JPWO2012098911A1 - 光信号増幅装置 - Google Patents

光信号増幅装置 Download PDF

Info

Publication number
JPWO2012098911A1
JPWO2012098911A1 JP2012553644A JP2012553644A JPWO2012098911A1 JP WO2012098911 A1 JPWO2012098911 A1 JP WO2012098911A1 JP 2012553644 A JP2012553644 A JP 2012553644A JP 2012553644 A JP2012553644 A JP 2012553644A JP WO2012098911 A1 JPWO2012098911 A1 JP WO2012098911A1
Authority
JP
Japan
Prior art keywords
light
phase
optical
signal
sum frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012553644A
Other languages
English (en)
Other versions
JP5856083B2 (ja
Inventor
遊部 雅生
雅生 遊部
毅伺 梅木
毅伺 梅木
圓佛 晃次
晃次 圓佛
明雄 登倉
明雄 登倉
宮本 裕
宮本  裕
高良 秀彦
秀彦 高良
弘和 竹ノ内
弘和 竹ノ内
勲 富田
勲 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012553644A priority Critical patent/JP5856083B2/ja
Publication of JPWO2012098911A1 publication Critical patent/JPWO2012098911A1/ja
Application granted granted Critical
Publication of JP5856083B2 publication Critical patent/JP5856083B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3536Four-wave interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本発明の目的は、光通信に適用可能であり、かつ低雑音での増幅が可能な位相感応光増幅装置を提供することである。本発明に係る位相感応光増幅装置は、非線形光学効果を用いた光混合により信号光を増幅する位相感応型光増幅装置であり、第1の二次非線形光学素子(602−1)と、第2の二次非線形光学素子(602−2)とを備える。第1の二次非線形光学素子(602−1)は、基本波光(621)から励起光として用いられる第二高調波光(622)を発生させ、基本波光および第二高調波光から、第二高調波光のみを分離するフィルタ(606−1)を備える。第2の二次非線形光学素子(602−2)は、信号光と第二高調波光とを合波する合波器(606−2)を備え、合波された信号光と第二高調波光とを用いてパラメトリック増幅を行い、第二高調波光および増幅された信号光から、増幅された信号光のみを分離するフィルタ(606−3)を備える。

Description

本発明は光増幅装置に関し、具体的には、光通信システムや光計測システムにおいて用いられる光増幅装置ならびにこの光増幅装置を備えた光送信装置及び光受信装置に関する。
従来の光伝送システムでは、光ファイバを伝搬することにより減衰した信号を再生するために、光信号を電気信号に変換し、デジタル信号を識別した後に光信号を再生する識別再生光中継器が用いられていた。しかしながら、この識別再生光中継器では、光信号を電気信号に変換する電子部品の応答速度に制限があることや、伝送する信号のスピードが速くなると、消費電力が大きくなるなどの問題があった。
この問題を解決する増幅手段として、エルビウムやプラセオジム等の希土類元素を添加した光ファイバに励起光を入射して信号光を増幅するファイバレーザー増幅器や、半導体レーザー増幅器がある。ファイバレーザー増幅器や半導体レーザー増幅器は、信号光を光のままで増幅することができるので、識別再生光中継器で問題になっていた電気的な処理速度の制限が存在しない。加えて、機器構成も比較的単純であるという利点を有する。しかし、これらのレーザー増幅器は、劣化した信号光パルス波形を整形する機能を有さない。また、これらのレーザー増幅器においては、不可避的かつランダムに発生する自然放出光が信号成分とは全く無関係に混入されるので、信号光のS/N比が増幅前後で少なくとも3dB低下する。これらは、デジタル信号伝送時における伝送符号誤り率の上昇につながり、伝送品質を低下させる要因になっている。
このような従来のレーザー増幅器の限界を打開する手段として、位相感応光増幅器(Phase Sensitive Amplifier:PSA)が検討されている。この位相感応光増幅器は、伝送ファイバの分散の影響による劣化した信号光パルス波形を整形するための機能を有する。また、信号とは無関係の直交位相を持つ自然放出光を抑圧できるために、増幅前後で信号光のS/N比を劣化させず同一に保つことが原理的に可能である。
J. A. Levenson, I. Abram, T. Rivera, and P. Grainger, "Reduction of quantum noise in optical parametric amplification," J. Opt. Soc. Am. B, vol. 10, pp. 2233-2238 (1993). W. Imajuku, and A. Takada, "Gain characteristics of coherent optical amplifiers using a Mach-Zehnder interferometer with Kerr Media," IEEE J. Quantum Electron., vol. 35, no. 11, pp. 1657-1665 (1999). R. Slavik et al., "All-optical phase and amplitude regenerator for next-generation telecommunications system," Nature Photonics., vol. 4, pp. 690-695 (2010). T. Umeki, O. Tadanaga, and M. Asobe, "Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide," IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1003-1008 (2010). R. Slavik et al., "All-optical phase-regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier," In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2010, Torino, Italy) MO.1.A.2. 諸橋 功,坂本 高秀,外林 秀之,川西 哲也,寳迫 巌, "マッハツェンダー変調器ベース光コム発生器およびソリトン圧縮による100fs 級パルス発生," 第72 回応用物理学会学術講演会 講演予稿 (応用物理学会2011 秋 山形大学) 30a-P3-1 R. Tang et al., "In-line phase-sensitive amplification of multichannel CW signals based on frequency nondegenerate four-wave-mixing in fiber," Optics Express., vol. 16, pp. 9046-9053 (2008). 中川清司、他3名、「光増幅器とその応用」、オーム社、1992/05、p.26 西原他、「光集積回路」、オーム社
しかしながら、上述した従来技術では以下に述べるような問題が存在する。
従来の位相感応光増幅器の基本的な構成を図1に示す。この光増幅器は、位相感応光増幅部101と、励起光源102と、励起光位相制御部103と、2つの光分岐部104−1、104−2とから構成される。
この光増幅器は、位相感応光増幅部101における信号光と励起光の位相が後述する特定の関係を満たすと入力信号光110は増幅され、両者の位相が後述する特定の関係から90度ずれた直交位相関係になると、入力信号光110は減衰する特性を有する。この特性を利用して増幅利得が最大となるように励起光―信号光間の位相を制御し、同期させると、信号光と直交位相の自然放出光を発生させずに、つまりS/N比を劣化させずに信号光を増幅することができる。
信号光と励起光の位相同期を達成するために、光分岐部104−1で分岐された入力信号光110の位相に同期するように励起光111の位相を制御する。励起光位相制御部103は、光分岐部104−2で分岐された出力信号光112の一部を狭帯域の検出器で検波し、出力信号が最大となるように励起光111の位相を制御する。その結果、位相感応光増幅部101において、信号光の位相と、励起光の位相とが同期するように制御され、S/N比の劣化のない光増幅を実現することができる。
なお、励起光位相制御部103は、図1に示すような励起光源102の出力側で励起光の位相を制御する構成の他に、励起光源102の位相を直接制御する構成としてもよい。また信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して励起光として用いることもできる。
位相感応光増幅部には2次もしくは3次の非線形光学効果を有する媒質が用いられる。従来、これらの位相感応光増幅器は主に、光の量子状態を制御するスクィージング等の基礎研究分野で用いられてきた。初期の位相感応光増幅器の研究では二次非線形光学結晶を用いた研究が報告されている。
2次の非線形光学効果を利用する場合は、非特許文献1に示されるように、光学結晶等を非線形媒質として用い、信号光の第二高調波に相当する波長を励起光として用い、励起光と信号光を、非線形媒質に入射し、三光波混合を利用した縮退パラメトリック増幅(Optical Parametric Amplifier:OPA)を行うことにより位相感応増幅が達成される。
図2に示すように、従来技術では、レーザー光源201からの比較的高い強度を持つレーザー光を分岐し一方をSHG(Second Harmonic Generation)結晶202に入射し、他方を信号光210として用いる。第二高調波に変換された励起光211と信号光210とを縮退光パラメトリック増幅の可能な非線形光学結晶203に入射して、位相感応増幅を行う。
位相感応光増幅器においては、信号光の位相が励起光の位相と特定の関係を満たす場合にのみ増幅作用が起こる。具体的には、信号光と励起光の位相が一致、もしくはπラジアンだけずれている必要がある。すなわち2次の非線形光学効果を用いる場合は、第二高調波に相当する波長である励起光の位相φ2ωsと、信号光の位相φωsとが以下の(式1)の関係を満たすことが必要となる。
Δφ=1/2φ2ωs−φωs=nπ(ただし、nは整数) (式1)
図3は、従来の二次非線形光学効果を利用した位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、利得(dB)との関係を示すグラフである。Δφが−π、0、またはπのときに、利得が最大となっていることがわかる。
図2に示した構成においても、図1で示したように出力信号光の一部を分岐して狭帯域の検出器で検波し、出力信号が最大となるように励起光の位相を制御して信号光と励起光の位相同期を達成することができる。
また、詳細は後述するが、上記で説明した縮退パラメトリック増幅は、非縮退パラメトリック増幅において、信号光とアイドラ光の波長が一致した特別な場合である。2次の非線形光学効果を用いる場合は、第二高調波に相当する波長である励起光の位相φSHと、信号光の位相φ、アイドラ光の位相φが以下の(式2)の関係を満たすことで、非縮退パラメトリック増幅による位相感応増幅を行うことが可能である。
Δφ=1/2φSH−1/2(φ+φ)=nπ(ただし、nは整数) (式2)
近年光通信の高度化が進むにつれて、位相感応光増幅器の光通信への応用が注目を集めつつある。光通信の分野では通信用光部品との親和性が高い光ファイバの三次非線形光学効果を利用した構成の報告がある。3次の非線形光学効果を用いる場合は、光ファイバ等を非線形媒質として用い、非特許文献2に示されるように、信号光と同じ波長の1つの励起光を用い、励起光と信号光とを、非線形媒質に入射し、四光波混合を利用した縮退パラメトリック増幅を行うことにより位相感応増幅を達成することができる。
3次の非線形媒質を用い、信号光と同じ波長の1つの励起光を用いる場合は、励起光の位相φωpと信号光の位相φωsとが以下の(式3)の関係を満たすことが必要となる。
Δφ=φωp−φωs=nπ(ただし、nは整数) (式3)
信号光と同じ波長の1つの励起光の代わりに、非特許文献3に示されるように、信号光の光周波数をωとするときに(式4)を満たす光周波数ωp1,ωp2をそれぞれ有する2つの励起光を用いてもよい。
2ω=ωp1+ωp2 (式4)
3次の非線形媒質を用い、2つの光周波数ωp1,ωp2に相当する波長の2つの励起光を用いる場合は、励起光の位相φωp1,φωp2と信号光の位相φωsとが以下の(式5)の関係を満たすことが必要となる。
Δφ=1/2(φωp1+φωp2)-φωs=nπ(ただし、nは整数) (式5)
3次の非線形媒質を用いる場合でも、2次の非線形光学効果を用いる場合と同様に出力信号光の一部を分岐して狭帯域の検出器で検波し、出力信号が最大となるように励起光の位相を制御して信号光と励起光の位相同期を達成することができる。
光ファイバを用いた方式には前述のように信号光と同じ波長の1つの励起光か、信号光とは異なる2つの波長の励起光を用いる方式がある。1つの励起光を用いる場合は、励起光を信号光から分離する必要があるために、非特許文献2に示されるようにループ型のファイバ干渉計を用いて、信号光と励起光を分離する。しかし、この方式では、光ファイバ中のGAWBS(guided acoustics wave Brillouin scattering)による位相変調がファイバをそれぞれ逆方向へ伝搬する光に相関のない形で加わるために、雑音特性が劣化してしまう。この問題を避けるために、近年は非特許文献3に示されるような2つの励起光を用いる方法が良く研究されている。
図4に、光ファイバを用い、2つの励起光を用いた場合の構成を示す。非特許文献3に示されるように、光ファイバ中の四光波混合等の手段を用いて、入射する信号410の平均的な位相と同期した2つの励起光(411−1,411−2)をまず生成する。次に、2つの励起光(411−1,411−2)と、信号光410とをエルビウム添加ファイバレーザー増幅器(EDFA)402にて増幅し、高非線形性光ファイバ403に入射する。図4では信号光410と2つの励起光(411−1,411−2)を合波してEDFAで増幅する構成となっているが、2つの励起光だけをEDFAで増幅し、信号光と合波してから光ファイバに入射しても同様の効果が得られると考えられる。信号光と2つの励起光との間に上述の(式5)で示した関係が成立するように位相を調整することにより、四光波混合による位相感応増幅を達成することができる。しかしながら、上述してきた従来技術では以下のような問題点がある。
二次非線形光学結晶を用いた従来の位相感応光増幅器においては、主にSHGやパラメトリック増幅を起こすのに十分な高い出力のパルスレーザー光源を用いて動作させることのできる構成しか示されておらず、一般的に微弱な光を扱う光通信のシステムに適用できるような構成は、未だ公開されていない。
光ファイバを用いた位相感応増幅においては、光通信のシステムに適用可能な構成は示されているものの、四光波混合を用いるため、信号光、励起光の波長が近接する構成となっている。特に図4には、光ファイバ中の非線形光学効果を利用できるようにEDFAなどの光ファイバ増幅器により必要なパワーを得る構成が示されているが、EDFAで光増幅を行う際に増幅自然放出光(ASE光)が雑音として励起光に重畳してしまう。ここで、励起光の波長と信号光の波長とが接近しているために、ASE光を取り除くことが困難であり、信号光波長にもEDFAから発生するASE光が重畳してしまう。結果として、信号光のS/N比が劣化してしまい、低雑音での光増幅を行うことができない。
本発明の目的は、上記のような従来技術の問題を鑑みて、光通信に適用可能であり、かつ低雑音での増幅が可能な位相感応光増幅装置を提供することである。
ところで近年の光通信技術においては大容量の信号を高い周波数利用効率で送るための方法として、光OFDM(Orthogonal Frequency Division Multiplexing)に代表されるように、高速データを複数の光キャリアに分割して変調を行うようなスーパチャネルと呼称されるデータの送受信方法が検討されている。上記のような複数の搬送波にデータ変調を行うような方式を光領域で行うためには、モード同期レーザーや光変調器を用いて等間隔で並んだ光周波数の搬送波からなる光コムを発生する。発生した光コムは分波器により分配され、それぞれの搬送波に光変調器を用いてデータ変調が行われ、再び合波されて伝送路へ導かれる。
しかしながら、上述した従来技術では以下に述べるような問題点がある。一般に複数の搬送波からなる光コムを分波器で分波し変調器で変調して、合波器で合波する場合、それぞれの構成要素の挿入損失が大きいため、元の光コムに比べて光パワーが著しく減衰してしまう。また、例えば非特許文献6に示されるように単一波長の光源を変調器によって光コムを発生する方法も提案されているが、そのような構成では光コムを発生するだけでも変調器の損失や複数搬送波への変換効率の分だけ光パワーが小さくなってしまう。
近年の光通信では周波数利用効率の向上が求められており、シャノンの通信理論で知られるように高い周波数利用効率を得るためには信号のS/N比が大きいことが求められる。ところが、上記のような光コムの変調を行うような送信方法では光の発生、変調に伴う光パワーの損失が大きく、光信号を発生した後に通常のレーザー媒質を用いた光増幅器で光ファイバでの伝送に必要なパワーまで増幅を行うと、光増幅器への入力パワーが小さいために信号のS/N比を著しく劣化させてしまう。
位相感応光増幅器による低雑音な光増幅の原理は知られているものの、一般的に位相感応光増幅器では縮退パラメトリック増幅を用いるために、増幅できる信号波長は1つであり、複数の搬送波を同時に増幅することはできない。
複数波長を同時に増幅できる方法として、非特許文献7に示されるように光ファイバ中の四光波混合を用いた非縮退パラメトリック増幅を用いる位相感応光増幅器の構成が提案されている。図5に従来の光ファイバ中の四光波混合を用いた複数波長の増幅方法の概略図を示す。この方法ではまず、Copier部内の第1の光ファイバ501に複数の変調光と励起光を入射し四光波混合を用いた波長変換により、入力変調光と位相の反転したアイドラ光を生成する。次いで、複数の変調光群と対応するアイドラ光群を第2の光ファイバ502に入射し、非縮退パラメトリック増幅を行う。この構成を用いれば複数波長の信号光を位相感応増幅することができる。
しかしながら、このように光ファイバの四光波混合を用いた光増幅では、励起光と信号光の全てが同じ1.55μm帯の通信波長帯に配置される。励起光の発生・増幅に光ファイバ増幅器503が用いられるが、その光ファイバ増幅器から発生する増幅された自然放出光(ASE)が増幅信号光に混入してしまうために、出力のS/N比は入力よりも劣化してしまうという問題があった。
本発明は、非線形光学効果を用いた光混合によって信号光を増幅する位相感応型光増幅装置であり、基本波光を増幅する光ファイバレーザー増幅器と、周期的に分極反転された二次非線形光学材料から成る、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子と、基本波光と、和周波光とから和周波光のみを分離するフィルタと、信号光と、励起光である和周波光とを合波する合波器と、周期的に分極反転された二次非線形光学材料から成る、励起光を用いて信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子と、増幅された信号光と、励起光とを分離するフィルタと、信号光の位相と、励起光の位相とを同期する手段とを備えたことを特徴とする。
本発明の一実施形態において、和周波光は、第二高調波であることを特徴とする。
本発明の一実施形態において、パラメトリック増幅は、縮退パラメトリック増幅であることを特徴とする。
本発明の一実施形態において、パラメトリック増幅は、非縮退パラメトリック増幅であることを特徴とする。
本発明の一実施形態において、信号光は、励起光である和周波光の半分の光周波数を中心として対称関係にありかつ同一のまたは反転した位相情報を持つ、1または複数の信号光の対から成ることを特徴とする。
本発明の一実施形態において、信号光の位相と、励起光の位相とを同期する手段は、位相変調器および光学長の伸長器と、増幅された信号光の一部または励起光の一部を分岐する手段と、位相変調器によって変調された位相変化に対応した分岐する手段により分岐された光の強度変化の検出手段と、検出手段によって検出した光の強度変化をもとに位相変調器及び光学長の伸長器に増幅された信号光の強度を最大化するように帰還を行う位相同期ループ回路とから構成されることを特徴とする。
本発明の一実施形態において、信号光の位相と、励起光の位相とを同期する手段は、基本波光を発生する半導体レーザーもしくは基本波光または励起光に位相同期している光を発生する半導体レーザーと、増幅された信号光の一部または励起光の一部を分岐する手段と、分岐する手段により分岐された光の強度変化の検出手段と、検出手段によって検出した光の強度変化をもとに増幅された信号光の強度を最大化するように、基本波光を発生する半導体レーザーもしくは基本波光または励起光に位相同期している光を発生する半導体レーザーの駆動電流に帰還を行う位相同期ループ回路とから構成されることを特徴とする。
本発明の一実施形態において、信号光は、連続波光のパイロットトーンをさらに備え、位相感応型光増幅装置は、信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、半導体レーザー光源は、連続波光のパイロットトーンにより光注入同期され、注入光に位相同期した、半導体レーザー光源から出力された連続光は、基本波光として用いられることを特徴とする。
本発明の一実施形態において、信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、半導体レーザー光源は、和周波光のみを分離するフィルタから出力された和周波光により光注入同期され、注入光に位相同期した、半導体レーザー光源から出力された連続光は、励起光として用いられることを特徴とする。
本発明の一実施形態において、信号光の一部を分岐する手段と、半導体レーザー光源と、第1の基本波光を発生させるための光源と、周期的に分極反転された二次非線形光学材料から成る、信号光の第二高調波を発生させるための光導波路を備えた二次非線形光学素子と、周期的に分極反転された二次非線形光学材料から成る、発生させた第二高調波と第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子とをさらに備え、半導体レーザーは、発生させた差周波光により注入同期され、注入光に位相同期した、半導体レーザー光源から出力された連続光を第2の基本波光とし、第1の基本波光と第2の基本波光とを用いて、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、和周波光を発生させることを特徴とする。
本発明の一実施形態において、信号光の一部を分岐する手段と、半導体レーザー光源と、第1の基本波光を発生させるための光源と、周期的に分極反転された二次非線形光学材料から成る、信号光の第二高調波を発生させるためのかつ発生させた第二高調波と第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子とをさらに備え、発生させた差周波光を半導体レーザーに注入同期し、注入光に位相同期した、半導体レーザー光源から出力された連続光を第2の基本波光とし、第1の基本波光と第2の基本波光とを用いて、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、和周波光を発生させることを特徴とする。
本発明の一実施形態において、基本波光と、和周波光から和周波光のみを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする。
本発明の一実施形態において、信号光と、励起光である和周波光とを合波する合波器は、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光合波素子であることを特徴とする。
本発明の一実施形態において、増幅された信号光と、励起光とを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする。
本発明の一実施形態において、和周波光は、和周波光の波長においてシングルモードの偏波保持ファイバで伝送されることを特徴とする。
本発明の一実施形態において、バンドパスフィルタを、光ファイバレーザー増幅器と和周波光を発生させるための光導波路を備えた二次非線形光学素子との間にさらに備えたことを特徴とする。
本発明の一実施形態において、和周波光を発生させるための光導波路を備えた二次非線形光学素子と、パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子とは、個別に温度調整可能であることを特徴とする。
本発明の一実施形態において、位相感応型光増幅装置と、フォトダイオードとから構成された光受信装置であって、位相感応型光増幅装置は、位相感応型光増幅装置に従属接続された光ファイバレーザー増幅器と、増幅された信号光の近傍の波長を透過するバンドパスフィルタとをさらに備えたことを特徴とする。
本発明の一実施形態において、位相感応型光増幅装置と、信号光を生成する光源と、光変調器と、光源からの出力の一部を分岐する手段とから構成された光送信装置であって、分岐された光源からの出力の一部を基本波光として用いることを特徴とする。
本発明の一実施形態において、光ファイバレーザー増幅器よりも出力側に、位相変調器をさらに備え、位相変調器は、直接接合法により作製された光導波路からなることを特徴とする。
本発明の一実施形態において、位相変調器をさらに備え、位相変調器は、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、位相変調器は、和周波光を発生させるための光導波路と同一導波路上に隣接して形成され、和周波光を発生させるための光導波路の前段または後段に接続されたことを特徴とする。
本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と、和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、フィルタと、合波器とは、光導波路と同一導波路上に隣接して形成され、位相変調器は、合波器の前段に接続され、フィルタは、合波器の前段に接続され、和周波光を発生させるための光導波路は、フィルタおよび合波器の前段に接続されることを特徴とする。
本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と、和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子に集積され、位相変調器と、合波器とは、光導波路と同一導波路上に隣接して形成され、フィルタは、合波器の前段に接続され、光導波路は、合波器の後段に接続され、位相変調器は、合波器の前段に接続されることを特徴とする。
本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、集積された和周波光を発生させるための二次非線形光学素子およびパラメトリック増幅を行うための二次非線形光学素子は、一つの光学素子として一体化され、和周波光を発生させるための光導波路と、基本波光と和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器と、パラメトリック増幅を行うための光導波路とは、同一導波路上に隣接して形成され、位相変調器は、信号光と励起光とを合波する合波器の前段に接続され、基本波光と和周波光とから和周波光のみを分離するフィルタは、合波器の前段に接続され、和周波光を発生させるための光導波路は、基本波光と和周波光とから和周波光のみを分離するフィルタおよび合波器の前段に接続され、パラメトリック増幅を行うための光導波路は、合波器の後段に接続されることを特徴とする。
本発明の一実施形態において、位相変調器と、和周波光を反射する手段と、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子に、基本波光を入射し、かつ増幅された信号光を透過する光サーキュレータと、信号光の入力、および基本波光と和周波光から和周波光のみを分離するフィルタにより分離された基本波光の出力に用いられる第1の光導波路と、反射手段と合波器とを接続する第2の光導波路とをさらに備え、フィルタと合波器と第1の光導波路および第2の光導波路とは、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子の光導波路と、励起光を用いて信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子の光導波路とは、共用され、フィルタと合波器とは、共用され、共用された光導波路と共用された合波器と第2の光導波路とは、同一導波路上に隣接して形成され、共用された光導波路と第1の光導波路と第2の光導波路とは、合波器に接続されていることを特徴とする。
本発明の一実施形態において、第1の光導波路の合波器に接続された接面とは反対側の断面が、第1の光導波路の軸と0°より大きく90°未満の角度をなすように切断され、共用された光導波路の少なくとも1つの入出力端部が共用された光導波路の軸と0°より大きく90°未満の角度をなすように端面処理されていることを特徴とする。
本発明の一実施形態において、位相変調器は、基本波から和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、位相変調器は合波器と同一導波路上に隣接して形成されていることを特徴とする。
本発明の一実施形態において、周期的に分極反転された二次非線形光学材料は、LiNbO3、KNbO3、LiTaO3、LiNbxTa1-x3(0≦x≦1)、KTiOPO、または、それらにMg、Zn、Fe、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有していることを特徴とする。
本発明の一実施形態において、和周波光を発生させるための光導波路と、パラメトリック増幅を行うための光導波路は、非線形光学効果を有する第一の基板と、第一の基板に比べ屈折率の小さい第二の基板とを直接貼り合わせることによって作製された直接接合光導波路であることを特徴とする。
本発明によれば、非線形光学効果であるパラメトリック増幅効果を利用して信号光の特定の位相成分だけを増幅する位相感応光増幅器において、光通信で用いる微弱な光パワーからパラメトリック光増幅を利用するのに十分なパワーを得るために光ファイバ増幅器を用いながらも、光増幅に伴って発生するASE光を信号光に重畳させずに位相感応光増幅器を構成することができるために、S/N比の劣化を防ぎながら高品質な光信号増幅が可能になる。さらには、本発明を用いることで、複数波長の一括増幅が可能で、かつ励起光と位相相関のある信号光を選択的に増幅することで、ASE光などの無相関な光に起因した雑音を抑制することができる。
この結果、光通信に適用可能かつ低雑音での増幅が可能な位相感応光増幅器により、光ファイバ中の信号のS/N比を改善できるために、従来よりも高速の信号を低いパワーで長距離まで伝送することが可能になる。また、入射される信号光の位相チャープを補正して増幅することが可能であるために、光ファイバの波長分散による信号劣化の影響が小さくなり、増幅後の信号光の伝送距離を伸ばすことが可能になる。さらに、長距離伝送が必要な応用において位相チャープのあるような安価あるいは簡便な光変調器を用いてチャープのない光信号を発生することが可能になる。さらに、ASE光を抑制することにより、一度劣化した光信号のS/N比を改善させることができる。さらに、位相相関のある信号光を選択的に増幅することで、ASE光と信号光のビート雑音により劣化した信号光のS/N比を改善することができる。
従来の位相感応光増幅器の構成の説明図である。 従来の二次非線形光学効果を利用した位相感応光増幅器の構成の説明図である。 従来の二次非線形光学効果を利用した位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、利得(dB)との関係を示すグラフである。 従来の三次非線形光学効果を利用した位相感応光増幅器の構成の説明図である。 従来の光ファイバ中の四光波混合を用いた複数波長の搬送波の増幅方法を説明するための概略図である。 本発明の第1の実施形態に係る位相感応光増幅器の構成の説明図である。 位相感応光増幅の動作を説明するための図であり、従来技術による構成を用いた場合を示す図である。 位相感応光増幅の動作を説明するための図であり、本発明の第1の実施形態に係る構成を用いた場合を示す図である。 本発明の第1の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光を入射しないときの出力波形を示す図である。 本発明の第1の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が同位相であるときの出力波形を示す図である。 本発明の第1の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が90度ずれたときの出力波形を示す図である。 本発明の第2の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の説明図である。 本発明の第2の実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。 従来のシングルモードファイバ(SMF)中を所定距離伝送させた後の信号の時間波形を説明するための図である。 本発明の位相感応光増幅器によって増幅後の信号をシングルモードファイバ(SMF)中を所定距離伝送させた後の信号の時間波形を説明するための図である。 本発明の第3の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第3の実施形態に係る送信信号を生成するための送信器構成の一例を説明するための図である。 本発明の第3の実施形態に係る光注入同期の動作を説明するためのスペクトル図である。 本発明の第4の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第5の実施形態に係る位相感応光増幅器の構成の説明図である。 位相感応光増幅の動作を説明するための図であり、従来技術による構成を用いた場合を示す。 位相感応光増幅の動作を説明するための図であり、本発明の第5の実施形態に係る構成を用いた場合を示す。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 信号光の搬送波位相抽出方法を含めた、本発明の第5の実施形態に係る位相感応光増幅器の概念を説明する図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る位相感応光増幅器の動作を説明するための光スペクトル図である。 本発明の第5の実施形態に係る別の位相感応光増幅器の構成の説明図である。 本発明の第5の実施形態に係るさらに別の位相感応光増幅器の構成の説明図である。 本発明の第6の実施形態に係る位相感応光増幅器を含んだ光受信装置の構成の説明図である。 本発明の第6の実施形態に係る位相感応光増幅器を用いて光増幅を行ったときのスペクトル図である。 本発明の第6の実施形態に係る位相感応光増幅器の評価結果を表すグラフである。 本発明の第6の実施形態に係る位相感応光増幅器の受信感度を評価するための誤り率特性を示すグラフである。 本発明の第7の実施形態で使用する信号を表す図である。 本発明の第7の実施形態に係る位相感応光増幅器の構成を示す図である。 従来技術に係る位相感応光増幅の動作を説明するための図である。 本発明の第7の実施形態に係る位相感応光増幅器の動作を説明するための図である。 本発明の第7の実施形態に係る位相感応光増幅器を使用したときの効果を説明するための図であり、EDFAから発生させたASE光を意図的に混入させた信号光群の光スペクトルを示す。 本発明の第7の実施形態に係る位相感応光増幅器を使用したときの効果を説明するための図であり、EDFAから発生させたASE光を意図的に混入させた信号光群を本発明の第7の実施形態に係る構成を用いた位相感応光増幅器で増幅したときの出力の光スペクトルを示す。 本発明の第7の実施形態に係る位相感応光増幅器の効果を説明するための図であり、位相感応光増幅器で増幅したときの入出力における信号光とASE光のビート雑音のレベルを示す図であり、縮退点を観測した場合を示す図である。 本発明の第7の実施形態に係る位相感応光増幅器の効果を説明するための図であり、位相感応光増幅器で増幅したときの入出力における信号光とASE光のビート雑音のレベルを示す図であり、非縮退点を観測した場合を示す図である。 本発明の第7の実施形態に係る構成による、データ変調を施した光コム信号に対する増幅に起因したS/N比改善効果を調べるために用いた構成の説明図である。 本発明の第7の実施形態に係る位相感応光増幅器の効果を説明するグラフである。 本発明の第8の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の説明図である。 本発明の第8の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の別例を説明するための図である。 本発明の第8の実施形態に係る位相感応光増幅器を含んだ光送信装置の構成の別例を説明するための図である。 本発明の第8の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光を入射しないときの出力波形を示す図である。 本発明の第8の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が同位相であるときの出力波形を示す図である。 本発明の第8の実施形態に係る位相感応光増幅器によって増幅された信号の時間波形の説明図であり、励起光と信号光との位相が90度ずれたときの出力波形を示す図である。 本発明の第8の実施形態に係る位相感応光増幅の構成の別例を説明するための図である。 本発明の第9の実施形態に係る位相感応光増幅の構成の説明図である。 本発明の第10の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、第二高調波の利得との関係を示すグラフである。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第11の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第12の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第13の実施形態に係る位相感応光増幅器を含んだ光受信信装置の構成の説明図である。 本発明の第13の実施形態に係る位相感応光増幅器による効果を説明するグラフである。 本発明の第14の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。 本発明の第15の実施形態に係る位相感応光増幅器の構成の説明図である。
以下、図面を参照しながら本発明の実施の形態を詳細に説明する。
(第1の実施形態)
図6に本実施形態の構成を示す。本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)601を用いて、基本波光621を増幅する。増幅した基本波光621を第1の二次非線形光学素子602−1に入射して第二高調波622を発生させる。第2の二次非線形光学素子602−2に信号光620と第二高調波622とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。斯かる位相感応光増幅装置の構成が、本願発明の基本的な特徴である。
図6に示す構成の詳細は後述するとして、このような構成をとると以下に述べるような従来技術では得られない効果が得られる。
図7Aおよび図7Bは、位相感応光増幅で用いる信号光・励起光のスペクトルを模式的に示す図であり、図7Aは、図4で示した従来のファイバレーザー増幅器および非線形媒質として光ファイバを利用した構成を用いた場合を示し、図7Bは、図6で示す本実施形態による構成を用いた場合を示す図である。
従来の光ファイバを用いた位相感応光増幅器では四光波混合を利用する。このため、パラメトリック光増幅を行うための励起光と信号光との波長が位相整合条件を満たすためには、これらの波長は、近接した波長にならざるを得ない。
図7Aで例示するように、信号光701および励起光702が同じ1.55μm帯の波長帯を有し、2つの励起光702−1,702−2を用いる場合、全体構成を簡略化するために2つの励起光を1つの光ファイバ増幅器で増幅することが望ましい。しかしその際、励起光波長の近傍に光ファイバ増幅器により発生するASE光703が発生してしまう。信号波長帯域にASE光を発生させないために信号光が光ファイバ増幅器を通らないような構成にすることは一応可能である。しかしながら、励起光を信号光と合波する際に両者の波長が接近しているために、波長選択性の良い光フィルタを実現することは困難であり、ASE光を完全にカットすることができない。この結果、信号波長帯域に発生しているASE光が信号波長に重畳してしまい、ASE光の混入により信号光のS/N比が劣化してしまうこととなる。
一方、本実施形態による構成では、信号光701の波長と基本波光704の波長とは同一である。光通信で用いる微弱な光パワーから、パラメトリック光増幅を利用するのに十分なパワーを得るために、基本波光704を光ファイバ増幅器により増幅する。このときに基本波光704の波長近傍にASE光703が重畳する。
本実施形態に係る構成においては、光増幅を行ったのちに、ASE光703が重畳された基本波光704を、第1の二次非線形光学素子に入射し第二高調波705を発生させる。このときに励起光として使用される第二高調波705の波長帯域には、わずかにASE光703の第二高調波が発生する以外には雑音となる広帯域のASE光は発生しない。第二高調波705の波長は基本波光704の波長の半分であり、両者の波長は十分に離れている。従って、基本波光と第二高調波とから第二高調波のみを分離するような高い消光比を持ったフィルタをダイクロイックミラー等で実現することは比較的容易である。そのようなフィルタを第1の二次非線形光学素子の出力に接続することにより、励起光波長帯域の基本波光704とASE光703とを完全に取り除くことができる。次いで、信号光701と第二高調波705のみとを合波して第2の二次非線形光学素子に入射し、縮退パラメトリック増幅による位相感応増幅を実現することができる。
再度図6を参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、1.54μmの信号光620を増幅するために、信号光620の一部を光分岐部603−1で分岐して基本波光621として用いている。基本波光621は、エルビウム添加ファイバレーザー増幅器(EDFA)601を用いて増幅される。増幅された基本波光621は、第1の二次非線形光学素子602−1に入力される。
本実施形態では、EDFA601から発生する広帯域なASE光が第1の二次非線形光学素子602−1により変換されることを防ぐために、EDFA601と第1の二次非線形光学素子602−1との間にバンドパスフィルタ604を挿入し、不必要なASE光をカットした。二次非線形光学素子602は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路605を備える。PPLN導波路605は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られるので、図示するような構成にすることで高い波長変換効率を得ることができる。PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。第1のPPLN導波路605−1から出射した、第二高調波622と基本波光623とは、ダイクロイックミラー606−1を用いて分離した。ダイクロイックミラー606−1で反射された0.77μmの第二高調波622は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバ607を介して、第2の二次非線形光学素子602−2へと導かれている。このとき、ダイクロイックミラー606−1で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバ607に入射されることになるが、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不用な光を効果的に減衰させることができる。偏波保持ファイバ607で導かれた第二高調波622は、ダイクロイックミラー606−2を用いて波長1.54μmの信号光620と合波される。ダイクロイックミラー606−2は第二高調波622のみを反射させるので、第1のPPLN導波路605−1から出射され、ダイクロイックミラー606−1および偏波保持ファイバ607を通ってくる波長1.54μm付近の基本波光621とASE光との残留成分を効果的に取り除くことができる。
信号光620と第二高調波622とは合波され、第2のPPLN導波路605−2に入射される。第2のPPLN導波路605−2は、第1のPPLN導波路605−1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
本実施形態では、2つのPPLN導波路605−1,605−2はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。第2のPPLN導波路605−2から出射された光は、ダイクロイックミラー606−3により励起光である第二高調波と増幅された信号光とに分離される。このときも第二高調波と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光の一部を光分岐部603−2で分岐して光検出器608で受光したのちに位相同期ループ回路(PLL)609により位相同期を行った。EDFA601の前に配置した位相変調器610を用いて正弦波により微弱な位相変調を基本波光621に施す。光検出器608とPLL回路609でその位相変調の位相ずれを検出して、EDFA601の前に配置したPZTによる光ファイバ伸長器611のの駆動電圧と位相変調器610のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。本実施形態では、強度変調器624としてLNマッハツェンダー変調器を用い10Gb/sのNRZ信号を入力した場合の増幅特性を評価した。
図8A、図8B、および図8Cは、本実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。図8Aに励起光が入射しないときの入射信号光の出力波形を、図8BにPLLにより励起光と信号光の位相が(式1)の関係を満たすように設定したときの出力波形を、図8CにPLLにより励起光と信号光の位相が(式1)の関係から90度ずれるように設定したときの出力波形をそれぞれ示す。
本実施形態では、励起光の位相と信号光の位相とを(式1)の関係を満たすように同期させることにより、第2のPPLN導波路605−2に入射した第二高調波622のパワーが300mWという条件下、約11dBの利得を得ることができた。本実施形態では光ファイバ増幅器を用いることにより、光通信への応用では必須の条件であるCW光の励起光による動作を実現することができた。また、本実施形態による構成をとることにより光ファイバ増幅器を用いながらも光ファイバ増幅器から発生するASE光の混入を防ぐことが出来たため、S/N比の劣化を防いで位相感応増幅を行うことが可能になった。
なお、本実施形態では和周波の発生およびパラメトリック増幅を行う二次非線形光学素子に直接接合法により作製した光導波路を適用したが、本手法は本実施形態に限定されず、他の実施形態においても、直接接合法により作製した光導波路の適用が可能である。
励起光と信号光の位相が(式1)の関係から90度ずれるように設定したときは、図8Cに示すように、NRZ信号のONとOFFレベルの間の過渡的な部分のみが増幅された波形が観測された。これはNRZ信号を生成するのに使用したLNマッハツェンダー変調器として変調器中の片方のアームのみの位相変調を用いるタイプの変調器を用いたため、データ変調器によってチャープが生じることを反映している。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じる。このために信号光位相と励起光の位相とを直交させるように設定すると、位相チャープ成分のみが位相感応増幅されるという結果となる。このことはすなわち、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅できることを示している。
さらに、本実施形態による動作を行う中で以下のような従来技術にはない利点があることも明らかになった。従来の光ファイバ中の四光波混合を利用し2つの励起光を使って位相感応増幅を行う構成では、非特許文献5に示されるように、信号光波長を中心として2つの励起光との間の四光波混合だけが起きるわけではなく、位相整合に対する条件が様々な波長間で満たされてしまう。従って、例えば一方の励起光を中心にして信号光が別の波長へ変換されるような過程も生じてしまい、増幅された信号光がつぎつぎとコピーされて複数の信号が生成されてしまう。このために増幅信号光のパワーが散逸してしまい、所望の信号光を増幅できるパワーが制限されてしまう。それに対して本実施形態では第2のPPLN導波路へは信号光と第二高調波のみが入力されるので、従来技術のような不必要な波長変換過程が生じることがない。本実施形態では出力パワーを+22dBmまで大きくしても出力の飽和がみられず安定的な増幅を行うことができた。
Figure 2012098911
(第2の実施形態)
図9に本実施形態の構成を示す。本発明に係る位相感応光増幅器の有する波形整形効果を利用することで、チャープを持つような変調器を用いてもチャープを除去して信号を送り出すことができる。外部共振器型の半導体LD(ECL)930からの出力を電界吸収型(EA)変調器を用いて40Gb/sの変調速度でNRZ強度変調を施した後、第1の実施形態に係る位相感応光増幅器と同様の位相感応光増幅器により変調信号を増幅し、送信器を構成した。
電界吸収型(EA)変調器は半導体を用いて作製できるため安価に大量に生産することができる。しかしながら、電界吸収を利用することから変調信号に周波数チャープ成分が重畳し信号品質を劣化させる。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じてしまう。このような信号を用いると、ファイバ中の分散により波形が劣化するため長距離伝送が難しいことが知られている。
図10は、本実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。図10(a)に増幅前の変調信号を、図10(b)に位相同期ループ回路(PLL)により励起光位相と信号光位相とが(式1)の関係を満たすように設定したときの出力波形を、図10(c)にPLLにより励起光位相と信号光位相とが(式1)の関係から90度ずれるように設定したときの出力波形をそれぞれ示す。
励起光位相と信号光位相とが(式1)の関係から90度ずれるように設定したときは、図10(c)に示すように、NRZ信号のONとOFFレベルの間の過渡的な部分のみが増幅された波形が観測された。これはNRZ信号を生成するのにEA変調器を用いているため、データ変調器のチャープが生じることを反映している。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じる。このために信号光位相と励起光位相とが(式1)の関係から90度ずれるように設定すると、位相チャープ成分のみが位相感応増幅されるという結果となる。
すなわち、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅できることを示している。このことを確かめるために、位相感応光増幅器を通す前の信号と、位相感応光増幅器を通した後の信号をシングルモードファイバ(SMF)中を伝送させ分散耐性を比較した。
図11Aおよび図11Bは、シングルモードファイバ(SMF)中を伝送させた後の信号の時間波形を説明するための図である。図11Aに増幅前の変調信号をそれぞれ1.2km、2.4km、3.6km、4.8kmの長さを持つシングルモードファイバ(SMF)中を伝送させた後の出力波形を示す。図11Bに本発明に係る位相感応光増幅器を通した後、それぞれ1.2km、2.4km、3.6km、4.8kmの長さを持つシングルモードファイバ(SMF)中を伝送させた後の出力波形を示す。
分散耐性を定量的に比較するために、図11Aおよび図11Bに示すそれぞれの条件においてビット誤り率を測定した。位相感応光増幅器を通す前の信号を2.4kmよりも長いシングルモードファイバ(SMF)中を伝送させると、ビット誤り率が非常に大きくなった。一方、本発明に係る位相感応光増幅器を通した後では、信号を4.8kmのシングルモードファイバ(SMF)中を伝送させても位相感応光増幅器を通す前の信号を2.4km伝送させた信号と同程度のビット誤り率が得られた。つまり、本実施形態に係る送信器構成を用いることで、伝送に対する分散耐性を2倍にすることができた。
本実施形態に係る位相感応光増幅器の有する波形整形効果を利用することによって、安価な半導体EA変調器を用いたことで入力信号に位相チャープが含まれるような場合であっても、そのチャープ成分を除去して、チャープのない信号として整形し増幅可能な増幅器を実現することができる。なお、本実施形態においては、変調器として、電界吸収型(EA)変調器を用いたが、それ以外の変調器を用いてもよい。
(第3の実施形態)
図12に本実施形態の構成を示す。データ変調の施された信号光1240が光ファイバ等の伝送媒質を伝搬し信号が送られる。その際、伝送媒体における光強度の損失を補償するために光増幅器を行う中継増幅器として本位相感応光増幅器を用いる場合の構成例が、図12に示されている。
信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して基本波光として用いることができる。しかしながら、光伝送における中継増幅器として位相感応光増幅器を用いる場合には、例えば以下に述べる位相同期手段を用いて位相感応光増幅装置内の基本波光と信号光の位相を同期させる必要がある。
本実施形態では、入力される信号光として、信号光の片方の偏波にはデータ変調の施された光信号が重畳され、もう一方の偏波には無変調のCW光が合波された信号光を用いる。
図13に、本実施形態で使用する入力信号光の生成に用いた構成を示す。外部共振器型の半導体レーザー1300を用いてCW光を生成し、光分岐器1301を用いて2光路に分岐する。一方の分岐経路には強度変調器としてLNマッハツェンダー変調器1302を用い10Gb/sのNRZ信号を重畳した。もう一方の分岐経路には偏光子1304を挿入して偏波を90°回転させて、強度信号の重畳された光とは直交偏波になるように偏波を合わせた。2つの信号を偏光ビームスプリッタ(PBS)1305を用いて合波し、直交偏波にCW光のパイロットトーンを混ぜ込んだ変調信号光1310を生成した。
位相同期手段を得るために、図12に示すように位相感応光増幅装置を構成したが、これは第2の実施形態と同様の構成であるので説明は省略する(図9を参照)。直交偏波にCW光のパイロットトーンを混ぜ込んだ変調信号光1240が伝送媒体を通って伝送されてくる。伝送媒体には光ファイバを用いた。光ファイバ中の偏波回転を偏波コントローラ1230で補正した後、偏光ビームスプリッタ(PBS)1231を用いてCW光のパイロットトーンのみを分離した。信号の光強度は伝送光ファイバによる光強度の損失のため、光強度が極めて小さくS/N比が劣化している。分岐させたCW光のパイロットトーンをアッテネータ(ATT)1212により光強度を調整した後、サーキュレータ1213を通して位相感応光増幅装置内のCW光源1214に光注入同期を行った。CW光源にはDFB型の半導体レーザーを用いた。DFBレーザーの発振波長をCW光のパイロットトーンの波長に比べ0.04nmずらしておき、アッテネータ(ATT)1212を用いてCW光源に入力する光強度を変化させ、光スペクトルアナライザで様子を観測した。
図14に光強度を数百μWとした時の動作の様子を測定した光スペクトル図を示す。図14中において、実線はCW光のパイロットトーンを注入する前の光スペクトルを表し、破線はCW光のパイロットトーンを注入する後の光スペクトルを表しているので、半導体レーザーの波長がパイロットトーン波長に引き込まれている様子がわかる。これにより、位相感応光増幅装置内のCW光源がパイロットトーンに位相同期されるので、S/N比の劣化した信号光のパイロットトーンからS/N比のよい基本波光を生成することができる。
信号光のパイロットトーンに位相同期した基本波光を用いて、第1の実施形態で説明した位相感応光増幅器の構成を用いて光増幅を試みたところ、第1の実施形態と同様の特性結果が得られた。
本実施形態による構成を採用することにより、信号光を発生する光源が位相感応光増幅部の近くに配置されていないような中継増幅においても、上述の位相同期手段を用いることで位相感応増幅を行うことができた。
(第4の実施形態)
第3の実施形態においては、光通信における中継器に用いることを目的として、あらかじめ変調された信号光を位相感応増幅する場合の実施形態を示した。しかし、第3の実施形態の構成では、位相同期を行うためのパイロットトーンが変調信号光と直交する偏波を用いているため、パイロットトーン側の偏波方向には別の光信号を載せることが出来ないという課題がある。本実施形態では、この課題を解決するための構成を説明する。
図15に本実施形態に係る構成を示す。本実施形態に係る装置は、2値の位相変調(BPSK)または2値差動位相変調(DPSK)信号もしくは通常の強度変調などの信号を、雑音を付加することなく増幅することができる。
本実施形態においては、基本波光を得るために光分岐部1503−1で信号光を分岐し、分岐した信号光をEDFA1501で増幅させる。増幅された信号光を第1の二次非線形光学素子1502−1中の第1のPPLN導波路1505−1に入射し、信号光の第二高調波を発生させる。第1のPPLN導波路1505−1から出射される光から、第二高調波1522のみを分離するためにダイクロイックミラー1506−1を使用する。分離された第二高調波1522を波長0.77μmで発振する半導体レーザー1512に入射することにより注入同期が行われる。半導体レーザー1512の出力は、半導体レーザー1512と同様の波長帯域に利得を持つ半導体光増幅器1513により増幅され、ダイクロイックミラー1506−2を用いて波長1.54μmの信号光1520と合波される。信号光1520と、励起光として用いられる波長0.77μmの第二高調波1522とは合波された後、第2のPPLN導波路1505−2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
位相感応増幅を行うためには増幅器に入射してくる信号光の平均位相に同期した励起光を生成する必要がある。本実施形態においては、2値の位相変調を施されたような信号を用いる場合であっても、その平均位相に同期した励起光を生成することができる。
以下、その動作原理について簡単に説明する。2値の位相変調においては信号の位相を0とπラジアンの2つの値に変調して信号を送信している。このような信号をEDFA1501で増幅したのちに第1のPPLN導波路1505−1に入射し、第二高調波を発生させた場合、第二高調波の位相φ2ωは、次の(式6)で表される。
φ2ω=2φωs (式6)
ここでφωsは信号光の位相である。従って、位相が0とπの2値に変調された信号に対する第二高調波の位相は、0と2πの2値となり、位相変調による位相の変動が打ち消された光となって出力される。実際の位相変調信号においては、理想的に位相のみを変調することは困難であり、強度変調を伴った信号となる。従って、強度変調成分のない励起光を得るためには、上記の位相変調成分を取り除いた第二高調波を本実施形態のように注入同期を用いて、信号光の平均位相に同期させて、信号光の半波長の励起光とすることが望ましい。
本実施形態においては、注入同期を用いて位相変調の施された信号光から平均位相に同期した強度変調のない励起光を生成する。これにより、仮に信号光に位相雑音が付加された場合であっても、本来の信号と直交する位相成分は、位相感応増幅により減衰させることができるので、信号位相および直交位相の雑音成分を取り除くような信号再生を行うことができる。
本実施例形態においては、出力した増幅信号光の一部を光分岐部1503−2で分岐させて、光検出器1508で受光した後に、位相同期ループ回路(PLL)1509から0.77μmで発振する半導体レーザーの駆動電流にフィードバックを行うことで光学部品の振動や温度変動による位相変動を補正し、安定的に位相感応増幅ができるようにしている。なお、半導体レーザーの出力に微弱な位相変調を施して、位相ずれを検出することで位相同期を行いやすくすることも可能である。
本実施形態においては、第1のPPLN1505−1における第二高調波発生が可能となるパワーを得るためにEDFA1501を用いているが、EDFA1501から発生するASE光が位相感応増幅を行う第2のPPLN導波路1505−2に入射しないために、光増幅器のASE光に起因する信号光のS/N比劣化を防ぐことができる。
また、波長0.77μmで動作する半導体光増幅器1513からもASE光は発生するが、この光は信号光と波長が全く異なるために、ダイクロイックミラー(1506−2,1506−3)によってほぼ完全に取り除くことが可能である。よって、光通信における中継器において、信号光のS/N比を劣化させることなく、且つ、直交偏波成分を利用することなく単一偏波内において位相感応増幅を行うことが可能である。
(第5の実施形態)
(1)第1の構成
位相感応光増幅器を光信号送信器の直後に配置するような、信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源からの光を分岐して基本波光として用いることができる。しかしながら、光伝送における中継増幅器として位相感応光増幅器を用いる場合には、光変調が施されている信号光から平均的な位相を抽出し、信号の搬送波位相と同期した基本波光を生成する必要がある。従って、増幅器を、実際の光伝送における中継増幅器として用いる場合は、この搬送波位相の抽出手段を含めた位相感応光増幅器を構成することが重要となる。
2次非線形光学効果を有する媒質を用いた第二高調波光を用いる場合、励起光として使う光である、第二高調波光の波長が信号光の波長の半分になる。これにより、搬送波位相の抽出などを行うための光デバイスに通信波長帯とは異なる波長の光部品を使う必要が生じる。例えば、第4の実施形態に示した構成では780nm帯のレーザーや光増幅器を用いる必要がある。
しかしながら、通信波長帯以外の波長の部品を使用するためには、様々な障害が生じる。波長によって、デバイスの成熟度が異なるため、デバイスの特性・スペックなど位相感応光増幅器を構成するための仕様を満足することができない、もしくは仕様を満たすためには非常に高額になる部品を使わなければならないなどの問題が生じる。より具体的には、高品質な半導体レーザーなどの入手が難しく、光強度や光線幅、使用可能な波長などに制限をうける。
光増幅器に関しても大きな課題を擁する。第二高調波などの通信波長に比べ波長の短い領域においては、光ファイバレーザー増幅器などを用いることができない。一部に半導体を用いる増幅器などによって実用化されているものもあるが、増幅率や飽和強度などの問題から位相感応増幅用に用いる励起光としては、十分な光強度を得ることができない、あるいは、半導体増幅器のもつ雑音指数(NF)により位相感応光増幅器に用いる励起光のS/N比が劣化するなどの問題があった。
さらに、通信波長に比べ波長の短い光(第二高調波など)用の光デバイスにおいては、部品によっては信頼性の観点から問題があることも多く、このような部品を用いた位相感応光増幅装置を実際の光通信システムに用いることは難しい。
上記の課題を考慮して、本実施形態においては、搬送波位相の抽出手段を含めた位相感応光増幅器を通信波長帯の光部品のみを用いて構成した。
また、非特許文献3に示されているように、3次の非線形効果を有する光ファイバ中の四光波混合を用いた搬送波位相の抽出方法は示されている。しかしながら、上述した通り、従来方法では、四光波混合を用いるため、信号光の波長と励起光の波長とが近接する構成となってしまうこと、および、EDFA等での光増幅を行う際に増幅自然放出光(ASE光)が雑音として励起光に重畳してしまうことなどの問題があった。励起光の波長と信号光の波長とが接近しているために、ASE光を取り除くことが困難であり、信号光波長にもEDFAから発生するASE光が重畳してしまうので、結果として、信号光のS/N比が劣化してしまい、低雑音での光増幅を行うことができないという問題があった。
本実施形態は、上記のような従来技術の問題を鑑みて、光通信に適用可能であり、かつ低雑音での増幅が可能な位相感応光増幅装置を提供する。具体的には、信号の搬送波位相の抽出手段を含めた、光伝送における中継増幅器として適用可能な位相感応光増幅装置を、通信波長帯の光部品のみを用いて提供する。
図16に本実施形態の構成を示す。本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)1601−1を用いて、信号光1640の一部を増幅する。増幅した信号光と発振波長が1534nmの外部共振器レーザー1631によって生成された第1の基本波光1641−1を合波し増幅した後、第3の二次非線形光学素子1602−3に入射する。
第3の二次非線形光学素子1602−3内部で信号光の第二高調波が生成され、かつ生成された第二高調波と第1の基本波光1641−1との差周波発生により搬送波位相の抽出を行う。差周波光は同じ波長で発振する第2の基本波光1641−2に注入同期された後、第1の基本波光1641−1と合波される。
合波された後、ファイバレーザー増幅器(EDFA)1601−2を用いて、基本波光1641−1と基本波光1641−2とで構成された、基本波光光1642を増幅する。増幅した基本波光を第1の二次非線形光学素子1602−1に入射して励起光である和周波光を発生させる。第2の二次非線形光学素子1602−2に信号光1640と和周波光とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。図16に示す構成の詳細は後述するとして、このような構成をとると以下に述べるような従来技術では得られない効果が得られる。
図17Aおよび図17Bは、位相感応光増幅で用いる信号光・励起光・基本波光のスペクトルを模式的に示す図であり、図17Aは、図4で示した従来のファイバレーザー増幅器および非線形媒質として光ファイバを利用した構成を用いた場合を示し、図17Bは、図16で示す本実施形態による構成を用いた場合を示す図である。
従来の光ファイバを用いた位相感応光増幅器では四光波混合を利用する。このため、パラメトリック光増幅を行うための励起光と信号光との波長が位相整合条件を満たすためには、これらの波長は、近接した波長にならざるを得ない。図17A(a−1)で例示するように、信号光1701および励起光1702が同じ1.55μm帯の波長帯を有し、2つの励起光1702−1,1702−2を用いる場合、全体構成を簡略化するために2つの励起光を1つの光ファイバ増幅器で増幅することが望ましい。
しかしその際、励起光波長の近傍に光ファイバ増幅器により発生するASE光1703が発生してしまう。信号波長帯域にASE光を発生させないために信号光が光ファイバ増幅器を通らないようにする構成にすることは可能である。しかしながら、励起光を信号光と励起光とを合波する際に、励起光の波長と信号光の波長とが接近しているために、波長選択性の良い光フィルタを実現することは困難であり、ASE光を完全にカットすることができない。この結果、信号波長帯域に発生しているASE光が信号波長に重畳してしまい、ASE光の混入により信号光のS/N比が劣化してしまうこととなる(図17A(a−3))。
一方、本実施形態による構成では、信号光1701の波長と基本波光(1702−1,1702−2)の波長とは近接している(図17B(b−1)を参照)。
光通信で用いる微弱な光パワーから、パラメトリック光増幅を利用するのに十分なパワーを得るために、基本波光(1702−1,1702−2)を光ファイバ増幅器により増幅する。このときに基本波光の波長近傍にASE光1703が重畳する(図17B(b−2)を参照)。
本実施形態に係る構成においては、光増幅を行ったのちに、ASE光1703が重畳された基本波光1702−1,1702−2から励起光である和周波光1704を発生させる。和周波光1704は、縮退パラメトリック増幅において励起光として使用される。和周波光1704の波長帯域には、わずかにASE光の和周波光が発生する以外には雑音となる広帯域のASE光は発生しない(図17B(b−3)を参照)。
和周波光1704の波長は、基本波光1702−1,1702−2の波長のほぼ半分であり、両者の波長は十分に離れている。従って、基本波光(1702−1,1702−2)と、和周波光(1704)とから、和周波光(1704)のみを分離するような高い消光比を持ったフィルタをダイクロイックミラー等で実現することは比較的容易である。そのようなフィルタを第1の二次非線形光学素子の出力に接続することにより、縮退パラメトリック増幅において励起光として使用される和周波光(1704)の波長帯域に存在する、基本波光(1702−1,1702−2)とASE光(1703)とを完全に取り除くことができる(図17B(b−3)を参照)。
次いで、信号光と和周波光のみとを合波して第2の二次非線形光学素子に入射し、縮退パラメトリック増幅による位相感応増幅を実現することができる(図17B(b−4)を参照)。
再度図16を参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、2値の位相変調(BPSK)または2値差動位相変調(DPSK)が施された1.54μmの信号光を増幅するための、搬送波位相抽出手段まで含めた位相感応光増幅装置の構成を説明する。
信号光1640の一部は、偏波コントローラ1630を介して偏波を調整された後、光分岐部1603−1で分岐されて第1の基本波光1641−1と合波された後、エルビウム添加ファイバレーザー増幅器(EDFA)1601−1で増幅される。
増幅された信号光と第1の基本波光は、第3の二次非線形光学素子1602−3に入力される。本実施形態の、二次非線形光学素子1602−3は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路1605−3を備える。PPLN導波路1605−3において、信号光の第二高調波発生、ならびに、発生した第二高調波と第1の基本波光1641−1との間の差周波発生が可能となる擬似位相整合条件を満たす周期分極反転が形成されている。
信号光と第1の基本波光とが入力された第3の二次非線形光学素子1602−3によって、図18Aに示すように信号光の波長に対して半分の波長を持つ第二高調波1805が生成される。さらに図18Bに示すように、内部で発生した第二高調波と第1の基本波光との間の差周波光が生成される。信号光の位相φと第1の基本波光の位相φp1と差周波光の位相φp2との間には、以下の(式7)を満たす関係が成立する。
2φ−φp1−φp2=0 (式7)
従って、差周波光の位相φp2は以下の(式8)のように、信号光の位相φと第1の基本波光の位相φp1を用いて表される。
φp2=2φ−φp1 (式8)
第二高調波発生を用いたことにより信号光の位相φを2倍とすることができる。通常データ信号には変調がかかっているため、搬送波の位相を抽出することが難しいが、信号光の位相φを2倍にすることで、2値の位相変調を取り除くことができる。さらに、差周波数発生を用いることで、搬送波の位相情報を含んだ差周波光を信号光と同じ波長帯である1.55μm帯で取り出すことができる。この時、ファイバの四合波混合ではなく、二次非線形光学素子であるPPLN導波路を用いることで位相整合条件が一意に決まり、副次的な変換光を生ずることなく所望の光のみを取り出すことができる。
伝送されてきた信号光が完全な2値の位相変調状態であれば、差周波光には変調の影響は現れない。しかしながら、ファイバなどの伝送路を伝搬してきた光信号には位相雑音が重畳されているため、完全な2値の位相変調状態とはならない。従って、実際に得られた差周波光には、変調の不均一性に起因した影響が残っていた。また、元々微弱な信号光をさらに分波して第3の二次非線形光学素子に入力しているため、得られた差周波光の光強度は微弱なものであった。これらの問題を解決するために、差周波光を用いて光注入同期を行った。
図16に示す通り、第3の二次非線形光学素子1602−3から出力された、信号光と、第1の基本波光と、差周波光とは、光サーキュレータ1613を通った後、それぞれの光に分波される。分波には、アレイ導波路格子(AWG)型の波長合分波器1612を用いた。
分波器1612から出力された信号光は空間系に放出される。分波器1612から出力された第1の基本波光は、アイソレータ1634を用いて消光した。差周波光と一致した波長を持つ分波器1612の出力ポートには、差周波光とほぼ同じ波長で発振する半導体レーザー1632が接続されている。差周波光の光強度を10μW乃至100μWになるように調整した後、半導体レーザー1632に入力することで光注入同期を行う。光注入同期により差周波光と同じ位相を持つ第2の基本波光1641−2を生成することができた。
第2の基本波光1641−2は、差周波光位相φp2と同じ位相を持つ。光強度は、半導体レーザーの出力により決まるため、数10μW程度の微弱な差周波光を用いて数10mW以上の第2の基本波光を得ることができた。
さらに、差周波光に重畳されていた信号光の変調の不均一性に起因した影響も緩和することができた。AWG型合分波器1612の合波側から第1の基本波光を入射し、第2の基本波光と合波したうえで、サーキュレータ1613を用いて取り出した。
このように、本実施形態では、非線形素子と光注入同期により信号光搬送位相を抽出した、第1の基本波光及び第2の基本波光を基本波光として用いる。
基本波光は、エルビウム添加ファイバレーザー増幅器(EDFA)1601−2を用いて増幅される。増幅された基本波光は、第1の二次非線形光学素子1602−1に入力される。本実施形態では、EDFA1601−2から発生する広帯域なASE光が第1の二次非線形光学素子1602−1により変換されることを防ぐために、EDFA1601−1と第1の二次非線形光学素子1602−1との間にバンドパスフィルタ1604を挿入し、不必要なASE光をカットした。
二次非線形光学素子1602−1、1602−2は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路1605−1,1605−2を備える。PPLN導波路は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られるので、図示するような構成にすることで高い波長変換効率を得ることができる。PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。
第1のPPLN導波路1605−1から出射した、和周波光と基本波光とは、ダイクロイックミラー1606−2を用いて分離した。ダイクロイックミラー1606−2で反射された0.77μmの和周波光は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバを介して、第2の二次非線形光学素子1602−2へと導かれている。このとき、ダイクロイックミラー1606−2で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバに入射されることになるが、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不要な光を効果的に減衰させることができる。
偏波保持ファイバで導かれた和周波光は、ダイクロイックミラー1606−3を用いて波長1.54μmの信号光1640と合波される。ダイクロイックミラー1606−3は、和周波光のみを反射させるために、第1のPPLN導波路1605−1から出射され、ダイクロイックミラー1606−2および偏波保持ファイバを通ってくる波長1.54μm付近の基本波光とASE光との残留成分を効果的に取り除くことができる。
信号光と和周波光とは合波され、第2のPPLN導波路1605−2に入射される。第2のPPLN導波路1605−2は、第1のPPLN導波路1605−1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
本実施形態では、2つのPPLN導波路1605−1、1605−2はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。
第2のPPLN導波路1605−2から出射された光は、ダイクロイックミラー1606−4により励起光である和周波光と増幅された信号光とに分離される。このときも和周波光と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光の一部を光分岐部1603−4で分岐して光検出器1608で受光したのちに位相同期ループ回路(PLL)1609により位相同期を行った。AWG型の合波器1612の前に配置した位相変調器1610を用いてsin波により微弱な位相変調を第1の基本波光1641−1に施す。光検出器1608とPLL回路1609でその位相変調の位相ずれを検出して、AWG型の合波器1612の前に配置したPZTによる光ファイバ1611の伸長器の駆動電圧と位相変調器1610のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
図18Cに示すように第1の基本波光1802及び第2の基本波光1803を用いて和周波光1804を生成する。この時、第1の基本波光位相φp1と、第2の基本波光位相φp2と、和周波光位相φSFの間には以下の(式9)の関係が成立する。
φSF=φp1+φp2=2φ (式9)
図18Dに示すように、信号光と和周波光のパラメトリック増幅により位相感応増幅が行われる。この時、信号光位相φと和周波光位相φSFの間には以下の(式10)を満たす関係がある。
ΔΦ=φSF−2φ=nπ(ただし、nは整数) (式10)
従って、ΔΦが、−π、0、またはπの時に利得が最大になる。
本実施形態では、位相変調器としてLNマッハツェンダー変調器を用い40Gb/sの2値の位相変調(BPSK)信号を入力した場合の増幅特性を評価した。信号光の波長は約1536nmに設定した。
まず、2値の位相変調の施された信号光の搬送波位相の抽出が可能であることを確かめるために、信号光を第3の二次非線形光学素子(図16を参照、符号1602−3が示す)に入射し、内部で発生した第二高調波を観測した。
図19Aに光スペクトルアナライザで測定した信号光のスペクトルを示す。2値の位相変調が施されているため、波長軸上で見た時のキャリアの中心波長にはピークが観測されない。図19Bに2値の位相変調の施された信号光の第二高調波に対するスペクトルを示す。第二高調波に対応する波長に強度の強いピークが観測されている。これは、信号光の第二高調波生成により位相変調がキャンセルされていることを示している。
次に、2値の位相変調の施された信号光と第1の基本波光を合波した後、第3の二次非線形光学素子に入射しスペクトルを観測した。第1の基本波光の波長は約1534nmである。図20に第3の二次非線形光学素子から出力された光を光スペクトルアナライザで測定した結果を示す。第3の二次非線形光学素子内部で生成された信号光の第二高調波と第1の基本波光との差周波発生により、波長は約1538nm付近に差周波光が生成されている。スペクトルの形状から差周波光には位相変調が重畳されていないことがわかる。
差周波光を波長合分波器により分離した後、差周波光とほぼ同じ波長で発振する半導体レーザーに入力した。半導体レーザーの出力と第1の基本波光とを波長合分波器により合波した後、光サーキュレータを用いて基本波光として用いる第1の基本波光及び第2の基本波光を取り出した。
図21A及び図21Bにサーキュレータ後の出力をスペクトルアナライザで測定した時に得られたスペクトルを示す。図21Aは、差周波光を半導体レーザーに入射させない場合の基本波光のスペクトルを示す図である。図21Bは、差周波光を半導体レーザーに入射し、差周波光を光注入同期させた場合の基本波光のスペクトルを示す図である。
図21A及び図21Bを比べて第2の基本波光波長に対応する約1538nm付近のスペクトルをみると、光注入同期することにより元の半導体レーザーが変化している様子が分かる。光注入同期により位相情報まで含めて差周波光と同じ周波数で半導体レーザーが発振する。この時、半導体レーザーに入射する差周波光を徐々に上げていき、注入量が約数十μWになった時に、半導体レーザーの波長が差周波光波長にシフトすることによっても、光注入同期が行われている様子を観測することができた。
基本波光として用いる第1の基本波光の光強度と、第2の基本波光の光強度とをほぼ同じになるように調整した後、エルビウム添加ファイバレーザー増幅器で増幅する。増幅した基本波光を二次非線形光学素子に入射して和周波光を発生させる。次いで、信号光と発生させた和周波光とを二次非線形光学素子に入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行った。
増幅特性を確認するために、増幅後の信号の利得を調べた。本実施形態では、PLLにより励起光の位相を信号光の位相に合わせることにより、PPLN導波路に入射した和周波光のパワーが300mWという条件下、約11dBの利得を得ることができた。
本実施形態では光ファイバ増幅器を用いることにより、光通信への応用では必須の条件であるCW光の励起光による動作を実現することができた。また、本実施形態による構成をとることにより光ファイバ増幅器を用いながらも光ファイバ増幅器から発生するASE光の混入を防ぐことが出来たため、S/N比の劣化を防いで位相感応増幅を行うことが可能になった。
本実施形態では、光通信へ応用するために、励起光にCW光を用いたが、励起光にCW光を用いることは、本実施形態に限定されず、他の実施形態においても有効に機能する。
(2)第2の構成
次に、第5の実施形態の別構成(第2の構成)について説明する。図22に本実施形態の第2の構成を示す。
本構成では、1.54μmの信号を増幅するように装置を構成した。3つのPPLN導波路を用いて、信号光の搬送位相を抽出した後、和周波光を発生させて縮退パラメトリック増幅を行う点は、図16に示した構成と同じである。
相違点は、基本波光から和周波光を分離する方式および和周波光と信号光とを合波する方式である。さらに、本構成では、信号光の搬送位相の抽出手段をより簡便に構成した。
本発明によれば光ファイバ増幅器から発生するASE光に起因する信号光のS/N比の劣化を抑制しながら位相感応増幅を行うことができるが、本構成ではその効果を有効に利用できるようにした。
本構成においても、基本波光からの和周波光の分離ならびに和周波光と信号光との合波にはダイクロイックミラーを用いている。一般的に、波長の異なる2つの光を分離または合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーがよく使用されているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。
逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成の場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。本構成では、そのような考え方に基づいて装置が構成されている。
図22を参照しながら、本構成について説明する。信号光2240の一部は、偏波コントローラ2230を用いて偏波を調整され、光分岐部2203−1で分岐され、第1の基本波光と合波された後、エルビウム添加ファイバレーザー増幅器(EDFA)2201−1で増幅される。
外部キャビティレーザー2231からの第1の基本波光は、位相同期のためにLN位相変調器2210を介した後で合波されている。
増幅された信号光と第1の基本波光は、第3の二次非線形光学素子2202−3に入力される。本構成の、二次非線形光学素子は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路を備える。
第3の二次非線形光学素子2202−3において、信号光の第二高調波を発生させ、発生させた第二高調波と第1の基本波光との間での差周波発生により、差周波光を得る。
第3の二次非線形光学素子2202−3から出力された、信号光、第1の基本波光、および差周波光は光サーキュレータを通した後、それぞれの光を分波した。分波には、アレイ導波路格子(AWG)型の波長合分波器2212を用いた。分波器2212から出力された信号光は空間系に放出される。
差周波光と一致した波長を持つ分波器出力ポートには、差周波光とほぼ同じ波長で発振する半導体レーザー2232が接続されている。差周波光の光強度を10μW乃至100μWになるように調整した後、半導体レーザー2232に入力することで光注入同期を行う。光注入同期により差周波光と同じ位相を持つ第2の基本波光を生成することができた。
分波器2212から出力された第1の基本波光をファイバ型のミラー2214により反射させ、波長合分波器2212に再度折り返して入力した。この構成を用いることで、第1の基本波光と第2の基本波光がほぼ同じファイバ経路を辿るため、環境変化によるファイバ長の変化に起因した位相揺らぎの大きさを小さく抑えることができた。
AWG型合分波器2212の合波側から第1の基本波光を入射し、第2の基本波光と合波しサーキュレータ2213を用いて取り出した。本構成では、非線形素子と光注入同期により信号光の搬送波位相を抽出した、第1の基本波光及び第2の基本波光を基本波光として用いる。
EDFA2201−2で増幅した基本波光を、第1の二次非線形光学素子2202−1中の第1のPPLN導波路2205−1に入射し和周波光を発生させる。
本構成においても、第1のPPLN導波路2205−1から出射される基本波光とその和周波光から和周波光のみを効果的に取り出し、EDFA2201−1から発生するASE光を効果的に除去するために、第1のPPLN導波路2205−1の後に、1.55μm帯を反射し、0.77μm帯を透過するダイクロイックミラー2206−1を設置した。
波長が0.77μmである和周波光は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバを介して、第2の二次非線形光学素子2202−2へと導かれている。(第1の構成)と同様に、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、不要な波長1.54μm付近の基本波光およびASE光を効果的に減衰させることができる。
偏波保持ファイバで導かれた和周波光は、ダイクロイックミラー2206−2を用いて波長1.54μmの信号光2240と合波される。本構成においては、偏波保持ファイバを通ってくる波長1.54μm付近の基本波光およびASE光の残留成分を効果的に取り除くことができるように、1.54μm帯を反射し、0.77μm帯を透過するダイクロイックミラー2206−2を用いた。
信号光と和周波光とは合波された後、第2のPPLN導波路2205−2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。第2のPPLN導波路2205−2から出射された光は、ダイクロイックミラー2206−3により和周波光と増幅された信号光とに分離される。本構成では、ダイクロイックミラー2206−3に、出力に不要な和周波光を効果的に取り除くために0.77μm帯を反射し、1.54μm帯を透過するダイクロイックミラーを用いた。
本構成においても、出力した増幅信号光の一部を光分岐部2203−3で分岐して光検出器2208で受光した後に位相同期ループ回路(PLL)(図示省略)により位相同期を行うことで安定的に位相感応増幅ができるようにしている。位相同期ループ回路(PLL)の誤差信号を第1の基本波光を生成する光源の駆動電流にフィードバックをかけることで、励起光と信号光の位相同期をおこなった。
本構成においては、それぞれ特性の異なるダイクロイックミラーを、基本波光からの第二高調波の分離ならびに第二高調波と信号光との合波に用いたために、特に信号のS/N比に悪影響を与えるEDFAからのASE光を信号光に混入させることなく、高い信号品質が得られる位相感応光増幅器を構成することができた。また、搬送波抽出に用いる部品点数を減らすことで簡便な構成を取ることができた。
(3)第3の構成
次に、第5の実施形態のさらに別の構成(第3の構成とした)について説明する。図23に本実施形態の第3の構成を示す。
本構成では、1.54μmの信号を増幅するように装置を構成した。和周波光を発生させ縮退パラメトリック増幅を行う点は、(第1の構成)および(第2の構成)に示した構成と同様である。(第3の構成)がこれらの構成と相違する点は、搬送波抽出手段の構成にある。
光通信における光増幅器には信号光の光パワーが微弱であっても増幅できることが求められる。信号光のパワーが非常に微弱な場合、それを分岐して搬送波抽出に使うため、その信号光は極度に微弱となる。
(第1の構成)では第二高調和発生と差周波光発生過程を同時に行うため、分岐した極度に微弱な信号光をファイバ増幅器で増幅する際に生じるASEが過剰になる。その場合、得られる差周波光にASE雑音が重畳され差周波光のS/N比が悪くなる。S/N比が十分にあれば、光注入同期によりS/N比の改善を行うことができるが、元の信号光が微弱になればなるほど差周波光のS/N比劣化が増大され、第1の基本波光として十分なS/N比を保つことが難しくなる。
低雑音な位相感応増幅を動作させるためには励起光のS/N比がよいことが必要なため、励起光のS/N比確保は重要である。本構成は、差周波光のS/N比劣化を防ぐ目的で構成された。
図23を参照しながら、本構成について説明する。
信号光2340の一部は、偏波コントローラ2330を用いて偏波を調整され、光分岐部2303−1で分岐された後、エルビウム添加ファイバレーザー増幅器(EDFA)2301−1で増幅される。
増幅された信号光は、二次非線形光学素子2302−3に入力される。二次非線形光学素子2302−3は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路2305−3を備える。PPLN導波路2305−3に信号光を入射することで、信号光の第二高調波を発生させる。ダイクロイックミラー2306−5により第二高調波と信号光とが分離される。
二次非線形光学素子2302−3から取り出した第二高調波と、第1の基本波光とが、二次非線形光学素子2302−4に入射される。二次非線形光学素子2302−4は、入出力にダイクロイックミラー2306−6、2306−7を備えている。
第二高調波と第1の基本波光とがダイクロイックミラー2306−6で合波され、二次非線形光学素子2302−4中のPPLN導波路2305−4に入力される。PPLN導波路2305−4内で、第二高調波と第1の基本波光との間の差周波発生により、差周波光を得る。このような構成を用いることで、第二高調波を得る際に用いた信号光を増幅するファイバレーザー増幅器2301−1からの不要なASE光を除去した後、第二高調波と第1の基本波光との間の差周波光を生成できるため、信号光に非常に弱い光を用いても高いS/N比を持つ差周波光を生成することができた。
二次非線形光学素子2302−4から出力された、信号光、第1の基本波光、および差周波光は、光サーキュレータ2313を介した後、それぞれの光に分波された。分波には、アレイ導波路格子(AWG)型の波長合分波器2312を用いた。分波器2312から出力された信号光は空間系に放出される。分波器2312から出力された第1の基本波光は、アイソレータ2315を用いて消光した。
差周波光と一致した波長を持つ波長合分波器2312の出力ポートには、差周波光とほぼ同じ波長で発振する半導体レーザー2332が接続されている。光注入同期により差周波光と同じ位相を持つ第2の基本波光を生成することができた。高いS/N比を持つ差周波光を用いたため高いS/N比を保ったまま第2の基本波光を生成することができた。
AWG型合分波器2312の合波側から第1の基本波光を入射し、第2の基本波光と合波した後、サーキュレータ2313を用いて取り出した。
本構成では、非線形素子と光注入同期により信号光搬送位相を抽出した、第1の基本波光及び第2の基本波光を基本波光として用いる。
基本波光として用いる第1の基本波光及び第2の基本波光の光強度をほぼ同じになるように調整した後、エルビウム添加ファイバレーザー増幅器2301−2で増幅する。増幅した基本波光を二次非線形光学素子2302−1に入射して和周波光を発生させる。二次非線形光学素子2302−2に信号光2340と和周波光とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行い良好な特性を得ることができた。本構成により、非常に微弱な信号を増幅する場合においても低雑音な位相感応光増幅器を実現することができた。
(第6の実施形態)
上述の第3乃至第5の実施形態においては、位相感応光増幅器を中継器として用いる場合の実施形態について説明した。本実施形態では、位相感応光増幅器を受信器として用いる場合、より具体的には、受信器における初段増幅器として用いる場合の構成とその効果について述べる。
これまでの実施形態の説明で述べてきたとおり、PPLNを非線形媒質として用い、信号光と第二高調波を入射して縮退パラメトリック増幅を行う構成においては、GAWBSによる雑音がない。また、第二高調波を発生させてからパラメトリック増幅を行う際に、例えば、再度、合波器として作用するダイクロイックミラー(例えば、図6の606−1、606−2を参照)の特性を用いて基本波の成分を取り除いてから第二高調波と信号光のみをパラメトリック増幅媒質に入射すれば、ASE光の混入による雑音も防げるので低雑音な光増幅が可能になる。
しかしながら、現状で300mWの第二高調波を入射したときのPPLN導波路のパラメトリック利得は11dBであるので、光受信装置に入射される微弱な信号をPD(フォトダイオード)でS/N比良く受信するためには利得が足りない。従って、上述の実施形態に係る増幅器を、光受信装置の増幅器としては利用することはできない。
現在、光受信装置によく用いられているEDFAの利得は30dB乃至40dB程度であり、光受信装置に入射する光レベルが−35dBmだとしても0dB乃至+5dBm程度の出力が得ることが可能である。一方、現状の技術でPPLN導波路からEDFAと同等の利得を得ることは困難である。従って、低雑音の位相感応光増幅器を実現できたとしても、従来のレーザー増幅器を用いた光受信装置を超える高感度の光受信装置を得ることは出来なかった。しかし、以下に説明する本実施形態においては、これらの問題は解消される。
図24に本実施形態の構成を示す。本実施形態においては、図24において「位相感応増幅器」と示した部分に記載のPPLN導波路を用いた位相感応光増幅器を用いて微弱な入力信号2420を増幅する。増幅された信号光は、光ファイバレーザー増幅器2401−1で更に増幅され、バンドパスフィルタ2404−1で不要な背景光を除去される。続いて、信号光は光検出器として作動するフォトダイオード(PD)2408−2に入射し、電気信号へ変換される。電気信号は、最終的には、識別器2413に接続されてデジタル信号として再生される。本実施形態の詳細については後述する。
このような構成をとると以下に述べるような効果が得られる。本実施形態の特徴は、微弱な入力信号を位相感応光増幅器で増幅したのちに光ファイバレーザー増幅器で更に増幅し、次いで、PDへ入射して光電変換を行っていることにある。
以下に本発明の実施形態に係る光受信装置の受信感度に大きな影響を与える、光信号のS/N比の振る舞いを説明する。微弱な入力信号を増幅する位相感応光増幅器においては増幅された信号の光子数の分散σPSAは以下の(式11)で与えられる。ただし励起光と信号光は完全に位相差がなく同期が取れていると仮定する。
Figure 2012098911
ここで〈nin〉は入力光平均光子数、Gは位相感応光増幅器の利得、Δfは受光器に入射するパラメトリック蛍光の帯域である。Δfは、位相感応光増幅器の後方にフィルタを配置した場合にはフィルタの帯域、フィルタを設けない場合にはパラメトリック増幅媒質の帯域となる。(式11)の右辺第1項は増幅光のショット雑音、第2項はパラメトリック増幅効果で発生するパラメトリック蛍光のショット雑音、第3項は増幅光とパラメトリック蛍光のビート雑音、第4項はパラメトリック蛍光間のビート雑音に相当する。
(式11)に示す光子数の分散σPSAを用いて、増幅光をPDで検出したときの雑音電力は、受信系の帯域をB、電流電圧変換を行うための負荷抵抗をRとすると次の(式12)で与えられる。ただしここでは簡単のためにPDの量子効率は100%であると仮定する。
Figure 2012098911
信号電力はマーク率1/2、タイムスロットTのNRZ符号を検出する場合を考えると(式13)で与えられる。
Figure 2012098911
これらの式から信号のS/N比は、(式14)で与えられる。
Figure 2012098911
位相感応増幅の利得Gが大きくなると、第3項の増幅光とパラメトリック蛍光のビート雑音が支配的となり、S/N比は(式15)に収束する。
Figure 2012098911
一方、増幅器を用いない入力光のS/N比は(式16)で与えられる。
Figure 2012098911
(式15)及び(式16)から位相感応光増幅器の雑音指数Fが(式17)のように求まる。
Figure 2012098911
(式17)から分かるように、利得が大きい場合には雑音指数Fは1に漸近し、S/N比劣化のない増幅が可能となる。実際にこのような低雑音な増幅を行うためには、GAWBS雑音や励起光の発生の際に用いるレーザー増幅器からのASE光の混入による雑音を避ける必要がある。従って、3次非線形媒質として光ファイバを用いた従来技術ではこれらの付随的な雑音を避けることができない。
一方、2次非線形媒質としてPPLN導波路を用いた構成ではこれらの問題を避けることができ、低雑音な増幅を行うことが可能である。しかし現状の技術では、PPLN導波路を用いた位相感応光増幅器だけで十分な利得を得ることは困難であった。
これらの問題点を解決する構成を鋭意検討した結果、2次非線形媒質で位相感応増幅を行った後にレーザー増幅器で更に増幅を行ってバンドパスフィルタで不要な背景光を除去するようにしても、位相感応光増幅器の低雑音性を活かしながら、従来のレーザー増幅器のみを用いた場合に比較してS/N比の劣化を抑制できることを見出した。以下に本実施形態に係る構成における、増幅信号光のS/N比の振る舞いについて説明する。
前述の位相感応光増幅器で増幅された信号を更にレーザー増幅器で増幅した場合、出力は強度の強い順に、第1の出力成分である増幅された信号光、第2の出力成分であるパラメトリック蛍光がレーザー増幅器で増幅された光、第3の出力成分であるレーザー増幅器が発生するASE光からなると考えられる。このときの増幅器からの光子数の分散は、以下の8個の成分の総和で与えられると考えられる。
[1]第1の分散:第1の出力成分(増幅された信号光)のショット雑音
[2]第2の分散:第2の出力成分(パラメトリック蛍光がレーザー増幅器で増幅された光)のショット雑音
[3]第3の分散:第3の出力成分(レーザー増幅器が発生するASE光)のショット雑音
[4]第4の分散:第1の出力成分と第2の出力成分とのビート雑音
[5]第5の分散:第1の出力成分と第3の出力成分とのビート雑音
[6]第6の分散:第2の出力成分と第3の出力成分とのビート雑音
[7]第7の分散:第2の出力成分同士のビート雑音
[8]第8の分散:第3の出力成分同士のビート雑音
例えば、本実施形態で用いたPPLN導波路のパラメトリック利得の帯域は、60nm程度と極めて広い。従って、仮に第2の出力成分(パラメトリック蛍光がレーザー増幅器で増幅された光)のスペクトル密度が成分1よりも小さいとしても、帯域全体のパラメトリック蛍光がレーザー増幅器で増幅された光を積分すると、第6乃至第7の分散のうち第7の分散である第2の出力成分同士のビート雑音の寄与が無視できなくなってしまう。
このため本実施形態に係る光受信装置では、信号成分の帯域以外の第2の出力成分(パラメトリック蛍光がレーザー増幅器で増幅された光)の寄与及び第3の出力成分(レーザー増幅器が発生するASE光)の寄与が小さくなるようにバンドパスフィルタをレーザー増幅器の後に配置し、信号の帯域だけの光を取り出すようにした。
雑音の見積もりを容易にするために、光子数の分散を与える成分のうち強度の大きなものを考える。雑音として寄与が大きい成分は、第4の分散と第5の分散の成分であると考えられる。斯かる近似に基づいて光子数の分散への寄与が大きい成分の大きさを求めると(式18)のとおりとなる。
Figure 2012098911
ただし、ここでGは位相感応光増幅器の利得、Gはレーザー増幅器の利得である。(式18)から本実施形態におけるS/N比を計算すると、(式19)のようになる。
Figure 2012098911
(式19)で示したS/N比と(式16)で示した入力光のS/N比との比から本実施形態の雑音指数Fが(式20)のように求まる。
Figure 2012098911
ここで、FPSAは上述した位相感応光増幅器の雑音指数、FPIAはレーザー増幅器の雑音指数である。
PIAは、理想的なレーザー増幅器の場合、3dB(FPIA=2に相当)、通常のEDFAの場合、4dB〜5dB程度(FPIA=2.5〜3.2に相当)の値である。即ち、本実施形態に係る構成により、後段に接続したレーザー増幅器の雑音指数の寄与は1/Gだけ小さくなることになり、位相感応光増幅器の利得Gが大きい場合には全体の雑音指数は位相感応光増幅器の雑音指数に漸近することが分かる。従って、本実施形態により、位相感応光増幅器の低雑音性を活かしながら、全体としては受信装置等の前置増幅器として使用するのに十分な利得を得ることが可能になる。
また、パラメトリック蛍光やASE光のような背景光同士のビートによる雑音(即ち、上記第6乃至第8の分散)の影響を小さく抑えるためには、信号の帯域以外の背景光を取り除くためにバンドパスフィルタを備えることが望ましい。バンドパスフィルタを配置する位置としては、位相感応光増幅器とレーザー増幅器との間や、レーザー増幅器の後段が考えられるが、特に、レーザー増幅器の後段のみに配置する構成とすると、バンドパスフィルタの挿入損失によるS/N比の劣化を少ない部品点数で抑えることができ、効果的である。
再度図24を参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、本発明の原理確認を行うために、信号光2420と基本波光2421とを、波長1.54μmの光源から発生させた。また、光受信装置の感度を検証するために、信号光のパワーを減衰させて、光受信装置に入射した。
本実施形態で使用した位相感応光増幅器の構成を説明する。本実施形態では、微弱な基本波光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)2401−2を用いて、基本波光2421を増幅する。増幅した基本波光を第1の二次非線形光学素子2402−1に入射して第二高調波2422を発生させる。次いで、第2の二次非線形光学素子2402−2に信号光2420と第二高調波2422とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光2423の一部を光分岐部2403で分岐し光検出器2408−1で受光したのちに位相同期ループ回路(PLL)2409により位相同期を行った。EDFA2401−2の前に配置した位相変調器2410を用いて正弦波により微弱な位相変調を基本波光2421に施した。光検出器2408−1とPLL回路2409とにより、その位相変調の位相ずれを検出して、EDFA2401−2の前に配置したPZTによる光ファイバ2411の伸長器の駆動電圧と位相変調器2410のバイアス電圧とにフィードバックを行う。これにより、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
基本波光2421は、EDFA2401−2を用いて増幅される。増幅された基本波光2421は、第1の二次非線形光学素子2402−1に入力される。本実施形態では、EDFA2401−2から発生する広帯域なASE光が第1の二次非線形光学素子2402−1により変換されることを防ぐために、EDFA2401−2と第1の二次非線形光学素子2402−1との間にバンドパスフィルタ2404−2を挿入し、不必要なASE光をカットした。
図24に示すように、本実施形態に係る二次非線形光学素子(2402−1、2402−2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路(2405−1、2405−2)を備える。PPLN導波路(2405−1、2405−2)は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られる。従って、図示するような構成にすることで高い波長変換効率を得ることができる。
PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。
第1のPPLN導波路2405−1からは基本波光と第二高調波が出射される。第二高調波2422と基本波光2421とを、ダイクロイックミラー2406−1を用いて分離した。
ダイクロイックミラー2406−1を透過した0.77μmの第二高調波2422は、この波長、即ち0.77μmの波長においてシングルモード伝搬特性をもつ偏波保持ファイバ2407を介して、第2の二次非線形光学素子2402−2へと導かれている。偏波保持ファイバ2407を介して第2の二次非線形光学素子2402−2へ導かれた第二高調波2422は、ダイクロイックミラー2406−2により波長1.54μmの信号光2420と合波される。ダイクロイックミラー2406−2は第二高調波2422のみを透過させるので、第1のPPLN導波路2405−1から出射され、ダイクロイックミラー2406−1及び偏波保持ファイバ2407を通ってくる波長1.54μm付近の基本波光2421とASE光との残留成分を効果的に取り除くことができる。
信号光2420と第二高調波2422とは合波され、第2のPPLN導波路2405−2に入射される。第2のPPLN導波路2405−2は、第1のPPLN導波路2405−1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
第2のPPLN導波路2405−2から出射された光は、ダイクロイックミラー2406−3により励起光である第二高調波と増幅された信号光2423とに分離される。このときも第二高調波と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
本実施形態においては、波長の異なる2つの光を分離又は合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーを使用しているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。
逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成とする場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な特定波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。
本実施形態は、このような考え方に基づいて構成されている。このような構成を取ることで特に位相感応光増幅器のS/N比を付随的に劣化させるEDFAからのASE光の混入を完全に抑圧することができ、低雑音の増幅が可能になる。
本実施形態では、第2のPPLN導波路2405−2で得られるパラメトリック利得が11dBであり、第2のPPLN導波路をモジュール化したときのファイバ間の挿入損失が5dBであったため、位相感応光増幅器の利得は6dBであった。このようにして位相感応増幅された信号光2423をEDFA2401−1に入射して更に増幅を行った。EDFAからの出力は帯域1nmのバンドパスフィルタ2404−1を通し、位相感応光増幅器から発生するパラメトリック蛍光がEDFAで増幅された光とEDFAから発生するASE光とのうち信号帯域外にある成分を除去した。
図25に、本実施形態を用いて光増幅を行ったときの光スペクトルの例を示す。図25において、実線は本実施形態によって増幅された信号の光スペクトルであり、点線は従来技術の光増幅器によって増幅された信号の光スペクトルを示す。
従来技術との比較を行うためにEDFAとバンドパスフィルタだけで増幅した場合の光スペクトルも同時に測定を行った。入力信号は周波数15GHzの正弦波で変調した信号を−20dBmまで減衰させて入射し、トータルの利得が18dBとなるようにして比較を行った。
図25から分かるように、増幅された信号光の周りに観測される、背景光(ASE光やパラメトリック蛍光が増幅された光)のレベルが、位相感応光増幅器で増幅してからEDFAで増幅することにより低く抑えられていることが分かる。このように、本実施形態では、レーザー増幅器を用いているのにもかかわらず、その前段に位相感応光増幅器を配置することで、従来のレーザー増幅器と同等の利得を得ながらも、従来よりも雑音レベルを低く抑えることが可能になり、従来よりも高いS/N比を得ることが可能になる。
更に図26に、上述の、増幅された、周波数15GHzの正弦波で変調した信号を、市販のOEコンバータ内蔵の電気のスペクトラムアナライザで光電変換しその雑音フロアを評価した結果を示す。
図26において、実線は本実施形態によって増幅された信号を光電変換した電気スペクトルを示し、点線は従来技術の光増幅器によって増幅された信号を光電変換した電気スペクトルを示す。光のS/N比が向上するだけでなく、光電変換した後も従来のEDFAで増幅した場合に比べて1GHzから14GHzのすべての帯域においてノイズレベルが1.5dB程度低く抑えられていることが確認できた。
従来の光ファイバを用いた位相感応光増幅器においてはGAWBSによる雑音により一部の帯域でのみEDFAよりも低雑音にならないのに対して、本実施形態では、広い周波数帯域に渡っての低ノイズの増幅を十分な利得を得ながらも実現することができた。このような低雑音な増幅特性は、本実施形態が、光受信器としてだけでなく、光中継器として作動する光増幅器としても有用であることを示している。
次に、光受信装置としての有効性を確認するために、信号光を40Gb/sのNRZ信号で変調し、入力した場合の受信特性を評価した。このとき、後段のEDFAの利得は、バンドパスフィルタを介してPDに入射するパワーが0dBmとなるように設定した。本実施形態における位相感応光増幅器の利得は6dBであるので、入力光のパワーが例えば−30dBmの場合、EDFAの利得は24dBに設定していることになる。また、比較のために従来技術であるEDFA及びバンドパスフィルタのみを前置増幅器として用いた場合についても評価を行った。この場合においてもバンドパスフィルタを介してPDに入射するパワーが0dBmとなるように設定したので、入力光のパワーが例えば−30dBmの場合、EDFAの利得は30dBに設定していることになる。
図27に、入力信号を光アッテネータで減衰させて、誤り率測定から本実施形態の受信感度を評価した結果を示す。図27は、受信感度を評価するための誤り率特性を示す図である。例として、10−9の誤り率を得るための入射パワーが、従来のEDFAを用いた場合は−28.8dBmなのに対して、本実施形態では約1.5dBm低い−30.3dBmで同じ誤り率が得られた。このように、本実施形態による低雑音な光増幅を利用した光受信により、受信感度の向上が得られることが確認できた。斯かる効果は広い周波数帯域にわたって低雑音性が得られる本発明の構成によって始めて実現できるものである。
なお、本実施例では、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成としたが、基本波光の生成方法は、前述の第3乃至第5の実施形態で説明した方法を用いても良い。
さらに、本実施例では、光受信装置を例にとり、低雑音性と高利得性を両立できる構成について説明したが、線形中継器として用いる場合であっても、中継間隔を延ばさなければならないなど、低雑音性と高利得性を両立させる必要がある場合には、本実施形態で述べたような位相感応アンプとEDFAとを多段に接続させる構成は極めて有用である。
(第7の実施形態)
図28Aおよび図28Bは、本発明の第7の実施形態に係る位相感応光増幅器の説明図である。図28Bに示すように、本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)2801を用いて、基本波光2821を増幅する。増幅した基本波光を第1の二次非線形光学素子2802−1に入射して第二高調波2822を発生させる。第2の二次非線形光学素子2802−2に信号光2820と第二高調波2822とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
図28Bに示す構成の詳細は後述するとして、このような構成をとると以下に述べるような従来技術では得られない効果が得られる。本実施形態では、基本波光として、波長が1.54μmのCW光を用いる。入力信号光としては、図28A中に示すように、基本波光波長に相当する光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様)が入力される。
信号光群と基本波光とは互いに位相同期しており、そのような信号光、基本波光はたとえば同一の光源を分岐して、一方を光変調器により側帯波を生じさせることで生成することができる。
図28Bに示すように、基本波光2821は、位相変調器2810、PZTを用いたファイバ伸長器2811を通過してエルビウム添加光ファイバ増幅器(EDFA)2801で増幅される。増幅後、基本波光は、バンドパスフィルタ2804を用いて、EDFA2801から発生する余分な自然放出光を除去したのちに第1の二次非線形光学素子2802−1内のPPLN導波路2805−1に入射され、基本波光2821の第二高調波である波長0.77μmの光2822に変換される。
信号光群2820と、基本波光の第二高調波2822とは、ダイクロイックミラー2806−2で合波され、次いで、第2の二次非線形光学素子2802−2内のPPLN導波路2805−2に入射される。PPLN導波路2805−2におけるパラメトリック増幅により信号光群が増幅される。
信号光群の増幅動作について、以下で詳細に説明する。本実施形態では、対となる信号光の2つの波長における位相が同じである光をそれぞれ入射する。例えば信号s+1とs-1は同じ位相情報を持っていると仮定する。
二次非線形光学素子に励起光(本実施形態では基本波光の第二高調波2822)、信号光、およびアイドラ光の3つの光を入射して三者の非線形相互作用により光増幅を行う、非縮退パラメトリック増幅においては、三者のそれぞれの位相が次の(式21)を満たすときに、信号光、アイドラ光の両者のパラメトリック増幅が行われる。
φSH=φ+φ+2nπ(nは整数) (式21)
ここでφSH、φ、φはそれぞれ、基本波光の第二高調波、信号光、アイドラ光の位相である。信号とアイドラが本実施形態の信号s+1と信号s-1の対のように同じ位相を有していると仮定すると、φ=φとして
φ=φSH/2+nπ=φ+nπ(nは整数) (式22)
ただし、ここでφは基本波光の位相である。第二高調波の位相φSHが2φで表されることを用いた。
(式22)から分かるように信号光は、基本波光と位相が同じかπだけずれた場合、直交する2つの位相成分のうち励起光と同相の場合のみ、パラメトリック増幅が起こることがわかる。なお、基本波光と直交する位相を持つ信号対を入射した場合は、信号光は減衰されることになる。
このように、信号として、同じ位相情報をもつ信号光対を入射すると、位相感応性を持つパラメトリック増幅が行われる。本実施形態では信号光と励起光をファイバ部品で接続しているために、温度変動や振動によるファイバの伸び縮みをPLL技術により吸収している。本実施形態では、光周波数差だけ対称に離れた信号光の対はすべて位相同期しているため、複数の信号光群を増幅することが可能である。
図29および図30は、位相感応光増幅で用いる複数波長の信号光・励起光のスペクトルを模式的に示す図であり、図29は、図5で示した従来のファイバレーザー増幅器および非線形媒質として光ファイバを利用した構成を用いた場合を示し、図30は、図28Bで示す本実施形態による構成を用いた場合を示す図である。
従来の光ファイバを用いた位相感応光増幅器では四光波混合を利用する。このため、パラメトリック光増幅を行うための励起光と複数波長の信号光との波長が位相整合条件を満たすためには、これらの波長は、近接した波長にならざるを得ない。図29で例示するように、複数波長の信号光2901および励起光2902が同じ1.55μm帯の波長帯を有し、励起光2902を光ファイバ増幅器で増幅する際、励起光波長の近傍に光ファイバ増幅器によりASE光2903が発生してしまう。
信号波長域にASE光を発生させないために複数波長の信号光が光ファイバ増幅器を通らないようにする構成にすることは可能である。しかしながら、励起光と複数波長の信号光とを合波する際の両者の波長が接近しているために、波長選択性の良い光フィルタを実現することは困難であり、ASE光を完全にカットすることができない。この結果、信号波長帯域に発生しているASE光が複数波長の信号波長に重畳してしまい、ASE光の混入により複数波長の信号光のS/N比が劣化してしまうこととなる(図29(c))。
一方、本実施形態による構成では、光通信で用いる微弱な光パワーから、パラメトリック光増幅を利用するのに十分なパワーを得るために、基本波光3002を光ファイバ増幅器により増幅する。このときに基本波光3002の波長近傍にASE光3003が重畳する(図30(b))。本実施形態に係る構成においては、光増幅を行ったのちに、ASE光3003が重畳された基本波光3002を、第1の二次非線形光学素子に入射し第二高調波3004を発生させる。このときに励起光として使用される第二高調波3004の波長帯域には、わずかにASE光の第二高調波が発生する以外には雑音となる広帯域のASE光は発生しない。第二高調波3004の波長は基本波光3002の波長の半分であり、両者の波長は十分に離れている。従って、基本波光3002と基本波光の第二高調波3004とから第二高調波3004のみを分離するような高い消光比を持ったフィルタをダイクロイックミラー等で実現することは比較的容易である(図30(c))。そのようなフィルタを第1の二次非線形光学素子の出力に接続することにより、励起光波長帯域の基本波光とASE光とを完全に取り除くことができる。次いで、複数波長の信号光3001と第二高調波3004のみとを合波して第2の二次非線形光学素子に入射し、非縮退パラメトリック増幅による位相感応増幅を実現することができる(図30(d))。
さらに、本実施形態による動作を行う中で以下のような従来技術にはない以下の利点があることも明らかになった。
従来の光ファイバ中の四光波混合を利用して複数波長の信号光の位相感応増幅を行う構成では、非特許文献7に示されるように、励起光波長を中心として複数波長の信号光との間の四光波混合だけが起きるわけではなく、位相整合に対する条件が様々な波長間で満たされてしまう。従って、例えば励起光を中心にして信号光が別の波長へ変換されるような副次的な過程も生じてしまい、増幅された信号光がつぎつぎとコピーされて複数の信号が生成されてしまう(図29(c)の2904)。
このために増幅信号光のパワーが散逸してしまい、所望の信号光を増幅できるパワーが制限されてしまう。さらに、副次的に生成される信号は複数波長の信号光の波長の間等に生成されてしまうことから、副次的に生成された余分な信号を除去することには非常な困難が伴う。分離のために超狭帯域の光フィルタなどを用いる方法が考えられるが、光フィルタの帯域を狭くすればするほどフィルタによる信号の損失が増大する。複数波長の信号光の波長多重数が多くなればなるほど、副次的に生成される信号の数量も増加する。この結果、副次的な信号が、元の信号光の帯域内に重畳される場合もある。このような場合は、光フィルタによる分離などは不可能であり光信号のS/N比が劣化する。
これに対し、本実施形態では、第2のPPLN導波路へは信号光と第二高調波のみが入力されるので、従来技術のような不必要な波長変換過程が生じることがない。本実施形態では出力パワーを+22dBmまで大きくしても出力の飽和がみられず安定的な増幅を行うことができた。また、四光波混合を用いた場合のように副次的に余計な信号が生成されるようなことはなかった。
再度図28Aおよび図28Bを参照しながら、本実施形態の構成を詳しく述べる。本実施形態では、基本波光2821は、エルビウム添加ファイバレーザー増幅器(EDFA)2801を用いて増幅される。増幅された基本波光は、第1の二次非線形光学素子2802−1に入力される。本実施形態では、EDFA2801から発生する広帯域なASE光が第1の二次非線形光学素子2802−1により変換されることを防ぐために、EDFA2801と第1の二次非線形光学素子2802−1との間にバンドパスフィルタ2804を挿入し、不必要なASE光をカットした。
本実施形態の、二次非線形光学素子(2802−1,2802−2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路(2805−1,2805−2)を備える。
PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。
第1のPPLN導波路2805−1から出射した、第二高調波2822と基本波光2821とは、ダイクロイックミラー2806−1を用いて分離した。
ダイクロイックミラー2806−1で反射された波長0.77μmの第二高調波2822は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバ2807を介して、第2の二次非線形光学素子2802−2へと導かれている。このとき、ダイクロイックミラー2806−1で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバ2807に入射されることになるが、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不要な光を効果的に減衰させることができる。
偏波保持ファイバ2807で導かれた第二高調波は、ダイクロイックミラー2806−2を用いて波長1.54μmの信号光2820と合波される。ダイクロイックミラー2806−2は第二高調波のみを反射させるために、第1のPPLN導波路2805−1から出射され、ダイクロイックミラー2806−1および偏波保持ファイバ2807を通ってくる波長1.54μm付近の基本波光とASE光との残留成分を効果的に取り除くことができる。
信号光2820と第二高調波2822とは、ダイクロイックミラー2806−2で合波された後、第2のPPLN導波路2805−2に入射される。第2のPPLN導波路2805−2は、第1のPPLN導波路2805−1と同等の性能、位相整合波長を有しており、非縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
本実施形態では、2つのPPLN導波路(2805−1,2805−2)はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。
第2のPPLN導波路2805−2から出射された光は、ダイクロイックミラー2806−3により励起光である第二高調波と増幅された信号光とに分離される。このときも第二高調波と増幅された信号光とは、波長が全く異なるために、出力において不必要な第二高調波成分を効果的に取り除くことができる。
位相感応増幅では、励起光と信号光の位相を同期させることが必要であるが、本実施形態では出力した増幅信号光の一部を光分岐部2803で分岐して光検出器2808で受光したのちに位相同期ループ回路(PLL)2809により位相同期を行った。EDFA2801の前に配置した位相変調器2810を用いて正弦波により微弱な位相変調を基本波光2821に施す。光検出器2808とPLL回路2809でその位相変調の位相ずれを検出して、EDFA2801の前に配置したPZTによる光ファイバの伸長器2811の駆動電圧と位相変調器2810のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
ところで、光コムを分波器で分波し変調器で変調した後に合波器で合波する場合、一般的には、変調による損失が大きいためS/N比が劣化してしまう。また、変調器を用いて光コムを発生する場合も、変調器の損失や複数搬送波への変換効率の分だけ光パワーが小さくなってしまい、S/N比が劣化してしまう。さらに、光パワーが減衰した光コムをEDFA等のレーザー光増幅器で増幅すると、自然放出光(ASE光)が混入してしまい、増幅に伴ってますますS/N比が劣化してしまう。
しかしながら、そのようなASE光が混入した信号光群を、本実施形態に係る増幅器で増幅した場合に、従来得られなかった特異な振る舞いを見せることを見出し、本実施形態を実現させるに至った。
図31Aおよび図31Bは、本実施形態に係る位相感応光増幅器を使用したときの効果を説明するための図であり、図31AはEDFAから発生させたASE光を意図的に混入させた信号光群の光スペクトルを示し、図31BはEDFAから発生させたASE光を意図的に混入させた信号光群を本発明の第7の実施形態に係る構成を用いた位相感応光増幅器で増幅したときの出力の光スペクトルを示す。
図31Aおよび図31Bから分かるように、本実施形態に係る位相感応光増幅器で増幅することにより、増幅された信号光とASE光との差、すなわち光S/N比(OSNR)が驚くべきことに入力に比べて3dBほど向上していることが分かる。
一例として、中心波長から対称に離れた信号対の内中心波長よりも短い波長を持つ1つの信号に着目する。入力光の信号光は0.01nmのレゾリューションで測定したところ、図31Aに示す通り23dBのOSNRを有していた。一方、図31Bに示す通り増幅後の出力信号は26dBのOSNRを有しており光S/N比が入力光に比べて3dBほど改善していることがわかる。なお、本実施形態に係る増幅器は偏波依存性があるため、公平なS/N比の評価を行うために、入力のスペクトルを評価する際に偏光子を挿入して、本来増幅されるはずの偏波成分のみの比較を行っている。
この驚くべき現象が生じる理由について、以下のように、説明することができる。
まず、励起光の2倍の波長と信号光の波長とが同じになる縮退点を除外した、非縮退点における動作について考える。本実施形態では、励起光と位相関係の確定した信号光対を入力している。本実施形態のように信号光波長とアイドラ光波長とに相当する波長において同一位相を持つ信号光対を入射した場合、上述のように励起光との位相さえ同期できれば、信号光の全ての成分が増幅される。
また、光ファイバを用いたPSAで見られるように、光ファイバやPPLNを用いた何らかの波長変換プロセスにより信号光と共役な逆位相情報φ=−φ+α(αはファイバ等の光学長で決まる位相)を持つアイドラ光を生成し、信号光とアイドラ光を入力した場合もSH光、信号光、およびアイドラ光間の位相関係が次の(式23)を満たすときにはパラメトリック増幅が行われる。
φSH=φ+φ+2nπ=φ−φ+α+2nπ=α+2nπ(ただし、nは整数) (式23)
すなわち共役な信号光とアイドラ光を入射した場合、ファイバ等の光学長で決まる位相αを励起光と合わせれば、信号光の全ての成分が増幅される。このように位相関係が確定している信号光と励起光を入射した場合は適当な光学長の調整により信号光の全ての成分が増幅される。
次にASE光の入力に対する増幅を考えると、第二高調波の位相φSHからの相対的な位相を考えた場合に、ASEはランダムな位相の光を発生するため、励起光と同位相の成分と直交位相の成分とを同等に含んでいると考えられる。
特に信号光とアイドラ光を入射した場合のそれぞれの信号、アイドラ光と同じ波長におけるASEの増幅を考えると、信号波長に発生するASEの位相φS−ASEとし、アイドラ波長に発生するASEの位相をφi−ASEとしたとき、次の(式24)を満たす成分のみがパラメトリック増幅される。
φSH=φS−ASE+φi−ASE+2nπ(ただし、nは整数) (式24)
ASEの場合、上述の位相関係が確定した信号-アイドラとは異なり、信号波長、アイドラ波長においてそれぞれ発生するASEの位相φS−ASE、φi−ASEはランダムであるので相互に相関がない。また、φS−ASEおよびφi−ASEは、第二高調波の位相φSHとの間にも相関はない。従って、φS−ASEを固定して考えた場合に、ランダムな値を取りうるφi−ASEのうち第二高調波の位相φを基準にしてφS−ASEと共役な位相をもつ成分のみがパラメトリック増幅を受けることになる。
このようなASEの位相のランダム性を考慮すると上記の相関のある信号光に比べると、ASEに対する利得はその半分になることが分かる。従って、光スペクトルで比較した場合のS/N比は、本実施形態に係る光増幅器によって改善することが可能になる。
ちなみに光ファイバを用いた非縮退パラメトリック増幅では、このような効果を得ることは難しい。その理由は、光ファイバの四光波混合を用いた増幅では、励起光、信号光、およびアイドラ光の全てが1.55μm帯にあり、通常EDFAなどを用いて励起光を発生するために、励起光波長に近接した信号光やアイドラ光の波長の帯域にEDFAから発生するASE光が混入してしまい、かつ励起光のパワーが信号光やアイドラ光に比べて相対的に大きいことが多いので、外部から混入するASE光による雑音の影響が大きいからである。従って、本実施形態のように、入出力に対してS/N比を改善できるような顕著な効果を得ることができない。
これに対して、本実施形態では、EDFAで基本波光を増幅したのちに第二高調波に変換して、1.55μm帯のASE光も除去してから、パラメトリック媒質に入射し非縮退パラメトリック増幅を行っているので、励起光の発生に用いるEDFAから発生するASE光の混入を防ぐことができる。よって、本実施形態では、信号光と、アイドラ光とに対する位相感応性を利用したS/N比改善効果を得ることができる。
次に、上記の説明で除外した励起光の2倍の波長と信号光の波長とが同じになる縮退点における動作について説明する。
図28Aに示すように、本実施形態では、励起光の2倍の波長と同じ波長の信号光も入射しており、この波長においても図31Aおよび図31Bの光スペクトルで見る限りでは、S/N比は改善している。しかし、以下に述べるように、励起光の2倍の波長と信号光の波長とが同じになる縮退パラメトリック増幅を行う場合において、光電変換したのちの入出力を比較してS/N比が向上することはない。縮退パラメトリック増幅においては信号光位相φと励起光位相φとの間に次の(式25)が成り立つときに増幅が行われる。
φ=φSH/2+nπ=φ+nπ(ただし、nは整数) (式25)
すなわち、信号光は励起光と同相の成分のみが増幅される。ASE光が入力された場合も同様であり、ASE光の位相がランダムであることを考えると、励起光と位相同期した信号光が入射された場合に比べて利得はその半分になる。従って、光のパワーで見たときのS/N比は3dB改善することになる。この点は非縮退点における動作と変わらない。
縮退点における動作では、入力されたASE光のうち信号光と同相の成分は増幅され、直交位相成分は減衰する。この直交位相成分が増幅されないことが光パワーで見たときの利得の違いとして現れることになるのだが、もともと信号光と直交位相をもつ成分は信号光と干渉しても強度雑音を発生することはない。一方、信号光と干渉し強度雑音の原因となる、ASE光のうちの信号光と同相成分は、信号と同様の利得を受けて増幅される。従って、縮退点における位相感応パラメトリック増幅では、信号光と干渉するASE光の成分が減るわけではないので、光信号を光電変換したあとのS/N比は変わらないのである。
続いて、本実施形態で採用する非縮退パラメトリック増幅において、光電変換後のS/N比がどのような振る舞いをするかについて述べる。上述のように非縮退パラメトリック増幅において、ASE光の受ける利得は信号光に比べて半分となる。このときの増幅されたASE光の位相に注目すると、上述のように信号光とアイドラ光との波長にそれぞれ入力されるASE光成分のうち、次の(式26)を満たす成分のみが増幅される。
φSH=φS−ASE+φi−ASE+2nπ(ただし、nは整数) (式26)
縮退点での動作では、入力されたASE光のうち励起光と同相の成分のみが増幅されていたのに対して、非縮退点での動作では、信号光波長とアイドラ光波長とにおけるASE光の位相が共役な関係になることのみが増幅に必要な条件になっており、増幅されたASE光、信号光、およびアイドラ光間の位相関係は特に規定されない。従って、縮退点での動作とは異なり、非縮退点での動作では増幅されたASE光は、信号光と同相位相の成分を、信号光の直交位相成分と同等に含んでいると考えられる。よって、入出力ともASE光の位相はランダムであり、かつASE光の受ける利得は信号の受ける利得の半分であるので、光電変換後のASE光とのビート雑音によって決まるSN比は、3dB増幅後に改善することになる。
縮退動作との比較で考えると、非縮退動作では強度雑音に寄与する同相のASE光の強度は,縮退動作における同相のASE光の強度の半分となり、増幅後のASE光全体のパワーは縮退動作時と同じとなるので、増幅されたASE光のうち同相の成分のみが信号との干渉による強度雑音を起こすことを考えれば、非縮退動作では、縮退動作に比べてSN比が3dB改善することになる。
このことを確認するために本発明の増幅器に入力した光コム信号と増幅後の光コム信号においてそれぞれ所望の1つの搬送波をバンドパスフィルタで切り出し、光アッテネータで平均パワーを同じくしたのちに、O/Eコンバータを内蔵した電気スペクトラムアナライザを用いて、入出力における信号光とASE光のビート雑音のレベルを比較した。
図32Aおよび図32Bに、入出力における信号光とASE光のビート雑音のレベルを電気スペクトラムアナライザで測定した結果を示す。図32Aに示したように、縮退点のピークを観測した場合は、増幅器の入出力において、雑音レベルに違いが見られないのに対して、図32Bに示したように、非縮退点のピークを観測した場合、増幅により雑音レベルが3dB低くなっていること、すなわちS/N比が3dB改善されていることが確認できた。このように本実施形態によれば、レーザー増幅器などでS/N比が劣化した信号を増幅することにより、S/N比を入力よりも改善できるという極めて顕著な効果を得ることが出来る。
本実施形態に係る位相感応光増幅器に、データ変調を施した信号を入射して、本実施形態によるS/N比の改善効果を調べた。
図33に、光コムにデータ変調を施した信号を用いたS/N比改善効果を調べるための実験構成を示す。単一波長光源3301を光変調器3303で変調することにより発生した光コムを、LN変調器3305でBPSK変調を施し、図28Bに示した本実施形態による位相感応光増幅器に入射する。
実際の光コムの変調では、光コム発生とデータ変調時の損失を補償するために、後にEDFA等のレーザー増幅器を用いて信号を増幅する。この時にASE光による信号雑音が付加されてしまう。
本実施形態を評価する実験では、S/N比の改善効果を調べるために、データ変調を施した光コム信号に対し、EDFA3306を介して意図的にASE雑音を付加している。
位相感応光増幅器の基本波光は、光コムを発生するのに用いた単一波長光源3301を分岐して用いた。増幅前後の信号から非縮退点のピークを分波器で分離し、光減衰器で受信パワーを調整し、受信装置で受信した。
図34に測定した受信パワーに対する誤り率のデータを示す。光コム発生とデータ変調時の損失により光パワーが減衰した光コムをEDFA等のレーザー光増幅器で増幅すると、自然放出光(ASE光)が混入してしまい、増幅に伴ってS/N比が劣化してしまうという問題があった。図34に示した結果から、意図的にASE雑音を付加すると、ASE雑音を付加しない場合と同じ誤り率を得るためには必要な受信パワーが非常に大きくなることが分かる。
しかしながら、本実施形態に係る位相感応光増幅器に、意図的にASE雑音を付加した信号を入射して得られた出力信号のデータ誤り率は、元のASE雑音を付加された入力信号に比べ大幅な受信パワーに対する改善が見られた。10−9の誤り率で比べた場合、本発明に係る位相感応光増幅器を用いると、ASE雑音によるパワーペナルティを3dB改善するという顕著な効果が見られた。
Figure 2012098911
(第8の実施形態)
図35に本発明の第8の実施形態に係る位相感応光増幅器の構成を示す。単一波長光源3501に1.54μmのCW光を用い、変調器3503を用いて励起光の2倍の波長に相当する光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様)を持つ光コムを生成する。
本実施形態では単一波長光源3501と光変調器3503とから構成された光コム発生器を採用しているが、光源にモード同期レーザーを用いる方法や、光コム生成に非線形媒質を用いる方法などの他の方法を用いて光コムを発生させてもよい。
発生させた光コム信号の複数波長のうちの1波長から同じ光周波数差だけ対称に離れた対となる2波長が同じ光路に出力するように設計された分波器3504を用いて光コムの各波長を分離した。分波器には、アレイ導波路格子(AWG:Arrayed Waveguide Grating)に代表される導波路型の合分波器を用いてもよいし、MEMSを用いたWSS(Wavelength Selective Switch)に代表される空間光学系を用いた合分波器を用いてもよい。
分波器3504の各出力にはそれぞれ光変調器3505が接続されており、各信号光の対にデータ変調を施す。次いで、合波器3506を用いて各信号対を合波した後、EDFA等のレーザー増幅器3507で信号を増幅する。図35に示した構成においては、データ変調信号を合波した後一括で増幅しているが、例えばデータ変調に半導体の変調器を用いSOAなどの半導体増幅器を変調器に集積したデバイスを用いることができる場合は、図36に示すように各信号対をそれぞれレーザー増幅器で増幅した後、合波してもよい。
また、図35及び図36に示した構成では、光周波数差だけ対称に離れた対となる2波長が同じ光路に出力される分波器を用いてそれぞれの信号対に同じデータ変調を施しているが、図37に示すように光コムのそれぞれの波長を分離する分波器3704と、分波器の各出力にそれぞれ接続されたそれぞれ光変調器3705を用いて、光コムのうちの、同じ光周波数差だけ対称に離れた信号対を同じデータで変調する構成を用いてもよい。
光コムの生成過程では、変調器の損失や複数搬送波への変換効率の分だけ光パワーが小さくなってしまう。また、光コムを分波器で分波し変調器でデータ変調を施し、合波器で合波する場合、それぞれの構成要素の挿入損失により、元の光コムに比べて光パワーが著しく減衰してしまう。通常のレーザー媒質を用いた光増幅器で光ファイバでの伝送に必要なパワーまで増幅を行うと、光増幅器への入力パワーが小さいために信号のS/N比を著しく劣化させてしまう。位相感応光増幅器による低雑音な光増幅の原理は知られているものの、一般的に位相感応光増幅器では縮退パラメトリック増幅を用いるために、増幅できる信号波長は1つであり、複数の搬送波を同時に増幅することはできない。
しかし、本実施形態に係る位相感応光増幅器を用いることで、複数波長の光コムを低雑音で増幅することが可能となる。さらには、信号光とASE光とのビート雑音に起因するS/N比に関し、本実施形態に係る位相感応光増幅器を用いることで入力よりもS/N比を改善できるという顕著な効果を持つ。
位相感応光増幅器の基本波光は、光コムを発生するのに用いた単一波長光源を分岐して用いた。光コム信号を本実施形態による位相感応光増幅器に入射した。入出力それぞれの光S/N比(OSNR)と光電変換後のS/N比を調べた結果、入力信号のS/N比に比べて出力信号のS/N比は3dBのS/N比改善が見られた。本実施形態に係る構成を用いることで、強度雑音である信号光とASE光とのビート雑音によるS/N比を改善した。
このS/N比改善効果に加えて、本実施形態に係る構成を用いることで、直交位相を減衰させることによる位相チャープ成分の抑制効果の相乗効果が得られる。増幅特性を確認するために、増幅後の信号光を観測し時間波形を調べた。
図38A、図38B、および図38Cは、本実施形態による位相感応光増幅器によって増幅された信号の時間波形を説明するための図である。図38Aに励起光が入射しないときの入射信号光の出力波形を、図38BにPLLにより励起光位相と信号光の位相とが合うように設定したときの出力波形を、図38CにPLLにより励起光位相と信号光の位相とが90度ずれるように設定したときの出力波形を、それぞれ示す。
励起光位相と信号光位相とが90度ずれるように設定したときは、図38Cに示すように、信号のONレベルが減衰されている様子から位相感応増幅が達成されていることがわかる。また、信号のONとOFFレベルの間の過渡的な部分のみが増幅された波形が観測された。これは信号光に位相雑音が重畳されていることを示している。
例えば、データを重畳する光変調器として変調器中の片方のアームのみの位相変調を用いるタイプの変調器を用いると、データ変調器によりチャープが生じる。すなわちONとOFFの間を遷移するときに変調器の出力の位相が変動し、ON状態の時を基準にすると、直交位相成分が生じる。このために信号光位相と励起光位相とを直交させるように設定すると、位相チャープ成分のみが位相感応増幅されるという結果となる。このことはすなわち、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅できることを示している。
図35に示す構成を用いて、第2の実施形態における構成を用いて生成した信号を光ファイバに通して伝送を行った結果、強度雑音である信号光とASE光とのビート雑音の除去効果と位相チャープ成分の抑制効果により、伝送距離を3倍以上にすることができた。
次に、第8の実施形態の別構成について説明する。図39に、本発明の第8の実施形態に係る位相感応光増幅器の別構成を示す。単一波長光源3901と変調器3903とを用いて励起光の2倍の波長に相当する光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様の)を持つ光コムを生成する。光コムの生成過程での、変調器の損失や複数搬送波への変換による損失を補うためにEDFA等の通常のレーザー増幅器3904を用いて光コム信号を増幅する。位相感応光増幅器の基本波光としては、光コムを発生するのに用いた単一波長光源3901から分岐した信号を用い、光コム信号を本発明による位相感応光増幅器に入射して増幅した。
光コム信号を本発明による位相感応光増幅器に入射した。第7の実施形態で示した手法と同様の手法を用いて、入出力それぞれの光S/N比(OSNR)と光電変換後のS/N比を調べた結果、入力信号におけるS/N比に比べて、本実施形態に係る位相感応光増幅器の出力信号において3dBのS/N比改善が見られた。図39に示すように、通常のレーザー増幅器3904を用いて光コム信号を増幅した後、本発明における位相感応光増幅器を用いることで、S/N比の高い光コム信号を生成できた。
光コムのそれぞれの波長を分離する分波器3906と、分波器3906の各出力に接続されたそれぞれ光変調器3907を用いて、各コムに個別にデータ変調を施した後、光合波器3908を用いて光コム信号を1本の光ファイバに入射し、信号を伝送した。
本実施形態に係る位相感応光増幅器を用いることにより、S/N比の高い信号を生成できたので、伝送距離を増大させることができた。
(第9の実施形態)
位相感応光増幅器を光信号の送信器直後に用いるような、信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して基本波光として用いることができる。しかしながら、光伝送における中継増幅器や受信端での前置増幅器として位相感応光増幅器を用いる場合には、位相同期手段を用いて位相感応光増幅装置内の励起光位相と信号光位相とを(式1)の関係を満たすように同期させる必要がある。位相同期手段として、中心波長信号を用いた本発明の第9の実施形態に係る位相感応光増幅器の構成を図40に示す。
本実施形態では、複数波長の信号光の中心波長信号をCW光のパイロットトーンとして用いたデータ信号を、入力信号として用いる。光周波数を中心として同じ光周波数差だけ対称に離れた信号光の対(s+1とs-1、s+2とs-2、s+3とs-3、s+4とs-4、以下同様の)には2値の位相変調が加えられ、中心波長の信号は無変調でCW光のパイロットトーンとして用いることが可能な複数波長の信号を、信号光4030として用いている。
中心波長にCW光のパイロットトーンを持つ変調信号光4030が伝送媒体を通って伝送されてくる。伝送媒体には光ファイバを用いた。光ファイバ中の偏波回転を偏波コントローラ4020で補正した後、中心波長のみを切り出すノッチ型のフィルタ4021を用いてCW光のパイロットトーンのみを分離した。
信号の光強度は伝送光ファイバによる光強度の損失のため、光強度が極めて小さくS/N比が劣化している。分岐させたCW光のパイロットトーンをアッテネータ4011で光強度を調整した後、サーキュレータ4012を通して位相感応光増幅装置内の基本波光源4013に光注入同期を行った。基本波光源4013にはDFB型の半導体レーザーを用いた。
アッテネータ4011を用いて基本波光源4013に入力する光強度を変化させ、光スペクトルアナライザで様子を観測したところ、光強度を数十μWとした時に半導体レーザーの波長がパイロットトーン波長に引き込まれている様子が観測され、位相感応光増幅装置内の基本波光源がパイロットトーンに位相同期されることが分かった。これにより、S/N比の劣化した信号光のパイロットトーンからS/N比のよい励起光を生成することができた。
光ファイバ中を伝送されてきた複数波長の信号は、光ファイバ中の分散効果により対称に離れた信号光の対の間の位相にずれが生じている。この位相のずれを補償するために分散補償(調整)媒質4022を位相感応光増幅器内に構成した。分散補償(調整)媒質には、LCOSなどの液晶を用いた位相調整器を用いた。逆分散を持つファイバを用いるなどの別の手段を用いて位相を調整してもよい。位相調整器(図示せず)により、信号光の対の間の位相を合わせた。
信号光のパイロットトーンに位相同期した基本波光を用いて、第7の実施形態で説明した位相感応増幅構成を用いて光増幅を試みた所、第1の実施形態と同様の特性結果が得られた。本実施形態による構成をとることにより、信号光を発生する光源が位相感応光増幅部の近くに配置されていない中継増幅や受信端での前置増幅器においても、位相同期手段を用いることで位相感応増幅が行うことができた。
本実施形態においては、縮退波長の信号をパイロットトーンで位相同期するが、他の方法を用いてもよい。縮退信号の増幅に関して説明した第3乃至第5の実施形態に示した手法のうちのいずれかの位相同期手法及び搬送位相抽出手法を用いてもよい。
(第10の実施形態)
図41に本実施形態の構成を示す。本実施形態では、第1の実施形態と同様に1.54μmの信号を増幅するように装置を構成した。2つのPPLN導波路4105−1,4105−2を用いて、第二高調波4122を発生させ縮退パラメトリック増幅を行う点は第1の実施形態と同じである。相違点は、基本波光4121から第二高調波4122を分離する方式および第二高調波4122と信号光4120とを合波する方式である。
本発明によれば光ファイバ増幅器から発生するASE光に起因する信号光のS/N比の劣化を抑制しながら位相感応増幅を行うことができるが、本実施形態ではその効果を有効に利用できるようにした。本実施形態においても、第二高調波4122の分離ならびに第二高調波4122と信号光4120との合波にはダイクロイックミラー4106−1,4106−2を用いている。
一般的に、波長の異なる2つの光を分離または合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーがよく使用されているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成の場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。
不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。本実施形態では、そのような考え方に基づいて装置を構成した。
光分岐部4103−1で、波長1.54μmの基本波光4121を信号光4120から分岐し、位相同期のためのLN位相変調器4110、PZTによる光ファイバ伸長器4111を介して、EDFA4101で増幅する。増幅した基本波光を、第1の二次非線形光学素子4102−1中の第1のPPLN導波路4105−1に入射し第二高調波4122を発生させる。
本実施形態においては、第1のPPLN導波路4105−1から出射される基本波光とその第二高調波から第二高調波4122のみを効果的に取り出し、EDFA4101から発生するASE光を効果的に除去するために、第1のPPLN導波路4105−1の後に、1.55μm帯を反射し、0.77μm帯を透過するダイクロイックミラー4106−1を設置した。
波長が0.77μmである第二高調波4122は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバ4107を介して、第2の二次非線形光学素子4105−2へと導かれている。第1の実施形態と同様に、0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、不用な波長1.54μm付近の基本波光およびASE光を効果的に減衰させることができる。
偏波保持ファイバ4107で導かれた第二高調波4122は、ダイクロイックミラー4106−2を用いて波長1.54μmの信号光と合波される。本実施形態においては、偏波保持ファイバを通ってくる波長1.54μm付近の基本波光およびASE光の残留成分を効果的に取り除くことができるように、1.54μm帯を反射し、0.77μm帯を透過するダイクロイックミラーを用いた。
信号光4120と第二高調波4122とは合波された後、第2のPPLN導波路4105−2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
第2のPPLN導波路4105−2から出射された光は、ダイクロイックミラー4106−3により第二高調波と増幅された信号光とに分離される。本実施形態では、ダイクロイックミラー4106−3に、出力に不用な第二高調波を効果的に取り除くために0.77μm帯を反射し、1.54μm帯を透過するダイクロイックミラーを用いた。
本実施形態においても、第1の実施形態同様、出力した増幅信号光の一部を光分岐部4103−2で分岐して光検出器4108で受光した後に位相同期ループ回路(PLL)4109により位相同期を行うことで安定的に位相感応増幅ができるようにしている。
本実施形態においては、それぞれ特性の異なるダイクロイックミラーを、基本波光からの第二高調波の分離ならびに第二高調波と信号光との合波に用いたために、特に信号のS/N比に悪影響を与えるEDFAからのASE光を信号光に混入させることなく、高い信号品質が得られる位相感応光増幅器を構成することができた。
なお、本実施例では、第1の実施形態と同様の構成、つまり、増幅方式が縮退パラメトリック方式であり、励起光として基本波光からの第二高調波を利用し、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成としたが、本実施例は、前述の第1乃至第9の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
具体的には、増幅方式として、第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良い。
また、励起光を得る方法として、第5の実施形態のように異なる2つの波長の和周波として生成する方法を採用しても良い。
Figure 2012098911
(第11の実施形態)
本実施形態に係る位相感応光増幅器の基本的な構成を図42に示す。この光増幅器は、位相感応光増幅部4201と、励起光源4202と、励起光位相制御部4203と、2つの光分岐部4204−1、4204−2とから構成される。この光増幅器は、位相感応光増幅部4201における信号光と励起光の位相が上述の(式1)の関係を満たすと入力信号光4210は増幅され、両者の位相が(式1)の関係より90度ずれた直交位相関係になると、入力信号光4210は減衰する特性を有する。この特性を利用して増幅利得が最大となるように励起光―信号光間の位相を同期させると、信号光と直交位相の自然放出光を発生させずに、つまりS/N比を劣化させずに信号光を増幅することができる。本実施形態が第1の実施形態と異なる点は、後述するように、主として位相同期を達成する方法にある。
信号光と励起光の位相同期を達成するために、光分岐部4204−1で分岐された入力信号光4210の位相と(式1)の関係を満たして同期するように、励起光4211の位相を制御する。光分岐部4204−2で出力信号光4212を一部分岐する変わりに励起光である第二高調波4213を狭帯域の検出器で検波し、第二高調波4213の出力信号が最小となるように励起光位相制御部4203において励起光4211の位相を制御する。その結果、位相感応光増幅部4201において、信号光の位相と、励起光の位相とが(式1)の関係を満たして同期するように制御され、S/N比の劣化のない光増幅を実現することができる。なお、励起光位相制御部4203は、図42に示すような励起光源4202の出力側で励起光の位相を制御する構成の他に、励起光源4202の位相を直接制御する構成としてもよい。また信号光を発生する光源が位相感応光増幅部の近くに配置されている場合は、信号光用光源の一部を分岐して励起光として用いることもできる。
図43は、本実施形態に係る位相感応光増幅器における、入力信号光‐励起光間の位相差Δφと、第二高調波の利得(dB)との関係を示すグラフである。Δφが−π、0、またはπのときに、パラメトリック増幅による信号光の利得が最大となるために、増幅に利用された第二高調波の利得が最小となっていることがわかる。
図44に本実施形態の構成を示す。本実施形態では、データ信号用強度変調器4424としてLNマッハツェンダー変調器を用い10Gb/sのNRZ信号を入力した場合の増幅特性を評価した。本実施形態では、光通信に用いられる微弱なレーザー光から非線形光学効果を得るのに十分なパワーを得るために、ファイバレーザー増幅器(EDFA)4401を用いて、基本波光4421を増幅する。増幅した基本波光を第1の二次非線形光学素子4402−1に入射して第二高調波4422を発生させる。第2の二次非線形光学素子4402−2に信号光4420と第二高調波4422とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
本実施形態では、波長1.54μmの信号光を増幅するために、信号光の一部を光分岐部4403で分岐して基本波光4421として用いている。基本波光4421は、エルビウム添加ファイバレーザー増幅器(EDFA)4401を用いて増幅される。増幅された基本波光は、第1の二次非線形光学素子4402−1に入力される。本実施形態では、EDFA4401から発生する広帯域なASE光が第1の二次非線形光学素子4402−1により変換されることを防ぐために、EDFA4401と第1の二次非線形光学素子4402−1との間にバンドパスフィルタ4404を挿入し、不必要なASE光をカットした。
本実施形態の、二次非線形光学素子(4402−1,4402−2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)から成る光導波路(4405−1,4405−2)を備える。PPLN導波路は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能であり、かつ光導波路構造により高い光パワー密度が得られるので、図示するような構成にすることで高い波長変換効率を得ることができる。
PPLN導波路に高強度のパワーを入射した場合にフォトリフラクティブ効果による光損傷により位相整合波長が変化する場合があるが、本実施形態ではそのような問題が生じないように、非特許文献4に示される直接接合により作製された導波路を用いている。
本実施形態では光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。第1のPPLN導波路4405−1から出射した、第二高調波4422と基本波光4421とは、ダイクロイックミラー4406−1を用いて分離される。ダイクロイックミラー4406−1で反射された波長0.77μmの第二高調波は、この波長0.77μmにおいてシングルモード伝搬特性をもつ偏波保持ファイバ4407を介して、第2の二次非線形光学素子4402−2へと導かれている。このとき、ダイクロイックミラー4406−1で完全には取り除けなかった波長1.54μm付近の基本波光およびASE光も偏波保持ファイバ4407に入射されることになるが、波長0.77μmにおいてシングルモードであるこのファイバは波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、これらの不要な光を効果的に減衰させることができる。
偏波保持ファイバ4407で導かれた第二高調波4422は、ダイクロイックミラー4406−2を用いて波長1.54μmの信号光4420と合波される。ダイクロイックミラー4406−2は第二高調波のみを反射させるために、第1のPPLN導波路4405−1から出射され、ダイクロイックミラー4406−1および偏波保持ファイバ4407を通ってくる波長1.54μm付近の基本波光とASE光との残留成分を効果的に取り除くことができる。
信号光4420と第二高調波4422とは合波され、第2のPPLN導波路4405−2に入射される。第2のPPLN導波路4405−2は、第1のPPLN導波路4405−1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
本実施形態では、2つのPPLN導波路(4405−1,4405−2)はそれぞれ、個別の温度調節器により一定の温度となるように制御されている。2つのPPLN導波路の作製誤差のために同一温度において位相整合波長が一致しない場合が考えられるが、そのような場合でも両者を個々に温度制御することにより、両者の位相整合波長を一致させることができる。
第2のPPLN導波路4405−2から出射された光は、ダイクロイックミラー4406−3により励起光である第二高調波4422と増幅された信号光とに分離される。このときも第二高調波4422と増幅された信号光とは、波長が全く異なるために、出力において増幅された信号光と第二高調波は効果的に分離される。
本実施形態に係る位相感応増幅では、励起光と信号光の位相を同期させることが必要である。本実施形態では、出力した増幅信号光の一部を分岐して位相同期に利用する第1の実施形態とは異なり、ダイクロイックミラー4406−3により分離した、励起光である第二高調波4422を光検出器4408で受光したのちに位相同期ループ回路(PLL)4409により位相同期を行った。ダイクロイックミラー4406−3で反射された1.54μm帯の光が、位相同期を行うために利用する0.77μm帯の光に含まれてしまい、位相同期を行う上で雑音成分となる場合があるため、図44に示すようにハイパスフィルタ4425を挿入し、1.54μm帯の光をカットしても良い。
EDFA4401の前に配置した位相変調器4410を用いて正弦波により微弱な位相変調を基本波光に施す。光検出器4408とPLL回路4409でその位相変調の位相ずれを検出して、EDFA4401の前に配置したPZTによる光ファイバの伸長器4411の駆動電圧と位相変調器4410のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
本実施形態では、励起光である第二高調波を利用して励起光の位相と信号光の位相とを(式1)の関係を満たすように同期させることにより、増幅された信号光をすべて活用できるようになったため、第1の実施形態と比較して増幅された信号光の利得がおよそ15%増加した。
また、第1の実施形態と同様に、信号光のON状態に位相を合わせた状態では、入力信号に位相チャープが含まれていた場合でも、そのチャープ成分を除去して、チャープのない信号として整形して増幅することができる。
図44に示した実施形態では、励起光である第二高調波と増幅された信号光とを分離するフィルターとして、ダイクロイックミラーを利用したが、図45に示すように、第二の二次非線形光学素子4502−2の後段に配置したマルチモード干渉(MMI:Multi-Mode Interference)を利用した光合分波器4526を用いることもできる。
第二高調波4522と増幅された信号光4523とを分離するように設計したMMI型合分波器4526を同一基板内に集積することによって,より小型な位相感応光増幅器を得ることが可能である。また、MMI型合分波器の代わりに方向性結合を利用した光合分波器を用いても同様の小型な位相感応光増幅器を得ることが可能である。
次に、本実施形態に係る位相感応光増幅器の別の構成について説明する。図46に本構成を示す。本構成では、図44に示した構成と同様に1.54μmの信号を増幅するように装置を構成した。2つのPPLN導波路(4605−1,4605−2)を用いて、第二高調波を発生させ縮退パラメトリック増幅を行う点は図44に示した構成と同じである。
図44に示す構成と図46に示す構成との相違点は、基本波光から第二高調波を分離する方式および第二高調波と信号光とを合波する方式である。本発明によれば光ファイバ増幅器から発生するASE光に起因する信号光のS/N比の劣化を抑制しながら位相感応増幅を行うことができるが、本構成では、その効果を有効に利用できるようにした。
図46に示す構成においても、基本波光4621からの第二高調波4622の分離ならびに第二高調波4622と信号光4620との合波にはダイクロイックミラー(4606−1,4606−2)を用いている。一般的に、波長の異なる2つの光を分離または合波するために、一方の波長の光を反射し、他方の波長の光を透過するダイクロイックミラーがよく使用されているが、特に不必要な光をカットする用途の場合、カットしたい特定の波長光を反射させて使用する構成とすることが望ましい。逆に、カットしたい特定の波長の光を透過させ、必要とする光を反射させて取り出す構成の場合、不必要な波長におけるミラーの反射率を非常に小さくする必要がある。不必要な波長におけるミラーの反射率を非常に小さくすることに比べると、カットしたい特定の波長の光の透過率を下げることは比較的容易であるため、不要な波長の光を反射させる構成の方が不必要な光を効果的に抑圧することができる。本構成では、そのような考え方に基づいて装置が構成されている。
光分岐部4603で、波長1.54μmの基本波光4621を信号光から分岐し、位相同期のためのLN位相変調器4610、PZTによる光ファイバ伸長器4611を介して、EDFA4601で増幅する。
増幅した基本波光を、第1の二次非線形光学素子4602−1中の第1のPPLN導波路4605−1に入射し第二高調波4622を発生させる。本構成においては、第1のPPLN導波路4605−1から出射される基本波光とその第二高調波とから第二高調波のみを効果的に取り出し、EDFA4601から発生するASE光を効果的に除去するために、第1のPPLN導波路4605−1の後に、1.55μm帯を反射し、0.77μm帯を透過するダイクロイックミラー4606−1を設置した。
波長が0.77μmである第二高調波4622は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバ4607を介して、第2の二次非線形光学素子4602−2へと導かれている。上述の構成と同様に、0.77μmにおいてシングルモードであるこのファイバ4607は波長1.54μmの光に対しては光の閉じ込めが弱いために、1m程度の長さを伝搬させることにより、不要な波長1.54μm付近の基本波光およびASE光を効果的に減衰させることができる。
偏波保持ファイバ4607で導かれた第二高調波は、ダイクロイックミラー4606−2により波長1.54μmの信号光4620と合波される。
本構成においては、偏波保持ファイバ4607を通ってくる波長1.54μm付近の基本波光およびASE光の残留成分を効果的に取り除くことができるように、1.54μm帯を反射し、0.77μm帯を透過するダイクロイックミラー4606−2を用いた。信号光と第二高調波とは合波された後、第2のPPLN導波路4605−2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
第2のPPLN導波路4605−2から出射された光は、ダイクロイックミラー4606−3により第二高調波4622と増幅された信号光4623とに分離される。本構成では、ダイクロイックミラー4606−3に、0.77μm帯を反射し、1.54μm帯を透過するダイクロイックミラーを用いた。
本構成においても、分離した、励起光である第二高調波4622を光検出器4608で受光した後に位相同期ループ回路(PLL)4609により位相同期を行うことで安定的に位相感応増幅ができるようにしている。本構成に係る位相感応光増幅器により、増幅された信号光をすべて活用できるようになったため、第10の実施形態に係る位相感応光増幅器と比較して増幅された信号光の利得がおよそ15%増加した。
本構成においては、それぞれ特性の異なるダイクロイックミラー(4606−1,4606−2)を、基本波光と第二高調波との分離、ならびに、第二高調波と信号光との合波に用いたために、特に信号のS/N比に悪影響を与えるEDFAからのASE光を信号光に混入させることなく、高い信号品質が得られる位相感応光増幅器を構成することができた。
次に、本実施形態に係る位相感応光増幅器のさらに別の構成について説明する。
図44乃至図46に示した構成においては、基本波光として信号光から分岐した光を用いた。すなわち、基本波光は、信号光と同一の光源を増幅して得ていた。例えば光通信における送信器に用いる場合には、これまでに説明したような同一の光源を信号光と基本波光に使用し、基本波光を分岐したのちに信号光に必要な変調を加えることが考えられる。一方、本構成では、あらかじめ変調された信号光の増幅ができるよう、図47に示すように装置を構成した。
本構成に係る装置は、2値の位相変調(BPSK)または2値差動位相変調(DPSK)信号もしくは通常の強度変調などの信号を、雑音を付加することなく増幅することができる。
本構成においては、基本波光を得るために光分岐部4703で信号光を分岐し、分岐した信号光をEDFA4701で増幅させる。増幅された信号光を第1の二次非線形光学素子4702−1中の第1のPPLN導波路4705−1に入射し、信号光の第二高調波4722を発生させる。第1のPPLN導波路4705−1の出射光から第二高調波のみを分離するためにダイクロイックミラー4706−1を使用する。分離された第二高調波を波長0.77μmで発振する半導体レーザー4712に入射することにより注入同期が行われる。半導体レーザー4712の出力は、半導体レーザーと同様の波長帯域に利得を持つ半導体光増幅器4713により増幅され、ダイクロイックミラー4706−2を用いて波長1.54μmの信号光4720と合波される。信号光4720と波長0.77μmの励起光である第二高調波4722とは合波された後、第2のPPLN導波路4705−2に入射され、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。
位相感応増幅を行うためには増幅器に入射してくる信号光の平均位相に同期した励起光を生成する必要がある。本構成においては、2値の位相変調を施されたような信号を用いる場合であっても、その平均位相に同期した励起光を生成することができる。その動作原理については、上記の第4の実施形態において説明されている。
実際の位相変調信号において、強度変調成分のない励起光を得るためには、上記の位相変調成分を取り除いた第二高調波を本構成のように注入同期を用いて、信号光の平均位相に同期させて、信号光の半波長の励起光とすることが望ましいのは第4の実施形態と同様である。
本構成においては、注入同期を用いて位相変調の施された信号光から平均位相に同期した強度変調のない励起光を生成する。これにより、仮に信号光に位相雑音が付加された場合であっても、本来の信号と直交する位相成分は、位相感応増幅により減衰させることができるので、信号位相および直交位相の雑音成分を取り除くような信号再生を行うことができる。
本構成においては、ダイクロイックミラー4706−3により分離した、励起光である第二高調波4722を光検出器4708で受光した後に、位相同期ループ回路(PLL)4709から、(式1)の関係を満たして同期するように0.77μmの駆動電流にフィードバックを行うことで光学部品の振動や温度変動による位相変動を補正し、安定的に位相感応増幅ができるようにしている。
具体的には出力された、励起光である第二高調波4722の出力が最小になるように駆動電流を通じて位相制御を行う。本構成でも増幅された信号光をすべて活用できるようになったため、第4の実施形態と比較して増幅された信号光の利得がおよそ15%増加した。
本構成においては、第1のPPLN4705−1における第二高調波発生が可能となるパワーを得るためにEDFA4701を用いているが、EDFA4701から発生するASE光が位相感応増幅を行う第2のPPLN導波路4705−2に入射しないために、本構成においても、光増幅器のASE光に起因する信号光のS/N比劣化を防ぐことができる。また、波長0.77μmで動作する半導体光増幅器4713からもASE光は発生するが、この光は信号光と波長が全く異なるために、ダイクロイックミラー4706−2,4706−3によってほぼ完全に取り除くことが可能であり、信号光のS/N比を劣化させることなく、位相感応増幅を行うことが可能である。
なお、上述してきた第11の実施形態では、増幅方式が縮退パラメトリック方式であり、励起光として基本波光からの第二高調波を採用する構成について説明しているが、第11の実施形態は、前述の第1乃至第10の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
具体的には、増幅方式として、第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良い。
また、励起光を得る方法として、第5の実施形態のように異なる2つの波長の和周波として生成する方法を採用しても良い。この場合、位相同期を得るために検出し帰還を行う励起光は、第二高調波ではなく和周波となる。
また位相同期のための基本波光の生成方法も、第3の実施形態に記載の信号光とは別にパイロットトーン信号を送る方法や、第4および第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法でも良い。
Figure 2012098911
(第12の実施形態)
図6を用いて説明したように、第1の実施形態により簡便な構成で位相感応増幅を実現することができる。しかしながら、第1の実施形態には以下に述べるような問題点がある。再び図6を用いて説明する。
位相同期に用いる位相変調器610をEDFA601の前段に配置しており、位相変調器の挿入損失だけEDFAへの入射パワーが小さくなってしまう。EDFA等のレーザー増幅器においては、増幅器前の損失があると、その分だけS/N比が劣化してしまうことが良く知られている(非特許文献8を参照)。このように位相変調器の挿入損失によって励起光のS/N比が劣化してしまうと、その雑音成分がパラメトリック増幅過程により増幅光の雑音へと変換されてしまい、低雑音な増幅を行うことができない。しかし、以下に説明する本発明の第12の実施形態においては、この雑音の問題は解消される。
なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光として信号光から直接分岐した光を用い、変調された光信号からの位相同期手段は用いない構成とした。
しかし、本実施形態は、第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方法を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
本実施形態の構成例を図48を参照しながら詳細に説明する。本実施形態は、第1の実施形態で問題となっていた位相同期のための位相変調器の損失に起因する光ファイバレーザー増幅器におけるS/N比の劣化を防ぐために、図48に示すような構成とした。
非特許文献8に示されているようにレーザー増幅器の前段に損失がある場合にはその損失分だけS/N比が劣化してしまうのに対して、レーザー増幅器の後段に損失があった場合は損失分だけ出力が低下してしまうもののS/N比は劣化しない。この性質を利用して、本実施形態では、図48に示すように、位相変調器4810を光ファイバレーザー増幅器4801より出力側に配置するようにした。
なお、従来技術では図48に示すような構成を取ることが出来ない。その理由は、既存の位相変調器の多くは、LiNbO(LN)結晶にTiを拡散させた光導波路で作製されているからである。Ti拡散導波路では光損傷が顕著であるために大きな光パワーを入射するとフォトリフラクティブ効果による屈折率変化が生じ、位相変化を生じるために同じ位相条件を得るための電圧が変化するドリフト現象を引き起こしてしまう。このため、位相変調器に入力可能な光パワーは+20dBm程度に制限されてしまう。さらに、挿入損失の大きな位相変調器をレーザー増幅器の後段に配置することで励起光のパワーが減衰してしまい、光パラメトリック効果を生じるのに十分な励起光パワーが得られず、大きな増幅率をもった位相感応増幅を実現することができない。
本実施形態においては、励起光である第二高調波4822を発生させるための光導波路4805−1と位相変調に用いる導波路とを同一の基板上に集積することによって、素子間の接続損失を低減するとともに位相変調器4810がEDFA4801より出力側に配置できるようにした。
第二高調波発生器においてはより光損傷が顕著となる第二高調波を扱うために、第二高調波発生器を作成する際は、Ti拡散よりも光損傷耐性の大きな導波路の形成法を用いることが一般的であり、位相変調器を第二高調波発生器と同様な光導波路を用いて構成することにより、より大きな励起パワーを利用することが可能になる。
本構成では、1.54μmの信号光4820を増幅するために、信号光4820の一部を分岐部4803−1で分岐して基本波光4821として用いている。基本波光4821はエルビウム添加ファイバレーザー増幅器(EDFA)4801を用いて増幅され位相変調器4810と第一の二次非線形光学素子4805−1とが集積化された光導波路に入力される。二次非線形光学素子(4802−1,4802−2)は、周期的に分極反転されたニオブ酸リチウム(PPLN)からなる光導波路(4805−1,4805−2)を備える。
PPLN導波路は擬似位相整合によりニオブ酸リチウムの最も高い非線形光学定数d33を利用することが可能でありかつ光導波路構造により高い光パワー密度が得られるので、高い波長変換効率を得ることができる。PPLN導波路に高強度のパワーを入射した場合に、フォトリフラクティブ効果に起因する光損傷により位相整合波長が変化してしまうことがあるが、本実施形態ではそのような問題が生じないように直接接合により作製された導波路を用いた(非特許文献4を参照)。
本実施形態においては、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。そのPPLN導波路4805−1が形成された同一の基板上に周期分極反転構造のない位相変調器4810を同様の導波路形成法で集積化した。位相変調部には導波路上に電界印加用電極を形成し、電気光学(EO)効果による位相変調を可能にした。上述のようにこの導波路形成法は光損傷耐性に優れているため、EDFA4801で増幅された基本波光4821のパワーが大きくなった場合でも動作電圧のドリフト現象を起こすことなく光位相同期ループ回路(PLL)のためのパイロットトーンの位相変調を基本波光4821に施すことができる。
なお、本実施形態では上述のように位相変調器として電気光学効果による屈折率変化を利用したが、本手法は本実施形態に限定されず、他の実施形態においても、電気光学効果を基本とする位相変調器の適用が可能である。
第1のPPLN導波路4805−1から出射した、基本波光4821と第二高調波4822とは、ダイクロイックミラー4806−1を用いて分離される。ダイクロイックミラーで透過された波長0.77μmの第二高調波4822は、この波長においてシングルモード伝搬特性をもつ偏波保存ファイバ4807を介して、第2の二次非線形光学素子4802−2へと導かれている。偏波保持ファイバ4807で導かれた第二高調波4822は、ダイクロイックミラー4806−2を用いて波長1.54μmの信号光4820と合波される。ダイクロイックミラー4806−2は、第二高調波4822のみを透過させるために、第1のPPLN導波路4805−1から出射され、ダイクロイックミラー4806−1及び偏波保持ファイバ4807を通ってくる波長1.54μm付近の基本波光4821とASE光との残留成分を効果的に取り除くことができる。ダイクロイックミラー4806−2で合波された信号光4820と第二高調波4822とは、第2のPPLN導波路4805−2に入射される。第2のPPLN導波路4805−2は、第1のPPLN導波路4805−1と同等の性能、位相整合波長を有しており、縮退パラメトリック増幅により、信号光を位相感応増幅することができる。第2のPPLN導波路4805−2から出射された光は、ダイクロイックミラー4806−3により、基本波光の第二高調波4822と増幅された信号光4823とに分離される。このときも第二高調波と増幅された信号光は波長が全く異なるために、出力では不必要な第二高調波4822を効果的に取り除くことができる。
位相感応増幅では励起光と信号光の位相を同期させることが必要であるが、本実施形態では、出力した増幅信号光4823の一部を光分岐部4803−2で分岐して光検出器4808で受光したのちに位相同期ループ回路(PLL)4809により位相同期を行った。
本実施形態では、第二高調波発生用PPLN4805−1と同一基板上に集積化され且つEDFAの出力側に配置されたLN位相変調器4810を用いて正弦波で微弱な位相変調を基本波光に施し、光検出器4808とPLL回路4809とでその位相変調の位相ずれを検出して、EDFA4801の前に配置したPZTによる光ファイバの伸長器4811の駆動電圧とLN位相変調器4810のバイアス電圧にフィードバックを行うことにより、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
本実施形態において、データ信号用変調器4810としてLNマッハツェンダー変調器を用い、入力信号として10Gb/sのNRZ信号を入力した場合の増幅特性を評価した。
本実施形態では、第2のPPLN導波路4805−2に入射した第二高調波4822のパワーが300mWの条件において、約11dBの利得を得ることができた。このときのEDFA4801の出力パワーは約1Wであり、直接接合導波路への入力パワーは630mWであったが、このような高パワーの光を入射した場合でも動作電圧のドリフト現象を起こすことなく安定な位相同期動作を実現することができた。
本実施形態の構成を、図6に示した構成と比較すると、本実施形態では、位相変調器4810がEDFA4801の入力段にないために、基本波光4821のS/N比を5dBほど改善することができた。またPPLN4805−1と位相変調器4810とを集積化することにより、EDFA4801の出力を過剰な損失を経ることなく効率的に第二高調波4822へ変換することが可能になった。この結果、従来に比べてEDFA4801における基本波光4821のS/N比劣化を抑えながら位相感応増幅による低雑音増幅動作を行うことが可能になった。
次に本実施形態の構成の別例を、図49を参照しながら説明する。
本構成では、図48で示した構成と同様に1.54μmの信号4920を増幅するように装置を構成した。2つのPPLN導波路(4905−1,4905−2)を用いること、一方のPPLN導波路(4905−1)に位相変調用導波路を集積化していること、第二高調波4922を発生させて縮退パラメトリック増幅を行う点は、図48で示した構成と同じである。主な相違点は、第二高調波4922を発生させるためのPPLN導波路4905−1が同期用位相変調器4910より信号入力側に配置されていることである。
本構成では、LN位相変調器4910を第二高調波発生用PPLN導波路4905−1より出力側に配置することにより、図48で示した構成と比較して、位相変調に必要な駆動電圧を半減することに成功した。
LN位相変調器4910を第二高調波発生用PPLN導波路4905−1より出力側に配置する効果を説明する。光学材料に外部から電界、応力などの外力が印加された場合、光学材料に屈折率変化が生じる。位相変調器としてLN結晶の電気光学効果を用い、電界印加により位相を変調する場合、非特許文献9に示されるように、変調器の性能を示す半波長駆動電圧VπはLNの電気光学係数、屈折率、印加電界、波長等に依存する。特に使用波長に着目すると、以下の(式27)に示すような関係が成立する。
Vπ∝λ (式27)
半波長駆動電圧、即ち位相変調に必要な電圧は、本構成で採用した配置によって、図48で示した構成に係る配置の場合と比較すると半分となり大幅に低減することができる。従って、駆動用電源の小型化、消費電力の削減が可能となる。図48で示した構成において同期に必要な駆動電圧は約0.1Vであったが、本構成では光PLL内位相変調器4910を、PPLN導波路4905−1より出力側に配置したことにより、同期に必要な駆動電圧を50mVまで大幅に低減することができた。
本構成においても、図48で示した構成と同様に、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。また、位相変調部4910の導波路は、PPLN導波路部と同様に1.54μmの基本波波長でシングルモードとなるように設計しているため、第二高調波の波長0.77μmにおいてはマルチモードとなるが、PPLN部4905−1で発生する第二高調波4922は位相整合条件による制約から基底モードのみで伝搬するため、PPLN部4905−1と位相変調部4910の導波路設計を同じにする簡潔な導波路においても安定な位相同期動作を得ることが可能であった。
次に本実施形態の構成の別例を、図50を参照しながら説明する。
本構成では、図48及び図49で示した構成と同様、1.54μmの信号5020を増幅するように装置を構成した。2つのPPLN導波路5005−1,5005−2を用いること、第二高調波5022を発生させて縮退パラメトリック増幅を行うことも、図48及び図49で示した構成と同じである。
本構成では、図50に示すように信号光5020と第二高調波5022との合波器としてマルチモード干渉計(Multi-mode interferometer:MMI)5012を用いた。また、本構成では、MMI5012、光PLLのためのパイロットトーン用位相変調器5010、及び縮退パラメトリック増幅を行う第二のPPLN導波路5005−2を直接接合法によって作製した同一基板上に集積化した。
本構成では、縮退パラメトリック増幅を行う領域のみ分極反転したLN基板を直接接合して作製した導波路層に対しドライエッチングによりリッジ形状を形成した。さらに、MMIの信号光入力ポートのリッジ上に電界印加用の金属電極を集積した。
基板上に集積化した合波器であるMMI5012は、幅、長さ、入出力ポート位置を最適に設計されて、信号光および励起光を何れも挿入損失1dB以下で、第2のPPLN導波路5005−2に合波する特性を有する。
MMI形状は、励起光ポートに残存する信号光成分が合波されないように最適化される。その結果、図49で示した構成では避けられなかった位相変調器と合波器との間ならびに合波器と第2のPPLN導波路との間の接続損失の影響を最小限に抑えることが可能になった。本構成では、信号光ポートに位相変調器5010を集積化したため、PPLN導波路5005−2と位相変調器5010との間の接続損失が最小限に抑えられる。これにより、位相感応型光増幅器全体としての挿入損失を最小限に抑えることが可能になった。
位相感応型光増幅器の入力端での挿入損失はそのまま増幅器としての雑音指数の増加につながる。図48及び図49で示した構成において、信号光の位相を変調しようとすると、PPLNとは独立の位相変調器を用いることになり、その接続損失により雑音指数の増加を招いてしまう。本構成に係る構成により、このような接続損失による雑音指数の増加を防ぎながら、位相感応増幅による低雑音動作が可能になる。
本構成においても、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。
次に本実施形態の構成の別例を、図51を参照しながら説明する。
本構成は、集積された、MMI5112、位相変調器5110、及び縮退パラメトリック増幅を行う第2のPPLN導波路5105−2を使用する点において、図50で示した構成と同一である。
本構成が図50で示した構成と異なる点は、第二高調波を発生させるための二次非線形光学素子5102−1から生じた励起光5122を位相変調器5110のポート側に入力し、信号光5120をもう一方のポートに入力する点である。励起光5122を位相変調器5110に入力することで、図49で示した構成と同様に、波長が信号の1/2に変換された励起光に対して位相変調が可能となる。これにより、図50で示した構成と比較して、同程度のS/N比及び増幅率特性を保持したまま、位相変調に必要な駆動電圧を半減することができた。
本構成においても、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。このため位相変調器5110を、基本波光を生成するためのEDFA5101の後方に配置することが可能であり、EDFA5101におけるS/N比劣化を最小限に抑えて増幅動作を行うことが可能である。
本発明の図50及び図51で示した構成においては、MMI、位相変調器、及びPPLN導波路を集積した素子から信号光のみを分離するためにダイクロミックミラーをフィルタとして用いたが、代わりに信号光のみを分離するように設計したMMIを同一基板内に集積することによって、より小型な位相感応型光増幅器を得ることも可能である。
次に本実施形態の構成の別例を、図52を参照しながら説明する。
本構成は、図51で示した構成と同様に、1.54μmの信号5220を増幅するように装置を構成した。2つのPPLN導波路5205−1,5205−2を用いること、第二高調波5222を発生させて縮退パラメトリック増幅を行うことも、図51で示した構成と同じである。
図52で示す構成が、図51で示した構成と相違する点は、励起光発生のためのPPLN導波路5205−1、光PLLのためのパイロットトーン用位相変調器5210、及び励起光と信号光とを合波するためのMMI5212が、第二高調波を発生させる第1のPPLN導波路5205−1を形成した同一LN結晶基板上に直接接合法により作製・集積化された点である。
基板上に集積化した合波器であるMMI5212は、幅、長さ、入出力ポート位置を最適に設計されて、信号光および励起光を何れも挿入損失1dB以下で合波する特性を有する。
本構成により、図49に係る構成では避けられなかった第二高調波を発生させるための二次非線形光学素子と位相変調器との間および位相変調器と合波器との間の接続損失の影響を最小限に抑えることが可能になった。
Figure 2012098911
(第13の実施形態)
図53に本実施形態に係る位相感応光増幅器を含んだ光受信装置の構成を示す。本実施形態では、第6の実施形態と同様に1.54μmの信号を増幅するように装置を構成した。2つのPPLN導波路を用いること、第二高調波を発生し縮退パラメトリック増幅を行うこと、位相変調器を用いた光位相同期ループ回路(PLL)による位相同期を行う点は、第6の実施形態と同じである(図24を参照)。
図53に示す実施形態が図24に示した実施形態と相違する点は、一方のPPLNに位相変調用導波路を集積化していること、差動位相変調(DPSK)信号を受信できるように、受信装置全体を構成したことにある。
本発明では位相同期のための位相変調器を用いているが、この位相変調器の損失が大きいと基本波光の発生に用いる第1のEDFAへの入力が小さくなり、その分励起光のS/N比が劣化してしまう。この効果を抑制するためにレーザー増幅器の後段に損失があった場合は、損失分だけ出力が低下してしまうものの、S/N比は劣化しない。
本実施形態では、この性質を利用するために、位相変調器5310を光ファイバレーザー増幅器5301−2より出力側に配置するようにした。
通常のTi拡散によるLN変調器ではEDFAで増幅された基本波光を入射するとフォトリフラクティブ効果で動作点のドリフトを生じてしまうため、本実施形態のような構成は採用することができない。さらに挿入損失の大きな位相変調器をレーザー増幅器の後段に配置することで基本波光のパワーが減衰してしまい、光パラメトリック効果を生じるのに十分な励起光パワーが得られず、大きな増幅率をもった位相感応増幅が実現できない。
そこで本実施形態では、励起光である第二高調波を発生するための光導波路5305−1と位相変調器5310に用いる導波路を同一の基板上に集積し素子間の接続損失を低減した。さらに、位相変調器5310が光ファイバレーザー増幅器5301−2より出力側に配置した。
本実施形態では、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制した。またドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現した。そのPPLN導波路が形成された同一の基板上に周期分極反転構造のない位相変調器を同様の導波路形成法で集積化した。位相変調部には導波路上に電界印加用電極を形成し、EO効果による位相変調を可能にした。上述のようにこの導波路形成法は光損傷耐性に優れているため、EDFAで増幅された基本波光のパワーが大きくなった場合でも動作電圧のドリフト現象を起こすことなく光位相同期ループ回路(PLL)のためのパイロットトーンの位相変調を基本波光に施すことができる。
位相感応増幅の動作は第6の実施形態と同様である。第1のファイバレーザー増幅器(EDFA)5301−2を用いて、基本波光5321を増幅する。増幅した基本波光を第1の二次非線形光学素子5302−1に入射して第二高調波5322を発生させる。第2の二次非線形光学素子5302−2に信号光5320と第二高調波5322とを入射して縮退パラメトリック増幅を行うことで、位相感応増幅を行う。
EDFA5301−2と第1の二次非線形光学素子5302−1との間にバンドパスフィルタ5304−2を挿入し、不必要なASE光をカットした。
本実施形態では出力した増幅信号光の一部を光分岐部5303で分岐して光検出器5308で受光したのちに位相同期ループ回路(PLL)5309により位相同期を行った。
第1のPPLN導波路5305−1に集積化した位相変調器5310を用いて正弦波により微弱な位相変調を基本波光5321に施す。光検出器5308とPLL回路5309でその位相変調の位相ずれを検出して、EDFA5301−2の前に配置したPZTによる光ファイバ伸長器5311の伸長器の駆動電圧と位相変調器5310のバイアス電圧とにフィードバックを行うことで、光ファイバ部品の振動や温度変動による光位相の変動を吸収して、安定的に位相感応増幅ができるようにした。
位相感応光増幅器の出力をEDFA5301−1に接続してさらなる増幅を行ったのちにバンドパスフィルタ5304−1により信号の帯域外の背景光を除去した。また第6の実施形態ではNRZの信号を受信するように装置を構成したが、本実施形態では、前置増幅器の後に遅延干渉計5314とバランスドPD5315、リミティングアンプ5312を配置し、差動位相変調の信号を受信できるようにした。
本実施形態に係る光受信装置に、40Gbit/sのDPSK信号を入射し受信特性を評価した。誤り率測定から本実施形態に係る光受信装置の受信感度を評価した結果を図54に示す。
図54を参照すると、例えば10-9の誤り率を得るための入射パワーが従来のEDFAを用いた場合は-32.9dBmであるのに対して、本実施形態を用いた場合では約1.6dB低い−34.5dBmで同じ誤り率が得られており、本実施形態に係る低雑音な光増幅を利用した光受信により、受信感度の向上が得られることを確認することができた。
なお、本実施形態では、DPSKを受信できるように装置を構成したが、受信する信号フォーマットはこれに限定されるものではなく、例えば光duo binaryなどその他の信号フォーマットに対しても前置光増幅器を用いた装置であれば受信器の構成を変更することにより本発明を適用して受信感度の向上を図ることができる。
また、本実施形態では、受信感度の向上分は1.6dB程度であったが、これは更なる向上の余地がある。位相感応光増幅器のパラメトリック増幅を行う第2のPPLN導波路と、入力ファイバとの間に結合損失があると、その分だけ全体の雑音指数が劣化するからである。本実施形態では、入力ファイバとPPLN導波路の結合損失は2dBであった。光結合に用いる光学系の最適化を行えば、その結合損失の低減分だけ受信感度を向上することが可能である。
なお、本実施形態では、同期用位相変調器(図53の5310)を第二高調波を発生するためのPPLN導波路(図53の5305−1)の前に配置したが、この順番を逆にすると、第二高調波の位相を変調することになり、位相変調に必要な電圧を半減することが可能になる。また、これまでに示した実施形態ではそれぞれのPPLN導波路にダイクロイックミラーを組み合わせて、基本波と第二高調波を合波・分波するようにしたが、これらの合波・分波の機能を導波路回路による合波器・分波器を用いてPPLNと同一基板上に集積化してもよい。そのような集積化により信号光や励起光の損失が低減できると、全体としてのS/N比をさらに向上することができる。
またこれらの合波・分波の機能、位相変調の機能と第二高調波発生の機能、光パラメトリック増幅の機能を必要に応じて同一基板上に集積化することにより、それぞれの機能を実現する部分間の結合損失をさらに減らすことが出来れば、S/N比をさらに向上するとともに、位相感応光増幅器としての利得を大きくすることが出来る。
前述した(式20)の中の位相感応光増幅器の利得G1を大きくすると、後段のレーザー増幅器の雑音指数の寄与がさらに小さくなるので、全体としての雑音指数を小さくすることが可能になり、さらに低雑音での光増幅が可能になる。そのことにより光中継器用の光増幅器として用いれば中継間隔を延ばすことが可能になり、光受信器に用いるとさらに受信感度を向上させることが可能になる。
なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成とした。
しかし、本実施形態は、前述の第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方式を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
Figure 2012098911
(第14の実施形態)
図55に本実施形態に係る位相感応光増幅器の構成を示す。本実施形態は、第12の実施形態と同様に、1.54μmの信号5520を増幅するように装置を構成した(図52を参照)。2つのPPLN導波路5505−1,5505−2を用いること、第二高調波5522を発生させて縮退パラメトリック増幅を行うことも、第12の実施形態と同じである。
図55に示す実施形態と、図52で示した実施形態との相違点は、励起光発生のための第1のPPLN導波路5505−1、光PLLのためのパイロットトーン用位相変調器5510、励起光と信号光とを合波するためのMMI5512、及び縮退パラメトリック増幅を行う第2のPPLN導波路5505−2が、同一基板上に直接接合法により作製・集積化された点である。
図55に示すように、本実施形態では、同一LN結晶導波路上に、位相感応増幅に必要なモジュールのほとんどが集積されている。従って、第二高調波を発生させるための二次非線形光学素子と位相変調器との間、位相変調器と合波器との間、及び合波器と第二の二次非線形光学素子との間の接続損失がないため、雑音指数の増加や励起光の損失を抑えながら位相感応増幅による低雑音動作が可能になる。
図55から分かるように、本実施形態においても、第12の実施形態又は第13の実施形態と同様に、第2のPPLN導波路5505−2から出力される信号のうち信号光のみを分離するために、ダイクロミックミラー5506を使用しているが、信号光のみを分離するように設計したMMIを同一基板内に集積すれば、より小型な位相感応型光増幅器を実現することも可能である。
なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成とした。
しかし、本実施形態は、前述の第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方式を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
Figure 2012098911
(第15の実施形態)
本実施形態に係る位相感応光増幅器の構成の一例について図56を参照しながら説明する。図56に示すような増幅器の構成とする目的は、従来技術において問題であった、第二高調波発生(SHG)用PPLNと、信号光及び第二高調波の合分波器と、縮退パラメトリック増幅(DPA)用PPLNとを同一基板上に集積した場合に避けられなかった基板サイズの増大を防ぐことである。
同一LN基板5620上に、第二高調波の発生と縮退パラメトリック増幅の両者をおこなうPPLN5621と、合分波器としてマルチモード干渉計(MMI)5622とを集積し、光アイソレータ5623を通して入力された波長1.56μmの信号光5615を増幅する構成とする。
集積したMMI5622は、導波路幅、導波路長、及び入出力ポート位置を最適設計することにより、波長1.56μmの信号光を挿入損失約1.0dBの低損失縮退パラメトリック増幅用PPLN5621に結合する特性であった。
信号光の一部をカップラ5603により分岐して基本波光5616として用いる。基本波光5616は、信号光と励起光との位相同期用位相変調器5604を通じてEDFA5605に入力する。基本波光5616をEDFA5605により増幅した後、光サーキュレータ5625を介して基板右端より入力する。右端より入力した増幅された基本波光5618は第二高調波発生と縮退パラメトリック増幅とが共に行われるPPLN導波路5621を伝搬し、MMI5622に到達するまでにほぼ全て第二高調波成分に変換される。MMI5622は、この第二高調波を下段の出力導波路5628に挿入損失1.0dBで結合する低損失を有する。
その後、第二高調波5617は、基板左端において、波長0.78μmにおいて高い反射率99.99%を有する光学多層膜フィルタで高効率に反射される。
次いで、第二高調波5617は、再びMMIを介して、第二高調波発生と縮退パラメトリック増幅とが共に行われるPPLN導波路5621に結合されて、PPLN導波路5621中を伝搬する。PPLN導波路5621中を伝搬する間に、第二高調波5617は、MMIにより合波した信号光5615と光混合され、縮退パラメトリック増幅により信号光が増幅される。
基板の端面処理について説明する。本実施形態において、左側の二つの導波路5627,5628は異なった形状に形成されている。具体的には、波長1.56μmの信号光用の光導波路5627は、湾曲部を有するように形成されており、波長0.78μmの励起光(第二高調波)用の導波路5328は、直線状に形成されている.これら2つの導波路の入力部に共通する一つの端面を決定し、この端面に沿って2つの導波路を切除することによって端面処理行う。端面の位置を1.56μm信号光用導波路5627が端面に対して斜めになり、0.78μm励起光用導波路5638に対しては垂直となる位置に出力端の形状を整えて端面加工を施す。これにより1.56μm信号光用導波路5627の端面は6°の角度を持つ形状に加工することが出来る。また、基本波光が入力される右端においても、左端同様に、PPLN導波路に対して角度が6°となるように端面加工を施した。
さらに、左右の基板端面加工後に、左右の基板端面にそれぞれ異なる端面処理を施した。左右の基板端面加工後に、左端に対して1.56μmの光に対する反射防止(AR)膜5629および0.78μmの光に対する高反射(HR)膜5630をスパッタにより成膜した。
また、基板右端に対して、1.56μmおよび0.78μmの光に対する反射防止(AR)膜5629,5631を、左端と同様にスパッタにより成膜した。以上の処理により、所望の波長の光に対する、反射機能又は無反射機能を持つ導波路端面を実現した。
本実施形態において、第1の実施形態と同様に、データ信号用変調器としてLNマッハツェンダー変調器を用い、入力信号として10Gb/sのNRZ信号を入力した場合の増幅特性を評価したところ、約11dBの利得を得ることができた。しかしながら、本構成においては、次に述べるような問題点がある。
位相感応型光増幅器における非線形光学媒質によるパラメトリック増幅作用自体は本質的に低雑音な光増幅が可能である。しかし、本構成による実際の動作においては下記の付随的な雑音の影響がある。励起光そのものに含まれる雑音がパラメトリック増幅過程により増幅光の雑音へと変換されてしまうことが考えられる。
図56に示した構成では、位相同期に用いる位相変調器5604をEDFA5605の前段に配置しており、位相変調器の挿入損失だけEDFAへの入射パワーが小さくなってしまう。EDFA等のレーザー増幅器においては、増幅器前の損失があると、その分だけS/N比が劣化してしまうことが良く知られている(非特許文献8を参照)。このように位相変調器の挿入損失によって励起光のS/N比が劣化してしまうと、その雑音成分がパラメトリック増幅過程により増幅光の雑音へと変換されてしまい、低雑音な増幅を行うことができない。しかし、以下に説明する本実施形態に係る別構成の位相感応光増幅器においては、この雑音の問題は解消される。
本実施形態に係る位相感応光増幅器の構成の別の一例について、図57を参照しながら説明する。図56で示した構成例で問題となっていた、位相同期のための位相変調器の損失に起因する光ファイバレーザー増幅器におけるS/N比の劣化を防ぐために、図57に示すような構成とした。
レーザー増幅器においては、非特許文献8に示されているようにレーザー増幅器の前段に損失がある場合にはその損失分だけS/N比が劣化してしまうのに対して、レーザー増幅器の後段に損失があった場合は損失分だけ出力が低下してしまうもののS/N比は劣化しない。従って、この性質を利用して、本構成では、図57に示すように、位相変調器5704を光ファイバレーザー増幅器5705より出力側に配置するようにした。
なお、従来技術では図57に示すような構成を取ることが出来ない。その理由は、既存の位相変調器の多くは、LiNbO(LN)結晶にTiを拡散させた光導波路で作製されているからである。Ti拡散導波路では光損傷が顕著であるために大きな光パワーを入射するとフォトリフラクティブ効果による屈折率変化が生じ、同じ位相変化量を得るための電圧が変化するドリフト現象を引き起こしてしまう。このため位相変調器に入力可能な光パワーは+20dBm程度に制限されてしまう。さらに挿入損失の大きな位相変調器をレーザー増幅器の後段に配置することで基本波光のパワーが減衰してしまい、光パラメトリック効果を生じるのに十分な励起光パワーが得られず、大きな増幅率をもった位相感応増幅を実現することができない。
そこで図57に示す構成においては、位相変調器5704がEDFA5705より出力側に配置できるようにした。第二高調波発生器ではより光損傷が顕著となる第二高調波を扱うために、Ti拡散よりも光損傷耐性の大きな導波路の形成法を用いることが一般的であり、位相変調器を第二高調波発生器と同様な光導波路を用いて構成することにより、より大きな励起パワーを利用することが可能になる。
図57に示す構成では、位相変調器5704がEDFA5705の入力段にないために、励起光のS/N比を5dBほど改善することができた。
PPLN導波路に入射する第二高調波のパワーが300mWの条件において、約11dBの利得を得ることができた。このときのEDFAの出力パワーは約1Wであり、直接接合導波路への入力パワーは630mWであったが、このような高パワーの光を入射した場合でも動作電圧のドリフト現象を起こすことなく安定な位相同期動作を実現することができた。
なお、PPLN導波路に高強度のパワーを入射した場合に、フォトリフラクティブ効果に起因する光損傷により位相整合波長が変化してしまうことがある。この位相整合波長の変化を防止することを目的として、図57で示す構成で使用した位相変調器5704の代替として、光損傷耐性の大きな導波路の形成法である直接接合法により作製された2次非線形光学デバイスを使用することも可能である。光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相整合波長の変動を抑制できることを確認した。また、ドライエッチング加工によりコア径を4μm程度まで小さくすることにより高い波長変換効率を実現することができた。
本実施形態に係る位相感応光増幅器の構成のさらに別の一例について、図58を参照しながら説明する。図58に示す構成では、端面加工されかつ直接接合法により作製した2次非線形光学デバイスを用いている。図58に示す構成と、上述してきた構成との違いは、信号光と励起光の同期用位相変調器を非線形光学結晶と同一基板上に集積した点である.この集積化2次非線形光学デバイスにおける基本波光の第二高調波の折り返し用導波路において位相変調が施される配置とした。
PPLN導波路が形成された同一の基板上に周期分極反転構造のない位相変調器5834を上記同様の導波路形成法で集積化した。位相変調部には導波路上に電界印加用電極5835を形成し、電気光学(EO)効果による位相変調を可能にした。
上述のようにこの導波路形成法は光損傷耐性に優れているため、EDFA5805で増幅された基本波光のパワーが大きくなった場合でも動作電圧のドリフト現象を起こすことなく光PLLのためのパイロットトーンの位相変調を基本波光に施すことができる。
本構成では、位相変調器を集積化しているため、図56及び図57で示した構成のような外部に単独の装置を接続する構成に比べて接続損失が低減される。これにより、高強度の励起光が得られるためS/N比が向上した。
また、励起光の第二高調波の折り返し用導波路上に位相変調器用電極を形成することにより装置サイズを大きく低減することに成功した。
ここで、位相変調器を第二高調波折り返し用導波路上に配置する効果を説明する。光学材料に外部から電界、応力などの外力が印加された場合、光学材料に屈折率変化が生じる。位相変調器としてLN結晶の電気光学効果を用い、電界印加により位相を変調する場合、非特許文献9に示されるように、変調器の性能を示す半波長駆動電圧Vπは、LNの電気光学係数、屈折率、印加電界、及び波長等に依存する。この中の特に波長に着目すると、以下の(式28)に示すような関係が成立する。
Vπ∝λ (式28)
半波長駆動電圧、即ち位相変調に必要な電圧は、図58で示す構成で採用した配置によって、第1の実施形態で示した配置の場合と比較すると半分となり大幅に低減することができる。さらに、この第二高調波は、左端の端面処理により効率よく反射され再び同じ位相変調器を通過する際、往路での位相変化量と同量の位相変化が加わるため全位相変化量は2倍となる。従って、これらの相乗効果により、位相変調用電圧が一定の場合、必要な光路長、即ち位相変調部の長さを、大幅に縮小することが可能である。
本構成においても、前述したように、光損傷耐性に優れたZnを添加したニオブ酸リチウムをコアに用いた直接接合導波路を使用することにより、位相変調部の動作電圧ドリフトを抑圧することが可能であった。また、位相変調部の導波路は、PPLN導波路部と同様に1.54μmの基本波波長でシングルモードとなるように設計しているため、第二高調波の波長0.77μmにおいてはマルチモードとなるが、PPLN部で発生する第二高調波は位相整合条件による制約から基底モードのみで伝搬するため、PPLN部と位相変調部の導波路設計を同じにする簡潔な導波路においても安定な位相同期動作を得ることが可能であった。
本実施形態に係る位相感応光増幅器の構成のさらに別の一例について、図59を参照しながら説明する。
図59に示す構成では、端面加工されかつ直接接合法により作製した2次非線形光学デバイスを用いる点、信号光と励起光との同期用位相変調器を非線形光学結晶と同一基板上に集積した点は、図58に示した構成と同様である。
図59に示す構成と、図58に示した構成との違いは、信号光と励起光との同期用位相変調器5934が、集積化2次非線形光学デバイスにおける信号光用導波路において信号光に対して位相変調が施される配置とした点である。図56乃至図58に示した構成においては、光PLL用位相変調器を励起光に対して機能させる配置を採用したが、図59に示すように位相変調器を信号光に対して機能させる配置を取ったとしても全く同様に位相同期を実現することができる。
市販の位相変調器を信号光側に挿入して位相感応光増幅装置を構成する場合は、位相変調器の挿入損失の影響が比較的大きく縮退パラメトリック変換(DPA)部に至る前に信号光が減衰してしまう。そのため、増幅器のS/N比劣化が不可避である。そこでこの問題を解決するために、図59に示すように、信号光に対する位相変調の機能を同一基板内に集積した。図59に示す構成により、市販の位相変調器を信号光側に挿入した場合に比べると,3dBのS/N比向上が見られた。
なお、本実施形態においても、第1の実施形態と同様の構成、すなわち、増幅方式が縮退パラメトリック方式であり、励起光が基本波光からの第二高調波であり、位相同期のための基本波光の生成方法として、信号光から直接分岐した光を用い、変調された光信号からの位相同期手段を用いない構成とした。
しかし、本実施形態は、前述の第1の実施形態から第11の実施形態で説明した方法のいずれの増幅方式、励起光の種類、位相同期のための基本波光の生成方法、位相同期方法、及びこれらの単純な組み合わせである構成を妨げるものではない。
具体的には、増幅方式としては第7乃至第9の実施形態に記載の非縮退パラメトリック方式を採用しても良く、第5の実施形態に記載のように、励起光として、異なる2つの波長の和周波を生成する方式を採用しても良い。また、位相同期のための基本波光の生成方法も、第3の実施形態に記載のように信号光とは別にパイロットトーン信号を送る方法を用いてもよく、第4の実施形態及び第5の実施形態に記載のように変調された信号光から搬送波信号を抽出・復元する方法を用いても良い。また、位相同期方法として、第11の実施形態に記載のように励起光で帰還を行う位相同期方法を用いても良い。
Figure 2012098911
101 位相感応光増幅部
102 励起光源
103 励起光移送制御部
104−1,104−2 光分岐部
110 入力信号光
111 励起光
112 出力信号光

201 レーザー光源
202 SHG結晶
203 OPA結晶
210 信号光
211 励起光

401 励起光位相同期手段
402 エルビウム添加ファイバレーザー増幅器(EDFA)
403 光ファイバ
404 フィルタ
410 入力信号光
411−1,411−2 励起光
412 出力信号光

501 第1の光ファイバ
502 第2の光ファイバ
503 光ファイバ増幅器

601 エルビウム添加ファイバレーザー増幅器(EDFA)
602−1,602−2 二次非線形光学素子
603−1,603−2 光分岐部
604 バンドパスフィルタ
605−1,605−2 PPLN導波路
606−1,606−2,606−3 ダイクロイックミラー
607 偏波保持ファイバ
608 光検出器
609 位相同期ループ回路(PLL)
610 位相変調器
611 PZTによる光ファイバ伸長器
620 信号光
621 基本波光
622 第二高調波
623 励起光
624 強度変調器

701 信号光
702−1,702−2 励起光
703 ASE光
704 基本波光
705 第二高調波

901−1,901−2 エルビウム添加ファイバレーザー増幅器(EDFA)
902−1,902−2,903−3 二次非線形光学素子
903−1,903−2 光分岐部
904−1,904−2 バンドパスフィルタ
905−1,905−2 PPLN導波路
906−1,906−2,906−3,906−4 ダイクロイックミラー
907 シングルモードファイバ
908 光検出器(フォトダイオード)
909 位相同期ループ回路(PLL)
910 位相変調器
911 PZTによる光ファイバ伸長器
912 アッテネータ
922 第二高調波
930 外部共振器型の半導体LD(ECL)
931 電界吸収型(EA)変調器
932 パルスパターン発生器(PPG)
933 フォトダイオード
934 リミティングアンプ
935 クロックデータリカバリ(CDR)回路
936 誤り検出器(ED)

1201 エルビウム添加ファイバレーザー増幅器(EDFA)
1202−1,1202−2 二次非線形光学素子
1203 光分岐部
1204 バンドパスフィルタ
1206−1,1206−2,1206−3,1206−4 ダイクロイックミラー
1208 光検出器(フォトダイオード)
1209 位相同期ループ回路(PLL)
1210 変調器
1211 PZTによる光ファイバ伸長器
1212 アッテネータ
1213 サーキュレータ
1214 光源
1230 偏波コントローラ
1231 偏光ビームスプリッタ(PBS)
1240 変調信号光
1241 増幅信号光

1300 外部共振器型の半導体レーザー
1301 光分岐器
1302 LNマッハツェンダー変調器
1303 エルビウム添加ファイバレーザー増幅器(EDFA)
1304 偏光子
1305 偏光ビームスプリッタ(PBS)
1310 変調信号光

1501 エルビウム添加ファイバレーザー増幅器(EDFA)
1502−1,1502−2 二次非線形光学素子
1503−1,1503−2 光分岐部
1505−1,1505−2 PPLN導波路
1506−1,1506−2,1506−3 ダイクロイックミラー
1508 光検出器
1509 位相同期ループ回路(PLL)
1512 半導体レーザー
1513 半導体光増幅器
1520 信号光
1522 第二高調波

1601−1,1601−2 エルビウム添加ファイバレーザー増幅器(EDFA)
1602−1,1602−2,1602−3 二次非線形光学素子
1603−1,1603−2,1603−3,1603−4 光分岐部
1604 バンドパスフィルタ
1605−1,1605−2,1605−3 PPLN導波路
1606−1,1606−2,1606−3,1606−4 ダイクロイックミラー
1608 光検出器(フォトダイオード)
1609 位相同期ループ回路(PLL)
1610 位相変調器
1611 PZTによる光ファイバ伸長器
1612 波長合分波器
1613 光サーキュレータ
1630 偏波コントローラ
1631 外部キャビティレーザー
1632 半導体レーザー
1633 PM−VOA
1634 アイソレータ
1640 入力信号光
1641−1,1641−2 基本波光
1642 基本波光

1701 信号光
1702−1,1702−2 基本波光
1703 ASE光
1704 和周波光

1801 信号光
1802 第1の基本波光
1803 第2の基本波光
1804 和周波光
1805 第二高調波

2201−1,2201−2 エルビウム添加ファイバレーザー増幅器(EDFA)
2202−1,2202−2,2202−3 二次非線形光学素子
2203−1,2203−2,2203−3 光分岐部
2204 バンドパスフィルタ
2205−1,2205−2,2205−3 PPLN導波路
2206−1,2206−2,2206−3 ダイクロイックミラー
2208 光検出器(フォトダイオード)
2210 位相変調器
2212 波長合分波器
2213 光サーキュレータ
2214 ミラー
2230 偏波コントローラ
2231 外部キャビティレーザー
2232 半導体レーザー
2240 入力信号光

2301−1,2301−2 エルビウム添加ファイバレーザー増幅器(EDFA)
2302−1,2302−2,2302−3,2302−4 二次非線形光学素子
2303−1,2303−2,2303−3 光分岐部
2304−1,2304−2 バンドパスフィルタ
2305−1,2305−2,2305−3,2305−4 PPLN導波路
2306−1,2306−2,2306−3,2306−4,2306−5,2306−6,2306−7 ダイクロイックミラー
2308 光検出器(フォトダイオード)
2309 位相同期ループ回路(PLL)
2310 位相変調器
2311 PZTによる光ファイバ伸長器
2312 波長合分波器
2313 光サーキュレータ
2315 アイソレータ
2330 偏波コントローラ
2331 外部キャビティレーザー
2332 半導体レーザー
2333 PM−VOA
2340 入力信号光

2401−1,2401−2 エルビウム添加ファイバレーザー増幅器(EDFA)
2402−1,2402−2 二次非線形光学素子
2403 光分岐部
2404−1,2404−2 バンドパスフィルタ
2405−1,2405−2 PPLN導波路
2406−1,2406−2,2406−3 ダイクロイックミラー
2407 偏波保持ファイバ
2408−1、2408−2 光検出器
2409 位相同期ループ回路(PLL)
2410 位相変調器
2411 PZTによる光ファイバ伸長器
2412 リミティングアンプ
2413 識別器
2420,2423 信号光
2421 基本波光
2422 第二高調波

2801 エルビウム添加ファイバレーザー増幅器(EDFA)
2802−1,2802−2 二次非線形光学素子
2803 光分岐部
2804 バンドパスフィルタ
2805−1,2805−2 PPLN導波路
2806−1,2806−2,2806−3 ダイクロイックミラー
2807 偏波保持ファイバ
2808 光検出器
2809 位相同期ループ回路(PLL)
2810 位相変調器
2811 PZTによる光ファイバ伸長器
2820 信号光
2821 基本波光
2822 第二高調波

2901 信号光
2902 励起光
2903 ASE光
2904 副次的な変換光

3001 信号光
3002 基本波光
3003 ASE光
3004 第二高調波(SH光)

3301 単一波長光源
3302 光分岐部
3303 光変調器
3304 パターン発生器
3305 LN変調器
3306 EDFA
3307 光分岐部

3501 単一波長光源
3502 光分岐部
3503 変調器
3504 分波器
3505 光変調器
3506 合波器
3507 EDFA
3508 位相変調器

3601 単一波長光源
3602 光分岐部
3603 変調器
3604 分波器
3605 光変調器
3606 合波器
3607 EDFA
3608 位相変調器

3701 単一波長光源
3702 光分岐部
3703 変調器
3704 分波器
3705 光変調器
3706 合波器
3707 EDFA
3708 位相変調器

3901 単一波長光源
3902 光分岐部
3903 変調器
3904 EDFA
3905 位相変調器
3906 分波器
3907 光変調器
3908 合波器

4001 エルビウム添加ファイバレーザー増幅器(EDFA)
4002−1,4002−2 二次非線形光学素子
4003 光分岐部
4004 バンドパスフィルタ
4005−1,4005−2 PPLN導波路
4006 ダイクロイックミラー
4007 光検出器
4008 位相同期ループ回路(PLL)
4009 位相変調器
4010 PZTによる光ファイバ伸長器
4011 アッテネータ
4012 サーキュレータ
4013 励起光源(半導体レーザー)
4020 偏波コントローラ
4021 中心波長分離フィルタ
4022 分散補償(調整)媒質
4030 信号光
4031 増幅された信号光

4101 エルビウム添加ファイバレーザー増幅器(EDFA)
4102−1,4102−2 二次非線形光学素子
4103−1,4103−2 光分岐部
4105−1,4105−2 PPLN導波路
4106−1,4106−2,4106−3 ダイクロイックミラー
4107 偏波保持ファイバ
4108 光検出器
4109 位相同期ループ回路(PLL)
4110 位相変調器
4111 PZTによる光ファイバ伸長器
4120 信号光
4121 基本波光
4122 第二高調波

4201 位相感応光増幅部
4202 励起光源
4203 励起光位相制御部
4204−1、4204−2 光分岐部
4210 入力信号光
4211 励起光
4212 出力信号光
4213 第二高調波

4401 エルビウム添加ファイバレーザー増幅器(EDFA)
4402−1,4402−2 二次非線形光学素子
4403 光分岐部
4404 バンドパスフィルタ
4405−1,4405−2 PPLN導波路
4406−1,4406−2,4406−3 ダイクロイックミラー
4407 偏波保持ファイバ
4408 光検出器
4409 位相同期ループ回路(PLL)
4410 位相変調器
4411 PZTによる光ファイバ伸長器
4420 信号光
4421 基本波光
4422 第二高調波
4424 データ信号用変調器
4425 ハイパスフィルタ

4501 エルビウム添加ファイバレーザー増幅器(EDFA)
4502−1,4502−2 二次非線形光学素子
4503 光分岐部
4504 バンドパスフィルタ
4505−1,4505−2 PPLN導波路
4506−1,4506−2 ダイクロイックミラー
4507 偏波保持ファイバ
4508 光検出器
4509 位相同期ループ回路(PLL)
4510 位相変調器
4511 PZTによる光ファイバ伸長器
4520 信号光
4521 基本波光
4522 第二高調波
4523 増幅された信号光
4524 データ信号用変調器
4526 MMI型光合分波器

4601 エルビウム添加ファイバレーザー増幅器(EDFA)
4602−1,4602−2 二次非線形光学素子
4603 光分岐部
4605−1,4605−2 PPLN導波路
4606−1,4606−2,4606−3 ダイクロイックミラー
4607 偏波保持ファイバ
4608 光検出器
4609 位相同期ループ回路(PLL)
4610 位相変調器
4611 PZTによる光ファイバ伸長器
4620 信号光
4621 基本波光
4622 第二高調波
4623 増幅された信号光

4701 エルビウム添加ファイバレーザー増幅器(EDFA)
4702−1,4702−2 二次非線形光学素子
4703 光分岐部
4705−1,4705−2 PPLN導波路
4706−1,4706−2,4706−3 ダイクロイックミラー
4708 光検出器
4709 位相同期ループ回路(PLL)
4712 半導体レーザー
4713 半導体光増幅器
4720 信号光
4722 第二高調波
4723 増幅された信号光

4801 エルビウム添加ファイバレーザー増幅器(EDFA)
4802−1,4802−2 二次非線形光学素子
4803−1,4803−2 光分岐部
4805−1,4805−2 PPLN導波路
4806−1,4806−2,4806−3 ダイクロイックミラー
4807 偏波保持ファイバ
4808 光検出器
4809 位相同期ループ回路(PLL)
4810 位相変調器
4811 PZTによる光ファイバ伸長器
4820 入力信号光
4821 基本波光
4822 第二高調波
4823 出力信号光

4901 エルビウム添加ファイバレーザー増幅器(EDFA)
4902−1,4902−2 二次非線形光学素子
4903−1,4903−2 光分岐部
4905−1,4905−2 PPLN導波路
4906−1,4906−2,4906−3 ダイクロイックミラー
4907 偏波保持ファイバ
4908 光検出器
4909 位相同期ループ回路(PLL)
4910 位相変調器
4911 PZTによる光ファイバ伸長器
4920 入力信号光
4921 基本波光
4922 第二高調波
4923 出力信号光

5001 エルビウム添加ファイバレーザー増幅器(EDFA)
5002−1,5002−2 二次非線形光学素子
5003−1,5003−2 光分岐部
5005−1,5005−2 PPLN導波路
5006−1,5006−2 ダイクロイックミラー
5008 光検出器
5009 位相同期ループ回路(PLL)
5010 位相変調器
5011 PZTによる光ファイバ伸長器
5012 MMI
5020 入力信号光
5021 基本波光
5022 第二高調波
5023 出力信号光

5101 エルビウム添加ファイバレーザー増幅器(EDFA)
5102−1,5102−2 二次非線形光学素子
5103−1,5103−2 光分岐部
5105−1,5105−2 PPLN導波路
5106−1,5106−2 ダイクロイックミラー
5108 光検出器
5109 位相同期ループ回路(PLL)
5110 位相変調器
5111 PZTによる光ファイバ伸長器
5112 MMI
5120 入力信号光
5121 基本波光
5122 第二高調波
5123 出力信号光

5201 エルビウム添加ファイバレーザー増幅器(EDFA)
5202−1,5202−2 二次非線形光学素子
5203−1,5203−2 光分岐部
5205−1,5205−2 PPLN導波路
5206 ダイクロイックミラー
5208 光検出器
5209 位相同期ループ回路(PLL)
5210 位相変調器
5211 PZTによる光ファイバ伸長器
5212 MMI
5220 入力信号光
5221 基本波光
5222 第二高調波
5223 出力信号

5301−1、5301−2 エルビウム添加ファイバレーザー増幅器(EDFA)
5302−1、5302−2 二次非線形光学素子
5303 光分岐部
5304−1,5304−2 バンドパスフィルタ
5305−1,5305−2 PPLN導波路
5306−1,5306−2,5306−3 ダイクロイックミラー
5307 偏波保持ファイバ
5308 光検出器
5309 位相同期ループ回路(PLL)
5310 位相変調器
5311 PZTによる光ファイバ伸長器
5312 リミティングアンプ
5313 識別器
5314 遅延干渉計
5315 バランスドPD
5320 信号光
5321 基本波光
5322 第二高調波

5501 エルビウム添加ファイバレーザー増幅器(EDFA)
5502 二次非線形光学素子
5503−1,5503−2 光分岐部
5505−1,5505−2 PPLN導波路
5506 ダイクロイックミラー
5508 光検出器
5509 位相同期ループ回路(PLL)
5510 位相変調器
5511 PZTによる光ファイバ伸長器
5512 MMI
5520 入力信号光
5521 基本波光
5522 第二高調波
5523 出力信号光

5603,5609 カップラ
5604 位相変調器
5605 エルビウム添加ファイバレーザー増幅器(EDFA)
5606 位相同期ループ回路(PLL)
5607 光検出器
5615 信号光
5616 基本波光
5617 第二高調波
5618 増幅された基本波光
5619 出力光
5620 LiNbO3基板
5621 PPLN導波路
5622 マルチモード干渉計(MMI)
5623 光アイソレータ
5624 光ファイバ伸長器
5625 光サーキュレータ
5626 ローパスフィルタ
5627 信号光用導波路
5628 励起光(第二高調波)用導波路
5629 信号光波長帯反射防止用光学薄膜
5630 第二高調波波長帯反射用光学薄膜
5631 第二高調波波長帯反射防止用光学薄膜
5632,5633 LN基板端面
5635 電界印加用電極

5703,5709 カップラ
5704 位相変調器
5705 エルビウム添加ファイバレーザー増幅器(EDFA)
5706 位相同期ループ回路(PLL)
5707 光検出器
5715 信号光
5716 基本波光
5717 第二高調波
5718 増幅された基本波光
5719 出力光
5720 LiNbO3基板
5721 PPLN導波路
5722 マルチモード干渉計(MMI)
5723 光アイソレータ
5724 光ファイバ伸長器
5725 光サーキュレータ
5726 ローパスフィルタ
5735 電界印加用電極

5803,5809 カップラ
5805 エルビウム添加ファイバレーザー増幅器(EDFA)
5806 位相同期ループ回路(PLL)
5807 光検出器
5815 信号光
5816 基本波光
5817 第二高調波
5818 増幅された基本波光
5819 出力光
5820 LiNbO基板
5821 PPLN導波路
5822 マルチモード干渉計(MMI)
5823 光アイソレータ
5824 光ファイバ伸長器
5825 光サーキュレータ
5826 ローパスフィルタ
5834 直接接合LiNbOリッジ導波路を用いた位相変調器
5835 電界印加用電極

5903,5909 カップラ
5905 エルビウム添加ファイバレーザー増幅器(EDFA)
5906 位相同期ループ回路(PLL)
5907 光検出器
5915 信号光
5916 基本波光
5917 第二高調波
5918 増幅された基本波光
5919 出力光
5920 LiNbO基板
5921 PPLN導波路
5922 マルチモード干渉計(MMI)
5923 光アイソレータ
5924 光ファイバ伸長器
5925 光サーキュレータ
5926 ローパスフィルタ
5934 位相変調器
5935 電界印加用電極
本発明は、非線形光学効果を用いた光混合によって信号光を増幅する位相感応型光増幅装置であり、基本波光を増幅する光ファイバレーザー増幅器と、周期的に分極反転された二次非線形光学材料から成る、基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子と、基本波光と和周波光とから和周波光のみを分離するフィルタと、信号光と励起光である和周波光とを合波する合波器と、周期的に分極反転された二次非線形光学材料から成る、励起光を用いて信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子と、増幅された信号光と励起光とを分離するフィルタと、信号光の位相と励起光の位相とを同期する手段とを備えたことを特徴とする。
本発明の一実施形態において、信号光は、和周波光の半分の光周波数を中心として対称関係にありかつ同一のまたは反転した位相情報を持つ、1または複数の信号光の対から成ることを特徴とする。
本発明の一実施形態において、信号光の位相と励起光の位相とを同期する手段は、位相変調器および光学長の伸長器と、増幅された信号光の一部または励起光の一部を分岐する手段と、分岐する手段により分岐された、位相変調器によって変調された位相変化に対応した光の強度変化の検出手段と、検出手段によって検出した光の強度変化をもとに位相変調器及び光学長の伸長器に増幅された信号光の強度を最大化するように帰還を行う位相同期ループ回路とから構成されることを特徴とする。
本発明の一実施形態において、信号光の位相と励起光の位相とを同期する手段は、基本波光を発生する半導体レーザーもしくは基本波光または励起光に位相同期している光を発生する半導体レーザーと、増幅された信号光の一部または励起光の一部を分岐する手段と、分岐する手段により分岐された光の強度変化の検出手段と、検出手段によって検出した光の強度変化をもとに増幅された信号光の強度を最大化するように、基本波光を発生する半導体レーザーもしくは基本波光または励起光に位相同期している光を発生する半導体レーザーの駆動電流に帰還を行う位相同期ループ回路とから構成されることを特徴とする。
本発明の一実施形態において、基本波光と和周波光から和周波光のみを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする。
本発明の一実施形態において、信号光と励起光である和周波光とを合波する合波器は、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光合波素子であることを特徴とする。
本発明の一実施形態において、増幅された信号光と励起光とを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする。
本発明の一実施形態において、和周波光を発生させるための光導波路を備えた二次非線形光学素子と光ファイバレーザー増幅器との間に、バンドパスフィルタをさらに備えたことを特徴とする。
本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、フィルタと合波器とは、光導波路と同一導波路上に隣接して形成され、位相変調器は、合波器の前段に接続され、フィルタは、合波器の前段に接続され、和周波光を発生させるための光導波路は、フィルタおよび合波器の前段に接続されることを特徴とする。
本発明の一実施形態において、位相変調器をさらに備え、位相変調器と、基本波光と和周波光とから和周波光のみを分離するフィルタと、信号光と励起光とを合波する合波器とは、パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子に集積され、位相変調器と合波器とは、光導波路と同一導波路上に隣接して形成され、フィルタは、合波器の前段に接続され、光導波路は、合波器の後段に接続され、位相変調器は、合波器の前段に接続されることを特徴とする。

Claims (29)

  1. 非線形光学効果を用いた光混合によって信号光を増幅する位相感応型光増幅装置であって、
    基本波光を増幅する光ファイバレーザー増幅器と、
    周期的に分極反転された二次非線形光学材料から成る、該基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子と、
    該基本波光と、該和周波光とから該和周波光のみを分離するフィルタと、
    該信号光と、励起光である該和周波光とを合波する合波器と、
    周期的に分極反転された二次非線形光学材料から成る、該励起光を用いて該信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子と、
    増幅された該信号光と、該励起光とを分離するフィルタと、
    該信号光の位相と、該励起光の位相とを同期する手段と
    を備えたことを特徴とする位相感応型光増幅装置。
  2. 前記和周波光は、第二高調波であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  3. 前記パラメトリック増幅は、縮退パラメトリック増幅であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  4. 前記パラメトリック増幅は、非縮退パラメトリック増幅であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  5. 前記信号光は、前記励起光である前記和周波光の半分の光周波数を中心として対称関係にありかつ同一のまたは反転した位相情報を持つ、1または複数の信号光の対から成ることを特徴とする請求項4に記載の位相感応型光増幅装置。
  6. 前記信号光の位相と、前記励起光の位相とを同期する手段は、
    位相変調器および光学長の伸長器と、
    前記増幅された信号光の一部または前記励起光の一部を分岐する手段と、
    該位相変調器によって変調された位相変化に対応した該分岐する手段により分岐された光の強度変化の検出手段と、
    該検出手段によって検出した光の強度変化をもとに該位相変調器及び該光学長の伸長器に前記増幅された信号光の強度を最大化するように帰還を行う位相同期ループ回路と
    から構成されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  7. 前記信号光の位相と、前記励起光の位相とを同期する手段は、
    前記基本波光を発生する半導体レーザーもしくは前記基本波光または前記励起光に位相同期している光を発生する半導体レーザーと、
    前記増幅された信号光の一部または前記励起光の一部を分岐する手段と、
    該分岐する手段により分岐された光の強度変化の検出手段と、
    該検出手段によって検出した光の強度変化をもとに前記増幅された信号光の強度を最大化するように、前記基本波光を発生する半導体レーザーもしくは前記基本波光または前記励起光に位相同期している光を発生する半導体レーザーの駆動電流に帰還を行う位相同期ループ回路と
    から構成されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  8. 前記信号光は、連続波光のパイロットトーンをさらに備え、
    前記位相感応型光増幅装置は、前記信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、
    該半導体レーザー光源は、該連続波光のパイロットトーンにより光注入同期され、
    注入光に位相同期した、該半導体レーザー光源から出力された連続光は、前記基本波光として用いられることを特徴とする請求項1に記載の位相感応型光増幅装置。
  9. 前記信号光の一部を分岐する手段と、半導体レーザー光源とをさらに備え、
    該半導体レーザー光源は、前記和周波光のみを分離するフィルタから出力された前記和周波光により光注入同期され、
    注入光に位相同期した、該半導体レーザー光源から出力された連続光は、前記励起光として用いられることを特徴とする請求項1に記載の位相感応型光増幅装置。
  10. 前記信号光の一部を分岐する手段と、
    半導体レーザー光源と、
    第1の基本波光を発生させるための光源と、
    周期的に分極反転された二次非線形光学材料から成る、前記信号光の第二高調波を発生させるための光導波路を備えた二次非線形光学素子と、
    周期的に分極反転された二次非線形光学材料から成る、発生させた該第二高調波と該第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子と
    をさらに備え、
    該半導体レーザーは、発生させた該差周波光により注入同期され、注入光に位相同期した、該半導体レーザー光源から出力された連続光を第2の基本波光とし、該第1の基本波光と該第2の基本波光とを用いて、前記基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、前記和周波光を発生させることを特徴とする請求項1に記載の位相感応型光増幅装置。
  11. 前記信号光の一部を分岐する手段と、
    半導体レーザー光源と、
    第1の基本波光を発生させるための光源と、
    周期的に分極反転された二次非線形光学材料から成る、前記信号光の第二高調波を発生させるためのかつ発生させた該第二高調波と該第1の基本波光との間の差周波光を発生させるための光導波路を備えた二次非線形光学素子と
    をさらに備え、
    発生させた該差周波光を該半導体レーザーに注入同期し、注入光に位相同期した、該半導体レーザー光源から出力された連続光を第2の基本波光とし、該第1の基本波光と該第2の基本波光とを用いて、前記基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子によって、前記和周波光を発生させることを特徴とする請求項1に記載の位相感応型光増幅装置。
  12. 前記基本波光と、前記和周波光から前記和周波光のみを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  13. 前記信号光と、前記励起光である前記和周波光とを合波する合波器は、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光合波素子であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  14. 前記増幅された信号光と、前記励起光とを分離するフィルタは、誘電体膜を用いたダイクロイックミラーまたはマルチモード干渉を用いた光分波素子であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  15. 前記和周波光は、前記和周波光の波長においてシングルモードの偏波保持ファイバで伝送されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  16. バンドパスフィルタを、前記光ファイバレーザー増幅器と前記和周波光を発生させるための光導波路を備えた二次非線形光学素子との間にさらに備えたことを特徴とする請求項1に記載の位相感応型光増幅装置。
  17. 前記和周波光を発生させるための光導波路を備えた二次非線形光学素子と、前記パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子とは、個別に温度調整可能であることを特徴とする請求項1に記載の位相感応型光増幅装置。
  18. 請求項1に記載の位相感応型光増幅装置と、フォトダイオードとから構成された光受信装置であって、
    前記位相感応型光増幅装置は、前記位相感応型光増幅装置に従属接続された光ファイバレーザー増幅器と、前記増幅された信号光の近傍の波長を透過するバンドパスフィルタとをさらに備えたことを特徴とする光受信装置。
  19. 請求項1に記載の位相感応型光増幅装置と、前記信号光を生成する光源と、光変調器と、該光源からの出力の一部を分岐する手段とから構成された光送信装置であって、分岐された該光源からの出力の一部を前記基本波光として用いることを特徴とする光送信装置。
  20. 前記光ファイバレーザー増幅器よりも出力側に、位相変調器をさらに備え、
    前記位相変調器は、直接接合法により作製された光導波路からなることを特徴とする請求項1に記載の位相感応型光増幅装置。
  21. 位相変調器をさらに備え、前記位相変調器は、前記和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
    前記位相変調器は、前記和周波光を発生させるための光導波路と同一導波路上に隣接して形成され、前記和周波光を発生させるための光導波路の前段または後段に接続されたことを特徴とする請求項1に記載の位相感応型光増幅装置。
  22. 位相変調器をさらに備え、
    前記位相変調器と、前記基本波光と、和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器とは、前記和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
    該フィルタと、該合波器とは、該光導波路と同一導波路上に隣接して形成され、
    該位相変調器は、該合波器の前段に接続され、
    該フィルタは、該合波器の前段に接続され、
    前記和周波光を発生させるための光導波路は、該フィルタおよび該合波器の前段に接続されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  23. 位相変調器をさらに備え、
    前記位相変調器と、前記基本波光と、和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器とは、前記パラメトリック増幅を行うための光導波路を備えた二次非線形光学素子に集積され、
    前記位相変調器と、前記合波器とは、該光導波路と同一導波路上に隣接して形成され、
    該フィルタは、前記合波器の前段に接続され、
    該光導波路は、前記合波器の後段に接続され、
    前記位相変調器は、前記合波器の前段に接続されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  24. 位相変調器をさらに備え、
    前記位相変調器と、前記基本波光と和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器とは、前記和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
    集積された該和周波光を発生させるための二次非線形光学素子および前記パラメトリック増幅を行うための二次非線形光学素子は、一つの光学素子として一体化され、
    前記和周波光を発生させるための光導波路と、前記基本波光と和周波光とから和周波光のみを分離するフィルタと、前記信号光と励起光とを合波する合波器と、前記パラメトリック増幅を行うための光導波路とは、同一導波路上に隣接して形成され、
    前記位相変調器は、前記信号光と励起光とを合波する合波器の前段に接続され、
    前記基本波光と和周波光とから和周波光のみを分離するフィルタは、前記合波器の前段に接続され、
    前記和周波光を発生させるための光導波路は、前記基本波光と和周波光とから和周波光のみを分離するフィルタおよび前記合波器の前段に接続され、
    前記パラメトリック増幅を行うための光導波路は、前記合波器の後段に接続されることを特徴とする請求項1に記載の位相感応型光増幅装置。
  25. 位相変調器と、
    前記和周波光を反射する手段と、
    前記基本波光から和周波光を発生させるための光導波路を備えた二次非線形光学素子に、前記基本波光を入射し、かつ前記増幅された信号光を透過する光サーキュレータと、
    前記信号光の入力、および前記基本波光と和周波光から和周波光のみを分離するフィルタにより分離された該基本波光の出力に用いられる第1の光導波路と、
    該反射手段と前記合波器とを接続する第2の光導波路と
    をさらに備え、
    該フィルタと該合波器と該第1の光導波路および該第2の光導波路とは、該和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、
    該基本波光から和周波光を発生させるための光導波路を備えた該二次非線形光学素子の前記光導波路と、前記励起光を用いて信号光のパラメトリック増幅を行うための光導波路を備えた二次非線形光学素子の前記光導波路とは、共用され、
    該フィルタと該合波器とは、共用され、
    該共用された光導波路と該共用された合波器と該第2の光導波路とは、同一導波路上に隣接して形成され、
    該共用された光導波路と該第1の光導波路と該第2の光導波路とは、該合波器に接続されていることを特徴とする請求項1に記載の位相感応型光増幅装置。
  26. 前記第1の光導波路の前記合波器に接続された接面とは反対側の断面が、該第1の光導波路の軸と0°より大きく90°未満の角度をなすように切断され、前記共用された光導波路の少なくとも1つの入出力端部が該共用された光導波路の軸と0°より大きく90°未満の角度をなすように端面処理されていることを特徴とする請求項25に記載の位相感応型光増幅装置。
  27. 前記位相変調器は、前記基本波から和周波光を発生させるための光導波路を備えた二次非線形光学素子に集積され、該位相変調器は前記合波器と同一導波路上に隣接して形成されていることを特徴とする請求項25に記載の位相感応型光増幅装置。
  28. 前記周期的に分極反転された二次非線形光学材料は、LiNbO3、KNbO3、LiTaO3、LiNbxTa1-x3(0≦x≦1)、KTiOPO、または、それらにMg、Zn、Fe、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有していることを特徴とする請求項1に記載の位相感応型光増幅装置。
  29. 前記和周波光を発生させるための光導波路と、前記パラメトリック増幅を行うための光導波路は、非線形光学効果を有する第一の基板と、第一の基板に比べ屈折率の小さい第二の基板とを直接貼り合わせることによって作製された直接接合光導波路であることを特徴とする請求項1に記載の位相感応型光増幅装置。
JP2012553644A 2011-01-20 2012-01-20 光信号増幅装置 Active JP5856083B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012553644A JP5856083B2 (ja) 2011-01-20 2012-01-20 光信号増幅装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011009894 2011-01-20
JP2011009894 2011-01-20
JP2011046976 2011-03-03
JP2011046976 2011-03-03
JP2011046975 2011-03-03
JP2011046975 2011-03-03
JP2011136297 2011-06-20
JP2011136297 2011-06-20
JP2012553644A JP5856083B2 (ja) 2011-01-20 2012-01-20 光信号増幅装置
PCT/JP2012/000360 WO2012098911A1 (ja) 2011-01-20 2012-01-20 光信号増幅装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015090875A Division JP5883974B2 (ja) 2011-01-20 2015-04-27 光信号増幅装置

Publications (2)

Publication Number Publication Date
JPWO2012098911A1 true JPWO2012098911A1 (ja) 2014-06-09
JP5856083B2 JP5856083B2 (ja) 2016-02-09

Family

ID=46515544

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012553644A Active JP5856083B2 (ja) 2011-01-20 2012-01-20 光信号増幅装置
JP2015090875A Active JP5883974B2 (ja) 2011-01-20 2015-04-27 光信号増幅装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015090875A Active JP5883974B2 (ja) 2011-01-20 2015-04-27 光信号増幅装置

Country Status (5)

Country Link
US (1) US9065243B2 (ja)
EP (1) EP2672318B1 (ja)
JP (2) JP5856083B2 (ja)
CN (1) CN103403616B (ja)
WO (1) WO2012098911A1 (ja)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
JP5759400B2 (ja) * 2012-03-02 2015-08-05 日本電信電話株式会社 光増幅装置、光信号発生器および信号対雑音比改善装置
JP2014044256A (ja) * 2012-08-24 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014081578A (ja) * 2012-10-18 2014-05-08 Nippon Telegr & Teleph Corp <Ntt> 光送信装置
JP5945212B2 (ja) * 2012-10-29 2016-07-05 日本電信電話株式会社 光増幅装置
JP5881580B2 (ja) * 2012-10-29 2016-03-09 日本電信電話株式会社 位相感応型光増幅装置
US8909063B2 (en) * 2012-10-31 2014-12-09 Fujitsu Limited Optical QPSK signal regeneration and amplification
JP2014095780A (ja) * 2012-11-08 2014-05-22 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2014179916A (ja) * 2013-03-15 2014-09-25 Nippon Telegr & Teleph Corp <Ntt> 周波数伝送システム
JP6072593B2 (ja) * 2013-04-12 2017-02-01 日本電信電話株式会社 光増幅装置
JP2014211539A (ja) * 2013-04-18 2014-11-13 日本電信電話株式会社 波長変換素子
US9506858B2 (en) * 2013-05-09 2016-11-29 The Board Of Trustees Of The University Of Illinois Optical parametric amplification of weak signals for imaging biological tissue
JP6204064B2 (ja) * 2013-05-21 2017-09-27 日本電信電話株式会社 光増幅装置
ES2528327B1 (es) * 2013-07-05 2015-12-18 Universidad De Alcalá Sistema de detección diferencial para sensores distribuidos sobre fibra óptica basados en scattering brillouin estimulado
JP6126543B2 (ja) * 2014-02-27 2017-05-10 日本電信電話株式会社 光増幅装置
EP3115840B1 (en) * 2014-03-04 2020-05-06 National Institute of Advanced Industrial Science and Technology Optical phase regeneration method and device
JP6220313B2 (ja) * 2014-05-08 2017-10-25 日本電信電話株式会社 光信号増幅装置
JP6280440B2 (ja) * 2014-05-19 2018-02-14 日本電信電話株式会社 光パルス試験装置
JP6220314B2 (ja) * 2014-05-22 2017-10-25 日本電信電話株式会社 光増幅装置
JP6280445B2 (ja) * 2014-05-23 2018-02-14 日本電信電話株式会社 コヒーレント光周波数領域リフレクトメトリ測定装置
JP6285805B2 (ja) * 2014-06-02 2018-02-28 日本電信電話株式会社 ベクトル光変調器および光送信器
WO2016134332A1 (en) * 2015-02-20 2016-08-25 Hrl Laboratories, Llc Chip-scale power scalable ultraviolet optical source
JP6348447B2 (ja) * 2015-04-22 2018-06-27 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP6039744B1 (ja) * 2015-05-18 2016-12-07 日本電信電話株式会社 雑音指数測定方法、雑音指数測定装置、および測定システム
US9571200B2 (en) * 2015-07-09 2017-02-14 Elenion Technologies, Llc Transmitter optical signal to noise ratio improvement through receiver amplification in single laser coherent systems
US9843410B2 (en) * 2015-11-18 2017-12-12 Fujitsu Limited Low-noise optical phase sensitive amplifier using a semiconductor nonlinear optical device
US9979484B2 (en) * 2016-02-01 2018-05-22 Vencore Labs, Inc. Photonics-based channelization enabled by phase-sensitive amplification
JP6585542B2 (ja) * 2016-04-26 2019-10-02 日本電信電話株式会社 位相感応光増幅器および位相同期安定化方法
JP2017207687A (ja) * 2016-05-20 2017-11-24 日本電信電話株式会社 広帯域安定化光源
JP6114442B1 (ja) * 2016-06-09 2017-04-12 日本電信電話株式会社 光増幅装置および光伝送システム
US10536218B2 (en) * 2016-09-23 2020-01-14 Peter Avo Andrekson Free-space optical communication links with improved sensitivity
US10673530B2 (en) 2016-10-05 2020-06-02 LGS Innovations LLC Inc. Free space optical communication system and method
CN106647099B (zh) * 2016-12-16 2019-08-16 北京邮电大学 一种基于多光波干涉的高精度光相位量化方法
JP7088937B2 (ja) 2016-12-30 2022-06-21 イノビュージョン インコーポレイテッド 多波長ライダー設計
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
CN110573900A (zh) 2017-01-05 2019-12-13 图达通爱尔兰有限公司 用于编码和译码LiDAR的方法和系统
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US10050738B1 (en) * 2017-01-23 2018-08-14 Fujitsu Limited Low noise colorless, directionless, contentionless reconfigurable optical add/drop multiplexer
CN106840420A (zh) * 2017-02-23 2017-06-13 北京邮电大学 一种红外单光子探测设备
FR3063395B1 (fr) * 2017-02-28 2021-05-28 Centre Nat Rech Scient Source laser pour l'emission d'un groupe d'impulsions
IL251841A0 (en) * 2017-04-20 2017-07-31 Univ Bar Ilan Distributed sensing by optical fiber using guided acoustic patterns
JP2018205546A (ja) * 2017-06-05 2018-12-27 日本電信電話株式会社 広帯域光発生装置
JP6796027B2 (ja) * 2017-06-07 2020-12-02 日本電信電話株式会社 光送信器およびこれを使用した光伝送システム
JP6796028B2 (ja) * 2017-06-13 2020-12-02 日本電信電話株式会社 光増幅装置およびそれを用いた伝送システム
JP6774382B2 (ja) * 2017-06-13 2020-10-21 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP7106835B2 (ja) * 2017-10-06 2022-07-27 富士通株式会社 光伝送装置、波長変換装置、光伝送方法、および波長変換方法
JP6907917B2 (ja) * 2017-12-14 2021-07-21 日本電信電話株式会社 波長変換装置
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
WO2019139895A1 (en) 2018-01-09 2019-07-18 Innovusion Ireland Limited Lidar detection systems and methods that use multi-plane mirrors
WO2019164961A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar systems with fiber optic coupling
WO2019165130A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar detection systems and methods with high repetition rate to observe far objects
WO2019165294A1 (en) 2018-02-23 2019-08-29 Innovusion Ireland Limited 2-dimensional steering system for lidar systems
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
US11289873B2 (en) 2018-04-09 2022-03-29 Innovusion Ireland Limited LiDAR systems and methods for exercising precise control of a fiber laser
CN112585492A (zh) 2018-06-15 2021-03-30 图达通爱尔兰有限公司 用于聚焦感兴趣的范围的lidar系统和方法
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
WO2020102406A1 (en) 2018-11-14 2020-05-22 Innovusion Ireland Limited Lidar systems and methods that use a multi-facet mirror
US10523334B1 (en) 2018-12-07 2019-12-31 Fujitsu Limited Controlling gain modulation in optical communication networks
JP7211431B2 (ja) * 2018-12-12 2023-01-24 日本電気株式会社 光伝送装置、端局装置、光通信システム及び光通信方法
CN113302515A (zh) 2019-01-10 2021-08-24 图达通爱尔兰有限公司 具有光束转向和广角信号检测的lidar系统和方法
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
US11740537B2 (en) * 2019-05-28 2023-08-29 Nippon Telegraph And Telephone Corporation Optical signal processing circuit
US11604399B2 (en) 2019-10-04 2023-03-14 Cornell University Back-conversion suppressed optical parametric amplification
WO2021106147A1 (ja) * 2019-11-28 2021-06-03 日本電信電話株式会社 光伝送システム、及び光伝送方法
US11888528B2 (en) * 2019-12-19 2024-01-30 Nippon Telegraph And Telephone Corporation Optical communication system
US11438086B2 (en) * 2020-01-21 2022-09-06 Fujitsu Limited Optical amplification in an optical network
WO2021161411A1 (ja) * 2020-02-12 2021-08-19 日本電信電話株式会社 波長分散補償装置及び波長分散補償方法
US20230221617A1 (en) * 2020-07-22 2023-07-13 Nippon Telegraph And Telephone Corporation Wavelength Conversion Apparatus
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
EP4260086A1 (en) 2021-03-01 2023-10-18 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
WO2022215261A1 (ja) * 2021-04-09 2022-10-13 日本電信電話株式会社 光増幅装置
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
CN117178199A (zh) 2021-04-22 2023-12-05 图达通智能美国有限公司 具有高分辨率和超宽视场的紧凑型光检测和测距设计
EP4314884A1 (en) 2021-05-21 2024-02-07 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside lidar scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
CN114002893B (zh) * 2021-12-31 2022-03-22 中山大学 一种同频单纤双向系统的后向散射噪声抑制光器件
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device
CN115085807B (zh) * 2022-04-27 2024-04-05 苏州中科光桥空间技术有限公司 一种小型激光通信系统
CN115308844B (zh) * 2022-07-04 2023-11-24 厦门市三安集成电路有限公司 用于多信道全光信号处理的单片集成芯片及其处理方法
CN115396018A (zh) * 2022-07-26 2022-11-25 西安空间无线电技术研究所 一种光纤放大器增益和噪声系数的测试系统及方法
WO2024084592A1 (ja) * 2022-10-18 2024-04-25 日本電信電話株式会社 光増幅器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190112A (ja) * 1995-01-09 1996-07-23 Nippon Telegr & Teleph Corp <Ntt> 光増幅器および前置増幅器
JP3473811B2 (ja) * 1995-12-13 2003-12-08 日本電信電話株式会社 光増幅器および光増幅中継伝送システム
JP2008089781A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 光パラメトリック増幅装置
US8023538B2 (en) * 2008-03-27 2011-09-20 Imra America, Inc. Ultra-high power parametric amplifier system at high repetition rates

Also Published As

Publication number Publication date
EP2672318A1 (en) 2013-12-11
JP2015165316A (ja) 2015-09-17
EP2672318B1 (en) 2017-08-23
JP5883974B2 (ja) 2016-03-15
US20150036210A1 (en) 2015-02-05
EP2672318A4 (en) 2014-05-07
WO2012098911A1 (ja) 2012-07-26
CN103403616B (zh) 2016-05-18
US9065243B2 (en) 2015-06-23
CN103403616A (zh) 2013-11-20
JP5856083B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5883974B2 (ja) 光信号増幅装置
JP5759400B2 (ja) 光増幅装置、光信号発生器および信号対雑音比改善装置
JP3920297B2 (ja) 光スイッチおよび光スイッチを利用した光波形モニタ装置
EP1328078B1 (en) Method and device for waveform shaping of an optical signal
JP5246217B2 (ja) 光スイッチおよび光スイッチを利用した光波形モニタ装置
Kazama et al. Low-parametric-crosstalk phase-sensitive amplifier for guard-band-less DWDM signal using PPLN waveguides
JP2004037985A (ja) 光andゲート及び波形成形装置
Shimizu et al. PPLN-based optical parametric amplification for wideband WDM transmission
JP4629642B2 (ja) 光スイッチおよび光スイッチを利用した光波形モニタ装置
Wang et al. Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude-and phase-modulated signals
JP4574629B2 (ja) 光スイッチおよび光スイッチを利用した光波形モニタ装置
JP2014095780A (ja) 光増幅装置
JP5881580B2 (ja) 位相感応型光増幅装置
JP6348447B2 (ja) 光増幅装置およびそれを用いた光伝送システム
US11888528B2 (en) Optical communication system
JP6126543B2 (ja) 光増幅装置
JP2014044256A (ja) 光増幅装置
JP6114442B1 (ja) 光増幅装置および光伝送システム
JP2014081578A (ja) 光送信装置
JP2019002975A (ja) 光増幅装置およびそれを用いた伝送システム
WO2020240643A1 (ja) 励起光生成装置
Umeki et al. Phase sensitive degenerate parametric amplification using highly efficient PPLN ridge waveguides
JP6220313B2 (ja) 光信号増幅装置
Saruwatari High-speed all-optical technologies for photonics
Kurz et al. Optical frequency mixers for WDM and TDM applications

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5856083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150