WO2024084592A1 - 光増幅器 - Google Patents

光増幅器 Download PDF

Info

Publication number
WO2024084592A1
WO2024084592A1 PCT/JP2022/038806 JP2022038806W WO2024084592A1 WO 2024084592 A1 WO2024084592 A1 WO 2024084592A1 JP 2022038806 W JP2022038806 W JP 2022038806W WO 2024084592 A1 WO2024084592 A1 WO 2024084592A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
control
pump light
optical
Prior art date
Application number
PCT/JP2022/038806
Other languages
English (en)
French (fr)
Inventor
貴大 柏崎
毅伺 梅木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/038806 priority Critical patent/WO2024084592A1/ja
Publication of WO2024084592A1 publication Critical patent/WO2024084592A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present invention relates to an optical parametric amplifier used in optical communication systems and optical control systems.
  • Nonlinear optical devices and electro-optical devices are being developed in a wide range of fields, including optical signal wavelength conversion and optical modulation in optical communications, optical measurement, optical processing, medicine, and bioengineering.
  • the optical frequencies used by these devices range from the ultraviolet to the visible to the infrared to the terahertz ranges.
  • In optical communications they are also used to generate and modulate coherent light, and for wavelength conversion operations using difference frequency generation and amplification operations using the parametric effect.
  • oxide-based compound substrates such as lithium niobate (LiNbO 3 ) are known as promising materials with very high second-order nonlinear optical constants and electro-optic constants.
  • a periodically poled lithium niobate (PPLN: Periodically Poled Lithium Niobate) waveguide element is widely used in light sources due to its high wavelength conversion efficiency.
  • PPLN waveguide elements etc., the processes of second harmonic generation (SHG), difference frequency generation (DFG), and sum frequency generation (SFG) are used.
  • phase-sensitive amplifiers that have amplification characteristics according to the phase relationship between the pump light and the signal light are expected to be a technology that enables low-noise optical amplification.
  • the degenerate optical parametric amplification process can generate photon pairs with quantum correlation, which can generate nonclassical states such as squeezed light and messenger single-photon states. These nonclassical states of light are expected to be important resources for optical quantum computers and sensing technologies using quantum light.
  • One aspect of the present invention includes an optical amplifier for fundamental light, a frequency doubler consisting of a first second-order nonlinear optical element and generating pump light from the amplified fundamental light, and a pump light generating unit including a first temperature regulator for adjusting the temperature of the first second-order nonlinear optical element, a multiplexer for multiplexing signal light and pump light, an optical parametric amplifier consisting of a second second-order nonlinear optical element and amplifying the signal light from the multiplexer, a demultiplexer for demultiplexing the amplified signal light from the optical parametric amplifier and pump light, and an optical parametric amplifier unit including a second temperature regulator for adjusting the temperature of the second second-order nonlinear optical element, a coupler for branching the pump light from the pump light generating unit to a first output port for supplying pump light to the multiplexer and a second output port connected to a first photodetector, the coupler being capable of adjusting the branching ratio by a control voltage V, and an optical parametri
  • the optical amplifier includes a first pumping light calculation unit that calculates the intensity of the input pumping light to the multiplexer based on the electrical signal from the first photodetector and the control voltage V, a second photodetector that detects the intensity of the output pumping light split from the splitter, a utilization rate calculation unit that calculates the utilization rate of the pumping light in the optical parametric amplifier from the intensity of the input pumping light and the intensity of the output pumping light, a pumping light intensity control unit that adjusts the control voltage V based on the utilization rate to control the intensity of the input pumping light to a constant value, and an optimal temperature control unit that generates a control signal to the second temperature regulator based on the adjusted control signal V and controls the utilization rate to a constant value.
  • This invention enables optical parametric amplifiers to operate stably with maximum performance.
  • 1A and 1B are diagrams illustrating the configuration and operation of an optical amplifier according to the present disclosure.
  • 10A and 10B are diagrams for explaining the operation of a variable branching ratio coupler and calculation of an excitation light level.
  • 1A to 1C are diagrams illustrating the configuration and operation of a more specific embodiment of the optical amplifier of the present disclosure.
  • 10A and 10B are diagrams illustrating a stabilization control operation of the conversion efficiency in the optical amplifier of the present
  • FIG. 1 illustrates an optimization circuit for phase matching conditions in a conventional OPA.
  • the optical amplifier disclosed herein utilizes the utilization rate of the pump light in the OPA to maximize and stably realize the performance of the OPA without extracting a portion of the signal light from the path of the signal light.
  • the optical amplifier disclosed herein comprises two blocks: a pump light generation section and an optical parametric amplifier section. Furthermore, each of the two blocks is provided with a stabilization mechanism for the pump light output and a stabilization mechanism for the optical parametric amplifier.
  • a variable branching ratio coupler is provided between the two blocks, and the branching ratio characteristics of this variable branching ratio coupler are used to control the two stabilization mechanisms mentioned above.
  • FIG. 5 shows an optimization control circuit for the phase matching conditions in a conventional OPA.
  • the OPA 300 has a multiplexing circuit 3 for signal light and pump light on the input side of the OPA section 4, and a demultiplexing circuit 5 for signal light and pump light on the output side.
  • a part of the amplified signal light is branched by an optical branching circuit 51, for example, at a ratio of 99:1.
  • the branched signal light 55 is converted into an electrical signal by an optical detector 52.
  • the electrical signal from the optical detector 52 indicates the level of the amplified signal light, and the conversion efficiency of the OPA section is calculated based on this electrical signal.
  • an optimal temperature adjustment circuit 54 controls a temperature regulator 16 (TEC: ThermoElectric Cooler) 16.
  • TEC ThermoElectric Cooler
  • the TEC 16 adjusts the temperature of, for example, a PPLN waveguide element in the OPA section 4 to maximize the conversion efficiency of the OPA section 4.
  • the conversion efficiency is maximized, and the maximum signal light level is obtained from the OPA 300.
  • a portion of the amplified signal light is branched off by optical branching circuit 51. Therefore, a loss occurs in the output signal light by the amount of branched light 55.
  • quantum light such as squeezed light generation, i.e., photon signals
  • the occurrence of loss corresponds to the addition of noise from a vacuum field.
  • the inclusion of noise from a vacuum field means that the signal quality will be degraded.
  • a mechanism is desired that optimally and stably controls the phase matching conditions without degrading signal quality.
  • FIG. 1 is a diagram illustrating the basic configuration and operation of the optical amplifier of the present disclosure.
  • the optical amplifier 100 comprises an excitation light generating unit 101 and an optical parametric amplifier unit 102. As described below, it further comprises control units for the excitation light generating unit 101 and the optical parametric amplifier unit 102. Between the excitation light generating unit 101 and the optical parametric amplifier unit 102, there is provided a variable branching ratio coupler 7 that can adjust the excitation light level to the optical parametric amplifier unit 102.
  • the variable branching ratio coupler 7 branches the pump light output (level P SHG ) into input pump light (level P in ) to the optical parametric amplifier 102 and monitor light (level P Monitor ), and the branching ratio can be varied by a control voltage V.
  • One of the outputs from the variable branching ratio coupler 7 is input to the optical parametric amplifier 102, and the other is converted into an electrical signal by a photodetector 8 that is sensitive to the pump light wavelength.
  • the monitor light P Monitor is used to control the optical parametric amplifier 102, and details of this will be described later.
  • the pump light generating unit 101 amplifies the input fundamental light using the optical amplifier 1 to generate high-intensity fundamental light.
  • the optical amplifier 1 can be an optical fiber amplifier, such as an erbium-doped fiber amplifier (EDFA).
  • EDFA erbium-doped fiber amplifier
  • the frequency doubler 2 generates a second harmonic (SH) from the fundamental light and outputs pump light (SHG light) for optical parametric amplification.
  • the frequency doubler 2 can be one that uses a PPLN waveguide element, which is a second-order nonlinear optical element, but it does not have to be a waveguide type as long as it can generate the pump light wavelength (SHG light).
  • the frequency doubler 2 and the optical parametric amplifier (OPA) 4 are each provided with TECs 15 and 16 and a temperature measuring device (not shown) so that the temperature of the nonlinear waveguide arranged inside can be controlled.
  • the optical parametric amplifier 102 includes a multiplexer 3 for signal light and pump light, and a demultiplexer 5 for signal light and pump light, before and after the OPA 4.
  • the demultiplexer 3 and the multiplexer 5 can each be realized by a spatial optical component that combines a lens, a dichroic mirror that splits the pump light and the signal light, and the like.
  • a wavelength multiplexer/demultiplexer of the optical fiber fused directional coupler type can be used.
  • splitter 5 is equipped with a filter that separates the signal light and pump light into different ports, and 100% of the signal light is guided to the output port on the signal light side. Therefore, no loss occurs in the signal light, and no noise is mixed in from the vacuum field. Unlike the configuration shown in Figure 5, which extracts part of the signal light and involves loss, there is no degradation in the quality of the optical quantum signal.
  • the input pump light (level P in ) whose branching ratio has been adjusted by the variable branching ratio coupler 7 is used to amplify the signal light by the optical parametric amplification process in the OPA 4, and the output pump light from the splitter 5 decreases by the amount used (level P out ).
  • the pump light ratio (P out /P in ) is calculated from an electrical signal obtained by detecting the monitor light of the variable branching ratio coupler 7 corresponding to the input pump light (P in ) and an electrical signal obtained by detecting the output pump light (P out ) from the splitter 5. This value of the pump light ratio is used to control the optical parametric amplifier 102 , as described later.
  • the configuration in FIG. 1 excluding the pump light generating unit 101, variable branching ratio coupler 7, and optical parametric amplifier unit 102 is the control circuit for the optical amplifier 100, which operates based on the electrical signals from the two photodetectors 6 and 8.
  • This control circuit is implemented by hardware processing using an electrical circuit, software calculation processing using a computer, or a combination of these.
  • the control operations of the pump light generating unit 101 and the optical parametric amplifier unit 102 are explained.
  • the configuration of the variable branching ratio coupler 7 and its role in the optical amplifier 1 are explained.
  • FIG. 2 is a diagram for explaining the operation of the variable branching ratio coupler and the calculation of the pumping light level.
  • FIG. 2(a) shows the configuration of the variable branching ratio coupler 7, which has three optical ports and a control port.
  • Pumping light (SHG light) having a level P SHG from the pumping light generating unit 101 is input to the input port 35.
  • the input pumping light is branched to the first output port 36-1 at a level P in as the first branched light to the optical parametric amplifier 102, and to the second output port 36-2 at a level P Monitor as the second branched light for control.
  • the branching ratio to the two output ports can be externally controlled by a control voltage V.
  • variable branching ratio coupler can be realized, for example, by an MZI type variable coupler in which a phase modulator is inserted in a Mach-Zehnder interferometer (MZI), or a variable coupler in which a polarization rotator and a polarization splitting coupler are combined.
  • MZI Mach-Zehnder interferometer
  • each transmittance is expressed by the following equation.
  • the pump light generating unit 101 feedback control is performed on the optical amplifier 1 and the TEC 15 in the frequency doubler 2 in order to keep the level P SHG of the output pump light constant.
  • the target control operation is to make the level P SHG of the pump light generated from the frequency doubler 2 constant.
  • This control is performed by first performing the calculation of equation (3) using the electrical signal from the photodetector 8 by the first pump light calculation unit 13 to obtain the level P SHG of the pump light generated from the wavenumber doubler 2.
  • the calculation of the first pump light calculation unit 13 can be performed as a calculation process by a processor of a computer (not shown).
  • relationship data between the control voltage V and the transmission characteristic T(V) of the variable branching ratio coupler which has been acquired in advance, can be stored in the memory of the computer (not shown).
  • the calculation of the first pump light calculation unit 13 can be performed using the stored data.
  • the relationship data between the control voltage V and the transmission characteristic T(V) can also be received from a storage means outside the optical amplifier.
  • the frequency doubler control unit 14 From the calculated pump light level P SHG , the frequency doubler control unit 14 generates a control signal S TEC1 to the TEC 15 and a control signal S AMP to the optical amplifier 1 so as to keep the pump light level P SHG constant.
  • the gain of the optical amplifier 1 can be changed by the control signal S AMP . If the gain of the optical amplifier 1 changes, the level of the fundamental light changes, and the pump light level P SHG from the frequency doubler control unit 14 can be controlled.
  • Each control signal implements feedback to two controlled objects, i.e., the optical amplifier 1 and feedback to the TEC 15. More specific control will be described later as an embodiment.
  • the electrical signal obtained from the monitor light of the variable branching ratio coupler 7 shown in FIG. 2 is used to control the optical parametric amplifier unit 102 to stabilize the operation of the optical amplifier 100, as described below.
  • the second pump light calculation unit 9 performs the calculation of equation (4) to determine the level P in of the input pump light to the optical parametric amplifier 102 from the electrical signal from the photodetector 8.
  • the output pump light separated from the OPA 4 is input to the photodetector 6 from the splitter 5 of the optical parametric amplifier 102.
  • the pump light not used for parametric conversion in the OPA 4 is output from the splitter 5, and an electrical signal corresponding to the level P out is obtained from the photodetector 6.
  • the state in which the optical parametric amplifier operates with the best conversion efficiency corresponds to the state in which the pump light is most utilized.
  • the utilization rate ⁇ of the pump light defined in formula (5) corresponds to the conversion efficiency of the OPA.
  • Optimal control of the OPA means maximizing the utilization rate ⁇ of the pump light and stabilizing the utilization rate ⁇ .
  • a part of the signal light is extracted to maximize the level of the signal light.
  • the optical amplifier of the present disclosure uses the level ratio of the pump light instead of the signal light level as the control amount. This causes no loss in the signal light, and as described above, there is no deterioration in the quality of the photon signal. Since the characteristics can be stabilized without inserting a loss medium into the signal light line, this configuration is suitable for quantum optics applications.
  • the input pump light level P in is obtained by the second pump light calculation unit 9, and further, the current ratio P out /P in and utilization rate ⁇ are obtained in the utilization rate calculation unit 10 using the output pump light level P out obtained by the photodetector 6. Based on these values, the pump light intensity control unit 11 performs control to stabilize the ratio P out /P in or the utilization rate ⁇ at a predetermined target value.
  • the pump light intensity control unit 11 Based on the calculated pump light intensity ratio P out /P in or utilization rate ⁇ , the pump light intensity control unit 11 performs feedback to two control targets, i.e., the variable branching ratio coupler 7 and the TEC 16.
  • the pump light intensity control unit 11 generates a control voltage V, which is a control signal, and adjusts the branching ratio to control the input pump light level P in to be constant.
  • a control signal S TEC2 is generated via an optimum temperature control unit 12 to perform temperature control so that the conversion efficiency of the OPA 4 is constant, i.e., so that the pump light ratio P out /P in or utilization rate ⁇ is constant at a predetermined target value.
  • the present invention provides an optical amplifier 1 for fundamental light, a frequency doubler 2 consisting of a first second-order nonlinear optical element and generating pump light from the amplified fundamental light, and a pump light generating unit 101 including a first temperature regulator 15 for adjusting the temperature of the first second-order nonlinear optical element, a multiplexer 3 for multiplexing signal light and pump light, an optical parametric amplifier 4 consisting of a second second-order nonlinear optical element and amplifying the signal light from the multiplexer, a demultiplexer 5 for demultiplexing the amplified signal light from the optical parametric amplifier and the pump light, and an optical parametric amplifier unit 102 including a second temperature regulator 16 for adjusting the temperature of the second second-order nonlinear optical element, a coupler 7 for branching the pump light from the pump light generating unit to a first output port for supplying pump light to the multiplexer and a second output port connected to a first photodetector, and capable of adjusting the branching ratio by a control
  • the present invention can be implemented as an optical amplifier having a first pumping light calculation unit 13 that generates a first error signal, a frequency doubler control unit 14 that generates a control signal to the optical amplifier and a control signal to the first temperature regulator based on the first error signal and controls the intensity of the pumping light from the pumping light generation unit to a constant value, a second pumping light calculation unit 9 that calculates the intensity of the input pumping light to the multiplexer based on the electrical signal from the first photodetector and the control voltage V, a second photodetector 6 that detects the intensity of the output pumping light split from the splitter, a utilization rate calculation unit 10 that calculates the utilization rate of the pumping light in the optical parametric amplifier from the intensity of the input pumping light and the intensity of the output pumping light, a pumping light intensity control unit 11 that adjusts the control voltage V based on the utilization rate to control the intensity of the input pumping light to a constant value, and an optimal temperature control unit 12 that generates a control signal
  • the above-mentioned control of the optical parametric amplifier 102 is characterized in that it controls two or more parameters, the input pump light level P in and the temperature of the TEC 16, for one control target (the ratio P out /P in or the utilization factor ⁇ ). This feature, which enables more stable temperature control of the OPA 4, will be described further below.
  • the control circuit in the stabilization mechanism for the pump light output of the optical amplifier 1 and the stabilization mechanism for the optical parametric amplifier shown in FIG. 1 will be presented.
  • FIG. 3 is a diagram illustrating the configuration and operation of a specific embodiment of the optical amplifier of the present disclosure.
  • Optical amplifier 200 is an optical amplifier 100 with the basic configuration shown in FIG. 1, in which the control circuit that processes the electrical signal is replaced with a more specific configuration. Therefore, the lines that handle optical signals in optical amplifier 200 have the same configuration as pump light generating section 101, optical parametric amplifier section 102, and variable branching ratio coupler 7 of optical amplifier 100 in FIG. 1. Description of these configurations and operations will be omitted, and only the control circuit of the specific configuration will be described.
  • a proportional-integral-differential (PID) controller 28 In the control circuit for the pumping light generating unit, in order to make the pumping light output level P SHG from the frequency doubler 2 constant, a proportional-integral-differential (PID) controller 28 generates a control signal S Amp based on the information on P SHG acquired by the calculation of the first pumping light calculation unit 13, and feeds it back to the optical amplifier 1.
  • the signal form of the control signal S Amp such as voltage or current.
  • the optical amplifier 1 is an optical fiber amplifier whose output level (gain) can be controlled by an injection current, feedback may be added to the injection current. In this case, a current drive source driven by the control signal S Amp , not shown in FIG. 3, may be added.
  • PID control is used together with a dither signal.
  • a reference frequency signal generated by a signal generator 20 is input to a frequency mixer 30 together with a part of a control signal from a PID controller 28.
  • An error signal for PID control is extracted using the frequency mixer 30 from a part of the control signal from the PID controller 28 and the reference frequency signal from a signal generator 29. That is, an error signal required for a PID controller 32 is obtained by cutting high frequency components of the demodulated output of the frequency mixer 30 with an LPF 31.
  • a slow frequency dither signal is applied from the signal generator 29 to a control signal S TEC1 to the TEC 15 by an adder 33.
  • a dither signal is generated within the system, and the response signal is demodulated with the dither signal to obtain a function obtained by differentiating the response function. Then, by using this differential function as an error function, it is possible to set the point where the differential function becomes zero, i.e., the point where the response function is at its maximum value.
  • the slow fluctuations in the conversion efficiency of the frequency doubler 2 caused by the addition of a dither signal are offset by the control signal S TEC1 for the optical amplifier 1.
  • the pump light intensity can be stabilized by the control of the relatively high-speed control signal S TEC1 while suppressing power consumption by maintaining the TEC 15 at the peak of wavelength conversion efficiency.
  • the OPA 4 in the optical parametric amplifier section is also stabilized by the following control circuit.
  • the input pump light level P in is found by the second pump light calculation section 9, and the current ratio P out /P in is found in the division calculation section 10 using the output pump light level P out obtained by the photodetector 6.
  • the division calculation section 10 can also find the utilization factor ⁇ .
  • a control signal is fed back to the variable branching ratio coupler 7 by the PID controller 22.
  • This control signal is a control voltage V of the variable branching ratio coupler 7, and operates to stabilize the ratio P out /P in or utilization rate ⁇ of the pump lights.
  • the temperature of the OPA 4 is set to an optimal condition, similar to the temperature control in the frequency doubler 2.
  • a slow-frequency dither signal is applied from the signal generator 24 to the control signal S TEC2 to the TEC 16 by the adder 23.
  • the reference frequency signal generated by the signal generator 24 is input to the frequency mixer 23 together with the control signal from the PID controller 22.
  • An error signal for PID control is extracted using the frequency mixer 23 from the control signal from the PID controller 22 and the reference frequency signal from the signal generator 24. That is, the error signal required for the PID controller 26 is obtained by cutting the high-frequency components of the demodulated output of the frequency mixer 23 with the LPF 25.
  • the slow fluctuation of the conversion efficiency of the OPA 4 due to the addition of the dither signal is offset by the control by the control signal V to the branching ratio variable coupler 7.
  • the temperature of TEC 16 is maintained at the peak of wavelength conversion efficiency to suppress power consumption, while the conversion efficiency of the OPA can be stabilized by control using the relatively high-speed control signal V.
  • the frequency of the dither signal applied to TECs 15 and 16 depends on the performance of the TEC itself and the object of temperature control, but generally, a frequency of 10 Hz or less is sufficient.
  • FIG. 4 is a diagram for explaining the operation of stabilization control of the conversion efficiency in the optical amplifier of the present disclosure.
  • FIG. 4(a) shows the relationship between the wavelength ⁇ and the wavelength conversion efficiency in the wavelength conversion element.
  • the wavelength conversion efficiency has a peak value at a certain wavelength, and this peak wavelength varies depending on the temperature T of the element. If the element temperature varies from T1 to T4 , the wavelength conversion characteristic varies as shown by the curves 40-1 to 40-4 while moving the peak position. Therefore, it can be understood that the temperature-dependent characteristic (temperature-conversion efficiency characteristic) of the wavelength conversion element also has a peak for a certain operating wavelength.
  • (b) of FIG. 4 illustrates the stabilization of the conversion efficiency in the optical amplifier of the present disclosure.
  • the graph on the left side of (b) of FIG. 4 shows the relationship between the temperature of the wavelength conversion element and the conversion efficiency at the operating wavelength.
  • the curve 41-1 shows that the required conversion efficiency is obtained at the peak position of the optimal temperature.
  • the current element temperature may become an operating point 42-1 that is lower than the optimal temperature.
  • a dither signal is used to perform temperature control by the TEC so that the operating point 42-1 becomes the peak position.
  • a dither signal to the control signal is equivalent to adding a small fluctuation to the temperature T on the horizontal axis on the curve 41-1.
  • the dither signal added to the control signal of the TEC causes the temperature of the wavelength conversion element to be controlled relatively slowly toward the peak position of the wavelength conversion efficiency of the curve 41-1.
  • the stabilization control of the conversion efficiency of the OPA 4 is performed by controlling two parameters, the input pump light level P in and the temperature of the TEC 16, for one control target (ratio P out /P in or utilization factor ⁇ ).
  • the control of the TEC 16 using the dither signal from the signal generator 24 in Fig. 3 corresponds to the control of slowly moving the point 42-1 in Fig. 4B to the peak position of the curve 41-1.
  • the control by the control voltage V to the branching ratio variable coupler 7 in Fig. 3 corresponds to the control of quickly moving the operating point from point 42-1 to point 42-2 in Fig. 4B.
  • the temperature fluctuation due to the addition of a dither signal is offset by the control of the control voltage V to the variable branching ratio coupler 7, so that the OPA 4 is stabilized to a constant required conversion efficiency, i.e., a constant pump light ratio P out /P in or utilization rate ⁇ .
  • a constant required conversion efficiency i.e., a constant pump light ratio P out /P in or utilization rate ⁇ .
  • stabilization is performed by controlling two parameters, the output level of the fundamental light from the optical amplifier 1 and the temperature of the TEC 15.
  • the control of the TEC 15 using the dither signal from the signal generator 29 in FIG. 3 corresponds to the control of slowly moving the operating point of the temperature-conversion efficiency curve to the peak position of the curve.
  • the control by the control signal S Amp to the optical amplifier 1 in FIG. 3 corresponds to the control of increasing the pumping light output level P SHG at high speed via the output level of the fundamental light.
  • the pumping light output level P SHG of the pumping light generating unit is always kept constant by the slow control using the dither signal and the fast control of the optical amplifier 1, similar to that described in FIG. 4(b).
  • the conversion efficiency of each nonlinear element is stabilized by a corresponding stabilization mechanism in each block of the pump light generation unit 101 and the optical parametric amplification unit 102.
  • Common control information (P SHG , P in ) of the pump light level is used to control the above-mentioned two stabilization mechanisms by utilizing the branching ratio characteristics of the variable branching ratio coupler 7 between the two blocks.
  • the two stabilization mechanisms stabilize the output of each block without causing quality degradation to the optical quantum signal.
  • the circuit for processing the electric signal may be hardware processing using an analog circuit or a digital circuit as described above.
  • a system may be constructed in which the electric signals from the two photodetectors 6 and 8 are input into a computer using an A/D converter, and each control signal (S Amp , S TEC1 , S TEC2 , V) is generated by software calculation processing by the processor (CPU) of the computer.
  • a memory storing relationship data between the control voltage V of the variable branching ratio coupler 7 and the branching ratios to the first output port 36-1 and the second output port 36-2 may also be used. Therefore, all the functional blocks from the output points of the two photodetectors 6 and 8 to each control signal may also be implemented by software processing using a processor and memory.
  • a D/A converter may be included in the generation of the control signal.
  • the present invention makes it possible to provide an optical amplifier with stable conversion efficiency without causing any degradation in the quality of the optical quantum signal.
  • This invention can be used in optical communication systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本開示の光増幅器は、信号光の経路上において信号光の一部を取り出すことなく、OPAにおける励起光の利用率を利用して、OPAの性能を最大限かつ安定して発現させる。本開示の光増幅器は、励起光生成部および光パラメトリック増幅部の2つのブロックを備える。さらに2つのブロックのそれぞれに対して、励起光出力の安定化機構および光パラメトリック増幅器の安定化機構を備える。2つのブロックの間には、分岐比可変カプラを備え、この分岐比可変カプラの分岐比特性を利用して、上述の2つの安定化機構を制御する。それぞれの安定化機構は、温度調整器への低速の制御と、温度調整器以外の制御対象へのより高速な制御を含む。

Description

光増幅器
 本発明は、光通信システムや光制御システムにおいて用いられる光パラメトリック増幅器に関する。
 非線形光学デバイスおよび電気光学デバイスは、光通信における光信号波長変換や光変調、光計測、光加工、医療、生物工学など、幅広い分野において開発が進められている。これらデバイスの利用光周波数は、紫外域-可視域-赤外域-テラヘルツ域にわたる。光通信においても、コヒーレント光の発生と変調のために、さらに差周波発生による波長変換動作や、パラメトリック効果を利用した増幅動作などに利用されている。
 これらのデバイスに用いられる非線形光学媒質および電気光学媒質としては、ニオブ酸リチウム(LiNbO)などの酸化物系化合物基板が、2次非線形光学定数・電気光学定数が非常に高く有望な材料として知られている。このニオブ酸リチウムを用いた光デバイスの一例として、周期的に分極反転されたニオブ酸リチウム(PPLN:Periodically Poled Lithium Niobate)導波路素子は、波長変換効率の高さから光源に広く使用されている。PPLN導波路素子などによる波長変換素子では、第二高調波発生(SHG:Second Harmonic Generation)・差周波発生(DFG:Difference Frequency Generation)・和周波発生(SFG:Sum Frequency Generation)の過程が利用される。
 高い波長変換効率を有する波長変換素子を用いると、励起光パワーから信号光へのエネルギーの移行により光パラメトリック増幅過程によって、信号光の増幅器を実現できる。光パラメトリック増幅器(OPA:Optical Parametric Amplifier)では、励起光と信号光の位相関係に応じた増幅特性を有する位相感応増幅器が、低雑音な光増幅が可能な技術として期待されている。
 さらに縮退光パラメトリック増幅過程は、量子相関を持った光子対を生成可能であり、スクィーズド光の生成や、伝令付き単一光子状態などの非古典的状態を生成することができる。これらの非古典的状態の光は、光量子コンピュータや量子光を用いたセンシング技術等の重要リソースとして期待されている。
M. Asobe et al., "Broadband optical parametric amplification using PPLN waveguide pumped by detuned second harmonic", Vol. 30, No. 6 / 14 Mar 2022 / Optics Express 9473
 OPAが最大限の性能を発揮するには、位相整合条件を保つことが必要である。特に、PPLN導波路素子等を用いた導波路型OPAの場合は、導波路自体の温度を制御することで、波長変換効率が最大となるよう制御することが重要となる。またOPAの利得の一定化のためには、OPAへ入力される励起光の強度を一定化する制御も重要となる。
 古典的な信号光を取り扱う従来技術のOPAでは、上述の制御のために信号光の一部を取り出して利用していた。しかしながら、スクィーズド光生成等の量子的な光を生成する場合には、信号光の一部と取り出すことによる真空場の混入が、その光量子信号の品質を下げてしまう。また、環境温度の変動等による波長変換効率の変動に対しても、より安定な制御が望まれている。
 本発明の1つの態様は、基本波光の光増幅器、第1の二次非線形光学素子からなり、増幅された基本波光から励起光を生成する周波数ダブラ、および、前記第1の二次非線形光学素子の温度を調整する第1の温度調整器を含む励起光生成部と、信号光と励起光を合波する合波器、第2の二次非線形光学素子からなり、前記合波器からの前記信号光を増幅する光パラメトリック増幅器、前記光パラメトリック増幅器からの増幅された信号光と励起光とを分波する分波器、および、前記第2の二次非線形光学素子の温度を調整する第2の温度調整器を含む光パラメトリック増幅部と、前記励起光生成部からの前記励起光を、前記合波器へ励起光を供給する第1の出力ポートと、第1の光検出器に接続された第2の出力ポートに分岐し、制御電圧Vによって分岐比を調整できるカプラと、前記第1の光検出器からの電気信号および前記制御電圧Vに基づいて、前記励起光生成部からの前記励起光の強度を求め、第1の誤差信号を生成する第1の励起光演算部と、前記第1の誤差信号に基づいて、前記光増幅器への制御信号および前記第1の温度調整器への制御信号を生成し、前記励起光生成部からの前記励起光の強度を一定値に制御する周波数ダブラ制御部と、前記第1の光検出器からの電気信号および前記制御電圧Vに基づいて、前記合波器への入力励起光の強度を求める第2の励起光演算部と、前記分波器から分波された出力励起光の強度を検出する第2の光検出器と、前記入力励起光の前記強度および前記出力励起光の前記強度から、前記光パラメトリック増幅器における励起光の利用率を求める利用率算出部と、前記利用率に基づいて、前記制御電圧Vを調整して、前記入力励起光の前記強度を一定値に制御する励起光強度制御部と、前記調整された制御信号Vに基づいて、前記第2の温度調整器への制御信号を生成し、前記利用率を一定に制御する最適温度制御部とを備えた光増幅器である。
 本発明により、光パラメトリック増幅器を最大限の性能で安定して動作させることができる。
本開示の光増幅器の構成と動作を説明する図である。 分岐比可変カプラの動作および励起光レベルの算出を説明する図である。 本開示の光増幅器のより具体的な実施例の構成と動作を説明する図である。 本開示の光増幅器における変換効率の安定化制御動作を説明する図である。 従来技術のOPAにおける位相整合条件の最適化回路を示した図である。
 本開示の光増幅器は、信号光の経路上から信号光の一部を取り出すことなく、OPAにおける励起光の利用率を利用して、OPAの性能を最大限かつ安定して発現させる。本開示の光増幅器は、励起光生成部および光パラメトリック増幅部の2つのブロックを備える。さらに、2つのブロックのそれぞれに対して、励起光出力の安定化機構および光パラメトリック増幅器の安定化機構を備える。2つのブロックの間には、分岐比可変カプラを備え、この分岐比可変カプラの分岐比特性を利用して、上述の2つの安定化機構を制御する。以下の説明では、まず従来技術のOPAで光量子信号を扱う場合の問題点について概要を述べ、その後、本開示の光増幅器の構成および動作を説明する。
 図5は、従来技術のOPAにおける位相整合条件の最適化制御回路を示した図である。OPA300は、OPA部4の入力側に信号光および励起光の合波回路3、出力側に信号光および励起光の分波回路5を備える。増幅された信号光は、光分岐回路51によって、例えば99:1の割合で一部が分岐される。分岐された信号光55は、光検出器52によって、電気信号に変換される。光検出器52からの電気信号は、増幅された信号光のレベルを示しており、この電気信号に基づいて、OPA部の変換効率を算出する。さらに、最適温度調整回路54によって、温度調整器16(TEC:ThermoElectric Cooler)16を制御する。TEC16によって、OPA部4の例えばPPLN導波路素子の温度を調整して、OPA部4の変換効率を最大化する。位相整合条件が最適状態にあるときに、変換効率は最大となり、OPA300から最大の信号光レベルが得られる。
 図5の構成では、増幅後の信号光の一部を光分岐回路51で分岐している。したがって、分岐光55の分だけ、出力される信号光に対しては損失を生じていることになる。ここで詳細は述べないが、スクィーズド光生成等の量子的な光、すなわち光量子信号に対しては、損失の発生は真空場からの雑音が付加されたことに相当する。非古典的な光を扱う際、真空場からの雑音の混入は、信号品質が低下することを意味する。通常の信号光だけでなく非古典的な光量子信号を取り扱うOPAに対して、信号品質の低下を生じないで、位相整合条件を最適に安定して制御する機構が望まれている。
 図1は、本開示の光増幅器の基本構成と動作を説明する図である。光増幅器100は、励起光生成部101と光パラメトリック増幅部102を備える。後述するように、励起光生成部101および光パラメトリック増幅部102のための制御部をそれぞれ、さらに備える。励起光生成部101と光パラメトリック増幅部102の間には、光パラメトリック増幅部102への励起光レベルを調整可能な分岐比可変カプラ7を備える。
 分岐比可変カプラ7は、励起光出力(レベルPSHG)を光パラメトリック増幅部102への入力励起光(レベルPin)と、モニタ光(レベルPMonitor)とに分岐し、その分岐比を制御電圧Vによって可変できる。分岐比可変カプラ7からの出力のうち一方は、光パラメトリック増幅部102に入力され、他方は、励起光波長に感度を持つ光検出器8によって電気信号に変えられる。モニタ光PMonitorは、光パラメトリック増幅部102の制御に利用され、その詳細は後述する。
 励起光生成部101では、光増幅器1を用いて入力された基本波光を増幅して、高強度の基本波光を生成する。光増幅器1は、例えばエルビウム添加光ファイバ増幅器(Erbium-Doped Fiber Amplifier:EDFA)などの、光ファイバ増幅器であり得る。光ファイバ増幅器は注入電流値を外部制御可能なものを利用する。周波数ダブラ2は、基本波光から第2高調波(SH)を生成して、光パラメトリック増幅のための励起光(SHG光)を出力する。周波数ダブラ2は、光パラメトリック増幅器4と同様に、二次非線形光学素子であるPPLN導波路素子を利用したもの用いることができるが、励起光波長(SHG光)を生成できれば導波路型でなくとも良い。周波数ダブラ2および光パラメトリック増幅器(OPA)4は、内部に配置される非線形導波路の温度を制御できるように、TEC15、16および図示しない温度測定器がそれぞれ配置される。
 光パラメトリック増幅部102は、OPA4の前後に、信号光と励起光の合波器3、信号光と励起光の分波器5を備える。分波器3および合波器5は、それぞれ、レンズ、励起光と信号光を分波するダイクロイックミラーなどを組み合わせた空間光学部品で実現できる。他に、光ファイバ溶融方向性結合器型の波長合分波器等を利用することもできる。
 図5に示した従来技術のOPAとの相違点は、光パラメトリック増幅部102の制御のために、信号光ではなくて分波器5からの励起光を利用している点である。分波器5は、信号光と励起光をそれぞれ異なるポートに分離するフィルタを備えており、信号光は信号光側の出力ポートに100%導かれる。したがって、信号光には損失が生じないため、真空場からの雑音の混入も生じない。図5に示したような信号光の一部を取り出して損失を伴う構成とは異なり、光量子信号の品質低下が生じない。
 分岐比可変カプラ7で、分岐比を調整された入力励起光(レベルPin)は、OPA4において光パラメトリック増幅過程によって信号光の増幅に利用され、利用された分だけ分波器5からの出力励起光は低下する(レベルPout)。本開示の光増幅器100では、入力励起光(Pin)に対応する、分岐比可変カプラ7のモニタ光を検出して得られる電気信号と、分波器5からの出力励起光(Pout)を検出して得られる電気信号とから、励起光の比(Pout/Pin)を求める。この励起光の比の値を、後述するように、光パラメトリック増幅部102の制御に用いる。
 図1における励起光生成部101、分岐比可変カプラ7、光パラメトリック増幅部102を除いた構成は、光増幅器100の制御回路であって、2つの光検出器6、8からの各電気信号に基づいて動作する。この制御回路は、電気回路によるハードウェア処理、コンピュータによるソフトウェア演算処理、または、これらの組み合わせで実施される。以下、励起光生成部101および光パラメトリック増幅部102のそれぞれの制御動作を説明する。最初に、分岐比可変カプラ7の構成および光増幅器1における役割について説明する。
 図2は、分岐比可変カプラの動作および励起光レベルの算出を説明する図である。図2の(a)は分岐比可変カプラ7の構成を示しており、3つの光ポートおよび制御ポートを有する。励起光生成部101からのレベルPSHGを有する励起光(SHG光)は入力ポート35へ入力される。入力された励起光は、光パラメトリック増幅部102への第1の分岐光としてレベルPinで第1の出力ポート36-1へ、制御用の第2の分岐光としてレベルPMonitorで第2の出力ポート36-2へ分岐される。2つの出力ポートへの分岐比は、制御電圧Vによって外部制御可能である。分岐比可変カプラは、例えば、マッハツェンダー干渉計(MZI)内に位相変調器を挿入したMZI型可変カプラや、偏波回転子と偏波分離カプラを組み合わせた可変カプラ等で実現できる。
 図2の(b)は、分岐比可変カプラにおける制御電圧Vと分岐比の関係を示している。横軸に制御電圧Vを、縦軸に入力ポートから各出力ポートへの透過率Tを示している。実線の曲線38は、入力ポート35から第1の出力ポート36-1への透過率(Pin/PSHG)を示している。また一点鎖線の曲線39は、入力ポート35から第2の出力ポート36-2への透過率(PMonitor/PSHG)を示している。ここで、各透過率が次式で表されるものとする。
Monitor/PSHG=T(V)      式(1)
in/PSHG=1-T(V)       式(2)
 すなわち入力ポートから第2の出力ポートへ透過率曲線39をT(V)とする。このときの式(1)および式(2)の関係は、図2の(b)に示した分岐比可変カプラの透過率特性によって一意に確定する。式(1)および式(2)は、さらに次のように変形することができる。
SHG=PMonitor/T(V)      式(3)
in=PMonitor(1-1/T(V))  式(4)
 上の式(3)および式(4)から、光検出器の電気信号から決定できるPMonitorおよび透過率曲線T(V)を使用して、励起光生成部101からの出力励起光レベルPSHGおよび光パラメトリック増幅部102への入力励起光レベルPinを求めることができる。したがって、分岐比可変カプラの制御電圧Vと透過率特性T(V)との間の関係データが予め取得されていれば、図1における光検出器8からの電気信号と、制御電圧Vとによって、出力励起光レベルPSHGおよび入力励起光レベルPinを把握できる。
 励起光生成部101では、出力励起光のレベルPSHGを一定に保つために、光増幅器1および周波数ダブラ2内のTEC15に対してフィードバック制御が行われる。目標とする制御動作は、周波数ダブラ2から生成される励起光のレベルPSHGを一定化することである。この制御は、まず光検出器8からの電気信号から、第1の励起光演算部13によって式(3)の演算を実施して、波数ダブラ2から生成されている励起光のレベルPSHGを求める。第1の励起光演算部13の演算は、図示していないコンピュータのプロセッサによる演算処理として実施できる。この演算にあたっては、これも図示しないコンピュータのメモリに、予め取得された分岐比可変カプラの制御電圧Vと透過特性T(V)との関係データを保存しておくことができる。保存されたデータを利用して、第1の励起光演算部13の演算を実施できる。また、制御電圧Vと透過特性T(V)との間の関係データを、光増幅器の外部の記憶手段から受信することもできる。
 演算された励起光のレベルPSHGから、周波数ダブラ制御部14によって、励起光のレベルPSHGを一定化するように、TEC15への制御信号STEC1および光増幅器1への制御信号SAMPを生成する。制御信号SAMPによって、光増幅器1のゲインを変化させることができる。光増幅器1のゲインが変われば基本波光のレベルが変化し、周波数ダブラ制御部14からの励起光のレベルPSHGを制御できる。それぞれの制御信号によって、2つの制御対象、すなわち光増幅器1に対するフィードバックと、TEC15に対するフィードバックとが実施される。より具体的な制御は実施例として後述する。
 本開示の光増幅器100では、図2に示した分岐比可変カプラ7のモニタ光から得られる電気信号を用いて、光パラメトリック増幅部102に対しても次に述べる光増幅器100の動作安定化のための制御が実施される。
 図1を再び参照すると、第2の励起光演算部9によって式(4)の演算を実施して、光検出器8からの電気信号から、光パラメトリック増幅部102への入力励起光のレベルPinを求められる。前述のように、光パラメトリック増幅部102の分波器5からは、OPA4から分離された出力励起光が光検出器6へ入力される。OPA4においてパラメトリック変換に利用されなかった励起光が分波器5から出力され、そのレベルPoutに対応した電気信号が光検出器6から得られる。
 本開示の光増幅器100では、利用率算出部10において、OPA4の入力側の励起光レベルおよび出力側の励起光レベルの間の比 Pout/Pin を求める。この比は、OPA4において入力された励起光に対して利用されなかった励起光の割合を表している。したがって、次式のαは、OPAへ入力された励起光が利用された割合を表している。
α=1-(Pout/Pin)      式(5)
 光パラメトリック増幅器が最も変換効率の良い動作をしている状態は、励起光が最も利用されている状態と対応している。式(5)で定義した励起光の利用率αは、OPAの変換効率と対応している。OPAを最適に制御することは、励起光の利用率αを最大化すること、および利用率αを一定化することになる。従来技術の光増幅器では、信号光の一部を取り出して信号光のレベルを最大化する制御を行っていた。従来技術とは対照的に本開示の光増幅器では、制御量として、信号光レベルに代えて励起光のレベル比を利用する。これによって信号光には損失が生じないため、前述の通り光量子信号の品質低下も生じない。信号光ラインに損失媒体を挿入せずに特性安定化できることから、量子光学応用に適した構成である。
 第2の励起光演算部9により、入力励起光レベルPinが求められており、さらに光検出器6で得られる出力励起光レベルPoutを利用して、利用率算出部10において現在の比 Pout/Pin および利用率αが求められる。これらの値に基づいて、励起光強度制御部11によって、比 Pout/Pin または利用率αを所定の目標値に一定化する制御を行う。
 演算された励起光強度の比 Pout/Pin または利用率αに基づいて、励起光強度制御部11は、2つの制御対象、すなわち分岐比可変カプラ7に対するフィードバックと、TEC16に対するフィードバックとが実施される。励起光強度制御部11は、制御信号である制御電圧Vを生成し、分岐比を調整することで、入力励起光レベルPinを一定化するように制御する。またTEC16に対しては、最適温度制御部12を介して制御信号STEC2を生成して、OPA4の変換効率が一定となるように、すなわち励起光の比 Pout/Pin または利用率αを所定の目標値に一定化するための温度制御を行う。
 したがって本発明は、基本波光の光増幅器1、第1の二次非線形光学素子からなり、増幅された基本波光から励起光を生成する周波数ダブラ2、および、前記第1の二次非線形光学素子の温度を調整する第1の温度調整器15を含む励起光生成部101と、信号光と励起光を合波する合波器3、第2の二次非線形光学素子からなり、前記合波器からの前記信号光を増幅する光パラメトリック増幅器4、前記光パラメトリック増幅器からの増幅された信号光と励起光とを分波する分波器5、および、前記第2の二次非線形光学素子の温度を調整する第2の温度調整器16を含む光パラメトリック増幅部102と、前記励起光生成部からの前記励起光を、前記合波器へ励起光を供給する第1の出力ポートと、第1の光検出器に接続された第2の出力ポートに分岐し、制御電圧Vによって分岐比を調整できるカプラ7と、前記第1の光検出器からの電気信号および前記制御電圧Vに基づいて、前記励起光生成部からの前記励起光の強度を求め、第1の誤差信号を生成する第1の励起光演算部13と、前記第1の誤差信号に基づいて、前記光増幅器への制御信号および前記第1の温度調整器への制御信号を生成し、前記励起光生成部からの前記励起光の強度を一定値に制御する周波数ダブラ制御部14と、前記第1の光検出器からの電気信号および前記制御電圧Vに基づいて、前記合波器への入力励起光の強度を求める第2の励起光演算部9と、前記分波器から分波された出力励起光の強度を検出する第2の光検出器6と、前記入力励起光の前記強度および前記出力励起光の前記強度から、前記光パラメトリック増幅器における励起光の利用率を求める利用率算出部10と、前記利用率に基づいて、前記制御電圧Vを調整して、前記入力励起光の前記強度を一定値に制御する励起光強度制御部11と、前記調整された制御信号Vに基づいて、前記第2の温度調整器への制御信号を生成し、前記利用率を一定に制御する最適温度制御部12とを備えた光増幅器として実施できる。
 上述の光パラメトリック増幅部102への制御は、1つの制御対象(比 Pout/Pin または利用率α)に対して、入力励起光レベルPinおよびTEC16の温度への、2つ以上のパラメータに対して制御を行う点に特徴がある。OPA4の温度制御をより安定して実施可能とするこの特徴については、さらに後述する。次の光増幅器の実施例では、図1に示した光増幅器1の励起光出力の安定化機構および光パラメトリック増幅器の安定化機構における制御回路のより具体的な構成および動作を提示する。
 図3は、本開示の光増幅器の具体的な実施例の構成および動作を説明する図である。光増幅器200は、図1に示した基本構成の光増幅器100において、電気信号の処理が実施される制御回路をより具体的な構成に置き換えたものである。したがって光増幅器200で光信号を扱うラインは、図1の光増幅器100の励起光生成部101、光パラメトリック増幅部102、分岐比可変カプラ7と同一の構成を持つ。これらの構成および動作の説明は省略し、具体的構成の制御回路についてのみ説明する。
 励起光生成部に対する制御回路において、周波数ダブラ2からの励起光出力レベルPSHGを一定化するため、第1の励起光演算部13の演算で取得したPSHGの情報に基づいて、比例・積分・微分(PID)制御器28によって、制御信号SAmpを生成し、光増幅器1へフィードバックする。制御信号SAmpについては、電圧、電流などの信号形態に限定が無い。光増幅器1が注入電流によってその出力レベル(ゲイン)を制御できる光ファイバ増幅器の場合であれば、注入電流に対してフィードバックを加えても良い。この場合、図3には示さない、制御信号SAmpで駆動される電流駆動源などが追加される場合もある。
 励起光出力レベルPSHGを一定化するため、ディザ信号とともにPID制御を使用する。信号生成器20で生成された基準周波数信号が、PID制御器28からの制御信号の一部とともに周波数ミキサ30に入力される。PID制御器28からの制御信号の一部、および、信号生成器29からの基準周波数信号から、周波数ミキサ30を使用して、PID制御のための誤差信号を取り出す。すなわち周波数ミキサ30の復調出力の高周波数成分をLPF31でカットすることで、PID制御器32に必要な誤差信号が得られる。周波数ダブラ2におけるTEC15の温度調整を最適条件に設定するために、信号生成器29から周波数の遅いディザ信号を、加算器33によって、TEC15への制御信号STEC1に印加する。
 上述の制御法では、システム内にディザ信号を生成し、応答信号に対してディザ信号で復調することで、応答関数を微分した関数を獲得する。そして、この微分関数を誤差関数として用いることで、微分関数がゼロになる点、すなわち応答関数が最大値をとる点を設定することができる。
 本開示の光増幅器200において、ディザ信号の付加による周波数ダブラ2の変換効率の遅い揺れは、光増幅器1に対する制御信号STEC1による制御で相殺される。TEC15を波長変換効率のピークにある状態に維持して消費電力を抑えながら、比較的高速な制御信号STEC1による制御で励起光強度を安定化できる。
 光パラメトリック増幅器部のOPA4についても、以下のような制御回路によって安定化させる。図1で説明したように、第2の励起光演算部9により、入力励起光レベルPinが求められ、光検出器6で得られる出力励起光レベルPoutを利用して、除算演算部10において現在の比 Pout/Pinが求められる。除算演算部10において利用率αを求めることもできる。
 除算演算部10で取得した励起光の現在の比 Pout/Pinまたは利用率αの情報に基づいて、PID制御器22によって、分岐比可変カプラ7へ制御信号をフィードバックする。この制御信号は、分岐比可変カプラ7の制御電圧Vであり、励起光の比 Pout/Pinまたは利用率αを一定化するように動作する。
 励起光の比 Pout/Pinまたは利用率αを一定に保つため、周波数ダブラ2での温度制御と同様に、OPA4の温度を最適条件に設定する。加算器23によって、信号生成器24から周波数の遅いディザ信号をTEC16への制御信号STEC2に印加する。信号生成器24で生成された基準周波数信号が、PID制御器22からの制御信号とともに周波数ミキサ23に入力される。PID制御器22からの制御信号、および、信号生成器24からの基準周波数信号から、周波数ミキサ23を使用して、PID制御のための誤差信号を取り出す。すなわち周波数ミキサ23の復調出力の高周波数成分をLPF25でカットすることで、PID制御器26に必要な誤差信号が得られる。ディザ信号の付加によるOPA4の変換効率の遅い揺れは、分岐比可変カプラ7に対する制御信号Vによる制御で相殺される。TEC16の温度を波長変換効率のピークにある状態に維持して消費電力を抑えながら、比較的高速な制御信号Vによる制御でOPAの変換効率を安定化できる。上述の光増幅器200の制御において、TEC15、16に印加するディザ信号の周波数は、TEC自身の性能や温度制御対象にもよるが、一般的に10Hz以下であれば十分である。
 図4は、本開示の光増幅器における変換効率の安定化制御の動作を説明する図である。図4の(a)は、波長変換素子における波長λと波長変換効率の関係を示している。波長変換効率は、ある波長でピーク値を持っており、このピーク波長は素子の温度Tによって変動する。素子温度がT~Tと変動すれば、波長変換特性は、ピーク位置を移動させながら曲線40-1~40-4のように変動する。したがって、ある動作波長に対して、波長変換素子の温度依存特性(温度-変換効率特性)も、ピークを持つことが理解できるだろう。
 図4の(b)は、本開示の光増幅器における変換効率の安定化を説明している。図4の(b)の左側のグラフは、動作波長における波長変換素子の温度と変換効率の関係を示している。例えば、図1のOPA4の波長変換素子を例に考えると、曲線41-1は、最適温度のピーク位置において、所要変換効率が得られることを示している。実際には、光増幅器の環境温度の変動などで、現在の素子温度が最適温度よりも低い、動作点42-1となり得る。このような状態の場合、従来技術ではディザ信号を使って、動作点42-1をピーク位置となるようにTECによって温度制御を実施していた。尚、制御信号に対するディザ信号の付加は、曲線41-1上で、横軸の温度Tに対して小さい変動を加えることに相当する。TECの制御信号へ付加されたディザ信号によって、曲線41-1の波長変換効率のピーク位置に向けて、波長変換素子は比較的ゆっくりと温度制御されることになる。
 本開示の光増幅器では、上述のTEC16への温度制御に加えて、分岐比可変カプラ7への制御電圧Vによって、高速の制御が行われる。制御電圧Vによって入力励起光のレベルPinを増加させることで、図4の(b)の曲線41-1は曲線41-2へ変化する。動作点が点42-1から点42-2へ移動することで、現在の温度における変換効率を所要変換効率に維持することができる。この動作は、図4の(b)の右側のグラフ示した、OPAにおける入力励起光レベルと変換効率の関係でも説明できる。入力励起光のレベルをPからPへ変化させることで、動作点を点42-1から点42-2へ、動作波長の所要変換効率に向かって直ちに制御できる。
 再び図3を参照すれば、OPA4に対する変換効率の安定化制御は、1つの制御対象(比 Pout/Pin または利用率α)に対して、入力励起光レベルPinおよびTEC16の温度の2つのパラメータに対する制御で行われている。図3の信号生成器24からのディザ信号を用いたTEC16に対する制御は、図4の(b)の点42-1をゆっくりと低速に曲線41-1のピーク位置へ移動させる制御に対応する。図3の分岐比可変カプラ7への制御電圧Vによる制御は、図4の(b)において動作点を点42-1から点42-2へ高速に制御することに対応する。
 ディザ信号の付加による温度の変動は、分岐比可変カプラ7への制御電圧Vによる制御で相殺されるため、OPA4は、一定の所要変換効率、すなわち一定の励起光の比 Pout/Pinまたは利用率αに安定化されることがわかる。環境温度の大きな変動が生じても、分岐比可変カプラ7への高速の制御によって変換効率(励起光の利用率α)は常に一定値に維持されるので、光量子信号を扱う場合であっても、光増幅器において信号品質の低下が生じない。
 上述のOPA4に対する変換効率の安定化制御と同じ動作が、周波数ダブラ2における変換効率の安定化制御でも行われる。すなわち、1つの制御対象の励起光出力レベルPSHGに対して、光増幅器1からの基本波光の出力レベルおよびTEC15の温度への、2つのパラメータに対する制御で安定化が行われている。図3の信号生成器29からのディザ信号を用いたTEC15に対する制御は、温度-変換効率曲線の動作点を、ゆっくりと低速に曲線のピーク位置へ移動させる制御に対応する。図3の光増幅器1への制御信号SAmpによる制御は、基本波光の出力レベルを介して、励起光出力レベルPSHGを高速に増加させるよう制御することに対応する。図4の(b)で説明したのと同様の、ディザ信号を用いた低速の制御と、光増幅器1に対する高速の制御とによって、励起光生成部の励起光出力レベルPSHGが常に一定値に保たれる。
 上述のように本開示の光増幅器では、励起光生成部101と光パラメトリック増幅部102の各ブロックおいて、対応する安定化機構によってそれぞれの非線形素子の変換効率が安定化される。2つのブロックの間の分岐比可変カプラ7の分岐比特性を利用して、上述の2つの安定化機構を制御するための、励起光レベルの共通の制御情報(PSHG、Pin)を利用する。2つの安定化機構は、光量子信号に対して品質低下を生じさせることなく、各ブロックの出力を安定化する。
 図1および図3に示した光増幅器において、電気信号を処理する回路としては前述のようにアナログ回路またはデジタル回路によるハードウェア処理を用いても良い。2つの光検出器6、8からの電気信号をA/D変換器を用いてコンピュータに取り込み、コンピュータのプロセッサ(CPU)によるソフトウェア演算処理で各制御信号(SAmp、STEC1、STEC2、V)を生成するシステムを構築しても良い。分岐比可変カプラ7の制御電圧Vと、第1の出力ポート36-1および第2の出力ポート36-2への分岐比との間の関係データをストアしたメモリも利用することができる。したがって、2つの光検出器6、8の出力点より後から、各制御信号までの間のすべての機能ブロックは、プロセッサとメモリを利用したソフトウェア処理でも実施できる。制御信号の生成には、D/A変換器が含まれ得る。
 本発明によって、光量子信号に対して品質低下を生じさせることなく、安定した変換効率の光増幅器を提供することができる。
 本発明は、光通信システムに利用できる。

Claims (4)

  1.   基本波光の光増幅器、
      第1の二次非線形光学素子からなり、増幅された基本波光から励起光を生成する周波数ダブラ、および、
      前記第1の二次非線形光学素子の温度を調整する第1の温度調整器
    を含む励起光生成部と、
     信号光と励起光を合波する合波器、
     第2の二次非線形光学素子からなり、前記合波器からの前記信号光を増幅する光パラメトリック増幅器、
     前記光パラメトリック増幅器からの増幅された信号光と励起光とを分波する分波器、および、
     前記第2の二次非線形光学素子の温度を調整する第2の温度調整器
    を含む光パラメトリック増幅部と、
     前記励起光生成部からの前記励起光を、前記合波器へ励起光を供給する第1の出力ポートと、第1の光検出器に接続された第2の出力ポートに分岐し、制御電圧Vによって分岐比を調整できるカプラと、
     前記第1の光検出器からの電気信号および前記制御電圧Vに基づいて、前記励起光生成部からの前記励起光の強度を求め、第1の誤差信号を生成する第1の励起光演算部と、
     前記第1の誤差信号に基づいて、前記光増幅器への制御信号および前記第1の温度調整器への制御信号を生成し、前記励起光生成部からの前記励起光の強度を一定値に制御する周波数ダブラ制御部と、
     前記第1の光検出器からの電気信号および前記制御電圧Vに基づいて、前記合波器への入力励起光の強度を求める第2の励起光演算部と、
     前記分波器から分波された出力励起光の強度を検出する第2の光検出器と、
     前記入力励起光の前記強度および前記出力励起光の前記強度から、前記光パラメトリック増幅器における励起光の利用率を求める利用率算出部と、
     前記利用率に基づいて、前記制御電圧Vを調整して、前記入力励起光の前記強度を一定値に制御する励起光強度制御部と、
     前記調整された制御信号Vに基づいて、前記第2の温度調整器への制御信号を生成し、前記利用率を一定に制御する最適温度制御部と
     を備えた光増幅器。
  2.  前記周波数ダブラ制御部は、
      前記光増幅器への前記制御信号を生成する第1の比例・積分・微分(PID)制御器と、
      基準周波数信号を生成する第1の信号生成器と、
      前記第1のPID制御器からの前記光増幅器への前記制御信号と前記基準周波数信号を乗算する第1のミキサと、
      前記第1のミキサからの復調信号に対する低周波数透過フィルタと、
      前記低周波数透過フィルタからの誤差信号から、前記第1の誤差信号を生成する第2のPID制御器と、
     前記第1の誤差信号に、前記信号生成器からのディザ信号を加算する第1の加算器と
     を含み、
     前記励起光強度制御部および前記最適温度制御部は、
      前記カプラへの前記制御信号Vを生成する第3のPID制御器と、
      基準周波数信号を生成する第2の信号生成器と、
      前記第3のPID制御器からの前記制御信号Vと前記基準周波数信号を乗算する第2のミキサと、
      前記第2のミキサからの復調信号に対する第2の低周波数透過フィルタと、
      前記第2の低周波数透過フィルタからの出力から、第2の誤差信号を生成する第4のPID制御器と、
      前記第2の誤差信号に、前記信号生成器からのディザ信号を加算する第2の加算器と
     を含む請求項1に記載の光増幅器。
  3.  前記第1の信号生成器および前記第2の信号生成器からの前記ディザ信号の周波数は、それぞれ10Hz以下である請求項2に記載の光増幅器。
  4.  プロセッサと、
     前記カプラの前記制御電圧Vと、前記第1の出力ポートおよび前記第2の出力ポートへの分岐比との間の関係データをストアしたメモリと
     をさらに備え、
     前記関係データに基づいて、前記第1の励起光演算部、前記周波数ダブラ制御部、前記第2の励起光演算部、前記利用率算出部、前記励起光強度制御部および前記最適温度制御部の各動作が、前記プロセッサによる演算処理によって実施される請求項1に記載の光増幅器。
PCT/JP2022/038806 2022-10-18 2022-10-18 光増幅器 WO2024084592A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038806 WO2024084592A1 (ja) 2022-10-18 2022-10-18 光増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038806 WO2024084592A1 (ja) 2022-10-18 2022-10-18 光増幅器

Publications (1)

Publication Number Publication Date
WO2024084592A1 true WO2024084592A1 (ja) 2024-04-25

Family

ID=90737142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038806 WO2024084592A1 (ja) 2022-10-18 2022-10-18 光増幅器

Country Status (1)

Country Link
WO (1) WO2024084592A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017911A (ja) * 2009-07-09 2011-01-27 Nippon Signal Co Ltd:The 光波長計測器及びそれを備えた光パラメトリック発振装置並びに光波長計測方法
WO2012098911A1 (ja) * 2011-01-20 2012-07-26 日本電信電話株式会社 光信号増幅装置
JP2014089254A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 位相感応型光増幅装置
JP2020076834A (ja) * 2018-11-06 2020-05-21 日本電信電話株式会社 波長変換装置
CN112946968A (zh) * 2021-02-01 2021-06-11 电子科技大学 一种混合集成的光通信波段片上量子纠缠源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017911A (ja) * 2009-07-09 2011-01-27 Nippon Signal Co Ltd:The 光波長計測器及びそれを備えた光パラメトリック発振装置並びに光波長計測方法
WO2012098911A1 (ja) * 2011-01-20 2012-07-26 日本電信電話株式会社 光信号増幅装置
JP2014089254A (ja) * 2012-10-29 2014-05-15 Nippon Telegr & Teleph Corp <Ntt> 位相感応型光増幅装置
JP2020076834A (ja) * 2018-11-06 2020-05-21 日本電信電話株式会社 波長変換装置
CN112946968A (zh) * 2021-02-01 2021-06-11 电子科技大学 一种混合集成的光通信波段片上量子纠缠源

Similar Documents

Publication Publication Date Title
US7570365B2 (en) Compact tunable high-efficiency entangled photon source
US5532857A (en) Wide dynamic range optical link using DSSC linearizer
US11387909B2 (en) Optical signal transmitter
US6766070B2 (en) High power fiber optic modulator system and method
JP5125894B2 (ja) 光変調器およびそれを用いた光送信装置
US8922877B1 (en) Polarization control with mode stability
Li et al. All-optical photonic microwave phase shifter requiring only a single DC voltage control
CN107533245B (zh) 无抖动偏置控制
JP6110547B1 (ja) 光増幅装置
Tian et al. Multiwavelength erbium-doped fiber laser based on intensity-dependent transmission in a linear cavity
JP2002072271A (ja) 全光nor論理素子の具現装置およびその方法
JP5881580B2 (ja) 位相感応型光増幅装置
JP5945212B2 (ja) 光増幅装置
Chen et al. Stabilized Brillouin laser with sub-Hz fundamental linewidth aided by frequency shifted optical injection locking
WO2024084592A1 (ja) 光増幅器
Cholan et al. Switchable single-and dual-wavelength erbium-doped fiber laser assisted by four-wave mixing with wide and continuous tunability
Ma et al. Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique
WO2024044521A1 (en) Weak value amplification devices and methods for modulation, ultrahigh amplification, and optical readout
Hitachi et al. Reduced pulse energy for frequency comb offset stabilization with a dual-pitch periodically poled lithium niobate ridge waveguide
Zhou et al. 10 GHz dual loop opto-electronic oscillator without RF-amplifiers
Wang et al. Optically tunable frequency-sextupling optoelectronic oscillator based on Brillouin gain-loss compensation and carrier phase-shifted double sideband modulation
Yu et al. A single passband microwave photonic filter with flat-top and steep transition edges
Lah et al. Multiwavelength Random Fiber Laser Using Dual Bidirectional Semiconductor Optical Amplifiers and PMF-based Mach-Zehnder Interferometer
JP4284278B2 (ja) 光信号処理方法及び装置
JP7189469B2 (ja) 励起光生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962704

Country of ref document: EP

Kind code of ref document: A1