WO2023037560A1 - 波長変換器およびその制御方法 - Google Patents

波長変換器およびその制御方法 Download PDF

Info

Publication number
WO2023037560A1
WO2023037560A1 PCT/JP2021/033612 JP2021033612W WO2023037560A1 WO 2023037560 A1 WO2023037560 A1 WO 2023037560A1 JP 2021033612 W JP2021033612 W JP 2021033612W WO 2023037560 A1 WO2023037560 A1 WO 2023037560A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonlinear optical
optical element
temperature
signal
light
Prior art date
Application number
PCT/JP2021/033612
Other languages
English (en)
French (fr)
Inventor
拓志 風間
貴大 柏崎
毅伺 梅木
修 忠永
晃次 圓佛
信建 小勝負
飛鳥 井上
亮一 笠原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/033612 priority Critical patent/WO2023037560A1/ja
Priority to JP2023546727A priority patent/JPWO2023037560A1/ja
Publication of WO2023037560A1 publication Critical patent/WO2023037560A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present disclosure relates to a wavelength converter and its control method, and more specifically to a wavelength converter capable of temperature control for maintaining a quasi-phase matching condition of a nonlinear optical element and its temperature control method.
  • Nonlinear optical elements and electro-optical elements are being developed.
  • the development of a ridge-type waveguide in which an oxide crystal with a periodically poled structure is directly bonded to a substrate has improved the conversion efficiency and wavelength conversion of high-output light.
  • various performance improvements have been realized.
  • devices in which lithium niobate (LiNbO 3 ) is applied to the core of this ridge-type waveguide are being put to practical use due to their high conversion efficiency, and further spread is expected in the future.
  • wavelength converters and optical parametric amplifiers include, for example, light sources in the mid-infrared wavelength region. Since the mid-infrared wavelength region with a wavelength of about 2 to 5 ⁇ m has strong absorption lines such as normal vibrations of various environmental gases, development of a compact mid-infrared light source is desired. Such light sources include a technologically mature excitation light source of around 1 ⁇ m, and a nonlinear optical element using difference frequency generation (hereinafter referred to as DFG) that can use signal light in the communication wavelength band. A combination is considered promising.
  • DFG nonlinear optical element using difference frequency generation
  • SHG Second Harmonic Generation
  • SFG Sum Frequency Generation
  • FIG. 1 is a diagram showing an exemplary configuration of a wavelength converter 10 using a second-order nonlinear optical medium.
  • a wavelength converter 10 using a secondary nonlinear optical medium includes a laser light source 11 that oscillates fundamental wave light and an amplifier that imparts sufficient power to the fundamental wave light emitted from the laser light source 11 to obtain a nonlinear optical effect. 12, a first nonlinear optical element 13 for generating a second harmonic by SHG with respect to the amplified fundamental wave light, a second harmonic as pumping light, and separately input signal light, pumping light and signal light. and a second nonlinear optical element 14 for non-degenerate parametric amplification and wavelength conversion by DFG.
  • an EDFA Erbium Doped Fiber Amplifier
  • the first nonlinear optical element 13 and the second nonlinear optical element 14 may be, for example, ridge waveguides to which PPLN (periodically poled lithium niobate) is applied.
  • the fundamental wave light becomes the input light, and the fundamental wave light is subjected to wavelength conversion by SHG to generate a second harmonic (That is, it outputs a light wave having half the wavelength of the fundamental wave light). Then, in the second nonlinear optical element 14, the second harmonic generated by the first nonlinear optical element 13 is used as pumping light, and non-degenerate parametric amplification and DFG are performed on the pumping light and the separately input signal light.
  • the amplified light of the signal light generated by the optical parametric effect and the wavelength-converted light (idler light) according to the frequency difference between the signal light and the second harmonic by the DFG are simultaneously output from the second nonlinear optical element 14. be. If only the amplified light is extracted, it functions as an optical amplifier, and if only the idler light is extracted, it functions as a wavelength converter. In this specification, a device that functions as both an optical parametric amplifier and a wavelength modulator is called a "wavelength converter".
  • wavelength conversion in the second nonlinear optical element will be described below.
  • wavelength conversion by DFG will be described as an example, but the same principle applies to optical parametric amplification.
  • FIG. 2 is a diagram conceptually showing the spectrum of the light wave in each wavelength conversion process in the wavelength converter
  • FIG. 2(a) is the spectrum of the fundamental wave light output from the laser light source 11, shows a phase matching curve for SHG in the first nonlinear optical element 13, and
  • FIG. 2C shows a phase matching curve for DFG in the second nonlinear optical element 14, respectively.
  • the fundamental wave light is a single laser beam, and exhibits a spectrum of a single wavelength as shown in FIG. 2(a).
  • the phase matching band for SHG in the first nonlinear optical element 13 has a sufficiently wide width as compared with the spectrum of the fundamental wave light, as shown in FIG. 2(b).
  • the phase matching band for the DFG in the second nonlinear optical element 14 is a wide phase matching band as shown in FIG. with high conversion efficiency).
  • a quasi-phase matching condition is satisfied between As a technique for satisfying the quasi-phase matching condition, applying a periodically poled structure like the PPLN described above can be cited.
  • a periodically poled structure like the PPLN described above can be cited.
  • the spontaneous polarization of the element material is It has a structure that is periodically inverted with respect to the optical axis direction. Then, when the inversion period satisfies (Equation 1), the quasi-phase matching condition is satisfied.
  • n p , ns , and nc are the effective refractive indices of pumping light (second harmonic), signal light, and converted light (idler light), respectively
  • ⁇ p , ⁇ s , and ⁇ c are the pumping light ( second harmonic), signal light, and converted light (idler light)
  • is the inversion period of spontaneous polarization.
  • the refractive index of matter depends on temperature. That is, in the wavelength converter 10 as shown in FIG. 1, the refractive indices of the cores included in the first nonlinear optical element 13 and the second nonlinear optical element 14 change due to changes in ambient temperature and heating due to drive of the elements. change, and the quasi-phase matching conditions may change accordingly.
  • the quasi-phase matching conditions can change significantly.
  • FIG. 3A and 3B are diagrams showing changes in phase matching characteristics with respect to changes in the operating temperature of the nonlinear optical element.
  • FIG. 3A shows changes in the phase matching curve in SHG, and FIG. , respectively.
  • the dashed line in the drawing indicates the wavelength of the excitation light.
  • the SHG phase matching curve at an arbitrary temperature T shifts to the long wavelength side as the temperature of the nonlinear optical element increases (for example, changes to T + 0.5 ° C.), and conversely , shifts to the short wavelength side as the temperature of the nonlinear optical element decreases (for example, changes to T-0.5° C.).
  • the wavelength conversion efficiency will decrease due to changes in temperature.
  • the shape of the overall wavelength characteristic changes depending on the temperature change.
  • a control method for keeping the temperature of the core constant there has been known a method of installing a temperature control mechanism such as a heater or a Peltier element in the first nonlinear optical element 13 and the second nonlinear optical element 14 . ing.
  • a thermometer such as a thermistor or a thermocouple is installed in or near the first nonlinear optical element 13 and the second nonlinear optical element 14, and a heater or Peltier element is activated according to the temperature monitored by the thermometer.
  • the temperature of the core is kept constant.
  • the present disclosure has been made in view of the above-described problems, and the object thereof is to provide a wavelength converter with a higher suppressing effect than in the past against a decrease in wavelength conversion efficiency due to temperature changes. is to realize
  • the present disclosure provides a wavelength converter using a nonlinear optical effect, which includes a first nonlinear optical element that performs wavelength conversion by generating a second harmonic, and the first nonlinear optical element.
  • a second nonlinear optical element that performs wavelength conversion by optical parametric amplification and difference frequency generation using the generated second harmonic wave and separately input signal light as input light, and a second nonlinear optical element that performs temperature control for the first nonlinear optical element.
  • a first temperature control unit a second temperature control unit for performing temperature control on a second nonlinear optical element, a first temperature control unit, and a second temperature control unit communicably connected to each other;
  • a first variation signal that varies the first characteristic of the second harmonic output from the optical element and a second variation that varies the second characteristic of the output light output from the second nonlinear optical element.
  • a signal generator that generates a signal and transmits a first variation signal to the first temperature control section and a second variation signal to the second temperature control section, wherein the first temperature control section , a first temperature adjustment device installed near the first nonlinear optical element to adjust the temperature of the first nonlinear optical element; and a first fluctuation signal installed on the output side of the first nonlinear optical element.
  • the second temperature control unit being installed near the second nonlinear optical element, a second temperature adjustment device for adjusting the temperature of the second nonlinear optical element; and a second temperature adjustment device installed on the output side of the second nonlinear optical element. and a second multiplier that produces an error signal, wherein the first temperature adjustment device and the second temperature adjustment device are feedback controlled based on the first error signal and the second error signal.
  • a method for controlling a wavelength converter using a nonlinear optical effect comprising: controlling the temperature of a first nonlinear optical element; controlling the temperature of a second nonlinear optical element; wherein the step of controlling the temperature of the first nonlinear optical element comprises: a signal generator generating a first variation signal; and a second signal output from the first nonlinear optical element based on the first variation signal periodically varying a first characteristic of the harmonic; detecting the first characteristic of the second harmonic output from the first nonlinear optical element; and a first characteristic of the detected second harmonic, a first multiplier generating a first error signal; and based on the first error signal, a first and controlling the set temperature of the temperature adjustment device, wherein the step of controlling the temperature of the second nonlinear optical element is a light wave having the same wavelength as the signal light output from the second nonlinear optical element or a second detecting the second characteristic of the harmonic; and the first or second varying signal transmitted from the signal generator and the lightwave having the
  • FIG. 10 is a diagram showing an exemplary configuration of a wavelength modulator using a second-order nonlinear optical medium
  • FIG. 2 is a diagram conceptually showing the spectrum of the light wave in each wavelength conversion process in the wavelength converter
  • FIG. 2(a) is the spectrum of the fundamental wave light output from the laser light source
  • FIG. A phase matching curve for SHG in the optical element and FIG. 2(c) show phase matching conditions for DFG in the second nonlinear optical element, respectively.
  • 3A and 3B are diagrams showing changes in phase matching characteristics with respect to changes in the operating temperature of a nonlinear optical element, FIG. 3A showing changes in the phase matching curve in SHG, FIG. each shown.
  • FIG. 1 illustrates a temperature control system for a wavelength converter in accordance with one embodiment of the present disclosure
  • FIG. 4 is a flow chart illustrating a method for temperature control of a wavelength converter according to one embodiment of the present disclosure
  • FIG. 4 is a diagram conceptually showing the behavior of changes in the light intensity of converted light when the set temperature of the temperature adjustment device is fluctuated.
  • 1 illustrates a temperature control system for a wavelength converter in accordance with one embodiment of the present disclosure
  • FIG. 4 is a flow chart illustrating a method for temperature control of a wavelength converter according to one embodiment of the present disclosure
  • FIG. 10 is a diagram conceptually showing the behavior of power change of the second harmonic when the set temperature of the temperature adjustment device is fluctuated.
  • 1 illustrates a temperature control system for a wavelength converter in accordance with one embodiment of the present disclosure
  • FIG. 4 is a flow chart illustrating a method for temperature control of a wavelength converter according to one embodiment of the present disclosure
  • the wavelength converter and the control method thereof according to the present disclosure are the set temperatures of the temperature adjustment devices installed in the vicinity of each of the first nonlinear optical element 13 and the second nonlinear optical element 14 shown in FIG.
  • the frequency of the fundamental wave light input to the nonlinear optical element 13 is slightly changed, and the temperature is controlled based on the resulting change in the characteristics (intensity, power, etc.) of the output light.
  • the properties of the output light (intensity, power, etc.) correspond to changes in the core's direct temperature and the corresponding effective refractive index. Therefore, it is possible to improve the effect of suppressing the deterioration of the wavelength conversion efficiency as compared with the temperature control according to the conventional technology.
  • fluctuations in the output light from the second nonlinear optical element 14 may utilize output light near the degenerate wavelength that is not normally used. Therefore, it can have the advantage of having little influence on other output lights.
  • the first nonlinear optical element 13 performs wavelength conversion by SHG
  • the second nonlinear optical element 14 performs non-degenerate parametric amplification and wavelength conversion by DFG. described as being
  • the cores of the first nonlinear optical element 13 and the second nonlinear optical element 14 are described as ridge waveguides to which PPLN is applied.
  • FIG. 4 is a diagram illustrating a wavelength converter temperature control system 40 according to one embodiment of the present disclosure.
  • the figure also shows the wavelength converter 10 shown in FIG.
  • a temperature control system 40 for a wavelength converter according to an embodiment of the present disclosure includes a first temperature control unit 41 that controls the temperature of the first nonlinear optical element 13 and a temperature control of the second nonlinear optical element 14.
  • the second temperature control unit 42 is communicably connected to the first temperature control unit 41 and the second temperature control unit 42, and controls the temperature of the first nonlinear optical element 13 and the second nonlinear optical element 14. generating a first variation signal and a second variation signal that vary the set temperature for and signal generators 43 for transmitting to the units 42, respectively.
  • the first temperature control unit 41 includes a first temperature adjustment device 411 installed near the first nonlinear optical element 13 for controlling the temperature of the first nonlinear optical element 13, and a first nonlinear optical An optical branching coupler 412 for branching the second harmonic output from the element 13, and a first optical intensity detector 413 for detecting the optical intensity of one of the second harmonics branched by the optical branching coupler 412. , a signal generator 43 and a first light intensity detector 413, and based on the first fluctuation signal output by the signal generator 43 and the light intensity detection result output by the first light intensity detector 413, the temperature is determined. and a first feedback controller that generates a feedback signal based on the error signal generated by the first multiplier 414 and transmits the feedback signal to the first temperature adjustment device 411 415.
  • the second temperature control unit 42 is installed near the second nonlinear optical element 14, and includes a second temperature adjustment device 421 for controlling the temperature of the second nonlinear optical element 14, and a second nonlinear optical element 421.
  • An optical wavelength branching coupler 422 for branching only a light wave having the same wavelength as the signal light among the light waves output from the element 14, and for the light wave having the same wavelength as the signal light branched by the optical wavelength branching coupler 422, light
  • a second light intensity detector 423 for performing intensity detection, connected to the signal generator 43 and the second light intensity detector 423, the second fluctuation signal output by the signal generator 43 and the second light intensity detection
  • a second multiplier 424 that generates an error signal based on the light intensity detection result output by the second multiplier 423 and a feedback signal based on the error signal generated by the second multiplier 424 to perform the second temperature adjustment.
  • a second feedback control 425 that transmits to the device 421 .
  • PID proportional-integral-derivative
  • the first nonlinear optical element 13 is a first demultiplexing device that demultiplexes the output light output from the core into second harmonic waves (light waves having half the wavelength of the fundamental wave light). Further includes vessel 131 .
  • the second nonlinear optical element is installed on the input side of the core, and includes a first multiplexer 141 for multiplexing the second harmonic serving as the excitation light and the separately input signal light, and the output of the core.
  • a second demultiplexer 142 is installed on the side and transmits the signal light component and reflects the second harmonic of the output light output from the core.
  • a dichroic mirror type for example, can be applied to the first branching filter 131, the first combining filter 141, and the second branching filter 142.
  • FIG. In this embodiment, the optical wave of the signal light component that has passed through the second demultiplexer 142 is input to the optical wavelength branch coupler 422 .
  • the light intensity of the second harmonic output from the first nonlinear optical element 13 is monitored, and based on the detection result, It is possible to feedback-control the set temperature of the first temperature adjustment device 411 by using the It is also possible to monitor the light intensity of the excitation light output from the second nonlinear optical element and feedback-control the set temperature of the second temperature adjustment device 421 based on the detection results.
  • a temperature control method using a temperature control system for a wavelength converter according to an embodiment of the present disclosure will be described in detail below.
  • FIG. 5 is a flowchart illustrating a wavelength converter temperature control method 50 according to one embodiment of the present disclosure.
  • a temperature control method 50 for a wavelength converter according to this embodiment includes a step 51 of controlling the temperature of the first nonlinear optical element 13 and a step 52 of controlling the temperature of the second nonlinear optical element 14 .
  • the steps 51 and 52 are always performing temperature control.
  • a step 51 includes a step 511 of transmitting a first variation signal from the signal generator 43 to the first temperature adjustment device 411 to periodically vary the set temperature, and a step 511 of periodically varying the set temperature.
  • a step 513 in which the first multiplier 414 generates an error signal based on the light intensity of the second harmonic, and the first multiplier 414 transmits the error signal to the first feedback controller 415 to generate the first Step 514 includes feedback control 415 generating a feedback signal, and step 515 first feedback control 415 sending the feedback signal to first temperature regulation device 411 to appropriately change the set temperature.
  • step 52 includes step 521 of transmitting a second variation signal from the signal generator 43 to the second temperature adjustment device 421 to periodically vary the set temperature, and a step 521 of periodically varying the set temperature.
  • step 522 in which the second light intensity detector 423 detects the light intensity of a light wave having the same wavelength as that of the signal light among the light waves received;
  • step 523 in which the second multiplier 424 generates an error signal based on the light intensity of the light wave having the same wavelength as the signal light detected by the intensity detector 423; and step 524 in which the second feedback control unit 425 generates a feedback signal; and modifying 525 appropriately.
  • wavelength conversion by SHG is performed in the first nonlinear optical element 13 .
  • temperature control is performed so that the wavelength of the excitation light and the peak wavelength (the wavelength at which the conversion efficiency is maximized) in the phase matching curve match. Wavelength conversion efficiency is highest. Therefore, the light intensity of the output converted light (second harmonic) is detected, and the set temperature of the first temperature adjustment device 411 is controlled so that the wavelength of the excitation light and the peak wavelength in the phase matching curve match.
  • step 511 the set temperature of the first temperature adjustment device 411 is periodically changed by a small amount to determine where on the phase matching curve the light intensity of the currently output converted light is located. judge.
  • the period of fluctuation must be a period that can follow the temperature change of the PPLN. Then, when the second harmonic that has undergone this temperature fluctuation is monitored by the optical branch coupler 412 and the first light intensity detector 413, the light intensity fluctuation of the converted light including the increase/decrease according to the temperature fluctuation is detectable.
  • FIG. 6 is a diagram conceptually showing the behavior of changes in the light intensity of converted light when the set temperature of the temperature adjustment device is fluctuated.
  • the light intensity of the converted light (output second harmonic) shows an arbitrary value on the phase matching curve as a constant value independent of time.
  • the intensity of the converted light fluctuates with time according to the period of temperature fluctuation (corresponding to 61 in the figure).
  • the average temperature of the temperature fluctuations is increased or decreased, the average of the light intensity fluctuations of the converted light is also increased or decreased accordingly (corresponding to 62 and 63 in the figure).
  • the phase matching curve has a peak wavelength as the center line and shows a distribution shape that is bilaterally symmetrical with respect to the wavelength, there are two conditions of average temperature showing the same light intensity, making it difficult to distinguish (Fig. 61 and 63).
  • the average light intensities of the two are the same, the phases of the waveforms of the light intensity fluctuations are different.
  • the position of the current converted light on the phase matching curve can be determined from the light intensity value and waveform error of the converted light. It is possible to determine whether As a result, the temperature for shifting to the peak wavelength can also be determined, and the temperature can be controlled so as to achieve the highest wavelength conversion efficiency.
  • the second nonlinear optical element 14 performs optical parametric amplification and wavelength conversion by DFG.
  • the phase matching curve for wavelength conversion by DFG (the principle of the optical parametric effect is the same) differs from that for wavelength conversion by SHG in terms of distribution shape and distribution change behavior with respect to temperature change. Therefore, even if a method similar to that of step 51 described above is applied to the second nonlinear optical element 14 as it is, the temperature cannot be controlled so as to exhibit the highest wavelength conversion efficiency.
  • the optical wavelength branching coupler 422 separates only the light waves having the same wavelength as the signal light among the light waves output from the second nonlinear optical element 14 .
  • the input signal light has the wavelength (degenerate wavelength) of the fundamental wave (degenerate wavelength) of the pumping light (in this case, the second harmonic) and its neighboring wavelengths.
  • the converted light appears in the form of folding back around the wavelength of the excitation light.
  • the converted light is also output at the same wavelength, causing interference and separation. because it will not be possible. Therefore, since light waves near the degenerate wavelength are essentially not used, there is an advantage that even if they are used as light for monitoring, they have little effect on other signal lights.
  • the variation of the conversion efficiency with respect to temperature has a distribution shape in which the conversion efficiency peaks at the optimum temperature, similar to the behavior of the light intensity change of the converted light by SHG shown in FIG. Therefore, the decrease in wavelength conversion efficiency can be suppressed by the same procedure as step 51 .
  • the core of the second nonlinear optical element is PPLN, but lithium tantalate (LiTaO 3 ), lithium niobium tantalate (LiNb (x) Ta (1-x) O 3 (0 ⁇ x ⁇ 1))
  • lithium tantalate LiTaO 3
  • lithium niobium tantalate LiNb (x) Ta (1-x) O 3 (0 ⁇ x ⁇ 1)
  • similar effects can be obtained by using an oxide material to which at least one of Mg, Zn, Sc, and In is added.
  • the wavelength conversion element and the control method thereof utilize the phase matching characteristics of a nonlinear optical element using PPLN to convert wavelengths by SHG and DFG (including optical parametric amplification). suppresses the reduction in conversion efficiency.
  • the refractive index change and temperature change of the core are directly monitored in order to monitor the light intensity of the converted light output from the nonlinear optical element. Therefore, it can be said that the effect of suppressing the decrease in wavelength conversion efficiency due to temperature change is higher than that of the conventional technology that controls the average temperature of the entire element.
  • FIG. 7 is a diagram illustrating a wavelength converter temperature control system 70 according to one embodiment of the present disclosure. As shown in the figure, in the wavelength converter temperature control system 70 according to the present embodiment, the second temperature control section 42 in the wavelength converter temperature control system 40 shown in FIG. It has a form that replaces 71.
  • the second temperature control unit 71 includes a second temperature control device 421 installed near the second nonlinear optical element 14 for controlling the temperature of the second nonlinear optical element 14 and a second nonlinear optical element 421 .
  • a power meter 711 for detecting the power of the second harmonic output from the element 14 is connected to the signal generator 43 and the power meter 711, and the first fluctuation signal output by the signal generator 43 and the power meter 711 are output.
  • a second multiplier 424 that generates a temperature error signal based on the power of the second harmonic that is generated; and a feedback signal that is based on the error signal generated by the second multiplier 424 to generate a second temperature adjustment.
  • a second feedback control 425 that transmits to the device 421 . As shown in FIG.
  • the second temperature control unit 71 in this embodiment monitors the second harmonic reflected by the second demultiplexer 142, so that the optical wavelength branching coupler in the first embodiment 422 is not installed. Also, a power meter 711 is installed instead of the second light intensity detector 423 .
  • FIG. 8 is a flowchart illustrating a wavelength converter temperature control method 80 according to one embodiment of the present disclosure.
  • a wavelength converter temperature control method 80 according to this embodiment includes a step 51 of controlling the temperature of the first nonlinear optical element 13 and a step 81 of controlling the temperature of the second nonlinear optical element 14 .
  • a wavelength converter temperature control method 80 is obtained by replacing step 52 of controlling the temperature of the second nonlinear optical element 14 in the wavelength converter temperature control method 50 of the first embodiment with step 81 .
  • the steps 51 and 81 always perform temperature control.
  • a step 81 includes a step 811 of transmitting a second variation signal from the signal generator 43 to the second temperature adjustment device 421 to periodically vary the set temperature; Step 812 in which the power meter 711 detects the power of the second harmonic, and based on the second variation signal transmitted from the signal generator 43 and the power of the second harmonic detected by the power meter 711, a second multiplication a step 813 in which the multiplier 424 generates an error signal; a step 814 in which the second multiplier 424 transmits the error signal to the second feedback control 425, and the second feedback control 425 generates the feedback signal; and Step 815, where the second feedback controller 425 sends a feedback signal to the second temperature regulation device 421 to appropriately change the set temperature.
  • FIG. 9 is a diagram conceptually showing the power change behavior of the second harmonic when the set temperature of the temperature adjustment device is fluctuated.
  • wavelength conversion and parametric amplification are performed by energy transfer from the second harmonic (pump light) to signal light and converted light, so wavelength conversion by DFG occurs efficiently for the second harmonic itself.
  • the wavelength at which the power exhibits the minimum value corresponds to the peak wavelength of the phase matching curve shown in FIG. 6).
  • the set temperature of the second temperature adjustment device 421 is adjusted so that the temperature at which conversion occurs efficiently, that is, the power of the output second harmonic wave is always minimized. Control.
  • the same effect as in the first embodiment can be obtained even by the method of monitoring the power of the second harmonic.
  • thermocontrol in the first nonlinear optical element 13 modulates the frequency of the input fundamental wave light.
  • FIG. 10 is a diagram illustrating a wavelength converter temperature control system 100 according to one embodiment of the present disclosure.
  • the wavelength converter temperature control system 100 according to the present embodiment is the temperature control system 40 in the first embodiment or the temperature control system 70 in the second embodiment, which is the first
  • the temperature control unit 41 further includes a frequency modulator 101 installed between the laser light source 11 and the amplifier 12 and connected to the signal generator 43 so as to receive the first variation signal.
  • the temperature control system 70 in the second embodiment includes the frequency modulator 101 as an example, but the temperature control system 40 in the first embodiment includes the frequency modulator 101. It may be in the form of
  • the frequency modulator 101 can be configured, for example, to drive an LN modulator to which LiNbO 3 is applied or a modulator using an acousto-optic effect by voltage-controlled oscillation.
  • FIG. 11 is a flowchart illustrating a wavelength converter temperature control method 110 according to one embodiment of the present disclosure.
  • a temperature control method 110 for a wavelength converter according to this embodiment includes a step 111 of controlling the temperature of the first nonlinear optical element 13 and a step 52 of controlling the temperature of the second nonlinear optical element 14 .
  • the wavelength converter temperature control method 110 is a form in which step 51 of controlling the temperature of the first nonlinear optical element 13 in the wavelength converter temperature control method 50 of the first embodiment is replaced with step 111, or Step 51 of controlling the temperature of the first nonlinear optical element 13 in the temperature control method 80 of the wavelength converter in the second embodiment is replaced with step 111 .
  • step 52 in this embodiment, as will be described later, the second harmonic input to the second nonlinear optical element 14 is already in a frequency-modulated state. Therefore, the step of giving a slight variation to the light wave input to the second nonlinear optical element 14 (step 521 in FIG. 5 and step 811 in FIG. 8) is unnecessary.
  • the step 51 of controlling the temperature of the first nonlinear optical element 13 in the temperature control method 50 of the wavelength converter in the first embodiment is replaced with the step 111.
  • step 51 in FIG. 8 described in the second embodiment may be replaced with step 111 .
  • steps 111 and 52 constantly perform temperature control while the wavelength converter 10 is being driven. is preferred.
  • a step 111 includes a step 1111 of transmitting a first variation signal from the signal generator 43 to the frequency modulator 101 to vary the frequency of the fundamental light, Step 1112 of detecting the light intensity by the first light intensity detector 413, and the light intensity of the second harmonic detected by the first fluctuation signal transmitted from the signal generator 43 and the first light intensity detector 413. the first multiplier 414 generating a frequency-related error signal based on step 1113; A step 1114 in which the controller 415 generates a feedback signal, and a step 1115 in which the first feedback controller 415 sends the feedback signal to the first temperature regulation device 411 to appropriately change the set temperature.
  • the fundamental wave light whose frequency has been modulated by the frequency modulator 101 is input to the first nonlinear optical element 13, and the second wave whose frequency has been similarly modulated is input to the first nonlinear optical element .
  • a second harmonic is output. Since the frequency error and the temperature error have a unique relationship, even if the frequency error is monitored, the same effect as in the first and second embodiments can be obtained.
  • the frequency modulation is shifted to the second harmonic through wavelength conversion by SHG in the first nonlinear optical element 13
  • the second harmonic (excitation light) input to the second nonlinear optical element 14 is also inevitable. effectively frequency modulated. Therefore, it is sufficient to install one frequency modulator between the laser light source 11 and the amplifier 12 as shown in FIG.
  • the wavelength converter and its control method according to the present disclosure have a higher temperature controllability of the core than the conventional technology, and have the effect of suppressing a decrease in wavelength conversion efficiency. Therefore, it is expected to be applied as a wavelength converter for a light source in a mid-infrared wavelength region or a light source in a wavelength region that is difficult to realize with a semiconductor laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本開示は、波長変換器において、非線形光学素子の駆動による温度変化に伴って生じる波長変換効率の低下に対し、従来よりも高い抑制効果を実現する温度制御システムおよび温度制御方法を提供する。本開示による温度制御システム(40)は、第1の非線形光学素子(13)の温度制御を行う第1の温度制御部(41)と、第2の非線形光学素子(14)の温度制御を行う第2の温度制御部(42)と、前記第1の非線形光学素子(13)から出力される第二高調波、および前記第2の非線形光学素子(14)から出力される出力光の特性に変動を与える変動信号を生成し、前記変動信号を前記第1の温度制御部(41)および前記第2の温度制御部(42)に送信する信号発生器(43)を備える。

Description

波長変換器およびその制御方法
 本開示は、波長変換器およびその制御方法に関し、より具体的には、非線形光学素子の擬似位相整合条件を維持するための温度制御が可能な波長変換器およびその温度制御方法に関する。
 光通信における光信号波長変換や光変調、光計測、光加工、医療、生物工学などの応用のための紫外域-可視域-赤外域-テラヘルツ域にわたるコヒーレント光の発生と変調のために、多くの非線形光学素子および電気光学素子の開発が進められている。中でも、光パラメトリック増幅器や波長変換器は、周期分極反転構造を有する酸化物の結晶を基板に直接接合したリッジ型導波路が開発されたことにより、変換効率の向上、高出力光の波長変換など、様々な性能向上が実現されている。さらに、このリッジ型導波路のコアにニオブ酸リチウム(LiNbO)を適用した素子は、その変換効率の高さから実用化が進んでおり、今後も更なる普及が期待されている。
 波長変換器や光パラメトリック増幅器に対し、想定され得る適用例としては、例えば、中赤外の波長域の光源が挙げられる。波長が2~5μm程度の中赤外の波長域には様々な環境ガスの基準振動などの強い吸収線が存在するため、小型の中赤外光源の開発が望まれている。このような光源には、技術的に成熟された1μm付近の励起光源と、通信波長帯の信号光を用いることができる差周波発生(Difference Frequency Generation:以下、DFGという)による非線形光学素子とを組み合わせることが有望であると考えられている。
 また、0.5μm付近の可視光の波長域には、半導体レーザでは実現の難しい波長域が存在する。このような波長のレーザ光を出力する光源には、1μm付近の励起光源を用いて、第二高調波発生(Second Harmonic Generation:以下、SHGという)や和周波発生(Sum Frequency Generation:以下SFGという)による非線形光学素子が有望視されている。
 図1は、2次非線形光学媒質を用いた波長変換器10の例示的な構成を示した図である。2次非線形光学媒質を用いた波長変換器10は、基本波光を発振するレーザ光源11と、レーザ光源11から発信された基本波光に対して非線形光学効果を得るための十分なパワーを付与する増幅器12と、増幅された基本波光に対し、SHGによって第二高調波を生成する第1の非線形光学素子13と、第二高調波を励起光、別途入力される信号光とし、励起光と信号光に対して非縮退パラメトリック増幅およびDFGによる波長変換を行う第2の非線形光学素子14とを含む。増幅器12は、例えば、EDFA(Erbium Doped Fiber Amplifier)などが適用され得る。また、第1の非線形光学素子13および第2の非線形光学素子14は、例えば、PPLN(periodically poled lithium niobate)が適用されたリッジ型導波路であり得る。
 このように構成された波長変換器10における第1の非線形光学素子13では、基本波光が入力光となり、この基本波光に対してSHGによる波長変換を行うことによって、第二高調波を生成する(すなわち、基本波光の半分の波長を有する光波を出力する)。そして、第2の非線形光学素子14では、第1の非線形光学素子13で生成された第二高調波を励起光とし、この励起光と別途入力される信号光に対して非縮退パラメトリック増幅およびDFGによる波長変換が行われる。その結果、光パラメトリック効果によって生成した信号光の増幅光と、DFGによって信号光と第二高調波の周波数差に応じた波長変換光(アイドラ光)が第2の非線形光学素子14から同時に出力される。このうち、増幅光のみを取り出せば光増幅器として機能し、アイドラ光のみを取り出せば波長変換器として機能する。なお、本明細書ではこのような光パラメトリック増幅器としても波長変調器としても機能する機器を「波長変換器」と呼ぶ。
 以下に、第2の非線形光学素子における波長変換の過程について説明する。ここでは、例としてDFGによる波長変換を説明するが、光パラメトリック増幅も原理は同じである。
 図2は、波長変換器における各波長変換過程での光波のスペクトルを概念的に示した図であり、図2(a)はレーザ光源11から出力される基本波光のスペクトル、図2(b)は第1の非線形光学素子13におけるSHGに対する位相整合曲線、図2(c)は、第2の非線形光学素子14におけるDFGに対する位相整合曲線それぞれ示している。基本波光は単一のレーザ光であり、図2(a)に示される通り、単一波長のスペクトルを示す。一方、第1の非線形光学素子13におけるSHGに対する位相整合帯域は、図2(b)に示される通り、基本波光のスペクトルと比べれば十分広い幅を有する。これに対し、第2の非線形光学素子14におけるDFGに対する位相整合帯域は、図2(c)に示される通り、広い位相整合帯域となる(すなわち、幅広い入力される信号光の波長に対して、高い変換効率を有する)。
 通常、図1に示される第1の非線形光学素子13および第2の非線形光学素子14のような非線形光学素子では、高効率に波長変換を行うために、光導波路のコアにおいて相互作用する光波の間で擬似位相整合条件が満たされている。擬似位相整合条件を満足させるための手法として、上述したPPLNのように、周期的分極反転構造を適用することが挙げられる。周期的分極反転構造を有する素子では、コアの材料(PPLNの場合、LiNbO)の結晶方位(ドメイン方位)を光軸方向に対して周期的に反転させることにより、素子の材料の自発分極が光軸方向に対して周期的に反転した構造となっている。そして、その反転周期が(式1)を満足するとき、擬似位相整合条件が満足される。
Figure JPOXMLDOC01-appb-M000001
 ここでn、n、nは、それぞれ励起光(第二高調波)、信号光、変換光(アイドラ光)の実効屈折率、λ、λ、λは、それぞれ励起光(第二高調波)、信号光、変換光(アイドラ光)の波長、Λは自発分極の反転周期である。
 このとき、信号光の波長λを変化させても、変換光と励起光との間で、(式1)を満たす限り、同じ変換効率が得られる。信号光の波長が変化すれば、信号光の実効屈折率nおよび変換光の実効屈折率nも変化するが、材料の分散によりnが大きくなった分、nが小さくなることで信号光波長を変えても(式1)を満たすことができる。その結果、第2の非線形光学素子におけるDFGに対する位相整合曲線は、図2(c)に示されるように、広い波長変換帯域となり、第1の非線形光学素子13と第2の非線形光学素子14で異なる位相整合特性を示す。
 一方、物質の屈折率は温度に依存することが知られている。すなわち、図1に示されるような波長変換器10では、周囲の温度変化や素子の駆動による加熱によって、第1の非線形光学素子13および第2の非線形光学素子14に含まれるコアの屈折率が変化し、それに伴って擬似位相整合条件も変化し得る。とりわけ、光パラメトリック増幅器として機能する場合では、強い励起光をコアに入射する必要があり、コア内における光吸収およびそれに伴う発熱量も大きくなるため、擬似位相整合条件が大きく変化し得る。
 図3は、非線形光学素子の動作温度の変化に対する位相整合特性の変化を示す図であり、図3(a)はSHGにおける位相整合曲線の変化を、図3(b)はDFGにおける位相整合曲線の変化を、それぞれ示している。また、図中における破線は励起光の波長を示している。図3(a)に示される通り、任意の温度TにおけるSHGの位相整合曲線は非線形光学素子の温度が上昇(例えば、T+0.5℃に変化)するに伴って長波側にシフトし、逆に、非線形光学素子の温度が低下(例えば、T-0.5℃に変化)するに伴って短波側にシフトする。このため、入力される励起光の波長が一定であるとすると、温度の変化によって波長変換効率の低下が生じる。一方、DFGの位相整合特性は、図3(b)に示される通り、温度変化によって全体の波長特性形状が変化する。
 したがって、周期的分極反転構造を有するコアを非線形光学素子として適用した波長変換器では、擬似位相整合条件を維持するようにコアの温度を一定に保持することが重要となる。従来までに、コアの温度を一定に保持するための制御手法として、第1の非線形光学素子13および第2の非線形光学素子14にヒータやペルチェ素子等の温度調整機構を設置する方法が知られている。この方法では、第1の非線形光学素子13および第2の非線形光学素子14またはその近傍にサーミスタや熱電対等の測温体を設置し、測温体がモニタする温度に応じてヒータやペルチェ素子を制御することで、コアの温度を一定に保持する。
 しかしながら、このような従来技術による温度制御方法は、第1の非線形光学素子13および第2の非線形光学素子14の平均的な温度に基づいた制御となる。したがって、コア自体の温度をモニタしていないため、擬似位相整合条件を維持するという観点では必ずしも最適温度に制御されているわけではない。とりわけ、上述した光パラメトリック増幅器では、励起光による発熱がコアにおける局所的な発熱であるため、従来技術の様に平均的な温度に基づいた制御では、高い波長変換効率を得るという観点では、不十分であり得る。
T. Umeki, O. Tadanaga, A. Takada, and M. Asobe, "Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides," Opt. Express, Vol. 19 No. 7, pp. 6326-6332 (2011)
 本開示は、上記のような課題に対して鑑みてなされたものであり、その目的とするところは、波長変換器において、温度変化に伴う波長変換効率の低下に対し、従来よりも高い抑制効果を実現することにある。
 上記のような課題に対し、本開示では、非線形光学効果を用いた波長変換器であって、第二高調波発生による波長変換を行う第1の非線形光学素子と、第1の非線形光学素子が生成した第二高調波および別途入力される信号光を入力光とし、光パラメトリック増幅および差周波発生による波長変換を行う第2の非線形光学素子と、第1の非線形光学素子に対する温度制御を行う第1の温度制御部と、第2の非線形光学素子に対する温度制御を行う第2の温度制御部と、第1の温度制御部、第2の温度制御部と通信可能に接続され、第1の非線形光学素子から出力される第二高調波の第1の特性に変動を与える第1の変動信号および第2の非線形光学素子から出力される出力光の第2の特性に変動を与える第2の変動信号を生成し、第1の温度制御部に第1の変動信号を、第2の温度制御部に第2の変動信号を、送信する信号発生器と、を備え、第1の温度制御部が、第1の非線形光学素子の近傍に設置され、第1の非線形光学素子の温度調整を行う第1の温度調整デバイスと、第1の非線形光学素子の出力側に設置され、第1の変動信号および第1の特性の変動に基づいて、第1の誤差信号を生成する第1の乗算器と、を備え、第2の温度制御部が、第2の非線形光学素子の近傍に設置され、第2の非線形光学素子の温度調整を行う第2の温度調整デバイスと、第2の非線形光学素子の出力側に設置され、第2の変動信号および第2の特性の変動に基づいて、第2の誤差信号を生成する第2の乗算器と、を備え、第1の誤差信号および第2の誤差信号に基づいて、第1の温度調整デバイスおよび第2の温度調整デバイスがフィードバック制御される、波長変換器を提供する。
 さらに、本開示では、非線形光学効果を用いた波長変換器の制御方法であって、第1の非線形光学素子の温度を制御する工程と、第2の非線形光学素子の温度を制御する工程と、を備え、第1の非線形光学素子の温度を制御する工程が、信号発生器が第1の変動信号を生成し、第1の変動信号に基づいて第1の非線形光学素子から出力される第二高調波の第1の特性を周期的に変動させる工程と、第1の非線形光学素子から出力された第二高調波の第1の特性を検出する工程と、信号発生器から送信される第1の変動信号、および検出された第二高調波の第1の特性に基づいて、第1の乗算器が第1の誤差信号を生成する工程と、第1の誤差信号に基づいて、第1の温度調整デバイスの設定温度を制御する工程と、を備え、第2の非線形光学素子の温度を制御する工程が、第2の非線形光学素子から出力された信号光と同じ波長を有する光波または第二高調波の第2の特性を検出する工程と、信号発生器から送信される第1の変動信号または第2の変動信号、および検出された信号光と同じ波長を有する光波または第二高調波の第2の特性に基づいて、第2の乗算器が第2の誤差信号を生成する工程と、第2の誤差信号に基づいて、第2の温度調整デバイスの設定温度を制御する工程と、を備える、温度制御方法を提供する。
2次非線形光学媒質を用いた波長変調器の例示的な構成を示した図である。 波長変換器における各波長変換過程での光波のスペクトルを概念的に示した図であり、図2(a)はレーザ光源から出力される基本波光のスペクトル、図2(b)は第1の非線形光学素子におけるSHGに対する位相整合曲線、図2(c)は、第2の非線形光学素子におけるDFGに対する位相整合条件をそれぞれ示している。 非線形光学素子の動作温度の変化に対する位相整合特性の変化を示す図であり、図3(a)はSHGにおける位相整合曲線の変化を、図3(b)はDFGにおける位相整合曲線の変化を、それぞれ示している。 本開示の一実施形態による波長変換器の温度制御システムを例示した図である。 本開示の一実施形態による波長変換器の温度制御方法を示すフローチャートである。 温度調整デバイスの設定温度が変動を受けた場合における変換光の光強度変化の挙動を概念的に示した図である。 本開示の一実施形態による波長変換器の温度制御システムを例示した図である。 本開示の一実施形態による波長変換器の温度制御方法を示すフローチャートである。 温度調整デバイスの設定温度が変動を受けた場合における第二高調波のパワー変化の挙動を概念的に示した図である。 本開示の一実施形態による波長変換器の温度制御システムを例示した図である。 本開示の一実施形態による波長変換器の温度制御方法を示すフローチャートである。
 以下に、図面を参照しながら本開示の種々の実施形態について詳細に説明する。同一または類似の参照符号は同一または類似の要素を示し重複する説明を省略する場合がある。以下の説明は、一例であって本開示の一実施形態の要旨を逸脱しない限り、一部の構成を省略若しくは変形し、または追加の構成とともに実施することができる。
 本開示による波長変換器およびその制御方法は、図1に示される第1の非線形光学素子13および第2の非線形光学素子14のそれぞれの近傍に設置された温度調整デバイスの設定温度、または第1の非線形光学素子13に入力される基本波光の周波数に微小量変動を付与し、それによって生じる出力光の特性(強度、パワーなど)の変動に基づいて温度制御することを特徴としている。出力光の特性(強度、パワーなど)は、コアの直接的な温度およびそれに対応する実行屈折率の変化に対応している。したがって、従来技術による温度制御に比べ、波長変換効率の低下に対する抑制効果を向上させることができる。
 さらに、本開示による波長変換器およびその制御方法では、第2の非線形光学素子14における出力光の変動は、通常用いることのない縮退波長近傍の出力光を利用してよい。そのため、他の出力光に与える影響が少ないという利点を有し得る。
 尚、以下に述べる種々の実施形態の説明では、上述の通り、第1の非線形光学素子13ではSHGによる波長変換、第2の非線形光学素子14では、非縮退パラメトリック増幅およびDFGによる波長変換が実行されるとして説明する。加えて、第1の非線形光学素子13および第2の非線形光学素子14のコアは、PPLNが適用されたリッジ型導波路であるとして説明する。
(第1の実施形態)
 以下に、本開示にかかる第1の実施形態について、図面を参照して詳細に説明する。本実施形態は、図1に示される波長変換器10に対し、第1の非線形光学素子13および第2の非線形光学素子14の近傍に設置された温度調整デバイスに対し、出力される光波の光強度検出結果に基づいて、フィードバック制御を行う形態である。
 図4は、本開示の一実施形態による波長変換器の温度制御システム40を例示した図である。図中には、図1に示される波長変換器10も併せて図示している。本開示の一実施形態による波長変換器の温度制御システム40は、第1の非線形光学素子13の温度制御を行う第1の温度制御部41と、第2の非線形光学素子14の温度制御を行う第2の温度制御部42と、第1の温度制御部41および第2の温度制御部42と通信可能に接続され、第1の非線形光学素子13および第2の非線形光学素子14の温度制御をするための設定温度に変動を与える第1の変動信号および第2の変動信号を生成し、第1の変動信号を第1の温度制御部41へ、第2の変動信号を第2の温度制御部42へ、それぞれ送信する信号発生器43とを含む。
 さらに、第1の温度制御部41は、第1の非線形光学素子13の近傍に設置され、第1の非線形光学素子13の温度制御を行う第1の温度調整デバイス411と、第1の非線形光学素子13から出力される第二高調波を分岐する光分岐カプラ412と、光分岐カプラ412によって分岐された第二高調波の一方に対し、光強度検出を行う第1の光強度検出器413と、信号発生器43および第1の光強度検出器413に接続され、信号発生器43が出力する第1の変動信号および第1の光強度検出器413が出力する光強度検出結果に基づいて温度の誤差信号を生成する第1の乗算器414と、第1の乗算器414が生成した誤差信号に基づいてフィードバック信号を生成し、第1の温度調整デバイス411へ送信する第1のフィードバック制御部415とを含む。
 一方、第2の温度制御部42は、第2の非線形光学素子14の近傍に設置され、第2の非線形光学素子14の温度制御を行う第2の温度調整デバイス421と、第2の非線形光学素子14から出力される光波のうち、信号光と同じ波長を有する光波のみを分岐する光波長分岐カプラ422と、光波長分岐カプラ422によって分岐された信号光と同じ波長を有する光波に対し、光強度検出を行う第2の光強度検出器423と、信号発生器43および第2の光強度検出器423に接続され、信号発生器43が出力する第2の変動信号および第2の光強度検出器423が出力する光強度検出結果に基づいて誤差信号を生成する第2の乗算器424と、第2の乗算器424が生成した誤差信号に基づいてフィードバック信号を生成し、第2の温度調整デバイス421へ送信する第2のフィードバック制御部425とを含む。
 第1のフィードバック制御部415および第2のフィードバック制御部425では、例えば、比例・積分・微分(Proportional-Integral-Derivative:以下、PIDという)方式による制御が実行され得る。
 また、本実施形態において、第1の非線形光学素子13は、コアから出力された出力光に対し、第二高調波(基本波光の半分の波長を有する光波)を分波する第1の分波器131をさらに含む。加えて、第2の非線形光学素子は、コアの入力側に設置され、励起光となる第二高調波と別途入力される信号光を合波する第1の合波器141と、コアの出力側に設置され、コアから出力された出力光に対し、信号光成分を透過させ、第二高調波を反射させる第2の分波器142を含む。第1の分波器131、第1の合波器141、および第2の分波器142は、例えば、ダイクロイックミラー型が適用され得る。そして、本実施形態では、第2の分波器142を透過した信号光成分の光波が光波長分岐カプラ422に入力される形態となっている。
 このように構成された本開示の一実施形態による波長変換素子の温度制御システム40では、第1の非線形光学素子13から出力される第二高調波の光強度をモニタし、その検出結果に基づいて第1の温度調整デバイス411の設定温度をフィードバック制御することが可能である。また、第2の非線形光学素子から出力される励起光の光強度をモニタし、その検出結果に基づいて第2の温度調整デバイス421の設定温度をフィードバック制御することも可能である。以下に、本開示の一実施形態による波長変換器の温度制御システムを用いた温度制御方法について詳細を述べる。
 図5は、本開示の一実施形態による波長変換器の温度制御方法50を示すフローチャートである。本実施形態による波長変換器の温度制御方法50は、第1の非線形光学素子13の温度を制御する工程51と、第2の非線形光学素子14の温度を制御する工程52とを含む。尚、波長変換器10が駆動している間、工程51および工程52は、常時、温度制御を実行していることが好ましい。
 さらに、工程51は、信号発生器43から第1の変動信号を第1の温度調整デバイス411に送信し、設定温度を周期的に変動させる工程511と、第1の非線形光学素子13から出力された第二高調波の光強度を第1の光強度検出器413が検出する工程512と、信号発生器43から送信される第1の変動信号と第1の光強度検出器413が検出した第二高調波の光強度に基づいて、第1の乗算器414が誤差信号を生成する工程513と、第1の乗算器414が誤差信号を第1のフィードバック制御部415に送信し、第1のフィードバック制御部415がフィードバック信号を生成する工程514と、第1のフィードバック制御部415がフィードバック信号を第1の温度調整デバイス411に送信し、設定温度を適正に変更する工程515とを含む。
 一方、工程52は、信号発生器43から第2の変動信号を第2の温度調整デバイス421に送信し、設定温度を周期的に変動させる工程521と、第2の非線形光学素子14から出力された光波のうち、信号光と同じ波長を有する光波の光強度を第2の光強度検出器423が検出する工程522と、信号発生器43から送信される第2の変動信号と第2の光強度検出器423が検出した信号光と同じ波長を有する光波の光強度に基づいて、第2の乗算器424が誤差信号を生成する工程523と、第2の乗算器424が誤差信号を第2のフィードバック制御部425に送信し、第2のフィードバック制御部425がフィードバック信号を生成する工程524と、第2のフィードバック制御部425がフィードバック信号を第2の温度調整デバイス421に送信し、設定温度を適正に変更する工程525とを含む。
 上述の通り、第1の非線形光学素子13ではSHGによる波長変換が行われる。そして、図3(a)に示される通り、SHGによる波長変換では、励起光の波長と位相整合曲線におけるピーク波長(変換効率が最大となる波長)が一致するように温度制御をすることにより、波長変換効率が最も高くなる。したがって、出力された変換光(第二高調波)の光強度を検出し、第1の温度調整デバイス411の設定温度を励起光の波長と位相整合曲線におけるピーク波長とが一致するように制御すれば、最も高い波長変換効率が維持できると考えられる。しかし、単純に第二高調波の光強度の値を検出しただけでは、その値が位相整合曲線のどの位置に位置するかが不明であるため、温度を上げるべきか下げるべきかが判定できない。そこで、本開示では、工程511において第1の温度調整デバイス411の設定温度を周期的に微小量変動させ、現在出力されている変換光の光強度が位相整合曲線のどの位置に位置するかを判定する。変動の周期は第1の非線形光学素子13に含まれるコア(ここでは、PPLNが適用されている)の温度の時定数を考慮し、PPLNの温度変化として追従できる周期にする必要がある。そして、この温度の変動を受けた第二高調波を光分岐カプラ412と第1の光強度検出器413でモニタすると、温度の変動に応じて変換光の光強度変動が増加・減少も含めて検出できる。
 図6は、温度調整デバイスの設定温度が変動を受けた場合における変換光の光強度変化の挙動を概念的に示した図である。設定温度の変動が無い状態では、変換光(出力された第二高調波)の光強度は、位相整合曲線における任意の値を、時間に依存せず一定値として示すが、設定温度の変動を付与することにより、温度変動の周期に応じて変換光の光強度は時間に対し変動する(図中の61に相当)。次いで、温度変動の平均温度を増減させると、変換光の光強度変動の平均もそれに応じて増減する(図中の62および63に相当)。尚、位相整合曲線はピーク波長を中心線とし、波長に対して左右対称となる分布形状を示すため、同じ光強度を示す平均温度が2条件存在するため、判別が困難である(図中の61および63に相当)。しかし、両者の平均光強度は同値であるが、光強度変動の波形において位相が異なるため、上記の検出方法によれば判別は可能である。このように、温度調整デバイスの設定温度に微小量変動を与えながら平均温度を変化させることにより、変換光の光強度の値や波形の誤差から、現在の変換光が位相整合曲線においてどこに位置するかを判定することができる。その結果、ピーク波長へシフトさせるための温度も決定することが可能となり、最も高い波長変換効率となるように温度制御することができる。
 一方で、第2の非線形光学素子14では、光パラメトリック増幅およびDFGによる波長変換が行われる。図2および図3で示した通り、DFG(光パラメトリック効果も原理は同様)による波長変換における位相整合曲線は、SHGによる波長変換の場合とは分布形状や温度変化に対する分布変化の挙動が異なる。したがって、上述した工程51と同様の方法をそのまま第2の非線形光学素子14に適用しても、最も高い波長変換効率を示すように温度制御をすることはできない。しかし、本開示では、コアにPPLNを用いた波長変換や光パラメトリック増幅特有の帯域特性を用いることにより、DFGによる波長変換(光パラメトリック増幅を含む)であっても、工程51と同様な手順で最も高い波長変換効率を示すように温度制御をすることを可能にしている。そして、それを実現するために、第2の非線形光学素子14から出力される光波のうち、信号光の波長と同じ波長を有する光波のみを光波長分岐カプラ422で分離することを特徴としている。この理由は以下の通りである。まず、コアにPPLNを用いた波長変換や光パラメトリック増幅を行う場合、入力される信号光は励起光(この場合、第二高調波)の基本波の波長(縮退波長)およびその近傍の波長を有することができない。これは変換光が励起光の波長を中心に折り返す形で現れるためであり、この波長近傍の信号光を入力した場合、変換光も同じ波長に出力されてしまうため、干渉してしまい、分離ができなくなるためである。このため、縮退波長近傍の光波は本質的に利用することがないため、モニタ用の光として利用しても他の信号光に与える影響が少ない利点を有する。次に、縮退波長近傍は温度に対する変換効率の変動が、図6に示されるSHGによる変換光の光強度変化の挙動と同様に、最適温度で変換効率のピークを迎える分布形状となる。このため、工程51と同様の手順で、波長変換効率の低下を抑制することができる。
 尚、本実施形態では、第2の非線形光学素子のコアはPPLNとしているが、タンタル酸リチウム(LiTaO) 、ニオブタンタル酸リチウム(LiNb(x) Ta(1-x) O3 (0≦x≦1))または、これらにMg、Zn、Sc、Inの少なくとも1種が添加された酸化物材料を適用しても、同様の効果を奏する。
 以上述べた通り、本開示の一実施形態による波長変換素子およびその制御方法は、PPLNを用いた非線形光学素子の位相整合特性を活用し、SHG、およびDFG(光パラメトリック増幅を含む)による波長変換の変換効率低下を抑制する。このような形態を有する本開示では、非線形光学素子から出力される変換光の光強度をモニタするため、コアの屈折率変化および温度変化を直接的に監視している。したがって、素子全体の平均的な温度を制御する従来技術に比べ、温度変化に伴う波長変換効率の低下を抑制する効果が高いと言える。
(第2の実施形態)
 以下に、本開示による第2の実施形態について、図面を参照して詳細に説明する。本実施形態は、第1の実施形態における第2の光強度検出器423が、第2の分波器142によって反射された第二高調波のパワーをモニタする検出器に置き換わった形態である。
 図7は、本開示の一実施形態による波長変換器の温度制御システム70を例示した図である。図中に示される通り、本実施形態による波長変換器の温度制御システム70は、図4に示される波長変換器の温度制御システム40における第2の温度制御部42が、第2の温度制御部71に置き換わった形態を有している。
 さらに、第2の温度制御部71は、第2の非線形光学素子14の近傍に設置され、第2の非線形光学素子14の温度制御を行う第2の温度調整デバイス421と、第2の非線形光学素子14から出力される第二高調波のパワーを検出するパワーメータ711と、信号発生器43およびパワーメータ711に接続され、信号発生器43が出力する第1の変動信号およびパワーメータ711が出力する第二高調波のパワーに基づいて温度の誤差信号を生成する第2の乗算器424と、第2の乗算器424が生成した誤差信号に基づいてフィードバック信号を生成し、第2の温度調整デバイス421へ送信する第2のフィードバック制御部425とを含む。図7に示される通り、本実施形態における第2の温度制御部71は、第2の分波器142によって反射された第二高調波をモニタするため、第1の実施形態における光波長分岐カプラ422は設置されていない。また、第2の光強度検出器423の代わりにパワーメータ711が設置された構成となっている。
 図8は、本開示の一実施形態による波長変換器の温度制御方法80を示すフローチャートである。本実施形態による波長変換器の温度制御方法80は、第1の非線形光学素子13の温度を制御する工程51と、第2の非線形光学素子14の温度を制御する工程81とを含む。波長変換器の温度制御方法80は、第1の実施形態における波長変換器の温度制御方法50における第2の非線形光学素子14の温度を制御する工程52が、工程81に置き換わった形態である。尚、第1の実施形態と同様に、波長変換器10が駆動している間、工程51および工程81は、常時、温度制御を実行していることが好ましい。
 工程81は、信号発生器43から第2の変動信号を第2の温度調整デバイス421に送信し、設定温度を周期的に変動させる工程811と、第2の非線形光学素子14から出力された第二高調波のパワーをパワーメータ711が検出する工程812と、信号発生器43から送信される第2の変動信号とパワーメータ711が検出した第二高調波のパワーに基づいて、第2の乗算器424が誤差信号を生成する工程813と、第2の乗算器424が誤差信号を第2のフィードバック制御部425に送信し、第2のフィードバック制御部425がフィードバック信号を生成する工程814と、第2のフィードバック制御部425がフィードバック信号を第2の温度調整デバイス421に送信し、設定温度を適正に変更する工程815とを含む。
 図9は、温度調整デバイスの設定温度が変動を受けた場合における第二高調波のパワー変化の挙動を概念的に示した図である。DFGによる波長変換では、第二高調波(励起光)から信号光や変換光へのエネルギー移行により、波長変換やパラメトリック増幅を行うため、第二高調波自体はDFGによる波長変換が効率的に生じるほど、パワーが小さくなる(パワーが最小値を示す波長が、図6に示される位相整合曲線のピーク波長に相当する)。本実施形態ではこの現象を利用し、効率よく変換が起こる温度、すなわち出力される第二高調波のパワーが常に最小になるように、工程81において、第2の温度調整デバイス421の設定温度を制御する。
 以上述べた通り、第2の非線形光学素子14の温度制御において、第二高調波のパワーをモニタする方法であっても、第1の実施形態と同様の効果を得ることができる。
(第3の実施形態)
 以下に、本開示による第2の実施形態について、図面を参照して詳細に説明する。本実施形態は、第1の非線形光学素子13における温度制御において、入力される基本波光の周波数を変調する形態である。
 図10は、本開示の一実施形態による波長変換器の温度制御システム100を例示した図である。図中に示される通り、本実施形態による波長変換器の温度制御システム100は、第1の実施形態における温度制御システム40、または第2の実施形態における温度制御システム70であって、第1の温度制御部41が、レーザ光源11と増幅器12の間に設置され、第1の変動信号を受信できるように信号発生器43と接続した周波数変調器101をさらに含む。図中では、例として、第2の実施形態における温度制御システム70に周波数変調器101が含まれた形態を示しているが、第1の実施形態における温度制御システム40に周波数変調器101が含まれた形態であってもよい。
 周波数変調器101は、例えば、LiNbOが適用されたLN変調器や音響光学効果を用いた変調器を電圧制御発振して駆動するように構成され得る。
 図11は、本開示の一実施形態による波長変換器の温度制御方法110を示すフローチャートである。本実施形態による波長変換器の温度制御方法110は、第1の非線形光学素子13の温度を制御する工程111と、第2の非線形光学素子14の温度を制御する工程52とを含む。波長変換器の温度制御方法110は、第1の実施形態における波長変換器の温度制御方法50における第1の非線形光学素子13の温度を制御する工程51が、工程111に置き換わった形態、または、第2の実施形態における波長変換器の温度制御方法80における第1の非線形光学素子13の温度を制御する工程51が、工程111に置き換わった形態である。ただし、本実施形態における工程52(または工程81)では、後述する通り、第2の非線形光学素子14に入力する第二高調波はすでに周波数が変調された状態にある。したがって、第2の非線形光学素子14に入力する光波に微小量変動を与える工程(図5における工程521、および図8における工程811)は不要である。また、図中では、例として、第1の実施形態における波長変換器の温度制御方法50における第1の非線形光学素子13の温度を制御する工程51が、工程111に置き換わった形態を示しているが、第2の実施形態で述べた図8における工程51が、工程111に置き換わった形態であってもよい。尚、第1の実施形態および第2の実施形態と同様に、波長変換器10が駆動している間、工程111および工程52(または工程81)は、常時、温度制御を実行していることが好ましい。
 工程111は、信号発生器43から第1の変動信号を周波数変調器101に送信し、基本波光の周波数を変動させる工程1111と、第1の非線形光学素子13から出力された第二高調波の光強度を第1の光強度検出器413が検出する工程1112と、信号発生器43から送信される第1の変動信号と第1の光強度検出器413が検出した第二高調波の光強度に基づいて、第1の乗算器414が、周波数に関する誤差信号を生成する工程1113と、第1の乗算器414が周波数に関する誤差信号を第1のフィードバック制御部415に送信し、第1のフィードバック制御部415がフィードバック信号を生成する工程1114と、第1のフィードバック制御部415がフィードバック信号を第1の温度調整デバイス411に送信し、設定温度を適正に変更する工程1115とを含む。
 このように構成された本実施形態による波長変換器の温度制御方法110では、周波数変調器101によって周波数が変調した基本波光が第1の非線形光学素子13に入力され、同様に周波数が変調した第二高調波が出力される。周波数の誤差と温度の誤差は一義的な関係にあるため、周波数の誤差をモニタしても、第1の実施形態および第2の実施形態と同様の効果を奏する。
 なお、周波数の変調は第1の非線形光学素子13におけるSHGによる波長変換を通じて第二高調波に移行されるため、第2の非線形光学素子14に入力される第二高調波(励起光)も必然的に周波数変調される。したがって、周波数変調器は、図10に示される通り、レーザ光源11と増幅器12の間に1つ設置すれば十分である。
 本開示による波長変換器およびその制御方法は、従来技術と比較して、コアの温度制御性が高く、波長変換効率の低下を抑制する効果を奏する。したがって、中赤外の波長域の光源や、半導体レーザでは実現の難しい波長域の光源に向けられた波長変換器としての適用が見込まれる。

Claims (8)

  1.  非線形光学効果を用いた波長変換器であって、
     第二高調波発生による波長変換を行う第1の非線形光学素子と、
     前記第1の非線形光学素子が生成した第二高調波および別途入力される信号光を入力光とし、光パラメトリック増幅および差周波発生による波長変換を行う第2の非線形光学素子と、
     前記第1の非線形光学素子に対する温度制御を行う第1の温度制御部と、
     前記第2の非線形光学素子に対する温度制御を行う第2の温度制御部と、
     前記第1の温度制御部、前記第2の温度制御部と通信可能に接続され、前記第1の非線形光学素子から出力される前記第二高調波の第1の特性に変動を与える第1の変動信号および前記第2の非線形光学素子から出力される出力光の第2の特性に変動を与える第2の変動信号を生成し、前記第1の温度制御部に前記第1の変動信号を、前記第2の温度制御部に前記第2の変動信号を、送信する信号発生器と、
    を備え、
     前記第1の温度制御部が、
      前記第1の非線形光学素子の近傍に設置され、前記第1の非線形光学素子の温度調整を行う第1の温度調整デバイスと、
      前記第1の非線形光学素子の出力側に設置され、前記第1の変動信号および前記第1の特性の変動に基づいて、第1の誤差信号を生成する第1の乗算器と、
     を備え、
     前記第2の温度制御部が、
      前記第2の非線形光学素子の近傍に設置され、前記第2の非線形光学素子の温度調整を行う第2の温度調整デバイスと、
      前記第2の非線形光学素子の出力側に設置され、前記第2の変動信号および前記第2の特性の変動に基づいて、第2の誤差信号を生成する第2の乗算器と、
     を備え、
     前記第1の誤差信号および前記第2の誤差信号に基づいて、前記第1の温度調整デバイスおよび第2の温度調整デバイスがフィードバック制御される、波長変換器。
  2.  前記第2の温度制御部が、前記第2の非線形光学素子の出力側に設置され、前記第2の非線形光学素子から出力される前記出力光のうち、前記信号光と同じ波長を有する光波のみを分岐する光波長分岐カプラをさらに備え、
     前記第1の特性が、前記第1の非線形光学素子から出力される前記第二高調波の光強度であり、
     前記第2の特性が、前記光波長分岐カプラによって分岐された前記信号光と同じ波長を有する前記光波の光強度である、請求項1に記載の波長変換器。
  3.  前記第1の特性が、前記第1の非線形光学素子から出力される前記第二高調波の光強度であり、
     前記第2の特性が、前記第2の非線形光学素子から出力される前記第二高調波と同じ波長を有する光波のパワーである、請求項1に記載の波長変換器。
  4.  前記第1の温度制御部が、
     前記第1の非線形光学素子に入力側に設置され、
     前記信号発生器と通信可能に接続され、
     前記第1の非線形光学素子に入力される基本波光の周波数を変調する周波数変調器をさらに備えた、請求項1乃至3のいずれか一項に記載の波長変換器。
  5.  前記第1の非線形光学素子、および前記第2の非線形光学素子はリッジ型導波路であり、波長変換を行うコアの材料がLiNbO、LiTaO、LiNb(x) Ta(1-x) O3 (0≦x≦1))または、これらにMg、Zn、Sc、Inの少なくとも1種が添加された酸化物材料から選ばれる、請求項1乃至4のいずれか一項に記載の波長変換器。
  6.  非線形光学効果を用いた波長変換器の制御方法であって、
     第1の非線形光学素子の温度を制御する工程と、
     第2の非線形光学素子の温度を制御する工程と、
    を備え、
     前記第1の非線形光学素子の温度を制御する前記工程が、
      信号発生器が第1の変動信号を生成し、前記第1の変動信号に基づいて前記第1の非線形光学素子から出力される第二高調波の第1の特性を周期的に変動させる工程と、
      前記第1の非線形光学素子から出力された前記第二高調波の前記第1の特性を検出する工程と、
      前記信号発生器から送信される前記第1の変動信号、および前記検出された前記第二高調波の前記第1の特性に基づいて、第1の乗算器が第1の誤差信号を生成する工程と、
     前記第1の誤差信号に基づいて、第1の温度調整デバイスの設定温度を制御する工程と、
     を備え、
     前記第2の非線形光学素子の温度を制御する工程が、
      前記第2の非線形光学素子から出力された信号光と同じ波長を有する光波または前記第二高調波の第2の特性を検出する工程と、
      前記信号発生器から送信される前記第1の変動信号または第2の変動信号、および前記検出された前記信号光と同じ波長を有する前記光波または前記第二高調波の前記第2の特性に基づいて、第2の乗算器が第2の誤差信号を生成する工程と、
     前記第2の誤差信号に基づいて、第2の温度調整デバイスの設定温度を制御する工程と、
     を備える、温度制御方法。
  7.  前記第2の非線形光学素子の温度を制御する工程が、
     前記信号発生器が第2の変動信号を生成し、前記第2の変動信号に基づいて前記第2の非線形光学素子から出力される前記信号光と同じ波長を有する前記光波または前記第二高調波の前記第2の特性を周期的に変動させる工程をさらに備え、
     前記第1の特性を周期的に変動させる前記工程が、前記第1の変動信号を前記第1の温度調整デバイスに送信し、前記第1の温度調整デバイスの設定温度を変動させる工程であり、
     前記第2の特性を周期的に変動させる前記工程が、前記第2の変動信号を前記第2の温度調整デバイスに送信し、前記第2の温度調整デバイスの設定温度を変動させる工程である、請求項6に記載の温度制御方法。
  8.  前記第1の特性を周期的に変動させる前記工程が、前記第1の変動信号を周波数変調器に送信し、前記第1の非線形光学素子に入力する基本波光の周波数を変動させる工程であり、請求項6に記載の温度制御方法。
PCT/JP2021/033612 2021-09-13 2021-09-13 波長変換器およびその制御方法 WO2023037560A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/033612 WO2023037560A1 (ja) 2021-09-13 2021-09-13 波長変換器およびその制御方法
JP2023546727A JPWO2023037560A1 (ja) 2021-09-13 2021-09-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033612 WO2023037560A1 (ja) 2021-09-13 2021-09-13 波長変換器およびその制御方法

Publications (1)

Publication Number Publication Date
WO2023037560A1 true WO2023037560A1 (ja) 2023-03-16

Family

ID=85506264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033612 WO2023037560A1 (ja) 2021-09-13 2021-09-13 波長変換器およびその制御方法

Country Status (2)

Country Link
JP (1) JPWO2023037560A1 (ja)
WO (1) WO2023037560A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123120A (ja) * 1984-07-12 1986-01-31 Nec Corp 光混合波発生装置
JPH06123907A (ja) * 1992-08-26 1994-05-06 Sony Corp 波長変換装置
US6614584B1 (en) * 2000-02-25 2003-09-02 Lambda Physik Ag Laser frequency converter with automatic phase matching adjustment
JP2006113489A (ja) * 2004-10-18 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> 波長変換装置
JP2020144164A (ja) * 2019-03-04 2020-09-10 日本電信電話株式会社 光信号処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123120A (ja) * 1984-07-12 1986-01-31 Nec Corp 光混合波発生装置
JPH06123907A (ja) * 1992-08-26 1994-05-06 Sony Corp 波長変換装置
US6614584B1 (en) * 2000-02-25 2003-09-02 Lambda Physik Ag Laser frequency converter with automatic phase matching adjustment
JP2006113489A (ja) * 2004-10-18 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> 波長変換装置
JP2020144164A (ja) * 2019-03-04 2020-09-10 日本電信電話株式会社 光信号処理装置

Also Published As

Publication number Publication date
JPWO2023037560A1 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
CN112969960B (zh) 波长转换装置
Jensen et al. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser
US5168503A (en) Harmonic generator
US20190155126A1 (en) Multiwavelength laser source
JP3885511B2 (ja) レーザー光発生装置及び方法
JPWO2003001635A1 (ja) 光源装置及びその制御方法
US6762876B2 (en) Optical converter with a designated output wavelength
WO2023037560A1 (ja) 波長変換器およびその制御方法
JP2007108593A (ja) 非線形光学媒質およびそれを用いた波長変換装置
JP3833179B2 (ja) 光波長変換装置、及び光波長変換方法
JP6533171B2 (ja) 光コム発生装置
JPH0263026A (ja) 導波路型波長変換素子
JP7473850B2 (ja) 波長変換装置
CN109239948B (zh) 非傍轴自加速倍频光束调控装置及方法
JP6093246B2 (ja) 中赤外波長変換光源
WO2023084621A1 (ja) 波長変換装置
JPH0651359A (ja) 波長変換素子、短波長レーザ装置および波長可変レーザ装置
JP2007187920A (ja) 非線形光学媒質およびそれを用いた波長変換装置
JP2004109916A (ja) 光通信用波長変換装置
Kazama et al. Phase sensitive amplification using monolithically integrated PPLN waveguide circuit
WO2022219687A1 (ja) 波長変換光学素子
Asobe et al. Parametric optical amplification using a reflective multiple quasi-phase-matched LiNbO 3 waveguide module
JP2008129316A (ja) 光波長変換装置および光波長変換方法
JP2003315859A (ja) 波長変換レーザ装置
JPH06123907A (ja) 波長変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE