WO2012098610A1 - アーク加工電源装置 - Google Patents

アーク加工電源装置 Download PDF

Info

Publication number
WO2012098610A1
WO2012098610A1 PCT/JP2011/006620 JP2011006620W WO2012098610A1 WO 2012098610 A1 WO2012098610 A1 WO 2012098610A1 JP 2011006620 W JP2011006620 W JP 2011006620W WO 2012098610 A1 WO2012098610 A1 WO 2012098610A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
unit
inverter
inverter unit
units
Prior art date
Application number
PCT/JP2011/006620
Other languages
English (en)
French (fr)
Inventor
徹也 森川
憲和 大崎
田中 義朗
小林 直樹
芳行 田畑
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012098610A1 publication Critical patent/WO2012098610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to an arc machining power supply device such as an arc welding machine equipped with a circuit and a structure for realizing low price and high performance.
  • arc processing power supply apparatuses that are arc application devices such as arc welders and arc fusing machines, arc application devices that can handle two voltages, an input voltage of a high voltage system (for example, 400V) and a low voltage system (for example, 200V).
  • a high voltage system for example, 400V
  • a low voltage system for example, 200V
  • power supplies for example, 400V
  • the application to the high voltage system of the low voltage system arc processing power supply device by the serial control of an inverter etc. is performed (for example, refer patent document 1).
  • the semiconductor switching elements constituting the inverter have different withstand voltages, such as using a high withstand voltage in the case of a high voltage system and using a low withstand voltage in the case of a low voltage system. It is common to use properly.
  • the primary winding of the transformer that converts AC output into DC also has different specifications for the high-voltage system and the low-voltage system.
  • FIG. 7 is a diagram showing a schematic configuration of a conventional arc welder.
  • the arc welding machine has a rectifying unit 1 that receives AC power from an external device 6 such as a switchboard and converts it into DC.
  • An AC unit 12 that converts the output of the rectifying unit 1 into an AC is connected between the outputs of the rectifying unit 1.
  • the AC unit 12 includes a smoothing capacitor C4 and an inverter unit U4 as components, and a transformer T4 that transforms the output of the AC unit 12 is connected to the output side of the inverter unit U4.
  • the inverter unit U4 is configured by bridge-connecting four switching elements such as IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the inverter unit U4 includes a first switching element Q41, a second switching element Q42, a third switching element Q43, and a fourth switching element Q44.
  • the switching elements Q41, Q42, Q43, and Q44 constituting the inverter unit U4 are respectively provided with driving units K11, K12, K13, and K14 provided to control the driving of the switching elements Q41, Q42, Q43, and Q44. And gate signal lines G11, G12, G13, G14 and emitter signal lines E11, E12, E13, E14.
  • the first switching element Q41 of the inverter unit U4 and the drive unit K11 are connected by the gate signal line G11 and the emitter signal line E11.
  • the second switching element Q42 of the inverter unit U4 and the drive unit K12 are connected by the gate signal line G12 and the emitter signal line E12.
  • the third switching element Q13 and the drive unit K13 of the inverter unit U4 are connected by a gate signal line G13 and an emitter signal line E13.
  • the fourth switching element Q14 of the inverter unit U4 and the drive unit K14 are connected by a gate signal line G14 and an emitter signal line E14.
  • subjected in FIG. 7 have shown that the same code
  • a welding torch 8 having an electrode 9 is connected to one end of the secondary winding of the transformer T4 via a rectifying unit 4 and a reactor 5 for rectification.
  • a base material 7 is connected to the other end of the secondary winding of the transformer T4 via a current detection unit 3. Then, the value detected by the current detection unit 3 is fed back to the control unit 2 that controls the drive units K11, K12, K13, and K14.
  • the control unit 2 controls driving units K11 to K14 for driving the switching elements Q41 to Q44.
  • the switching elements Q41 to Q44 connected to the driving units K11 to K14 are turned on / off to control the primary current of the transformer T4 and obtain constant current characteristics and constant voltage characteristics as outputs. Can do.
  • the on-time of each switching element Q41 to Q44 is lengthened to increase the transformer current.
  • the on-time of the switching element is increased. Shorten to reduce transformer current. In this way, the output current is controlled to be constant by controlling the conduction width of the switching elements Q41 to Q44.
  • FIG. 7 shows a configuration example for realizing constant current control. If a voltage detection unit for detecting the output voltage of the arc welder is provided so that the output voltage matches the voltage setting value, constant voltage control is performed. It becomes a configuration to be realized.
  • the arc welding machine for high voltage input needs to use a high withstand voltage as the switching element of the inverter part as compared with the arc welding machine for low voltage input.
  • a high breakdown voltage switching element generally has a large switching loss, it is difficult to use at a high inverter frequency. Accordingly, when the inverter is used at a low inverter frequency, the ripple of the welding output current increases, and there arises a problem that the workability of welding such as arc breakage is likely to be deteriorated.
  • the present invention makes it possible to use an inverter part with a common specification for arc welding machines for low voltage input and high voltage input.
  • a plurality of inverter parts with a common specification are connected in series.
  • an arc machining power supply device that is connected to form an AC unit.
  • An arc machining power supply device of the present invention is configured by connecting a plurality of inverter units in series between a rectifier unit that receives AC power and converts it into DC, and an output of the rectifier unit.
  • An AC unit that converts the output to the AC unit, a transformer that transforms the output of the AC unit, a plurality of drive units that are provided corresponding to the switching elements, and that control driving of the switching elements that constitute the inverter units.
  • the switching elements of the inverter units and the plurality of driving units are connected by signal lines, and the signal lines connected to different inverter units are magnetically coupled to each other.
  • the configuration of the inverter when designing an arc welder for low-voltage input, the configuration of the inverter can be applied to an arc welder for high-voltage input. Improvement can be realized.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welder serving as a basis of the present invention.
  • FIG. 2 is a diagram showing the relationship between the gate current and the voltage applied to the switching element when the switching element used in the arc welder as the basis of the present invention is turned on.
  • FIG. 3 is a diagram showing a schematic configuration of an arc welder that is an arc machining power supply apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a state of magnetic coupling of the gate signal lines of the arc welding machine which is the arc machining power supply apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welder serving as a basis of the present invention.
  • FIG. 2 is a diagram showing the relationship between the gate current and the voltage applied to the switching element when the switching element used in the arc welder as the basis of the present invention is turned on.
  • FIG. 3 is
  • FIG. 5 is a diagram showing the relationship between the gate current and the voltage applied to the switching element when the switching element of the arc welding machine which is the arc machining power supply apparatus according to Embodiment 1 of the present invention is turned on.
  • FIG. 6 is a diagram showing a schematic configuration of an arc welder that is an arc machining power supply apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing a schematic configuration of a conventional arc welder.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welder that is the basis of the present invention
  • FIG. 2 is a diagram illustrating gate currents and switching elements during an ON operation of a switching element used in the arc welder that is the basis of the present invention. It is a figure which shows the relationship with the voltage applied.
  • FIGS. 1 and 2 An arc welder considered by the inventors to improve performance over the prior art will be described with reference to FIGS. 1 and 2.
  • An arc welder for improving performance further than the arc welder having the configuration shown in FIG. 1 will be described as a first embodiment and a second embodiment with reference to FIGS.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welding machine which is an example of an arc machining power supply device.
  • the arc welder has a rectifying unit 1 that receives AC power from an external device 6 such as a switchboard and converts it into DC.
  • a first AC unit 10 that converts the output of the rectification unit 1 into AC is connected.
  • the first AC unit 10 includes two inverter units, ie, a first inverter unit U1 and a second inverter unit U2, and the first inverter unit U1 and the second inverter unit U2 are connected in series. ing.
  • the first inverter unit U1 and the second inverter unit U2 are configured by full-bridge connection of four switching elements such as IGBTs and MOSFETs.
  • the first inverter unit U1 includes a first switching element Q11, a second switching element Q12, a third switching element Q13, and a fourth switching element Q14.
  • the second inverter unit U2 includes a first switching element Q21, a second switching element Q22, a third switching element Q23, and a fourth switching element Q24.
  • each switching element constituting each inverter unit is connected to a plurality of driving units provided corresponding to each switching element in order to control driving of each switching element by gate signal lines and emitter signal lines. Yes.
  • the first switching element Q11 and the drive unit K11 of the first inverter unit U1 are connected by the gate signal line G11 and the emitter signal line E11.
  • the second switching element Q12 and the drive unit K12 of the first inverter unit U1 are connected by a gate signal line G12 and an emitter signal line E12.
  • the third switching element Q13 and the drive unit K13 of the first inverter unit U1 are connected by a gate signal line G13 and an emitter signal line E13.
  • the fourth switching element Q14 and the drive unit K14 of the first inverter unit U1 are connected by a gate signal line G14 and an emitter signal line E14.
  • first switching element Q21 and the drive unit K21 of the second inverter unit U2 are connected by the gate signal line G21 and the emitter signal line E21.
  • the second switching element Q22 and the drive unit K22 of the second inverter unit U2 are connected by a gate signal line G22 and an emitter signal line E22.
  • the third switching element Q23 and the drive unit K23 of the second inverter unit U2 are connected by a gate signal line G23 and an emitter signal line E23.
  • the fourth switching element Q24 and the drive unit K24 of the second inverter unit U2 are connected by a gate signal line G24 and an emitter signal line E24.
  • a welding torch 8 is connected to one end of the secondary winding of the first transformer T1 through a rectifying unit 4 and a reactor 5 for rectification.
  • a base material 7 is connected to the other end of the secondary winding of the first transformer T ⁇ b> 1 via the current detection unit 3. Then, the value detected by the current detection unit 3 is fed back to the control unit 2 that controls the plurality of drive units K11 to K24.
  • the arc welder shown in FIG. 1 includes a control unit 2 that controls a plurality of drive units K11 to K24.
  • the same control signal is given from the control unit 2 to each of the drive units K11 and K21 connected to the first switching elements Q11 and Q21 of the inverter units U1 and U2.
  • the same control signal is given from the control unit 2 to each of the drive units K12 and K22 connected to the second switching elements Q12 and Q22 of the inverter units U1 and U2.
  • the same control signal is given from the control unit 2 to each of the drive units K13 and K23 connected to the third switching elements Q13 and Q23 of the inverter units U1 and U2.
  • control unit 2 controls a plurality of driving units K11 to K24 for driving the switching elements Q11 to Q24.
  • the same control signal is given from the control unit 2 to the drive unit K11 and the drive unit K21, the drive unit K12 and the drive unit K22, the drive unit K13 and the drive unit K23, and the drive unit K14 and the drive unit K24.
  • the control signal sent from the control unit 2 to the plurality of drive units K11 to K24 controls two drive units with one control signal.
  • the switching elements Q11 to Q24 connected to the driving units K11 to K24 are turned on / off to control the primary current of the first transformer T1, and constant current characteristics and voltage are output as outputs. Characteristics can be obtained.
  • the on-time of each switching element Q11 to Q14 is lengthened to increase the transformer current.
  • the on-time of each switching element Q11 to Q24 is shortened to reduce the transformer current. In this way, the output current is controlled to be constant by controlling the conduction width of the switching elements Q11 to Q14.
  • the arc welder has a first transformer T1 that transforms the output of the first AC unit 10.
  • the first transformer T1 includes a first primary winding TL1, a second primary winding TL2, and a secondary winding TL.
  • the output line of the first inverter unit U1 is the first primary winding TL1 of the first transformer T1
  • the output line of the second inverter unit U2 is the second 1 of the first transformer T1.
  • the next winding is TL2.
  • the first primary winding TL1 and the second primary winding TL2 are wound in parallel with each other to form the primary winding of the first transformer T1.
  • FIG. 1 shows a configuration example in the case of realizing constant current control. If a voltage detection unit for detecting the output voltage of the arc welder is provided so that the output voltage matches the voltage setting value, constant voltage control is performed. It becomes a configuration to be realized.
  • the rectifying unit 1 that receives AC power from the external device 6 and converts it to DC converts the three-phase AC voltage to DC voltage V1.
  • the DC voltage V1 output from the rectifying unit 1 is supplied to the first inverter unit U1 through the first smoothing capacitor C1, and is supplied to the second inverter unit U2 through the second smoothing capacitor C2. .
  • the DC voltage V1 is divided and applied to the first inverter unit U1 and the second inverter unit U2.
  • the voltage applied to the first inverter unit U1 and the second inverter unit U2 is a signal from each drive unit (from K11 to K24) to each switching element (from Q11 to Q24). If there is no time error in the timing at which is applied (hereinafter referred to as “signal timing”) and the switching timings of the switching elements are the same, it is considered that they are equal.
  • the switching timing of each switching element is different, for example, the gate given to the first switching element Q11 of the first inverter unit U1 and the first switching element Q21 of the second inverter unit U2, which are the corresponding switching elements.
  • the current and the voltage applied to the first switching element Q11 of the first inverter unit U1 and the first switching element Q21 of the second inverter unit U2, which are corresponding switching elements, are It may be balanced.
  • FIG. 2 shows an example of the relationship between the gate current during the switching operation of the two corresponding switching elements and the voltage applied to the two corresponding switching elements in the arc welding machine having the configuration shown in FIG. It is a figure which shows current value or voltage value, and a horizontal axis as time.
  • FIG. 2 shows time waveforms of the gate current Ia and the gate current Ib applied to the two corresponding switching elements, and time waveforms of the voltage Va and the voltage Vb applied to the two corresponding switching elements.
  • the gate current Ia indicates the gate current that flows early
  • the gate current Ib indicates the gate current that flows late.
  • the switching element that is switched off by the gate current that instructs switching off flows first as shown at time t1 in FIG.
  • the voltage Va is applied.
  • a voltage Vb smaller than the voltage Va is applied to the switching element that is switched off because the gate current that instructs switching off flows with a delay as shown at time t2 in FIG. Therefore, the voltages applied to the two switching elements are unbalanced.
  • the difference in switching timing is large, the voltage Va exceeds the withstand voltage of the switching element and becomes an overvoltage, and the switching element to which the voltage Va is applied may be destroyed.
  • the output of the rectifying unit 1 is converted into alternating current having a high frequency by the first alternating current unit 10 and input to the primary side of the first transformer T1 for power conversion.
  • the secondary side output of the first transformer T1 is rectified by the rectification unit 4 and the reactor 5 and supplied to the electrode 9 and the base material 7 of the welding torch 8.
  • the output current is detected by the current detection unit 3, and a feedback signal proportional to the output current is input from the current detection unit 3 to the control unit 2.
  • the control unit 2 compares the current set value with the feedback signal and outputs an error amplification signal of both.
  • the error amplification signal is compared with a reference triangle wave from the triangle wave generation circuit by a comparison circuit in a pulse width modulation circuit (not shown) and converted into a pulse having a width corresponding to the error amplification signal level.
  • the on-time of each switching element Q11 to Q24 is lengthened to increase the transformer current.
  • the on-time of the switching element is increased. Shorten to reduce transformer current.
  • the arc welder configured as shown in FIG. 1 operates as described above. Further, by connecting the first inverter unit U1 and the second inverter unit U2 having a common specification in series, it is possible to cope with high voltage input. However, in the first inverter unit U1 and the second inverter unit U2 connected in series constituting the first alternating current unit 10, switching of the switching element due to a time error of signal timing caused by individual differences of the driving units, etc. Timing imbalance occurs as shown in FIG. This causes an imbalance in the voltage applied to the switching element.
  • FIG. 3 is a diagram showing a schematic configuration of an arc welding machine that is an arc machining power supply apparatus according to Embodiment 1 of the present invention. 3 is different from FIG. 1 in that gate signal lines connected to corresponding switching elements of different inverter units are magnetically coupled to each other.
  • the arc welder of the first embodiment has a rectifying unit 1 that receives AC power from an external device 6 such as a switchboard and converts it into DC. Between the outputs of the rectification unit 1, a first AC unit 10 that converts the output of the rectification unit 1 into AC is connected.
  • the first AC unit 10 includes two inverter units, ie, a first inverter unit U1 and a second inverter unit U2, and the first inverter unit U1 and the second inverter unit U2 are connected in series. Has been.
  • the first inverter unit U1 and the second inverter unit U2 are configured by full-bridge connection of four switching elements such as IGBTs and MOSFETs.
  • the first inverter unit U1 includes a first switching element Q11, a second switching element Q12, a third switching element Q13, and a fourth switching element Q14.
  • the second inverter unit U2 includes a first switching element Q21, a second switching element Q22, a third switching element Q23, and a fourth switching element Q24.
  • each switching element constituting each inverter unit is connected to a plurality of driving units provided corresponding to each switching element in order to control driving of each switching element by gate signal lines and emitter signal lines. Yes.
  • the first switching element Q11 and the drive unit K11 of the first inverter unit U1 are connected by the gate signal line GB11 and the emitter signal line E11.
  • the second switching element Q12 and the drive unit K12 of the first inverter unit U1 are connected by a gate signal line GB12 and an emitter signal line E12.
  • the third switching element Q13 and the drive unit K13 of the first inverter unit U1 are connected by a gate signal line GB13 and an emitter signal line E13.
  • the fourth switching element Q14 and the drive unit K14 of the first inverter unit U1 are connected by a gate signal line GB14 and an emitter signal line E14.
  • first switching element Q21 and the drive unit K21 of the second inverter unit U2 are connected by the gate signal line GB21 and the emitter signal line E21.
  • the second switching element Q22 and the drive unit K22 of the second inverter unit U2 are connected by a gate signal line GB22 and an emitter signal line E22.
  • the third switching element Q23 and the drive unit K23 of the second inverter unit U2 are connected by a gate signal line GB23 and an emitter signal line E23.
  • the fourth switching element Q24 and the drive unit K24 of the second inverter unit U2 are connected by a gate signal line GB24 and an emitter signal line E24.
  • a welding torch 8 is connected to one end of the secondary winding of the first transformer T1 through a rectifying unit 4 and a reactor 5 for rectification.
  • a base material 7 is connected to the other end of the secondary winding of the first transformer T ⁇ b> 1 via the current detection unit 3. Then, the value detected by the current detection unit 3 is fed back to the control unit 2 that controls the plurality of drive units K11 to K24.
  • the arc welder shown in FIG. 3 includes a control unit 2 that controls a plurality of drive units K11 to K24.
  • the same control signal is given from the control unit 2 to each of the drive units K11 and K21 connected to the first switching elements Q11 and Q21 of the inverter units U1 and U2.
  • the same control signal is given from the control unit 2 to each of the drive units K12 and K22 connected to the second switching elements Q12 and Q22 of the inverter units U1 and U2.
  • the same control signal is given from the control unit 2 to each of the drive units K13 and K23 connected to the third switching elements Q13 and Q23 of the inverter units U1 and U2.
  • control unit 2 controls a plurality of driving units K11 to K24 for driving the switching elements Q11 to Q24.
  • the same control signal is given from the control unit 2 to the drive unit K11 and the drive unit K21, the drive unit K12 and the drive unit K22, the drive unit K13 and the drive unit K23, and the drive unit K14 and the drive unit K24.
  • the control signal sent from the control unit 2 to the plurality of drive units K11 to K24 controls two drive units with one control signal.
  • the gate signal line connected to the switching element of the second inverter unit U2 are magnetically coupled to each other.
  • This magnetically coupled configuration is different from the arc welder shown in FIG. 1 and is one of the features for solving the problems of the arc welder shown in FIG.
  • the gate signal line GB11 connected from the drive unit K11 to the first switching element Q11 of the first inverter unit U1, and the first switching element Q21 of the second inverter unit U2 from the drive unit K21.
  • the gate signal line GB21 connected to is magnetically coupled to each other by the first magnetic coupling element LB1A.
  • the gate signal line GB12 connected from the drive unit K12 to the second switching element Q12 of the first inverter unit U1 and the drive unit K22 connected to the second switching element Q22 of the second inverter unit U2
  • the gate signal line GB22 is magnetically coupled to each other by the second magnetic coupling element LB2A.
  • the gate signal line GB13 connected from the drive unit K13 to the third switching element Q13 of the first inverter unit U1, and the drive unit K23 connected to the third switching element Q23 of the second inverter unit U2.
  • the gate signal line GB23 is magnetically coupled to each other by the third magnetic coupling element LB3A.
  • the gate signal line GB14 connected from the drive unit K14 to the fourth switching element Q14 of the first inverter unit U1 and the drive unit K24 to the fourth switching element Q24 of the second inverter unit U2 are connected.
  • the gate signal line GB24 is magnetically coupled to each other by the fourth magnetic coupling element LB4A.
  • the first transformer T1 transforms the output of the first AC unit 10.
  • the first transformer T1 includes a first primary winding TL1, a second primary winding TL2, and a secondary winding TL.
  • the output line of the first inverter unit U1 is the first primary winding TL1 of the first transformer T1
  • the output line of the second inverter unit U2 is the second 1 of the first transformer T1.
  • the next winding is TL2.
  • the first primary winding TL1 and the second primary winding TL2 of the first transformer T1 are wound in parallel with each other to constitute the primary winding of the first transformer T1.
  • the lines from the inverter units U1 and U2 to the first transformer T1 are empty so that the directions of the magnetic fluxes are opposite to each other between the inverter units U1 and U2 to the first transformer T1.
  • the wiring is magnetically coupled through the core magnetic coupling element LF. Thereby, the imbalance of the transformer current in the line from each inverter part U1, U2 to 1st transformer T1 is suppressed.
  • the output control of the arc welding machine includes constant current control for matching the output current to the current set value and constant voltage control for matching the output voltage to the voltage set value.
  • FIG. 3 shows a configuration example in the case of realizing the constant current control provided with the current detection unit 3, and a configuration in which a voltage detection unit for detecting the output voltage of the arc welder is provided to make the output voltage coincide with the voltage set value. Then, it becomes the structure which implement
  • the rectifying unit 1 that receives AC power from the external device 6 and converts it to DC converts the three-phase AC voltage to DC voltage V1.
  • the DC voltage V1 output from the rectifying unit 1 is supplied to the first inverter unit U1 through the first smoothing capacitor C1, and is supplied to the second inverter unit U2 through the second smoothing capacitor C2. .
  • the DC voltage V1 is divided and supplied to the first inverter unit U1 and the second inverter unit U2.
  • the voltages applied to the first inverter unit U1 and the second inverter unit U2 are supplied from the driving units (from K11 to K24) to the switching elements (from Q11 to Q24). If there is no time error in signal timing and the switching timings of the switching elements are simultaneous, it is considered that they are equal.
  • the switching timing of each switching element is different, for example, the gate given to the first switching element Q11 of the first inverter unit U1 and the first switching element Q21 of the second inverter unit U2, which are the corresponding switching elements.
  • the current is unbalanced as shown in FIG.
  • the voltages applied to the first switching element Q11 of the first inverter unit U1 and the first switching element Q21 of the second inverter unit U2, which are corresponding switching elements, are unbalanced as shown in FIG. May be.
  • FIG. 4 is a diagram showing a state of magnetic coupling of the gate signal lines of the arc welding machine which is the arc machining power supply apparatus according to Embodiment 1 of the present invention. 4 shows an example in which the gate signal line GB11 and the gate signal line GB21 are magnetically coupled.
  • the control unit 2 drives the driving unit K11 and the driving unit K21, respectively, so that the first switching element Q11 of the first inverter unit U1 and the first of the second inverter unit U2
  • the switching element Q21, the gate signal line GB11, and the gate signal line GB21 are operated.
  • the magnetic flux ⁇ c is generated by the gate current Ic flowing through the gate signal line GB11
  • the magnetic flux ⁇ d is generated by the gate current Id flowing through the gate signal line GB21.
  • the gate signal line GB11 and the gate signal line GB21 are wired through the air-core first magnetic coupling element LB1A so that the directions of magnetic fluxes are opposite to each other.
  • the gate current Ic flows first, and the gate current Id flows later.
  • the gate current Ic flows first, the magnetic flux ⁇ c is generated in the first magnetic coupling element LB1A. Then, a gate current Id is generated so as to generate a magnetic flux ⁇ d that tries to cancel the magnetic flux ⁇ c.
  • the magnetic flux ⁇ d is generated in the first magnetic coupling element LB1A when the gate current Id flows. Then, a gate current Ic is generated so as to generate a magnetic flux ⁇ c that attempts to cancel the magnetic flux ⁇ d. That is, when one of the gate current Ic and the gate current Id flows, a magnetic flux is generated, so that the other gate current flows to cancel the magnetic flux. As a result, the two gate currents Ic and Id flow almost simultaneously in the first magnetic coupling element LB1A.
  • the above-described magnetic coupling action eliminates the timing imbalance of the gate current flowing through each gate signal line, and also eliminates the voltage imbalance applied to each switching element.
  • the waveform of the gate current and the time waveform of the voltage applied to the switching element are as shown in FIG.
  • FIG. 5 is a diagram showing the relationship between the gate current and the voltage applied to the switching element when the switching element of the arc welding machine which is the arc machining power supply apparatus according to Embodiment 1 of the present invention is turned on.
  • FIG. 5 shows respective time waveforms of the gate current Ic and the gate current Id, and the voltage Vc applied to the switching element and the voltage Vd applied to the switching element in the arc welder having the configuration shown in FIG. Show.
  • the time waveform of the gate current Id follows the time waveform of the gate current Ic, and the timing of the gate current Ic and the gate current Id is balanced. Further, the voltage Vc and the voltage Vd applied to the switching element are also balanced.
  • the output of the rectifying unit 1 shown in FIG. 3 is converted into an alternating current having a high frequency by the first alternating current unit 10 and input to the primary side of the first transformer T1 for power conversion.
  • the secondary side output of the first transformer T1 is rectified by the rectification unit 4 and the reactor 5 and supplied to the electrode 9 and the base material 7 of the welding torch 8.
  • the output current of the arc welder is detected by the current detector 3, and a feedback signal proportional to the output current is input from the current detector 3 to the controller 2.
  • the current set value and the feedback signal are compared, and an error amplification signal of both is output.
  • the error amplification signal is compared with a reference triangle wave from the triangle wave generation circuit by a comparison circuit in a pulse width modulation circuit (not shown) and converted into a pulse having a width corresponding to the error amplification signal level.
  • the on-time from each of the switching elements Q11 to Q24 is lengthened to increase the transformer current, and when the output is large for a certain current set value, the on-time of the switching element To reduce the transformer current. In this way, the output current is controlled to be constant by controlling the conduction width from the switching elements Q11 to Q24.
  • the first inverter unit U1 and the second inverter unit U2 having the common specifications can be connected in series to support high voltage input. And regarding the switching element of the corresponding first inverter unit U1 and the switching element of the second inverter unit U2, the switching of the gate signal line connected to the switching element of the first inverter unit U1 and the second inverter unit U2 A gate signal line connected to the element is magnetically coupled. This magnetic coupling balances the two gate currents.
  • the welding performance is equivalent to, for example, a low-voltage input (for example, 200 V) arc welder with Japanese specifications. It is possible to realize an arc welding machine that maintains a high temperature.
  • the configuration of the inverter can be reflected in the arc welder for high voltage input, which simplifies design, shortens design time, improves workability and productivity. Improvements can be realized.
  • phase control method phase shift method
  • PWM pulse modulation method
  • the arc machining power supply device of the present invention includes a rectifying unit 1, an AC unit 10, a transformer T1, and a plurality of driving units, and each switching element and a plurality of driving units of each inverter unit U1, U2.
  • the rectification unit 1 receives AC power and converts it into DC.
  • the AC unit 10 is configured by connecting a plurality of inverter units U1 and U2 in series between the outputs of the rectifying unit 1, and converts the output of the rectifying unit 1 into AC.
  • the transformer T1 transforms the output of the AC unit 10.
  • the plurality of driving units control driving of the switching elements that constitute the inverter units U1 and U2, and are provided corresponding to the switching elements.
  • the configuration of the inverter when designing an arc welder for low-voltage input, the configuration of the inverter can be applied to an arc welder for high-voltage input. In addition, improvement in workability and productivity can be realized. Therefore, it is possible to realize a reduction in price and performance of the arc machining power supply device.
  • each inverter unit is composed of a full bridge circuit. With this configuration, the arc machining power supply device can be operated more stably, and improvement in workability and productivity can be realized.
  • Each of the inverter units U1 and U2 includes at least four switching elements from the first switching element to the fourth switching element, and a plurality of driving units to the first switching element and the second switching element of each inverter unit U1 and U2.
  • a plurality of signal lines respectively connected to the switching element, the third switching element, and the fourth switching element are magnetically coupled.
  • each switching element of each inverter unit U1, U2 and a plurality of driving units are connected by a signal line, and a plurality of driving units connected to the first switching element of each inverter unit U1, U2 are each inverter The same drive signal is output to the first switching elements of the parts U1 and U2.
  • each switching element of each inverter unit U1, U2 and a plurality of driving units are connected by a signal line, and a plurality of driving units connected to the second switching element of each inverter unit U1, U2 are each inverter unit The same drive signal is output to the second switching elements U1 and U2.
  • each switching element of each inverter unit U1, U2 and a plurality of driving units are connected by a signal line, and a plurality of driving units connected to the third switching element of each inverter unit U1, U2 are each inverter unit The same drive signal is output to the third switching elements U1 and U2.
  • each switching element of each inverter unit U1, U2 and a plurality of driving units are connected by a signal line, and a plurality of driving units connected to the fourth switching element of each inverter unit U1, U2 are each inverter unit The same drive signal is output to the fourth switching elements U1 and U2.
  • This configuration suppresses the imbalance of the voltage applied to the switching element caused by the imbalance of the switching timing due to the time error of the signal timing caused by the individual difference of the drive unit. As a result, destruction of the switching element can be prevented.
  • a configuration may be adopted in which all signal lines are magnetically coupled by magnetically coupling two signal lines connected to switching elements of different inverter units.
  • This configuration suppresses the imbalance of the voltage applied to the switching element caused by the imbalance of the switching timing due to the time error of the signal timing caused by the individual difference of the drive unit. As a result, destruction of the switching element can be prevented.
  • control part 2 which controls a some drive part is further provided, and the same control signal is given from the control part 2 to the several drive part connected to the nth switching element of each inverter part U1 and U2. It is good also as a structure. That is, the same control signal is given from the control unit 2 to the plurality of drive units connected to the first switching elements of the inverter units U1 and U2. The same control signal is given from the control unit 2 to the plurality of drive units connected to the second switching elements of the inverter units U1 and U2. The same control signal is given from the control unit 2 to the plurality of drive units connected to the third switching elements of the inverter units U1 and U2. The same control signal is given from the control unit 2 to the plurality of drive units connected to the fourth switching elements of the inverter units U1 and U2.
  • This configuration suppresses the imbalance of the voltage applied to the switching element caused by the imbalance of the switching timing due to the time error of the signal timing caused by the individual difference of the drive unit. As a result, destruction of the switching element can be prevented.
  • the primary winding of the transformer may be configured by winding the output lines of each inverter unit in parallel. With this configuration, the output lines can be easily combined in terms of arrangement.
  • each inverter unit to the transformer may be magnetically coupled to each other from each inverter unit to the transformer.
  • FIG. 6 is a diagram showing a schematic configuration of an arc welder that is an arc machining power supply apparatus according to Embodiment 2 of the present invention.
  • the arc welder according to the second embodiment will be described with reference to FIG.
  • the first embodiment an example is shown in which two inverter units, the first inverter unit U1 and the second inverter unit U2, are connected in series.
  • the main difference from the first embodiment is that, in the second embodiment, the three inverter parts of the first inverter part U1, the second inverter part U2, and the third inverter part U3 are connected in series.
  • This example will be described.
  • symbol is attached
  • the arc welder has a rectifying unit 1 that receives AC power from an external device 6 such as a switchboard and converts it into DC. Between the outputs of the rectifying unit 1, a second AC unit 11 that converts the output of the rectifying unit 1 into AC is connected.
  • the 2nd alternating current part 11 has three inverter parts, the 1st inverter part U1, the 2nd inverter part U2, and the 3rd inverter part U3 as a component.
  • the first inverter unit U1, the second inverter unit U2, and the third inverter unit U3 are connected in series.
  • the first inverter unit U1, the second inverter unit U2, and the third inverter unit U3 are configured by full-bridge connection of four switching elements such as IGBTs and MOSFETs.
  • the first inverter unit U1 includes a first switching element Q11, a second switching element Q12, a third switching element Q13, and a fourth switching element Q14.
  • the second inverter unit U2 includes a first switching element Q21, a second switching element Q22, a third switching element Q23, and a fourth switching element Q24.
  • the third inverter unit U3 includes a first switching element Q31, a second switching element Q32, a third switching element Q33, and a fourth switching element Q34.
  • each switching element constituting each inverter unit is connected by a plurality of driving units provided corresponding to each switching element in order to control driving of each switching element, by gate signal lines and emitter signal lines. Yes.
  • the first switching element Q11 and the drive unit K11 of the first inverter unit U1 are connected by the gate signal line GB11 and the emitter signal line E11.
  • the second switching element Q12 and the drive unit K12 of the first inverter unit U1 are connected by a gate signal line GB12 and an emitter signal line E12.
  • the third switching element Q13 and the drive unit K13 of the first inverter unit U1 are connected by a gate signal line GB13 and an emitter signal line E13.
  • the fourth switching element Q14 and the drive unit K14 of the first inverter unit U1 are connected by a gate signal line GB14 and an emitter signal line E14.
  • first switching element Q21 and the drive unit K21 of the second inverter unit U2 are connected by the gate signal line GB21 and the emitter signal line E21.
  • the second switching element Q22 and the drive unit K22 of the second inverter unit U2 are connected by a gate signal line GB22 and an emitter signal line E22.
  • the third switching element Q23 and the drive unit K23 of the second inverter unit U2 are connected by a gate signal line GB23 and an emitter signal line E23.
  • the fourth switching element Q24 and the drive unit K24 of the second inverter unit U2 are connected by a gate signal line GB24 and an emitter signal line E24.
  • first switching element Q31 and the drive unit K31 of the third inverter unit U3 are connected by a gate signal line GB31 and an emitter signal line E31.
  • the second switching element Q32 and the drive unit K32 of the third inverter unit U3 are connected by a gate signal line GB32 and an emitter signal line E32.
  • the third switching element Q33 and the drive unit K33 of the third inverter unit U3 are connected by a gate signal line GB33 and an emitter signal line E33.
  • the fourth switching element Q34 and the drive unit K34 of the third inverter unit U3 are connected by a gate signal line GB34 and an emitter signal line E34.
  • a welding torch 8 is connected to one end of the secondary winding of the second transformer T2 through a rectifying unit 4 and a reactor 5 for rectification.
  • a base material 7 is connected to the other end of the secondary winding of the second transformer T ⁇ b> 2 via the current detection unit 3. Then, the value detected by the current detection unit 3 is fed back to the control unit 2 that controls the plurality of drive units K11 to K34.
  • the arc welder includes a control unit 2 that controls the plurality of drive units K11 to K34.
  • the same control signal is given from the control unit 2 to the plurality of drive units K11, K21, and K31 connected to the first switching elements Q11, Q21, and Q31 of the inverter units U1, U2, and U3.
  • the same control signal is given from the control unit 2 to the plurality of drive units K12, K22, K32 connected to the second switching elements Q12, Q22, Q32 of the inverter units U1, U2, U3.
  • the same control signal is given from the control unit 2 to the plurality of drive units K13, K23, K33 connected to the third switching elements Q13, Q23, Q33 of the inverter units U1, U2, U3.
  • the same control signal is given from the control unit 2 to the plurality of drive units K14, K24, K34 connected to the fourth switching elements Q14, Q24, Q34 of the inverter units U1, U2, U3. That is, the control unit 2 controls a plurality of driving units K11 to K34 for driving the switching elements Q11 to Q34.
  • the above-described plurality of driving units that is, the driving unit K11, the driving unit K21 and the driving unit K31, the driving unit K12, the driving unit K22 and the driving unit K32, the driving unit K13, the driving unit K23 and the driving unit K33, the driving unit K14, and the driving
  • the same control signal is given from the control unit 2 to the unit K24 and the drive unit K34. Therefore, the signals sent from the control unit 2 to the respective drive units K11 to K34 control the three drive units with one signal as described above.
  • the gate signal lines are magnetically connected to each other with respect to the corresponding switching element of the first inverter unit U1, the switching element of the second inverter unit U2, and the switching element of the third inverter unit U3.
  • the gate signal line connected to the switching element of the first inverter unit U1 and the gate signal line connected to the switching element of the second inverter unit U2 are magnetically coupled to each other.
  • the gate signal line connected to the switching element of the second inverter unit U2 and the gate signal line connected to the switching element of the third inverter unit U3 are magnetically coupled to each other.
  • the arc welder of the present invention shown in FIG. 6 is configured to magnetically couple all the corresponding gate signal lines by magnetically coupling the two gate signal lines.
  • the gate signal line GB11 connected from the drive unit K11 to the first switching element Q11 of the first inverter unit U1, and the first switching element Q21 of the second inverter unit U2 from the drive unit K21.
  • the gate signal lines GB21 connected to are magnetically coupled to each other by the first magnetic coupling element LB1A.
  • the gate signal line GB21 connected from the driving unit K21 to the first switching element Q21 of the second inverter unit U2, and the driving unit K31 connected to the first switching element Q31 of the third inverter unit U3.
  • the gate signal lines GB31 are magnetically coupled to each other by the fifth magnetic coupling element LB1B.
  • the gate signal line GB12 connected from the drive unit K12 to the first switching element Q12 of the first inverter unit U1 and the drive unit K22 to the second switching element Q22 of the second inverter unit U2
  • the gate signal lines GB22 are magnetically coupled to each other by the second magnetic coupling element LB2A.
  • the gate signal line GB22 is connected from the drive unit K22 to the second switching element Q22 of the second inverter unit U2, and the drive unit K32 is connected to the second switching element Q32 of the third inverter unit U3.
  • the gate signal lines GB32 are magnetically coupled to each other by the sixth magnetic coupling element LB2B.
  • the gate signal line GB13 connected from the drive unit K13 to the third switching element Q13 of the first inverter unit U1, and the drive unit K23 connected to the third switching element Q23 of the second inverter unit U2.
  • the gate signal lines GB23 are magnetically coupled to each other by the third magnetic coupling element LB3A.
  • the gate signal line GB23 connected from the driving unit K23 to the third switching element Q23 of the second inverter unit U2, and the driving unit K33 connected to the third switching element Q33 of the third inverter unit U3.
  • the gate signal lines GB33 are magnetically coupled to each other by the seventh magnetic coupling element LB3B.
  • the gate signal line GB14 connected from the drive unit K14 to the fourth switching element Q14 of the first inverter unit U1 and the drive unit K24 to the fourth switching element Q24 of the second inverter unit U2 are connected.
  • the gate signal lines GB24 are magnetically coupled to each other by the fourth magnetic coupling element LB4A.
  • the gate signal lines GB34 are magnetically coupled to each other by the eighth magnetic coupling element LB4B.
  • the second transformer T2 transforms the output of the second AC unit 11.
  • the second transformer T2 includes a first primary winding TL1, a second primary winding TL2, a third primary winding TL3, and a secondary winding TL. .
  • the output line of the first inverter unit U1 is the first primary winding TL1 of the second transformer T2, and the output line of the second inverter unit U2 is the second 1 of the second transformer T2.
  • the secondary winding TL2 is used, and the output line of the third inverter unit U3 is the third primary winding TL3 of the second transformer T2.
  • the first primary winding TL1, the second primary winding TL2, and the third primary winding TL3 are wound in parallel with each other to form the primary winding of the second transformer T2. ing.
  • FIG. 6 shows a configuration example for realizing constant current control. If a voltage detection unit for detecting the output voltage of the arc welder is provided so that the output voltage matches the voltage setting value, constant voltage control is performed. It becomes a configuration to be realized.
  • the rectifying unit 1 that receives AC power from the external device 6 and converts it to DC converts the three-phase AC voltage to DC voltage V1.
  • the DC voltage V1 output from the rectifying unit 1 is supplied to the first inverter unit U1 through the first smoothing capacitor C1, and is supplied to the second inverter unit U2 through the second smoothing capacitor C2. It is supplied to the third inverter unit U3 via the third smoothing capacitor C3.
  • the DC voltage V1 is divided and supplied to the first inverter unit U1, the second inverter unit U2, and the third inverter unit U3.
  • the DC voltage V1 is equally divided and applied to the first inverter unit U1, the second inverter unit U2, and the third inverter unit U3.
  • the voltage applied to each inverter unit differs depending on the time error of the signal timing caused by individual differences of the drive units. Therefore, in some cases, an applied voltage that causes destruction of the switching element may be applied.
  • the gate signal line connected to the switching element of the first inverter unit U1 and the switching element of the second inverter unit U2 The coupled gate signal line is magnetically coupled. Further, the gate signal line connected to the switching element of the second inverter unit U2 and the gate signal line connected to the switching element of the third inverter unit U3 are magnetically coupled. In this manner, all the gate signal lines are magnetically coupled by magnetically coupling the two gate signal lines.
  • the gate current Ic flows first, and the gate current Id flows later.
  • the magnetic flux ⁇ c is generated in the first magnetic coupling element LB1A.
  • a gate current Id is generated so as to generate a magnetic flux ⁇ d that tries to cancel the magnetic flux ⁇ c. Therefore, a magnetic flux is generated when any one of the gate current Ic and the gate current Id flows, and the other gate current flows to cancel the magnetic flux.
  • the two gate currents Ic and Id flow almost simultaneously in the first magnetic coupling element LB1A.
  • the timing of the gate current is balanced by the magnetic coupling effect.
  • the And the imbalance of the timing of a gate current is eliminated, and the imbalance of the applied voltage of a switching element is also eliminated.
  • the output of the rectifying unit 1 is converted into an alternating current having a high frequency by the second AC unit 11 and input to the primary side of the second transformer T2 for power conversion.
  • the secondary output of the second transformer T2 is rectified by the rectification unit 4 and the reactor 5, and is supplied to the electrode 9 and the base material 7 of the welding torch 8.
  • the output current is detected by the current detection unit 3, and a feedback signal proportional to the output current is input from the current detection unit 3 to the control unit 2.
  • the current set value is compared with the feedback signal, and an error amplification signal of both is output.
  • the error amplification signal is compared with a reference triangle wave from the triangle wave generation circuit by a comparison circuit in a pulse width modulation circuit (not shown) and converted into a pulse having a width corresponding to the error amplification signal level.
  • the on-time of each switching element Q11 to Q34 is lengthened to increase the transformer current, and when the output is large for a certain current set value, the on-time of the switching element is increased. Shorten to reduce transformer current. In this way, the output current is controlled to be constant by controlling the conduction width of the switching elements Q11 to Q34.
  • the first inverter unit U1, the second inverter unit U2, and the third inverter unit U3 having the common specifications are connected in series to provide a high voltage input. Can also be supported.
  • the gate signal lines are magnetically coupled to each other with respect to the corresponding switching element of the first inverter unit U1, the switching element of the second inverter unit U2, and the switching element of the third inverter unit U3. That is, the gate signal line connected to the switching element of the first inverter unit U1 and the gate signal line connected to the switching element of the second inverter unit U2 are magnetically coupled.
  • the gate signal line connected to the switching element of the second inverter unit U2 and the gate signal line connected to the switching element of the third inverter unit U3 are magnetically coupled. Therefore, the imbalance of the voltage applied to the switching element caused by the imbalance of the switching timing due to the delay time of the drive unit and the switching element can be suppressed, and the switching element can be prevented from being destroyed.
  • the arc machining power supply device of the present invention includes a rectifying unit 1, an AC unit 11, a transformer T2, and a plurality of driving units, and each switching element of each inverter unit U1, U2, U3 and a plurality of driving units.
  • the parts are connected by signal lines, and signal lines connected to different inverter parts are magnetically coupled to each other.
  • the rectification unit 1 receives AC power and converts it into DC.
  • the AC unit 11 is configured by connecting a plurality of inverter units U1, U2, and U3 in series between the outputs of the rectifying unit 1, and converts the output of the rectifying unit 1 into AC.
  • the transformer T2 transforms the output of the AC unit 11.
  • the plurality of driving units control driving of the switching elements that constitute the inverter units U1, U2, and U3, and are provided corresponding to the switching elements.
  • the configuration of the inverter when designing an arc welder for low-voltage input, the configuration of the inverter can be applied to an arc welder for high-voltage input. In addition, improvement in workability and productivity can be realized. Therefore, it is possible to realize a reduction in price and performance of the arc machining power supply device.
  • a configuration may be adopted in which all signal lines are magnetically coupled by magnetically coupling two signal lines connected to switching elements of different inverter units.
  • This configuration suppresses the imbalance of the voltage applied to the switching element caused by the imbalance of the switching timing due to the time error of the signal timing caused by the individual difference of the drive unit. As a result, destruction of the switching element can be prevented.
  • the arc machining power supply device of the present invention can cope with a low voltage input, and can be connected to a high voltage input by connecting a plurality of common specification inverter parts in series, and connected to switching elements of different corresponding inverter parts.
  • the signal lines thus formed are magnetically coupled.
  • the imbalance of the voltage applied to the switching element can be suppressed, so that the arc machining power supply device of the present invention is not only an arc machining power supply device for low voltage input, but also, for example, a high voltage input This is industrially useful as an arc machining power supply device (for example, 400 V).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Arc Welding Control (AREA)

Abstract

 本発明のアーク加工電源装置は、交流電力を入力して直流に変換する整流部と、整流部の出力間に複数個のインバータ部を直列に接続して構成され、整流部の出力を交流に変換する交流部と、交流部の出力を変圧する変圧器と、各インバータ部を構成する各スイッチング素子の駆動を制御し各スイッチング素子に対応して設けられた複数の駆動部とを備え、各インバータ部の各スイッチング素子と複数の駆動部とは信号線で接続され、異なるインバータ部に接続された信号線を互いに磁気結合する構成からなる。

Description

アーク加工電源装置
 本発明は、低価格化や高性能化を実現するための回路や構造等を備えたアーク溶接機などのアーク加工電源装置に関する。
 近年、アーク溶接機やアーク溶断機などのアーク応用機器であるアーク加工電源装置に関し、入力電圧が高電圧系(例えば400V)と低電圧系(例えば200V)の2電圧に対応可能なアーク応用機器の電源装置が知られている。また、インバータの直列制御などによる低電圧系アーク加工電源装置の高電圧系への応用などが行われている(例えば、特許文献1参照)。
 しかし、インバータ負荷の不平衡などの問題のため、高電圧系と低電圧系の両方に対応したアーク加工電源装置を設計する際には、次のような対応が必要となる。すなわち、インバータを構成する半導体のスイッチング素子は、高電圧系の場合には高耐圧のものを使用し、低電圧系の場合には低耐圧のものを使用するといったように、それぞれ耐圧の異なるものを使い分けることが一般的である。また、交流出力を直流に変換する変圧器の1次側の巻き線も、高電圧系と低電圧系とでそれぞれ異なる仕様となるのが一般的である。
 次に、従来のアーク溶接機の一例について、図7を参照して説明する。図7は、従来のアーク溶接機の概略構成を示す図である。
 図7に示すように、アーク溶接機は、配電盤等の外部機器6から交流電力を受電して直流に変換する整流部1を有している。整流部1の出力間には、整流部1の出力を交流に変換する交流部12が接続されている。交流部12は、平滑コンデンサC4やインバータ部U4を構成要素としており、インバータ部U4の出力側に交流部12の出力を変圧する変圧器T4が接続されている。
 ここで、インバータ部U4は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transister)などの4個のスイッチング素子をブリッジ接続して構成されている。
 具体的には、インバータ部U4は、第1のスイッチング素子Q41と、第2のスイッチング素子Q42と、第3のスイッチング素子Q43と、第4のスイッチング素子Q44とから構成されている。
 インバータ部U4を構成する各スイッチング素子Q41、Q42、Q43、Q44は、各スイッチング素子Q41、Q42、Q43、Q44の駆動を制御するために対応して設けられた駆動部K11、K12、K13、K14と、ゲート信号線G11、G12、G13、G14およびエミッタ信号線E11、E12、E13、E14で接続されている。
 具体的には、インバータ部U4の第1のスイッチング素子Q41と駆動部K11は、ゲート信号線G11とエミッタ信号線E11で接続されている。インバータ部U4の第2のスイッチング素子Q42と駆動部K12は、ゲート信号線G12とエミッタ信号線E12で接続されている。インバータ部U4の第3のスイッチング素子Q13と駆動部K13は、ゲート信号線G13とエミッタ信号線E13で接続されている。インバータ部U4の第4のスイッチング素子Q14と駆動部K14は、ゲート信号線G14とエミッタ信号線E14で接続されている。なお、図7で付した符号G11からG14および符号E11からE14は、それぞれ同じ符号どうしが接続されていることを示している。
 変圧器T4の2次巻線の片端には、整流用の整流部4とリアクタ5を介して、電極9を有する溶接トーチ8が接続されている。変圧器T4の2次巻線の他端には、電流検出部3を介して母材7が接続されている。そして、電流検出部3で検出された値が、各駆動部K11、K12、K13、K14を制御する制御部2にフィードバックされる。
 制御部2は、各スイッチング素子Q41~Q44を駆動するための駆動部K11~K14を制御している。そして、各駆動部K11からK14と接続されているスイッチング素子Q41からQ44がオン/オフ制御されることにより、変圧器T4の一次電流が制御され、出力として定電流特性や定電圧特性を得ることができる。
 ある電流設定値に対して出力が小さい時は各スイッチング素子Q41からQ44のオン時間を長くして変圧器電流を増加し、ある電流設定値に対して出力が大きい時はスイッチング素子のオン時間を短くして変圧器電流を低減する。このようにスイッチング素子Q41からQ44の導通幅を制御することで出力電流が一定になるように制御する。
 なお、アーク溶接機の出力制御には、出力電流を電流設定値に一致させる定電流制御や出力電圧を電圧設定値に一致させる定電圧制御が用いられる。図7は定電流制御を実現する場合の構成例であるが、アーク溶接機の出力電圧を検出する電圧検出部を設けて出力電圧を電圧設定値に一致させる構成とすれば、定電圧制御を実現する構成となる。
 日本国内の仕様で製作されたアーク溶接機は、入力電圧が交流200V(低電圧入力)であることが一般的である。そして、従来、日本国内の仕様(低電圧入力)のアーク溶接機に基づいて海外仕様の高電圧入力(例えば400V)のアーク溶接機を開発する際、インバータ部U4を構成する各スイッチング素子Q41からQ44を、低電圧入力用の低耐圧品から高電圧入力用の高耐圧品に変更することが一般的であった。さらに、高電圧入力用のアーク溶接機では、低電圧入力用のアーク溶接機と比べ、変圧器T4の巻数を変更する必要もあった。
 そのため、高電圧入力用のアーク溶接機を開発する際、既に開発された低電圧入力用のアーク溶接機の構成をそのまま適用することができない。したがって、高電圧入力用のアーク溶接機の機種ごとにインバータ部や変圧器の設計や検討が必要となり、開発に時間がかかってしまうといった課題があった。
 また、高電圧入力用のアーク溶接機では、低電圧入力用のアーク溶接機と比べ、インバータ部のスイッチング素子として高耐圧のものを使用する必要がある。しかし、高耐圧のスイッチング素子は一般的にスイッチングロスが大きいため、高いインバータ周波数での利用が困難である。したがって、低いインバータ周波数で使用すると溶接出力電流のリップルが大きくなり、アーク切れが発生しやすくなる等の溶接の作業性が悪くなるという課題を生じてしまう。
特開2008-99381号公報
 本発明は、低電圧入力用と高電圧入力用のアーク溶接機で共通仕様のインバータ部を利用可能とし、高電圧入力用のアーク溶接機の場合には、共通仕様のインバータ部を複数個直列接続して交流部を構成するアーク加工電源装置を提供する。
 本発明のアーク加工電源装置は、交流電力を入力して直流に変換する整流部と、上記整流部の出力間に複数個のインバータ部を直列に接続して構成され上記整流部の出力を交流に変換する交流部と、上記交流部の出力を変圧する変圧器と、各インバータ部を構成する各スイッチング素子の駆動を制御し、上記各スイッチング素子に対応して設けられた複数の駆動部とを備え、上記各インバータ部の上記各スイッチング素子と上記複数の駆動部とは信号線で接続され、異なるインバータ部に接続された上記信号線を互いに磁気結合した構成からなる。
 この構成により、低電圧入力用のアーク溶接機を設計すると、そのインバータ部の構成を高電圧入力用のアーク溶接機にも適用できるため、従来に比べて設計時間の短縮や作業性および生産性の向上を実現することができる。
図1は、本発明の基礎となるアーク溶接機の概略構成を示す図である。 図2は、本発明の基礎となるアーク溶接機に使用されるスイッチング素子のオン動作時のゲート電流とスイッチング素子に印加される電圧との関係を示す図である。 図3は、本発明の実施の形態1におけるアーク加工電源装置であるアーク溶接機の概略構成を示す図である。 図4は、本発明の実施の形態1におけるアーク加工電源装置であるアーク溶接機のゲート信号線の磁気結合の状態を示す図である。 図5は、本発明の実施の形態1におけるアーク加工電源装置であるアーク溶接機のスイッチング素子のオン動作時のゲート電流とスイッチング素子に印加される電圧の関係を示す図である。 図6は、本発明の実施の形態2におけるアーク加工電源装置であるアーク溶接機の概略構成を示す図である。 図7は、従来のアーク溶接機の概略構成を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。
 (実施の形態1)
 図1は、本発明の基礎となるアーク溶接機の概略構成を示す図、図2は、本発明の基礎となるアーク溶接機に使用されるスイッチング素子のオン動作時のゲート電流とスイッチング素子に印加される電圧との関係を示す図である。
 先ず、図1と図2を用いて、従来技術よりも性能を向上させるために発明者らが考えたアーク溶接機について説明する。そして、図1の構成のアーク溶接機よりもさらに性能を向上させるためのアーク溶接機を、図3から図6を用いて実施の形態1および実施の形態2として説明する。
 図1は、アーク加工電源装置の一例であるアーク溶接機の概略構成を示す図である。図1において、アーク溶接機は、配電盤等の外部機器6から交流電力を受電して直流に変換する整流部1を有している。整流部1の出力間には、整流部1の出力を交流に変換する第1の交流部10が接続されている。第1の交流部10は、第1のインバータ部U1と第2のインバータ部U2の2つインバータ部を構成要素としており、第1のインバータ部U1と第2のインバータ部U2は直列に接続されている。
 第1のインバータ部U1および第2のインバータ部U2は、IGBTやMOSFETなどの4個のスイッチング素子をフルブリッジ接続して構成されている。
 具体的には、第1のインバータ部U1は、第1のスイッチング素子Q11と、第2のスイッチング素子Q12と、第3のスイッチング素子Q13と、第4のスイッチング素子Q14と、から構成されている。第2のインバータ部U2は、第1のスイッチング素子Q21と、第2のスイッチング素子Q22と、第3のスイッチング素子Q23と、第4のスイッチング素子Q24と、から構成されている。
 また、各インバータ部を構成する各スイッチング素子は、各スイッチング素子の駆動を制御するために各スイッチング素子に対応して設けられた複数の駆動部と、ゲート信号線およびエミッタ信号線で接続されている。
 具体的には、第1のインバータ部U1の第1のスイッチング素子Q11と駆動部K11は、ゲート信号線G11とエミッタ信号線E11で接続されている。第1のインバータ部U1の第2のスイッチング素子Q12と駆動部K12は、ゲート信号線G12とエミッタ信号線E12で接続されている。第1のインバータ部U1の第3のスイッチング素子Q13と駆動部K13は、ゲート信号線G13とエミッタ信号線E13で接続されている。第1のインバータ部U1の第4のスイッチング素子Q14と駆動部K14は、ゲート信号線G14とエミッタ信号線E14で接続されている。
 また、第2のインバータ部U2の第1のスイッチング素子Q21と駆動部K21は、ゲート信号線G21とエミッタ信号線E21で接続されている。第2のインバータ部U2の第2のスイッチング素子Q22と駆動部K22は、ゲート信号線G22とエミッタ信号線E22で接続されている。第2のインバータ部U2の第3のスイッチング素子Q23と駆動部K23は、ゲート信号線G23とエミッタ信号線E23で接続されている。第2のインバータ部U2の第4のスイッチング素子Q24と駆動部K24は、ゲート信号線G24とエミッタ信号線E24で接続されている。
 なお、図1で付した符号G11からG24およびE11からE24は、それぞれインバータ部と駆動部とで同じ符号が重複して付けられている。この符号の重複は、インバータ部と駆動部において、それぞれ同じ符号どうしが接続されていることを示している。
 第1の変圧器T1の2次巻線の片端には、整流用の整流部4とリアクタ5を介して溶接トーチ8が接続されている。第1の変圧器T1の2次巻線の他端には、電流検出部3を介して母材7が接続されている。そして、電流検出部3で検出された値が、複数の駆動部K11からK24までを制御する制御部2にフィードバックされる。
 すなわち、図1に示すアーク溶接機は、複数の駆動部K11からK24までを制御する制御部2を備えている。インバータ部U1、U2の第1のスイッチング素子Q11、Q21に接続されたそれぞれの駆動部K11、K21には、制御部2から同一の制御信号が与えられる。同様にインバータ部U1、U2の第2のスイッチング素子Q12、Q22に接続されたそれぞれの駆動部K12、K22には、制御部2から同一の制御信号が与えられる。インバータ部U1、U2の第3のスイッチング素子Q13、Q23に接続されたそれぞれの駆動部K13、K23には、制御部2から同一の制御信号が与えられる。インバータ部U1、U2の第4のスイッチング素子Q14、Q24に接続されたそれぞれの駆動部K14、K24には、制御部2から同一の制御信号が与えられる。すなわち、制御部2は、各スイッチング素子Q11からQ24までを駆動するための複数の駆動部K11からK24までを制御している。駆動部K11と駆動部K21、駆動部K12と駆動部K22、駆動部K13と駆動部K23、駆動部K14と駆動部K24には、制御部2からそれぞれ同一の制御信号が与えられる。
 制御部2から複数の駆動部K11からK24までへと送られる制御信号は、一つの制御信号で二つの駆動部を制御している。
 そして、駆動部K11からK24までと接続されているスイッチング素子Q11からQ24までがオン/オフ制御されることにより、第1の変圧器T1の一次電流が制御され、出力として定電流特性や定電圧特性を得ることができる。
 ある電流設定値に対して出力が小さい時は各スイッチング素子Q11からQ14のオン時間を長くして変圧器電流を増加する。ある電流設定値に対して出力が大きい時は各スイッチング素子Q11からQ24のオン時間を短くして変圧器電流を低減する。このようにスイッチング素子Q11からQ14の導通幅を制御することで、出力電流が一定になるように制御する。
 アーク溶接機は、第1の交流部10の出力を変圧する第1の変圧器T1を有している。第1の変圧器T1は、第1の1次巻線TL1と、第2の1次巻線TL2と、2次巻線TLと、から構成されている。そして、第1のインバータ部U1の出力線を第1の変圧器T1の第1の1次巻線TL1とし、第2のインバータ部U2の出力線を第1の変圧器T1の第2の1次巻線TL2としている。第1の1次巻線TL1と第2の1次巻線TL2は、互いに並列に巻かれて第1の変圧器T1の1次巻線を構成している。
 なお、アーク溶接機の出力制御には、出力電流を電流設定値に一致させる定電流制御や出力電圧を電圧設定値に一致させる定電圧制御が用いられる。図1は定電流制御を実現する場合の構成例であるが、アーク溶接機の出力電圧を検出する電圧検出部を設けて出力電圧を電圧設定値に一致させる構成とすれば、定電圧制御を実現する構成となる。
 以上のように構成されたアーク溶接機について、その動作を説明する。
 外部機器6から交流電力を受電して直流に変換する整流部1は、三相交流電圧を整流して直流電圧V1に変換する。整流部1から出力される直流電圧V1は、第1の平滑コンデンサC1を介して第1のインバータ部U1に供給され、第2の平滑コンデンサC2を介して第2のインバータ部U2に供給される。なお、直流電圧V1は、分圧されて第1のインバータ部U1と第2のインバータ部U2に印加される。
 図1の構成に示すように、第1のインバータ部U1と第2のインバータ部U2に印加される電圧は、各駆動部(K11からK24まで)から各スイッチング素子(Q11からQ24まで)へ信号が印加されるタイミング(以下、「信号タイミング」とする。)に時間誤差がなく、各スイッチング素子のスイッチングタイミングが同時であれば、等しくなると考えられる。
 しかしながら、実際には、各スイッチング素子への信号タイミングにはばらつきがある。そのため、各スイッチング素子のスイッチングタイミングが異なり、例えば、対応するスイッチング素子である第1のインバータ部U1の第1のスイッチング素子Q11と第2のインバータ部U2の第1のスイッチング素子Q21に与えられるゲート電流と、対応するスイッチング素子である第1のインバータ部U1の第1のスイッチング素子Q11と第2のインバータ部U2の第1のスイッチング素子Q21に印加される電圧は、図2に示すようにアンバランスになることがある。
 図2は、図1に示す構成のアーク溶接機において、対応する2つのスイッチング素子のスイッチング動作時のゲート電流と、対応する2つのスイッチング素子に印加される電圧の関係の一例を、縦軸を電流値または電圧値、横軸を時間として示す図である。図2には、対応する2つのスイッチング素子に与えられるゲート電流Iaとゲート電流Ibの時間波形、対応する2つのスイッチング素子に印加される電圧Vaと電圧Vbの時間波形を示している。
 駆動部からの信号に基づき、駆動部の個体差などが原因となる信号タイミングの時間誤差により、早くゲート電流が流れるゲート信号線と、遅れてゲート電流が流れてしまうゲート信号線とが存在する。この場合、図2に示すように、ゲート電流Iaが早く流れるゲート電流を示しており、ゲート電流Ibが遅れて流れるゲート電流を示している。
 2つの駆動部によるゲート信号のアンバランスによって、対応する2つのスイッチング素子に関し、図2の時刻t1で示すようにスイッチングオフを指示するゲート電流が先に流れてスイッチングオフされるスイッチング素子には大きな電圧Vaがかかってしまう。一方、図2の時刻t2で示すようにスイッチングオフを指示するゲート電流が遅れて流れてスイッチングオフされたスイッチング素子には電圧Vaよりも小さい電圧Vbがかかってしまう。したがって、2つスイッチング素子に印加される電圧はアンバランスとなる。スイッチングタイミングの差が大きい場合には、電圧Vaがスイッチング素子の耐圧を越えてしまい、過電圧となり、電圧Vaが印加されたスイッチング素子が破壊する可能性がある。
 次に、整流部1の出力は、第1の交流部10で周波数の高い交流に変換され、電力変換用の第1の変圧器T1の1次側に入力される。第1の変圧器T1の2次側出力は、整流部4とリアクタ5により整流され、溶接トーチ8の電極9と母材7に供給される。
 出力電流が電流検出部3で検出され、電流検出部3から出力電流に比例した帰還信号が制御部2に入力される。制御部2では、電流設定値と帰還信号とが比較され、両者の誤差増幅信号を出力する。誤差増幅信号は、図示しないパルス幅変調回路内の比較回路で三角波発生回路からの基準三角波と比較され、誤差増幅信号レベルに応じた幅のパルスに変換される。
 ある電流設定値に対して出力が小さい時は各スイッチング素子Q11からQ24のオン時間を長くして変圧器電流を増加し、ある電流設定値に対して出力が大きい時はスイッチング素子のオン時間を短くして変圧器電流を低減する。このようにスイッチング素子Q11からQ24までの導通幅を制御することで、出力電流が一定になるように制御する。
 図1に示す構成のアーク溶接機では、上述のような動作をする。そして、共通仕様の第1のインバータ部U1と第2のインバータ部U2とを直列接続することにより、高電圧入力にも対応が可能となる。しかしながら、第1の交流部10を構成する直列接続された第1のインバータ部U1と第2のインバータ部U2とにおいて、駆動部の個体差などにより生じる信号タイミングの時間誤差による、スイッチング素子のスイッチングタイミングのアンバランスが図2に示したように生じる。そして、これが原因となって、スイッチング素子に印加される電圧の不平衡が生じてしまう。
 そこで、これを解決するアーク溶接機について、次に説明する。まず、アーク溶接機において、インバータ部を2つ直列接続した場合の例を示す。
 図3は、本発明の実施の形態1におけるアーク加工電源装置であるアーク溶接機の概略構成を示す図である。なお、図3が図1と異なる主な点は、異なるインバータ部の対応するスイッチング素子に接続されたゲート信号線を互いに磁気結合するようにした点である。
 図3に示すように、本実施の形態1のアーク溶接機は、配電盤等の外部機器6から交流電力を受電して直流に変換する整流部1を有している。整流部1の出力間には、整流部1の出力を交流に変換する第1の交流部10が接続されている。第1の交流部10は、第1のインバータ部U1と第2のインバータ部U2の2つのインバータ部を構成要素としており、第1のインバータ部U1と第2のインバータ部U2とは直列に接続されている。
 第1のインバータ部U1および第2のインバータ部U2は、IGBTやMOSFETなどの4個のスイッチング素子をフルブリッジ接続して構成されている。
 具体的には、第1のインバータ部U1は、第1のスイッチング素子Q11と、第2のスイッチング素子Q12と、第3のスイッチング素子Q13と、第4のスイッチング素子Q14と、から構成されている。第2のインバータ部U2は、第1のスイッチング素子Q21と、第2のスイッチング素子Q22と、第3のスイッチング素子Q23と、第4のスイッチング素子Q24と、から構成されている。
 また、各インバータ部を構成する各スイッチング素子は、各スイッチング素子の駆動を制御するために各スイッチング素子に対応して設けられた複数の駆動部と、ゲート信号線およびエミッタ信号線で接続されている。
 具体的には、第1のインバータ部U1の第1のスイッチング素子Q11と駆動部K11は、ゲート信号線GB11とエミッタ信号線E11で接続されている。第1のインバータ部U1の第2のスイッチング素子Q12と駆動部K12は、ゲート信号線GB12とエミッタ信号線E12で接続されている。第1のインバータ部U1の第3のスイッチング素子Q13と駆動部K13は、ゲート信号線GB13とエミッタ信号線E13で接続されている。第1のインバータ部U1の第4のスイッチング素子Q14と駆動部K14は、ゲート信号線GB14とエミッタ信号線E14で接続されている。
 また、第2のインバータ部U2の第1のスイッチング素子Q21と駆動部K21は、ゲート信号線GB21とエミッタ信号線E21で接続されている。第2のインバータ部U2の第2のスイッチング素子Q22と駆動部K22は、ゲート信号線GB22とエミッタ信号線E22で接続されている。第2のインバータ部U2の第3のスイッチング素子Q23と駆動部K23は、ゲート信号線GB23とエミッタ信号線E23で接続されている。第2のインバータ部U2の第4のスイッチング素子Q24と駆動部K24は、ゲート信号線GB24とエミッタ信号線E24で接続されている。
 なお、図3で付した符号GB11からGB24およびE11からE24は、それぞれインバータ部と駆動部とで同じ符号が重複して付けられている。この符号の重複は、インバータ部と駆動部において、それぞれ同じ符号どうしが接続されていることを示している。
 第1の変圧器T1の2次巻線の片端には、整流用の整流部4とリアクタ5を介して溶接トーチ8が接続されている。第1の変圧器T1の2次巻線の他端には、電流検出部3を介して母材7が接続されている。そして、電流検出部3で検出された値が、複数の駆動部K11からK24までを制御する制御部2にフィードバックされる。
 すなわち、図3に示すアーク溶接機は、複数の駆動部K11からK24までを制御する制御部2を備えている。各インバータ部U1、U2の第1のスイッチング素子Q11、Q21に接続されたそれぞれの駆動部K11、K21には、制御部2から同一の制御信号が与えられる。同様にインバータ部U1、U2の第2のスイッチング素子Q12、Q22に接続されたそれぞれの駆動部K12、K22には、制御部2から同一の制御信号が与えられる。インバータ部U1、U2の第3のスイッチング素子Q13、Q23に接続されたそれぞれの駆動部K13、K23には、制御部2から同一の制御信号が与えられる。インバータ部U1、U2の第4のスイッチング素子Q14、Q24に接続されたそれぞれの駆動部K14、K24には、制御部2から同一の制御信号が与えられる。すなわち、制御部2は、各スイッチング素子Q11からQ24までを駆動するための複数の駆動部K11からK24までを制御している。駆動部K11と駆動部K21、駆動部K12と駆動部K22、駆動部K13と駆動部K23、駆動部K14と駆動部K24には、制御部2からそれぞれ同一の制御信号が与えられる。
 制御部2から複数の駆動部K11からK24までへと送られる制御信号は、一つの制御信号で二つの駆動部を制御している。
 なお、図3に示すアーク溶接機では、対応する第1のインバータ部U1のスイッチング素子と第2のインバータ部U2のスイッチング素子に関し、第1のインバータ部U1のスイッチング素子に接続されたゲート信号線と、第2のインバータ部U2のスイッチング素子に接続されたゲート信号線とを互いに磁気結合した構成となっている。この磁気結合した構成が、図1に示すアーク溶接機と異なる点であり、図1に示すアーク溶接機の問題点を解決するための特徴の1つである。
 具体的には、駆動部K11から第1のインバータ部U1の第1のスイッチング素子Q11に接続されているゲート信号線GB11と、駆動部K21から第2のインバータ部U2の第1のスイッチング素子Q21に接続されているゲート信号線GB21とは、第1の磁気結合素子LB1Aで互いに磁気結合されている。
 同様に、駆動部K12から第1のインバータ部U1の第2のスイッチング素子Q12に接続されているゲート信号線GB12と、駆動部K22から第2のインバータ部U2の第2のスイッチング素子Q22に接続されているゲート信号線GB22とは、第2の磁気結合素子LB2Aで互いに磁気結合されている。
 同様に、駆動部K13から第1のインバータ部U1の第3のスイッチング素子Q13に接続されているゲート信号線GB13と、駆動部K23から第2のインバータ部U2の第3のスイッチング素子Q23に接続されているゲート信号線GB23とは、第3の磁気結合素子LB3Aで互いに磁気結合されている。
 同様に、駆動部K14から第1のインバータ部U1の第4のスイッチング素子Q14に接続されているゲート信号線GB14と、駆動部K24から第2のインバータ部U2の第4のスイッチング素子Q24に接続されているゲート信号線GB24とは、第4の磁気結合素子LB4Aで互いに磁気結合されている。
 次に、図3に示すアーク溶接機に設けられた第1の変圧器T1について説明する。第1の変圧器T1は、第1の交流部10の出力を変圧するものである。
 第1の変圧器T1は、第1の1次巻線TL1と、第2の1次巻線TL2と、2次巻線TLから構成されている。そして、第1のインバータ部U1の出力線を第1の変圧器T1の第1の1次巻線TL1とし、第2のインバータ部U2の出力線を第1の変圧器T1の第2の1次巻線TL2としている。第1の変圧器T1の第1の1次巻線TL1と第2の1次巻線TL2は、互いに並列に巻かれて第1の変圧器T1の1次巻線を構成している。
 なお、各インバータ部U1、U2から第1の変圧器T1に至る線は、各インバータ部U1、U2から第1の変圧器T1までの間で、互いに磁束の向きが逆方向になるように空芯の磁気結合素子LF内を通して磁気結合する配線となっている。これにより、各インバータ部U1、U2から第1の変圧器T1に至る線における変圧器電流のアンバランスを抑制している。
 なお、アーク溶接機の出力制御には、出力電流を電流設定値に一致させる定電流制御や出力電圧を電圧設定値に一致させる定電圧制御がある。図3は電流検出部3を設けた定電流制御を実現する場合の構成例であるが、アーク溶接機の出力電圧を検出する電圧検出部を設けて出力電圧を電圧設定値に一致させる構成とすれば、定電圧制御を実現する構成となる。
 以上のように構成されたアーク溶接機について、その動作を説明する。
 外部機器6から交流電力を受電して直流に変換する整流部1は、三相交流電圧を整流して直流電圧V1に変換する。整流部1から出力される直流電圧V1は、第1の平滑コンデンサC1を介して第1のインバータ部U1に供給され、第2の平滑コンデンサC2を介して第2のインバータ部U2に供給される。なお、直流電圧V1は、分圧されて第1のインバータ部U1と第2のインバータ部U2に供給される。
 図3の構成に示すように、第1のインバータ部U1と第2のインバータ部U2に印加される電圧は、各駆動部(K11からK24まで)から各スイッチング素子(Q11からQ24まで)への信号タイミングに時間誤差がなく、スイッチング素子のスイッチングタイミングが同時であれば、等しくなると考えられる。
 しかしながら、実際には、各スイッチング素子への信号タイミングにはばらつきがある。そのため、各スイッチング素子のスイッチングタイミングが異なり、例えば、対応するスイッチング素子である第1のインバータ部U1の第1のスイッチング素子Q11と第2のインバータ部U2の第1のスイッチング素子Q21に与えられるゲート電流は、図2に示すようにアンバランスとなる。また、対応するスイッチング素子である第1のインバータ部U1の第1のスイッチング素子Q11と第2のインバータ部U2の第1のスイッチング素子Q21に印加される電圧は、図2に示すようにアンバランスになることがある。
 そこで、図3の構成では、スイッチングタイミングのばらつきを防止するため、同時にスイッチングする2つのゲート信号線を互いの磁束の方向が逆方向になるように、空芯の磁気素子内を通して磁気結合する配線となっている。この2つの信号線は、第1のインバータ部U1のスイッチング素子に接続されたゲート信号線と第2のインバータ部U2のスイッチング素子に接続されたゲート信号線である。この構成は、図4に示される。図4は、本発明の実施の形態1におけるアーク加工電源装置であるアーク溶接機のゲート信号線の磁気結合の状態を示す図である。なお、図4では、ゲート信号線GB11とゲート信号線GB21とを磁気結合する例を示している。
 図4に示すように、制御部2は、駆動部K11および駆動部K21をそれぞれ駆動することにより、第1のインバータ部U1の第1のスイッチング素子Q11と、第2のインバータ部U2の第1のスイッチング素子Q21と、ゲート信号線GB11と、ゲート信号線GB21と、を動作させている。これにより、第1の磁気結合素子LB1Aにおいて、磁束Φcが、ゲート信号線GB11に流れるゲート電流Icにより生じ、磁束Φdが、ゲート信号線GB21に流れるゲート電流Idによって生じている。さらに、ゲート信号線GB11とゲート信号線GB21は、互いに磁束の方向が逆方向になるように空芯の第1の磁気結合素子LB1A内を通して配線されている。
 ここで、駆動部の個体差などにより、各スイッチング素子への信号タイミングが異なり、先にゲート電流Icが流れ、遅れてゲート電流Idが流れた場合を考える。先にゲート電流Icが流れたとき、第1の磁気結合素子LB1Aには磁束Φcが発生する。すると、磁束Φcを打ち消そうとする磁束Φdを生じさせるようにゲート電流Idが発生する。
 逆に、先にゲート電流Idが流れ、遅れてゲート電流Icが流れた場合にも、ゲート電流Idが流れたとき、第1の磁気結合素子LB1Aには磁束Φdが発生する。すると、磁束Φdを打ち消そうとする磁束Φcを生じさせるようとゲート電流Icが発生する。すなわち、ゲート電流Icおよびゲート電流Idのうち、いずれかのゲート電流が流れると磁束が発生するので、この磁束を打ち消そうとして他方のゲート電流が流れる。これにより、2つのゲート電流Ic、Idは、第1の磁気結合素子LB1A内において、ほぼ同時に流れることとなる。
 これらの動作によって、駆動部の個体差などが原因となる信号タイミングの時間誤差によりゲート電流の流れるタイミングがアンバランスであっても、磁気結合効果によってゲート電流のタイミングが一定にバランスされる。
 上述の磁気結合作用により、各ゲート信号線に流れるゲート電流のタイミングのアンバランスが解消され、各スイッチング素子に印加される電圧のアンバランスも解消される。このようにアンバランスが解消された場合、ゲート電流の波形とスイッチング素子に印加される電圧の時間波形は図5に示すようになる。
 図5は、本発明の実施の形態1におけるアーク加工電源装置であるアーク溶接機のスイッチング素子のオン動作時のゲート電流とスイッチング素子に印加される電圧の関係を示す図である。また、図5は、図3に示す構成のアーク溶接機において、ゲート電流Icとゲート電流Id、そして、スイッチング素子に印加される電圧Vcとスイッチング素子に印加される電圧Vdのそれぞれの時間波形を示している。
 図5からわかるように、ゲート電流Icの時間波形にゲート電流Idの時間波形が追随し、ゲート電流Icとゲート電流Idのタイミングはバランスされる。また、スイッチング素子に印加される電圧Vcと電圧Vdもバランスされる。
 次に、図3に示す整流部1の出力は、第1の交流部10で周波数の高い交流に変換され、電力変換用の第1の変圧器T1の1次側に入力される。第1の変圧器T1の2次側出力は、整流部4とリアクタ5により整流され、溶接トーチ8の電極9と母材7に供給される。
 アーク溶接機の出力電流が電流検出部3で検出され、電流検出部3から出力電流に比例した帰還信号が制御部2に入力される。制御部2では、電流設定値と帰還信号が比較され、両者の誤差増幅信号を出力する。誤差増幅信号は、図示しないパルス幅変調回路内の比較回路で三角波発生回路からの基準三角波と比較され、誤差増幅信号レベルに応じた幅のパルスに変換される。
 ある電流設定値に対して出力が小さい時は各スイッチング素子Q11からQ24までのオン時間を長くして変圧器電流を増加し、ある電流設定値に対して出力が大きい時はスイッチング素子のオン時間を短くして変圧器電流を低減する。このようにスイッチング素子Q11からQ24までの導通幅を制御することで出力電流が一定になるように制御する。
 以上のように、本実施の形態1のアーク溶接機によれば、共通仕様の第1のインバータ部U1と第2のインバータ部U2を直列接続して高電圧入力にも対応が可能となる。そして、対応する第1のインバータ部U1のスイッチング素子と第2のインバータ部U2のスイッチング素子に関し、第1のインバータ部U1のスイッチング素子に接続されるゲート信号線と第2のインバータ部U2のスイッチング素子に接続されるゲート信号線とを、磁気結合させる。この磁気結合により、2つのゲート電流がバランスされる。
 これにより、駆動部の個体差などが原因となる信号タイミングの時間誤差により、スイッチングタイミングのアンバランスが原因となって生じるスイッチング素子に印加される電圧の不平衡を抑制する。そうすると、スイッチング素子の破壊等を防ぐことができる。
 そして、例えば海外仕様の高電圧入力(例えば400V)のアーク溶接機を開発する際、高耐圧のスイッチング素子では、スイッチングロスが大きいため、高いインバータ周波数での利用が困難である。その結果、溶接出力電流のリップルが大きくなり、アーク切れが発生しやすくなる等の溶接性の問題があった。しかし、本実施の形態1のように低耐圧のスイッチング素子からなるインバータ部の直列接続を適用することによって、溶接性能を、例えば日本国内仕様の低電圧入力(例えば200V)のアーク溶接機と同等に維持するアーク溶接機を実現することができる。
 また、低電圧入力用のアーク溶接機を設計すると、そのインバータ部の構成を高電圧入力用のアーク溶接機にも反映できるため、設計の容易化、設計時間の短縮、作業性および生産性の向上を実現することができる。
 なお、上述の内容は、インバータ制御方式として、位相制御方式(フェーズシフト方式)を用いた場合を想定している。しかし、インバータ制御方式として、パルス変調方式(以下、「PWM」とする)を用いた場合、インバータ部を複数直列接続した場合において、同一インバータ部内の対応するスイッチング素子の制御信号線を磁気結合させてスイッチングタイミングをバランスさせることが可能である。また、同一インバータ内の対応するスイッチング素子の制御信号線および他のインバータ部の対応するスイッチング素子の制御信号線を磁気結合させてスイッチングタイミングをバランスさせることも可能である。
 すなわち、本発明のアーク加工電源装置は、整流部1と、交流部10と、変圧器T1と、複数の駆動部とを備え、各インバータ部U1、U2の各スイッチング素子と複数の駆動部とは信号線で接続され、異なるインバータ部に接続された信号線を互いに磁気結合した構成からなる。ここで、整流部1は、交流電力を入力して直流に変換する。交流部10は、整流部1の出力間に複数個のインバータ部U1、U2を直列に接続して構成され整流部1の出力を交流に変換する。変圧器T1は、交流部10の出力を変圧する。複数の駆動部は、各インバータ部U1、U2を構成する各スイッチング素子の駆動を制御し、各スイッチング素子に対応して設けられている。
 この構成により、低電圧入力用のアーク溶接機を設計すると、そのインバータ部の構成を高電圧入力用のアーク溶接機にも適用できるため、アーク加工電源装置において、従来に比べて設計時間の短縮や作業性および生産性の向上を実現することができる。従って、アーク加工電源装置の低価格化や高性能化を実現することができる。
 また、各インバータ部はフルブリッジ回路から構成されている。この構成により、さらに安定にアーク加工電源装置を動作させることができ、作業性および生産性の向上を実現することができる。
 また、各インバータ部U1、U2は第1のスイッチング素子から第4のスイッチング素子までの4つのスイッチング素子を少なくとも備え、複数の駆動部から各インバータ部U1、U2の第1のスイッチング素子、第2のスイッチング素子、第3のスイッチング素子および第4のスイッチング素子にそれぞれ接続された複数の信号線をそれぞれ磁気結合した構成としている。ここで、各インバータ部U1、U2の各スイッチング素子と複数の駆動部とは信号線で接続され、各インバータ部U1、U2の第1のスイッチング素子に接続された複数の駆動部は、各インバータ部U1、U2の第1のスイッチング素子に対して同じ駆動信号を出力する。また、各インバータ部U1、U2の各スイッチング素子と複数の駆動部とは信号線で接続され、各インバータ部U1、U2の第2のスイッチング素子に接続された複数の駆動部は、各インバータ部U1、U2の第2のスイッチング素子に対して同じ駆動信号を出力する。また、各インバータ部U1、U2の各スイッチング素子と複数の駆動部とは信号線で接続され、各インバータ部U1、U2の第3のスイッチング素子に接続された複数の駆動部は、各インバータ部U1、U2の第3のスイッチング素子に対して同じ駆動信号を出力する。また、各インバータ部U1、U2の各スイッチング素子と複数の駆動部とは信号線で接続され、各インバータ部U1、U2の第4のスイッチング素子に接続された複数の駆動部は、各インバータ部U1、U2の第4のスイッチング素子に対して同じ駆動信号を出力する。
 この構成により、駆動部の個体差などが原因となる信号タイミングの時間誤差により、スイッチングタイミングのアンバランスが原因となって生じるスイッチング素子に印加される電圧の不平衡を抑制する。その結果、スイッチング素子の破壊等を防ぐことができる。
 また、複数の信号線の磁気結合に関し、異なるインバータ部のスイッチング素子に接続された2つの信号線を磁気結合させていくことで全ての信号線を磁気結合する構成としてもよい。
 この構成により、駆動部の個体差などが原因となる信号タイミングの時間誤差により、スイッチングタイミングのアンバランスが原因となって生じるスイッチング素子に印加される電圧の不平衡を抑制する。その結果、スイッチング素子の破壊等を防ぐことができる。
 また、複数の駆動部を制御する制御部2をさらに備え、各インバータ部U1、U2の第n番目のスイッチング素子に接続された複数の駆動部には制御部2から同一の制御信号が与えられる構成としてもよい。すなわち、各インバータ部U1、U2の第1のスイッチング素子に接続された複数の駆動部には制御部2から同一の制御信号が与えられる。各インバータ部U1、U2の第2のスイッチング素子に接続された複数の駆動部には制御部2から同一の制御信号が与えられる。各インバータ部U1、U2の第3のスイッチング素子に接続された複数の駆動部には制御部2から同一の制御信号が与えられる。各インバータ部U1、U2の第4のスイッチング素子に接続された複数の駆動部には制御部2から同一の制御信号が与えられる。
 この構成により、駆動部の個体差などが原因となる信号タイミングの時間誤差により、スイッチングタイミングのアンバランスが原因となって生じるスイッチング素子に印加される電圧の不平衡を抑制する。その結果、スイッチング素子の破壊等を防ぐことができる。
 また、変圧器の1次巻線は、各インバータ部の出力線を並列に巻いて構成されていてもよい。この構成により、配置上、出力線同士が結合しやすくまとめておくことができる。
 また、各インバータ部から変圧器に至る線を、各インバータ部から変圧器までの間で互いに磁気結合した構成としてもよい。この構成により、変圧器電流のアンバランスをさらに抑制できる。
 (実施の形態2)
 図6は、本発明の実施の形態2におけるアーク加工電源装置であるアーク溶接機の概略構成を示す図である。本実施の形態2のアーク溶接機について、図6を用いて説明する。なお、実施の形態1では、第1のインバータ部U1と第2のインバータ部U2の2つのインバータ部を直列接続した例を示した。実施の形態1と異なる主な点は、本実施の形態2では、第1のインバータ部U1、第2のインバータ部U2および第3のインバータ部U3の3つのインバータ部を直列接続している点であり、この例について説明する。なお、実施の形態1と同様の箇所については同一の符号を付している。
 図6に示すように、アーク溶接機は、配電盤等の外部機器6から交流電力を受電して直流に変換する整流部1を有している。整流部1の出力間には、整流部1の出力を交流に変換する第2の交流部11が接続されている。第2の交流部11は、第1のインバータ部U1、第2のインバータ部U2および第3のインバータ部U3の3つインバータ部を構成要素としている。第1のインバータ部U1、第2のインバータ部U2および第3のインバータ部U3は、直列に接続されている。
 第1のインバータ部U1、第2のインバータ部U2および第3のインバータ部U3は、IGBTやMOSFETなどの4個のスイッチング素子をフルブリッジ接続して構成されている。
 具体的には、第1のインバータ部U1は、第1のスイッチング素子Q11と、第2のスイッチング素子Q12と、第3のスイッチング素子Q13と、第4のスイッチング素子Q14と、から構成されている。第2のインバータ部U2は、第1のスイッチング素子Q21と、第2のスイッチング素子Q22と、第3のスイッチング素子Q23と、第4のスイッチング素子Q24と、から構成されている。第3のインバータ部U3は、第1のスイッチング素子Q31と、第2のスイッチング素子Q32と、第3のスイッチング素子Q33と、第4のスイッチング素子Q34と、から構成されている。
 また、各インバータ部を構成する各スイッチング素子は、各スイッチング素子の駆動を制御するために各スイッチング素子に対応して設けられた複数の駆動部と、ゲート信号線とエミッタ信号線で接続されている。
 具体的には、第1のインバータ部U1の第1のスイッチング素子Q11と駆動部K11は、ゲート信号線GB11とエミッタ信号線E11で接続されている。第1のインバータ部U1の第2のスイッチング素子Q12と駆動部K12は、ゲート信号線GB12とエミッタ信号線E12で接続されている。第1のインバータ部U1の第3のスイッチング素子Q13と駆動部K13は、ゲート信号線GB13とエミッタ信号線E13で接続されている。第1のインバータ部U1の第4のスイッチング素子Q14と駆動部K14は、ゲート信号線GB14とエミッタ信号線E14で接続されている。
 また、第2のインバータ部U2の第1のスイッチング素子Q21と駆動部K21は、ゲート信号線GB21とエミッタ信号線E21で接続されている。第2のインバータ部U2の第2のスイッチング素子Q22と駆動部K22は、ゲート信号線GB22とエミッタ信号線E22で接続されている。第2のインバータ部U2の第3のスイッチング素子Q23と駆動部K23は、ゲート信号線GB23とエミッタ信号線E23で接続されている。第2のインバータ部U2の第4のスイッチング素子Q24と駆動部K24は、ゲート信号線GB24とエミッタ信号線E24で接続されている。
 また、第3のインバータ部U3の第1のスイッチング素子Q31と駆動部K31は、ゲート信号線GB31とエミッタ信号線E31で接続されている。第3のインバータ部U3の第2のスイッチング素子Q32と駆動部K32は、ゲート信号線GB32とエミッタ信号線E32で接続されている。第3のインバータ部U3の第3のスイッチング素子Q33と駆動部K33は、ゲート信号線GB33とエミッタ信号線E33で接続されている。第3のインバータ部U3の第4のスイッチング素子Q34と駆動部K34は、ゲート信号線GB34とエミッタ信号線E34で接続されている。
 なお、図6で付した符号GB11からGB34までおよびE11からE34までは、それぞれ同じ符号どうしが接続されていることを示している。
 第2の変圧器T2の2次巻線の片端には、整流用の整流部4とリアクタ5を介して溶接トーチ8が接続されている。第2の変圧器T2の2次巻線の他端には、電流検出部3を介して母材7が接続されている。そして、電流検出部3で検出された値が、複数の駆動部K11からK34を制御する制御部2にフィードバックされる。
 アーク溶接機は、複数の駆動部K11からK34を制御する制御部2を備えている。各インバータ部U1,U2,U3の第1のスイッチング素子Q11,Q21,Q31に接続された複数の駆動部K11,K21,K31には、制御部2から同一の制御信号が与えられる。同様に各インバータ部U1,U2,U3の第2のスイッチング素子Q12,Q22,Q32に接続された複数の駆動部K12,K22,K32には、制御部2から同一の制御信号が与えられる。同様に各インバータ部U1,U2,U3の第3のスイッチング素子Q13,Q23,Q33に接続された複数の駆動部K13,K23,K33には、制御部2から同一の制御信号が与えられる。同様に各インバータ部U1,U2,U3の第4のスイッチング素子Q14,Q24,Q34に接続された複数の駆動部K14,K24,K34には、制御部2から同一の制御信号が与えられる。すなわち、制御部2は、各スイッチング素子Q11からQ34を駆動するための複数の駆動部K11からK34を制御している。上述の複数の駆動部である、駆動部K11、駆動部K21および駆動部K31、駆動部K12、駆動部K22および駆動部K32、駆動部K13、駆動部K23および駆動部K33、駆動部K14、駆動部K24および駆動部K34には、制御部2からそれぞれ同一の制御信号が与えられる。したがって、制御部2から各駆動部K11からK34へと送られる信号は、上述のように一つの信号で三つの駆動部を制御している。
 なお、図6に示すアーク溶接機では、対応する第1のインバータ部U1のスイッチング素子、第2のインバータ部U2のスイッチング素子および第3のインバータ部U3のスイッチング素子に関し、ゲート信号線が互いに磁気結合されている。すなわち、第1のインバータ部U1のスイッチング素子に接続されたゲート信号線と、第2のインバータ部U2のスイッチング素子に接続されたゲート信号線とを互いに磁気結合している。さらに、第2のインバータ部U2のスイッチング素子に接続されたゲート信号線と第3のインバータ部U3のスイッチング素子に接続されたゲート信号線とを互いに磁気結合している。このように、図6に示す本発明のアーク溶接機は、2つのゲート信号線を磁気結合させていくことにより、対応する全てのゲート信号線を磁気結合する構成となっている。
 具体的には、駆動部K11から第1のインバータ部U1の第1のスイッチング素子Q11に接続されているゲート信号線GB11と、駆動部K21から第2のインバータ部U2の第1のスイッチング素子Q21に接続されているゲート信号線GB21は、第1の磁気結合素子LB1Aで互いに磁気結合されている。さらに、駆動部K21から第2のインバータ部U2の第1のスイッチング素子Q21に接続されているゲート信号線GB21と、駆動部K31から第3のインバータ部U3の第1のスイッチング素子Q31に接続されているゲート信号線GB31は、第5の磁気結合素子LB1Bで互いに磁気結合されている。
 同様に、駆動部K12から第1のインバータ部U1の第1のスイッチング素子Q12に接続されているゲート信号線GB12と、駆動部K22から第2のインバータ部U2の第2のスイッチング素子Q22に接続されているゲート信号線GB22は、第2の磁気結合素子LB2Aで互いに磁気結合されている。さらに、駆動部K22から第2のインバータ部U2の第2のスイッチング素子Q22に接続されているゲート信号線GB22と、駆動部K32から第3のインバータ部U3の第2のスイッチング素子Q32に接続されているゲート信号線GB32は、第6の磁気結合素子LB2Bで互いに磁気結合されている。
 同様に、駆動部K13から第1のインバータ部U1の第3のスイッチング素子Q13に接続されているゲート信号線GB13と、駆動部K23から第2のインバータ部U2の第3のスイッチング素子Q23に接続されているゲート信号線GB23は、第3の磁気結合素子LB3Aで互いに磁気結合されている。さらに、駆動部K23から第2のインバータ部U2の第3のスイッチング素子Q23に接続されているゲート信号線GB23と、駆動部K33から第3のインバータ部U3の第3のスイッチング素子Q33に接続されているゲート信号線GB33は、第7の磁気結合素子LB3Bで互いに磁気結合されている。
 同様に、駆動部K14から第1のインバータ部U1の第4のスイッチング素子Q14に接続されているゲート信号線GB14と、駆動部K24から第2のインバータ部U2の第4のスイッチング素子Q24に接続されているゲート信号線GB24は、第4の磁気結合素子LB4Aで互いに磁気結合されている。さらに、駆動部K24から第2のインバータ部U2の第4のスイッチング素子Q24に接続されているゲート信号線GB24と、駆動部K34から第3のインバータ部U3の第4のスイッチング素子Q34に接続されているゲート信号線GB34は、第8の磁気結合素子LB4Bで互いに磁気結合されている。
 次に、アーク溶接機に設けられた第2の変圧器T2について説明する。第2の変圧器T2は、第2の交流部11の出力を変圧するものである。
 第2の変圧器T2は、第1の1次巻線TL1と、第2の1次巻線TL2と、第3の1次巻線TL3と、2次巻線TLと、から構成されている。そして、第1のインバータ部U1の出力線を第2の変圧器T2の第1の1次巻線TL1とし、第2のインバータ部U2の出力線を第2の変圧器T2の第2の1次巻線TL2とし、第3のインバータ部U3の出力線を第2の変圧器T2の第3の1次巻線TL3としている。そして、第1の1次巻線TL1、第2の1次巻線TL2および第3の1次巻線TL3は、互いに並列に巻かれて第2の変圧器T2の1次巻線を構成している。
 なお、アーク溶接機の出力制御には、出力電流を電流設定値に一致させる定電流制御や出力電圧を電圧設定値に一致させる定電圧制御が用いられる。図6は定電流制御を実現する場合の構成例であるが、アーク溶接機の出力電圧を検出する電圧検出部を設けて出力電圧を電圧設定値に一致させる構成とすれば、定電圧制御を実現する構成となる。
 以上のように構成されたアーク溶接機について、その動作を説明する。
 外部機器6から交流電力を受電して直流に変換する整流部1は、三相交流電圧を整流して直流電圧V1に変換する。整流部1から出力される直流電圧V1は、第1の平滑コンデンサC1を介して第1のインバータ部U1に供給され、第2の平滑コンデンサC2を介して第2のインバータ部U2に供給され、第3の平滑コンデンサC3を介して第3のインバータ部U3に供給される。なお、直流電圧V1は、分圧されて第1のインバータ部U1、第2のインバータ部U2および第3のインバータ部U3に供給される。
 ここで、直流電圧V1は、均等に分圧されて第1のインバータ部U1、第2のインバータ部U2および第3のインバータ部U3に印加されることが望ましい。しかしながら、各インバータ部に印加される電圧は、それぞれ、駆動部の個体差などが原因となる信号タイミングの時間誤差により異なる。そのため、場合によっては、スイッチング素子の破壊を起こすような印加電圧がかかってしまう場合もある。
 そこで、図6に示すアーク溶接機の構成では、複数のゲート信号線の磁気結合に関し、第1のインバータ部U1のスイッチング素子に接続されたゲート信号線と第2のインバータ部U2のスイッチング素子に接続されたゲート信号線とを磁気結合する。さらに、第2のインバータ部U2のスイッチング素子に接続されたゲート信号線と第3のインバータ部U3のスイッチング素子に接続されたゲート信号線とを磁気結合する。このように、2つのゲート信号線を磁気結合させていくことにより、全てのゲート信号線を磁気結合する構成となっている。
 このような構成とすることで、実施の形態1でも説明したように、各ゲート信号線に流れるゲート電流のタイミングのアンバランスが解消され、各スイッチング素子に印加される電圧のアンバランスも解消される。
 すなわち、図4を用いて説明したように、駆動部の個体差などにより、各スイッチング素子への信号タイミングが異なり、先にゲート電流Icが流れ、遅れてゲート電流Idが流れた場合を考える。先にゲート電流Icが流れたとき、第1の磁気結合素子LB1Aには磁束Φcが発生する。すると、磁束Φcを打ち消そうとする磁束Φdを生じさせるようにゲート電流Idが発生する。したがって、ゲート電流Icおよびゲート電流Idのうち、いずれかのゲート電流が流れると磁束が発生するので、この磁束を打ち消そうとして他方のゲート電流が流れる。これにより、2つのゲート電流Ic、Idは、第1の磁気結合素子LB1A内において、ほぼ同時に流れることとなる。
 したがって、駆動部の個体差などが原因となる信号タイミングの時間誤差によりそれぞれのゲート信号線におけるゲート電流が流れるタイミングに時間差が生じていても、磁気結合効果によりゲート電流のタイミングは一定にバランスされる。そして、ゲート電流のタイミングのアンバランスが解消されることで、スイッチング素子の印加電圧のアンバランスも解消される。
 次に、整流部1の出力は、第2の交流部11で周波数の高い交流に変換され、電力変換用の第2の変圧器T2の1次側に入力される。第2の変圧器T2の2次側出力は、整流部4とリアクタ5により整流され、溶接トーチ8の電極9と母材7に供給される。
 出力電流が電流検出部3で検出され、電流検出部3から出力電流に比例した帰還信号が制御部2に入力される。制御部2では、電流設定値と前記帰還信号が比較され、両者の誤差増幅信号を出力する。誤差増幅信号は、図示しないパルス幅変調回路内の比較回路で三角波発生回路からの基準三角波と比較され、誤差増幅信号レベルに応じた幅のパルスに変換される。
 ある電流設定値に対して出力が小さい時は各スイッチング素子Q11からQ34のオン時間を長くして変圧器電流を増加し、ある電流設定値に対して出力が大きい時はスイッチング素子のオン時間を短くして変圧器電流を低減する。このようにスイッチング素子Q11からQ34の導通幅を制御することで出力電流が一定になるように制御する。
 以上のように、本実施の形態2のアーク溶接機によれば、共通仕様の第1のインバータ部U1、第2のインバータ部U2および第3のインバータ部U3を直列接続して高電圧入力にも対応が可能となる。そして、対応する第1のインバータ部U1のスイッチング素子、第2のインバータ部U2のスイチング素子および第3のインバータ部U3のスイッチング素子に関し、ゲート信号線が互いに磁気結合されている。すなわち、第1のインバータ部U1のスイッチング素子に接続されるゲート信号線と、第2のインバータ部U2のスイッチング素子に接続されるゲート信号線と、を磁気結合させている。さらに、第2のインバータ部U2のスイッチング素子に接続されるゲート信号線と、第3のインバータ部U3のスイッチング素子に接続されるゲート信号線と、を磁気結合させる。これにより、駆動部やスイッチング素子の遅延時間によるスイッチングタイミングのアンバランスが原因となって生じるスイッチング素子に印加される電圧の不平衡を抑制し、スイッチング素子の破壊等を防ぐことができる。
 すなわち、本発明のアーク加工電源装置は、整流部1と、交流部11と、変圧器T2と、複数の駆動部とを備え、各インバータ部U1、U2、U3の各スイッチング素子と複数の駆動部とは信号線で接続され、異なるインバータ部に接続された信号線を互いに磁気結合した構成からなる。ここで、整流部1は、交流電力を入力して直流に変換する。交流部11は、整流部1の出力間に複数個のインバータ部U1、U2、U3を直列に接続して構成され整流部1の出力を交流に変換する。変圧器T2は、交流部11の出力を変圧する。複数の駆動部は、各インバータ部U1、U2、U3を構成する各スイッチング素子の駆動を制御し、各スイッチング素子に対応して設けられている。
 この構成により、低電圧入力用のアーク溶接機を設計すると、そのインバータ部の構成を高電圧入力用のアーク溶接機にも適用できるため、アーク加工電源装置において、従来に比べて設計時間の短縮や作業性および生産性の向上を実現することができる。従って、アーク加工電源装置の低価格化や高性能化を実現することができる。
 また、複数の信号線の磁気結合に関し、異なるインバータ部のスイッチング素子に接続された2つの信号線を磁気結合させていくことで全ての信号線を磁気結合する構成としてもよい。
 この構成により、駆動部の個体差などが原因となる信号タイミングの時間誤差により、スイッチングタイミングのアンバランスが原因となって生じるスイッチング素子に印加される電圧の不平衡を抑制する。その結果、スイッチング素子の破壊等を防ぐことができる。
 なお、本実施の形態2では、インバータ部を3つ直列接続した例を示した。インバータ部を4つ以上直列接続する場合においても、本実施の形態2で説明したインバータ部を直列に接続する場合の各スイッチング素子、複数の駆動部および信号線の接続の仕方や信号線の磁気結合の仕方などの考え方を適用して実現することができる。
 本発明のアーク加工電源装置は、低電圧入力にも対応でき、共通仕様の複数のインバータ部を直列接続して高電圧入力にも対応が可能であり、対応する異なるインバータ部のスイッチング素子に接続された信号線を磁気結合した構成としている。この構成により、スイッチング素子に印加される電圧の不平衡を抑制することができるので、本発明のアーク加工電源装置は、低電圧入力用のアーク加工電源装置としてだけでなく、例えば、高電圧入力(例えば400V)用のアーク加工電源装置として産業上有用である。
 1,4  整流部
 2  制御部
 3  電流検出部
 5  リアクタ
 6  外部機器
 7  母材
 8  溶接トーチ
 9  電極
 10  第1の交流部
 11  第2の交流部
 12  交流部

Claims (7)

  1. 交流電力を入力して直流に変換する整流部と、
    前記整流部の出力間に複数個のインバータ部を直列に接続して構成され前記整流部の出力を交流に変換する交流部と、
    前記交流部の出力を変圧する変圧器と、
    各インバータ部を構成する各スイッチング素子の駆動を制御し、前記各スイッチング素子に対応して設けられた複数の駆動部とを備え、
    前記各インバータ部の前記各スイッチング素子と前記複数の駆動部とは信号線で接続され、
    異なるインバータ部に接続された前記信号線を互いに磁気結合したアーク加工電源装置。
  2. 前記各インバータ部はフルブリッジ回路から構成される請求項1記載のアーク加工電源装置。
  3. 前記各インバータ部は第1のスイッチング素子から第4のスイッチング素子までの4つのスイッチング素子を少なくとも備え、
    前記各インバータ部の前記各スイッチング素子と前記複数の駆動部とは前記信号線で接続され、前記各インバータ部の第1のスイッチング素子に接続された前記複数の駆動部は、前記各インバータ部の前記第1のスイッチング素子に対して同じ駆動信号を出力し、前記各インバータ部の第2のスイッチング素子に接続された前記複数の駆動部は、前記各インバータ部の前記第2のスイッチング素子に対して同じ駆動信号を出力し、前記各インバータ部の第3のスイッチング素子に接続された前記複数の駆動部は、前記各インバータ部の前記第3のスイッチング素子に対して同じ駆動信号を出力し、前記各インバータ部の第4のスイッチング素子に接続された前記複数の駆動部は、前記各インバータ部の前記第4のスイッチング素子に対して同じ駆動信号を出力し、
    前記複数の駆動部から前記各インバータ部の前記第1のスイッチング素子、前記第2のスイッチング素子、前記第3のスイッチング素子および前記第4のスイッチング素子にそれぞれ接続された複数の信号線をそれぞれ磁気結合した請求項2記載のアーク加工電源装置。
  4. 前記複数の信号線の磁気結合に関し、異なるインバータ部のスイッチング素子に接続された2つの信号線を磁気結合させていくことで全ての信号線を磁気結合する請求項1から3のいずれか1項に記載のアーク加工電源装置。
  5. 前記複数の駆動部を制御する制御部をさらに備え、
    前記各インバータ部の第1のスイッチング素子に接続された前記複数の駆動部には前記制御部から同一の制御信号が与えられ、前記各インバータ部の第2のスイッチング素子に接続された前記複数の駆動部には前記制御部から同一の制御信号が与えられ、前記各インバータ部の第3のスイッチング素子に接続された前記複数の駆動部には前記制御部から同一の制御信号が与えられ、前記各インバータ部の第4のスイッチング素子に接続された前記複数の駆動部には前記制御部から同一の制御信号が与えられる請求項1から3のいずれか1項に記載のアーク加工電源装置。
  6. 前記変圧器の1次巻線は、前記各インバータ部の出力線を並列に巻いて構成された請求項1から3のいずれか1項に記載のアーク加工電源装置。
  7. 前記各インバータ部から前記変圧器に至る線を、前記各インバータ部から前記変圧器までの間で互いに磁気結合した請求項6記載のアーク加工電源装置。
PCT/JP2011/006620 2011-01-19 2011-11-29 アーク加工電源装置 WO2012098610A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-008365 2011-01-19
JP2011008365 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012098610A1 true WO2012098610A1 (ja) 2012-07-26

Family

ID=46515264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006620 WO2012098610A1 (ja) 2011-01-19 2011-11-29 アーク加工電源装置

Country Status (1)

Country Link
WO (1) WO2012098610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043933A1 (de) * 2013-09-26 2015-04-02 Siemens Aktiengesellschaft Multilevelumrichter
CN112019199A (zh) * 2019-05-28 2020-12-01 罗姆股份有限公司 开关晶体管的驱动电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435322A (en) * 1977-08-25 1979-03-15 Toshiba Corp Inverter
JPS6352674A (ja) * 1986-08-21 1988-03-05 Fuji Electric Co Ltd インバ−タの並列接続回路
JP2005020869A (ja) * 2003-06-25 2005-01-20 Fuji Electric Holdings Co Ltd 電圧駆動型半導体素子の駆動装置
JP2008271757A (ja) * 2007-04-25 2008-11-06 Fujitsu Telecom Networks Ltd スイッチング電源装置
JP2010284709A (ja) * 2009-06-15 2010-12-24 Daihen Corp 電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435322A (en) * 1977-08-25 1979-03-15 Toshiba Corp Inverter
JPS6352674A (ja) * 1986-08-21 1988-03-05 Fuji Electric Co Ltd インバ−タの並列接続回路
JP2005020869A (ja) * 2003-06-25 2005-01-20 Fuji Electric Holdings Co Ltd 電圧駆動型半導体素子の駆動装置
JP2008271757A (ja) * 2007-04-25 2008-11-06 Fujitsu Telecom Networks Ltd スイッチング電源装置
JP2010284709A (ja) * 2009-06-15 2010-12-24 Daihen Corp 電源装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043933A1 (de) * 2013-09-26 2015-04-02 Siemens Aktiengesellschaft Multilevelumrichter
KR20160046906A (ko) * 2013-09-26 2016-04-29 지멘스 악티엔게젤샤프트 멀티레벨 컨버터
CN105580257A (zh) * 2013-09-26 2016-05-11 西门子公司 多电平变换器
JP2016532412A (ja) * 2013-09-26 2016-10-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft マルチレベルコンバータ
US9787173B2 (en) 2013-09-26 2017-10-10 Siemens Aktiengesellschaft Multilevel converter
KR101890253B1 (ko) * 2013-09-26 2018-08-22 지멘스 악티엔게젤샤프트 멀티레벨 컨버터
CN105580257B (zh) * 2013-09-26 2019-04-05 西门子公司 多电平变换器
CN112019199A (zh) * 2019-05-28 2020-12-01 罗姆股份有限公司 开关晶体管的驱动电路
JP2020195213A (ja) * 2019-05-28 2020-12-03 ローム株式会社 スイッチングトランジスタの駆動回路
JP7308661B2 (ja) 2019-05-28 2023-07-14 ローム株式会社 スイッチングトランジスタの駆動回路
CN112019199B (zh) * 2019-05-28 2024-05-07 罗姆股份有限公司 开关晶体管的驱动电路

Similar Documents

Publication Publication Date Title
JP5510292B2 (ja) ゲート駆動用電源装置およびインバータ制御回路
JP4784717B2 (ja) インバータ制御装置およびインバータ制御方法
US20140292092A1 (en) Power supply device
WO2019038979A1 (ja) Dc/dcコンバータ
WO2010137414A1 (ja) インバータ駆動用電源回路
JP6848183B2 (ja) 電流検出装置および半導体装置
JP2009177935A (ja) 直流電源装置
WO2012098610A1 (ja) アーク加工電源装置
JP5147624B2 (ja) インバータ装置
JP5047210B2 (ja) 電力変換装置
JP5386891B2 (ja) 電力変換装置
US8319462B2 (en) Output filter and power conversion apparatus having the same
JP6630196B2 (ja) 溶接電源装置
JP6385626B1 (ja) 電力変換装置
JP2008005636A (ja) 電力変換装置
JP6091405B2 (ja) エレベーターかご給電装置
WO2018179234A1 (ja) H型ブリッジ変換器およびパワーコンディショナ
WO2017010134A1 (ja) 電力変換装置およびその制御方法
JP6904018B2 (ja) 直流電源装置
JP2013062904A (ja) 回生型モータ端サージ電圧抑制装置、モータ駆動システム、および、回生型モータ端サージ電圧抑制方法
JP2008099381A (ja) アーク溶接用等の電源装置
JP5707846B2 (ja) 電力変換装置
JP2010022125A (ja) 多相力率改善回路
JP2007220396A (ja) 誘導加熱装置
JP6881399B2 (ja) 電力用半導体装置及び電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP