とは、光導波路と同一導波路上に隣接して形成され、位相変調器は、合波器の前段に接続され、フィルタは、合波器の前段に接続され、和周波光を発生させるための光導波路は、フィルタおよび合波器の前段に接続されることを特徴とする。
 本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と、和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子に集積され、位相変調器と、合波器とは、光導波路と同一導波路上に隣接して形成され、フィルタは、合波器の前段に接続され、光導波路は、合波器の後段に接続され、位相変調器は、合波器の前段に接続されることを特徴とする。
 本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、集積された和周波光を発生させるための二次非線形光学素子およびパラメトリック増幅を行うための二次非線形光学素子は、一つの光学素子として一体化され、和周波光を発生させるための光導波路と、基本波光と和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器と、パラメトリック増幅を行うための光導波路とは、同一導波路上に隣接して形成され、位相変調器は、信号光と励起光とを合波する合波器の前段に接続され、基本波光と和周波光とから和周波光のみを分離するフィルタは、合波器の前段に接続され、和周波光を発生させるための光導波路は、基本波光と和周波光とから和周波光のみを分離するフィルタおよび合波器の前段に接続され、パラメトリック増幅を行うための光導波路は、合波器の後段に接続されることを特徴とする。
 本発明の一実施形態において、位相変調器と、和周波光を反射する手段と、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子に、基本波光を入射し、かつ増幅された信号光を透過する光サーキュレータと、信号光の入力、および基本波光と和周波光から和周波光のみを分離するフィルタにより分離された基本波光の出力に用いられる第1の光導波路と、反射手段と合波器とを接続する第2の光導波路とをさらに備え、フィルタと合波器と第1の光導波路および第2の光導波路とは、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子の光導波路と、励起光を用いて信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子の光導波路とは、共用され、フィルタと合波器とは、共用され、共用された光導波路と共用された合波器と第2の光導波路とは、同一導波路上に隣接して形成され、共用された光導波路と第1の光導波路と第2の光導波路とは、合波器に接続されていることを特徴とする。
 本発明の一実施形態において、第1の光導波路の合波器に接続された接面とは反対側の断面が、第1の光導波路の軸と0°より大きく90°未満の角度をなすように切断され、共用された光導波路の少なくとも1つの入出力端部が共用された光導波路の軸と0°より大きく90°未満の角度をなすように端面処理されていることを特徴とする。
 本発明の一実施形態において、位相変調器は、基本波から和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、位相変調器は合波器と同一導波路上に隣接して形成されていることを特徴とする。
 本発明の一実施形態において、周期的に分極反転された二次非線形光学材料は、LiNbO3、KNbO3、LiTaO3、LiNbxTa1-x3(0≦x≦1)、KTiOPO、または、それらにMg、Zn、Fe、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有していることを特徴とする。
 本発明の一実施形態において、和周波光を発生させるための光導波路と、パラメトリック増幅を行うための光導波路は、非線形光学効果を有する第一の基板と、第一の基板に比べ屈折率の小さい第二の基板とを直接貼り合わせることによって作製された直接接合光導波路であることを特徴とする。
 本発明によれば、非線形光学効果であるパラメトリック増幅効果を利用して信号光の特定の位相成分だけを増幅する位相感応光増幅器において、光通信で用いる微弱な光パワーからパラメトリック光増幅を利用するのに十分なパワーを得るために光ファイバ増幅器を用いながらも、光増幅に伴って発生するASE光を信号光に重畳させずに位相感応光増幅器を構成することができるために、S/N比の劣化を防ぎながら高品質な光信号増幅が可能になる。さらには、本発明を用いることで、複数波長の一括増幅が可能で、かつ励起光と位相相関のある信号光を選択的に増幅することで、ASE光などの無相関な光に起因した雑音を抑制することができる。
 この結果、光通信に適用可能かつ低雑音での増幅が可能な位相感応光増幅器により、光ファイバ中の信号のS/N比を改善できるために、従来よりも高速の信号を低いパワーで長距離まで伝送することが可能になる。また、入射される信号光の位相チャープを補正して増幅することが可能であるために、光ファイバの波長分散による信号劣化の影響が小さくなり、増幅後の信号光の伝送距離を伸ばすことが可能になる。さらに、長距離伝送が必要な応用において位相チャープのあるような安価あるいは簡便な光変調器を用いてチャープのない光信号を発生することが可能になる。さらに、ASE光を抑制することにより、一度劣化した光信号のS/N比を改善させることができる。さらに、位相相関のある信号光を選択的に増幅することで、ASE光と信号光のビート雑音により劣化した信号光のS/N比を改善することができる。
従来の位相感応光増幅器の構成の説明図である。 従来の二次非線形光学効果を利用した位相感応光増幅器の構成の説明図である。 従来の二次非線形光学効果を利用した位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、利得(dB)との関係を示すグラフである。 従来の三次非線形光学効果を利用した位相感応光増幅器の構成の説明図である。 従来の光ファイバ中の四光波混合を用いた複数波長の搬送波の増幅方法を説明するための概略図である。 本発明の第1の実施形態に係る位相感応光増幅器の構成の説明図である。 位相感応光増幅の動作を説明するための図であり、従来技術による構成を用いた場合を示す図である。 位相感応光増幅の動作を説明するための図であり、本発明の第1の実施形態に係る構成を用いた場合を示す図である。 本発明の第1の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光を入射しないときの出力波形を示す図である。 本発明の第1の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が同位相であるときの出力波形を示す図である。 本発明の第1の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が90度ずれたときの出力波形を示す図である。 本発明の第2の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の説明図である。 本発明の第2の実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。 従来のシングルモードファイバ(SMF)中を所定距離伝送させた後の信号の時間波形を説明するための図である。 本発明の位相感応光増幅器によって増幅後の信号をシングルモードファイバ(SMF)中を所定距離伝送させた後の信号の時間波形を説明するための図である。 本発明の第3の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第3の実施形態に係る送信信号を生成するための送信器構成の一例を説明するための図である。 本発明の第3の実施形態に係る光注入同期の動作を説明するためのスペクトル図である。 本発明の第4の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第5の実施形態に係る位相感応光増幅器の構成の説明図である。 位相感応光増幅の動作を説明するための図であり、従来技術による構成を用いた場合を示す。 位相感応光増幅の動作を説明するための図であり、本発明の第5の実施形態に係る構成を用いた場合を示す。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る別の位相感応光増幅器の構成の説明図である。 本発明の第5の実施形態に係るさらに別の位相感応光増幅器の構成の説明図である。 本発明の第6の実施形態に係る位相感応光増幅器を含んだ光受信装置の構成の説明図である。 本発明の第6の実施形態に係る位相感応光増幅器を用いて光増幅を行ったときのスペクトル図である。 本発明の第6の実施形態に係る位相感応光増幅器の評価結果を表すグラフである。 本発明の第6の実施形態に係る位相感応光増幅器の受信感度を評価するための誤り率特性を示すグラフである。 本発明の第7の実施形態で使用する信号を表す図である。 本発明の第7の実施形態に係る位相感応光増幅器の構成を示す図である。 従来技術に係る位相感応光増幅の動作を説明するための図である。 本発明の第7の実施形態に係る位相感応光増幅器の動作を説明するための図である。 本発明の第7の実施形態に係る位相感応光増幅器を使用したときの効果を説明するための図であり、EDFAから発生させたASE光を意図的に混入させた信号光群の光スペクトルを示す。 本発明の第7の実施形態に係る位相感応光増幅器を使用したときの効果を説明するための図であり、EDFAから発生させたASE光を意図的に混入させた信号光群を本発明の第7の実施形態に係る構成を用いた位相感応光増幅器で増幅したときの出力の光スペクトルを示す。 本発明の第7の実施形態に係る位相感応光増幅器の効果を説明するための図であり、位相感応光増幅器で増幅したときの入出力における信号光とASE光のビート雑音のレベルを示す図であり、縮退点を観測した場合を示す図である。 本発明の第7の実施形態に係る位相感応光増幅器の効果を説明するための図であり、位相感応光増幅器で増幅したときの入出力における信号光とASE光のビート雑音のレベルを示す図であり、非縮退点を観測した場合を示す図である。 本発明の第7の実施形態に係る構成による、データ変調を施した光コム信号に対する増幅に起因したS/N比改善効果を調べるために用いた構成の説明図である。 本発明の第7の実施形態に係る位相感応光増幅器の効果を説明するグラフである。 本発明の第8の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の説明図である。 本発明の第8の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の別例を説明するための図である。 本発明の第8の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の別例を説明するための図である。 本発明の第8の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光を入射しないときの出力波形を示す図である。 本発明の第8の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が同位相であるときの出力波形を示す図である。 本発明の第8の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が90度ずれたときの出力波形を示す図である。 本発明の第8の実施形態に係る位相感応光増幅の構成の別例を説明するための図である。 本発明の第9の実施形態に係る位相感応光増幅の構成の説明図である。 本発明の第10の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、第二高調波の利得との関係を示すグラフである。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第13の実施形態に係る位相感応光増幅器を含んだ光受信信装置の構成の説明図である。 本発明の第13の実施形態に係る位相感応光増幅器による効果を説明するグラフである。 本発明の第14の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。
 以下、図面を参照しながら本発明の実施の形態を詳細に説明する。
 (第1の実施形態)
 図6に本実施形態の構成を示す。本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)601を用いて、基本波光621を増幅する。増幅した基本波光621を第1の二次非線形光学素子602-1に入射して第二高調波622を発生させる。第2の二次非線形光学素子602-2に信号光620と第二高調波622とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。斯かる位相感応光増幅装置の構成が、本願発明の基本的な特徴である。
 図6に示す構成の詳細は後述するとして、このような構成をとると以下に述べるような従来技術では得られない効果が得られる。
 図7Aおよび図7Bは、位相感応光増幅で用いる信号光・励起光のスペクトルを模式的に示す図であり、図7Aは、図4で示した従来のファイバレーザー増幅器および非線形媒質として光ファイバを利用した構成を用いた場合を示し、図7Bは、図6で示す本実施形態による構成を用いた場合を示す図である。
 従来の光ファイバを用いた位相感応光増幅器では四光波混合を利用する。このため、パラメトリック光増幅を行うための励起光と信号光との波長が位相整合条件を満たすためには、これらの波長は、近接した波長にならざるを得ない。
 図7Aで例示するように、信号光701および励起光702が同じ1.55μm帯の波長帯を有し、2つの励起光702-1,702-2を用いる場合、全体構成を簡略化するために2つの励起光を1つの光ファイバ増幅器で増幅することが望ましい。しかしその際、励起光波長の近傍に光ファイバ増幅器により発生するASE光703が発生してしまう。信号波長帯域にASE光を発生させないために信号光が光ファイバ増幅器を通らないような構成にすることは一応可能である。しかしながら、励起光を信号光と合波する際に両者の波長が接近しているために、波長選択性の良い光フィルタを実現することは困難であり、ASE光を完全にカットすることができない。この結果、信号波長帯域に発生しているASE光が信号波長に重畳してしまい、ASE光の混入により信号光のS/N比が劣化してしまうこととなる。
 一方、本実施形態による構成では、信号光701の波長と基本波光704の波長とは同一である。光通信で用いる微弱な光パワーから、パラメトリック光増幅を利用するのに十分なパワーを得るために、基本波光704を光ファイバ増幅器により増幅する。このときに基本波光704の波長近傍にASE光703が重畳する。
 本実施形態に係る構成においては、光増幅を行ったのちに、ASE光703が重畳された基本波光704を、第1の二次非線形光学素子に入射し第二高調波705を発生させる。このときに励起光として使用される第二高調波705の波長帯域には、わずかにASE光703の第二高調波が発生する以外には雑音となる広帯域のASE光は発生しない。第二高調波705の波長は基本波光704の波長の半分であり、両者の波長は十分に離れている。従って、基本波光と第二高調波とから第二高調波のみを分離するような高い消光比を持ったフィルタをダイクロイックミラー等で実現することは比較的容易である。そのようなフィルタを第1の二次非線形光学素子の出力に接続することにより、励起光波長帯域の基本波光704とASE光703とを完全に取り除くことができる。次いで、信号光701と第二高調波705のみとを合波して第2の二次非線形光学素子に入射し、縮退パラメトリック増幅による位相感応増幅を実現することができる。
 再度図6を参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、1.54μmの信号光620を増幅するために、信号光620の一部を光分岐部603-1で分岐して基本波光621として用いている。基本波光621は、エルビウム添加ファイバレーザー増幅器(EDFA)601を用いて増幅される。増幅された基本波光621は、第1の二次非線形光学素子602-1に入力される。
 本実施形態では、EDFA601から発生する広帯域なASE光が第1の二次非線形光学素子602-1により変換されることを防ぐために、EDFA601と第1の二次非線形光学素子602-1との間にバンドパスフィルタ604を挿入し、不必要なASE光をカットした。二次非線形光学素子602は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路605を備える。PPLN導波路605は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られるので、図示するような構成にすることで高い波長変換効率を得ることができる。PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
 本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。第1のPPLN導波路605-1から出射した、第二高調波622と基本波光623とは、ダイクロイックミラー606-1を用いて分離した。ダイクロイックミラー606-1で反射された0.77μmの第二高調波622は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバ607を介して、第2の二次非線形光学素子602-2へと導かれている。このとき、ダイクロイックミラー606-1で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバ607に入射されることになるが、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不用な光を効果的に減衰させることができる。偏波保持ファイバ607で導かれた第二高調波622は、ダイクロイックミラー606-2を用いて波長1.54μmの信号光620と合波される。ダイクロイックミラー606-2は第二高調波622のみを反射させるので、第1のPPLN導波路605-1から出射され、ダイクロイックミラー606-1および偏波保持ファイバ607を通ってくる波長1.54μm付近の基本波光621とASE光との残留成分を効果的に取り除くことができる。
 信号光620と第二高調波622とは合波され、第2のPPLN導波路605-2に入射される。第2のPPLN導波路605-2は、第1のPPLN導波路605-1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 本実施形態では、2つのPPLN導波路605-1,605-2はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。第2のPPLN導波路605-2から出射された光は、ダイクロイックミラー606-3により励起光である第二高調波と増幅された信号光とに分離される。このときも第二高調波と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
 位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光の一部を光分岐部603-2で分岐して光検出器608で受光したのちに位相同期ループ回路(PLL)609により位相同期を行った。EDFA601の前に配置した位相変調器610を用いて正弦波により微弱な位相変調を基本波光621に施す。光検出器608とPLL回路609でその位相変調の位相ずれを検出して、EDFA601の前に配置したPZTによる光ファイバ伸長器611のの駆動電圧と位相変調器610のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。本実施形態では、強度変調器624としてLNマッハツェンダー変調器を用い10Gb/sのNRZ信号を入力した場合の増幅特性を評価した。
 図8A、図8B、および図8Cは、本実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。図8Aに励起光が入射しないときの入射信号光の出力波形を、図8BにPLLにより励起光と信号光の位相が(式1)の関係を満たすように設定したときの出力波形を、図8CにPLLにより励起光と信号光の位相が(式1)の関係から90度ずれるように設定したときの出力波形をそれぞれ示す。
 本実施形態では、励起光の位相と信号光の位相とを(式1)の関係を満たすように同期させることにより、第2のPPLN導波路605-2に入射した第二高調波622のパワーが300mWという条件下、約11dBの利得を得ることができた。本実施形態では光ファイバ増幅器を用いることにより、光通信への応用では必須の条件であるCW光の励起光による動作を実現することができた。また、本実施形態による構成をとることにより光ファイバ増幅器を用いながらも光ファイバ増幅器から発生するASE光の混入を防ぐことが出来たため、S/N比の劣化を防いで位相感応増幅を行うことが可能になった。
 なお、本実施形態では和周波の発生およびパラメトリック増幅を行う二次非線形光学素子に直接接合法により作製した光導波路を適用したが、本手法は本実施形態に限定されず、他の実施形態においても、直接接合法により作製した光導波路の適用が可能である。
 励起光と信号光の位相が(式1)の関係から90度ずれるように設定したときは、図8Cに示すように、NRZ信号のONとOFFレベルの間の過渡的な部分のみが増幅された波形が観測された。これはNRZ信号を生成するのに使用したLNマッハツェンダー変調器として変調器中の片方のアームのみの位相変調を用いるタイプの変調器を用いたため、データ変調器によってチャープが生じることを反映している。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じる。このために信号光位相と励起光の位相とを直交させるように設定すると、位相チャープ成分のみが位相感応増幅されるという結果となる。このことはすなわち、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅できることを示している。
 さらに、本実施形態による動作を行う中で以下のような従来技術にはない利点があることも明らかになった。従来の光ファイバ中の四光波混合を利用し2つの励起光を使って位相感応増幅を行う構成では、非特許文献5に示されるように、信号光波長を中心として2つの励起光との間の四光波混合だけが起きるわけではなく、位相整合に対する条件が様々な波長間で満たされてしまう。従って、例えば一方の励起光を中心にして信号光が別の波長へ変換されるような過程も生じてしまい、増幅された信号光がつぎつぎとコピーされて複数の信号が生成されてしまう。このために増幅信号光のパワーが散逸してしまい、所望の信号光を増幅できるパワーが制限されてしまう。それに対して本実施形態では第2のPPLN導波路へは信号光と第二高調波のみが入力されるので、従来技術のような不必要な波長変換過程が生じることがない。本実施形態では出力パワーを+22dBmまで大きくしても出力の飽和がみられず安定的な増幅を行うことができた。
Figure JPOXMLDOC01-appb-I000001
 (第2の実施形態)
 図9に本実施形態の構成を示す。本発明に係る位相感応光増幅器の有する波形整形効果を利用することで、チャープを持つような変調器を用いてもチャープを除去して信号を送り出すことができる。外部共振器型の半導体LD(ECL)930からの出力を電界吸収型(EA)変調器を用いて40Gb/sの変調速度でNRZ強度変調を施した後、第1の実施形態に係る位相感応光増幅器と同様の位相感応光増幅器により変調信号を増幅し、送信器を構成した。
 電界吸収型(EA)変調器は半導体を用いて作製できるため安価に大量に生産することができる。しかしながら、電界吸収を利用することから変調信号に周波数チャープ成分が重畳し信号品質を劣化させる。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じてしまう。このような信号を用いると、ファイバ中の分散により波形が劣化するため長距離伝送が難しいことが知られている。
 図10は、本実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。図10(a)に増幅前の変調信号を、図10(b)に位相同期ループ回路(PLL)により励起光位相と信号光位相とが(式1)の関係を満たすように設定したときの出力波形を、図10(c)にPLLにより励起光位相と信号光位相とが(式1)の関係から90度ずれるように設定したときの出力波形をそれぞれ示す。
 励起光位相と信号光位相とが(式1)の関係から90度ずれるように設定したときは、図10(c)に示すように、NRZ信号のONとOFFレベルの間の過渡的な部分のみが増幅された波形が観測された。これはNRZ信号を生成するのにEA変調器を用いているため、データ変調器のチャープが生じることを反映している。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じる。このために信号光位相と励起光位相とが(式1)の関係から90度ずれるように設定すると、位相チャープ成分のみが位相感応増幅されるという結果となる。
 すなわち、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅できることを示している。このことを確かめるために、位相感応光増幅器を通す前の信号と、位相感応光増幅器を通した後の信号をシングルモードファイバ(SMF)中を伝送させ分散耐性を比較した。
 図11Aおよび図11Bは、シングルモードファイバ(SMF)中を伝送させた後の信号の時間波形を説明するための図である。図11Aに増幅前の変調信号をそれぞれ1.2km、2.4km、3.6km、4.8kmの長さを持つシングルモードファイバ(SMF)中を伝送させた後の出力波形を示す。図11Bに本発明に係る位相感応光増幅器を通した後、それぞれ1.2km、2.4km、3.6km、4.8kmの長さを持つシングルモードファイバ(SMF)中を伝送させた後の出力波形を示す。
 分散耐性を定量的に比較するために、図11Aおよび図11Bに示すそれぞれの条件においてビット誤り率を測定した。位相感応光増幅器を通す前の信号を2.4kmよりも長いシングルモードファイバ(SMF)中を伝送させると、ビット誤り率が非常に大きくなった。一方、本発明に係る位相感応光増幅器を通した後では、信号を4.8kmのシングルモードファイバ(SMF)中を伝送させても位相感応光増幅器を通す前の信号を2.4km伝送させた信号と同程度のビット誤り率が得られた。つまり、本実施形態に係る送信器構成を用いることで、伝送に対する分散耐性を2倍にすることができた。
 本実施形態に係る位相感応光増幅器の有する波形整形効果を利用することによって、安価な半導体EA変調器を用いたことで入力信号に位相チャープが含まれるような場合であっても、そのチャープ成分を除去して、チャープのない信号として整形し増幅可能な増幅器を実現することができる。なお、本実施形態においては、変調器として、電界吸収型(EA)変調器を用いたが、それ以外の変調器を用いてもよい。
 (第3の実施形態)
 図12に本実施形態の構成を示す。データ変調の施された信号光1240が光ファイバ等の伝送媒質を伝搬し信号が送られる。その際、伝送媒体における光強度の損失を補償するために光増幅器を行う中継増幅器として本位相感応光増幅器を用いる場合の構成例が、図12に示されている。
 信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して基本波光として用いることができる。しかしながら、光伝送における中継増幅器として位相感応光増幅器を用いる場合には、例えば以下に述べる位相同期手段を用いて位相感応光増幅装置内の基本波光と信号光の位相を同期させる必要がある。
 本実施形態では、入力される信号光として、信号光の片方の偏波にはデータ変調の施された光信号が重畳され、もう一方の偏波には無変調のCW光が合波された信号光を用いる。
 図13に、本実施形態で使用する入力信号光の生成に用いた構成を示す。外部共振器型の半導体レーザー1300を用いてCW光を生成し、光分岐器1301を用いて2光路に分岐する。一方の分岐経路には強度変調器としてLNマッハツェンダー変調器1302を用い10Gb/sのNRZ信号を重畳した。もう一方の分岐経路には偏光子1304を挿入して偏波を90°回転させて、強度信号の重畳された光とは直交偏波になるように偏波を合わせた。2つの信号を偏光ビームスプリッタ(PBS)1305を用いて合波し、直交偏波にCW光のパイロットトーンを混ぜ込んだ変調信号光1310を生成した。
 位相同期手段を得るために、図12に示すように位相感応光増幅装置を構成したが、これは第2の実施形態と同様の構成であるので説明は省略する(図9を参照)。直交偏波にCW光のパイロットトーンを混ぜ込んだ変調信号光1240が伝送媒体を通って伝送されてくる。伝送媒体には光ファイバを用いた。光ファイバ中の偏波回転を偏波コントローラ1230で補正した後、偏光ビームスプリッタ(PBS)1231を用いてCW光のパイロットトーンのみを分離した。信号の光強度は伝送光ファイバによる光強度の損失のため、光強度が極めて小さくS/N比が劣化している。分岐させたCW光のパイロットトーンをアッテネータ(ATT)1212により光強度を調整した後、サーキュレータ1213を通して位相感応光増幅装置内のCW光源1214に光注入同期を行った。CW光源にはDFB型の半導体レーザーを用いた。DFBレーザーの発振波長をCW光のパイロットトーンの波長に比べ0.04nmずらしておき、アッテネータ(ATT)1212を用いてCW光源に入力する光強度を変化させ、光スペクトルアナライザで様子を観測した。
 図14に光強度を数百μWとした時の動作の様子を測定した光スペクトル図を示す。図14中において、実線はCW光のパイロットトーンを注入する前の光スペクトルを表し、破線はCW光のパイロットトーンを注入する後の光スペクトルを表しているので、半導体レーザーの波長がパイロットトーン波長に引き込まれている様子がわかる。これにより、位相感応光増幅装置内のCW光源がパイロットトーンに位相同期されるので、S/N比の劣化した信号光のパイロットトーンからS/N比のよい基本波光を生成することができる。
 信号光のパイロットトーンに位相同期した基本波光を用いて、第1の実施形態で説明した位相感応光増幅器の構成を用いて光増幅を試みたところ、第1の実施形態と同様の特性結果が得られた。
 本実施形態による構成を採用することにより、信号光を発生する光源が位相感応光増幅部の近くに配置されていないような中継増幅においても、上述の位相同期手段を用いることで位相感応増幅を行うことができた。
 (第4の実施形態)
 第3の実施形態においては、光通信における中継器に用いることを目的として、あらかじめ変調された信号光を位相感応増幅する場合の実施形態を示した。しかし、第3の実施形態の構成では、位相同期を行うためのパイロットトーンが変調信号光と直交する偏波を用いているため、パイロットトーン側の偏波方向には別の光信号を載せることが出来ないという課題がある。本実施形態では、この課題を解決するための構成を説明する。
 図15に本実施形態に係る構成を示す。本実施形態に係る装置は、2値の位相変調(BPSK)または2値差動位相変調(DPSK)信号もしくは通常の強度変調などの信号を、雑音を付加することなく増幅することができる。
 本実施形態においては、基本波光を得るために光分岐部1503-1で信号光を分岐し、分岐した信号光をEDFA1501で増幅させる。増幅された信号光を第1の二次非線形光学素子1502-1中の第1のPPLN導波路1505-1に入射し、信号光の第二高調波を発生させる。第1のPPLN導波路1505-1から出射される光から、第二高調波1522のみを分離するためにダイクロイックミラー1506-1を使用する。分離された第二高調波1522を波長0.77μmで発振する半導体レーザー1512に入射することにより注入同期が行われる。半導体レーザー1512の出力は、半導体レーザー1512と同様の波長帯域に利得を持つ半導体光増幅器1513により増幅され、ダイクロイックミラー1506-2を用いて波長1.54μmの信号光1520と合波される。信号光1520と、励起光として用いられる波長0.77μmの第二高調波1522とは合波された後、第2のPPLN導波路1505-2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 位相感応増幅を行うためには増幅器に入射してくる信号光の平均位相に同期した励起光を生成する必要がある。本実施形態においては、2値の位相変調を施されたような信号を用いる場合であっても、その平均位相に同期した励起光を生成することができる。
 以下、その動作原理について簡単に説明する。2値の位相変調においては信号の位相を0とπラジアンの2つの値に変調して信号を送信している。このような信号をEDFA1501で増幅したのちに第1のPPLN導波路1505-1に入射し、第二高調波を発生させた場合、第二高調波の位相φ2ωは、次の(式6)で表される。
 φ2ω=2φωs   (式6)
 ここでφωsは信号光の位相である。従って、位相が0とπの2値に変調された信号に対する第二高調波の位相は、0と2πの2値となり、位相変調による位相の変動が打ち消された光となって出力される。実際の位相変調信号においては、理想的に位相のみを変調することは困難であり、強度変調を伴った信号となる。従って、強度変調成分のない励起光を得るためには、上記の位相変調成分を取り除いた第二高調波を本実施形態のように注入同期を用いて、信号光の平均位相に同期させて、信号光の半波長の励起光とすることが望ましい。
 本実施形態においては、注入同期を用いて位相変調の施された信号光から平均位相に同期した強度変調のない励起光を生成する。これにより、仮に信号光に位相雑音が付加された場合であっても、本来の信号と直交する位相成分は、位相感応増幅により減衰させることができるので、信号位相および直交位相の雑音成分を取り除くような信号再生を行うことができる。
 本実施例形態においては、出力した増幅信号光の一部を光分岐部1503-2で分岐させて、光検出器1508で受光した後に、位相同期ループ回路(PLL)1509から0.77μmで発振する半導体レーザーの駆動電流にフィードバックを行うことで光学部品の振動や温度変動による位相変動を補正し、安定的に位相感応増幅ができるようにしている。なお、半導体レーザーの出力に微弱な位相変調を施して、位相ずれを検出することで位相同期を行いやすくすることも可能である。
 本実施形態においては、第1のPPLN1505-1における第二高調波発生が可能となるパワーを得るためにEDFA1501を用いているが、EDFA1501から発生するASE光が位相感応増幅を行う第2のPPLN導波路1505-2に入射しないために、光増幅器のASE光に起因する信号光のS/N比劣化を防ぐことができる。
 また、波長0.77μmで動作する半導体光増幅器1513からもASE光は発生するが、この光は信号光と波長が全く異なるために、ダイクロイックミラー(1506-2,1506-3)によってほぼ完全に取り除くことが可能である。よって、光通信における中継器において、信号光のS/N比を劣化させることなく、且つ、直交偏波成分を利用することなく単一偏波内において位相感応増幅を行うことが可能である。
 (第5の実施形態)
(1)第1の構成
 位相感応光増幅器を光信号送信器の直後に配置するような、信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源からの光を分岐して基本波光として用いることができる。しかしながら、光伝送における中継増幅器として位相感応光増幅器を用いる場合には、光変調が施されている信号光から平均的な位相を抽出し、信号の搬送波位相と同期した基本波光を生成する必要がある。従って、増幅器を、実際の光伝送における中継増幅器として用いる場合は、この搬送波位相の抽出手段を含めた位相感応光増幅器を構成することが重要となる。
 2次非線形光学効果を有する媒質を用いた第二高調波光を用いる場合、励起光として使う光である、第二高調波光の波長が信号光の波長の半分になる。これにより、搬送波位相の抽出などを行うための光デバイスに通信波長帯とは異なる波長の光部品を使う必要が生じる。例えば、第4の実施形態に示した構成では780nm帯のレーザーや光増幅器を用いる必要がある。
 しかしながら、通信波長帯以外の波長の部品を使用するためには、様々な障害が生じる。波長によって、デバイスの成熟度が異なるため、デバイスの特性・スペックなど位相感応光増幅器を構成するための仕様を満足することができない、もしくは仕様を満たすためには非常に高額になる部品を使わなければならないなどの問題が生じる。より具体的には、高品質な半導体レーザーなどの入手が難しく、光強度や光線幅、使用可能な波長などに制限をうける。
 光増幅器に関しても大きな課題を擁する。第二高調波などの通信波長に比べ波長の短い領域においては、光ファイバレーザー増幅器などを用いることができない。一部に半導体を用いる増幅器などによって実用化されているものもあるが、増幅率や飽和強度などの問題から位相感応増幅用に用いる励起光としては、十分な光強度を得ることができない、あるいは、半導体増幅器のもつ雑音指数(NF)により位相感応光増幅器に用いる励起光のS/N比が劣化するなどの問題があった。
 さらに、通信波長に比べ波長の短い光(第二高調波など)用の光デバイスにおいては、部品によっては信頼性の観点から問題があることも多く、このような部品を用いた位相感応光増幅装置を実際の光通信システムに用いることは難しい。
 上記の課題を考慮して、本実施形態においては、搬送波位相の抽出手段を含めた位相感応光増幅器を通信波長帯の光部品のみを用いて構成した。
 また、非特許文献3に示されているように、3次の非線形効果を有する光ファイバ中の四光波混合を用いた搬送波位相の抽出方法は示されている。しかしながら、上述した通り、従来方法では、四光波混合を用いるため、信号光の波長と励起光の波長とが近接する構成となってしまうこと、および、EDFA等での光増幅を行う際に増幅自然放出光(ASE光)が雑音として励起光に重畳してしまうことなどの問題があった。励起光の波長と信号光の波長とが接近しているために、ASE光を取り除くことが困難であり、信号光波長にもEDFAから発生するASE光が重畳してしまうので、結果として、信号光のS/N比が劣化してしまい、低雑音での光増幅を行うことができないという問題があった。
 本実施形態は、上記のような従来技術の問題を鑑みて、光通信に適用可能であり、かつ低雑音での増幅が可能な位相感応光増幅装置を提供する。具体的には、信号の搬送波位相の抽出手段を含めた、光伝送における中継増幅器として適用可能な位相感応光増幅装置を、通信波長帯の光部品のみを用いて提供する。
 図16に本実施形態の構成を示す。本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)1601-1を用いて、信号光1640の一部を増幅する。増幅した信号光と発振波長が1534nmの外部共振器レーザー1631によって生成された第1の基本波光1641-1を合波し増幅した後、第3の二次非線形光学素子1602-3に入射する。
 第3の二次非線形光学素子1602-3内部で信号光の第二高調波が生成され、かつ生成された第二高調波と第1の基本波光1641-1との差周波発生により搬送波位相の抽出を行う。差周波光は同じ波長で発振する第2の基本波光1641-2に注入同期された後、第1の基本波光1641-1と合波される。
 合波された後、ファイバレーザー増幅器(EDFA)1601-2を用いて、基本波光1641-1と基本波光1641-2とで構成された、基本波光光1642を増幅する。増幅した基本波光を第1の二次非線形光学素子1602-1に入射して励起光である和周波光を発生させる。第2の二次非線形光学素子1602-2に信号光1640と和周波光とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。図16に示す構成の詳細は後述するとして、このような構成をとると以下に述べるような従来技術では得られない効果が得られる。
 図17Aおよび図17Bは、位相感応光増幅で用いる信号光・励起光・基本波光のスペクトルを模式的に示す図であり、図17Aは、図4で示した従来のファイバレーザー増幅器および非線形媒質として光ファイバを利用した構成を用いた場合を示し、図17Bは、図16で示す本実施形態による構成を用いた場合を示す図である。
 従来の光ファイバを用いた位相感応光増幅器では四光波混合を利用する。このため、パラメトリック光増幅を行うための励起光と信号光との波長が位相整合条件を満たすためには、これらの波長は、近接した波長にならざるを得ない。図17A(a-1)で例示するように、信号光1701および励起光1702が同じ1.55μm帯の波長帯を有し、2つの励起光1702-1,1702-2を用いる場合、全体構成を簡略化するために2つの励起光を1つの光ファイバ増幅器で増幅することが望ましい。
 しかしその際、励起光波長の近傍に光ファイバ増幅器により発生するASE光1703が発生してしまう。信号波長帯域にASE光を発生させないために信号光が光ファイバ増幅器を通らないようにする構成にすることは可能である。しかしながら、励起光を信号光と励起光とを合波する際に、励起光の波長と信号光の波長とが接近しているために、波長選択性の良い光フィルタを実現することは困難であり、ASE光を完全にカットすることができない。この結果、信号波長帯域に発生しているASE光が信号波長に重畳してしまい、ASE光の混入により信号光のS/N比が劣化してしまうこととなる(図17A(a-3))。
 一方、本実施形態による構成では、信号光1701の波長と基本波光(1702-1,1702-2)の波長とは近接している(図17B(b-1)を参照)。
 光通信で用いる微弱な光パワーから、パラメトリック光増幅を利用するのに十分なパワーを得るために、基本波光(1702-1,1702-2)を光ファイバ増幅器により増幅する。このときに基本波光の波長近傍にASE光1703が重畳する(図17B(b-2)を参照)。
 本実施形態に係る構成においては、光増幅を行ったのちに、ASE光1703が重畳された基本波光1702-1,1702-2から励起光である和周波光1704を発生させる。和周波光1704は、縮退パラメトリック増幅において励起光として使用される。和周波光1704の波長帯域には、わずかにASE光の和周波光が発生する以外には雑音となる広帯域のASE光は発生しない(図17B(b-3)を参照)。
 和周波光1704の波長は、基本波光1702-1,1702-2の波長のほぼ半分であり、両者の波長は十分に離れている。従って、基本波光(1702-1,1702-2)と、和周波光(1704)とから、和周波光(1704)のみを分離するような高い消光比を持ったフィルタをダイクロイックミラー等で実現することは比較的容易である。そのようなフィルタを第1の二次非線形光学素子の出力に接続することにより、縮退パラメトリック増幅において励起光として使用される和周波光(1704)の波長帯域に存在する、基本波光(1702-1,1702-2)とASE光(1703)とを完全に取り除くことができる(図17B(b-3)を参照)。
 次いで、信号光と和周波光のみとを合波して第2の二次非線形光学素子に入射し、縮退パラメトリック増幅による位相感応増幅を実現することができる(図17B(b-4)を参照)。
 再度図16を参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、2値の位相変調(BPSK)または2値差動位相変調(DPSK)が施された1.54μmの信号光を増幅するための、搬送波位相抽出手段まで含めた位相感応光増幅装置の構成を説明する。
 信号光1640の一部は、偏波コントローラ1630を介して偏波を調整された後、光分岐部1603-1で分岐されて第1の基本波光1641-1と合波された後、エルビウム添加ファイバレーザー増幅器(EDFA)1601-1で増幅される。
 増幅された信号光と第1の基本波光は、第3の二次非線形光学素子1602-3に入力される。本実施形態の、二次非線形光学素子1602-3は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路1605-3を備える。PPLN導波路1605-3において、信号光の第二高調波発生、ならびに、発生した第二高調波と第1の基本波光1641-1との間の差周波発生が可能となる擬似位相整合条件を満たす周期分極反転が形成されている。
 信号光と第1の基本波光とが入力された第3の二次非線形光学素子1602-3によって、図18Aに示すように信号光の波長に対して半分の波長を持つ第二高調波1805が生成される。さらに図18Bに示すように、内部で発生した第二高調波と第1の基本波光との間の差周波光が生成される。信号光の位相φと第1の基本波光の位相φp1と差周波光の位相φp2との間には、以下の(式7)を満たす関係が成立する。
 2φ-φp1-φp2=0   (式7)
 従って、差周波光の位相φp2は以下の(式8)のように、信号光の位相φと第1の基本波光の位相φp1を用いて表される。
 φp2=2φ-φp1   (式8)
 第二高調波発生を用いたことにより信号光の位相φを2倍とすることができる。通常データ信号には変調がかかっているため、搬送波の位相を抽出することが難しいが、信号光の位相φを2倍にすることで、2値の位相変調を取り除くことができる。さらに、差周波数発生を用いることで、搬送波の位相情報を含んだ差周波光を信号光と同じ波長帯である1.55μm帯で取り出すことができる。この時、ファイバの四合波混合ではなく、二次非線形光学素子であるPPLN導波路を用いることで位相整合条件が一意に決まり、副次的な変換光を生ずることなく所望の光のみを取り出すことができる。
 伝送されてきた信号光が完全な2値の位相変調状態であれば、差周波光には変調の影響は現れない。しかしながら、ファイバなどの伝送路を伝搬してきた光信号には位相雑音が重畳されているため、完全な2値の位相変調状態とはならない。従って、実際に得られた差周波光には、変調の不均一性に起因した影響が残っていた。また、元々微弱な信号光をさらに分波して第3の二次非線形光学素子に入力しているため、得られた差周波光の光強度は微弱なものであった。これらの問題を解決するために、差周波光を用いて光注入同期を行った。
 図16に示す通り、第3の二次非線形光学素子1602-3から出力された、信号光と、第1の基本波光と、差周波光とは、光サーキュレータ1613を通った後、それぞれの光に分波される。分波には、アレイ導波路格子(AWG)型の波長合分波器1612を用いた。
 分波器1612から出力された信号光は空間系に放出される。分波器1612から出力された第1の基本波光は、アイソレータ1634を用いて消光した。差周波光と一致した波長を持つ分波器1612の出力ポートには、差周波光とほぼ同じ波長で発振する半導体レーザー1632が接続されている。差周波光の光強度を10μW乃至100μWになるように調整した後、半導体レーザー1632に入力することで光注入同期を行う。光注入同期により差周波光と同じ位相を持つ第2の基本波光1641-2を生成することができた。
 第2の基本波光1641-2は、差周波光位相φp2と同じ位相を持つ。光強度は、半導体レーザーの出力により決まるため、数10μW程度の微弱な差周波光を用いて数10mW以上の第2の基本波光を得ることができた。
 さらに、差周波光に重畳されていた信号光の変調の不均一性に起因した影響も緩和することができた。AWG型合分波器1612の合波側から第1の基本波光を入射し、第2の基本波光と合波したうえで、サーキュレータ1613を用いて取り出した。
 このように、本実施形態では、非線形素子と光注入同期により信号光搬送位相を抽出した、第1の基本波光及び第2の基本波光を基本波光として用いる。
 基本波光は、エルビウム添加ファイバレーザー増幅器(EDFA)1601-2を用いて増幅される。増幅された基本波光は、第1の二次非線形光学素子1602-1に入力される。本実施形態では、EDFA1601-2から発生する広帯域なASE光が第1の二次非線形光学素子1602-1により変換されることを防ぐために、EDFA1601-1と第1の二次非線形光学素子1602-1との間にバンドパスフィルタ1604を挿入し、不必要なASE光をカットした。
 二次非線形光学素子1602-1、1602-2は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路1605-1,1605-2を備える。PPLN導波路は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られるので、図示するような構成にすることで高い波長変換効率を得ることができる。PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
 本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。
 第1のPPLN導波路1605-1から出射した、和周波光と基本波光とは、ダイクロイックミラー1606-2を用いて分離した。ダイクロイックミラー1606-2で反射された0.77μmの和周波光は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバを介して、第2の二次非線形光学素子1602-2へと導かれている。このとき、ダイクロイックミラー1606-2で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバに入射されることになるが、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不要な光を効果的に減衰させることができる。
 偏波保持ファイバで導かれた和周波光は、ダイクロイックミラー1606-3を用いて波長1.54μmの信号光1640と合波される。ダイクロイックミラー1606-3は、和周波光のみを反射させるために、第1のPPLN導波路1605-1から出射され、ダイクロイックミラー1606-2および偏波保持ファイバを通ってくる波長1.54μm付近の基本波光とASE光との残留成分を効果的に取り除くことができる。
 信号光と和周波光とは合波され、第2のPPLN導波路1605-2に入射される。第2のPPLN導波路1605-2は、第1のPPLN導波路1605-1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 本実施形態では、2つのPPLN導波路1605-1、1605-2はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。
 第2のPPLN導波路1605-2から出射された光は、ダイクロイックミラー1606-4により励起光である和周波光と増幅された信号光とに分離される。このときも和周波光と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
 位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光の一部を光分岐部1603-4で分岐して光検出器1608で受光したのちに位相同期ループ回路(PLL)1609により位相同期を行った。AWG型の合波器1612の前に配置した位相変調器1610を用いてsin波により微弱な位相変調を第1の基本波光1641-1に施す。光検出器1608とPLL回路1609でその位相変調の位相ずれを検出して、AWG型の合波器1612の前に配置したPZTによる光ファイバ1611の伸長器の駆動電圧と位相変調器1610のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
 図18Cに示すように第1の基本波光1802及び第2の基本波光1803を用いて和周波光1804を生成する。この時、第1の基本波光位相φp1と、第2の基本波光位相φp2と、和周波光位相φSFの間には以下の(式9)の関係が成立する。
 φSF=φp1+φp2=2φ   (式9)
 図18Dに示すように、信号光と和周波光のパラメトリック増幅により位相感応増幅が行われる。この時、信号光位相φと和周波光位相φSFの間には以下の(式10)を満たす関係がある。
 ΔΦ=φSF-2φ=nπ(ただし、nは整数)   (式10)
 従って、ΔΦが、-π、0、またはπの時に利得が最大になる。
 本実施形態では、位相変調器としてLNマッハツェンダー変調器を用い40Gb/sの2値の位相変調(BPSK)信号を入力した場合の増幅特性を評価した。信号光の波長は約1536nmに設定した。
 まず、2値の位相変調の施された信号光の搬送波位相の抽出が可能であることを確かめるために、信号光を第3の二次非線形光学素子(図16を参照、符号1602-3が示す)に入射し、内部で発生した第二高調波を観測した。
 図19Aに光スペクトルアナライザで測定した信号光のスペクトルを示す。2値の位相変調が施されているため、波長軸上で見た時のキャリアの中心波長にはピークが観測されない。図19Bに2値の位相変調の施された信号光の第二高調波に対するスペクトルを示す。第二高調波に対応する波長に強度の強いピークが観測されている。これは、信号光の第二高調波生成により位相変調がキャンセルされていることを示している。
 次に、2値の位相変調の施された信号光と第1の基本波光を合波した後、第3の二次非線形光学素子に入射しスペクトルを観測した。第1の基本波光の波長は約1534nmである。図20に第3の二次非線形光学素子から出力された光を光スペクトルアナライザで測定した結果を示す。第3の二次非線形光学素子内部で生成された信号光の第二高調波と第1の基本波光との差周波発生により、波長は約1538nm付近に差周波光が生成されている。スペクトルの形状から差周波光には位相変調が重畳されていないことがわかる。
 差周波光を波長合分波器により分離した後、差周波光とほぼ同じ波長で発振する半導体レーザーに入力した。半導体レーザーの出力と第1の基本波光とを波長合分波器により合波した後、光サーキュレータを用いて基本波光として用いる第1の基本波光及び第2の基本波光を取り出した。
 図21A及び図21Bにサーキュレータ後の出力をスペクトルアナライザで測定した時に得られたスペクトルを示す。図21Aは、差周波光を半導体レーザーに入射させない場合の基本波光のスペクトルを示す図である。図21Bは、差周波光を半導体レーザーに入射し、差周波光を光注入同期させた場合の基本波光のスペクトルを示す図である。
 図21A及び図21Bを比べて第2の基本波光波長に対応する約1538nm付近のスペクトルをみると、光注入同期することにより元の半導体レーザーが変化している様子が分かる。光注入同期により位相情報まで含めて差周波光と同じ周波数で半導体レーザーが発振する。この時、半導体レーザーに入射する差周波光を徐々に上げていき、注入量が約数十μWになった時に、半導体レーザーの波長が差周波光波長にシフトすることによっても、光注入同期が行われている様子を観測することができた。
 基本波光として用いる第1の基本波光の光強度と、第2の基本波光の光強度とをほぼ同じになるように調整した後、エルビウム添加ファイバレーザー増幅器で増幅する。増幅した基本波光を二次非線形光学素子に入射して和周波光を発生させる。次いで、信号光と発生させた和周波光とを二次非線形光学素子に入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行った。
 増幅特性を確認するために、増幅後の信号の利得を調べた。本実施形態では、PLLにより励起光の位相を信号光の位相に合わせることにより、PPLN導波路に入射した和周波光のパワーが300mWという条件下、約11dBの利得を得ることができた。
 本実施形態では光ファイバ増幅器を用いることにより、光通信への応用では必須の条件であるCW光の励起光による動作を実現することができた。また、本実施形態による構成をとることにより光ファイバ増幅器を用いながらも光ファイバ増幅器から発生するASE光の混入を防ぐことが出来たため、S/N比の劣化を防いで位相感応増幅を行うことが可能になった。
 本実施形態では、光通信へ応用するために、励起光にCW光を用いたが、励起光にCW光を用いることは、本実施形態に限定されず、他の実施形態においても有効に機能する。
(2)第2の構成
 次に、第5の実施形態の別構成(第2の構成)について説明する。図22に本実施形態の第2の構成を示す。
 本構成では、1.54μmの信号を増幅するように装置を構成した。3つのPPLN導波路を用いて、信号光の搬送位相を抽出した後、和周波光を発生させて縮退パラメトリック増幅を行う点は、図16に示した構成と同じである。
 相違点は、基本波光から和周波光を分離する方式および和周波光と信号光とを合波する方式である。さらに、本構成では、信号光の搬送位相の抽出手段をより簡便に構成した。
 本発明によれば光ファイバ増幅器から発生するASE光に起因する信号光のS/N比の劣化を抑制しながら位相感応増幅を行うことができるが、本構成ではその効果を有効に利用できるようにした。
 本構成においても、基本波光からの和周波光の分離ならびに和周波光と信号光との合波にはダイクロイックミラーを用いている。一般的に、波長の異なる2つの光を分離または合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーがよく使用されているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。
 逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成の場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。本構成では、そのような考え方に基づいて装置が構成されている。
 図22を参照しながら、本構成について説明する。信号光2240の一部は、偏波コントローラ2230を用いて偏波を調整され、光分岐部2203-1で分岐され、第1の基本波光と合波された後、エルビウム添加ファイバレーザー増幅器(EDFA)2201-1で増幅される。
 外部キャビティレーザー2231からの第1の基本波光は、位相同期のためにLN位相変調器2210を介した後で合波されている。
 増幅された信号光と第1の基本波光は、第3の二次非線形光学素子2202-3に入力される。本構成の、二次非線形光学素子は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路を備える。
 第3の二次非線形光学素子2202-3において、信号光の第二高調波を発生させ、発生させた第二高調波と第1の基本波光との間での差周波発生により、差周波光を得る。
 第3の二次非線形光学素子2202-3から出力された、信号光、第1の基本波光、および差周波光は光サーキュレータを通した後、それぞれの光を分波した。分波には、アレイ導波路格子(AWG)型の波長合分波器2212を用いた。分波器2212から出力された信号光は空間系に放出される。
 差周波光と一致した波長を持つ分波器出力ポートには、差周波光とほぼ同じ波長で発振する半導体レーザー2232が接続されている。差周波光の光強度を10μW乃至100μWになるように調整した後、半導体レーザー2232に入力することで光注入同期を行う。光注入同期により差周波光と同じ位相を持つ第2の基本波光を生成することができた。
 分波器2212から出力された第1の基本波光をファイバ型のミラー2214により反射させ、波長合分波器2212に再度折り返して入力した。この構成を用いることで、第1の基本波光と第2の基本波光がほぼ同じファイバ経路を辿るため、環境変化によるファイバ長の変化に起因した位相揺らぎの大きさを小さく抑えることができた。
 AWG型合分波器2212の合波側から第1の基本波光を入射し、第2の基本波光と合波しサーキュレータ2213を用いて取り出した。本構成では、非線形素子と光注入同期により信号光の搬送波位相を抽出した、第1の基本波光及び第2の基本波光を基本波光として用いる。
 EDFA2201-2で増幅した基本波光を、第1の二次非線形光学素子2202-1中の第1のPPLN導波路2205-1に入射し和周波光を発生させる。
 本構成においても、第1のPPLN導波路2205-1から出射される基本波光とその和周波光から和周波光のみを効果的に取り出し、EDFA2201-1から発生するASE光を効果的に除去するために、第1のPPLN導波路2205-1の後に、1.55μm帯を反射し、0.77μm帯を透過するダイクロイックミラー2206-1を設置した。
 波長が0.77μmである和周波光は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバを介して、第2の二次非線形光学素子2202-2へと導かれている。(第1の構成)と同様に、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、不要な波長1.54μm付近の基本波光およびASE光を効果的に減衰させることができる。
 偏波保持ファイバで導かれた和周波光は、ダイクロイックミラー2206-2を用いて波長1.54μmの信号光2240と合波される。本構成においては、偏波保持ファイバを通ってくる波長1.54μm付近の基本波光およびASE光の残留成分を効果的に取り除くことができるように、1.54μm帯を反射し、0.77μm帯を透過するダイクロイックミラー2206-2を用いた。
 信号光と和周波光とは合波された後、第2のPPLN導波路2205-2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。第2のPPLN導波路2205-2から出射された光は、ダイクロイックミラー2206-3により和周波光と増幅された信号光とに分離される。本構成では、ダイクロイックミラー2206-3に、出力に不要な和周波光を効果的に取り除くために0.77μm帯を反射し、1.54μm帯を透過するダイクロイックミラーを用いた。
 本構成においても、出力した増幅信号光の一部を光分岐部2203-3で分岐して光検出器2208で受光した後に位相同期ループ回路(PLL)(図示省略)により位相同期を行うことで安定的に位相感応増幅ができるようにしている。位相同期ループ回路(PLL)の誤差信号を第1の基本波光を生成する光源の駆動電流にフィードバックをかけることで、励起光と信号光の位相同期をおこなった。
 本構成においては、それぞれ特性の異なるダイクロイックミラーを、基本波光からの第二高調波の分離ならびに第二高調波と信号光との合波に用いたために、特に信号のS/N比に悪影響を与えるEDFAからのASE光を信号光に混入させることなく、高い信号品質が得られる位相感応光増幅器を構成することができた。また、搬送波抽出に用いる部品点数を減らすことで簡便な構成を取ることができた。
(3)第3の構成
 次に、第5の実施形態のさらに別の構成(第3の構成とした)について説明する。図23に本実施形態の第3の構成を示す。
 本構成では、1.54μmの信号を増幅するように装置を構成した。和周波光を発生させ縮退パラメトリック増幅を行う点は、(第1の構成)および(第2の構成)に示した構成と同様である。(第3の構成)がこれらの構成と相違する点は、搬送波抽出手段の構成にある。
 光通信における光増幅器には信号光の光パワーが微弱であっても増幅できることが求められる。信号光のパワーが非常に微弱な場合、それを分岐して搬送波抽出に使うため、その信号光は極度に微弱となる。
 (第1の構成)では第二高調和発生と差周波光発生過程を同時に行うため、分岐した極度に微弱な信号光をファイバ増幅器で増幅する際に生じるASEが過剰になる。その場合、得られる差周波光にASE雑音が重畳され差周波光のS/N比が悪くなる。S/N比が十分にあれば、光注入同期によりS/N比の改善を行うことができるが、元の信号光が微弱になればなるほど差周波光のS/N比劣化が増大され、第1の基本波光として十分なS/N比を保つことが難しくなる。
 低雑音な位相感応増幅を動作させるためには励起光のS/N比がよいことが必要なため、励起光のS/N比確保は重要である。本構成は、差周波光のS/N比劣化を防ぐ目的で構成された。
 図23を参照しながら、本構成について説明する。
 信号光2340の一部は、偏波コントローラ2330を用いて偏波を調整され、光分岐部2303-1で分岐された後、エルビウム添加ファイバレーザー増幅器(EDFA)2301-1で増幅される。
 増幅された信号光は、二次非線形光学素子2302-3に入力される。二次非線形光学素子2302-3は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路2305-3を備える。PPLN導波路2305-3に信号光を入射することで、信号光の第二高調波を発生させる。ダイクロイックミラー2306-5により第二高調波と信号光とが分離される。
 二次非線形光学素子2302-3から取り出した第二高調波と、第1の基本波光とが、二次非線形光学素子2302-4に入射される。二次非線形光学素子2302-4は、入出力にダイクロイックミラー2306-6、2306-7を備えている。
 第二高調波と第1の基本波光とがダイクロイックミラー2306-6で合波され、二次非線形光学素子2302-4中のPPLN導波路2305-4に入力される。PPLN導波路2305-4内で、第二高調波と第1の基本波光との間の差周波発生により、差周波光を得る。このような構成を用いることで、第二高調波を得る際に用いた信号光を増幅するファイバレーザー増幅器2301-1からの不要なASE光を除去した後、第二高調波と第1の基本波光との間の差周波光を生成できるため、信号光に非常に弱い光を用いても高いS/N比を持つ差周波光を生成することができた。
 二次非線形光学素子2302-4から出力された、信号光、第1の基本波光、および差周波光は、光サーキュレータ2313を介した後、それぞれの光に分波された。分波には、アレイ導波路格子(AWG)型の波長合分波器2312を用いた。分波器2312から出力された信号光は空間系に放出される。分波器2312から出力された第1の基本波光は、アイソレータ2315を用いて消光した。
 差周波光と一致した波長を持つ波長合分波器2312の出力ポートには、差周波光とほぼ同じ波長で発振する半導体レーザー2332が接続されている。光注入同期により差周波光と同じ位相を持つ第2の基本波光を生成することができた。高いS/N比を持つ差周波光を用いたため高いS/N比を保ったまま第2の基本波光を生成することができた。
 AWG型合分波器2312の合波側から第1の基本波光を入射し、第2の基本波光と合波した後、サーキュレータ2313を用いて取り出した。
 本構成では、非線形素子と光注入同期により信号光搬送位相を抽出した、第1の基本波光及び第2の基本波光を基本波光として用いる。
 基本波光として用いる第1の基本波光及び第2の基本波光の光強度をほぼ同じになるように調整した後、エルビウム添加ファイバレーザー増幅器2301-2で増幅する。増幅した基本波光を二次非線形光学素子2302-1に入射して和周波光を発生させる。二次非線形光学素子2302-2に信号光2340と和周波光とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行い良好な特性を得ることができた。本構成により、非常に微弱な信号を増幅する場合においても低雑音な位相感応光増幅器を実現することができた。
 (第6の実施形態)
 上述の第3乃至第5の実施形態においては、位相感応光増幅器を中継器として用いる場合の実施形態について説明した。本実施形態では、位相感応光増幅器を受信器として用いる場合、より具体的には、受信器における初段増幅器として用いる場合の構成とその効果について述べる。
 これまでの実施形態の説明で述べてきたとおり、PPLNを非線形媒質として用い、信号光と第二高調波を入射して縮退パラメトリック増幅を行う構成においては、GAWBSによる雑音がない。また、第二高調波を発生させてからパラメトリック増幅を行う際に、例えば、再度、合波器として作用するダイクロイックミラー(例えば、図6の606-1、606-2を参照)の特性を用いて基本波の成分を取り除いてから第二高調波と信号光のみをパラメトリック増幅媒質に入射すれば、ASE光の混入による雑音も防げるので低雑音な光増幅が可能になる。
 しかしながら、現状で300mWの第二高調波を入射したときのPPLN導波路のパラメトリック利得は11dBであるので、光受信装置に入射される微弱な信号をPD(フォトダイオード)でS/N比良く受信するためには利得が足りない。従って、上述の実施形態に係る増幅器を、光受信装置の増幅器としては利用することはできない。
 現在、光受信装置によく用いられているEDFAの利得は30dB乃至40dB程度であり、光受信装置に入射する光レベルが-35dBmだとしても0dB乃至+5dBm程度の出力が得ることが可能である。一方、現状の技術でPPLN導波路からEDFAと同等の利得を得ることは困難である。従って、低雑音の位相感応光増幅器を実現できたとしても、従来のレーザー増幅器を用いた光受信装置を超える高感度の光受信装置を得ることは出来なかった。しかし、以下に説明する本実施形態においては、これらの問題は解消される。
 図24に本実施形態の構成を示す。本実施形態においては、図24において「位相感応増幅器」と示した部分に記載のPPLN導波路を用いた位相感応光増幅器を用いて微弱な入力信号2420を増幅する。増幅された信号光は、光ファイバレーザー増幅器2401-1で更に増幅され、バンドパスフィルタ2404-1で不要な背景光を除去される。続いて、信号光は光検出器として作動するフォトダイオード(PD)2408-2に入射し、電気信号へ変換される。電気信号は、最終的には、識別器2413に接続されてデジタル信号として再生される。本実施形態の詳細については後述する。
 このような構成をとると以下に述べるような効果が得られる。本実施形態の特徴は、微弱な入力信号を位相感応光増幅器で増幅したのちに光ファイバレーザー増幅器で更に増幅し、次いで、PDへ入射して光電変換を行っていることにある。
 以下に本発明の実施形態に係る光受信装置の受信感度に大きな影響を与える、光信号のS/N比の振る舞いを説明する。微弱な入力信号を増幅する位相感応光増幅器においては増幅された信号の光子数の分散σPSAは以下の(式11)で与えられる。ただし励起光と信号光は完全に位相差がなく同期が取れていると仮定する。
Figure JPOXMLDOC01-appb-M000001
 ここで〈nin〉は入力光平均光子数、Gは位相感応光増幅器の利得、Δfは受光器に入射するパラメトリック蛍光の帯域である。Δfは、位相感応光増幅器の後方にフィルタを配置した場合にはフィルタの帯域、フィルタを設けない場合にはパラメトリック増幅媒質の帯域となる。(式11)の右辺第1項は増幅光のショット雑音、第2項はパラメトリック増幅効果で発生するパラメトリック蛍光のショット雑音、第3項は増幅光とパラメトリック蛍光のビート雑音、第4項はパラメトリック蛍光間のビート雑音に相当する。
 (式11)に示す光子数の分散σPSAを用いて、増幅光をPDで検出したときの雑音電力は、受信系の帯域をB、電流電圧変換を行うための負荷抵抗をRとすると次の(式12)で与えられる。ただしここでは簡単のためにPDの量子効率は100%であると仮定する。
Figure JPOXMLDOC01-appb-M000002
 信号電力はマーク率1/2、タイムスロットTのNRZ符号を検出する場合を考えると(式13)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 これらの式から信号のS/N比は、(式14)で与えられる。
Figure JPOXMLDOC01-appb-M000004
 位相感応増幅の利得Gが大きくなると、第3項の増幅光とパラメトリック蛍光のビート雑音が支配的となり、S/N比は(式15)に収束する。
Figure JPOXMLDOC01-appb-M000005
 一方、増幅器を用いない入力光のS/N比は(式16)で与えられる。
Figure JPOXMLDOC01-appb-M000006
 (式15)及び(式16)から位相感応光増幅器の雑音指数Fが(式17)のように求まる。
Figure JPOXMLDOC01-appb-M000007
 (式17)から分かるように、利得が大きい場合には雑音指数Fは1に漸近し、S/N比劣化のない増幅が可能となる。実際にこのような低雑音な増幅を行うためには、GAWBS雑音や励起光の発生の際に用いるレーザー増幅器からのASE光の混入による雑音を避ける必要がある。従って、3次非線形媒質として光ファイバを用いた従来技術ではこれらの付随的な雑音を避けることができない。
 一方、2次非線形媒質としてPPLN導波路を用いた構成ではこれらの問題を避けることができ、低雑音な増幅を行うことが可能である。しかし現状の技術では、PPLN導波路を用いた位相感応光増幅器だけで十分な利得を得ることは困難であった。
 これらの問題点を解決する構成を鋭意検討した結果、2次非線形媒質で位相感応増幅を行った後にレーザー増幅器で更に増幅を行ってバンドパスフィルタで不要な背景光を除去するようにしても、位相感応光増幅器の低雑音性を活かしながら、従来のレーザー増幅器のみを用いた場合に比較してS/N比の劣化を抑制できることを見出した。以下に本実施形態に係る構成における、増幅信号光のS/N比の振る舞いについて説明する。
 前述の位相感応光増幅器で増幅された信号を更にレーザー増幅器で増幅した場合、出力は強度の強い順に、第1の出力成分である増幅された信号光、第2の出力成分であるパラメトリック蛍光がレーザー増幅器で増幅された光、第3の出力成分であるレーザー増幅器が発生するASE光からなると考えられる。このときの増幅器からの光子数の分散は、以下の8個の成分の総和で与えられると考えられる。
[1]第1の分散:第1の出力成分(増幅された信号光)のショット雑音
[2]第2の分散:第2の出力成分(パラメトリック蛍光がレーザー増幅器で増幅された光)のショット雑音
[3]第3の分散:第3の出力成分(レーザー増幅器が発生するASE光)のショット雑音
[4]第4の分散:第1の出力成分と第2の出力成分とのビート雑音
[5]第5の分散:第1の出力成分と第3の出力成分とのビート雑音
[6]第6の分散:第2の出力成分と第3の出力成分とのビート雑音
[7]第7の分散:第2の出力成分同士のビート雑音
[8]第8の分散:第3の出力成分同士のビート雑音
 例えば、本実施形態で用いたPPLN導波路のパラメトリック利得の帯域は、60nm程度と極めて広い。従って、仮に第2の出力成分(パラメトリック蛍光がレーザー増幅器で増幅された光)のスペクトル密度が成分1よりも小さいとしても、帯域全体のパラメトリック蛍光がレーザー増幅器で増幅された光を積分すると、第6乃至第7の分散のうち第7の分散である第2の出力成分同士のビート雑音の寄与が無視できなくなってしまう。
 このため本実施形態に係る光受信装置では、信号成分の帯域以外の第2の出力成分(パラメトリック蛍光がレーザー増幅器で増幅された光)の寄与及び第3の出力成分(レーザー増幅器が発生するASE光)の寄与が小さくなるようにバンドパスフィルタをレーザー増幅器の後に配置し、信号の帯域だけの光を取り出すようにした。
 雑音の見積もりを容易にするために、光子数の分散を与える成分のうち強度の大きなものを考える。雑音として寄与が大きい成分は、第4の分散と第5の分散の成分であると考えられる。斯かる近似に基づいて光子数の分散への寄与が大きい成分の大きさを求めると(式18)のとおりとなる。
Figure JPOXMLDOC01-appb-M000008
 ただし、ここでGは位相感応光増幅器の利得、Gはレーザー増幅器の利得である。(式18)から本実施形態におけるS/N比を計算すると、(式19)のようになる。
Figure JPOXMLDOC01-appb-M000009
 (式19)で示したS/N比と(式16)で示した入力光のS/N比との比から本実施形態の雑音指数Fが(式20)のように求まる。
Figure JPOXMLDOC01-appb-M000010
 ここで、FPSAは上述した位相感応光増幅器の雑音指数、FPIAはレーザー増幅器の雑音指数である。
 FPIAは、理想的なレーザー増幅器の場合、3dB(FPIA=2に相当)、通常のEDFAの場合、4dB~5dB程度(FPIA=2.5~3.2に相当)の値である。即ち、本実施形態に係る構成により、後段に接続したレーザー増幅器の雑音指数の寄与は1/Gだけ小さくなることになり、位相感応光増幅器の利得Gが大きい場合には全体の雑音指数は位相感応光増幅器の雑音指数に漸近することが分かる。従って、本実施形態により、位相感応光増幅器の低雑音性を活かしながら、全体としては受信装置等の前置増幅器として使用するのに十分な利得を得ることが可能になる。
 また、パラメトリック蛍光やASE光のような背景光同士のビートによる雑音(即ち、上記第6乃至第8の分散)の影響を小さく抑えるためには、信号の帯域以外の背景光を取り除くためにバンドパスフィルタを備えることが望ましい。バンドパスフィルタを配置する位置としては、位相感応光増幅器とレーザー増幅器との間や、レーザー増幅器の後段が考えられるが、特に、レーザー増幅器の後段のみに配置する構成とすると、バンドパスフィルタの挿入損失によるS/N比の劣化を少ない部品点数で抑えることができ、効果的である。
 再度図24を参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、本発明の原理確認を行うために、信号光2420と基本波光2421とを、波長1.54μmの光源から発生させた。また、光受信装置の感度を検証するために、信号光のパワーを減衰させて、光受信装置に入射した。
 本実施形態で使用した位相感応光増幅器の構成を説明する。本実施形態では、微弱な基本波光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)2401-2を用いて、基本波光2421を増幅する。増幅した基本波光を第1の二次非線形光学素子2402-1に入射して第二高調波2422を発生させる。次いで、第2の二次非線形光学素子2402-2に信号光2420と第二高調波2422とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
 位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光2423の一部を光分岐部2403で分岐し光検出器2408-1で受光したのちに位相同期ループ回路(PLL)2409により位相同期を行った。EDFA2401-2の前に配置した位相変調器2410を用いて正弦波により微弱な位相変調を基本波光2421に施した。光検出器2408-1とPLL回路2409とにより、その位相変調の位相ずれを検出して、EDFA2401-2の前に配置したPZTによる光ファイバ2411の伸長器の駆動電圧と位相変調器2410のバイアス電圧とにフィードバックを行う。これにより、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
 基本波光2421は、EDFA2401-2を用いて増幅される。増幅された基本波光2421は、第1の二次非線形光学素子2402-1に入力される。本実施形態では、EDFA2401-2から発生する広帯域なASE光が第1の二次非線形光学素子2402-1により変換されることを防ぐために、EDFA2401-2と第1の二次非線形光学素子2402-1との間にバンドパスフィルタ2404-2を挿入し、不必要なASE光をカットした。
 図24に示すように、本実施形態に係る二次非線形光学素子(2402-1、2402-2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路(2405-1、2405-2)を備える。PPLN導波路(2405-1、2405-2)は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られる。従って、図示するような構成にすることで高い波長変換効率を得ることができる。
 PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
 本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。
 第1のPPLN導波路2405-1からは基本波光と第二高調波が出射される。第二高調波2422と基本波光2421とを、ダイクロイックミラー2406-1を用いて分離した。
 ダイクロイックミラー2406-1を透過した0.77μmの第二高調波2422は、この波長、即ち0.77μmの波長においてシングルモード伝搬特性をもつ偏波保持ファイバ2407を介して、第2の二次非線形光学素子2402-2へと導かれている。偏波保持ファイバ2407を介して第2の二次非線形光学素子2402-2へ導かれた第二高調波2422は、ダイクロイックミラー2406-2により波長1.54μmの信号光2420と合波される。ダイクロイックミラー2406-2は第二高調波2422のみを透過させるので、第1のPPLN導波路2405-1から出射され、ダイクロイックミラー2406-1及び偏波保持ファイバ2407を通ってくる波長1.54μm付近の基本波光2421とASE光との残留成分を効果的に取り除くことができる。
 信号光2420と第二高調波2422とは合波され、第2のPPLN導波路2405-2に入射される。第2のPPLN導波路2405-2は、第1のPPLN導波路2405-1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 第2のPPLN導波路2405-2から出射された光は、ダイクロイックミラー2406-3により励起光である第二高調波と増幅された信号光2423とに分離される。このときも第二高調波と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
 本実施形態においては、波長の異なる2つの光を分離又は合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーを使用しているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。
 逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成とする場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な特定波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。
 本実施形態は、このような考え方に基づいて構成されている。このような構成を取ることで特に位相感応光増幅器のS/N比を付随的に劣化させるEDFAからのASE光の混入を完全に抑圧することができ、低雑音の増幅が可能になる。
 本実施形態では、第2のPPLN導波路2405-2で得られるパラメトリック利得が11dBであり、第2のPPLN導波路をモジュール化したときのファイバ間の挿入損失が5dBであったため、位相感応光増幅器の利得は6dBであった。このようにして位相感応増幅された信号光2423をEDFA2401-1に入射して更に増幅を行った。EDFAからの出力は帯域1nmのバンドパスフィルタ2404-1を通し、位相感応光増幅器から発生するパラメトリック蛍光がEDFAで増幅された光とEDFAから発生するASE光とのうち信号帯域外にある成分を除去した。
 図25に、本実施形態を用いて光増幅を行ったときの光スペクトルの例を示す。図25において、実線は本実施形態によって増幅された信号の光スペクトルであり、点線は従来技術の光増幅器によって増幅された信号の光スペクトルを示す。
 従来技術との比較を行うためにEDFAとバンドパスフィルタだけで増幅した場合の光スペクトルも同時に測定を行った。入力信号は周波数15GHzの正弦波で変調した信号を-20dBmまで減衰させて入射し、トータルの利得が18dBとなるようにして比較を行った。
 図25から分かるように、増幅された信号光の周りに観測される、背景光(ASE光やパラメトリック蛍光が増幅された光)のレベルが、位相感応光増幅器で増幅してからEDFAで増幅することにより低く抑えられていることが分かる。このように、本実施形態では、レーザー増幅器を用いているのにもかかわらず、その前段に位相感応光増幅器を配置することで、従来のレーザー増幅器と同等の利得を得ながらも、従来よりも雑音レベルを低く抑えることが可能になり、従来よりも高いS/N比を得ることが可能になる。
 更に図26に、上述の、増幅された、周波数15GHzの正弦波で変調した信号を、市販のOEコンバータ内蔵の電気のスペクトラムアナライザで光電変換しその雑音フロアを評価した結果を示す。
 図26において、実線は本実施形態によって増幅された信号を光電変換した電気スペクトルを示し、点線は従来技術の光増幅器によって増幅された信号を光電変換した電気スペクトルを示す。光のS/N比が向上するだけでなく、光電変換した後も従来のEDFAで増幅した場合に比べて1GHzから14GHzのすべての帯域においてノイズレベルが1.5dB程度低く抑えられていることが確認できた。
 従来の光ファイバを用いた位相感応光増幅器においてはGAWBSによる雑音により一部の帯域でのみEDFAよりも低雑音にならないのに対して、本実施形態では、広い周波数帯域に渡っての低ノイズの増幅を十分な利得を得ながらも実現することができた。このような低雑音な増幅特性は、本実施形態が、光受信器としてだけでなく、光中継器として作動する光増幅器としても有用であることを示している。
 次に、光受信装置としての有効性を確認するために、信号光を40Gb/sのNRZ信号で変調し、入力した場合の受信特性を評価した。このとき、後段のEDFAの利得は、バンドパスフィルタを介してPDに入射するパワーが0dBmとなるように設定した。本実施形態における位相感応光増幅器の利得は6dBであるので、入力光のパワーが例えば-30dBmの場合、EDFAの利得は24dBに設定していることになる。また、比較のために従来技術であるEDFA及びバンドパスフィルタのみを前置増幅器として用いた場合についても評価を行った。この場合においてもバンドパスフィルタを介してPDに入射するパワーが0dBmとなるように設定したので、入力光のパワーが例えば-30dBmの場合、EDFAの利得は30dBに設定していることになる。
 図27に、入力信号を光アッテネータで減衰させて、誤り率測定から本実施形態の受信感度を評価した結果を示す。図27は、受信感度を評価するための誤り率特性を示す図である。例として、10-9の誤り率を得るための入射パワーが、従来のEDFAを用いた場合は-28.8dBmなのに対して、本実施形態では約1.5dBm低い-30.3dBmで同じ誤り率が得られた。このように、本実施形態による低雑音な光増幅を利用した光受信により、受信感度の向上が得られることが確認できた。斯かる効果は広い周波数帯域にわたって低雑音性が得られる本発明の構成によって始めて実現できるものである。
 なお、本実施例では、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成としたが、基本波光の生成方法は、前述の第3乃至第5の実施形態で説明した方法を用いても良い。
 さらに、本実施例では、光受信装置を例にとり、低雑音性と高利得性を両立できる構成について説明したが、線形中継器として用いる場合であっても、中継間隔を延ばさなければならないなど、低雑音性と高利得性を両立させる必要がある場合には、本実施形態で述べたような位相感応アンプとEDFAとを多段に接続させる構成は極めて有用である。
 (第7の実施形態)
 図28Aおよび図28Bは、本発明の第7の実施形態に係る位相感応光増幅器の説明図である。図28Bに示すように、本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)2801を用いて、基本波光2821を増幅する。増幅した基本波光を第1の二次非線形光学素子2802-1に入射して第二高調波2822を発生させる。第2の二次非線形光学素子2802-2に信号光2820と第二高調波2822とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
 図28Bに示す構成の詳細は後述するとして、このような構成をとると以下に述べるような従来技術では得られない効果が得られる。本実施形態では、基本波光として、波長が1.54μmのCW光を用いる。入力信号光としては、図28A中に示すように、基本波光波長に相当する光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様)が入力される。
 信号光群と基本波光とは互いに位相同期しており、そのような信号光、基本波光はたとえば同一の光源を分岐して、一方を光変調器により側帯波を生じさせることで生成することができる。
 図28Bに示すように、基本波光2821は、位相変調器2810、PZTを用いたファイバ伸長器2811を通過してエルビウム添加光ファイバ増幅器(EDFA)2801で増幅される。増幅後、基本波光は、バンドパスフィルタ2804を用いて、EDFA2801から発生する余分な自然放出光を除去したのちに第1の二次非線形光学素子2802-1内のPPLN導波路2805-1に入射され、基本波光2821の第二高調波である波長0.77μmの光2822に変換される。
 信号光群2820と、基本波光の第二高調波2822とは、ダイクロイックミラー2806-2で合波され、次いで、第2の二次非線形光学素子2802-2内のPPLN導波路2805-2に入射される。PPLN導波路2805-2におけるパラメトリック増幅により信号光群が増幅される。
 信号光群の増幅動作について、以下で詳細に説明する。本実施形態では、対となる信号光の2つの波長における位相が同じである光をそれぞれ入射する。例えば信号s+1とs-1は同じ位相情報を持っていると仮定する。
 二次非線形光学素子に励起光(本実施形態では基本波光の第二高調波2822)、信号光、およびアイドラ光の3つの光を入射して三者の非線形相互作用により光増幅を行う、非縮退パラメトリック増幅においては、三者のそれぞれの位相が次の(式21)を満たすときに、信号光、アイドラ光の両者のパラメトリック増幅が行われる。
 φSH=φ+φ+2nπ(nは整数)   (式21)
 ここでφSH、φ、φはそれぞれ、基本波光の第二高調波、信号光、アイドラ光の位相である。信号とアイドラが本実施形態の信号s+1と信号s-1の対のように同じ位相を有していると仮定すると、φ=φとして
 φ=φSH/2+nπ=φ+nπ(nは整数)   (式22)
 ただし、ここでφは基本波光の位相である。第二高調波の位相φSHが2φで表されることを用いた。
 (式22)から分かるように信号光は、基本波光と位相が同じかπだけずれた場合、直交する2つの位相成分のうち励起光と同相の場合のみ、パラメトリック増幅が起こることがわかる。なお、基本波光と直交する位相を持つ信号対を入射した場合は、信号光は減衰されることになる。
 このように、信号として、同じ位相情報をもつ信号光対を入射すると、位相感応性を持つパラメトリック増幅が行われる。本実施形態では信号光と励起光をファイバ部品で接続しているために、温度変動や振動によるファイバの伸び縮みをPLL技術により吸収している。本実施形態では、光周波数差だけ対称に離れた信号光の対はすべて位相同期しているため、複数の信号光群を増幅することが可能である。
 図29および図30は、位相感応光増幅で用いる複数波長の信号光・励起光のスペクトルを模式的に示す図であり、図29は、図5で示した従来のファイバレーザー増幅器および非線形媒質として光ファイバを利用した構成を用いた場合を示し、図30は、図28Bで示す本実施形態による構成を用いた場合を示す図である。
 従来の光ファイバを用いた位相感応光増幅器では四光波混合を利用する。このため、パラメトリック光増幅を行うための励起光と複数波長の信号光との波長が位相整合条件を満たすためには、これらの波長は、近接した波長にならざるを得ない。図29で例示するように、複数波長の信号光2901および励起光2902が同じ1.55μm帯の波長帯を有し、励起光2902を光ファイバ増幅器で増幅する際、励起光波長の近傍に光ファイバ増幅器によりASE光2903が発生してしまう。
 信号波長域にASE光を発生させないために複数波長の信号光が光ファイバ増幅器を通らないようにする構成にすることは可能である。しかしながら、励起光と複数波長の信号光とを合波する際の両者の波長が接近しているために、波長選択性の良い光フィルタを実現することは困難であり、ASE光を完全にカットすることができない。この結果、信号波長帯域に発生しているASE光が複数波長の信号波長に重畳してしまい、ASE光の混入により複数波長の信号光のS/N比が劣化してしまうこととなる(図29(c))。
 一方、本実施形態による構成では、光通信で用いる微弱な光パワーから、パラメトリック光増幅を利用するのに十分なパワーを得るために、基本波光3002を光ファイバ増幅器により増幅する。このときに基本波光3002の波長近傍にASE光3003が重畳する(図30(b))。本実施形態に係る構成においては、光増幅を行ったのちに、ASE光3003が重畳された基本波光3002を、第1の二次非線形光学素子に入射し第二高調波3004を発生させる。このときに励起光として使用される第二高調波3004の波長帯域には、わずかにASE光の第二高調波が発生する以外には雑音となる広帯域のASE光は発生しない。第二高調波3004の波長は基本波光3002の波長の半分であり、両者の波長は十分に離れている。従って、基本波光3002と基本波光の第二高調波3004とから第二高調波3004のみを分離するような高い消光比を持ったフィルタをダイクロイックミラー等で実現することは比較的容易である(図30(c))。そのようなフィルタを第1の二次非線形光学素子の出力に接続することにより、励起光波長帯域の基本波光とASE光とを完全に取り除くことができる。次いで、複数波長の信号光3001と第二高調波3004のみとを合波して第2の二次非線形光学素子に入射し、非縮退パラメトリック増幅による位相感応増幅を実現することができる(図30(d))。
 さらに、本実施形態による動作を行う中で以下のような従来技術にはない以下の利点があることも明らかになった。
 従来の光ファイバ中の四光波混合を利用して複数波長の信号光の位相感応増幅を行う構成では、非特許文献7に示されるように、励起光波長を中心として複数波長の信号光との間の四光波混合だけが起きるわけではなく、位相整合に対する条件が様々な波長間で満たされてしまう。従って、例えば励起光を中心にして信号光が別の波長へ変換されるような副次的な過程も生じてしまい、増幅された信号光がつぎつぎとコピーされて複数の信号が生成されてしまう(図29(c)の2904)。
 このために増幅信号光のパワーが散逸してしまい、所望の信号光を増幅できるパワーが制限されてしまう。さらに、副次的に生成される信号は複数波長の信号光の波長の間等に生成されてしまうことから、副次的に生成された余分な信号を除去することには非常な困難が伴う。分離のために超狭帯域の光フィルタなどを用いる方法が考えられるが、光フィルタの帯域を狭くすればするほどフィルタによる信号の損失が増大する。複数波長の信号光の波長多重数が多くなればなるほど、副次的に生成される信号の数量も増加する。この結果、副次的な信号が、元の信号光の帯域内に重畳される場合もある。このような場合は、光フィルタによる分離などは不可能であり光信号のS/N比が劣化する。
 これに対し、本実施形態では、第2のPPLN導波路へは信号光と第二高調波のみが入力されるので、従来技術のような不必要な波長変換過程が生じることがない。本実施形態では出力パワーを+22dBmまで大きくしても出力の飽和がみられず安定的な増幅を行うことができた。また、四光波混合を用いた場合のように副次的に余計な信号が生成されるようなことはなかった。
 再度図28Aおよび図28Bを参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、基本波光2821は、エルビウム添加ファイバレーザー増幅器(EDFA)2801を用いて増幅される。増幅された基本波光は、第1の二次非線形光学素子2802-1に入力される。本実施形態では、EDFA2801から発生する広帯域なASE光が第1の二次非線形光学素子2802-1により変換されることを防ぐために、EDFA2801と第1の二次非線形光学素子2802-1との間にバンドパスフィルタ2804を挿入し、不必要なASE光をカットした。
 本実施形態の、二次非線形光学素子(2802-1,2802-2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路(2805-1,2805-2)を備える。
 PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
 本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。
 第1のPPLN導波路2805-1から出射した、第二高調波2822と基本波光2821とは、ダイクロイックミラー2806-1を用いて分離した。
 ダイクロイックミラー2806-1で反射された波長0.77μmの第二高調波2822は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバ2807を介して、第2の二次非線形光学素子2802-2へと導かれている。このとき、ダイクロイックミラー2806-1で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバ2807に入射されることになるが、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不要な光を効果的に減衰させることができる。
 偏波保持ファイバ2807で導かれた第二高調波は、ダイクロイックミラー2806-2を用いて波長1.54μmの信号光2820と合波される。ダイクロイックミラー2806-2は第二高調波のみを反射させるために、第1のPPLN導波路2805-1から出射され、ダイクロイックミラー2806-1および偏波保持ファイバ2807を通ってくる波長1.54μm付近の基本波光とASE光との残留成分を効果的に取り除くことができる。
 信号光2820と第二高調波2822とは、ダイクロイックミラー2806-2で合波された後、第2のPPLN導波路2805-2に入射される。第2のPPLN導波路2805-2は、第1のPPLN導波路2805-1と同等の性能、位相整合波長を有しており、非縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 本実施形態では、2つのPPLN導波路(2805-1,2805-2)はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。
 第2のPPLN導波路2805-2から出射された光は、ダイクロイックミラー2806-3により励起光である第二高調波と増幅された信号光とに分離される。このときも第二高調波と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
 位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光の一部を光分岐部2803で分岐して光検出器2808で受光したのちに位相同期ループ回路(PLL)2809により位相同期を行った。EDFA2801の前に配置した位相変調器2810を用いて正弦波により微弱な位相変調を基本波光2821に施す。光検出器2808とPLL回路2809でその位相変調の位相ずれを検出して、EDFA2801の前に配置したPZTによる光ファイバの伸長器2811の駆動電圧と位相変調器2810のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
 ところで、光コムを分波器で分波し変調器で変調した後に合波器で合波する場合、一般的には、変調による損失が大きいためS/N比が劣化してしまう。また、変調器を用いて光コムを発生する場合も、変調器の損失や複数搬送波への変換効率の分だけ光パワーが小さくなってしまい、S/N比が劣化してしまう。さらに、光パワーが減衰した光コムをEDFA等のレーザー光増幅器で増幅すると、自然放出光(ASE光)が混入してしまい、増幅に伴ってますますS/N比が劣化してしまう。
 しかしながら、そのようなASE光が混入した信号光群を、本実施形態に係る増幅器で増幅した場合に、従来得られなかった特異な振る舞いを見せることを見出し、本実施形態を実現させるに至った。
 図31Aおよび図31Bは、本実施形態に係る位相感応光増幅器を使用したときの効果を説明するための図であり、図31AはEDFAから発生させたASE光を意図的に混入させた信号光群の光スペクトルを示し、図31BはEDFAから発生させたASE光を意図的に混入させた信号光群を本発明の第7の実施形態に係る構成を用いた位相感応光増幅器で増幅したときの出力の光スペクトルを示す。
 図31Aおよび図31Bから分かるように、本実施形態に係る位相感応光増幅器で増幅することにより、増幅された信号光とASE光との差、すなわち光S/N比(OSNR)が驚くべきことに入力に比べて3dBほど向上していることが分かる。
 一例として、中心波長から対称に離れた信号対の内中心波長よりも短い波長を持つ1つの信号に着目する。入力光の信号光は0.01nmのレゾリューションで測定したところ、図31Aに示す通り23dBのOSNRを有していた。一方、図31Bに示す通り増幅後の出力信号は26dBのOSNRを有しており光S/N比が入力光に比べて3dBほど改善していることがわかる。なお、本実施形態に係る増幅器は偏波依存性があるため、公平なS/N比の評価を行うために、入力のスペクトルを評価する際に偏光子を挿入して、本来増幅されるはずの偏波成分のみの比較を行っている。
 この驚くべき現象が生じる理由について、以下のように、説明することができる。
 まず、励起光の2倍の波長と信号光の波長とが同じになる縮退点を除外した、非縮退点における動作について考える。本実施形態では、励起光と位相関係の確定した信号光対を入力している。本実施形態のように信号光波長とアイドラ光波長とに相当する波長において同一位相を持つ信号光対を入射した場合、上述のように励起光との位相さえ同期できれば、信号光の全ての成分が増幅される。
 また、光ファイバを用いたPSAで見られるように、光ファイバやPPLNを用いた何らかの波長変換プロセスにより信号光と共役な逆位相情報φ=-φ+α(αはファイバ等の光学長で決まる位相)を持つアイドラ光を生成し、信号光とアイドラ光を入力した場合もSH光、信号光、およびアイドラ光間の位相関係が次の(式23)を満たすときにはパラメトリック増幅が行われる。
 φSH=φ+φ+2nπ=φ-φ+α+2nπ=α+2nπ(ただし、nは整数)   (式23)
 すなわち共役な信号光とアイドラ光を入射した場合、ファイバ等の光学長で決まる位相αを励起光と合わせれば、信号光の全ての成分が増幅される。このように位相関係が確定している信号光と励起光を入射した場合は適当な光学長の調整により信号光の全ての成分が増幅される。
 次にASE光の入力に対する増幅を考えると、第二高調波の位相φSHからの相対的な位相を考えた場合に、ASEはランダムな位相の光を発生するため、励起光と同位相の成分と直交位相の成分とを同等に含んでいると考えられる。
 特に信号光とアイドラ光を入射した場合のそれぞれの信号、アイドラ光と同じ波長におけるASEの増幅を考えると、信号波長に発生するASEの位相φS-ASEとし、アイドラ波長に発生するASEの位相をφi-ASEとしたとき、次の(式24)を満たす成分のみがパラメトリック増幅される。
 φSH=φS-ASE+φi-ASE+2nπ(ただし、nは整数)   (式24)
 ASEの場合、上述の位相関係が確定した信号-アイドラとは異なり、信号波長、アイドラ波長においてそれぞれ発生するASEの位相φS-ASE、φi-ASEはランダムであるので相互に相関がない。また、φS-ASEおよびφi-ASEは、第二高調波の位相φSHとの間にも相関はない。従って、φS-ASEを固定して考えた場合に、ランダムな値を取りうるφi-ASEのうち第二高調波の位相φを基準にしてφS-ASEと共役な位相をもつ成分のみがパラメトリック増幅を受けることになる。
 このようなASEの位相のランダム性を考慮すると上記の相関のある信号光に比べると、ASEに対する利得はその半分になることが分かる。従って、光スペクトルで比較した場合のS/N比は、本実施形態に係る光増幅器によって改善することが可能になる。
 ちなみに光ファイバを用いた非縮退パラメトリック増幅では、このような効果を得ることは難しい。その理由は、光ファイバの四光波混合を用いた増幅では、励起光、信号光、およびアイドラ光の全てが1.55μm帯にあり、通常EDFAなどを用いて励起光を発生するために、励起光波長に近接した信号光やアイドラ光の波長の帯域にEDFAから発生するASE光が混入してしまい、かつ励起光のパワーが信号光やアイドラ光に比べて相対的に大きいことが多いので、外部から混入するASE光による雑音の影響が大きいからである。従って、本実施形態のように、入出力に対してS/N比を改善できるような顕著な効果を得ることができない。
 これに対して、本実施形態では、EDFAで基本波光を増幅したのちに第二高調波に変換して、1.55μm帯のASE光も除去してから、パラメトリック媒質に入射し非縮退パラメトリック増幅を行っているので、励起光の発生に用いるEDFAから発生するASE光の混入を防ぐことができる。よって、本実施形態では、信号光と、アイドラ光とに対する位相感応性を利用したS/N比改善効果を得ることができる。
 次に、上記の説明で除外した励起光の2倍の波長と信号光の波長とが同じになる縮退点における動作について説明する。
 図28Aに示すように、本実施形態では、励起光の2倍の波長と同じ波長の信号光も入射しており、この波長においても図31Aおよび図31Bの光スペクトルで見る限りでは、S/N比は改善している。しかし、以下に述べるように、励起光の2倍の波長と信号光の波長とが同じになる縮退パラメトリック増幅を行う場合において、光電変換したのちの入出力を比較してS/N比が向上することはない。縮退パラメトリック増幅においては信号光位相φと励起光位相φとの間に次の(式25)が成り立つときに増幅が行われる。
 φ=φSH/2+nπ=φ+nπ(ただし、nは整数)   (式25)
 すなわち、信号光は励起光と同相の成分のみが増幅される。ASE光が入力された場合も同様であり、ASE光の位相がランダムであることを考えると、励起光と位相同期した信号光が入射された場合に比べて利得はその半分になる。従って、光のパワーで見たときのS/N比は3dB改善することになる。この点は非縮退点における動作と変わらない。
 縮退点における動作では、入力されたASE光のうち信号光と同相の成分は増幅され、直交位相成分は減衰する。この直交位相成分が増幅されないことが光パワーで見たときの利得の違いとして現れることになるのだが、もともと信号光と直交位相をもつ成分は信号光と干渉しても強度雑音を発生することはない。一方、信号光と干渉し強度雑音の原因となる、ASE光のうちの信号光と同相成分は、信号と同様の利得を受けて増幅される。従って、縮退点における位相感応パラメトリック増幅では、信号光と干渉するASE光の成分が減るわけではないので、光信号を光電変換したあとのS/N比は変わらないのである。
 続いて、本実施形態で採用する非縮退パラメトリック増幅において、光電変換後のS/N比がどのような振る舞いをするかについて述べる。上述のように非縮退パラメトリック増幅において、ASE光の受ける利得は信号光に比べて半分となる。このときの増幅されたASE光の位相に注目すると、上述のように信号光とアイドラ光との波長にそれぞれ入力されるASE光成分のうち、次の(式26)を満たす成分のみが増幅される。
 φSH=φS-ASE+φi-ASE+2nπ(ただし、nは整数)   (式26)
 縮退点での動作では、入力されたASE光のうち励起光と同相の成分のみが増幅されていたのに対して、非縮退点での動作では、信号光波長とアイドラ光波長とにおけるASE光の位相が共役な関係になることのみが増幅に必要な条件になっており、増幅されたASE光、信号光、およびアイドラ光間の位相関係は特に規定されない。従って、縮退点での動作とは異なり、非縮退点での動作では増幅されたASE光は、信号光と同相位相の成分を、信号光の直交位相成分と同等に含んでいると考えられる。よって、入出力ともASE光の位相はランダムであり、かつASE光の受ける利得は信号の受ける利得の半分であるので、光電変換後のASE光とのビート雑音によって決まるSN比は、3dB増幅後に改善することになる。
 縮退動作との比較で考えると、非縮退動作では強度雑音に寄与する同相のASE光の強度は,縮退動作における同相のASE光の強度の半分となり、増幅後のASE光全体のパワーは縮退動作時と同じとなるので、増幅されたASE光のうち同相の成分のみが信号との干渉による強度雑音を起こすことを考えれば、非縮退動作では、縮退動作に比べてSN比が3dB改善することになる。
 このことを確認するために本発明の増幅器に入力した光コム信号と増幅後の光コム信号においてそれぞれ所望の1つの搬送波をバンドパスフィルタで切り出し、光アッテネータで平均パワーを同じくしたのちに、O/Eコンバータを内蔵した電気スペクトラムアナライザを用いて、入出力における信号光とASE光のビート雑音のレベルを比較した。
 図32Aおよび図32Bに、入出力における信号光とASE光のビート雑音のレベルを電気スペクトラムアナライザで測定した結果を示す。図32Aに示したように、縮退点のピークを観測した場合は、増幅器の入出力において、雑音レベルに違いが見られないのに対して、図32Bに示したように、非縮退点のピークを観測した場合、増幅により雑音レベルが3dB低くなっていること、すなわちS/N比が3dB改善されていることが確認できた。このように本実施形態によれば、レーザー増幅器などでS/N比が劣化した信号を増幅することにより、S/N比を入力よりも改善できるという極めて顕著な効果を得ることが出来る。
 本実施形態に係る位相感応光増幅器に、データ変調を施した信号を入射して、本実施形態によるS/N比の改善効果を調べた。
 図33に、光コムにデータ変調を施した信号を用いたS/N比改善効果を調べるための実験構成を示す。単一波長光源3301を光変調器3303で変調することにより発生した光コムを、LN変調器3305でBPSK変調を施し、図28Bに示した本実施形態による位相感応光増幅器に入射する。
 実際の光コムの変調では、光コム発生とデータ変調時の損失を補償するために、後にEDFA等のレーザー増幅器を用いて信号を増幅する。この時にASE光による信号雑音が付加されてしまう。
 本実施形態を評価する実験では、S/N比の改善効果を調べるために、データ変調を施した光コム信号に対し、EDFA3306を介して意図的にASE雑音を付加している。
 位相感応光増幅器の基本波光は、光コムを発生するのに用いた単一波長光源3301を分岐して用いた。増幅前後の信号から非縮退点のピークを分波器で分離し、光減衰器で受信パワーを調整し、受信装置で受信した。
 図34に測定した受信パワーに対する誤り率のデータを示す。光コム発生とデータ変調時の損失により光パワーが減衰した光コムをEDFA等のレーザー光増幅器で増幅すると、自然放出光(ASE光)が混入してしまい、増幅に伴ってS/N比が劣化してしまうという問題があった。図34に示した結果から、意図的にASE雑音を付加すると、ASE雑音を付加しない場合と同じ誤り率を得るためには必要な受信パワーが非常に大きくなることが分かる。
 しかしながら、本実施形態に係る位相感応光増幅器に、意図的にASE雑音を付加した信号を入射して得られた出力信号のデータ誤り率は、元のASE雑音を付加された入力信号に比べ大幅な受信パワーに対する改善が見られた。10-9の誤り率で比べた場合、本発明に係る位相感応光増幅器を用いると、ASE雑音によるパワーペナルティを3dB改善するという顕著な効果が見られた。
Figure JPOXMLDOC01-appb-I000002
 (第8の実施形態)
 図35に本発明の第8の実施形態に係る位相感応光増幅器の構成を示す。単一波長光源3501に1.54μmのCW光を用い、変調器3503を用いて励起光の2倍の波長に相当する光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様)を持つ光コムを生成する。
 本実施形態では単一波長光源3501と光変調器3503とから構成された光コム発生器を採用しているが、光源にモード同期レーザーを用いる方法や、光コム生成に非線形媒質を用いる方法などの他の方法を用いて光コムを発生させてもよい。
 発生させた光コム信号の複数波長のうちの1波長から同じ光周波数差だけ対称に離れた対となる2波長が同じ光路に出力するように設計された分波器3504を用いて光コムの各波長を分離した。分波器には、アレイ導波路格子(AWG:Arrayed Waveguide Grating)に代表される導波路型の合分波器を用いてもよいし、MEMSを用いたWSS(Wavelength Selective Switch)に代表される空間光学系を用いた合分波器を用いてもよい。
 分波器3504の各出力にはそれぞれ光変調器3505が接続されており、各信号光の対にデータ変調を施す。次いで、合波器3506を用いて各信号対を合波した後、EDFA等のレーザー増幅器3507で信号を増幅する。図35に示した構成においては、データ変調信号を合波した後一括で増幅しているが、例えばデータ変調に半導体の変調器を用いSOAなどの半導体増幅器を変調器に集積したデバイスを用いることができる場合は、図36に示すように各信号対をそれぞれレーザー増幅器で増幅した後、合波してもよい。
 また、図35及び図36に示した構成では、光周波数差だけ対称に離れた対となる2波長が同じ光路に出力される分波器を用いてそれぞれの信号対に同じデータ変調を施しているが、図37に示すように光コムのそれぞれの波長を分離する分波器3704と、分波器の各出力にそれぞれ接続されたそれぞれ光変調器3705を用いて、光コムのうちの、同じ光周波数差だけ対称に離れた信号対を同じデータで変調する構成を用いてもよい。
 光コムの生成過程では、変調器の損失や複数搬送波への変換効率の分だけ光パワーが小さくなってしまう。また、光コムを分波器で分波し変調器でデータ変調を施し、合波器で合波する場合、それぞれの構成要素の挿入損失により、元の光コムに比べて光パワーが著しく減衰してしまう。通常のレーザー媒質を用いた光増幅器で光ファイバでの伝送に必要なパワーまで増幅を行うと、光増幅器への入力パワーが小さいために信号のS/N比を著しく劣化させてしまう。位相感応光増幅器による低雑音な光増幅の原理は知られているものの、一般的に位相感応光増幅器では縮退パラメトリック増幅を用いるために、増幅できる信号波長は1つであり、複数の搬送波を同時に増幅することはできない。
 しかし、本実施形態に係る位相感応光増幅器を用いることで、複数波長の光コムを低雑音で増幅することが可能となる。さらには、信号光とASE光とのビート雑音に起因するS/N比に関し、本実施形態に係る位相感応光増幅器を用いることで入力よりもS/N比を改善できるという顕著な効果を持つ。
 位相感応光増幅器の基本波光は、光コムを発生するのに用いた単一波長光源を分岐して用いた。光コム信号を本実施形態による位相感応光増幅器に入射した。入出力それぞれの光S/N比(OSNR)と光電変換後のS/N比を調べた結果、入力信号のS/N比に比べて出力信号のS/N比は3dBのS/N比改善が見られた。本実施形態に係る構成を用いることで、強度雑音である信号光とASE光とのビート雑音によるS/N比を改善した。
 このS/N比改善効果に加えて、本実施形態に係る構成を用いることで、直交位相を減衰させることによる位相チャープ成分の抑制効果の相乗効果が得られる。増幅特性を確認するために、増幅後の信号光を観測し時間波形を調べた。
 図38A、図38B、および図38Cは、本実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。図38Aに励起光が入射しないときの入射信号光の出力波形を、図38BにPLLにより励起光位相と信号光の位相とが合うように設定したときの出力波形を、図38CにPLLにより励起光位相と信号光の位相とが90度ずれるように設定したときの出力波形を、それぞれ示す。
 励起光位相と信号光位相とが90度ずれるように設定したときは、図38Cに示すように、信号のONレベルが減衰されている様子から位相感応増幅が達成されていることがわかる。また、信号のONとOFFレベルの間の過渡的な部分のみが増幅された波形が観測された。これは信号光に位相雑音が重畳されていることを示している。
 例えば、データを重畳する光変調器として変調器中の片方のアームのみの位相変調を用いるタイプの変調器を用いると、データ変調器によりチャープが生じる。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じる。このために信号光位相と励起光位相とを直交させるように設定すると、位相チャープ成分のみが位相感応増幅されるという結果となる。このことはすなわち、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅できることを示している。
 図35に示す構成を用いて、第2の実施形態における構成を用いて生成した信号を光ファイバに通して伝送を行った結果、強度雑音である信号光とASE光とのビート雑音の除去効果と位相チャープ成分の抑制効果により、伝送距離を3倍以上にすることができた。
 次に、第8の実施形態の別構成について説明する。図39に、本発明の第8の実施形態に係る位相感応光増幅器の別構成を示す。単一波長光源3901と変調器3903とを用いて励起光の2倍の波長に相当する光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様の)を持つ光コムを生成する。光コムの生成過程での、変調器の損失や複数搬送波への変換による損失を補うためにEDFA等の通常のレーザー増幅器3904を用いて光コム信号を増幅する。位相感応光増幅器の基本波光としては、光コムを発生するのに用いた単一波長光源3901から分岐した信号を用い、光コム信号を本発明による位相感応光増幅器に入射して増幅した。
 光コム信号を本発明による位相感応光増幅器に入射した。第7の実施形態で示した手法と同様の手法を用いて、入出力それぞれの光S/N比(OSNR)と光電変換後のS/N比を調べた結果、入力信号におけるS/N比に比べて、本実施形態に係る位相感応光増幅器の出力信号において3dBのS/N比改善が見られた。図39に示すように、通常のレーザー増幅器3904を用いて光コム信号を増幅した後、本発明における位相感応光増幅器を用いることで、S/N比の高い光コム信号を生成できた。
 光コムのそれぞれの波長を分離する分波器3906と、分波器3906の各出力に接続されたそれぞれ光変調器3907を用いて、各コムに個別にデータ変調を施した後、光合波器3908を用いて光コム信号を1本の光ファイバに入射し、信号を伝送した。
 本実施形態に係る位相感応光増幅器を用いることにより、S/N比の高い信号を生成できたので、伝送距離を増大させることができた。
 (第9の実施形態)
 位相感応光増幅器を光信号の送信器直後に用いるような、信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して基本波光として用いることができる。しかしながら、光伝送における中継増幅器や受信端での前置増幅器として位相感応光増幅器を用いる場合には、位相同期手段を用いて位相感応光増幅装置内の励起光位相と信号光位相とを(式1)の関係を満たすように同期させる必要がある。位相同期手段として、中心波長信号を用いた本発明の第9の実施形態に係る位相感応光増幅器の構成を図40に示す。
 本実施形態では、複数波長の信号光の中心波長信号をCW光のパイロットトーンとして用いたデータ信号を、入力信号として用いる。光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様の)には2値の位相変調が加えられ、中心波長の信号は無変調でCW光のパイロットトーンとして用いることが可能な複数波長の信号を、信号光4030として用いている。
 中心波長にCW光のパイロットトーンを持つ変調信号光4030が伝送媒体を通って伝送されてくる。伝送媒体には光ファイバを用いた。光ファイバ中の偏波回転を偏波コントローラ4020で補正した後、中心波長のみを切り出すノッチ型のフィルタ4021を用いてCW光のパイロットトーンのみを分離した。
 信号の光強度は伝送光ファイバによる光強度の損失のため、光強度が極めて小さくS/N比が劣化している。分岐させたCW光のパイロットトーンをアッテネータ4011で光強度を調整した後、サーキュレータ4012を通して位相感応光増幅装置内の基本波光源4013に光注入同期を行った。基本波光源4013にはDFB型の半導体レーザーを用いた。
 アッテネータ4011を用いて基本波光源4013に入力する光強度を変化させ、光スペクトルアナライザで様子を観測したところ、光強度を数十μWとした時に半導体レーザーの波長がパイロットトーン波長に引き込まれている様子が観測され、位相感応光増幅装置内の基本波光源がパイロットトーンに位相同期されることが分かった。これにより、S/N比の劣化した信号光のパイロットトーンからS/N比のよい励起光を生成することができた。
 光ファイバ中を伝送されてきた複数波長の信号は、光ファイバ中の分散効果により対称に離れた信号光の対の間の位相にずれが生じている。この位相のずれを補償するために分散補償(調整)媒質4022を位相感応光増幅器内に構成した。分散補償(調整)媒質には、LCOSなどの液晶を用いた位相調整器を用いた。逆分散を持つファイバを用いるなどの別の手段を用いて位相を調整してもよい。位相調整器(図示せず)により、信号光の対の間の位相を合わせた。
 信号光のパイロットトーンに位相同期した基本波光を用いて、第7の実施形態で説明した位相感応増幅構成を用いて光増幅を試みた所、第1の実施形態と同様の特性結果が得られた。本実施形態による構成をとることにより、信号光を発生する光源が位相感応光増幅部の近くに配置されていない中継増幅や受信端での前置増幅器においても、位相同期手段を用いることで位相感応増幅が行うことができた。
 本実施形態においては、縮退波長の信号をパイロットトーンで位相同期するが、他の方法を用いてもよい。縮退信号の増幅に関して説明した第3乃至第5の実施形態に示した手法のうちのいずれかの位相同期手法及び搬送位相抽出手法を用いてもよい。
 (第10の実施形態)
 図41に本実施形態の構成を示す。本実施形態では、第1の実施形態と同様に1.54μmの信号を増幅するように装置を構成した。2つのPPLN導波路4105-1,4105-2を用いて、第二高調波4122を発生させ縮退パラメトリック増幅を行う点は第1の実施形態と同じである。相違点は、基本波光4121から第二高調波4122を分離する方式および第二高調波4122と信号光4120とを合波する方式である。
 本発明によれば光ファイバ増幅器から発生するASE光に起因する信号光のS/N比の劣化を抑制しながら位相感応増幅を行うことができるが、本実施形態ではその効果を有効に利用できるようにした。本実施形態においても、第二高調波4122の分離ならびに第二高調波4122と信号光4120との合波にはダイクロイックミラー4106-1,4106-2を用いている。
 一般的に、波長の異なる2つの光を分離または合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーがよく使用されているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成の場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。
 不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。本実施形態では、そのような考え方に基づいて装置を構成した。
 光分岐部4103-1で、波長1.54μmの基本波光4121を信号光4120から分岐し、位相同期のためのLN位相変調器4110、PZTによる光ファイバ伸長器4111を介して、EDFA4101で増幅する。増幅した基本波光を、第1の二次非線形光学素子4102-1中の第1のPPLN導波路4105-1に入射し第二高調波4122を発生させる。
 本実施形態においては、第1のPPLN導波路4105-1から出射される基本波光とその第二高調波から第二高調波4122のみを効果的に取り出し、EDFA4101から発生するASE光を効果的に除去するために、第1のPPLN導波路4105-1の後に、1.55μm帯を反射し、0.77μm帯を透過するダイクロイックミラー4106-1を設置した。
 波長が0.77μmである第二高調波4122は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバ4107を介して、第2の二次非線形光学素子4105-2へと導かれている。第1の実施形態と同様に、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、不用な波長1.54μm付近の基本波光およびASE光を効果的に減衰させることができる。
 偏波保持ファイバ4107で導かれた第二高調波4122は、ダイクロイックミラー4106-2を用いて波長1.54μmの信号光と合波される。本実施形態においては、偏波保持ファイバを通ってくる波長1.54μm付近の基本波光およびASE光の残留成分を効果的に取り除くことができるように、1.54μm帯を反射し、0.77μm帯を透過するダイクロイックミラーを用いた。
 信号光4120と第二高調波4122とは合波された後、第2のPPLN導波路4105-2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 第2のPPLN導波路4105-2から出射された光は、ダイクロイックミラー4106-3により第二高調波と増幅された信号光とに分離される。本実施形態では、ダイクロイックミラー4106-3に、出力に不用な第二高調波を効果的に取り除くために0.77μm帯を反射し、1.54μm帯を透過するダイクロイックミラーを用いた。
 本実施形態においても、第1の実施形態同様、出力した増幅信号光の一部を光分岐部4103-2で分岐して光検出器4108で受光した後に位相同期ループ回路(PLL)4109により位相同期を行うことで安定的に位相感応増幅ができるようにしている。
 本実施形態においては、それぞれ特性の異なるダイクロイックミラーを、基本波光からの第二高調波の分離ならびに第二高調波と信号光との合波に用いたために、特に信号のS/N比に悪影響を与えるEDFAからのASE光を信号光に混入させることなく、高い信号品質が得られる位相感応光増幅器を構成することができた。
 なお、本実施例では、第1の実施形態と同様の構成、つまり、増幅方式が縮退パラメトリック方式であり、励起光として基本波光からの第二高調波を利用し、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成としたが、本実施例は、前述の第1乃至第9の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
 具体的には、増幅方式として、第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良い。
 また、励起光を得る方法として、第5の実施形態のように異なる2つの波長の和周波として生成する方法を採用しても良い。
Figure JPOXMLDOC01-appb-I000003
 (第11の実施形態)
 本実施形態に係る位相感応光増幅器の基本的な構成を図42に示す。この光増幅器は、位相感応光増幅部4201と、励起光源4202と、励起光位相制御部4203と、2つの光分岐部4204-1、4204-2とから構成される。この光増幅器は、位相感応光増幅部4201における信号光と励起光の位相が上述の(式1)の関係を満たすと入力信号光4210は増幅され、両者の位相が(式1)の関係より90度ずれた直交位相関係になると、入力信号光4210は減衰する特性を有する。この特性を利用して増幅利得が最大となるように励起光―信号光間の位相を同期させると、信号光と直交位相の自然放出光を発生させずに、つまりS/N比を劣化させずに信号光を増幅することができる。本実施形態が第1の実施形態と異なる点は、後述するように、主として位相同期を達成する方法にある。
 信号光と励起光の位相同期を達成するために、光分岐部4204-1で分岐された入力信号光4210の位相と(式1)の関係を満たして同期するように、励起光4211の位相を制御する。光分岐部4204-2で出力信号光4212を一部分岐する変わりに励起光である第二高調波4213を狭帯域の検出器で検波し、第二高調波4213の出力信号が最小となるように励起光位相制御部4203において励起光4211の位相を制御する。その結果、位相感応光増幅部4201において、信号光の位相と、励起光の位相とが(式1)の関係を満たして同期するように制御され、S/N比の劣化のない光増幅を実現することができる。なお、励起光位相制御部4203は、図42に示すような励起光源4202の出力側で励起光の位相を制御する構成の他に、励起光源4202の位相を直接制御する構成としてもよい。また信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して励起光として用いることもできる。
 図43は、本実施形態に係る位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、第二高調波の利得(dB)との関係を示すグラフである。Δφが-π、0、またはπのときに、パラメトリック増幅による信号光の利得が最大となるために、増幅に利用された第二高調波の利得が最小となっていることがわかる。
 図44に本実施形態の構成を示す。本実施形態では、データ信号用強度変調器4424としてLNマッハツェンダー変調器を用い10Gb/sのNRZ信号を入力した場合の増幅特性を評価した。本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)4401を用いて、基本波光4421を増幅する。増幅した基本波光を第1の二次非線形光学素子4402-1に入射して第二高調波4422を発生させる。第2の二次非線形光学素子4402-2に信号光4420と第二高調波4422とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
 本実施形態では、波長1.54μmの信号光を増幅するために、信号光の一部を光分岐部4403で分岐して基本波光4421として用いている。基本波光4421は、エルビウム添加ファイバレーザー増幅器(EDFA)4401を用いて増幅される。増幅された基本波光は、第1の二次非線形光学素子4402-1に入力される。本実施形態では、EDFA4401から発生する広帯域なASE光が第1の二次非線形光学素子4402-1により変換されることを防ぐために、EDFA4401と第1の二次非線形光学素子4402-1との間にバンドパスフィルタ4404を挿入し、不必要なASE光をカットした。
 本実施形態の、二次非線形光学素子(4402-1,4402-2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路(4405-1,4405-2)を備える。PPLN導波路は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られるので、図示するような構成にすることで高い波長変換効率を得ることができる。
 PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
 本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。第1のPPLN導波路4405-1から出射した、第二高調波4422と基本波光4421とは、ダイクロイックミラー4406-1を用いて分離される。ダイクロイックミラー4406-1で反射された波長0.77μmの第二高調波は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバ4407を介して、第2の二次非線形光学素子4402-2へと導かれている。このとき、ダイクロイックミラー4406-1で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバ4407に入射されることになるが、波長0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不要な光を効果的に減衰させることができる。
 偏波保持ファイバ4407で導かれた第二高調波4422は、ダイクロイックミラー4406-2を用いて波長1.54μmの信号光4420と合波される。ダイクロイックミラー4406-2は第二高調波のみを反射させるために、第1のPPLN導波路4405-1から出射され、ダイクロイックミラー4406-1および偏波保持ファイバ4407を通ってくる波長1.54μm付近の基本波光とASE光との残留成分を効果的に取り除くことができる。
 信号光4420と第二高調波4422とは合波され、第2のPPLN導波路4405-2に入射される。第2のPPLN導波路4405-2は、第1のPPLN導波路4405-1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 本実施形態では、2つのPPLN導波路(4405-1,4405-2)はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。
 第2のPPLN導波路4405-2から出射された光は、ダイクロイックミラー4406-3により励起光である第二高調波4422と増幅された信号光とに分離される。このときも第二高調波4422と増幅された信号光とは、波長が全く異なるために、出力において増幅された信号光と第二高調波は効果的に分離される。
 本実施形態に係る位相感応増幅では、励起光と信号光の位相を同期させることが必要である。本実施形態では、出力した増幅信号光の一部を分岐して位相同期に利用する第1の実施形態とは異なり、ダイクロイックミラー4406-3により分離した、励起光である第二高調波4422を光検出器4408で受光したのちに位相同期ループ回路(PLL)4409により位相同期を行った。ダイクロイックミラー4406-3で反射された1.54μm帯の光が、位相同期を行うために利用する0.77μm帯の光に含まれてしまい、位相同期を行う上で雑音成分となる場合があるため、図44に示すようにハイパスフィルタ4425を挿入し、1.54μm帯の光をカットしても良い。
 EDFA4401の前に配置した位相変調器4410を用いて正弦波により微弱な位相変調を基本波光に施す。光検出器4408とPLL回路4409でその位相変調の位相ずれを検出して、EDFA4401の前に配置したPZTによる光ファイバの伸長器4411の駆動電圧と位相変調器4410のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
 本実施形態では、励起光である第二高調波を利用して励起光の位相と信号光の位相とを(式1)の関係を満たすように同期させることにより、増幅された信号光をすべて活用できるようになったため、第1の実施形態と比較して増幅された信号光の利得がおよそ15%増加した。
 また、第1の実施形態と同様に、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅することができる。
 図44に示した実施形態では、励起光である第二高調波と増幅された信号光とを分離するフィルターとして、ダイクロイックミラーを利用したが、図45に示すように、第二の二次非線形光学素子4502-2の後段に配置したマルチモード干渉(MMI:Multi-Mode Interference)を利用した光合分波器4526を用いることもできる。
 第二高調波4522と増幅された信号光4523とを分離するように設計したMMI型合分波器4526を同一基板内に集積することによって,より小型な位相感応光増幅器を得ることが可能である。また、MMI型合分波器の代わりに方向性結合を利用した光合分波器を用いても同様の小型な位相感応光増幅器を得ることが可能である。
 次に、本実施形態に係る位相感応光増幅器の別の構成について説明する。図46に本構成を示す。本構成では、図44に示した構成と同様に1.54μmの信号を増幅するように装置を構成した。2つのPPLN導波路(4605-1,4605-2)を用いて、第二高調波を発生させ縮退パラメトリック増幅を行う点は図44に示した構成と同じである。
 図44に示す構成と図46に示す構成との相違点は、基本波光から第二高調波を分離する方式および第二高調波と信号光とを合波する方式である。本発明によれば光ファイバ増幅器から発生するASE光に起因する信号光のS/N比の劣化を抑制しながら位相感応増幅を行うことができるが、本構成では、その効果を有効に利用できるようにした。
 図46に示す構成においても、基本波光4621からの第二高調波4622の分離ならびに第二高調波4622と信号光4620との合波にはダイクロイックミラー(4606-1,4606-2)を用いている。一般的に、波長の異なる2つの光を分離または合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーがよく使用されているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成の場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。本構成では、そのような考え方に基づいて装置が構成されている。
 光分岐部4603で、波長1.54μmの基本波光4621を信号光から分岐し、位相同期のためのLN位相変調器4610、PZTによる光ファイバ伸長器4611を介して、EDFA4601で増幅する。
 増幅した基本波光を、第1の二次非線形光学素子4602-1中の第1のPPLN導波路4605-1に入射し第二高調波4622を発生させる。本構成においては、第1のPPLN導波路4605-1から出射される基本波光とその第二高調波とから第二高調波のみを効果的に取り出し、EDFA4601から発生するASE光を効果的に除去するために、第1のPPLN導波路4605-1の後に、1.55μm帯を反射し、0.77μm帯を透過するダイクロイックミラー4606-1を設置した。
 波長が0.77μmである第二高調波4622は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバ4607を介して、第2の二次非線形光学素子4602-2へと導かれている。上述の構成と同様に、0.77μmにおいてシングルモードであるこのファイバ4607は波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、不要な波長1.54μm付近の基本波光およびASE光を効果的に減衰させることができる。
 偏波保持ファイバ4607で導かれた第二高調波は、ダイクロイックミラー4606-2により波長1.54μmの信号光4620と合波される。
 本構成においては、偏波保持ファイバ4607を通ってくる波長1.54μm付近の基本波光およびASE光の残留成分を効果的に取り除くことができるように、1.54μm帯を反射し、0.77μm帯を透過するダイクロイックミラー4606-2を用いた。信号光と第二高調波とは合波された後、第2のPPLN導波路4605-2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 第2のPPLN導波路4605-2から出射された光は、ダイクロイックミラー4606-3により第二高調波4622と増幅された信号光4623とに分離される。本構成では、ダイクロイックミラー4606-3に、0.77μm帯を反射し、1.54μm帯を透過するダイクロイックミラーを用いた。
 本構成においても、分離した、励起光である第二高調波4622を光検出器4608で受光した後に位相同期ループ回路(PLL)4609により位相同期を行うことで安定的に位相感応増幅ができるようにしている。本構成に係る位相感応光増幅器により、増幅された信号光をすべて活用できるようになったため、第10の実施形態に係る位相感応光増幅器と比較して増幅された信号光の利得がおよそ15%増加した。
 本構成においては、それぞれ特性の異なるダイクロイックミラー(4606-1,4606-2)を、基本波光と第二高調波との分離、ならびに、第二高調波と信号光との合波に用いたために、特に信号のS/N比に悪影響を与えるEDFAからのASE光を信号光に混入させることなく、高い信号品質が得られる位相感応光増幅器を構成することができた。
 次に、本実施形態に係る位相感応光増幅器のさらに別の構成について説明する。
 図44乃至図46に示した構成においては、基本波光として信号光から分岐した光を用いた。すなわち、基本波光は、信号光と同一の光源を増幅して得ていた。例えば光通信における送信器に用いる場合には、これまでに説明したような同一の光源を信号光と基本波光に使用し、基本波光を分岐したのちに信号光に必要な変調を加えることが考えられる。一方、本構成では、あらかじめ変調された信号光の増幅ができるよう、図47に示すように装置を構成した。
 本構成に係る装置は、2値の位相変調(BPSK)または2値差動位相変調(DPSK)信号もしくは通常の強度変調などの信号を、雑音を付加することなく増幅することができる。
 本構成においては、基本波光を得るために光分岐部4703で信号光を分岐し、分岐した信号光をEDFA4701で増幅させる。増幅された信号光を第1の二次非線形光学素子4702-1中の第1のPPLN導波路4705-1に入射し、信号光の第二高調波4722を発生させる。第1のPPLN導波路4705-1の出射光から第二高調波のみを分離するためにダイクロイックミラー4706-1を使用する。分離された第二高調波を波長0.77μmで発振する半導体レーザー4712に入射することにより注入同期が行われる。半導体レーザー4712の出力は、半導体レーザーと同様の波長帯域に利得を持つ半導体光増幅器4713により増幅され、ダイクロイックミラー4706-2を用いて波長1.54μmの信号光4720と合波される。信号光4720と波長0.77μmの励起光である第二高調波4722とは合波された後、第2のPPLN導波路4705-2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
 位相感応増幅を行うためには増幅器に入射してくる信号光の平均位相に同期した励起光を生成する必要がある。本構成においては、2値の位相変調を施されたような信号を用いる場合であっても、その平均位相に同期した励起光を生成することができる。その動作原理については、上記の第4の実施形態において説明されている。
 実際の位相変調信号において、強度変調成分のない励起光を得るためには、上記の位相変調成分を取り除いた第二高調波を本構成のように注入同期を用いて、信号光の平均位相に同期させて、信号光の半波長の励起光とすることが望ましいのは第4の実施形態と同様である。
 本構成においては、注入同期を用いて位相変調の施された信号光から平均位相に同期した強度変調のない励起光を生成する。これにより、仮に信号光に位相雑音が付加された場合であっても、本来の信号と直交する位相成分は、位相感応増幅により減衰させることができるので、信号位相および直交位相の雑音成分を取り除くような信号再生を行うことができる。
 本構成においては、ダイクロイックミラー4706-3により分離した、励起光である第二高調波4722を光検出器4708で受光した後に、位相同期ループ回路(PLL)4709から、(式1)の関係を満たして同期するように0.77μmの駆動電流にフィードバックを行うことで光学部品の振動や温度変動による位相変動を補正し、安定的に位相感応増幅ができるようにしている。
 具体的には出力された、励起光である第二高調波4722の出力が最小になるように駆動電流を通じて位相制御を行う。本構成でも増幅された信号光をすべて活用できるようになったため、第4の実施形態と比較して増幅された信号光の利得がおよそ15%増加した。
 本構成においては、第1のPPLN4705-1における第二高調波発生が可能となるパワーを得るためにEDFA4701を用いているが、EDFA4701から発生するASE光が位相感応増幅を行う第2のPPLN導波路4705-2に入射しないために、本構成においても、光増幅器のASE光に起因する信号光のS/N比劣化を防ぐことができる。また、波長0.77μmで動作する半導体光増幅器4713からもASE光は発生するが、この光は信号光と波長が全く異なるために、ダイクロイックミラー4706-2,4706-3によってほぼ完全に取り除くことが可能であり、信号光のS/N比を劣化させることなく、位相感応増幅を行うことが可能である。
 なお、上述してきた第11の実施形態では、増幅方式が縮退パラメトリック方式であり、励起光として基本波光からの第二高調波を採用する構成について説明しているが、第11の実施形態は、前述の第1乃至第10の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
 具体的には、増幅方式として、第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良い。
 また、励起光を得る方法として、第5の実施形態のように異なる2つの波長の和周波として生成する方法を採用しても良い。この場合、位相同期を得るために検出し帰還を行う励起光は、第二高調波ではなく和周波となる。
 また位相同期のための基本波光の生成方法も、第3の実施形態に記載の信号光とは別にパイロットトーン信号を送る方法や、第4および第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法でも良い。
Figure JPOXMLDOC01-appb-I000004
 (第12の実施形態)
 図6を用いて説明したように、第1の実施形態により簡便な構成で位相感応増幅を実現することができる。しかしながら、第1の実施形態には以下に述べるような問題点がある。再び図6を用いて説明する。
 位相同期に用いる位相変調器610をEDFA601の前段に配置しており、位相変調器の挿入損失だけEDFAへの入射パワーが小さくなってしまう。EDFA等のレーザー増幅器においては、増幅器前の損失があると、その分だけS/N比が劣化してしまうことが良く知られている(非特許文献8を参照)。このように位相変調器の挿入損失によって励起光のS/N比が劣化してしまうと、その雑音成分がパラメトリック増幅過程により増幅光の雑音へと変換されてしまい、低雑音な増幅を行うことができない。しかし、以下に説明する本発明の第12の実施形態においては、この雑音の問題は解消される。
 なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光として信号光から直接分岐した光を用い、変調された光信号からの位相同期手段は用いない構成とした。
 しかし、本実施形態は、第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
 具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方法を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
 本実施形態の構成例を図48を参照しながら詳細に説明する。本実施形態は、第1の実施形態で問題となっていた位相同期のための位相変調器の損失に起因する光ファイバレーザー増幅器におけるS/N比の劣化を防ぐために、図48に示すような構成とした。
 非特許文献8に示されているようにレーザー増幅器の前段に損失がある場合にはその損失分だけS/N比が劣化してしまうのに対して、レーザー増幅器の後段に損失があった場合は損失分だけ出力が低下してしまうもののS/N比は劣化しない。この性質を利用して、本実施形態では、図48に示すように、位相変調器4810を光ファイバレーザー増幅器4801より出力側に配置するようにした。
 なお、従来技術では図48に示すような構成を取ることが出来ない。その理由は、既存の位相変調器の多くは、LiNbO(LN)結晶にTiを拡散させた光導波路で作製されているからである。Ti拡散導波路では光損傷が顕著であるために大きな光パワーを入射するとフォトリフラクティブ効果による屈折率変化が生じ、位相変化を生じるために同じ位相条件を得るための電圧が変化するドリフト現象を引き起こしてしまう。このため、位相変調器に入力可能な光パワーは+20dBm程度に制限されてしまう。さらに、挿入損失の大きな位相変調器をレーザー増幅器の後段に配置することで励起光のパワーが減衰してしまい、光パラメトリック効果を生じるのに十分な励起光パワーが得られず、大きな増幅率をもった位相感応増幅を実現することができない。
 本実施形態においては、励起光である第二高調波4822を発生させるための光導波路4805-1と位相変調に用いる導波路とを同一の基板上に集積することによって、素子間の接続損失を低減するとともに位相変調器4810がEDFA4801より出力側に配置できるようにした。
 第二高調波発生器においてはより光損傷が顕著となる第二高調波を扱うために、第二高調波発生器を作成する際は、Ti拡散よりも光損傷耐性の大きな導波路の形成法を用いることが一般的であり、位相変調器を第二高調波発生器と同様な光導波路を用いて構成することにより、より大きな励起パワーを利用することが可能になる。
 本構成では、1.54μmの信号光4820を増幅するために、信号光4820の一部を分岐部4803-1で分岐して基本波光4821として用いている。基本波光4821はエルビウム添加ファイバレーザー増幅器(EDFA)4801を用いて増幅され位相変調器4810と第一の二次非線形光学素子4805-1とが集積化された光導波路に入力される。二次非線形光学素子(4802-1,4802-2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)からなる光導波路(4805-1,4805-2)を備える。
 PPLN導波路は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能でありかつ光導波路構造により高い光パワー密度が得られるので、高い波長変換効率を得ることができる。PPLN導波路に高強度のパワーを入射した場合に、フォトリフラクティブ効果に起因する光損傷により位相整合波長が変化してしまうことがあるが、本実施形態ではそのような問題が生じないように直接接合により作製された導波路を用いた(非特許文献4を参照)。
 本実施形態においては、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。そのPPLN導波路4805-1が形成された同一の基板上に周期分極反転構造のない位相変調器4810を同様の導波路形成法で集積化した。位相変調部には導波路上に電界印加用電極を形成し、電気光学(EO)効果による位相変調を可能にした。上述のようにこの導波路形成法は光損傷耐性に優れているため、EDFA4801で増幅された基本波光4821のパワーが大きくなった場合でも動作電圧のドリフト現象を起こすことなく光位相同期ループ回路(PLL)のためのパイロットトーンの位相変調を基本波光4821に施すことができる。
 なお、本実施形態では上述のように位相変調器として電気光学効果による屈折率変化を利用したが、本手法は本実施形態に限定されず、他の実施形態においても、電気光学効果を基本とする位相変調器の適用が可能である。
 第1のPPLN導波路4805-1から出射した、基本波光4821と第二高調波4822とは、ダイクロイックミラー4806-1を用いて分離される。ダイクロイックミラーで透過された波長0.77μmの第二高調波4822は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバ4807を介して、第2の二次非線形光学素子4802-2へと導かれている。偏波保持ファイバ4807で導かれた第二高調波4822は、ダイクロイックミラー4806-2を用いて波長1.54μmの信号光4820と合波される。ダイクロイックミラー4806-2は、第二高調波4822のみを透過させるために、第1のPPLN導波路4805-1から出射され、ダイクロイックミラー4806-1及び偏波保持ファイバ4807を通ってくる波長1.54μm付近の基本波光4821とASE光との残留成分を効果的に取り除くことができる。ダイクロイックミラー4806-2で合波された信号光4820と第二高調波4822とは、第2のPPLN導波路4805-2に入射される。第2のPPLN導波路4805-2は、第1のPPLN導波路4805-1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。第2のPPLN導波路4805-2から出射された光は、ダイクロイックミラー4806-3により、基本波光の第二高調波4822と増幅された信号光4823とに分離される。このときも第二高調波と増幅された信号光は波長が全く異なるために、出力では不必要な第二高調波4822を効果的に取り除くことができる。
 位相感応増幅では励起光と信号光の位相を同期させることが必要であるが、本実施形態では、出力した増幅信号光4823の一部を光分岐部4803-2で分岐して光検出器4808で受光したのちに位相同期ループ回路(PLL)4809により位相同期を行った。
 本実施形態では、第二高調波発生用PPLN4805-1と同一基板上に集積化され且つEDFAの出力側に配置されたLN位相変調器4810を用いて正弦波で微弱な位相変調を基本波光に施し、光検出器4808とPLL回路4809とでその位相変調の位相ずれを検出して、EDFA4801の前に配置したPZTによる光ファイバの伸長器4811の駆動電圧とLN位相変調器4810のバイアス電圧にフィードバックを行うことにより、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
 本実施形態において、データ信号用変調器4810としてLNマッハツェンダー変調器を用い、入力信号として10Gb/sのNRZ信号を入力した場合の増幅特性を評価した。
 本実施形態では、第2のPPLN導波路4805-2に入射した第二高調波4822のパワーが300mWの条件において、約11dBの利得を得ることができた。このときのEDFA4801の出力パワーは約1Wであり、直接接合導波路への入力パワーは630mWであったが、このような高パワーの光を入射した場合でも動作電圧のドリフト現象を起こすことなく安定な位相同期動作を実現することができた。
 本実施形態の構成を、図6に示した構成と比較すると、本実施形態では、位相変調器4810がEDFA4801の入力段にないために、基本波光4821のS/N比を5dBほど改善することができた。またPPLN4805-1と位相変調器4810とを集積化することにより、EDFA4801の出力を過剰な損失を経ることなく効率的に第二高調波4822へ変換することが可能になった。この結果、従来に比べてEDFA4801における基本波光4821のS/N比劣化を抑えながら位相感応増幅による低雑音増幅動作を行うことが可能になった。
 次に本実施形態の構成の別例を、図49を参照しながら説明する。
 本構成では、図48で示した構成と同様に1.54μmの信号4920を増幅するように装置を構成した。2つのPPLN導波路(4905-1,4905-2)を用いること、一方のPPLN導波路(4905-1)に位相変調用導波路を集積化していること、第二高調波4922を発生させて縮退パラメトリック増幅を行う点は、図48で示した構成と同じである。主な相違点は、第二高調波4922を発生させるためのPPLN導波路4905-1が同期用位相変調器4910より信号入力側に配置されていることである。
 本構成では、LN位相変調器4910を第二高調波発生用PPLN導波路4905-1より出力側に配置することにより、図48で示した構成と比較して、位相変調に必要な駆動電圧を半減することに成功した。
 LN位相変調器4910を第二高調波発生用PPLN導波路4905-1より出力側に配置する効果を説明する。光学材料に外部から電界、応力などの外力が印加された場合、光学材料に屈折率変化が生じる。位相変調器としてLN結晶の電気光学効果を用い、電界印加により位相を変調する場合、非特許文献9に示されるように、変調器の性能を示す半波長駆動電圧VπはLNの電気光学係数、屈折率、印加電界、波長等に依存する。特に使用波長に着目すると、以下の(式27)に示すような関係が成立する。
 Vπ∝λ   (式27)
 半波長駆動電圧、即ち位相変調に必要な電圧は、本構成で採用した配置によって、図48で示した構成に係る配置の場合と比較すると半分となり大幅に低減することができる。従って、駆動用電源の小型化、消費電力の削減が可能となる。図48で示した構成において同期に必要な駆動電圧は約0.1Vであったが、本構成では光PLL内位相変調器4910を、PPLN導波路4905-1より出力側に配置したことにより、同期に必要な駆動電圧を50mVまで大幅に低減することができた。
 本構成においても、図48で示した構成と同様に、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。また、位相変調部4910の導波路は、PPLN導波路部と同様に1.54μmの基本波波長でシングルモードとなるように設計しているため、第二高調波の波長0.77μmにおいてはマルチモードとなるが、PPLN部4905-1で発生する第二高調波4922は位相整合条件による制約から基底モードのみで伝搬するため、PPLN部4905-1と位相変調部4910の導波路設計を同じにする簡潔な導波路においても安定な位相同期動作を得ることが可能であった。
 次に本実施形態の構成の別例を、図50を参照しながら説明する。
 本構成では、図48及び図49で示した構成と同様、1.54μmの信号5020を増幅するように装置を構成した。2つのPPLN導波路5005-1,5005-2を用いること、第二高調波5022を発生させて縮退パラメトリック増幅を行うことも、図48及び図49で示した構成と同じである。
 本構成では、図50に示すように信号光5020と第二高調波5022との合波器としてマルチモード干渉計(Multi-mode interferometer:MMI)5012を用いた。また、本構成では、MMI5012、光PLLのためのパイロットトーン用位相変調器5010、及び縮退パラメトリック増幅を行う第二のPPLN導波路5005-2を直接接合法によって作製した同一基板上に集積化した。
 本構成では、縮退パラメトリック増幅を行う領域のみ分極反転したLN基板を直接接合して作製した導波路層に対しドライエッチングによりリッジ形状を形成した。さらに、MMIの信号光入力ポートのリッジ上に電界印加用の金属電極を集積した。
 基板上に集積化した合波器であるMMI5012は、幅、長さ、入出力ポート位置を最適に設計されて、信号光および励起光を何れも挿入損失1dB以下で、第2のPPLN導波路5005-2に合波する特性を有する。
 MMI形状は、励起光ポートに残存する信号光成分が合波されないように最適化される。その結果、図49で示した構成では避けられなかった位相変調器と合波器との間ならびに合波器と第2のPPLN導波路との間の接続損失の影響を最小限に抑えることが可能になった。本構成では、信号光ポートに位相変調器5010を集積化したため、PPLN導波路5005-2と位相変調器5010との間の接続損失が最小限に抑えられる。これにより、位相感応型光増幅器全体としての挿入損失を最小限に抑えることが可能になった。
 位相感応型光増幅器の入力端での挿入損失はそのまま増幅器としての雑音指数の増加につながる。図48及び図49で示した構成において、信号光の位相を変調しようとすると、PPLNとは独立の位相変調器を用いることになり、その接続損失により雑音指数の増加を招いてしまう。本構成に係る構成により、このような接続損失による雑音指数の増加を防ぎながら、位相感応増幅による低雑音動作が可能になる。
 本構成においても、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。
 次に本実施形態の構成の別例を、図51を参照しながら説明する。
 本構成は、集積された、MMI5112、位相変調器5110、及び縮退パラメトリック増幅を行う第2のPPLN導波路5105-2を使用する点において、図50で示した構成と同一である。
 本構成が図50で示した構成と異なる点は、第二高調波を発生させるための二次非線形光学素子5102-1から生じた励起光5122を位相変調器5110のポート側に入力し、信号光5120をもう一方のポートに入力する点である。励起光5122を位相変調器5110に入力することで、図49で示した構成と同様に、波長が信号の1/2に変換された励起光に対して位相変調が可能となる。これにより、図50で示した構成と比較して、同程度のS/N比及び増幅率特性を保持したまま、位相変調に必要な駆動電圧を半減することができた。
 本構成においても、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。このため位相変調器5110を、基本波光を生成するためのEDFA5101の後方に配置することが可能であり、EDFA5101におけるS/N比劣化を最小限に抑えて増幅動作を行うことが可能である。
 本発明の図50及び図51で示した構成においては、MMI、位相変調器、及びPPLN導波路を集積した素子から信号光のみを分離するためにダイクロミックミラーをフィルタとして用いたが、代わりに信号光のみを分離するように設計したMMIを同一基板内に集積することによって、より小型な位相感応型光増幅器を得ることも可能である。
 次に本実施形態の構成の別例を、図52を参照しながら説明する。
 本構成は、図51で示した構成と同様に、1.54μmの信号5220を増幅するように装置を構成した。2つのPPLN導波路5205-1,5205-2を用いること、第二高調波5222を発生させて縮退パラメトリック増幅を行うことも、図51で示した構成と同じである。
 図52で示す構成が、図51で示した構成と相違する点は、励起光発生のためのPPLN導波路5205-1、光PLLのためのパイロットトーン用位相変調器5210、及び励起光と信号光とを合波するためのMMI5212が、第二高調波を発生させる第1のPPLN導波路5205-1を形成した同一LN結晶基板上に直接接合法により作製・集積化された点である。
 基板上に集積化した合波器であるMMI5212は、幅、長さ、入出力ポート位置を最適に設計されて、信号光および励起光を何れも挿入損失1dB以下で合波する特性を有する。
 本構成により、図49に係る構成では避けられなかった第二高調波を発生させるための二次非線形光学素子と位相変調器との間および位相変調器と合波器との間の接続損失の影響を最小限に抑えることが可能になった。
Figure JPOXMLDOC01-appb-I000005
 (第13の実施形態)
 図53に本実施形態に係る位相感応光増幅器を含んだ光受信装置の構成を示す。本実施形態では、第6の実施形態と同様に1.54μmの信号を増幅するように装置を構成した。2つのPPLN導波路を用いること、第二高調波を発生し縮退パラメトリック増幅を行うこと、位相変調器を用いた光位相同期ループ回路(PLL)による位相同期を行う点は、第6の実施形態と同じである(図24を参照)。
 図53に示す実施形態が図24に示した実施形態と相違する点は、一方のPPLNに位相変調用導波路を集積化していること、差動位相変調(DPSK)信号を受信できるように、受信装置全体を構成したことにある。
 本発明では位相同期のための位相変調器を用いているが、この位相変調器の損失が大きいと基本波光の発生に用いる第1のEDFAへの入力が小さくなり、その分励起光のS/N比が劣化してしまう。この効果を抑制するためにレーザー増幅器の後段に損失があった場合は、損失分だけ出力が低下してしまうものの、S/N比は劣化しない。
 本実施形態では、この性質を利用するために、位相変調器5310を光ファイバレーザー増幅器5301-2より出力側に配置するようにした。
 通常のTi拡散によるLN変調器ではEDFAで増幅された基本波光を入射するとフォトリフラクティブ効果で動作点のドリフトを生じてしまうため、本実施形態のような構成は採用することができない。さらに挿入損失の大きな位相変調器をレーザー増幅器の後段に配置することで基本波光のパワーが減衰してしまい、光パラメトリック効果を生じるのに十分な励起光パワーが得られず、大きな増幅率をもった位相感応増幅が実現できない。
 そこで本実施形態では、励起光である第二高調波を発生するための光導波路5305-1と位相変調器5310に用いる導波路を同一の基板上に集積し素子間の接続損失を低減した。さらに、位相変調器5310が光ファイバレーザー増幅器5301-2より出力側に配置した。
 本実施形態では、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。またドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。そのPPLN導波路が形成された同一の基板上に周期分極反転構造のない位相変調器を同様の導波路形成法で集積化した。位相変調部には導波路上に電界印加用電極を形成し、EO効果による位相変調を可能にした。上述のようにこの導波路形成法は光損傷耐性に優れているため、EDFAで増幅された基本波光のパワーが大きくなった場合でも動作電圧のドリフト現象を起こすことなく光位相同期ループ回路(PLL)のためのパイロットトーンの位相変調を基本波光に施すことができる。
 位相感応増幅の動作は第6の実施形態と同様である。第1のファイバレーザー増幅器(EDFA)5301-2を用いて、基本波光5321を増幅する。増幅した基本波光を第1の二次非線形光学素子5302-1に入射して第二高調波5322を発生させる。第2の二次非線形光学素子5302-2に信号光5320と第二高調波5322とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
 EDFA5301-2と第1の二次非線形光学素子5302-1との間にバンドパスフィルタ5304-2を挿入し、不必要なASE光をカットした。
 本実施形態では出力した増幅信号光の一部を光分岐部5303で分岐して光検出器5308で受光したのちに位相同期ループ回路(PLL)5309により位相同期を行った。
 第1のPPLN導波路5305-1に集積化した位相変調器5310を用いて正弦波により微弱な位相変調を基本波光5321に施す。光検出器5308とPLL回路5309でその位相変調の位相ずれを検出して、EDFA5301-2の前に配置したPZTによる光ファイバ伸長器5311の伸長器の駆動電圧と位相変調器5310のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
 位相感応光増幅器の出力をEDFA5301-1に接続してさらなる増幅を行ったのちにバンドパスフィルタ5304-1により信号の帯域外の背景光を除去した。また第6の実施形態ではNRZの信号を受信するように装置を構成したが、本実施形態では、前置増幅器の後に遅延干渉計5314とバランスドPD5315、リミティングアンプ5312を配置し、差動位相変調の信号を受信できるようにした。
 本実施形態に係る光受信装置に、40Gbit/sのDPSK信号を入射し受信特性を評価した。誤り率測定から本実施形態に係る光受信装置の受信感度を評価した結果を図54に示す。
 図54を参照すると、例えば10-9の誤り率を得るための入射パワーが従来のEDFAを用いた場合は-32.9dBmであるのに対して、本実施形態を用いた場合では約1.6dB低い-34.5dBmで同じ誤り率が得られており、本実施形態に係る低雑音な光増幅を利用した光受信により、受信感度の向上が得られることを確認することができた。
 なお、本実施形態では、DPSKを受信できるように装置を構成したが、受信する信号フォーマットはこれに限定されるものではなく、例えば光duo binaryなどその他の信号フォーマットに対しても前置光増幅器を用いた装置であれば受信器の構成を変更することにより本発明を適用して受信感度の向上を図ることができる。
 また、本実施形態では、受信感度の向上分は1.6dB程度であったが、これは更なる向上の余地がある。位相感応光増幅器のパラメトリック増幅を行う第2のPPLN導波路と、入力ファイバとの間に結合損失があると、その分だけ全体の雑音指数が劣化するからである。本実施形態では、入力ファイバとPPLN導波路の結合損失は2dBであった。光結合に用いる光学系の最適化を行えば、その結合損失の低減分だけ受信感度を向上することが可能である。
 なお、本実施形態では、同期用位相変調器(図53の5310)を第二高調波を発生するためのPPLN導波路(図53の5305-1)の前に配置したが、この順番を逆にすると、第二高調波の位相を変調することになり、位相変調に必要な電圧を半減することが可能になる。また、これまでに示した実施形態ではそれぞれのPPLN導波路にダイクロイックミラーを組み合わせて、基本波と第二高調波を合波・分波するようにしたが、これらの合波・分波の機能を導波路回路による合波器・分波器を用いてPPLNと同一基板上に集積化してもよい。そのような集積化により信号光や励起光の損失が低減できると、全体としてのS/N比をさらに向上することができる。
 またこれらの合波・分波の機能、位相変調の機能と第二高調波発生の機能、光パラメトリック増幅の機能を必要に応じて同一基板上に集積化することにより、それぞれの機能を実現する部分間の結合損失をさらに減らすことが出来れば、S/N比をさらに向上するとともに、位相感応光増幅器としての利得を大きくすることが出来る。
 前述した(式20)の中の位相感応光増幅器の利得G1を大きくすると、後段のレーザー増幅器の雑音指数の寄与がさらに小さくなるので、全体としての雑音指数を小さくすることが可能になり、さらに低雑音での光増幅が可能になる。そのことにより光中継器用の光増幅器として用いれば中継間隔を延ばすことが可能になり、光受信器に用いるとさらに受信感度を向上させることが可能になる。
 なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成とした。
 しかし、本実施形態は、前述の第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
 具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方式を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
Figure JPOXMLDOC01-appb-I000006
 (第14の実施形態)
 図55に本実施形態に係る位相感応光増幅器の構成を示す。本実施形態は、第12の実施形態と同様に、1.54μmの信号5520を増幅するように装置を構成した(図52を参照)。2つのPPLN導波路5505-1,5505-2を用いること、第二高調波5522を発生させて縮退パラメトリック増幅を行うことも、第12の実施形態と同じである。
 図55に示す実施形態と、図52で示した実施形態との相違点は、励起光発生のための第1のPPLN導波路5505-1、光PLLのためのパイロットトーン用位相変調器5510、励起光と信号光とを合波するためのMMI5512、及び縮退パラメトリック増幅を行う第2のPPLN導波路5505-2が、同一基板上に直接接合法により作製・集積化された点である。
 図55に示すように、本実施形態では、同一LN結晶導波路上に、位相感応増幅に必要なモジュールのほとんどが集積されている。従って、第二高調波を発生させるための二次非線形光学素子と位相変調器との間、位相変調器と合波器との間、及び合波器と第二の二次非線形光学素子との間の接続損失がないため、雑音指数の増加や励起光の損失を抑えながら位相感応増幅による低雑音動作が可能になる。
 図55から分かるように、本実施形態においても、第12の実施形態又は第13の実施形態と同様に、第2のPPLN導波路5505-2から出力される信号のうち信号光のみを分離するために、ダイクロミックミラー5506を使用しているが、信号光のみを分離するように設計したMMIを同一基板内に集積すれば、より小型な位相感応型光増幅器を実現することも可能である。
 なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成とした。
 しかし、本実施形態は、前述の第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
 具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方式を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
Figure JPOXMLDOC01-appb-I000007
 (第15の実施形態)
 本実施形態に係る位相感応光増幅器の構成の一例について図56を参照しながら説明する。図56に示すような増幅器の構成とする目的は、従来技術において問題であった、第二高調波発生(SHG)用PPLNと、信号光及び第二高調波の合分波器と、縮退パラメトリック増幅(DPA)用PPLNとを同一基板上に集積した場合に避けられなかった基板サイズの増大を防ぐことである。
 同一LN基板5620上に、第二高調波の発生と縮退パラメトリック増幅の両者をおこなうPPLN5621と、合分波器としてマルチモード干渉計(MMI)5622とを集積し、光アイソレータ5623を通して入力された波長1.56μmの信号光5615を増幅する構成とする。
 集積したMMI5622は、導波路幅、導波路長、及び入出力ポート位置を最適設計することにより、波長1.56μmの信号光を挿入損失約1.0dBの低損失縮退パラメトリック増幅用PPLN5621に結合する特性であった。
 信号光の一部をカップラ5603により分岐して基本波光5616として用いる。基本波光5616は、信号光と励起光との位相同期用位相変調器5604を通じてEDFA5605に入力する。基本波光5616をEDFA5605により増幅した後、光サーキュレータ5625を介して基板右端より入力する。右端より入力した増幅された基本波光5618は第二高調波発生と縮退パラメトリック増幅とが共に行われるPPLN導波路5621を伝搬し、MMI5622に到達するまでにほぼ全て第二高調波成分に変換される。MMI5622は、この第二高調波を下段の出力導波路5628に挿入損失1.0dBで結合する低損失を有する。
 その後、第二高調波5617は、基板左端において、波長0.78μmにおいて高い反射率99.99%を有する光学多層膜フィルタで高効率に反射される。
 次いで、第二高調波5617は、再びMMIを介して、第二高調波発生と縮退パラメトリック増幅とが共に行われるPPLN導波路5621に結合されて、PPLN導波路5621中を伝搬する。PPLN導波路5621中を伝搬する間に、第二高調波5617は、MMIにより合波した信号光5615と光混合され、縮退パラメトリック増幅により信号光が増幅される。
 基板の端面処理について説明する。本実施形態において、左側の二つの導波路5627,5628は異なった形状に形成されている。具体的には、波長1.56μmの信号光用の光導波路5627は、湾曲部を有するように形成されており、波長0.78μmの励起光(第二高調波)用の導波路5328は、直線状に形成されている.これら2つの導波路の入力部に共通する一つの端面を決定し、この端面に沿って2つの導波路を切除することによって端面処理行う。端面の位置を1.56μm信号光用導波路5627が端面に対して斜めになり、0.78μm励起光用導波路5638に対しては垂直となる位置に出力端の形状を整えて端面加工を施す。これにより1.56μm信号光用導波路5627の端面は6°の角度を持つ形状に加工することが出来る。また、基本波光が入力される右端においても、左端同様に、PPLN導波路に対して角度が6°となるように端面加工を施した。
 さらに、左右の基板端面加工後に、左右の基板端面にそれぞれ異なる端面処理を施した。左右の基板端面加工後に、左端に対して1.56μmの光に対する反射防止(AR)膜5629および0.78μmの光に対する高反射(HR)膜5630をスパッタにより成膜した。
 また、基板右端に対して、1.56μmおよび0.78μmの光に対する反射防止(AR)膜5629,5631を、左端と同様にスパッタにより成膜した。以上の処理により、所望の波長の光に対する、反射機能又は無反射機能を持つ導波路端面を実現した。
 本実施形態において、第1の実施形態と同様に、データ信号用変調器としてLNマッハツェンダー変調器を用い、入力信号として10Gb/sのNRZ信号を入力した場合の増幅特性を評価したところ、約11dBの利得を得ることができた。しかしながら、本構成においては、次に述べるような問題点がある。
 位相感応型光増幅器における非線形光学媒質によるパラメトリック増幅作用自体は本質的に低雑音な光増幅が可能である。しかし、本構成による実際の動作においては下記の付随的な雑音の影響がある。励起光そのものに含まれる雑音がパラメトリック増幅過程により増幅光の雑音へと変換されてしまうことが考えられる。
 図56に示した構成では、位相同期に用いる位相変調器5604をEDFA5605の前段に配置しており、位相変調器の挿入損失だけEDFAへの入射パワーが小さくなってしまう。EDFA等のレーザー増幅器においては、増幅器前の損失があると、その分だけS/N比が劣化してしまうことが良く知られている(非特許文献8を参照)。このように位相変調器の挿入損失によって励起光のS/N比が劣化してしまうと、その雑音成分がパラメトリック増幅過程により増幅光の雑音へと変換されてしまい、低雑音な増幅を行うことができない。しかし、以下に説明する本実施形態に係る別構成の位相感応光増幅器においては、この雑音の問題は解消される。
 本実施形態に係る位相感応光増幅器の構成の別の一例について、図57を参照しながら説明する。図56で示した構成例で問題となっていた、位相同期のための位相変調器の損失に起因する光ファイバレーザー増幅器におけるS/N比の劣化を防ぐために、図57に示すような構成とした。
 レーザー増幅器においては、非特許文献8に示されているようにレーザー増幅器の前段に損失がある場合にはその損失分だけS/N比が劣化してしまうのに対して、レーザー増幅器の後段に損失があった場合は損失分だけ出力が低下してしまうもののS/N比は劣化しない。従って、この性質を利用して、本構成では、図57に示すように、位相変調器5704を光ファイバレーザー増幅器5705より出力側に配置するようにした。
 なお、従来技術では図57に示すような構成を取ることが出来ない。その理由は、既存の位相変調器の多くは、LiNbO(LN)結晶にTiを拡散させた光導波路で作製されているからである。Ti拡散導波路では光損傷が顕著であるために大きな光パワーを入射するとフォトリフラクティブ効果による屈折率変化が生じ、同じ位相変化量を得るための電圧が変化するドリフト現象を引き起こしてしまう。このため位相変調器に入力可能な光パワーは+20dBm程度に制限されてしまう。さらに挿入損失の大きな位相変調器をレーザー増幅器の後段に配置することで基本波光のパワーが減衰してしまい、光パラメトリック効果を生じるのに十分な励起光パワーが得られず、大きな増幅率をもった位相感応増幅を実現することができない。
 そこで図57に示す構成においては、位相変調器5704がEDFA5705より出力側に配置できるようにした。第二高調波発生器ではより光損傷が顕著となる第二高調波を扱うために、Ti拡散よりも光損傷耐性の大きな導波路の形成法を用いることが一般的であり、位相変調器を第二高調波発生器と同様な光導波路を用いて構成することにより、より大きな励起パワーを利用することが可能になる。
 図57に示す構成では、位相変調器5704がEDFA5705の入力段にないために、励起光のS/N比を5dBほど改善することができた。
 PPLN導波路に入射する第二高調波のパワーが300mWの条件において、約11dBの利得を得ることができた。このときのEDFAの出力パワーは約1Wであり、直接接合導波路への入力パワーは630mWであったが、このような高パワーの光を入射した場合でも動作電圧のドリフト現象を起こすことなく安定な位相同期動作を実現することができた。
 なお、PPLN導波路に高強度のパワーを入射した場合に、フォトリフラクティブ効果に起因する光損傷により位相整合波長が変化してしまうことがある。この位相整合波長の変化を防止することを目的として、図57で示す構成で使用した位相変調器5704の代替として、光損傷耐性の大きな導波路の形成法である直接接合法により作製された2次非線形光学デバイスを使用することも可能である。光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制できることを確認した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現することができた。
 本実施形態に係る位相感応光増幅器の構成のさらに別の一例について、図58を参照しながら説明する。図58に示す構成では、端面加工されかつ直接接合法により作製した2次非線形光学デバイスを用いている。図58に示す構成と、上述してきた構成との違いは、信号光と励起光の同期用位相変調器を非線形光学結晶と同一基板上に集積した点である.この集積化2次非線形光学デバイスにおける基本波光の第二高調波の折り返し用導波路において位相変調が施される配置とした。
 PPLN導波路が形成された同一の基板上に周期分極反転構造のない位相変調器5834を上記同様の導波路形成法で集積化した。位相変調部には導波路上に電界印加用電極5835を形成し、電気光学(EO)効果による位相変調を可能にした。
 上述のようにこの導波路形成法は光損傷耐性に優れているため、EDFA5805で増幅された基本波光のパワーが大きくなった場合でも動作電圧のドリフト現象を起こすことなく光PLLのためのパイロットトーンの位相変調を基本波光に施すことができる。
 本構成では、位相変調器を集積化しているため、図56及び図57で示した構成のような外部に単独の装置を接続する構成に比べて接続損失が低減される。これにより、高強度の励起光が得られるためS/N比が向上した。
 また、励起光の第二高調波の折り返し用導波路上に位相変調器用電極を形成することにより装置サイズを大きく低減することに成功した。
 ここで、位相変調器を第二高調波折り返し用導波路上に配置する効果を説明する。光学材料に外部から電界、応力などの外力が印加された場合、光学材料に屈折率変化が生じる。位相変調器としてLN結晶の電気光学効果を用い、電界印加により位相を変調する場合、非特許文献9に示されるように、変調器の性能を示す半波長駆動電圧Vπは、LNの電気光学係数、屈折率、印加電界、及び波長等に依存する。この中の特に波長に着目すると、以下の(式28)に示すような関係が成立する。
 Vπ∝λ   (式28)
 半波長駆動電圧、即ち位相変調に必要な電圧は、図58で示す構成で採用した配置によって、第1の実施形態で示した配置の場合と比較すると半分となり大幅に低減することができる。さらに、この第二高調波は、左端の端面処理により効率よく反射され再び同じ位相変調器を通過する際、往路での位相変化量と同量の位相変化が加わるため全位相変化量は2倍となる。従って、これらの相乗効果により、位相変調用電圧が一定の場合、必要な光路長、即ち位相変調部の長さを、大幅に縮小することが可能である。
 本構成においても、前述したように、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。また、位相変調部の導波路は、PPLN導波路部と同様に1.54μmの基本波波長でシングルモードとなるように設計しているため、第二高調波の波長0.77μmにおいてはマルチモードとなるが、PPLN部で発生する第二高調波は位相整合条件による制約から基底モードのみで伝搬するため、PPLN部と位相変調部の導波路設計を同じにする簡潔な導波路においても安定な位相同期動作を得ることが可能であった。
 本実施形態に係る位相感応光増幅器の構成のさらに別の一例について、図59を参照しながら説明する。
 図59に示す構成では、端面加工されかつ直接接合法により作製した2次非線形光学デバイスを用いる点、信号光と励起光との同期用位相変調器を非線形光学結晶と同一基板上に集積した点は、図58に示した構成と同様である。
 図59に示す構成と、図58に示した構成との違いは、信号光と励起光との同期用位相変調器5934が、集積化2次非線形光学デバイスにおける信号光用導波路において信号光に対して位相変調が施される配置とした点である。図56乃至図58に示した構成においては、光PLL用位相変調器を励起光に対して機能させる配置を採用したが、図59に示すように位相変調器を信号光に対して機能させる配置を取ったとしても全く同様に位相同期を実現することができる。
 市販の位相変調器を信号光側に挿入して位相感応光増幅装置を構成する場合は、位相変調器の挿入損失の影響が比較的大きく縮退パラメトリック変換(DPA)部に至る前に信号光が減衰してしまう。そのため、増幅器のS/N比劣化が不可避である。そこでこの問題を解決するために、図59に示すように、信号光に対する位相変調の機能を同一基板内に集積した。図59に示す構成により、市販の位相変調器を信号光側に挿入した場合に比べると,3dBのS/N比向上が見られた。
 なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成とした。
 しかし、本実施形態は、前述の第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
 具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方式を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
Figure JPOXMLDOC01-appb-I000008
101 位相感応光増幅部
102 励起光源
103 励起光移送制御部
104-1,104-2 光分岐部
110 入力信号光
111 励起光
112 出力信号光

201 レーザー光源
202 SHG結晶
203 OPA結晶
210 信号光
211 励起光

401 励起光位相同期手段
402 エルビウム添加ファイバレーザー増幅器(EDFA)
403 光ファイバ
404 フィルタ
410 入力信号光
411-1,411-2 励起光
412 出力信号光

501 第1の光ファイバ
502 第2の光ファイバ
503 光ファイバ増幅器

601 エルビウム添加ファイバレーザー増幅器(EDFA)
602-1,602-2 二次非線形光学素子
603-1,603-2 光分岐部
604 バンドパスフィルタ
605-1,605-2 PPLN導波路
606-1,606-2,606-3 ダイクロイックミラー
607 偏波保持ファイバ
608 光検出器
609 位相同期ループ回路(PLL)
610 位相変調器
611 PZTによる光ファイバ伸長器
620 信号光
621 基本波光
622 第二高調波
623 励起光
624 強度変調器

701 信号光
702-1,702-2 励起光
703 ASE光
704 基本波光
705 第二高調波

901-1,901-2 エルビウム添加ファイバレーザー増幅器(EDFA)
902-1,902-2,903-3 二次非線形光学素子
903-1,903-2 光分岐部
904-1,904-2 バンドパスフィルタ
905-1,905-2 PPLN導波路
906-1,906-2,906-3,906-4 ダイクロイックミラー
907 シングルモードファイバ
908 光検出器(フォトダイオード)
909 位相同期ループ回路(PLL)
910 位相変調器
911 PZTによる光ファイバ伸長器
912 アッテネータ
922 第二高調波
930 外部共振器型の半導体LD(ECL)
931 電界吸収型(EA)変調器
932 パルスパターン発生器(PPG)
933 フォトダイオード
934 リミティングアンプ
935 クロックデータリカバリ(CDR)回路
936 誤り検出器(ED)

1201 エルビウム添加ファイバレーザー増幅器(EDFA)
1202-1,1202-2 二次非線形光学素子
1203 光分岐部
1204 バンドパスフィルタ
1206-1,1206-2,1206-3,1206-4 ダイクロイックミラー
1208 光検出器(フォトダイオード)
1209 位相同期ループ回路(PLL)
1210 変調器
1211 PZTによる光ファイバ伸長器
1212 アッテネータ
1213 サーキュレータ
1214 光源
1230 偏波コントローラ
1231 偏光ビームスプリッタ(PBS)
1240 変調信号光
1241 増幅信号光

1300 外部共振器型の半導体レーザー
1301 光分岐器
1302 LNマッハツェンダー変調器
1303 エルビウム添加ファイバレーザー増幅器(EDFA)
1304 偏光子
1305 偏光ビームスプリッタ(PBS)
1310 変調信号光

1501 エルビウム添加ファイバレーザー増幅器(EDFA)
1502-1,1502-2 二次非線形光学素子
1503-1,1503-2 光分岐部
1505-1,1505-2 PPLN導波路
1506-1,1506-2,1506-3 ダイクロイックミラー
1508 光検出器
1509 位相同期ループ回路(PLL)
1512 半導体レーザー
1513 半導体光増幅器
1520 信号光
1522 第二高調波

1601-1,1601-2 エルビウム添加ファイバレーザー増幅器(EDFA)
1602-1,1602-2,1602-3 二次非線形光学素子
1603-1,1603-2,1603-3,1603-4 光分岐部
1604 バンドパスフィルタ
1605-1,1605-2,1605-3 PPLN導波路
1606-1,1606-2,1606-3,1606-4 ダイクロイックミラー
1608 光検出器(フォトダイオード)
1609 位相同期ループ回路(PLL)
1610 位相変調器
1611 PZTによる光ファイバ伸長器
1612 波長合分波器
1613 光サーキュレータ
1630 偏波コントローラ
1631 外部キャビティレーザー
1632 半導体レーザー
1633 PM-VOA
1634 アイソレータ
1640 入力信号光
1641-1,1641-2 基本波光
1642 基本波光

1701 信号光
1702-1,1702-2 基本波光
1703 ASE光
1704 和周波光

1801 信号光
1802 第1の基本波光
1803 第2の基本波光
1804 和周波光
1805 第二高調波

2201-1,2201-2 エルビウム添加ファイバレーザー増幅器(EDFA)
2202-1,2202-2,2202-3 二次非線形光学素子
2203-1,2203-2,2203-3 光分岐部
2204 バンドパスフィルタ
2205-1,2205-2,2205-3 PPLN導波路
2206-1,2206-2,2206-3 ダイクロイックミラー
2208 光検出器(フォトダイオード)
2210 位相変調器
2212 波長合分波器
2213 光サーキュレータ
2214 ミラー
2230 偏波コントローラ
2231 外部キャビティレーザー
2232 半導体レーザー
2240 入力信号光

2301-1,2301-2 エルビウム添加ファイバレーザー増幅器(EDFA)
2302-1,2302-2,2302-3,2302-4 二次非線形光学素子
2303-1,2303-2,2303-3 光分岐部
2304-1,2304-2 バンドパスフィルタ
2305-1,2305-2,2305-3,2305-4 PPLN導波路
2306-1,2306-2,2306-3,2306-4,2306-5,2306-6,2306-7 ダイクロイックミラー
2308 光検出器(フォトダイオード)
2309 位相同期ループ回路(PLL)
2310 位相変調器
2311 PZTによる光ファイバ伸長器
2312 波長合分波器
2313 光サーキュレータ
2315 アイソレータ
2330 偏波コントローラ
2331 外部キャビティレーザー
2332 半導体レーザー
2333 PM-VOA
2340 入力信号光

2401-1,2401-2 エルビウム添加ファイバレーザー増幅器(EDFA)
2402-1,2402-2 二次非線形光学素子
2403 光分岐部
2404-1,2404-2 バンドパスフィルタ
2405-1,2405-2 PPLN導波路
2406-1,2406-2,2406-3 ダイクロイックミラー
2407 偏波保持ファイバ
2408-1、2408-2 光検出器
2409 位相同期ループ回路(PLL)
2410 位相変調器
2411 PZTによる光ファイバ伸長器
2412 リミティングアンプ
2413 識別器
2420,2423 信号光
2421 基本波光
2422 第二高調波

2801 エルビウム添加ファイバレーザー増幅器(EDFA)
2802-1,2802-2 二次非線形光学素子
2803 光分岐部
2804 バンドパスフィルタ
2805-1,2805-2 PPLN導波路
2806-1,2806-2,2806-3 ダイクロイックミラー
2807 偏波保持ファイバ
2808 光検出器
2809 位相同期ループ回路(PLL)
2810 位相変調器
2811 PZTによる光ファイバ伸長器
2820 信号光
2821 基本波光
2822 第二高調波

2901 信号光
2902 励起光
2903 ASE光
2904 副次的な変換光

3001 信号光
3002 基本波光
3003 ASE光
3004 第二高調波(SH光)

3301 単一波長光源
3302 光分岐部
3303 光変調器
3304 パターン発生器
3305 LN変調器
3306 EDFA
3307 光分岐部

3501 単一波長光源
3502 光分岐部
3503 変調器
3504 分波器
3505 光変調器
3506 合波器
3507 EDFA
3508 位相変調器

3601 単一波長光源
3602 光分岐部
3603 変調器
3604 分波器
3605 光変調器
3606 合波器
3607 EDFA
3608 位相変調器

3701 単一波長光源
3702 光分岐部
3703 変調器
3704 分波器
3705 光変調器
3706 合波器
3707 EDFA
3708 位相変調器

3901 単一波長光源
3902 光分岐部
3903 変調器
3904 EDFA
3905 位相変調器
3906 分波器
3907 光変調器
3908 合波器

4001 エルビウム添加ファイバレーザー増幅器(EDFA)
4002-1,4002-2 二次非線形光学素子
4003 光分岐部
4004 バンドパスフィルタ
4005-1,4005-2 PPLN導波路
4006 ダイクロイックミラー
4007 光検出器
4008 位相同期ループ回路(PLL)
4009 位相変調器
4010 PZTによる光ファイバ伸長器
4011 アッテネータ
4012 サーキュレータ
4013 励起光源(半導体レーザー)
4020 偏波コントローラ
4021 中心波長分離フィルタ
4022 分散補償(調整)媒質
4030 信号光
4031 増幅された信号光

4101 エルビウム添加ファイバレーザー増幅器(EDFA)
4102-1,4102-2 二次非線形光学素子
4103-1,4103-2 光分岐部
4105-1,4105-2 PPLN導波路
4106-1,4106-2,4106-3 ダイクロイックミラー
4107 偏波保持ファイバ
4108 光検出器
4109 位相同期ループ回路(PLL)
4110 位相変調器
4111 PZTによる光ファイバ伸長器
4120 信号光
4121 基本波光
4122 第二高調波

4201 位相感応光増幅部
4202 励起光源
4203 励起光位相制御部
4204-1、4204-2 光分岐部
4210 入力信号光
4211 励起光
4212 出力信号光
4213 第二高調波

4401 エルビウム添加ファイバレーザー増幅器(EDFA)
4402-1,4402-2 二次非線形光学素子
4403 光分岐部
4404 バンドパスフィルタ
4405-1,4405-2 PPLN導波路
4406-1,4406-2,4406-3 ダイクロイックミラー
4407 偏波保持ファイバ
4408 光検出器
4409 位相同期ループ回路(PLL)
4410 位相変調器
4411 PZTによる光ファイバ伸長器
4420 信号光
4421 基本波光
4422 第二高調波
4424 データ信号用変調器
4425 ハイパスフィルタ

4501 エルビウム添加ファイバレーザー増幅器(EDFA)
4502-1,4502-2 二次非線形光学素子
4503 光分岐部
4504 バンドパスフィルタ
4505-1,4505-2 PPLN導波路
4506-1,4506-2 ダイクロイックミラー
4507 偏波保持ファイバ
4508 光検出器
4509 位相同期ループ回路(PLL)
4510 位相変調器
4511 PZTによる光ファイバ伸長器
4520 信号光
4521 基本波光
4522 第二高調波
4523 増幅された信号光
4524 データ信号用変調器
4526 MMI型光合分波器

4601 エルビウム添加ファイバレーザー増幅器(EDFA)
4602-1,4602-2 二次非線形光学素子
4603 光分岐部
4605-1,4605-2 PPLN導波路
4606-1,4606-2,4606-3 ダイクロイックミラー
4607 偏波保持ファイバ
4608 光検出器
4609 位相同期ループ回路(PLL)
4610 位相変調器
4611 PZTによる光ファイバ伸長器
4620 信号光
4621 基本波光
4622 第二高調波
4623 増幅された信号光

4701 エルビウム添加ファイバレーザー増幅器(EDFA)
4702-1,4702-2 二次非線形光学素子
4703 光分岐部
4705-1,4705-2 PPLN導波路
4706-1,4706-2,4706-3 ダイクロイックミラー
4708 光検出器
4709 位相同期ループ回路(PLL)
4712 半導体レーザー
4713 半導体光増幅器
4720 信号光
4722 第二高調波
4723 増幅された信号光

4801 エルビウム添加ファイバレーザー増幅器(EDFA)
4802-1,4802-2 二次非線形光学素子
4803-1,4803-2 光分岐部
4805-1,4805-2 PPLN導波路
4806-1,4806-2,4806-3 ダイクロイックミラー
4807 偏波保持ファイバ
4808 光検出器
4809 位相同期ループ回路(PLL)
4810 位相変調器
4811 PZTによる光ファイバ伸長器
4820 入力信号光
4821 基本波光
4822 第二高調波
4823 出力信号光

4901 エルビウム添加ファイバレーザー増幅器(EDFA)
4902-1,4902-2 二次非線形光学素子
4903-1,4903-2 光分岐部
4905-1,4905-2 PPLN導波路
4906-1,4906-2,4906-3 ダイクロイックミラー
4907 偏波保持ファイバ
4908 光検出器
4909 位相同期ループ回路(PLL)
4910 位相変調器
4911 PZTによる光ファイバ伸長器
4920 入力信号光
4921 基本波光
4922 第二高調波
4923 出力信号光

5001 エルビウム添加ファイバレーザー増幅器(EDFA)
5002-1,5002-2 二次非線形光学素子
5003-1,5003-2 光分岐部
5005-1,5005-2 PPLN導波路
5006-1,5006-2 ダイクロイックミラー
5008 光検出器
5009 位相同期ループ回路(PLL)
5010 位相変調器
5011 PZTによる光ファイバ伸長器
5012 MMI
5020 入力信号光
5021 基本波光
5022 第二高調波
5023 出力信号光

5101 エルビウム添加ファイバレーザー増幅器(EDFA)
5102-1,5102-2 二次非線形光学素子
5103-1,5103-2 光分岐部
5105-1,5105-2 PPLN導波路
5106-1,5106-2 ダイクロイックミラー
5108 光検出器
5109 位相同期ループ回路(PLL)
5110 位相変調器
5111 PZTによる光ファイバ伸長器
5112 MMI
5120 入力信号光
5121 基本波光
5122 第二高調波
5123 出力信号光

5201 エルビウム添加ファイバレーザー増幅器(EDFA)
5202-1,5202-2 二次非線形光学素子
5203-1,5203-2 光分岐部
5205-1,5205-2 PPLN導波路
5206 ダイクロイックミラー
5208 光検出器
5209 位相同期ループ回路(PLL)
5210 位相変調器
5211 PZTによる光ファイバ伸長器
5212 MMI
5220 入力信号光
5221 基本波光
5222 第二高調波
5223 出力信号

5301-1、5301-2 エルビウム添加ファイバレーザー増幅器(EDFA)
5302-1、5302-2 二次非線形光学素子
5303 光分岐部
5304-1,5304-2 バンドパスフィルタ
5305-1,5305-2 PPLN導波路
5306-1,5306-2,5306-3 ダイクロイックミラー
5307 偏波保持ファイバ
5308 光検出器
5309 位相同期ループ回路(PLL)
5310 位相変調器
5311 PZTによる光ファイバ伸長器
5312 リミティングアンプ
5313 識別器
5314 遅延干渉計
5315 バランスドPD
5320 信号光
5321 基本波光
5322 第二高調波

5501 エルビウム添加ファイバレーザー増幅器(EDFA)
5502 二次非線形光学素子
5503-1,5503-2 光分岐部
5505-1,5505-2 PPLN導波路
5506 ダイクロイックミラー
5508 光検出器
5509 位相同期ループ回路(PLL)
5510 位相変調器
5511 PZTによる光ファイバ伸長器
5512 MMI
5520 入力信号光
5521 基本波光
5522 第二高調波
5523 出力信号光

5603,5609 カップラ
5604 位相変調器
5605 エルビウム添加ファイバレーザー増幅器(EDFA)
5606 位相同期ループ回路(PLL)
5607 光検出器
5615 信号光
5616 基本波光
5617 第二高調波
5618 増幅された基本波光
5619 出力光
5620 LiNbO3基板
5621 PPLN導波路
5622 マルチモード干渉計(MMI)
5623 光アイソレータ
5624 光ファイバ伸長器
5625 光サーキュレータ
5626 ローパスフィルタ
5627 信号光用導波路
5628 励起光(第二高調波)用導波路
5629 信号光波長帯反射防止用光学薄膜
5630 第二高調波波長帯反射用光学薄膜
5631 第二高調波波長帯反射防止用光学薄膜
5632,5633 LN基板端面
5635 電界印加用電極

5703,5709 カップラ
5704 位相変調器
5705 エルビウム添加ファイバレーザー増幅器(EDFA)
5706 位相同期ループ回路(PLL)
5707 光検出器
5715 信号光
5716 基本波光
5717 第二高調波
5718 増幅された基本波光
5719 出力光
5720 LiNbO3基板
5721 PPLN導波路
5722 マルチモード干渉計(MMI)
5723 光アイソレータ
5724 光ファイバ伸長器
5725 光サーキュレータ
5726 ローパスフィルタ
5735 電界印加用電極

5803,5809 カップラ
5805 エルビウム添加ファイバレーザー増幅器(EDFA)
5806 位相同期ループ回路(PLL)
5807 光検出器
5815 信号光
5816 基本波光
5817 第二高調波
5818 増幅された基本波光
5819 出力光
5820 LiNbO基板
5821 PPLN導波路
5822 マルチモード干渉計(MMI)
5823 光アイソレータ
5824 光ファイバ伸長器
5825 光サーキュレータ
5826 ローパスフィルタ
5834 直接接合LiNbOリッジ導波路を用いた位相変調器
5835 電界印加用電極

5903,5909 カップラ
5905 エルビウム添加ファイバレーザー増幅器(EDFA)
5906 位相同期ループ回路(PLL)
5907 光検出器
5915 信号光
5916 基本波光
5917 第二高調波
5918 増幅された基本波光
5919 出力光
5920 LiNbO基板
5921 PPLN導波路
5922 マルチモード干渉計(MMI)
5923 光アイソレータ
5924 光ファイバ伸長器
5925 光サーキュレータ
5926 ローパスフィルタ
5934 位相変調器
5935 電界印加用電極

Claims (29)

  1.  非線形光学効果を用いた光混合によって信号光を増幅する位相感応型光増幅装置であって、
     基本波光を増幅する光ファイバレーザー増幅器と、
     周期的に分極反転された二次非線形光学材料から成る、該基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子と、
     該基本波光と、該和周波光とから該和周波光のみを分離するフィルタと、
     該信号光と、励起光である該和周波光とを合波する合波器と、
     周期的に分極反転された二次非線形光学材料から成る、該励起光を用いて該信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子と、
     増幅された該信号光と、該励起光とを分離するフィルタと、
     該信号光の位相と、該励起光の位相とを同期する手段と
    を備えたことを特徴とする位相感応型光増幅装置。
  2.  前記和周波光は、第二高調波であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  3.  前記パラメトリック増幅は、縮退パラメトリック増幅であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  4.  前記パラメトリック増幅は、非縮退パラメトリック増幅であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  5.  前記信号光は、前記励起光である前記和周波光の半分の光周波数を中心として対称関係にありかつ同一のまたは反転した位相情報を持つ、1または複数の信号光の対から成ることを特徴とする請求項4に記載の位相感応型光増幅装置。
  6.  前記信号光の位相と、前記励起光の位相とを同期する手段は、
      位相変調器および光学長の伸長器と、
      前記増幅された信号光の一部または前記励起光の一部を分岐する手段と、
      該位相変調器によって変調された位相変化に対応した該分岐する手段により分岐された光の強度変化の検出手段と、
      該検出手段によって検出した光の強度変化をもとに該位相変調器及び該光学長の伸長器に前記増幅された信号光の強度を最大化するように帰還を行う位相同期ループ回路と
    から構成されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  7.  前記信号光の位相と、前記励起光の位相とを同期する手段は、
      前記基本波光を発生する半導体レーザーもしくは前記基本波光または前記励起光に位相同期している光を発生する半導体レーザーと、
      前記増幅された信号光の一部または前記励起光の一部を分岐する手段と、
      該分岐する手段により分岐された光の強度変化の検出手段と、
      該検出手段によって検出した光の強度変化をもとに前記増幅された信号光の強度を最大化するように、前記基本波光を発生する半導体レーザーもしくは前記基本波光または前記励起光に位相同期している光を発生する半導体レーザーの駆動電流に帰還を行う位相同期ループ回路と
    から構成されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  8.  前記信号光は、連続波光のパイロットトーンをさらに備え、
     前記位相感応型光増幅装置は、前記信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、
     該半導体レーザー光源は、該連続波光のパイロットトーンにより光注入同期され、
     注入光に位相同期した、該半導体レーザー光源から出力された連続光は、前記基本波光として用いられることを特徴とする請求項1に記載の位相感応型光増幅装置。
  9.  前記信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、
     該半導体レーザー光源は、前記和周波光のみを分離するフィルタから出力された前記和周波光により光注入同期され、
     注入光に位相同期した、該半導体レーザー光源から出力された連続光は、前記励起光として用いられることを特徴とする請求項1に記載の位相感応型光増幅装置。
  10.  前記信号光の一部を分岐する手段と、
     半導体レーザー光源と、
     第1の基本波光を発生させるための光源と、
     周期的に分極反転された二次非線形光学材料から成る、前記信号光の第二高調波を発生させるための光導波路を備えた二次非線形光学素子と、
     周期的に分極反転された二次非線形光学材料から成る、発生させた該第二高調波と該第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子と
    をさらに備え、
     該半導体レーザーは、発生させた該差周波光により注入同期され、注入光に位相同期した、該半導体レーザー光源から出力された連続光を第2の基本波光とし、該第1の基本波光と該第2の基本波光とを用いて、前記基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、前記和周波光を発生させることを特徴とする請求項1に記載の位相感応型光増幅装置。
  11.  前記信号光の一部を分岐する手段と、
     半導体レーザー光源と、
     第1の基本波光を発生させるための光源と、
     周期的に分極反転された二次非線形光学材料から成る、前記信号光の第二高調波を発生させるためのかつ発生させた該第二高調波と該第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子と
    をさらに備え、
     発生させた該差周波光を該半導体レーザーに注入同期し、注入光に位相同期した、該半導体レーザー光源から出力された連続光を第2の基本波光とし、該第1の基本波光と該第2の基本波光とを用いて、前記基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、前記和周波光を発生させることを特徴とする請求項1に記載の位相感応型光増幅装置。
  12.  前記基本波光と、前記和周波光から前記和周波光のみを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  13.  前記信号光と、前記励起光である前記和周波光とを合波する合波器は、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光合波素子であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  14.  前記増幅された信号光と、前記励起光とを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  15.  前記和周波光は、前記和周波光の波長においてシングルモードの偏波保持ファイバで伝送されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  16.  バンドパスフィルタを、前記光ファイバレーザー増幅器と前記和周波光を発生させるための光導波路を備えた二次非線形光学素子との間にさらに備えたことを特徴とする請求項1に記載の位相感応型光増幅装置。
  17.  前記和周波光を発生させるための光導波路を備えた二次非線形光学素子と、前記パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子とは、個別に温度調整可能であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  18.  請求項1に記載の位相感応型光増幅装置と、フォトダイオードとから構成された光受信装置であって、
     前記位相感応型光増幅装置は、前記位相感応型光増幅装置に従属接続された光ファイバレーザー増幅器と、前記増幅された信号光の近傍の波長を透過するバンドパスフィルタとをさらに備えたことを特徴とする光受信装置。
  19.  請求項1に記載の位相感応型光増幅装置と、前記信号光を生成する光源と、光変調器と、該光源からの出力の一部を分岐する手段とから構成された光送信装置であって、分岐された該光源からの出力の一部を前記基本波光として用いることを特徴とする光送信装置。
  20.  前記光ファイバレーザー増幅器よりも出力側に、位相変調器をさらに備え、
     前記位相変調器は、直接接合法により作製された光導波路からなることを特徴とする請求項1に記載の位相感応型光増幅装置。
  21.  位相変調器をさらに備え、前記位相変調器は、前記和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
     前記位相変調器は、前記和周波光を発生させるための光導波路と同一導波路上に隣接して形成され、前記和周波光を発生させるための光導波路の前段または後段に接続されたことを特徴とする請求項1に記載の位相感応型光増幅装置。
  22.  位相変調器をさらに備え、
     前記位相変調器と、前記基本波光と、和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器とは、前記和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
     該フィルタと、該合波器とは、該光導波路と同一導波路上に隣接して形成され、
     該位相変調器は、該合波器の前段に接続され、
     該フィルタは、該合波器の前段に接続され、
     前記和周波光を発生させるための光導波路は、該フィルタおよび該合波器の前段に接続されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  23.  位相変調器をさらに備え、
     前記位相変調器と、前記基本波光と、和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器とは、前記パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子に集積され、
     前記位相変調器と、前記合波器とは、該光導波路と同一導波路上に隣接して形成され、
     該フィルタは、前記合波器の前段に接続され、
     該光導波路は、前記合波器の後段に接続され、
     前記位相変調器は、前記合波器の前段に接続されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  24.  位相変調器をさらに備え、
     前記位相変調器と、前記基本波光と和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器とは、前記和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
     集積された該和周波光を発生させるための二次非線形光学素子および前記パラメトリック増幅を行うための二次非線形光学素子は、一つの光学素子として一体化され、
     前記和周波光を発生させるための光導波路と、前記基本波光と和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器と、前記パラメトリック増幅を行うための光導波路とは、同一導波路上に隣接して形成され、
     前記位相変調器は、前記信号光と励起光とを合波する合波器の前段に接続され、
     前記基本波光と和周波光とから和周波光のみを分離するフィルタは、前記合波器の前段に接続され、
     前記和周波光を発生させるための光導波路は、前記基本波光と和周波光とから和周波光のみを分離するフィルタおよび前記合波器の前段に接続され、
     前記パラメトリック増幅を行うための光導波路は、前記合波器の後段に接続されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  25.  位相変調器と、
     前記和周波光を反射する手段と、
     前記基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子に、前記基本波光を入射し、かつ前記増幅された信号光を透過する光サーキュレータと、
     前記信号光の入力、および前記基本波光と和周波光から和周波光のみを分離するフィルタにより分離された該基本波光の出力に用いられる第1の光導波路と、
     該反射手段と前記合波器とを接続する第2の光導波路と
    をさらに備え、
     該フィルタと該合波器と該第1の光導波路および該第2の光導波路とは、該和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
     該基本波光から和周波光を発生させるための光導波路を備えた該二次非線形光学素子の前記光導波路と、前記励起光を用いて信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子の前記光導波路とは、共用され、
     該フィルタと該合波器とは、共用され、
     該共用された光導波路と該共用された合波器と該第2の光導波路とは、同一導波路上に隣接して形成され、
     該共用された光導波路と該第1の光導波路と該第2の光導波路とは、該合波器に接続されていることを特徴とする請求項1に記載の位相感応型光増幅装置。
  26.  前記第1の光導波路の前記合波器に接続された接面とは反対側の断面が、該第1の光導波路の軸と0°より大きく90°未満の角度をなすように切断され、前記共用された光導波路の少なくとも1つの入出力端部が該共用された光導波路の軸と0°より大きく90°未満の角度をなすように端面処理されていることを特徴とする請求項25に記載の位相感応型光増幅装置。
  27.  前記位相変調器は、前記基本波から和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、該位相変調器は前記合波器と同一導波路上に隣接して形成されていることを特徴とする請求項25に記載の位相感応型光増幅装置。
  28.  前記周期的に分極反転された二次非線形光学材料は、LiNbO3、KNbO3、LiTaO3、LiNbxTa1-x3(0≦x≦1)、KTiOPO、または、それらにMg、Zn、Fe、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有していることを特徴とする請求項1に記載の位相感応型光増幅装置。
  29.  前記和周波光を発生させるための光導波路と、前記パラメトリック増幅を行うための光導波路は、非線形光学効果を有する第一の基板と、第一の基板に比べ屈折率の小さい第二の基板とを直接貼り合わせることによって作製された直接接合光導波路であることを特徴とする請求項1に記載の位相感応型光増幅装置。
PCT/JP2012/000360 2011-01-20 2012-01-20 光信号増幅装置 WO2012098911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12736206.9A EP2672318B1 (en) 2011-01-20 2012-01-20 Optical amplifier
US13/980,756 US9065243B2 (en) 2011-01-20 2012-01-20 Optical amplifier
JP2012553644A JP5856083B2 (ja) 2011-01-20 2012-01-20 光信号増幅装置
CN201280005966.3A CN103403616B (zh) 2011-01-20 2012-01-20 光信号放大器

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011009894 2011-01-20
JP2011-009894 2011-01-20
JP2011046975 2011-03-03
JP2011-046976 2011-03-03
JP2011-046975 2011-03-03
JP2011046976 2011-03-03
JP2011-136297 2011-06-20
JP2011136297 2011-06-20

Publications (1)

Publication Number Publication Date
WO2012098911A1 true WO2012098911A1 (ja) 2012-07-26

Family

ID=46515544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000360 WO2012098911A1 (ja) 2011-01-20 2012-01-20 光信号増幅装置

Country Status (5)

Country Link
US (1) US9065243B2 (ja)
EP (1) EP2672318B1 (ja)
JP (2) JP5856083B2 (ja)
CN (1) CN103403616B (ja)
WO (1) WO2012098911A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182140A (ja) * 2012-03-02 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置、光信号発生器および信号対雑音比改善装置
JP2014044256A (ja) * 2012-08-24 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014081578A (ja) * 2012-10-18 2014-05-08 Nippon Telegr & Teleph Corp <Ntt> 光送信装置
JP2014089254A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 位相感応型光増幅装置
JP2014089253A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014093780A (ja) * 2012-10-31 2014-05-19 Fujitsu Ltd 光信号を再生する方法及びシステム
JP2014095780A (ja) * 2012-11-08 2014-05-22 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014179916A (ja) * 2013-03-15 2014-09-25 Nippon Telegr & Teleph Corp <Ntt> 周波数伝送システム
JP2014207578A (ja) * 2013-04-12 2014-10-30 日本電信電話株式会社 光増幅装置
JP2014211539A (ja) * 2013-04-18 2014-11-13 日本電信電話株式会社 波長変換素子
JP2014228639A (ja) * 2013-05-21 2014-12-08 日本電信電話株式会社 光増幅装置
JP2015161827A (ja) * 2014-02-27 2015-09-07 日本電信電話株式会社 光増幅装置
WO2015133227A1 (ja) * 2014-03-04 2015-09-11 独立行政法人産業技術総合研究所 光位相再生方法および装置
JP2015215424A (ja) * 2014-05-08 2015-12-03 日本電信電話株式会社 光信号増幅装置
JP2015219160A (ja) * 2014-05-19 2015-12-07 日本電信電話株式会社 光パルス試験装置
JP2015222314A (ja) * 2014-05-22 2015-12-10 日本電信電話株式会社 光増幅装置
JP2015222242A (ja) * 2014-05-23 2015-12-10 日本電信電話株式会社 コヒーレント光周波数領域リフレクトメトリ測定装置
JP2015227992A (ja) * 2014-06-02 2015-12-17 日本電信電話株式会社 ベクトル光変調器および光送信器
JP2016206390A (ja) * 2015-04-22 2016-12-08 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP2016218180A (ja) * 2015-05-18 2016-12-22 日本電信電話株式会社 雑音指数測定方法、雑音指数測定装置、および測定システム
JP6114442B1 (ja) * 2016-06-09 2017-04-12 日本電信電話株式会社 光増幅装置および光伝送システム
JP2017097347A (ja) * 2015-11-18 2017-06-01 富士通株式会社 半導体非線形光素子を用いる低雑音光位相感応型増幅器
JP2017198781A (ja) * 2016-04-26 2017-11-02 日本電信電話株式会社 位相感応光増幅器および位相同期安定化方法
JP2017207687A (ja) * 2016-05-20 2017-11-24 日本電信電話株式会社 広帯域安定化光源
JP2018205595A (ja) * 2017-06-07 2018-12-27 日本電信電話株式会社 光送信器およびこれを使用した光伝送システム
JP2018205546A (ja) * 2017-06-05 2018-12-27 日本電信電話株式会社 広帯域光発生装置
JP2019002975A (ja) * 2017-06-13 2019-01-10 日本電信電話株式会社 光増幅装置およびそれを用いた伝送システム
JP2019004253A (ja) * 2017-06-13 2019-01-10 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP2019105796A (ja) * 2017-12-14 2019-06-27 日本電信電話株式会社 波長変換装置
JPWO2021124505A1 (ja) * 2019-12-19 2021-06-24
WO2022018845A1 (ja) * 2020-07-22 2022-01-27 日本電信電話株式会社 波長変換装置
US20220236622A1 (en) * 2019-05-28 2022-07-28 Nippon Telegraph And Telephone Corporation Optical Signal Processing Circuit
WO2024084592A1 (ja) * 2022-10-18 2024-04-25 日本電信電話株式会社 光増幅器

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
US9506858B2 (en) * 2013-05-09 2016-11-29 The Board Of Trustees Of The University Of Illinois Optical parametric amplification of weak signals for imaging biological tissue
ES2528327B1 (es) * 2013-07-05 2015-12-18 Universidad De Alcalá Sistema de detección diferencial para sensores distribuidos sobre fibra óptica basados en scattering brillouin estimulado
US9800018B2 (en) * 2015-02-20 2017-10-24 Hrl Laboratories, Llc Chip-scale power scalable ultraviolet optical source
US9571200B2 (en) * 2015-07-09 2017-02-14 Elenion Technologies, Llc Transmitter optical signal to noise ratio improvement through receiver amplification in single laser coherent systems
US9979484B2 (en) * 2016-02-01 2018-05-22 Vencore Labs, Inc. Photonics-based channelization enabled by phase-sensitive amplification
US10536218B2 (en) * 2016-09-23 2020-01-14 Peter Avo Andrekson Free-space optical communication links with improved sensitivity
US10673530B2 (en) 2016-10-05 2020-06-02 LGS Innovations LLC Inc. Free space optical communication system and method
CN106647099B (zh) * 2016-12-16 2019-08-16 北京邮电大学 一种基于多光波干涉的高精度光相位量化方法
US11300683B2 (en) 2016-12-30 2022-04-12 Innovusion Ireland Limited Multiwavelength LiDAR design
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
KR102569841B1 (ko) 2017-01-05 2023-08-24 이노뷰전, 인크. LiDAR를 인코딩 및 디코딩하기 위한 방법 및 시스템
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US10050738B1 (en) * 2017-01-23 2018-08-14 Fujitsu Limited Low noise colorless, directionless, contentionless reconfigurable optical add/drop multiplexer
CN106840420A (zh) * 2017-02-23 2017-06-13 北京邮电大学 一种红外单光子探测设备
FR3063395B1 (fr) * 2017-02-28 2021-05-28 Centre Nat Rech Scient Source laser pour l'emission d'un groupe d'impulsions
IL251841A0 (en) * 2017-04-20 2017-07-31 Univ Bar Ilan Distributed sensing by optical fiber using guided acoustic patterns
JP7106835B2 (ja) * 2017-10-06 2022-07-27 富士通株式会社 光伝送装置、波長変換装置、光伝送方法、および波長変換方法
WO2019139895A1 (en) 2018-01-09 2019-07-18 Innovusion Ireland Limited Lidar detection systems and methods that use multi-plane mirrors
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
US11391823B2 (en) 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
WO2019165294A1 (en) 2018-02-23 2019-08-29 Innovusion Ireland Limited 2-dimensional steering system for lidar systems
WO2019199775A1 (en) 2018-04-09 2019-10-17 Innovusion Ireland Limited Lidar systems and methods for exercising precise control of a fiber laser
CN114114295A (zh) 2018-06-15 2022-03-01 图达通爱尔兰有限公司 用于聚焦感兴趣的范围的lidar系统和方法
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
CN114114606A (zh) 2018-11-14 2022-03-01 图达通爱尔兰有限公司 使用多面镜的lidar系统和方法
US10523334B1 (en) 2018-12-07 2019-12-31 Fujitsu Limited Controlling gain modulation in optical communication networks
EP3896875A4 (en) * 2018-12-12 2022-01-26 NEC Corporation OPTICAL TRANSMISSION DEVICE, TERMINAL DEVICE, OPTICAL COMMUNICATION SYSTEM AND OPTICAL COMMUNICATION METHOD
CN113302515A (zh) 2019-01-10 2021-08-24 图达通爱尔兰有限公司 具有光束转向和广角信号检测的lidar系统和方法
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
US11604399B2 (en) 2019-10-04 2023-03-14 Cornell University Back-conversion suppressed optical parametric amplification
WO2021106147A1 (ja) * 2019-11-28 2021-06-03 日本電信電話株式会社 光伝送システム、及び光伝送方法
US11438086B2 (en) * 2020-01-21 2022-09-06 Fujitsu Limited Optical amplification in an optical network
US11929784B2 (en) * 2020-02-12 2024-03-12 Nippon Telegraph And Telephone Corporation Wavelength dispersion compensation apparatus and wavelength dispersion compensation method
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11789128B2 (en) 2021-03-01 2023-10-17 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
WO2022215261A1 (ja) * 2021-04-09 2022-10-13 日本電信電話株式会社 光増幅装置
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
CN117178199A (zh) 2021-04-22 2023-12-05 图达通智能美国有限公司 具有高分辨率和超宽视场的紧凑型光检测和测距设计
EP4314884A1 (en) 2021-05-21 2024-02-07 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside lidar scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
CN114002893B (zh) * 2021-12-31 2022-03-22 中山大学 一种同频单纤双向系统的后向散射噪声抑制光器件
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device
CN115085807B (zh) * 2022-04-27 2024-04-05 苏州中科光桥空间技术有限公司 一种小型激光通信系统
CN115308844B (zh) * 2022-07-04 2023-11-24 厦门市三安集成电路有限公司 用于多信道全光信号处理的单片集成芯片及其处理方法
CN115396018A (zh) * 2022-07-26 2022-11-25 西安空间无线电技术研究所 一种光纤放大器增益和噪声系数的测试系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190112A (ja) * 1995-01-09 1996-07-23 Nippon Telegr & Teleph Corp <Ntt> 光増幅器および前置増幅器
JP3473811B2 (ja) * 1995-12-13 2003-12-08 日本電信電話株式会社 光増幅器および光増幅中継伝送システム
JP2008089781A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 光パラメトリック増幅装置
US8023538B2 (en) * 2008-03-27 2011-09-20 Imra America, Inc. Ultra-high power parametric amplifier system at high repetition rates

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ISAO MOROHASHI; TAKAHIDE SAKAMOTO; HIDEYUKI SOTOBAYASHI; TETSUYA KAWANISHI; IWAO HOUSAKO: "100 fs-level pulse generation using Mach-Zehnder-modulator-based comb generator and soliton compression", DAI 72 KAI OUYOU BUTSURI GAKKAI GAKUZYUTSU KOUENKAI KOUEN YOKOU (OUYOU BUTSURI GAKKAI, 2011 AKI, YAMAGATA DAIGAKU) 30A-P3-1, 2011
J. A. LEVENSON; I. ABRAM; T. RIVERA; P. GRAINGER: "Reduction of quantum noise in optical parametric amplification", J. OPT. SOC. AM. B, vol. 10, 1993, pages 2233 - 2238
J. KAKANDE ET AL.: "Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation", OPTICS EXPRESS, vol. 18, no. 5, 1 March 2010 (2010-03-01), pages 4130 - 4137 *
K.J.LEE ET AL.: "Phase sensitive amplificaion based on quadratic cascading in a periodically poled lithium niobate waveguide", OPTICS EXPRESS, vol. 17, no. 22, 26 October 2009 (2009-10-26), pages 20393 - 20400 *
KIYOSHI NAGAKAWA: "Optical amplifier and its application", OOMU-SYA, May 1992 (1992-05-01), pages 26
NISHIHARA ET AL.: "Optical integrated circuit", OOMU-SYA
R. SLAVIK ET AL.: "All-optical phase and amplitude regenerator for next-generation telecommunications system", NATURE PHOTONICS, vol. 4, October 2010 (2010-10-01), pages 690 - 695 *
R. SLAVIK ET AL.: "All-optical phase and amplitude regenerator for next-generation telecommunications system", NATURE PHOTONICS., vol. 4, 2010, pages 690 - 695
R. SLAVIK ET AL.: "All-optical phase- regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier, Mo.l.A.2", EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION 2010, 19 September 2010 (2010-09-19) *
R. SLAVIK ET AL.: "All-optical phase-regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier", PROCEEDINGS OF THE EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATION (ECOC 2010, TORINO, ITALY) MO.L.A.2, 2010
R. TANG ET AL.: "In-line phase-sensitive amplification of multichannel CW signals based on frequency nondegenerate four-wave-mixing in fiber", OPTICS EXPRESS, vol. 16, 2008, pages 9046 - 9053
R.TANG ET AL.: "In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave- mixing in fiber", OPTICS EXPRESS, vol. 16, no. 12, 9 June 2008 (2008-06-09), pages 9046 - 9053 *
See also references of EP2672318A4
T. UMEKI; O. TADANAGA; M. ASOBE: "Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide", IEEE J. QUANTUM ELECTRON., vol. 46, no. 8, 2010, pages 1206 - 1213
TAKUYA OHARA ET AL.: "160Gbit/s timing extraction using PLL with optical phase modulator and periodically-poled lithium niobate", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, 3 March 2003 (2003-03-03), pages 531 *
W. IMAJUKU; A. TAKADA: "Gain characteristics of coherent optical amplifiers using a Mach-Zehnder interferometer with Kerr Media", IEEE J. QUANTUM ELECTRON., vol. 35, no. 11, 1999, pages 1657 - 1665

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182140A (ja) * 2012-03-02 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置、光信号発生器および信号対雑音比改善装置
JP2014044256A (ja) * 2012-08-24 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014081578A (ja) * 2012-10-18 2014-05-08 Nippon Telegr & Teleph Corp <Ntt> 光送信装置
JP2014089254A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 位相感応型光増幅装置
JP2014089253A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014093780A (ja) * 2012-10-31 2014-05-19 Fujitsu Ltd 光信号を再生する方法及びシステム
JP2014095780A (ja) * 2012-11-08 2014-05-22 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014179916A (ja) * 2013-03-15 2014-09-25 Nippon Telegr & Teleph Corp <Ntt> 周波数伝送システム
JP2014207578A (ja) * 2013-04-12 2014-10-30 日本電信電話株式会社 光増幅装置
JP2014211539A (ja) * 2013-04-18 2014-11-13 日本電信電話株式会社 波長変換素子
JP2014228639A (ja) * 2013-05-21 2014-12-08 日本電信電話株式会社 光増幅装置
JP2015161827A (ja) * 2014-02-27 2015-09-07 日本電信電話株式会社 光増幅装置
WO2015133227A1 (ja) * 2014-03-04 2015-09-11 独立行政法人産業技術総合研究所 光位相再生方法および装置
JPWO2015133227A1 (ja) * 2014-03-04 2017-04-06 国立研究開発法人産業技術総合研究所 光位相再生方法および装置
US10256912B2 (en) 2014-03-04 2019-04-09 National Institute Of Advanced Industrial Science And Technology Optical phase regeneration method and device
JP2015215424A (ja) * 2014-05-08 2015-12-03 日本電信電話株式会社 光信号増幅装置
JP2015219160A (ja) * 2014-05-19 2015-12-07 日本電信電話株式会社 光パルス試験装置
JP2015222314A (ja) * 2014-05-22 2015-12-10 日本電信電話株式会社 光増幅装置
JP2015222242A (ja) * 2014-05-23 2015-12-10 日本電信電話株式会社 コヒーレント光周波数領域リフレクトメトリ測定装置
JP2015227992A (ja) * 2014-06-02 2015-12-17 日本電信電話株式会社 ベクトル光変調器および光送信器
JP2016206390A (ja) * 2015-04-22 2016-12-08 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP2016218180A (ja) * 2015-05-18 2016-12-22 日本電信電話株式会社 雑音指数測定方法、雑音指数測定装置、および測定システム
JP2017097347A (ja) * 2015-11-18 2017-06-01 富士通株式会社 半導体非線形光素子を用いる低雑音光位相感応型増幅器
JP2017198781A (ja) * 2016-04-26 2017-11-02 日本電信電話株式会社 位相感応光増幅器および位相同期安定化方法
JP2017207687A (ja) * 2016-05-20 2017-11-24 日本電信電話株式会社 広帯域安定化光源
JP6114442B1 (ja) * 2016-06-09 2017-04-12 日本電信電話株式会社 光増幅装置および光伝送システム
JP2017219748A (ja) * 2016-06-09 2017-12-14 日本電信電話株式会社 光増幅装置および光伝送システム
JP2018205546A (ja) * 2017-06-05 2018-12-27 日本電信電話株式会社 広帯域光発生装置
JP2018205595A (ja) * 2017-06-07 2018-12-27 日本電信電話株式会社 光送信器およびこれを使用した光伝送システム
JP2019004253A (ja) * 2017-06-13 2019-01-10 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP2019002975A (ja) * 2017-06-13 2019-01-10 日本電信電話株式会社 光増幅装置およびそれを用いた伝送システム
JP2019105796A (ja) * 2017-12-14 2019-06-27 日本電信電話株式会社 波長変換装置
US20220236622A1 (en) * 2019-05-28 2022-07-28 Nippon Telegraph And Telephone Corporation Optical Signal Processing Circuit
US11740537B2 (en) * 2019-05-28 2023-08-29 Nippon Telegraph And Telephone Corporation Optical signal processing circuit
JPWO2021124505A1 (ja) * 2019-12-19 2021-06-24
WO2021124505A1 (ja) * 2019-12-19 2021-06-24 日本電信電話株式会社 光通信システム
JP7252498B2 (ja) 2019-12-19 2023-04-05 日本電信電話株式会社 光通信システム
WO2022018845A1 (ja) * 2020-07-22 2022-01-27 日本電信電話株式会社 波長変換装置
WO2024084592A1 (ja) * 2022-10-18 2024-04-25 日本電信電話株式会社 光増幅器

Also Published As

Publication number Publication date
US9065243B2 (en) 2015-06-23
JP5883974B2 (ja) 2016-03-15
JPWO2012098911A1 (ja) 2014-06-09
JP2015165316A (ja) 2015-09-17
US20150036210A1 (en) 2015-02-05
CN103403616A (zh) 2013-11-20
EP2672318B1 (en) 2017-08-23
CN103403616B (zh) 2016-05-18
EP2672318A1 (en) 2013-12-11
JP5856083B2 (ja) 2016-02-09
EP2672318A4 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5883974B2 (ja) 光信号増幅装置
JP5759400B2 (ja) 光増幅装置、光信号発生器および信号対雑音比改善装置
JP3920297B2 (ja) 光スイッチおよび光スイッチを利用した光波形モニタ装置
EP1328078B1 (en) Method and device for waveform shaping of an optical signal
Kazama et al. Low-parametric-crosstalk phase-sensitive amplifier for guard-band-less DWDM signal using PPLN waveguides
Shimizu et al. PPLN-based optical parametric amplification for wideband WDM transmission
JP4629642B2 (ja) 光スイッチおよび光スイッチを利用した光波形モニタ装置
Wang et al. Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude-and phase-modulated signals
JP4574629B2 (ja) 光スイッチおよび光スイッチを利用した光波形モニタ装置
JP2014095780A (ja) 光増幅装置
JP6348447B2 (ja) 光増幅装置およびそれを用いた光伝送システム
JP5881580B2 (ja) 位相感応型光増幅装置
US11888528B2 (en) Optical communication system
Jiang et al. The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop
JP6126543B2 (ja) 光増幅装置
JP2014044256A (ja) 光増幅装置
JP6114442B1 (ja) 光増幅装置および光伝送システム
JP2014081578A (ja) 光送信装置
Umeki et al. First demonstration of in-line phase sensitive amplifier based on PPLN waveguide
JP2019002975A (ja) 光増幅装置およびそれを用いた伝送システム
WO2020240643A1 (ja) 励起光生成装置
JP6220313B2 (ja) 光信号増幅装置
Umeki et al. Phase sensitive degenerate parametric amplification using highly efficient PPLN ridge waveguides
Huang Advanced Optical Parametric Processing Schemes for Subsystem Applications in Fiber Communications
Kurz et al. Optical frequency mixers for WDM and TDM applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553644

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012736206

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012736206

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13980756

Country of ref document: US