WO2012096716A2 - Stent - Google Patents

Stent Download PDF

Info

Publication number
WO2012096716A2
WO2012096716A2 PCT/US2011/061165 US2011061165W WO2012096716A2 WO 2012096716 A2 WO2012096716 A2 WO 2012096716A2 US 2011061165 W US2011061165 W US 2011061165W WO 2012096716 A2 WO2012096716 A2 WO 2012096716A2
Authority
WO
WIPO (PCT)
Prior art keywords
stent
lattice
circumferential
undulating
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2011/061165
Other languages
English (en)
French (fr)
Other versions
WO2012096716A3 (en
Inventor
Joseph R. Armstrong
Edward H. Cully
Michael W. FRANKLIN
Mark Y. HANSEN
Brandon A. LURIE
Craig MCMURRAY
William D. Montgomery
Wendy J. TERRY
Eric M. Tittelbaugh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gore Enterprise Holdings Inc
Original Assignee
Gore Enterprise Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2011354638A priority Critical patent/AU2011354638A1/en
Priority to EP11791383.0A priority patent/EP2663266B1/en
Priority to BR112013017365A priority patent/BR112013017365A2/pt
Priority to KR1020137021325A priority patent/KR101869998B1/ko
Priority to CA2822321A priority patent/CA2822321C/en
Priority to JP2013549406A priority patent/JP6174492B2/ja
Priority to EP25156374.8A priority patent/EP4527358A3/en
Priority to CN201180064658.3A priority patent/CN103313681B/zh
Application filed by Gore Enterprise Holdings Inc filed Critical Gore Enterprise Holdings Inc
Priority to RU2013137864/14A priority patent/RU2013137864A/ru
Priority to ES11791383T priority patent/ES3023707T3/es
Publication of WO2012096716A2 publication Critical patent/WO2012096716A2/en
Publication of WO2012096716A3 publication Critical patent/WO2012096716A3/en
Anticipated expiration legal-status Critical
Priority to AU2015210440A priority patent/AU2015210440B2/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/844Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents folded prior to deployment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • A61F2002/9583Means for holding the stent on the balloon, e.g. using protrusions, adhesives or an outer sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness

Definitions

  • the invention relates generally to medical implants for supporting, maintaining, or repairing a lumen, passageway or opening in a living body and to methods of using them.
  • the invention relates to medical devices that are designed to be inserted endoluminally into a body.
  • Medical stents are generally known.
  • One use for medical stents is to expand a body lumen, such as a blood vessel, which has contracted in diameter through, for example, the effects of lesions called atheroma or the occurrence of cancerous tumors.
  • Atheroma refers to lesions within arteries that include plaque accumulations that can obstruct blood flow through the vessel. Over time, the plaque can increase in size and thickness and can eventually lead to clinically significant narrowing of the artery, or even complete occlusion.
  • the medical stents When expanded against the body lumen, which has contracted in diameter, the medical stents provide a tube-like support structure inside the body lumen.
  • Stents in combination with coverings, also can be used for the endovascular repair of aneurysms, an abnormal widening or ballooning of a portion of a body lumen which can be related to weakness in the wall of the body lumen.
  • Various stent designs are known in the art. Stents typically are tubular, and are expandable or self-expand from a relatively small diameter to a large diameter.
  • Devices according to this application are suitable for implantation into various body vessels or openings, such as the carotid artery.
  • One exemplary device is a stent having a body with distal and proximal ends and defines a central lumen along a longitudinal axis.
  • the body has an insertion configuration with a reduced profile, and a deployed configuration with an enlarged profile greater than the insertion profile.
  • the body includes spaced apart, undulating circumferential members, as well as an undulating helical element.
  • the helical element extends helically about the longitudinal axis, and is axially interposed between and directly connected to the circumferential members.
  • the helical element defines open cells, while the circumferential members define closed cells.
  • Another exemplary device is a stent having distal and proximal ends, and defining a central lumen along a longitudinal axis.
  • the stent has an insertion configuration with a reduced profile and a deployed configuration with an enlarged profile greater than the reduced profile.
  • the stent has several portions.
  • the stent has a plurality of spaced apart, undulating circumferential members with one undulating helical turn and one or more undulating circumferential rings.
  • the stent also has a helical element extending along the longitudinal axis axially interposed between the undulating circumferential members with a plurality of helical turns.
  • the undulating helical turn of the circumferential member is directly connected to the helical body. Together, the undulating helical turn and the helical body defined a uniform apex geometry.
  • Another exemplary device is a stent having distal and proximal ends and defining a central lumen along a longitudinal axis.
  • the stent has an insertion configuration with a reduced profile and a deployed configuration with an enlarged profile greater than the reduced profile.
  • the stent has a plurality of spaced apart, undulating circumferential members having one undulating helical turn and one or more undulating circumferential rings that define a closed cell structure, and a helical element extending along the longitudinal axis axially and interposed between the undulating circumferential members.
  • the helical element has one helical turn or less than one helical turn, such as a portion of a helical turn, that define an open cell structure.
  • the undulating helical turn of the circumferential member is directly connected to the helical body. Together, the undulating helical turn and the helical body defined a uniform apex geometry.
  • Yet another exemplary device is an endovascular prosthesis with a stent.
  • the prosthesis has a lattice, which defines a plurality of openings.
  • the lattice has at least two continuous longitudinal segments, and at least two continuous circumferential segments.
  • the longitudinal segments are substantially parallel to a longitudinal axis of the prosthesis.
  • the circumferential segments are oriented at an angle of between about 45° and about 90° with respect to the longitudinal axis.
  • Yet still another exemplary device is an endovascular prosthesis having a lumen defining a longitudinal axis.
  • the prosthesis has a stent having a framework of struts including a plurality of longitudinal connectors.
  • the prosthesis also has a polymeric lattice that defines a plurality of openings.
  • the lattice has a plurality of continuous longitudinal segments that extend in a direction that is substantially parallel to the longitudinal axis of the stent.
  • the lattice also has a plurality of continuous circumferential segments at an angle with respect to the longitudinal axis of the stent. At least a portion of the longitudinal segments is aligned with and affixed to the longitudinal connectors of the stent.
  • the devices described herein have various uses.
  • An exemplary use is in a method of treating stenosis in a carotid artery.
  • the device is a stent with an insertion configuration with a reduced profile and a deployed configuration with an enlarged profile greater than the insertion profile.
  • the stent also has a plurality of spaced apart, undulating circumferential members, and an undulating helical element extending helically about the longitudinal axis.
  • the undulating helical element is axially interposed between and directly connected to the circumferential members.
  • the undulating helical element defines a plurality of open cells.
  • the circumferential member defines a plurality of closed cells.
  • FIG. 1 is a perspective view of a stent with eleven distal and eleven proximal facing apices per circumferential turn;
  • FIGs. 2A and 2B are plan views of a stent (full circumference shown), which illustrates an interrelationship between the circumferential members and the helical element (5 helical turns - FIG. 2A, and 8 helical turns - FIG. 2B);
  • FIG. 3A is a partial plan view of a stent (full circumference shown) showing an apex geometry between the apices in the helical turn and the circumferential ring of the circumferential member and the interrelationship between the open- and closed- cell configuration at one end.
  • FIG. 3B is a partial plan view of a stent (full circumference shown) showing an apex geometry between the apices in the helical turn and the circumferential ring of the circumferential member and an interrelationship between the open- and closed- cell lattices at the opposite end as that shown in FIG. 3A;
  • FIG. 3C is a plan view of a stent (full circumference shown), which illustrates a relationship between a circumferential ring and a helical turn of the circumferential member of a stent;
  • FIG. 4A is a partial plan view of a stent, which illustrates geometry of undulating helical turns without axial connectors between adjacent undulations;
  • FIG. 4B is a partial plan view of a stent, which illustrates geometry of undulating helical turns with axial connectors between adjacent undulations;
  • FIG. 4C is a partial plan view of a notch connection made between the last strut of the last apex in the helical turn of the circumferential member and the apex of the adjacent circumferential ring;
  • FIG. 5 is a plan view of a stent (full circumference shown) with several circumferential rings in a circumferential member;
  • FIGs. 6A-6B are plan views of a stent (full circumference shown), which illustrates an interrelationship between circumferential members and a helical element of different length in a stent with eleven distal and eleven proximal facing apices per turn;
  • FIG. 7A is a plan view of the stent (full circumference shown) illustrated in FIG. 2A with a square-shaped lattice covering;
  • FIG. 7B is a close-up view of the stent illustrated in FIG. 7 A;
  • FIG. 7C is a plan view of the stent (full circumference shown) illustrated in FIG. 2A with a diamond-shaped lattice covering;
  • FIG. 8A is a full view of a stent with a square-shaped lattice covering
  • FIG. 8B is a close-up view of a stent at one of its ends with a square shape lattice
  • FIG. 8C is a close-up view of a stent at one of its ends with a diamond shape lattice
  • FIG. 9 is a plan view of a stent
  • FIG. 10 is a full view of a delivery system
  • FIG. 11 A is a partial close-up view of a lattice prior to a micro- catheter advancing through a lattice opening
  • FIG. 11B is a partial close-up view of a lattice as a micro- catheter is advanced through a lattice opening;
  • FIG. 11C is a partial close-up view of a lattice after a micro- catheter is advanced through a lattice opening;
  • FIG. 12A is a partial close-up of a lattice
  • FIG. 12B is a partial close-up of a lattice
  • FIG. 12C is a partial close-up of the lattice of FIG. 2B applied to the lattice of FIG. 12A;
  • FIG. 12D is a partial close-up of the lattice openings in the lattice of FIG. 12C.
  • a stent is a device adapted to be inserted into a body and then deployed within the body, such as the carotid artery.
  • a stent has a framework of struts or relatively rigid sections. Most generally, stents assist in structurally supporting the host vessel lumen, maintaining patency through the vessel, passageway or opening, repairing vessels having an intimal flap or dissection, or isolating sections of a host vessel lumen, such as aneurysms.
  • Stents can be formed from either an elastic or springy material that will self-expand in place following placement or a plastically deformable material that is expanded in place using a balloon or similar device.
  • a sheath can compress the stent so that it can be inserted into a patient, and removal of the compressive force applied by the sheath (such as by retracting the sheath) allows the stent to self-expend for deployment.
  • the stents can also be configured to have a covering, to be a permanent implant, or to erode/resorb over time, and/or to have a substrate for elution of drugs.
  • the stent has an insertion configuration with a reduced profile that permits intraluminal or endoluminal delivery of the stent into a vessel lumen, and a deployed configuration with an enlarged profile greater than the insertion profile that provides structural support for the vessel.
  • a stent has a tubular body capable of self-expanding from a reduced diameter insertion configuration to an enlarged diameter deployed configuration at, for example, a temperature of about 10 °C, about 20 °C, or about 34 °C.
  • the reduced and enlarged profiles can include various shapes, including circular profiles and non- circular profiles (such as ovals, for example).
  • the length of the stent remains relatively constant as the stent transforms from the insertion configuration to the deployed configuration; it does not substantially foreshorten.
  • a stent in accordance with this disclosure that does foreshorten by more than 10% if that is deemed desirable.
  • the reduced and enlarged profiles can be generally circular.
  • the stent body has a first diameter (d1 ) in the deployed configuration, and a second diameter (d2) in the insertion configuration.
  • a ratio of the first diameter to the second diameter (d1 :d2) can be greater than about 2:1 , between 3.6:1 and 10:1 , or between 4:1 and 7:1.
  • the illustrated stents have circumferential members and helical elements that have undulations.
  • the undulations are formed by struts interconnected at bends or apices of the stent body, and arranged into wave-like configurations.
  • the undulations can form various patterns, such as sinusoidal patterns, zigzag patterns or similar geometric patterns.
  • the undulations of the helical element can form a series of rows or turns along the length of the stent body.
  • connectors extend between portions of the circumferential members and portions of the helical elements, or between various portions of the helical elements. Peaks are formed where a connector extends outwardly from an apex. Valleys are formed where a connector extends into an apex.
  • the stents described herein have a closed cell portion and an open cell portion. Connections between longitudinally adjacent portions of the stent body define the open and closed cells.
  • there are intermittent regular connections for example, connectors are provided at every second apex
  • intermittent irregular connections for example, connectors are provided at the first, third, seventh, tenth apex. That is, at least some apices are not connected to longitudinally adjacent rows.
  • In the portion of the stent with closed cells there are regular connections between longitudinally adjacent rows. Each of the apices in a closed cell structure is connected to a longitudinally adjacent turn.
  • the stent Due to its open cell portion with only intermittent connections between the undulations of each adjacent row, the stent can have a relatively high degree of longitudinal flexibility before expansion. Such flexibility can permit advancement through torturous pathways of relatively small diameter.
  • the open cell portion of the stent also can have a high degree of longitudinal flexibility after expansion. Such flexibility can provide a high degree of conformance with various vessel shapes.
  • the stent can have enhanced crush-resistance and fatigue performance to maintain patency of the lumen into which it is implanted.
  • the stent can have a single circumferential member (CM) that defines closed cell structures, and a single helical element (HE) that defines open cell structure as follows:
  • Circumferential members can be provided at the ends. Between these circumferential members is a generally helical element with a series of helical turns, as follows:
  • the stent can have more than three portions.
  • three circumferential members can be provided at the distal and proximal ends and also between those ends. These circumferential members are
  • each of these stents the circumferential members and the helical elements are directly connected.
  • a continuous pattern of undulations joins the circumferential member to the helical elements.
  • circumferential member has an undulating circumferential ring and a helical turn attached to the ring, a continuous helical pattern is formed about the longitudinal axis between the helical element and the helical turns of the circumferential members. There are no intermediate or transition stages between the helical element and the circumferential members.
  • Multiple stents can be joined together various ways to form, for example, a bifurcated stent device, or stent device with a side branch, or other complex structure.
  • the stents can be joined together by one or more sutures, or polymeric or metallic hinges.
  • the stents can be joined together by flexible polymeric connecting elements (polymeric webs) that connect adjacent, spaced-apart stent elements (shown as ⁇ ).
  • a prosthesis having the following stent structure can be formed by adhering a covering (described below) to join the end circumferential members to the central stent:
  • Another option is to weld the multiple stents together.
  • a further option is to assemble the stents endovascularly in an overlapping fashion.
  • cover materials include bioabsorbable polymer (such as polylactic acid, poly(trimethylene carbonate) or PGA TMC), fluoropolymer (such as fluorinated ethylene propylene or FEP, polytetrafluoroethylene or PTFE and expanded fluoropolymer, such as expanded polytetrafluoroethylene or ePTFE), fluoroelastomer (for example, TFE/PMVE copolymers), polyester (such as polyethylene terephthalate or PET), polyethylene, polypropylene, polyurethane, metal mesh (such as a woven or cut nitinol sheet) silicone, etc.
  • bioabsorbable polymer such as polylactic acid, poly(trimethylene carbonate) or PGA TMC
  • fluoropolymer such as fluorinated ethylene propylene or FEP, polytetrafluoroethylene or PTFE and expanded fluoropolymer, such as expanded polytetrafluoroethylene or ePTFE
  • the cover material can form a lattice having a plurality of openings.
  • a lattice covering can have various uses.
  • a lattice covered stent can provide plaque stabilization and scaffolding, while simultaneously allowing perfusion of blood from the inner lumen of the stent if the openings are sized appropriately. This can be beneficial, for example, to perfuse side branch blood vessels.
  • the relatively small lattice openings can be provided (for example about 40 or 50 ⁇ ) to relieve pressure from weakened portions of a blood vessel (for example, to treat a cerebral aneurysm).
  • the relatively small lattice openings also can be useful for preventing encroachment of tissue from the patient into the inner lumen of the stent (for example, when the stent is placed near cancerous tissue), while still permitting side branch perfusion.
  • FIG. 1 depicts a self-expanding stent 100 with a cylindrical body 101.
  • the stent can be made in various forms including various lengths and inside diameters. It can also be tapered along all or a portion of its length so that the inside diameter changes along the length. A tapered length section may be located closer to either end of the graft, or the taper may exist as a uniform, gradual taper extending between the graft ends.
  • a continuous pattern of undulations 106 forms a series of helical turns about the longitudinal axis 102.
  • Those helical turns 121 , 122 can form a substantially cylindrical, tubular helical element 120.
  • the helical turns 121 , 122 can form a tapered, tubular helical element.
  • the helical turns 121 , 122 have a number of apices 123. These apices 123 are formed where two or more struts 124 interconnect.
  • the stent illustrated in FIG. 1 can be called an eleven-apex stent, because it has eleven apices per circumferential row facing in a single direction (either facing distally or
  • the helical element 120 is axially interposed between and directly connected to the circumferential members 1 10 (p - proximal and d - distal).
  • Each of the circumferential members 1 10p or 110d has one undulating helical turn 1 12p or 1 12d with a pattern of undulations 106 connected to an undulating circumferential ring 1 1 1 p or 1 1 1 d with a pattern of undulations 107.
  • circumferential member 1 10p or 110d and the helical body 120 meet at division 103.
  • various connecting struts can be provided to contribute to longitudinal stability to the stent.
  • these connecting struts or connectors can join adjacent structures, turns or rows of the stent.
  • the undulations 106 and 107 in the stent body 101 form peaks 106' or 107' where a connector 1 18, 125 extends outwardly from an apex, and form valleys 106" where a connector 125 extends into an apex.
  • closed cell connectors 1 18 join the helical turn 1 12p or 1 12d and the circumferential ring 1 1 1 p or 1 1 1 d formed by undulations 107 on the circumferential member 1 1 Op or 1 10d.
  • Axial connectors 125 join adjacent undulations 106 of the helical element 120, and also join the helical turn 1 12p or 1 12d of the circumferential member 1 10p or 1 10d and undulations 106 of the helical element 120 (connections between 1 12p-121 p, 121 p-122 . . . 122-121 d, and 121 ril l 2d).
  • the lengths of closed cell connectors 1 18 vary. As depicted, the lengths of the closed cell connectors 1 18 can increase uniformly along a circumferential direction of the stent from the closed cell connector 1 18 at region C, which can have lengths of about 0.3 mm to about 3.0 mm, and a width about the same as the width of the axial connector 125 (see Table 1 ). On the other hand, the closed cell connector 1 18 at region A can have the same or substantially the same length as the amplitude B of each undulation 107 in the helical turn 1 12p of the circumferential member 1 10p. Region E defines a notch 1 19 as shown in FIG. 3A.
  • the lengths of the closed cell connectors 1 18 can adjusted so that one or more of the circumferential rings 11 1 p (or 11 1 d as shown in FIG. 3B) at the end of the stent define a plane orthogonal to the longitudinal axis.
  • FIGs. 3A and 3B are depicted extending substantially parallel to the longitudinal axis 102 of the stent body 101.
  • the closed cell connectors 118, axial connectors 125, or both need not be parallel to the longitudinal axis and can extend in a direction to the longitudinal axis at any angle (such as between about -90° and about 90° from the longitudinal axis), or may not even be substantially straight.
  • the closed cell connectors 1 18 can extend substantially parallel to the longitudinal axis 102, while the axial connectors 125 form an angle to the longitudinal axis 102 of the stent body 101.
  • the axial connectors 125 can extend substantially parallel to the longitudinal axis 102, while the closed cell connectors 118 form an angle to the longitudinal axis 102 of the stent body 101. Further still, the closed cell connectors 118 can be bent, for example roughly in the shape of the letter V or can include one or more curved portions.
  • the circumferential members 1 10p and 1 10d have closed cells
  • the closed cells can have six sides or less.
  • a side may be straight or have curvature.
  • some of the closed cells have a substantially hexagonal shape, and others have a substantially rhombic shape.
  • Other shapes or combinations of shapes are possible such as various regular or irregular shapes.
  • 11 1d of the circumferential member 110p or 110d has a series of apices 114 in each undulation 107.
  • An undulating helical turn 1 12p or 112d of the circumferential member 1 10p or 1 10d also has a series of apices 1 16 in each undulation 106.
  • Closed cell connectors 1 18 extend between peaks 106' of the undulating helical turn 1 12p or 1 12d and peaks 107' of the adjacent undulating circumferential ring 1 1 1 p or 1 1 1 d at the proximal and distal ends of the stent 100, respectively.
  • the closed cell connectors 1 18 within the undulating circumferential members 1 10p and 1 10d can extend from a valley to a valley, from a peak to a valley, or from a valley to a peak.
  • the stent of FIGs. 3A and 3B also has open cells 105.
  • the open cells 105 can have seven sides or more.
  • Axial connectors 125 extend intermittently between longitudinally adjacent turns of the undulating helical element 120. These axial connectors 125 join pairs undulations 106 on the adjacent turns [1 12p-121 p, 121 p-122 . . . 122-121 d, and 121 d-1 12d].
  • the shape of the open cells depicted in these figures is exemplary.
  • the open cells shown in FIGs. 3A and 3B are defined by regular, intermittent axial connectors 125.
  • the open cells can be formed by irregular, intermittent axial connectors.
  • FIGs. 3A and 3B further illustrate direct connections between the helical element 120 and the circumferential members 1 10p and 1 10d.
  • the undulating helical element 120 has a series of helical turns [121 p, 121 d, 122, etc] about the longitudinal axis 102.
  • the circumferential member 1 10p or 1 10d also has an undulating helical turn 1 12p or 1 12d.
  • the undulations 106 of the helical turn 121 p or 121 d of the undulating helical element 120 form continuous helical pattern with the undulations 106 of the undulating helical turn 1 12p or 1 12d of the circumferential member 1 10p or 1 10d without any intermediate or transition stages in-between.
  • FIGs. 3A and 3B also illustrate apex geometry.
  • Apex geometry refers to configuration of the apices 1 14, 1 16, 123 where two or more struts 115, 117, 124 meet, respectively.
  • Each strut and each apex has a cross-section with a width, and a thickness (into the page).
  • Apex radius, width, and thickness see FIGs. 4A-4C, and the angles of the struts forming those apices substantially define the apex geometry.
  • the undulating helical turn 112p or 1 12d of the circumferential member 110p or 1 10d and the helical turns 121 p, 121 d, 122 of the helical element 120 have a substantially uniform apex geometry.
  • the circumferential ring 11 1 p or 111 d also has the same apex geometry as the undulating helical turn 1 12p or 112d of the circumferential member 1 10p or 1 10d and the helical turns 121 p, 121 d, 122 of the helical element 120. It is also possible for the apex geometry to be varied.
  • the circumferential ring 111 p or 111 d, undulating helical tum 112p or 112d of the circumferential member 110p or 1 10d and the helical turns 121 p, 121 d, 122 of the helical element 120 can each have different apex geometries.
  • the circumferential members 1 10p and 1 10d have at least two undulating structures.
  • the circumferential members 1 10p and 1 1 Od are depicted with one undulating helical turn 112p or 112d and an undulating circumferential ring 1 1 p or 11 1d.
  • the circumferential member 1 10p or 110d of FIG. 2A has the same number apices in the undulating helical tum 112p or 1 12d and the
  • circumferential ring 111 p or 1 1 1d The amplitudes of the undulating helical turn 1 12p or 1 12d and the circumferential ring 1 1 1 p or 111 d are substantially the same. It is possible, however, that the circumferential ring 1 11 p or 111 d can have a greater or lesser number of apices than the helical turn 112p or 112d.
  • the circumferential ring 111 p or 1 1 1d The circumferential ring
  • 11 1 p or 1 1 1d can have a greater or lesser amplitude than the helical turn 1 12p or 112d.
  • the circumferential members 11 Op and 110d at the distal and proximal ends of the stent that can define a plane orthogonal to the longitudinal axis 102.
  • the circumferential rings define a plane orthogonal to the longitudinal axis 102 when the circumferential member 11 Op or 110d includes a circumferential ring 11 1 p or 1 1 1 d and a helical turn 1 12p or 112d.
  • the ends of the stent can define other angles with respect to the longitudinal axis.
  • One or more of the circumferential members 1 10p or 110d can be flared. That is, a diameter at an end of the stent 100 is greater than a diameter defined at the direct connection of the circumferential member 110p or 110d and the helical element 120.
  • circumferential members 11 Op and 1 10d at both ends of the stent can be flared.
  • apices of the circumferential ring 11 1 p or 111 d can be out of phase with apices of the helical turn 1 12p or 112d by about a half of wave period and the number of apices is equal. This can provide, for example, a peak to valley arrangement of apices in the circumferential member 11 Op or 110d.
  • the helical turns of the helical element and the undulated helical turn of circumferential member can have constant and identical amplitude throughout the winding of the helical body of the stent.
  • the lengths of the closed cell connectors 1 18 can uniformly increase along a circumferential direction of stent. Alternatively, the lengths of closed cell connectors 1 18 need not uniformly increase. For example, the closed cell connectors
  • the widths of the closed cell connectors 1 18 can be varied. For example, in FIGs. 3A and 3B, the widths of all but one of the closed connectors are substantially the same.
  • the shortest of the closed cell connectors joins two struts 115 that form the apex 114 of the circumferential ring 1 1 1 p or 1 1 1 d, and the last strut 1 17 of the apex 1 16 of the helical turn 1 12p or 1 12d.
  • That closed cell connector can have a greater width than the other closed cell connectors 1 18, and can, for example, have a width approximately twice that of the other closed cell connectors.
  • Individual closed cell connectors 1 18 also can have variable widths.
  • the shortest closed cell connector 1 18 has a variable width. A portion of the length of that closed cell connector can be narrowed to provide a notch 119.
  • the shown notch is directly adjacent to the apex of the adjoining circumferential ring 1 1 1 p or 1 1 1 d and can have length and width that is approximately equal to the width of apex junction as shown in FIG. 4A, although these parameters can also be varied beyond the width of the apex junction. That notch can be provided anywhere along the length of that closed cell connector, however.
  • the notch can act as a hinge and facilitate bending at that point, or can reduce stresses and strains around the area when the stent is deformed. Alternatively, bending or stress/strain relief can be facilitated by other means, such as by varying the thickness of the strut locally at that point. Exemplary dimensions of aspects of the circumferential ring are shown in Table 1 below. Table 1 - Exemplary Closed Cell Connector Dimensions
  • the lengths and widths of the axial connectors 125 are shown to be substantially uniform throughout the stent.
  • the lengths and widths of axial connectors 125 can vary.
  • the axial connectors 125 can be placed at various locations between the undulations 106 of the adjacent helical turns, which will vary their lengths.
  • the number of axial connectors 125 in the stent is variable.
  • FIGs. 2 A, 2B Two to six axial connectors are provided per helical turn, with a ratio of about 2.5 to 2.75 axial connectors per helical turn is shown in FIGs. 2 A, 2B.
  • the axial connectors 125 can be connected between adjacent apices of the undulating helical turns.
  • the axial connectors 125 in one helical turn pair, 121 p-122 can be offset from the axial connectors 125 in the immediately adjacent helical turn pair.
  • the placement of axial connectors, while offset in the immediately preceding and/or following helical turn pairs, can remain in the same longitudinal arrangement in the alternating pairs (see FIGs. 2A and 2B), every second helical turn pair.
  • the axial connectors 125 in a helical turn pair 1 12p-121 p, the axial connectors 125 have a specific offset arrangement.
  • the axial connectors 125 in the immediately adjacent helical turn pair can have the same offset arrangement. The arrangement maintains the axial bending flexibility of the stent in virtually all directions. Other axial connector placements are also envisioned.
  • the axial connectors 125 extend between peaks and valleys. Between about two and six axial connectors 125 can be provided per helical turn to maintain flexibility.
  • the placement of the axial connectors 125 in the stent body 101 can be varied from distal to proximal end (left to right in FIG. 2A or 3A). For example, some of the axial connectors 125 can be offset by about half an undulation period as compared to other of the axial connectors 125 of the stent body 101. This can help to avoid numerous four-strut junctions between the helical element 120 and the circumferential member 1 10d and to maintain the axial bending flexibility of the stent in virtually all directions.
  • the exemplary stent 100 defines the circumference of the stent body 101 by 10 distal facing apices ("10- apices") or, as illustrated in FIGs. 6A and 6B, by 1 1 distal facing apices ("11 - apices").
  • a smaller diameter stent can be a "10-apices” design with a deployed diameter of about 5 to 8 mm.
  • a stent can have an undulating helical element 120 that comprises about one helical turn or a portion of one helical turn such as about */s, 3 ⁇ 4, or 2 of a helical turn. An example of such a stent is shown in FIG. 9.
  • the stent can have a deployed diameter of about 3 mm to about 6 mm, including about 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, and 6 mm.
  • Such a stent can have a length of about 15 mm and an insertion, pre-deployed diameter of about 1.0 mm to about 2.3 mm.
  • a larger stent can be an "11 -apices" design with a deployed diameter of about 9 to 10 mm. However, 6-, 8-, 9-, 12-, 13-, 14-, 15-, 16-, 18- and more apices are also envisioned and encompassed.
  • the number of closed cell connectors 118 depends on the number of apices in the stent body.
  • FIGs. 2A and 2B there are ten closed cell connectors 1 18.
  • FIGs. 6A and 6B there are eleven closed cell connectors 118.
  • Increasing the number of closed cell connectors can increase the axial stiffness and columnar strength of the distal and proximal undulating circumferential members at the ends of the stent 100. This can decrease the overall tendency for the stent 100 migration along the vessel lumen and further reduces, for example, the tendency of the stent to either move into the site of the aneurysm or follow the path of the expanded vessel.
  • the closed cell and axial connectors 118, 125 have a tendency to maintain axial spacing of the helical turns at their connection points, act as springs in this situation, store mechanical energy which then acts to restore the stent to an unbuckled state.
  • FIG. 5 shows a variation of the circumferential members.
  • the circumferential member is provided with additional circumferential rings 113p or 113d at the ends.
  • the additional undulating circumferential rings are shown as 1 13p and 1 13d.
  • the number of circumferential rings 1 1 1 p and 1 13p, or 1 1 1 d and 1 13d at the distal and proximal ends can be the same or different.
  • the stent 100 can be formed from a wide variety of materials or combinations of materials, including metals and plastics.
  • metals that can be used are stainless steel, titanium, tantalum, alloys such as Elgiloy® and Phynox® spring alloys, 316 stainless steel, MP35N® alloy, and Nitinol nickel-titanium alloy.
  • super-elastic versions or shape memory versions of the mentioned alloys can also be used.
  • Use of nitinol alloys can impart the self-expanding characteristic to the stent.
  • the phase behavior of the material can be selected and the stent treated so that the stent has a tendency to transform from the insertion configuration to deployed configuration when unconstrained at body temperature.
  • the active A f (austenitic transformation finish) temperature for nitinol of the completed stent assembly can be less than about 35 °C, be between about 0 °C and about 25 °C, or be between about 10 °C and about 17 °C, as determined by a bend and free recovery test known in the art (see ASTM standard no. F2028-01 ).
  • plastics useful for fabricating the stents are PTFE, other fluoropolymers, or other plastics (such as PET).
  • resorbable materials polymers or copolymers possessing one or more of the following monomeric components: glycolide (glycolic acid); lactide (d-lactide, l-lactide, d,l-lactide);
  • trimethylene carbonate trimethylene carbonate
  • p-dioxanone trimethylene carbonate
  • caprolactone trimethylene carbonate
  • hydroxybutyrate trimethylene carbonate
  • the stents can be cut from a continuous tube of material into the desired pattern, such as through use of a laser.
  • the stents can also be constructed by various known techniques such as machining, chemical etching, laser ablation, die-cutting, plasma etching, stamping, water jet cutting or any other suitable means as long as the required stent structure can be achieved.
  • the stents can also be formed from a flat sheet of material that is cut into the desired pattern and then bonded together to form a tube having a seam.
  • the stents can be constructed from wires or ribbons that are formed into the desired shapes and then bonded together, for example by welding, into the final pattern.
  • Coverings can be provided for the stent.
  • the use of coverings in combination with the stent can help, for example, to (1) minimize or at least reduce the risk of introduction of emboli into a bloodstream, (2) resist tissue encroachment into the lumen defined by the stent, and (3) reduce pressure on a weakened part of a blood vessel to reduce the risk of vessel rupture.
  • Coverings can be made from continuous materials with no holes visible without magnification.
  • FIGs. 7A and 7C illustrate two kinds of other coverings, which can be termed to be lattices. These lattices are unitary structures. A series of interconnected, continuous segments define one or more patterns of openings in the lattice. The width of the lattice segments ranges between about 0.02 mm and about 0.2 mm, between about 0.02 mm and about 0.1 mm, or about 0.05 mm. The thickness of the lattice segments ranges between about 0.02 mm and about 0.2 mm, between about 0.02 mm and about 0.1 mm, or about 0.05 mm.
  • the lattice opening size is the diameter of the largest inscribed circle, and ranges between about 40 ⁇ and about 1 mm, between about 50 ⁇ and about 800 ⁇ , between about 100 ⁇ and about 750 ⁇ , or between about 200 ⁇ and about 500 ⁇ .
  • the lattice opening size can be the size of the smallest kerf width of a laser.
  • a lattice opening for use in an application such as aneurysm exclusion can be between about 10 ⁇ and about 40 ⁇ , between about 12 ⁇ and about 30 ⁇ , or between about 5 ⁇ and about 20 ⁇ .
  • the lattice openings can be arranged in various regular and irregular patterns to provide diametrically stable functionality.
  • the openings can have various shapes, such as triangles, squares, diamonds, parallelograms, hexagons, circles, or any other geometric shape, or combinations of shapes.
  • FIGs. 7A and 7C show illustrative square and diamond-shaped openings, respectively.
  • the square-shaped lattice of FIG. 7A has a series of continuous longitudinal segments that extend in a direction that is substantially parallel to a longitudinal axis of the stent, and a series of continuous circumferential segments that extend in a direction that is at an angle approximately transverse to the longitudinal axis of the stent.
  • the square-shaped openings have four equal or substantially equal sides and its interior angles are all at or approximately right angles (90°).
  • the arrangement of the square-shaped lattice of FIG. 7A can provide longitudinal segments with substantially constant length in an insertion or constrained configuration (when the stent has a reduced profile), and in a deployed configuration (when the stent has an enlarged profile greater than the insertion profile).
  • the longitudinal segments of the lattice can have lengths ⁇ 5% in the insertion configuration, ⁇ 4% in the insertion configuration or ⁇ 2% in the insertion configuration.
  • the lattice covering can have parallelogram- shaped openings. Continuous longitudinal segments extend in a direction that is substantially parallel to the longitudinal axis of the stent.
  • Continuous circumferential segments extend at an angle with respect to the longitudinal axis that is greater than 0° and less than about 90° with respect to the longitudinal axis.
  • the circumferential segments can be oriented at an angle of about 45° with respect to the longitudinal axis.
  • Such a parallelogram-shaped lattice can be positioned with respect to the stent so that one or more of the longitudinal segments extend along the length of the closed cell connectors.
  • the lattice covering can have diamond-shaped openings as shown in FIG. 7C.
  • Two sets of continuous circumferential segments extend at different angles with respect to the longitudinal axis of the stent. For example, a first set of the circumferential segments is oriented at an angle of about 45° with respect to the longitudinal axis, while a second set of the circumferential segments is oriented at an angle of about -45° and about -90° with respect to the longitudinal axis. In the lattice depicted in FIG. 7C, there are no longitudinal segments.
  • lattice opening shapes can be obtained, such a triangles, or trapezoids, with additional lattice segments.
  • the lattice can have two sets of circumferential segments, as well as longitudinal segments. One set of the circumferential segments can be oriented at an angle of between about 45° and about 90° with respect to the longitudinal axis, while a second set of the circumferential segments can be oriented at an angle of between about -45° and about -90° with respect to the longitudinal axis.
  • Longitudinal and/or circumferential lattice segments can be positioned to extend along one or more stent struts. For example, in FIG.
  • longitudinal segments of the square-shaped openings extend along one of the closed cell connectors of the circumferential member, and are longitudinally aligned with it.
  • the number of longitudinal segments of the lattice covering can be the same as or greater than the number of the closed cell connectors in each of the circumferential members.
  • One, some, or all of the longitudinal members can be joined with the closed cell connectors.
  • other shaped openings of the lattice can be aligned so that one or more sides extend along the length of one or more connector struts within the stent.
  • the number of attachments between the stent and the lattice covering can be varied depending on various factors, such as the size of the stent openings, the size of the lattice openings, and the orientation of the lattice with respect to the stent.
  • the closed cells 130 of the stent have a larger dimension along the longitudinal axis, and a shorter dimension transverse to the longitudinal axis.
  • the square-shaped lattice covering is oriented with fewer lattice openings across the larger dimension of the closed cell 130, and an equal or fewer lattice openings across the smaller dimension of the closed cell 131.
  • the diamond-shaped lattice covering is oriented with more lattice openings across the smaller dimension of the closed cell (133) than in FIG. 8B.
  • FIGs. 7 A, 7B and 7C In those lattices, the size and shape of the openings is substantially uniform throughout. However, the lattice opening pattern also can be irregular. Lattice openings can be provided in one portion and not in the balance of the lattice. For example, a first arc of the lattice can have openings along the entire length of the lattice while a second arc opposite of the first arc is substantially without openings. Alternatively, the lattice openings can be provided in along a spiral with respect to the longitudinal axis. Further still, the lattice can have a perfusion region within which the openings are provided and an excluding region devoid of openings, thus, configured to allow orientation of the perfusion region to be determined endovascularly.
  • the lattice openings can have several patterns.
  • the openings of similar size and shape can be grouped together to have at least two sets of openings with each set having a predetermined size and shape, or uniformly distributed throughout the lattice.
  • lattice openings corresponding to the circumferential members can be square-shaped as depicted in FIG. 7A, while the lattice openings corresponding to the helical element can be diamond-shaped as depicted in FIG. 7C.
  • the lattice can have three sets of openings distributed along the length of the lattice, one at the proximal end, one at the distal end and one in-between.
  • the openings of the proximal set for example, can have diamond-shaped openings with a nominal diameter of about 300 ⁇ as measured by the largest inscribed circle.
  • the openings of the distal set for example, can also have diamond-shaped openings but with a nominal diameter of about 500 ⁇ as measured by the largest inscribed circle.
  • the openings of the central set those that span between the proximal and distal sets, can have squared- shaped openings with a nominal diameter of about 100 ⁇ as measured by the largest inscribed circle.
  • Other permutations, sets, and groupings are also envisioned.
  • one or more large oval openings adapted to allow for side branch perfusion can be provided.
  • the lattice can be produced by laser cutting, such as a C0 2 laser, from a longitudinally wrapped tube of, for example, six layers of biaxially- oriented film made from one suitable cover material or from a combination of suitable cover materials to produce a unitary structure, not woven.
  • a lattice could have a nominal thickness between about 10 um and about 250 ⁇ , between about 20 ⁇ and about 60 ⁇ , or between about 35 m and about 50 ⁇ .
  • Other films can be used together with the biaxially-oriented films or in place of them to form the lattice.
  • uniaxially-oriented or multiaxially-oriented films can be used. These films can be wrapped longitudinally as described above, or can be wrapped in other configurations.
  • the films can be helically wound to form the tubular structure.
  • Other methods of lattice preparation are also envisioned in accordance with the procedures described in U.S. Pat. Pub. No. 2008/01 19943 to Armstrong et al., or U.S. Pat. 7,306,729 to Bacino et al., the entire disclosures of which are incorporated herein by reference.
  • Perforated covers were created by initially wrapping several layers of an ePTFE film that includes a discontinuous (porous) layer of FEP. Films made as taught by U.S. Pat. No. 5,476,589 to Bacino are suitable for FEP coating and use in this application.
  • the film used ranged from 2.5 to 5 microns in thickness and had a density range of about 0.5 to 1.0 g/cc.
  • the film was wrapped circumferentially, with the FEP side oriented outwards, onto a glass mandrel approximately 1 mm diameter larger than the outside stent diameter.
  • Other materials, including biocompatible polymers and metals could be used for the perforated cover structure, with process parameters adjusted accordingly. Twelve layers of the film were wrapped around the mandrel surface, with a range of 2 to 100 layers considered desirable.
  • the wrapped mandrel was placed in a convection oven set at 320 °C for 12 minutes, and then allowed to cool to about ambient temperature. While the perforations may be formed by various methods including the use of, for example, mechanical punches, laser cutting is preferred for speed and precision.
  • a lattice can also be formed from a fiber by techniques such a knitting, weaving, or crocheting.
  • Conformability of the stent with and without the lattice can be measured according various known test methods.
  • ISO 25539-2 (2008) describes one protocol for assessing the ability of medical devices to conform to vessel walls and is incorporated in and constitutes a part of this specification.
  • the test method measures the smallest radius of curvature that a stent can withstand without kinking. A more conformable stent will have greater ability to conform to bends having a smaller radius of curvature without kinking, and a less conformable stent will have a lesser ability to conform to such bends without kinking.
  • Flexibility of the stent with and without the lattice can be assessed by a three-point bend test on deployed stents.
  • One method for such testing is set forth in ASTM F2606-08, the entire disclosure of which is incorporated herein by reference. Most generally, after the stent is placed into a specific three- point bend fixture, the amount of force required to bend the stent is measured. The resulting load-deflection curves can be used to assess flexibility of stents. A more flexible stent will have greater ability to bend at lower forces, and a less flexible stent will have a lesser ability to bend at lower forces.
  • the stent and the lattice can be sized to be the same or different.
  • the lattice covering shown in FIGs. 7 A, 7C, 8A and 8B does not notably constrain the stent, and for example, the stent has an outer diameter of about 8 mm, and the lattice has an inner diameter of about 8 mm.
  • the lattice can resist full expansion of the stent, depending upon lattice geometry and material chosen. This can be achieved by over-sizing the stent with respect to the lattice covering.
  • the stent can have an outer diameter that is oversized with respect to the lattice covering in an amount of about 10% to about 100%, between about 20% and about 70%, or between 30% and about 50%.
  • the self-expanding stent can have an outer diameter of about 10 mm, and the lattice can have an inner diameter of about 8 mm.
  • An effect of oversizing the stent as compared to the lattice is to provide a final self-expanding device that resists forces tending to collapse the deployed stent.
  • the amount of force needed to reduce the diameter of the deployed stent is higher when an oversized self-expanding stent is used as compared with the same stent that is not oversized.
  • the lattice can be made from a distensible material.
  • a distensible material for the lattice can be made according to various known techniques, such as in accordance with the procedures described in U.S. Pat. Nos. 4,877,661 and 5,026,513 to House et al., the entire disclosures of which are incorporated herein by reference. Using this method, a liquid lubricant is mixed with a commercially available powder of PTFE, and the mixture is extruded by a ram-type extruder or other type of extruder.
  • the material is then expanded by rapid stretching either uniaxially, biaxially, or multiaxially after the liquid lubricant is removed from it.
  • the material after stretching is then heated while restrained to a temperature above its crystalline melt point of the polymer and held there for a period of time.
  • the time and temperature will vary depending on the amount of material being heated. In general, the higher the temperature used, the shorter the time.
  • a strong porous material is produced.
  • This material having undergone uniaxial expansion has a microstructure of nodes interconnected by fibrils that are essentially parallel and straight.
  • the lattice made from distensible material can have a rapid recovery of greater than about 5.5%, greater than about 15%, or greater than about 30%.
  • the stent can be sized to have an outer diameter of about 8 mm, and the distensible lattice can be sized to have an inner diameter of about 6 mm.
  • a lattice covering can stretch or deform when advancing a catheter or other tool from a deployment system through its sidewall to allow crossing for deployment of a side branch device or other device.
  • FIG. 11 A is a partial view of a lattice covering prior to micro-catheter advancement.
  • FIG 11 B is a partial view of the lattice with a micro-catheter advancing through one of the lattice openings and showing the opening deforming to take the shape of the outer diameter of the micro-catheter.
  • FIG 11C is a partial view of the same lattice in FIG 11 B after the micro-catheter is removed and shows that the lattice opening has substantially returned to its original size and shape.
  • a lattice covering can be formed from longitudinal strips of any of the cover materials described herein including by bonding or weaving into a basket weave, mesh, or lattice pattern.
  • a stent can be covered with multiple layers of coverings.
  • a lattice can be formed by two or more layers of lattice coverings. Two or more layers can be bonded together with openings aligned or offset. One or more of the layers can have elastic properties.
  • Two lattice coverings as shown in Figures 12A and 12B can be layered such that the openings are offset or staggered as shown in FIG. 12C. The resulting open area, as shown in FIG. 2D, may provide smaller trans-mural porosity than may be achieved by utilizing a single lattice covering.
  • a lattice can be imbibed with PVA (polyvinyl alcohol) or other materials (e.g., gold, platinum/iridium, or the like) to aid the physician during imaging (e.g., ultrasound, fluoroscopy, MRI, or the like).
  • a lattice can be imbibed with one or more therapeutic agents.
  • the term "imbibed or imbibing" as used herein is meant to describe any means for at least partially filling a portion of the pores of a porous material such as ePTFE or the like. This can be done during manufacturing by, for example imbibing, or it can be done during catheter flushing which may imbibe or coat one or more therapeutic agents into or onto the lattice.
  • a therapeutic agent can be a drug or other pharmaceutical product such as a non-genetic agents, genetic agents, cellular material, etc.
  • suitable non-genetic therapeutic agents include but are not limited to: anti- thrombogenic agents such as heparin, heparin derivatives, vascular cell growth promoters, growth factor inhibitors, paclitaxel, etc.
  • an agent includes a genetic therapeutic agent
  • such a genetic agent may include but is not limited to: DNA, RNA and their respective derivatives and/or components: hedgehog proteins, etc.
  • a therapeutic agent includes a cellular material
  • the cellular material may include but is not limited to: cells of human origin and/or non-human origin as well as their respective components and/or derivatives thereof.
  • the therapeutic agent includes a polymer agent
  • the polymer agent may be a poly-styrene-polyisobutylene- polystyrene triblock copolymer (SIBS), polyethylene oxide, silicone rubber and/or any other suitable substrate.
  • SIBS poly-styrene-polyisobutylene- polystyrene triblock copolymer
  • the polymer agent can be biodegradable such as PLA, PLGA, etc.
  • a therapeutic agent can also be a coating material as described herein.
  • a lattice can also be imbibed with an alginate.
  • the alginate can be imbibed throughout the lattice or selectively to one or more portions of the lattice.
  • the alginate can be cross-linked by delivering divalent or trivalent cations (for example, calcium) though a catheter or the stent delivery system to the stent delivery site.
  • the cross-linked alginate portion of the lattice can be used to relieve pressure from weakened portions of a blood vessel (for example, to treat a cerebral aneurysm) or to occlude other openings or vessels adjacent to the sidewall of the stent.
  • a lattice can be imbibed with calcium.
  • An alginate can be delivered to the calcium imbibed lattice through the stent delivery system or by another catheter system to cause crosslinking on or in close proximity to the lattice.
  • a stent with a calcium imbibed lattice can be placed over an aneurysm neck and then one can introduce the alginate through the lattice and into the aneurysm. While flowing through the calcium imbibed lattice, the alginate can react with the calcium to cause formation of a gel in the aneurysm sac.
  • the lattice is shown to be generally uniform.
  • the lattice covering can be varied along its length.
  • the size of the openings, the orientation of the openings and their shapes need not be uniform throughout the lattice covering.
  • a portion of the lattice covering can have square-shaped openings and another portion of the lattice covering can have diamond-shaped openings.
  • These coverings can be joined to the stent over all or over only a portion of the device length.
  • the coverings can be joined intermittently.
  • a lattice covering can be joined only at the ends of the stent, at the closed cell portions of the stent, or only at the closed cell connectors.
  • the covering can be on the outside of the stent elements; it can be on the inside of the stent; or it can be on both.
  • the attachment of the stent and the covering can be accomplished by mechanical means such as fiber, braiding a lattice into the stent, or discrete mechanical attachment points (clips, etc.). These components also can be bonded together through heat treatment (such as, sintering of the materials together) or through use of a wrap (for instance a tube, tape, or membrane) around the outside of the stent and cover (either continuous or discontinuous), that is adhered through either a thermoplastic or thermoset adhesive to the stent and cover.
  • the covering also can be attached to the stent by adhering the two together through use of a suitable adhesive. Combinations of these methods also can be used.
  • thermoplastic adhesives such as fluorinated ethylene propylene (FEP), polyurethane,
  • thermoplastic fluoropolymer including flouroelastomers such as those disclosed in U.S. Pat. No. 7,049,380 [TFE/PMVE], etc.
  • Copolymer contains between about 40 and 80 weight percent perfluoromethyl vinyl ether and
  • Thermoset adhesives are also useful, such as silicone including room temperature vulcanizing (RTV) silicone.
  • the cover is a PTFE lattice
  • fluorinated ethylene propylene (FEP) can be used as an adhesive.
  • FEP fluorinated ethylene propylene
  • Such a coating can be applied by various methods including extrusion over the covering, powder coating with powdered FEP that is subsequently melted to flow over the lattice surface, or running the covering through a bath of molten FEP optionally followed by pulling the covering through a die to achieve uniformity of the coating.
  • the stent can be provided with a coating of adhesive such as by powder coating with FEP in a continuous or discontinuous fashion, or through use of an FEP wrap (for instance a tube, tape, or membrane).
  • a cover can be provided that allows the stent to be embedded within the cover material, such as through use of a silicone or other elastomeric material.
  • Covers can be coextensive with the length of the stent, as shown in FIGs. 7A-7C and 8A-8C, or they can be either longer or shorter than the stent. Covers can also cover only a portion of the stent, or can cover separately two or more portions of the stent. If multiple portions are covered, covers can also overlap on the stent.
  • the stent, the covering or both can be provided with additional treatment or therapeutic agents, such a drugs, radiation, radiopaque markers or coatings, or other agents to enhance visualization in-vivo.
  • additional treatment or therapeutic agents such as drugs, radiation, radiopaque markers or coatings, or other agents to enhance visualization in-vivo.
  • various coatings can be provided on all or some of the stent surface, the covering or both.
  • Suitable coating materials include fluoroelastomer, ceramic, silicone, polyethylene, carbon, gold, heparin, hydrogel, lubricious coatings, antibiotics, anticoagulant agents, anti-inflammatory agents, antimetabolic agents, antimicrobial agents, antimigratory agents, antiplatelet agents, antiproliferative agents, antisense agents, cytostatic agents, nitric oxide releasing agents, pro-endothelial agents, selective gene delivery vectors, super oxide dismutases, super oxide dismutases mimics, vasoactive agents, and combinations thereof, such as, for example, actinomycin-D, ciclosporin, clobetasol, dexamethasone, estradiol, everolimus, heparin, paclitaxel, pimecrolimus, rapamycin, sirolimus, tacrolimus, and derivatives of these compounds.
  • Coating materials can provide numerous benefits, including protecting the underlying stent material, providing a substrate for delivery of drugs or other therapeutic substances, isolating the stent material from interaction with surrounding cells, improving fluoroscopic visualization. Coatings can be applied in any material-appropriate manner, such as dip-coating, spray-coating, electro- deposit, or chemical vapor deposition.
  • Such a stent can be used to treat various body lumens, including, the aortoiliac, carotid, cerebral, coronary, hepatic, infrainguinal, mesenteric, renal, splenic, subclavian, and superior mesenteric arteries.
  • Such a stent's configuration allows it to conform to the native anatomy of blood vessels or other body lumens, while also enhancing the stent's fatigue performance and crush- resistance.
  • a stent as described herein can be used for treating stenosis in a carotid artery of a patient.
  • a stent is provided having an insertion configuration with a reduced profile and a deployed configuration with an enlarged profile greater than the insertion profile.
  • the stent can be a nitinol stent which is capable of self-expanding to the deployed configuration when a constraint is removed.
  • the stent has at least two spaced apart, undulating circumferential members, and an undulating helical element extending helically about the longitudinal axis, axially interposed between and directly connected to the circumferential members.
  • the undulating helical element defines a plurality of open cells, and the circumferential member defines a plurality of closed cells.
  • the stent is inserted into the vasculature of the patient. The stent is then positioned and deployed within the patient's carotid artery, for example, at a position where plaque has caused a narrowing of the artery.
  • the stent can be delivered by catheter.
  • the stent can be radially compressed and placed within a sheath.
  • the sheath can be subsequently mounted on a 5F (for 6-8 mm) or 6F (for 9-10 mm) introducer-sheath compatible delivery system.
  • one or more radiopaque markers can be integrated into the delivery system.
  • one radiopaque marker such as BaSCXt
  • Another radiopaque marker such as a platinum / iridium band, can be incorporated into the sheath material to indicate progression of the sheath retraction during stent deployment.
  • two markers such as gold, platinum, or tantalum, can be placed adjacent to the proximal and distal ends of the compressed stent to aid in positioning.
  • the system comprises a guidewire having a hollow, bullet- shaped distal end, a balloon catheter and separate inflation means for the balloon catheter and for deployment of an intraluminal graft.
  • Deployment as used herein describes the process of causing an intraluminal graft to fit coaxially in close contact with the luminal surface of the conduit within which the graft has been placed, with little or no wrinkling of the intraluminal graft. Deployment may involve the
  • the hollow, bullet-shaped distal end encloses the balloon and the distal end of the intraluminal graft, allowing for easy insertion of the delivery system into the vascular system.
  • the guidewire is located within a lumen of the catheter shaft of the balloon catheter to allow axial movement of the hollow, bullet-shaped end with respect to the balloon and the intraluminal graft.
  • Balloon inflation means such as a syringe is fitted to the proximal end of the balloon catheter to accomplish inflation of the balloon located at the distal end. Separate inflation means such as a second syringe is provided for deployment of the intraluminal graft.
  • the assembled system along with an intraluminal graft is introduced into the vascular system at a convenient site by conventional means such as a catheter introducer.
  • the delivery system is inserted further into the vascular system until the desired location for the intraluminal graft is reached, which may be verified by conventional imaging techniques such as angiography in that portions of the system may be made to be radiopaque.
  • the hollow, bullet-shaped tip is extended distal ly beyond the balloon by axial movement of the guidewire, after which the balloon is inflated causing deployment of the distal end of the intraluminal graft.
  • the balloon is adequately inflated to cause the end of the intraluminal graft to be secured against the lumen of the conduit in which it is located and thereby sealed to the lumen.
  • the intraluminal graft is then held captive between the balloon at the distal end and its attachment to a seal fitting located at the proximal end of the graft.
  • the means for deploying the intraluminal graft is then activated, introducing a volume of an inflating medium, preferably a liquid such as saline into the interior of the tubular intraluminal graft between its ends adequate to cause deployment of the intraluminal graft, thereby bringing it into contact with the lumen of the living vessel.
  • the pressure within both the balloon and the intraluminal graft is then released, leaving the intraluminal graft deployed outwardly against the lumen of the conduit.
  • the proximal end of the intraluminal graft is transected even with the transected end of the conduit.
  • the hollow, bullet-shaped end is moved in a proximal direction to enclose the deflated balloon, after which the delivery system is withdrawn leaving the intraluminal graft behind.
  • the proximal end and optionally the distal end of the intraluminal graft are then secured using sutures if such an attachment is desired.
  • the proximal end and optionally the distal end of the intraluminal graft may be secured using expandable stents, which offer the advantage of
  • the system generally comprises a sheet of material adapted to extend around at least a portion of a collapsed implant, such as a collapsed stent or stent-graft.
  • the sheet of material may form a tubular member when extending around at least a portion of a collapsed member.
  • the system also may include a coupling member for coupling portions of the sheet together to maintain the implant in its collapsed state during delivery to a desired site in a mammalian body.
  • the sheet may be constructed of a thin material which does not significantly contribute to the structural rigidity or cross-sectional profile to the delivery assembly. This construction may also eliminate the need for external sheathing or a guide catheter and is believed to advantageously increase the ability of the surgeon to deliver the device to relatively remote sites and through small tortuous vasculature.
  • the sheet may comprise implantable material so that after release it may remain with the stent at the desired site.
  • the deployment system includes a confining sheath placed around a compacted endoluminal device.
  • a deployment line is provided in the system that is an integral extension of the sheath.
  • the sheath retracts from around the compacted endoluminal device.
  • material from the sheath may be converted into deployment line.
  • the endoluminal device expands in configuration and repairs vascular or cardiac structures of an implant recipient. Any remaining sheath material is removed from the implantation site along with the deployment line.
  • Alternate deployment systems can be adapted for access in arteries or veins above the pelvis; for example, from the radial, brachial, and common carotid arteries.
  • the access site arteries listed above are close to the carotid bifurcation and an alternate delivery system as shown in Fig, 10 can be used.
  • the stent can be compressed and mounted on a delivery system as described previously.
  • the common carotid artery can be punctured at a location just above the collarbone. In this instance, the distance from the puncture site to the carotid bifurcation is less than 20 cm.
  • a conventional carotid stent delivery system in this instance would leave a significant length of redundant catheter thus necessitating the use of an assistant to stabilize and deploy the stent.
  • An alternate deployment system can allow a single operator. Any stent can be delivered with such a delivery system.
  • An example of a stent that can be delivered with such a delivery system would be a self -expanding stent including stents described herein, stents having a high radial force upon delivery, stents with a small circular cell size between expanded metal struts, and/or stents designed to be deployed to a heavily calcified region of vasculature.
  • a delivery system adapted for access from the radial, brachial and carotid arteries can range from about 15 cm to about 80 cm in length and can be no longer than about 45 cm (or about 60cm or about 30cm or about 20 cm) for ease of use and operation by one operator.
  • a delivery system can have a handle housing 300, a locking mechanism 302, flushing port 304, strain relief 306, catheter shaft 308, retractable sheath 310 covering stent, and a mechanism for operation of the deployment such as a thumb wheel 312.
  • a cover can provide a scaffold to reduce the risk of introduction of emboli being released into a bloodstream.
  • a cover also can resist tissue encouragement into the lumen defined by the stent.
  • a cover can help to reduce pressure on a weakened part of a blood vessel, which in turn can reduce the risk of vessel rupture.
  • the stent with a lattice can be useful for treating carotid stenosis.
  • the lattice covered stent retains its flexibility and conforms to the anatomy, yet retains plaque due to a substantially smaller effective opening size of the lattice (as small as 0.04 mm).
  • a stent is provided as described above having at least two spaced apart, undulating circumferential members, and an undulating helical element extending helically about the longitudinal axis, axially interposed between and directly connected to the circumferential members.
  • the undulating helical element defines a plurality of open cells, and the circumferential member defines a plurality of closed cells.
  • the stent is inserted into the patient while the stent is in an insertion configuration with a reduced profile.
  • the stent is moved through the patients vasculature and positioned with the portion of the carotid artery to be treated.
  • the stent is deployed so that it assumes an enlarged profile greater than the insertion profile.
  • the stent can include a lattice covering to provide further emboli protection.
  • the stent and lattice are configured and positioned after deployment so that the stent provides scaffolding necessary to hold the artery open and ensure adequate blood flow, while the lattice in combination with the stent simultaneously provides plaque stabilization.
  • the lattice openings can further provide perfusion to a side branch vessel in this application when properly positioned.
  • a lattice can have a perfusion region with openings and an excluding region substantially without the openings.
  • the lattice covered stent can be positioned so that the perfusion region allows side branch perfusion. Orientation can be determined by fluoroscopic visualization of one or more radiopaque markers incorporated within the lattice.
  • a lattice covered stent can be used in conjunction with balloon catheters and/or guidewires, for example, to provide perfusion to a side branch vessel.
  • a balloon catheter can be endovascularly introduced into a one of the openings of the lattice, and expanded to distend or disrupt lattice covering. This allows endovascular modification of the size and shape of at least that one opening. Again, this can help to provide side branch perfusion among other uses.
  • a stent is prepared using a commercially-available medical grade nitinol tubing.
  • the composition of the nitinol is selected so that the finished stent frame, prior to subsequent processing as described in examples 5 and 6 below, has an active austenitic transformation finish temperature of about 20 °C or less.
  • the tubing is laser cut to remove material from the tubing and to provide a structure as shown in FIGs. 2A and 2B with 10 apices and a deployed diameter of about 8 mm, a thickness of about 0.15 mm. Slag, which can be formed during laser cutting of nitinol, is removed by mechanical or chemical techniques to provide a smooth exterior surface.
  • the laser cut tube also is electropolished.
  • This self-expanding stent device is diametrically compacted at ambient temperature. Compaction is effected using a collet or iris type of diametrical compaction device, such as taught by U.S. Pat. No. 6,629,350. The compacted stent device is inserted directly from the compaction device into a length of capture tubing to retain the stent device in its compacted state..
  • a lattice of the type shown in FIGs. 7A and 8B with square- shaped openings is prepared.
  • a mandrel is wrapped with an ePTFE film with a discontinuous FEP coating to a thickness of approximately 0.05 mm.
  • the film- mandrel assembly is placed into an oven at 320 °C for 12 minutes to bond the layers.
  • the assembly is removed from the oven and allowed to cool at room temperature to provide an ePTFE tube.
  • Using a C0 2 laser a pattern of regular square openings is cut into the tube.
  • the openings are square-shaped with a size of less than about 0.5 mm.
  • the width of the lattice segments is greater than about 0.05 mm (see FIG. 7B).
  • a !attice of the type shown in FIGs, 7B and 8C with diamond- shaped openings is prepared, An oversized mandrel that is approximately 25% larger than the nominal stent diameter is wrapped with an ePTFE film with a discontinuous FEP coating to a thickness of approximately 0.05 mm.
  • the film-mandrel assembly is placed into an oven at 320 °C for 12 minutes to bond the layers.
  • the assembly is removed from the oven and allowed to cool at room temperature to provide an ePTFE tube.
  • a pattern of slits approximately 40% longer than the final inscribed circle diameter are oriented transverse to the longitudinal axis of the mandrel are cut into the tube.
  • the tube with s!its is removed from the mandrel and stretched over the nominal stent diameter mandrel and the slits open to form diamond shapes.
  • the tube ends are temporarily fixed to length on the mandrel by ePTFE tape.
  • the assembly is then placed into a convection oven set at 370 °C for 12 minutes.
  • the material shrinks to form diamonds that are approximately 0.5 mm diameter inscribed circle and lattice segments are approximately 0.05 mm wide.
  • the obtained stent of Example 1 or 2 is powder coated with a thin layer of FEP powder (DuPont ® FEP Fluoropolymer Resin, Product Type 5101) in a tabletop blender within which the stent is suspended. After the stent is placed within the blender with FEP powder, the blender is activated. The powder disperses into the volume of the blender chamber and the stent is powder coated. After approximately 3 seconds, the stent is removed, and is placed into a convection oven set at 320 °C for 5 minutes. After this time, the stent is removed and allowed to air cool. [00149] The stent is then placed on a mandrel having an outer diameter approximately equal to the inner diameter of the stent. The mandrel is covered on its outer diameter with polyimide film. To temporarily fix the stent to the mandrel, the stent is placed in a convection oven set at 320 °C for 4 minutes.
  • FEP powder DuPont ® FEP Fluor
  • a square-shaped opening lattice according to Example 3 is coaxially positioned over the stent.
  • the lattice is axially tensioned over the stent and comes in full contact with the outer diameter of the stent.
  • the cover ends are temporarily fixed to length on the mandrel by ePTFE tape.
  • a temporary layer of ePTFE film is then tightly wrapped around the assembly.
  • the perforated cover is then placed within a convection oven set at 320 °C oven for 12 minutes to adhere the cover to the stent. After removal from the oven and being allowed to cool to ambient temperature, the temporary film wrapping is removed, and the stent and lattice covering are removed from the mandrel.
  • the lattice is then trimmed flush with the end of the stent.
  • the obtained stent of Example 1 or 2 is powder coated as described in Example 3 above.
  • the prepared diamond-shaped opening lattice of Example 4 is coaxia!ly positioned over the stent.
  • the lattice is axially tensioned over the stent, causing it to decrease in diameter and to come in full contact with the outer diameter of the stent.
  • the lattice ends are temporarily fixed to length on the mandrel by ePTFE tape.
  • a temporary layer of ePTFE film is then tightly wrapped around the assembly.
  • the lattice is then placed within a convection oven set at 320 °C oven for 12 minutes. After removal from the oven and being allowed to cool to ambient temperature, the temporary film wrapping is removed, and the stent and lattice covering are removed from the mandrel.
  • the lattice is then trimmed flush with the end of the stent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
PCT/US2011/061165 2011-01-14 2011-11-17 Stent Ceased WO2012096716A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP25156374.8A EP4527358A3 (en) 2011-01-14 2011-11-17 Stent
BR112013017365A BR112013017365A2 (pt) 2011-01-14 2011-11-17 stent
KR1020137021325A KR101869998B1 (ko) 2011-01-14 2011-11-17 스텐트
CA2822321A CA2822321C (en) 2011-01-14 2011-11-17 Stent
JP2013549406A JP6174492B2 (ja) 2011-01-14 2011-11-17 ステント
CN201180064658.3A CN103313681B (zh) 2011-01-14 2011-11-17 支架
RU2013137864/14A RU2013137864A (ru) 2011-01-14 2011-11-17 Стент
AU2011354638A AU2011354638A1 (en) 2011-01-14 2011-11-17 Stent
EP11791383.0A EP2663266B1 (en) 2011-01-14 2011-11-17 Stent
ES11791383T ES3023707T3 (en) 2011-01-14 2011-11-17 Stent
AU2015210440A AU2015210440B2 (en) 2011-01-14 2015-08-07 Stent

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161433069P 2011-01-14 2011-01-14
US61/433,069 2011-01-14
US201161523115P 2011-08-12 2011-08-12
US61/523,115 2011-08-12
US13/298,060 US9839540B2 (en) 2011-01-14 2011-11-16 Stent
US13/298,060 2011-11-16

Publications (2)

Publication Number Publication Date
WO2012096716A2 true WO2012096716A2 (en) 2012-07-19
WO2012096716A3 WO2012096716A3 (en) 2013-01-31

Family

ID=45094790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/061165 Ceased WO2012096716A2 (en) 2011-01-14 2011-11-17 Stent

Country Status (11)

Country Link
US (6) US9839540B2 (enExample)
EP (2) EP4527358A3 (enExample)
JP (2) JP6174492B2 (enExample)
KR (1) KR101869998B1 (enExample)
CN (2) CN107149513A (enExample)
AU (2) AU2011354638A1 (enExample)
BR (1) BR112013017365A2 (enExample)
CA (1) CA2822321C (enExample)
ES (1) ES3023707T3 (enExample)
RU (1) RU2013137864A (enExample)
WO (1) WO2012096716A2 (enExample)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057469A3 (en) * 2013-10-16 2015-07-16 Covidien Lp Vascular stent
US9180031B2 (en) 2013-03-15 2015-11-10 Covidien Lp Stent with varying radius between struts
US9259335B2 (en) 2013-03-15 2016-02-16 Covidien Lp Stent
WO2016037115A1 (en) * 2014-09-04 2016-03-10 Boston Scientific Scimed, Inc. Bioerodible polymeric stent scaffolding pattern
US10258488B2 (en) 2016-11-14 2019-04-16 Covidien Lp Stent
US10449069B2 (en) 2016-11-14 2019-10-22 Covidien Lp Stent
EP3603584A4 (en) * 2017-03-23 2020-12-30 Nipro Corporation STENT
US10905572B2 (en) 2016-11-14 2021-02-02 Covidien Lp Stent
WO2021061587A1 (en) * 2019-09-24 2021-04-01 Medtronic, Inc. Prosthesis with beneficial compression characteristics and method of manufacture
WO2022020691A1 (en) * 2020-07-24 2022-01-27 Medtronic Vascular, Inc. Stent with mid-crowns
CN114206408A (zh) * 2019-06-05 2022-03-18 施菲姆德控股有限责任公司 导管血泵及其使用和制造方法
US11951004B2 (en) 2021-02-28 2024-04-09 Medtronic, Inc. Prosthetic valve device resistant to backfolding and buckling
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11998464B2 (en) 2020-07-24 2024-06-04 Medtronic Vascular, Inc. Stent with angled struts and crowns
US12076545B2 (en) 2018-02-01 2024-09-03 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US12102815B2 (en) 2019-09-25 2024-10-01 Shifamed Holdings, Llc Catheter blood pumps and collapsible pump housings
US12121713B2 (en) 2019-09-25 2024-10-22 Shifamed Holdings, Llc Catheter blood pumps and collapsible blood conduits
US12161857B2 (en) 2018-07-31 2024-12-10 Shifamed Holdings, Llc Intravascular blood pumps and methods of use
US12220570B2 (en) 2018-10-05 2025-02-11 Shifamed Holdings, Llc Intravascular blood pumps and methods of use
US12409310B2 (en) 2019-12-11 2025-09-09 Shifamed Holdings, Llc Descending aorta and vena cava blood pumps
US12465748B2 (en) 2019-08-07 2025-11-11 Supira Medical, Inc. Catheter blood pumps and collapsible pump housings

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267349A1 (en) 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US20040092858A1 (en) * 2002-08-28 2004-05-13 Heart Leaflet Technologies, Inc. Leaflet valve
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US9039755B2 (en) * 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9155639B2 (en) * 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US7780721B2 (en) 2004-09-01 2010-08-24 C. R. Bard, Inc. Stent and method for manufacturing the stent
WO2007013065A2 (en) 2005-07-25 2007-02-01 Rainbow Medical Ltd. Electrical stimulation of blood vessels
WO2007095466A2 (en) * 2006-02-14 2007-08-23 Angiomed Gmbh & Co. Medizintechnik Kg Highly flexible stent and method of manufacture
JP5025726B2 (ja) * 2006-06-06 2012-09-12 クック・インコーポレイテッド 耐破砕区域を備えたステント
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US8226705B2 (en) * 2009-09-18 2012-07-24 Medtronic Vascular, Inc. Methods for forming an orthogonal end on a helical stent
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
KR20130096715A (ko) * 2010-08-02 2013-08-30 코디스 코포레이션 상이한 나선형 영역들을 갖는 가요성 나선형 스텐트
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US9492296B2 (en) * 2011-10-25 2016-11-15 The Royal Institution For The Advancement Of Learning/Mcgill University Stent devices made of a lattice with smooth shape cells improving stent fatigue life
US9072620B2 (en) 2011-11-04 2015-07-07 Covidien Lp Protuberant aneurysm bridging device deployment method
US8771341B2 (en) * 2011-11-04 2014-07-08 Reverse Medical Corporation Protuberant aneurysm bridging device and method of use
US8840678B2 (en) * 2012-02-10 2014-09-23 Abbott Cardiovascular Systems Inc. Drug-eluting bioabsorbable renal artery stent for renal cancer and inflammatory disorders
DE202012002340U1 (de) * 2012-03-03 2012-04-16 Peter Osypka Gefäßstütze hoher Flexibilität mit Sollbruchstelle
US8911490B2 (en) * 2012-03-27 2014-12-16 Medtronic Vascular, Inc. Integrated mesh high metal to vessel ratio stent and method
US20140005764A1 (en) * 2012-06-30 2014-01-02 Cordis Corporation Sealing mechanism for expandable vascular device
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US10376360B2 (en) 2012-07-27 2019-08-13 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
US8834556B2 (en) * 2012-08-13 2014-09-16 Abbott Cardiovascular Systems Inc. Segmented scaffold designs
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US10321986B2 (en) 2012-12-19 2019-06-18 W. L. Gore & Associates, Inc. Multi-frame prosthetic heart valve
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US20150245911A1 (en) * 2013-03-01 2015-09-03 Shih-Liang Stanley Yang Reinforced multi-layered membrane
US9545301B2 (en) 2013-03-15 2017-01-17 Covidien Lp Coated medical devices and methods of making and using same
WO2015026968A1 (en) * 2013-08-20 2015-02-26 Brigham Young University Surgical retractor
US20160213497A1 (en) * 2013-09-17 2016-07-28 Cortronik GmbH Intraluminal endoprosthesis with optimized active ingredient distribution
WO2015068167A2 (en) * 2013-11-06 2015-05-14 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US9668890B2 (en) * 2013-11-22 2017-06-06 Covidien Lp Anti-thrombogenic medical devices and methods
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US10058413B2 (en) * 2013-12-13 2018-08-28 Vac Stent Medtec Ag Suction stent, stent system, and method for sealing a leakage
US11839698B2 (en) 2014-03-13 2023-12-12 W. L. Gore & Associates, Inc. Drug composition and coating
EP3119354B1 (en) * 2014-03-18 2018-06-06 Boston Scientific Scimed, Inc. Reduced granulation and inflammation stent design
US9993251B2 (en) 2014-05-02 2018-06-12 W. L. Gore & Associates, Inc. Anastomosis devices
US11712230B2 (en) 2014-05-02 2023-08-01 W. L. Gore & Associates, Inc. Occluder and anastomosis devices
US11439396B2 (en) 2014-05-02 2022-09-13 W. L. Gore & Associates, Inc. Occluder and anastomosis devices
CN106456345B (zh) * 2014-06-12 2021-11-23 国立研究开发法人国立循环器病研究中心 支架
US20150374485A1 (en) * 2014-06-27 2015-12-31 Cordis Corporation Targeted perforations in endovascular device
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10709559B2 (en) * 2014-10-13 2020-07-14 Boston Scientific Limited Catheter delivery system for stent valve
DE102014116012A1 (de) * 2014-11-04 2016-05-04 Jotec Gmbh Modulares Stentgraft-System
KR101664009B1 (ko) * 2015-02-26 2016-10-10 전북대학교산학협력단 비혈관용 이동방지 스텐트 및 이의 제조방법
EP3265025B1 (en) 2015-03-05 2022-04-13 Merit Medical Systems, Inc. Vascular prosthesis deployment device
US10441686B2 (en) 2015-03-12 2019-10-15 Utah-Inha Dds & Advanced Therapeutics Research Center Stent having functional material coated on cell space thereof
CN104831841B (zh) * 2015-03-13 2017-06-16 合肥浦发建筑装饰工程有限责任公司 一种陶土百叶
WO2016163339A1 (ja) * 2015-04-07 2016-10-13 二プロ株式会社 ステント
JP6828990B2 (ja) * 2015-04-07 2021-02-10 ニプロ株式会社 ステント
EP3313329B1 (en) 2015-06-24 2024-01-03 Endologix LLC Endoluminal prosthesis systems
SI3302372T1 (sl) * 2015-07-23 2019-09-30 Optimed Medizinische Instrumente Gmbh Žilna opornica
CN105213077B (zh) * 2015-08-19 2018-02-02 中国人民解放军第二军医大学 一种覆网支架
MA44837A (fr) * 2015-08-25 2018-07-04 Innovein Inc Prothèse de valvule veineuse
US10912647B2 (en) 2015-08-25 2021-02-09 Innovein, Inc. Vascular valve prosthesis
US10470906B2 (en) 2015-09-15 2019-11-12 Merit Medical Systems, Inc. Implantable device delivery system
CN105147424A (zh) * 2015-09-25 2015-12-16 北京工业大学 新型血管支架
US10758381B2 (en) 2016-03-31 2020-09-01 Vesper Medical, Inc. Intravascular implants
AU2016401017A1 (en) * 2016-03-31 2018-09-27 Cardinal Health 529, Llc Helical ultra low foreshortening stent
WO2017184153A1 (en) 2016-04-21 2017-10-26 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
CN109069270B (zh) * 2016-04-27 2020-10-16 海峡接入控股(私人)有限公司 可扩张支架及压握和扩张此类支架的方法
IL246009B (en) * 2016-06-02 2018-11-29 Ezer Haim A system and method for monitoring the condition of a cerebral aneurysm
DE102016110410B4 (de) * 2016-06-06 2023-03-02 Acandis Gmbh Stent, Herstellungsverfahren und Behandlungssystem
US20180055669A1 (en) * 2016-09-01 2018-03-01 Veinovo, LLC Luminal implant for the correction of occlusions
CN115054413A (zh) 2016-09-29 2022-09-16 美国医疗设备有限公司 调整支架有效长度的方法和假体递送导管组件
CN115040776A (zh) 2016-10-25 2022-09-13 马真塔医药有限公司 心室辅助装置
AR106485A1 (es) * 2016-10-28 2018-01-17 Barone Hector Daniel Prótesis para la reparación de un vaso sanguíneo y método de implante
CN110234295B (zh) 2017-01-20 2023-10-24 W.L.戈尔及同仁股份有限公司 栓子过滤系统
WO2018164205A1 (ja) 2017-03-08 2018-09-13 国立大学法人山口大学 双安定構造を持つ管腔臓器への留置器具
EP4467111A3 (en) 2017-03-15 2025-03-05 Merit Medical Systems, Inc. Transluminal stents
US11628078B2 (en) 2017-03-15 2023-04-18 Merit Medical Systems, Inc. Transluminal delivery devices and related kits and methods
USD836194S1 (en) 2017-03-21 2018-12-18 Merit Medical Systems, Inc. Stent deployment device
CN107242922A (zh) * 2017-06-03 2017-10-13 常州乐奥医疗科技股份有限公司 一种超顺应性镍钛合金血管支架
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
CA3073831C (en) 2017-09-12 2022-07-26 W. L. Gore & Associates, Inc. Substrate with rotatable struts for medical device
AU2018334191B2 (en) 2017-09-12 2021-04-08 Edwards Lifesciences Corporation Leaflet frame attachment for prosthetic valves
CA3155761C (en) 2017-09-27 2025-11-18 Gore & Ass Prosthetic valves with mechanically coupled leaflets
CA3178271A1 (en) 2017-09-27 2019-04-04 W.L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
AU2018348022B2 (en) 2017-10-09 2021-07-08 W. L. Gore & Associates, Inc. Matched stent cover
JP7036912B2 (ja) 2017-10-13 2022-03-15 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 嵌込式人工弁および送達システム
CA3078608C (en) 2017-10-31 2023-03-28 W.L. Gore & Associates, Inc. Prosthetic heart valve
US10987218B2 (en) 2017-10-31 2021-04-27 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
CN109793600B (zh) * 2017-11-17 2024-09-13 杭州唯强医疗科技有限公司 一种用于近分叉部位病变的支架
CN115177858A (zh) 2018-01-10 2022-10-14 马真塔医药有限公司 心室辅助装置
US10905808B2 (en) 2018-01-10 2021-02-02 Magenta Medical Ltd. Drive cable for use with a blood pump
WO2019151944A1 (en) * 2018-01-30 2019-08-08 Nanyang Technological University Scaffold for vascular prothesis and a method of fabricating thereof
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
CN109223266B (zh) * 2018-08-20 2024-09-20 北京美迪微科技有限责任公司 一种静脉血管支架及其输送器
US10932927B2 (en) 2018-08-29 2021-03-02 DePuy Synthes Products, Inc. Stent with longitudinal variable width struts
KR20200033757A (ko) 2018-09-20 2020-03-30 디퍼이 신테스 프로덕츠, 인코포레이티드 형상화된 와이어를 갖는 스텐트
CN109512546B (zh) * 2018-09-29 2021-05-04 北京航空航天大学 覆膜支架及其制作方法
DE102018131269B4 (de) * 2018-12-07 2021-08-05 Acandis Gmbh Medizinische Vorrichtung zur Einfuhr in ein Körperhohlorgan und Herstellungsverfahren
CA3126019A1 (en) 2019-01-18 2020-07-23 W. L. Gore & Associates, Inc. Bioabsorbable medical devices
WO2020150558A1 (en) * 2019-01-18 2020-07-23 W. L. Gore & Associates, Inc. Bioabsorbable filament medical devices
EP3782666B1 (en) 2019-01-24 2021-08-11 Magenta Medical Ltd. Manufacturing an impeller
CN109662820B (zh) * 2019-01-31 2023-06-16 深圳市科奕顿生物医疗科技有限公司 一种自扩张支架及其制备方法和应用
CN109662819B (zh) * 2019-01-31 2021-08-06 深圳市科奕顿生物医疗科技有限公司 一种自扩张支架及其制备方法和应用
CN113382694A (zh) * 2019-01-31 2021-09-10 贝克顿·迪金森公司 混合框架腔内假体及其方法
EP4647048A2 (en) * 2019-02-07 2025-11-12 NXT Biomedical, LLC Rivet shunt and method of deployment
US10702407B1 (en) 2019-02-28 2020-07-07 Renata Medical, Inc. Growth stent for congenital narrowings
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
EP3952790A1 (en) 2019-04-12 2022-02-16 W.L. Gore & Associates, Inc. Valve with multi-part frame and associated resilient bridging features
CN110037839B (zh) * 2019-05-28 2024-03-12 南微医学科技股份有限公司 一种腔内支架及其制备方法
AU2020353148B2 (en) 2019-09-27 2024-01-04 W. L. Gore & Associates, Inc. Wires of superelastic nickel-titanium alloy and methods of forming the same
WO2021062186A1 (en) 2019-09-27 2021-04-01 W. L. Gore & Associates, Inc. Wires of nickel-titanium alloy and methods of forming the same
US12478488B2 (en) 2020-02-19 2025-11-25 Medinol Ltd. Helical stent with enhanced crimping
WO2021205346A2 (en) 2020-04-07 2021-10-14 Magenta Medical Ltd Ventricular assist device
WO2022020633A1 (en) 2020-07-24 2022-01-27 Merit Medical Systems, Inc. Esophageal stents and related methods
EP4225133A1 (en) 2020-10-07 2023-08-16 Canary Medical Switzerland AG Providing medical devices with sensing functionality
WO2022093710A1 (en) 2020-10-26 2022-05-05 Merit Medical Systems, Inc. Esophageal stents with helical thread
WO2022101370A1 (en) * 2020-11-13 2022-05-19 Xeltis Ag Graft device for endogenous tissue restoration in between two tubular structures
KR102270438B1 (ko) * 2020-12-14 2021-06-29 주식회사 제가텍 육각 메쉬 스텐트 및 그 제조 방법
CN113151980A (zh) * 2021-03-19 2021-07-23 苏州大学 Ptfe管状覆膜支架及其制备方法
CN113133856B (zh) * 2021-04-20 2022-12-13 北京弘海微创科技有限公司 一种z型编织支架
KR102586295B1 (ko) * 2021-05-13 2023-10-11 전남대학교산학협력단 생분해성 스텐트 및 이의 제조방법
WO2022245435A1 (en) * 2021-05-20 2022-11-24 Cook Medical Technologies Llc Self expanding stent and method of loading same into a catheter
US12263104B2 (en) * 2021-05-20 2025-04-01 Cook Medical Technologies Llc Self expanding stents and methods
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
CN118159228A (zh) * 2021-09-27 2024-06-07 安吉美德医疗技术有限公司 植入物及制作植入物的方法
CN115998498A (zh) * 2021-12-30 2023-04-25 元心科技(深圳)有限公司 一种血管支架
KR102873406B1 (ko) * 2022-09-26 2025-10-20 전북대학교산학협력단 형상 기억 물질을 이용한 관형 가요성 스텐트
KR102526066B1 (ko) * 2022-09-28 2023-04-26 엘아이지넥스원 주식회사 상변환을 이용한 메쉬 직조 방법 및 이에 의해 직조된 메쉬
US12004939B1 (en) 2022-12-09 2024-06-11 Renata Medical, Inc. Transcatheter growth devices and methods for Norwood, Glenn and Fontan therapy
WO2024233799A2 (en) * 2023-05-11 2024-11-14 Elixir Medical Corporation Stents and stent-grafts having high density support scaffolds
US12114880B1 (en) * 2023-08-03 2024-10-15 Nventric Corporation Thrombectomy device having open frame cell ring
WO2025063140A1 (ja) * 2023-09-19 2025-03-27 テルモ株式会社 生体留置物
CN117442406B (zh) * 2023-12-25 2024-03-22 北京华脉泰科医疗器械股份有限公司 网格支架和网格支架植入系统
US20250248833A1 (en) * 2024-02-07 2025-08-07 DyQure LLC Conical stent for intracranial angioplasty and methods of stent placement for prevention and treatment of ischemic stroke
DE102024108419A1 (de) * 2024-03-25 2025-09-25 Acandis Gmbh Medizinische Vorrichtung zur Behandlung von Gefäßläsionen
US12458535B1 (en) 2025-04-25 2025-11-04 Michael Reynard Endothelial-integrated stent for Schlemm's canal and controlled aqueous humor outflow

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877661A (en) 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US5026513A (en) 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
US5476589A (en) 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
US6139572A (en) 1995-09-18 2000-10-31 W. L. Gore & Associates, Inc. Delivery system for intraluminal vascular grafts
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6629350B2 (en) 2000-06-08 2003-10-07 Tom Motsenbocker Stent crimping apparatus and method
US7049380B1 (en) 1999-01-19 2006-05-23 Gore Enterprise Holdings, Inc. Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
US7198636B2 (en) 2003-01-17 2007-04-03 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
US7306729B2 (en) 2005-07-18 2007-12-11 Gore Enterprise Holdings, Inc. Porous PTFE materials and articles produced therefrom
US20080119943A1 (en) 2006-11-16 2008-05-22 Armstrong Joseph R Stent having flexibly connected adjacent stent elements

Family Cites Families (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA962021A (en) 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
CA1147109A (en) 1978-11-30 1983-05-31 Hiroshi Mano Porous structure of polytetrafluoroethylene and process for production thereof
US5071609A (en) 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
GB2211190A (en) 1987-10-19 1989-06-28 Gore & Ass Rapid recoverable ptfe and a process for its manufacture
US4955899A (en) 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5673102A (en) 1991-02-22 1997-09-30 Canon Kabushiki Kaisha Image farming and microdevice manufacturing method and exposure apparatus in which a light source includes four quadrants of predetermined intensity
US5342305A (en) 1992-08-13 1994-08-30 Cordis Corporation Variable distention angioplasty balloon assembly
US5628782A (en) 1992-12-11 1997-05-13 W. L. Gore & Associates, Inc. Method of making a prosthetic vascular graft
WO1994016802A1 (fr) 1993-01-25 1994-08-04 Daikin Industries, Ltd. Film poreux de polytetrafluorethylene et procede de fabrication
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
AU6987594A (en) 1993-08-18 1995-03-14 W.L. Gore & Associates, Inc. A tubular intraluminal graft
AU8012394A (en) 1993-10-01 1995-05-01 Emory University Self-expanding intraluminal composite prosthesis
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
EP0758953B1 (en) 1994-05-06 2004-03-03 IMPRA, INC., a subsidiary of C.R. BARD, INC. Assembly for treating a body vessel
EP0688545B1 (en) 1994-06-17 2002-09-18 Terumo Kabushiki Kaisha Method for manufacturing an indwelling stent
DE69420870D1 (de) 1994-09-02 1999-10-28 Gore & Ass Verfahren zu herstellung einer asymetrischen porösen ptfe form
AU688404B2 (en) 1994-09-02 1998-03-12 W.L. Gore & Associates, Inc. Porous polytetrafluoroethylene compositions
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5766201A (en) 1995-06-07 1998-06-16 Boston Scientific Corporation Expandable catheter
US5814405A (en) 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
US5868704A (en) 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US5752934A (en) 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US20060271091A1 (en) 1995-09-18 2006-11-30 Campbell Carey V Balloon catheter device
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US6689162B1 (en) 1995-10-11 2004-02-10 Boston Scientific Scimed, Inc. Braided composite prosthesis
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
US5747128A (en) 1996-01-29 1998-05-05 W. L. Gore & Associates, Inc. Radially supported polytetrafluoroethylene vascular graft
JPH09241412A (ja) 1996-03-07 1997-09-16 Sumitomo Electric Ind Ltd 延伸ポリテトラフルオロエチレンチューブとその製造方法
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5769884A (en) 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5749852A (en) 1996-07-23 1998-05-12 Medtronic, Inc. Sheath system for autoperfusion dilatation catheter balloon
US6174329B1 (en) * 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6261320B1 (en) 1996-11-21 2001-07-17 Radiance Medical Systems, Inc. Radioactive vascular liner
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US6315791B1 (en) 1996-12-03 2001-11-13 Atrium Medical Corporation Self-expanding prothesis
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5957974A (en) 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US5853419A (en) * 1997-03-17 1998-12-29 Surface Genesis, Inc. Stent
CA2424551A1 (en) 1997-05-27 1998-11-27 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US6203536B1 (en) 1997-06-17 2001-03-20 Medtronic, Inc. Medical device for delivering a therapeutic substance and method therefor
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6161399A (en) 1997-10-24 2000-12-19 Iowa-India Investments Company Limited Process for manufacturing a wire reinforced monolayer fabric stent
US5931865A (en) 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6042588A (en) 1998-03-03 2000-03-28 Scimed Life Systems, Inc Stent delivery system
US5935162A (en) 1998-03-16 1999-08-10 Medtronic, Inc. Wire-tubular hybrid stent
JP4222655B2 (ja) 1998-04-06 2009-02-12 ジャパンゴアテックス株式会社 医療用チューブ
US6217609B1 (en) 1998-06-30 2001-04-17 Schneider (Usa) Inc Implantable endoprosthesis with patterned terminated ends and methods for making same
US6156064A (en) 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
NO984143L (no) 1998-09-09 2000-03-10 Norsk Hydro As Ny prosess for å fremstille overflatemodifiserende stoffer
US6336937B1 (en) 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6673102B1 (en) 1999-01-22 2004-01-06 Gore Enterprises Holdings, Inc. Covered endoprosthesis and delivery system
ATE326197T1 (de) 1999-01-22 2006-06-15 Gore Enterprise Holdings Inc Ummantelte endoprothese
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
AU3289999A (en) 1999-02-10 2000-08-29 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
US6245012B1 (en) 1999-03-19 2001-06-12 Nmt Medical, Inc. Free standing filter
GB2352205A (en) 1999-06-28 2001-01-24 Nestle Sa Chilled roller for moulding a food product
US6890350B1 (en) 1999-07-28 2005-05-10 Scimed Life Systems, Inc. Combination self-expandable, balloon-expandable endoluminal device
US6673107B1 (en) 1999-12-06 2004-01-06 Advanced Cardiovascular Systems, Inc. Bifurcated stent and method of making
US6740962B1 (en) 2000-02-24 2004-05-25 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US6756094B1 (en) 2000-02-28 2004-06-29 Scimed Life Systems, Inc. Balloon structure with PTFE component
US6379382B1 (en) 2000-03-13 2002-04-30 Jun Yang Stent having cover with drug delivery capability
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US6352552B1 (en) * 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US7419678B2 (en) 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US6423091B1 (en) * 2000-05-16 2002-07-23 Cordis Corporation Helical stent having flat ends
US8252044B1 (en) 2000-11-17 2012-08-28 Advanced Bio Prosthestic Surfaces, Ltd. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US6554841B1 (en) 2000-09-22 2003-04-29 Scimed Life Systems, Inc. Striped sleeve for stent delivery
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
DE10061936A1 (de) 2000-12-13 2002-07-04 Valentin Kramer Gegenstand aus ePTFE und Verfahren zum Herstellen desselben
US7083642B2 (en) 2000-12-22 2006-08-01 Avantec Vascular Corporation Delivery of therapeutic capable agents
US20020161388A1 (en) 2001-02-27 2002-10-31 Samuels Sam L. Elastomeric balloon support fabric
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
EP1414369A2 (en) 2001-07-27 2004-05-06 Medtronic, Inc. Adventitial fabric reinforced porous prosthetic graft
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
US20030045923A1 (en) 2001-08-31 2003-03-06 Mehran Bashiri Hybrid balloon expandable/self expanding stent
US6827737B2 (en) 2001-09-25 2004-12-07 Scimed Life Systems, Inc. EPTFE covering for endovascular prostheses and method of manufacture
ES2347770T3 (es) 2001-10-04 2010-11-04 Neovasc Medical Ltd. Implante reductor de flujo.
US6541589B1 (en) 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
US6946173B2 (en) 2002-03-21 2005-09-20 Advanced Cardiovascular Systems, Inc. Catheter balloon formed of ePTFE and a diene polymer
US9241695B2 (en) 2002-03-25 2016-01-26 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure clips
US7789908B2 (en) 2002-06-25 2010-09-07 Boston Scientific Scimed, Inc. Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
US20040024448A1 (en) 2002-08-05 2004-02-05 Chang James W. Thermoplastic fluoropolymer-coated medical devices
AU2003257604A1 (en) 2002-08-23 2004-03-29 Bridgestone Corporation Stent and process for producing the same
US7273492B2 (en) * 2002-08-27 2007-09-25 Advanced Cardiovascular Systems Inc. Stent for treating vulnerable plaque
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
JP4995420B2 (ja) 2002-09-26 2012-08-08 アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド 高強度の真空堆積されたニチノール合金フィルム、医療用薄膜グラフト材料、およびそれを作製する方法。
US8282678B2 (en) 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
US7001425B2 (en) 2002-11-15 2006-02-21 Scimed Life Systems, Inc. Braided stent method for its manufacture
US7105018B1 (en) 2002-12-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US9125733B2 (en) 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
JP2004248978A (ja) * 2003-02-21 2004-09-09 Nipro Corp 均一に拡張する柔軟なステント
US20070207816A1 (en) 2003-02-24 2007-09-06 Polaris Wireless, Inc. Location Estimation of Wireless Terminals Based on Combinations of Signal-Strength Measurements and Geometry-of-Arrival Measurements
US7011646B2 (en) 2003-06-24 2006-03-14 Advanced Cardiovascular Systems, Inc. Balloon catheter having a balloon with a thickened wall portion
US8682424B2 (en) * 2003-07-31 2014-03-25 Dst Delta Segments Technology, Inc. Noninvasive multi-channel monitoring of hemodynamic parameters
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
US7763011B2 (en) 2003-12-22 2010-07-27 Boston Scientific Scimed, Inc. Variable density braid stent
JP4906710B2 (ja) 2004-03-02 2012-03-28 ボストン サイエンティフィック サイムド,インコーポレイテッド 金属フィルムおよびポリマー層を備える医療用デバイス
US20050273149A1 (en) 2004-06-08 2005-12-08 Tran Thomas T Bifurcated stent delivery system
US7794490B2 (en) 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
US20060009835A1 (en) 2004-07-07 2006-01-12 Osborne Thomas A Graft, stent graft and method
US8308789B2 (en) 2004-07-16 2012-11-13 W. L. Gore & Associates, Inc. Deployment system for intraluminal devices
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
US8262720B2 (en) 2004-12-02 2012-09-11 Nitinol Development Corporation Prosthesis comprising dual tapered stent
US20060135985A1 (en) 2004-12-21 2006-06-22 Cox Daniel L Vulnerable plaque modification methods and apparatuses
US20060161241A1 (en) 2005-01-14 2006-07-20 Denise Barbut Methods and devices for treating aortic atheroma
US20060190070A1 (en) 2005-02-23 2006-08-24 Dieck Martin S Rail stent and methods of use
US20060276883A1 (en) 2005-06-01 2006-12-07 Cook Incorporated Tapered and distally stented elephant trunk stent graft
US7637939B2 (en) * 2005-06-30 2009-12-29 Boston Scientific Scimed, Inc. Hybrid stent
US7531611B2 (en) 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US7935141B2 (en) 2005-08-17 2011-05-03 C. R. Bard, Inc. Variable speed stent delivery system
US8956400B2 (en) 2005-10-14 2015-02-17 Flexible Stenting Solutions, Inc. Helical stent
ATE454113T1 (de) * 2005-10-14 2010-01-15 Gore Enterprise Holdings Inc Vorrichtung zur ablage eines implantierbaren medizinprodukts
CA2857815C (en) * 2005-12-30 2016-10-11 C.R. Bard Inc. Stent with bio-resorbable connector and methods
US8778008B2 (en) 2006-01-13 2014-07-15 Aga Medical Corporation Intravascular deliverable stent for reinforcement of vascular abnormalities
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
ES2335520T3 (es) 2006-02-24 2010-03-29 National University Of Ireland, Galway Dispositivo de tratamiento intravascular minimamente invasivo.
US9622850B2 (en) 2006-02-28 2017-04-18 C.R. Bard, Inc. Flexible stretch stent-graft
US8025693B2 (en) 2006-03-01 2011-09-27 Boston Scientific Scimed, Inc. Stent-graft having flexible geometries and methods of producing the same
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US8721704B2 (en) 2006-04-21 2014-05-13 W. L. Gore & Associates, Inc. Expandable stent with wrinkle-free elastomeric cover
US8425584B2 (en) 2006-04-21 2013-04-23 W. L. Gore & Associates, Inc. Expandable covered stent with wide range of wrinkle-free deployed diameters
US20070254012A1 (en) 2006-04-28 2007-11-01 Ludwig Florian N Controlled degradation and drug release in stents
US9114194B2 (en) 2006-05-12 2015-08-25 W. L. Gore & Associates, Inc. Immobilized biologically active entities having high biological activity following mechanical manipulation
US20080140173A1 (en) 2006-08-07 2008-06-12 Sherif Eskaros Non-shortening wrapped balloon
US7785290B2 (en) 2006-08-07 2010-08-31 Gore Enterprise Holdings, Inc. Non-shortening high angle wrapped balloons
US8882826B2 (en) 2006-08-22 2014-11-11 Abbott Cardiovascular Systems Inc. Intravascular stent
WO2008028964A2 (en) 2006-09-07 2008-03-13 Angiomed Gmbh & Co. Medizintechnik Kg Helical implant having different ends
US8769794B2 (en) 2006-09-21 2014-07-08 Mico Innovations, Llc Specially configured and surface modified medical device with certain design features that utilize the intrinsic properties of tungsten, zirconium, tantalum and/or niobium
US20080097401A1 (en) 2006-09-22 2008-04-24 Trapp Benjamin M Cerebral vasculature device
US8545545B2 (en) * 2006-10-18 2013-10-01 Innovational Holdings Llc Stent with flexible hinges
US20080097582A1 (en) * 2006-10-18 2008-04-24 Conor Medsystems, Inc. Stent with flexible hinges
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
JP2010517703A (ja) 2007-02-09 2010-05-27 タヘリ ラドュカ エルエルシー 血管移植片およびそれを加工する方法
US8057531B2 (en) 2007-06-29 2011-11-15 Abbott Cardiovascular Systems Inc. Stent having circumferentially deformable struts
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
US8679519B2 (en) 2007-10-23 2014-03-25 Abbott Cardiovascular Systems Inc. Coating designs for the tailored release of dual drugs from polymeric coatings
US8317857B2 (en) 2008-01-10 2012-11-27 Telesis Research, Llc Biodegradable self-expanding prosthesis
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
JP2011510796A (ja) 2008-02-05 2011-04-07 シルク・ロード・メディカル・インコーポレイテッド 介入カテーテルシステム及び方法
EP3005984B1 (en) 2008-02-28 2025-10-01 Medtronic Inc. Prosthetic heart valve systems
EP2106820A1 (en) 2008-03-31 2009-10-07 Torsten Heilmann Expansible biocompatible coats comprising a biologically active substance
US11484322B2 (en) 2018-01-03 2022-11-01 Aneuclose Llc Aneurysm neck bridge with a closeable opening or lumen through which embolic material is inserted into the aneurysm sac
PL2145917T3 (pl) 2008-07-17 2012-11-30 Gore W L & Ass Gmbh Powłoka polimerowa zawierająca kompleks jonowego fluoropolieteru oraz środka przeciwjonowego
KR20110056539A (ko) 2008-09-10 2011-05-30 이브이쓰리 인크. 개선된 스텐트 배치를 갖는 스텐트들 및 카테터들
US9149376B2 (en) * 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
EP2349125B1 (en) 2008-10-10 2017-04-05 OrbusNeich Medical, Inc. Bioabsorbable polymeric medical device
US8470013B2 (en) 2008-10-20 2013-06-25 Imds Corporation Systems and methods for aneurysm treatment and vessel occlusion
US7968190B2 (en) 2008-12-19 2011-06-28 Gore Enterprise Holdings, Inc. PTFE fabric articles and method of making same
US8764813B2 (en) 2008-12-23 2014-07-01 Cook Medical Technologies Llc Gradually self-expanding stent
EP2391312B1 (en) * 2009-02-02 2013-06-05 Cordis Corporation Flexible stent design
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US8888836B2 (en) 2009-04-07 2014-11-18 Medtronic Vascular, Inc. Implantable temporary flow restrictor device
MX2011011209A (es) * 2009-04-24 2012-04-19 Flexible Stenting Solutions Inc Dispositivos flexibles.
WO2010132707A1 (en) 2009-05-14 2010-11-18 Orbusneich Medical, Inc. Self-expanding stent with polygon transition zone
EP2445444B1 (en) 2009-06-23 2018-09-26 Endospan Ltd. Vascular prostheses for treating aneurysms
WO2010151382A1 (en) 2009-06-26 2010-12-29 Wilson-Cook Medical Inc. Linear clamps for anastomosis
US9327060B2 (en) 2009-07-09 2016-05-03 CARDINAL HEALTH SWITZERLAND 515 GmbH Rapamycin reservoir eluting stent
US8936634B2 (en) 2009-07-15 2015-01-20 W. L. Gore & Associates, Inc. Self constraining radially expandable medical devices
US8435282B2 (en) 2009-07-15 2013-05-07 W. L. Gore & Associates, Inc. Tube with reverse necking properties
US20110087318A1 (en) 2009-10-09 2011-04-14 Daugherty John R Bifurcated highly conformable medical device branch access
US8545525B2 (en) 2009-11-03 2013-10-01 Cook Medical Technologies Llc Planar clamps for anastomosis
EP2533821B1 (en) 2010-02-12 2016-07-13 Aesculap AG Medical device made of eptfe partially coated with an antimicrobial material
CN101926699A (zh) 2010-07-13 2010-12-29 北京迈迪顶峰医疗科技有限公司 房间隔造孔支架及其输送器
KR20130096646A (ko) 2010-07-20 2013-08-30 가부시키가이샤 교토 이료 세케이 스텐트 장치
CN201744060U (zh) 2010-08-17 2011-02-16 天健医疗科技(苏州)有限公司 阶梯型动脉球囊扩张导管
JP2014515621A (ja) 2011-01-13 2014-07-03 イノビア,リミティド ライアビリティー カンパニー 腔内薬物アプリケータ及び身体の病変血管を治療する方法
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
KR102022518B1 (ko) 2011-01-18 2019-09-18 로마 비스타 메디컬, 인코포레이티드. 팽창 가능 의료 장치
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
EP2709711B8 (en) 2011-05-18 2017-03-22 Vatrix Medical, Inc. Coated balloons for blood vessel stabilization
US10016579B2 (en) 2011-06-23 2018-07-10 W.L. Gore & Associates, Inc. Controllable inflation profile balloon cover apparatus
WO2013074990A1 (en) 2011-11-16 2013-05-23 Bolton Medical, Inc. Device and method for aortic branched vessel repair
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US20130183515A1 (en) 2012-01-16 2013-07-18 Charles F. White Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils
WO2013109337A1 (en) 2012-01-16 2013-07-25 W.L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
DE202013012692U1 (de) 2012-03-16 2018-07-30 Microvention, Inc. Stent und Stentfreisetzungsvorrichtung
US9301831B2 (en) 2012-10-30 2016-04-05 Covidien Lp Methods for attaining a predetermined porosity of a vascular device
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
EP2931273A1 (en) 2012-12-12 2015-10-21 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Healthcare System Methods of treating portal hypertension
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US9855160B2 (en) 2013-03-14 2018-01-02 W. L. Gore & Associates, Inc. Endoprosthesis delivery systems with deployment aids
US10905539B2 (en) 2013-03-15 2021-02-02 W. L. Gore & Associates, Inc. Self-expanding, balloon expandable stent-grafts
CA3144442C (en) 2013-07-22 2024-11-05 Atrium Medical Corp Graft exhibiting an expandable zone and methods for manufacturing and using the graft
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
JP6400826B2 (ja) 2014-07-15 2018-10-03 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 肝内シャントのためのデバイス及び方法
JP6470150B2 (ja) 2015-09-03 2019-02-13 日本ライフライン株式会社 ステントおよび医療機器
US9789294B2 (en) 2015-10-07 2017-10-17 Edwards Lifesciences Corporation Expandable cardiac shunt
US10004617B2 (en) 2015-10-20 2018-06-26 Cook Medical Technologies Llc Woven stent device and manufacturing method
WO2017184153A1 (en) 2016-04-21 2017-10-26 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
AU2018348022B2 (en) 2017-10-09 2021-07-08 W. L. Gore & Associates, Inc. Matched stent cover
US20200179663A1 (en) 2018-12-11 2020-06-11 W. L. Gore & Associates, Inc. Medical devices for shunts, occluders, fenestrations and related systems and methods
JP7436007B2 (ja) 2020-02-04 2024-02-21 豊丸産業株式会社 遊技機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877661A (en) 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US5026513A (en) 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
US5476589A (en) 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
US6139572A (en) 1995-09-18 2000-10-31 W. L. Gore & Associates, Inc. Delivery system for intraluminal vascular grafts
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US7049380B1 (en) 1999-01-19 2006-05-23 Gore Enterprise Holdings, Inc. Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
US6629350B2 (en) 2000-06-08 2003-10-07 Tom Motsenbocker Stent crimping apparatus and method
US7198636B2 (en) 2003-01-17 2007-04-03 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
US7306729B2 (en) 2005-07-18 2007-12-11 Gore Enterprise Holdings, Inc. Porous PTFE materials and articles produced therefrom
US20080119943A1 (en) 2006-11-16 2008-05-22 Armstrong Joseph R Stent having flexibly connected adjacent stent elements

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10772748B2 (en) 2013-03-15 2020-09-15 Covidien Lp Stent
US9180031B2 (en) 2013-03-15 2015-11-10 Covidien Lp Stent with varying radius between struts
US9259335B2 (en) 2013-03-15 2016-02-16 Covidien Lp Stent
US9943425B2 (en) 2013-03-15 2018-04-17 Covidien Lp Stent
US10022253B2 (en) 2013-03-15 2018-07-17 Covidien Lp Stent with varying radius of curvature between struts
US11364135B2 (en) 2013-03-15 2022-06-21 Covidien Lp Stent
WO2015057469A3 (en) * 2013-10-16 2015-07-16 Covidien Lp Vascular stent
WO2016037115A1 (en) * 2014-09-04 2016-03-10 Boston Scientific Scimed, Inc. Bioerodible polymeric stent scaffolding pattern
US10258488B2 (en) 2016-11-14 2019-04-16 Covidien Lp Stent
US10905572B2 (en) 2016-11-14 2021-02-02 Covidien Lp Stent
US10449069B2 (en) 2016-11-14 2019-10-22 Covidien Lp Stent
EP3603584A4 (en) * 2017-03-23 2020-12-30 Nipro Corporation STENT
US11432950B2 (en) 2017-03-23 2022-09-06 Nipro Corporation Stent
US12076545B2 (en) 2018-02-01 2024-09-03 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US12161857B2 (en) 2018-07-31 2024-12-10 Shifamed Holdings, Llc Intravascular blood pumps and methods of use
US12220570B2 (en) 2018-10-05 2025-02-11 Shifamed Holdings, Llc Intravascular blood pumps and methods of use
CN114206408A (zh) * 2019-06-05 2022-03-18 施菲姆德控股有限责任公司 导管血泵及其使用和制造方法
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US12465748B2 (en) 2019-08-07 2025-11-11 Supira Medical, Inc. Catheter blood pumps and collapsible pump housings
CN114423378A (zh) * 2019-09-24 2022-04-29 美敦力公司 具有有益的压缩特性的假体及其制造方法
WO2021061587A1 (en) * 2019-09-24 2021-04-01 Medtronic, Inc. Prosthesis with beneficial compression characteristics and method of manufacture
US12102815B2 (en) 2019-09-25 2024-10-01 Shifamed Holdings, Llc Catheter blood pumps and collapsible pump housings
US12121713B2 (en) 2019-09-25 2024-10-22 Shifamed Holdings, Llc Catheter blood pumps and collapsible blood conduits
US12409310B2 (en) 2019-12-11 2025-09-09 Shifamed Holdings, Llc Descending aorta and vena cava blood pumps
US11998464B2 (en) 2020-07-24 2024-06-04 Medtronic Vascular, Inc. Stent with angled struts and crowns
US11986408B2 (en) 2020-07-24 2024-05-21 Medtronic Vascular, Inc. Stent with mid-crowns
WO2022020691A1 (en) * 2020-07-24 2022-01-27 Medtronic Vascular, Inc. Stent with mid-crowns
US12364599B2 (en) 2021-02-28 2025-07-22 Medtronic, Inc. Prosthetic valve device resistant to backfolding and buckling
US11951004B2 (en) 2021-02-28 2024-04-09 Medtronic, Inc. Prosthetic valve device resistant to backfolding and buckling

Also Published As

Publication number Publication date
US20130197624A1 (en) 2013-08-01
AU2015210440B2 (en) 2018-04-05
BR112013017365A2 (pt) 2016-10-04
AU2011354638A1 (en) 2013-07-11
EP2663266B1 (en) 2025-02-12
EP4527358A2 (en) 2025-03-26
US9839540B2 (en) 2017-12-12
AU2011354638A8 (en) 2013-07-25
US20130197617A1 (en) 2013-08-01
KR101869998B1 (ko) 2018-06-22
JP6434574B2 (ja) 2018-12-05
JP6174492B2 (ja) 2017-08-02
RU2013137864A (ru) 2015-02-20
JP2014508569A (ja) 2014-04-10
US11523919B2 (en) 2022-12-13
ES3023707T3 (en) 2025-06-03
US12232987B2 (en) 2025-02-25
CA2822321C (en) 2018-01-23
CN103313681B (zh) 2017-07-04
US20180153718A1 (en) 2018-06-07
CN103313681A (zh) 2013-09-18
CN107149513A (zh) 2017-09-12
JP2017196488A (ja) 2017-11-02
US20200022828A1 (en) 2020-01-23
CA2822321A1 (en) 2012-07-19
US9795496B2 (en) 2017-10-24
EP2663266A2 (en) 2013-11-20
US9737422B2 (en) 2017-08-22
US20120303112A1 (en) 2012-11-29
US10335298B2 (en) 2019-07-02
EP2663266C0 (en) 2025-02-12
KR20140004171A (ko) 2014-01-10
AU2015210440A1 (en) 2015-09-03
EP4527358A3 (en) 2025-06-18
US20230093376A1 (en) 2023-03-23
WO2012096716A3 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US12232987B2 (en) Stent
US12156824B2 (en) Lattice
US20250057673A1 (en) Lattice
AU2015268627B2 (en) Lattice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791383

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2822321

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011791383

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011354638

Country of ref document: AU

Date of ref document: 20111117

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013549406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021325

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013137864

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013017365

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013017365

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130705