WO2012096374A1 - ポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法 - Google Patents

ポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法 Download PDF

Info

Publication number
WO2012096374A1
WO2012096374A1 PCT/JP2012/050586 JP2012050586W WO2012096374A1 WO 2012096374 A1 WO2012096374 A1 WO 2012096374A1 JP 2012050586 W JP2012050586 W JP 2012050586W WO 2012096374 A1 WO2012096374 A1 WO 2012096374A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
powder
treatment liquid
fine particles
polyimide powder
Prior art date
Application number
PCT/JP2012/050586
Other languages
English (en)
French (fr)
Inventor
金澤 親男
Original Assignee
前久保 龍志
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前久保 龍志 filed Critical 前久保 龍志
Priority to JP2012552769A priority Critical patent/JP5695675B2/ja
Priority to US13/979,597 priority patent/US20130289204A1/en
Publication of WO2012096374A1 publication Critical patent/WO2012096374A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/56Non-aqueous solutions or dispersions

Definitions

  • the present invention relates to a polyimide powder and a polyimide solution that can be used for heat-resistant electric material parts, automobile parts, mold forming of screw portions of glass bottles, adhesives, and the like, and a method for producing polyimide powder.
  • the polyimide film is pulverized by a machine to obtain a powder.
  • a powder made of fine particles of a low molecular weight compound is obtained by subjecting a polyimide film to alkali hydrolysis (see, for example, Patent Document 1).
  • Such a powder is used as a molding material either alone or by mixing with another resin or the like.
  • the present invention has been made in view of the above points, and provides a polyimide powder having an average particle size of 25 ⁇ m or less and a method for producing the same without containing metal impurities due to mechanical wear such as mechanical grinding. It is the purpose.
  • Another object of the present invention is to provide a polyimide solution containing the polyimide powder.
  • the polyimide powder of the present invention is an aggregate of fine particles obtained by precipitating polyimide dissolved in a treatment liquid containing a basic substance, and the residual amount of alkali metal in the basic substance contained in the treatment liquid is powder. It is characterized by being 1% or less with respect to the total body mass.
  • the polyamic acid in the fine particles is polymerized into polyimide by heating.
  • the polyimide solution of the present invention is characterized in that the polyimide powder is dispersed or dissolved in a solvent.
  • polyimide solution of the present invention it is preferable that a polyamic acid derived from the fine particles of the polyimide powder is contained, and the polyamic acid can be polymerized to polyimide by heating.
  • the polyimide powder production method of the present invention is obtained by dissolving polyimide in a treatment liquid containing a basic substance, and then mixing the treatment liquid and an acidic substance to precipitate the polyimide fine particles to obtain a powder.
  • the alkali metal of the basic substance By removing the alkali metal of the basic substance from the powder, the residual amount of the alkali metal is 1% or less with respect to the total amount of the powder.
  • the basic substance is preferably potassium hydroxide.
  • the polyimide is dissolved in the treatment liquid and then precipitated, it is possible to obtain a powder having an average particle diameter of 25 ⁇ m or less by making the polyimide finer than in the case of mechanical grinding. Further, since mechanical pulverization is not performed, mixing of metal impurities due to wear of the machine can be prevented. Furthermore, since the residual amount of alkali metal is 1% or less with respect to the total amount of powder, the adverse effects of the remaining alkali metal can be reduced, and the decomposition of the polyimide in the fine particles by the remaining alkali metal is difficult to proceed. The compound in the fine particles is less likely to be reduced in molecular weight, and the polymerization of the polyamic acid contained in the fine particles is less likely to be impaired, so that a powder having a high polyimide content can be obtained. is there.
  • (A) is a chemical formula showing an example of a compound contained in a raw material polyimide in the present invention
  • (b) is a chemical formula showing an example of a compound contained in a polyimide powder before heating
  • (c) is after heating. It is a chemical formula which shows an example of the compound contained in the polyimide powder.
  • (A) is a chart which shows the DTA curve and Tg curve of the polyimide powder before a heating in this invention
  • (b) is a chart which shows the DSC curve of the polyimide powder before a heating same as the above.
  • (A) is a chart which shows the DTA curve and Tg curve of the polyimide powder after the heating in this invention
  • (b) is a chart which shows the DSC curve of the polyimide powder after the heating same as the above.
  • 10 is a chart showing the results of infrared absorption analysis of Comparative Example 3.
  • 6 is a chart showing the results of infrared absorption analysis of Comparative Example 1.
  • 6 is a chart showing the results of infrared absorption analysis of Comparative Example 2.
  • 2 is a chart showing the results of infrared absorption analysis of Example 1.
  • FIG. It is a chart which shows the result of the infrared absorption analysis of the heating time of Example 2 for 0 minute.
  • Example 2 It is a chart which shows the result of the infrared absorption analysis of the heating time of Example 2 for 30 minutes. It is a chart which shows the result of the infrared absorption analysis of the heating time of Example 2 for 60 minutes. 2 is a chart showing the particle size distribution of Example 1.
  • FIG. 10 is a chart showing the particle size distribution of Comparative Example 3. (A) and (b) are scanning electron micrographs of Example 2.
  • the polyimide powder of the present invention is an aggregate of fine particles in which a polyimide dissolved (hydrolyzed) in a treatment liquid is deposited.
  • the fine particles of the polyimide powder contain polyamic acid.
  • the polyimide powder has a particle size distribution of 1 to 500 ⁇ m, for example, and the average particle diameter (median diameter: D 50 ) can be 25 ⁇ m or less.
  • D 50 median diameter
  • it can be selected by using a sieve or the like.
  • mechanical pulverization it is not possible to obtain a polyimide powder having an average particle size of 25 ⁇ m or less because a large force cannot be applied to the raw material polyimide film or molded body. Sometimes mixed.
  • the average particle size can be 25 ⁇ m or less.
  • the polyimide powder of the present invention cannot be mixed with metal impurities due to wear.
  • the average particle size and particle size distribution can be measured by a laser diffraction / scattering method using a particle size analyzer (for example, Microtrack MT3300 manufactured by Nikkiso Co., Ltd.).
  • the polyimide powder of the present invention is such that the residual amount of alkali metal derived from the basic substance used in the treatment liquid for dissolving the raw material polyimide is 1% or less by weight with respect to the total amount of the powder. . If the alkali metal remains more than 1% with respect to the total amount of the powder, hydrolysis of the polyimide in the fine particles proceeds and the polyimide has a low molecular weight. For example, pyromellitic dianhydride or 4,4 It is thought that decomposition proceeds to polyimide raw materials such as' -diaminodiphenyl ether.
  • the residual amount of the alkali metal derived from the basic substance used in the treatment liquid is 1% or less by weight with respect to the total amount of the powder, the adverse effects due to the remaining alkali metal can be reduced.
  • the hydrolysis of fine particles by metal is difficult to proceed, and the number of fine particles whose molecular weight is further reduced after precipitation can be reduced. Therefore, by using the polyimide powder of the present invention alone or mixed with other resins as a molding material, a polyimide reinforcing effect can be obtained, and molding with high heat resistance, high strength and high wear resistance can be obtained. A body can be obtained.
  • the minimum of the residual amount of an alkali metal is 0%.
  • the production of the polyimide powder of the present invention is performed as follows. First, the raw material polyimide is dissolved (hydrolyzed) with a treatment liquid containing a basic substance.
  • a treatment liquid containing a basic substance a basic substance.
  • the basic substance at least one of an alkali metal or a salt thereof can be used.
  • a strongly basic substance such as potassium hydroxide or sodium hydroxide can be used.
  • potassium hydroxide capable of obtaining a polyimide powder with little discoloration from the raw material polyimide is preferable.
  • a solvent for the treatment liquid a solution obtained by mixing water and an organic solvent such as glycerin can be used in addition to water.
  • the treatment liquid can be prepared by dissolving a basic substance in a solvent.
  • 10 to 50 parts by weight, preferably 10 to 40 parts by weight, of the basic substance can be dissolved with respect to 100 parts by weight of the solvent, and the pH of the treatment liquid can be 10 to 14.
  • melt dissolution of the raw material polyimide can be performed favorably.
  • the raw material polyimide dissolved in the treatment liquid is not particularly limited as long as it contains an imide bond as a repeating unit in the main chain of the polymer, and examples thereof include an aromatic polyimide in which aromatic compounds are directly connected by an imide bond. it can.
  • the raw material polyimide may be anything as long as it contains polyimide such as industrial waste such as cutting waste and defective products generated in the process of manufacturing a polyimide film, polyimide product waste, etc. It is preferable to use film cutting waste or defective products.
  • the raw material polyimide is dissolved by being immersed in the treatment liquid.
  • the polyimide can be blended in a proportion of 40 to 120 parts by weight, preferably 40 to 80 parts by weight with respect to 100 parts by weight of the solvent of the treatment liquid, and the temperature of the treatment liquid is preferably 70 to 100 ° C. Can be set to 70 to 90 ° C., and the processing time can be set to 50 to 100 minutes. Moreover, you may stir as needed. Thereby, melt
  • the processing solution is neutralized by adding an acidic substance to precipitate the dissolved polyimide fine particles.
  • an acidic substance a strong acid such as hydrochloric acid or a weak acid such as phosphoric acid can be used.
  • the addition amount of the acidic substance can be 10 to 50 parts by weight, preferably 10 to 40 parts by weight, with respect to 100 parts by weight of the solvent of the above-mentioned treatment solution. This ensures the precipitation of polyimide fine particles. be able to.
  • the pH of the treatment solution in which the polyimide is dissolved can be adjusted to 4 to 6 by adding an acidic substance.
  • the neutralized treatment liquid on which the polyimide fine particles are deposited is filtered to separate the powder composed of solid polyimide fine particles.
  • Filtration can use a filter press or the like. By this filtration, the solid content of the polyimide fine particles can be separated from the liquid portion containing the alkali metal derived from the basic substance.
  • the separated polyimide fine particle powder is washed with water. By this washing with water, the alkali metal derived from the basic substance remaining on the polyimide powder by adhering to the fine particles of the polyimide can be removed (reduced).
  • Washing with water can be performed by repeating the step of putting the filtered solid content in water and stirring it until the residual amount of alkali metal is 1% or less (for example, 5 to 10 times). More specifically, for example, a step of mixing water at a temperature of 60 ° C. at a rate of 100 liters with 50 parts by weight of the separated polyimide fine particle powder and stirring for 30 minutes is one step, and this is performed six times. Washing can be performed as is done.
  • the polyimide powder obtained as described above can be used as a molding material either alone or by mixing with another resin or the like.
  • 10-30% by weight of the polyimide powder is mixed with 10-100 ⁇ m particle size of tetrafluoroethylene resin powder, and the mixture is heated and pressed under conditions of 300-360 ° C. and 10-50 MPa. By doing so, a sheet, a molded product (for example, a sliding part of a rotary bearing) and the like can be manufactured.
  • the above polyimide powder 50% by weight of the above polyimide powder, 40% by weight of thermosetting phenol resin, and 10% by weight of carbon black are mixed to form a compound, which is heated at 190 to 250 ° C., 10 to 20 MPa, for 30 to 45 minutes.
  • a molded product that can be used for forming a heat-resistant electric material part, an automobile part, a molding of a screw portion of a glass bottle, and the like.
  • the molded product which has heat resistance and impact resistance can be manufactured by mixing the said polyimide powder, carbon fiber (carbon fiber), and tetrafluoroethylene powder, and heat-press-molding.
  • a polyimide solution can be prepared by dissolving or dispersing the above polyimide powder in a solvent.
  • This polyimide solution can be used as an adhesive, a coating agent, and the like, and in particular, can be used as an adhesive having high heat resistance by firmly bonding a metal member.
  • a solvent for the polyimide solution an aprotic polar solvent such as N-methyl-2-pyrrolidone (NMP) or dimethylformamide can be used.
  • NMP N-methyl-2-pyrrolidone
  • the polyimide solution of the present invention can be prepared by blending a solvent in a proportion of 1 to 400 parts by weight, preferably 40 to 300 parts by weight with respect to 100 parts by weight of the polyimide powder.
  • the fine particles constituting the polyimide powder of the present invention contain, in addition to polyimide, polyamic acid, which is a precursor of polyimide, and other decomposition products. That is, the raw material polyimide before hydrolysis with the treatment liquid is, for example, a polyimide having a repeating unit represented by the formula (A) as shown in FIG. 1B, it contains a polyimide having a repeating unit represented by the formula (A) in FIG. 1B, a polyamic acid having a repeating unit represented by the formula (B), and a decomposition product represented by the chemical formula of the formula (C). Can be obtained.
  • a polyimide having a repeating unit represented by the formula (A) as shown in FIG. 1B it contains a polyimide having a repeating unit represented by the formula (A) in FIG. 1B, a polyamic acid having a repeating unit represented by the formula (B), and a decomposition product represented by the chemical formula of the formula (C).
  • the fine particles constituting the polyimide powder of the present invention can improve the polyimide content by heating. This is presumably because the polyamic acid contained in the fine particles is polymerized into polyimide and the polyamic acid is converted to polyimide. Accordingly, the fine particles of the polyimide powder after heating have an improved content of polyimide having a repeating unit represented by the formula (A) as shown in FIG. Polymerization of polyamic acid is started at around 160 ° C., and even when the temperature is 230 ° C. or higher, the polymerization is rarely promoted or the degree of polymerization is high, so the polyimide powder particles are heated at 160 to 230 ° C. It is preferable to improve the polyimide content. Further, the time for the heating is not particularly limited, but the above temperature is preferably maintained for 30 to 60 minutes. This makes it difficult for polyamic acid to be insufficiently polymerized, and an excessive (excessive) N) heating can be avoided.
  • Such heating of the fine particles can be performed by heating the polyimide powder.
  • a polyimide powder containing a large amount of fine particles having an increased polyimide content can be obtained, and this polyimide powder can be blended into a resin material or a cement material as an aggregate.
  • the molded product is heated to polymerize the polyamic acid in the molded product derived from the fine particles of the polyimide powder. Can do. In this case, it is possible to obtain a molded article having an increased content of polyimide and improved heat resistance.
  • the polyimide solution is heated to polymerize the polyamic acid in the polyimide solution derived from the fine particles of the polyimide powder. Can do.
  • the solvent in the polyimide solution evaporates and a film or a lump is generated with the compound in the polyimide solution.
  • the film or lump has an increased polyimide content and improved heat resistance. Is.
  • Example 1 As a raw material polyimide, polyimide film Kapton (registered trademark) manufactured by Toray DuPont Co., Ltd. was used.
  • potassium hydroxide As a basic substance, potassium hydroxide (KOH) was used, and 40 parts by weight of potassium hydroxide was dissolved in 100 parts by weight of water to prepare a treatment liquid containing the basic substance. The pH of this treatment liquid was 14.
  • an acidic substance was added to the treatment liquid in which the polyimide was dissolved, thereby neutralizing the treatment liquid and precipitating dissolved polyimide fine particles in the treatment liquid.
  • hydrochloric acid HCl
  • 40 parts by weight of 38% strength hydrochloric acid was added to 100 parts by weight of the water in the treatment liquid.
  • this neutralization process was stirred until neutralization of the process liquid was completed.
  • the treatment liquid on which the polyimide fine particles were deposited was filtered to separate the solid content.
  • the separated solid was washed with water. Washing with water was repeated 6 times, with the filtered solid content in water and stirring at room temperature for 20 minutes as one step.
  • the solid content washed with water was dehydrated under reduced pressure, and dried at a temperature of 70 to 80 ° C. for 12 hours to obtain a polyimide powder having a water content of 0.5% or less.
  • Example 2 As a raw material polyimide, polyimide film Kapton (registered trademark) manufactured by Toray DuPont Co., Ltd. was used.
  • potassium hydroxide As a basic substance, potassium hydroxide (KOH) was used, and 20 parts by weight of potassium hydroxide was dissolved in 50 parts by weight of water to prepare a treatment liquid containing the basic substance. The pH of this treatment liquid was 14.
  • an acidic substance was added to the treatment liquid in which the polyimide was dissolved, thereby neutralizing the treatment liquid and precipitating dissolved polyimide fine particles in the treatment liquid.
  • hydrochloric acid HCl
  • the hydrochloric acid and water were added to the treatment liquid over 20 minutes. Moreover, this neutralization process was stirred until neutralization of the process liquid was completed.
  • the treatment liquid in which polyimide fine particles were deposited was squeezed for 30 minutes with a filter press and filtered to separate the solid content.
  • the separated solid was washed with water. Washing with water was repeated 6 times, with a step of adding 100 liters of water to 50 kg of filtered solid content and stirring for 30 minutes at a pot temperature of 60 ° C.
  • the solid content washed with water was dried under reduced pressure (substantially vacuum) for 48 hours to obtain a polyimide powder having a water content of 0.5% or less.
  • Example 3 A polyimide solution was prepared by dissolving the polyimide powder of Example 1 in a solvent. NMP was used as the solvent. Moreover, the solvent was blended at a ratio of 300 parts by weight with respect to 100 parts by weight of the polyimide powder to obtain a polyimide solution having a solid concentration of 25%.
  • Example 4 In Example 3, a polyimide solution was prepared using the polyimide powder of Example 2 instead of the polyimide powder of Example 1. Others were the same as in Example 3.
  • Example 1 In Example 1, the water washing process was performed three times. Except this, polyimide powder was obtained in the same manner as in the example.
  • Example 2 In Example 1, no water washing was performed. Except this, polyimide powder was obtained in the same manner as in the example.
  • Example 3 The polyimide film used in Example 1 was pulverized by mechanical pulverization.
  • a vibration mill manufactured by Chuo Koki was used as the pulverizer.
  • Example 4 (Comparative Example 4) In Example 3, a polyimide solution was prepared using the polyimide powder of Comparative Example 1 instead of the polyimide powder of Example 1. Others were the same as in Example 3.
  • Example 5 (Comparative Example 5) In Example 3, a polyimide solution was prepared using the polyimide powder of Comparative Example 2 instead of the polyimide powder of Example 1. Others were the same as in Example 3.
  • DTA differential thermal analysis
  • DSC differential scanning calorimetry
  • Tg thermogravimetry
  • Example 1 Infrared absorption analysis (IR) measurement of Example 1 and Comparative Examples 1 to 3 was performed.
  • FT / IR-670Plus manufactured by JASCO Corporation was used as a measuring device. Charts of each IR spectrum are shown in FIGS.
  • peaks 3 and 5 derived from polyimide are shown, and similar peaks 4 and 5 are also observed in Comparative Example 3 which was mechanically pulverized. Therefore, in Example 1, it can be said that the powder is composed of fine particles containing polyimide.
  • Example 1 the residual amount of potassium was measured for Example 1 and Comparative Examples 1 and 2 by infrared absorption analysis.
  • the residual amount of potassium in Example 1 was 1% with respect to the total weight of the powder.
  • the residual amount of potassium in Comparative Example 1 was 3% with respect to the total weight of the powder.
  • the residual amount of potassium in Comparative Example 2 was 10% with respect to the total weight of the powder.
  • FIG. 8 shows the results (chart) for the heating time of 0 minutes
  • FIG. 9 shows the results for the heating time of 30 minutes
  • FIG. 10 shows the results for the heating time of 60 minutes.
  • the chart of the heating time of 30 minutes or between 60 minutes and 1375 cm -1 and around 1500cm absorbance around -1 is reduced. Therefore, it is considered that imidization of the polyimide powder progressed by heating.
  • Example 1 As a result of measuring the particle size distribution and the average particle size of Example 1 and Comparative Example 3 by a laser diffraction / scattering method using Microtrack MT3300 manufactured by Nikkiso Co., Ltd., the particle size distribution is as shown in FIG.
  • the average particle size (D 50 ) was 1.06 to 7.78 ⁇ m and the average particle size (D 50 ) was 2.67 ⁇ m.
  • the average particle size (D 50 ) was 3.00 to 249.0 ⁇ m as shown in FIG. 50 ) was 32.16 ⁇ m.
  • Example 1 it is possible to obtain a polyimide powder having an average particle size smaller than that of Comparative Example 3 and a narrow particle size distribution.
  • 13A and 13B show photographs of the polyimide powder of Example 2 taken with a scanning electron microscope. It can be seen from this photograph that the particles of the polyimide powder are smaller than 10 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

機械粉砕のような機械の摩耗による金属不純物が含有されず、平均粒径が25μm以下のポリイミド粉体を提供する。 塩基性物質を含む処理液に溶解したポリイミドを析出させて得られる微粒子の集合体である。前記処理液に含まれる塩基性物質のアルカリ金属の残留量が粉体全量に対して1%以下である。残留したアルカリ金属による悪影響を少なくすることができ、アルカリ金属によるポリイミドの分解が進行しにくくなる。

Description

ポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法
 本発明は、耐熱性電材部品、自動車部品、ガラスビンのネジ部の型枠成型、接着剤などに利用することができるポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法に関するものである。
 従来より、産業廃棄物等として大量に廃棄されるポリイミドフィルムをリサイクルして有効に利用するために、ポリイミドフィルムを機械により粉砕して粉体を得ることが行われている。また、ポリイミドフィルムをアルカリ加水分解して低分子量化合物の微粒子からなる粉体を得ることが行われている(例えば、特許文献1参照)。このような粉体は単独であるいは他の樹脂等と混合することにより成形材料として用いられるものである。
特開2006-124530号公報
 しかし、上記の機械により粉砕する方法では、平均粒径(D50)が25μmを超える粉体しか得られず、また、機械の摩耗による金属不純物が粉体に混入することがあった。一方、上記のアルカリ加水分解を用いる方法では、ポリイミドのほぼ大部分が分解されて低分子量の化合物の微粒子からなる粉体しか得られないという問題があった。
 本発明は上記の点に鑑みてなされたものであり、機械粉砕のような機械の摩耗による金属不純物が含有されず、平均粒径が25μm以下のポリイミド粉体及びその製造方法を提供することを目的とするものである。また、本発明は上記ポリイミド粉体を含有するポリイミド溶液を提供することを目的とするものである。
 本発明のポリイミド粉体は、塩基性物質を含む処理液に溶解したポリイミドを析出させて得られる微粒子の集合体であって、前記処理液に含まれる塩基性物質のアルカリ金属の残留量が粉体全量に対して1%以下であることを特徴とするものである。
 本発明のポリイミド粉体にあっては、加熱により前記微粒子中のポリアミック酸がポリイミドに重合されて成ることが好ましい。
 本発明のポリイミド溶液は、前記ポリイミド粉体が溶媒に分散乃至溶解されて成ることを特徴とするものである。
 本発明のポリイミド溶液にあっては、前記ポリイミド粉体の微粒子を由来とするポリアミック酸が含有され、このポリアミック酸は加熱によりポリイミドに重合可能であることが好ましい。
 本発明のポリイミド粉体の製造方法は、塩基性物質を含む処理液でポリイミドを溶解した後、この処理液と酸性物質とを混合することにより前記ポリイミドの微粒子を析出させて粉体を得、この粉体から前記塩基性物質のアルカリ金属を除去することによって、粉体全量に対して前記アルカリ金属の残留量を1%以下とすることを特徴とするものである。
 本発明のポリイミド粉体の製造方法にあって、前記塩基性物質は水酸化カリウムであることが好ましい。
 本発明では、ポリイミドを処理液に溶解させた後に析出させるので、機械による粉砕に比べて、ポリイミドを微粒子化して平均粒径が25μm以下の粉体を得ることができるものである。また、機械粉砕を行わないため、機械の摩耗による金属不純物の混入を防止することができるものである。さらに、粉体全量に対してアルカリ金属の残留量が1%以下であるため、残留したアルカリ金属による悪影響を少なくすることができ、残留したアルカリ金属による微粒子中のポリイミドの分解が進行しにくくなり、微粒子中の化合物が低分子量化されにくくなるものであり、しかも、微粒子に含有されているポリアミック酸の重合が損なわれにくくなって、ポリイミドの含有率が高い粉体を得ることができるものである。
(a)は本発明における原料のポリイミドに含まれている化合物の一例を示す化学式、(b)は加熱前のポリイミド粉体に含まれている化合物の一例を示す化学式、(c)は加熱後のポリイミド粉体に含まれている化合物の一例を示す化学式である。 (a)は本発明における加熱前のポリイミド粉体のDTA曲線及びTg曲線を示すチャート、(b)は同上の加熱前のポリイミド粉体のDSC曲線を示すチャートである。 (a)は本発明における加熱後のポリイミド粉体のDTA曲線及びTg曲線を示すチャート、(b)は同上の加熱後のポリイミド粉体のDSC曲線を示すチャートである。 比較例3の赤外吸収分析の結果を示すチャートである。 比較例1の赤外吸収分析の結果を示すチャートである。 比較例2の赤外吸収分析の結果を示すチャートである。 実施例1の赤外吸収分析の結果を示すチャートである。 実施例2の加熱時間0分間の赤外吸収分析の結果を示すチャートである。 実施例2の加熱時間30分間の赤外吸収分析の結果を示すチャートである。 実施例2の加熱時間60分間の赤外吸収分析の結果を示すチャートである。 実施例1の粒度分布を示すチャートである。 比較例3の粒度分布を示すチャートである。 (a)(b)は実施例2の走査型電子顕微鏡写真である。
 以下、本発明を実施するための形態を説明する。
 本発明のポリイミド粉体は、処理液に溶解(加水分解)したポリイミドを析出させた微粒子の集合体である。このポリイミド粉体の微粒子にはポリアミック酸が含有されている。ポリイミド粉体は例えば1~500μmの粒度分布を有し、平均粒径(メジアン径:D50)が25μm以下とすることができる。所望の粒径分布の粉体を得るには篩等を用いれば選別することができる。機械粉砕では原料のポリイミドフィルムや成形体に大きな力がかけられないため、平均粒径が25μm以下のポリイミド粉体を得ることができず、また、粉砕機の摩耗による金属不純物がポリイミド粉体に混入することもある。一方、本発明のポリイミド粉体は化学的粉砕であるため、平均粒径を25μm以下にすることができる。また、本発明のポリイミド粉体は摩耗による金属不純物の混入も発生し得ないものである。尚、上記の平均粒径や粒度分布は、粒度分析計(例えば、日機装株式会社製のマイクロトラックMT3300)を用いたレーザー回折・散乱法などにより測定することができる。
 そして、本発明のポリイミド粉体は、原料のポリイミドを溶解する処理液に使用した塩基性物質に由来するアルカリ金属の残留量を粉体全量に対して重量比で1%以下としたものである。上記アルカリ金属が粉体全量に対して1%よりも多く残留していると、微粒子中のポリイミドの加水分解が進行してポリイミドが低分子量化し、例えば、ピロメリット酸二無水物や4,4’-ジアミノジフェニルエーテルなどのポリイミドの原材料まで分解が進むと考えられる。従って、処理液に使用した塩基性物質に由来するアルカリ金属の残留量を粉体全量に対して重量比で1%以下とすることにより、残留したアルカリ金属による悪影響を少なくすることができ、アルカリ金属による微粒子の加水分解が進行しにくくなり、析出後にさらに低分子量化される微粒子を少なくすることができるものである。よって、本発明のポリイミド粉体を単独であるいは他の樹脂等と混合して成形材料として用いることにより、ポリイミドの補強効果を得ることができ、高耐熱性や高強度や高耐摩耗性の成形体を得ることができるものである。尚、アルカリ金属の残留量は少ないほど好ましいので、アルカリ金属の残留量の下限は0%である。
 本発明のポリイミド粉体の製造は以下のようにして行う。まず、塩基性物質を含む処理液で原料のポリイミドを溶解(加水分解)する。塩基性物質としては、アルカリ金属又はその塩の少なくとも一方を用いることができ、例えば、水酸化カリウムや水酸化ナトリウムなどの強塩基性物質を用いることができる。特に、原料のポリイミドからの変色が少ないポリイミド粉体を得ることができる水酸化カリウムが好ましい。処理液の溶媒としては水のほかに、水とグリセリン等の有機溶媒とを混合した溶液を用いることができる。処理液は溶媒に塩基性物質を溶解することにより調製することができる。ここで、塩基性物質は溶媒100重量部に対して10~50重量部、好ましくは10~40重量部溶解させることができ、また、処理液のpHは10~14にすることができる。これにより、原料のポリイミドの溶解を良好に行うことができる。
 処理液に溶解させた原料のポリイミドは、ポリマーの主鎖に繰り返し単位としてイミド結合を含むものであればよく、例えば、芳香族化合物が直接イミド結合で連結された芳香族ポリイミドなどを挙げることができる。原料のポリイミドは、例えば、ポリイミドフィルムを製造する過程で発生する裁断屑や不良品などの産業廃棄物、ポリイミド製品の廃棄物等のポリイミドを含むものであれば、何でもよいが、不純物の少ないポリイミドフィルムの裁断屑や不良品を用いるのが好ましい。原料のポリイミドは処理液に浸漬することによって溶解される。この場合、処理液の溶媒100重量部に対して40~120重量部、好ましくは40~80重量部の割合でポリイミドを配合することができ、また、処理液の温度は70~100℃、好ましくは70~90℃、処理時間は50~100分とすることができる。また、必要に応じて、撹拌を行っても良い。これにより、原料のポリイミドの溶解を良好に行うことができる。
 次に、原料のポリイミドが溶解した処理液を必要に応じて(10分程度)冷却した後、この処理液に酸性物質を添加して中和処理し、溶解していたポリイミドの微粒子を析出させる。ここで、酸性物質としては塩酸などの強酸やリン酸などの弱酸を用いることができる。酸性物質の添加量は上記処理液の溶媒100重量部に対して10~50重量部、好ましくは10~40重量部の割合とすることができ、これにより、ポリイミドの微粒子の析出を確実に行うことができる。また、酸性物質の添加により、ポリイミドが溶解した処理液のpHを4~6にすることができる。
 次に、ポリイミドの微粒子が析出した上記中和後の処理液を濾過して固形分のポリイミドの微粒子からなる粉体を分離する。濾過はフィルタープレスなどを用いることができる。この濾過により、ポリイミドの微粒子の固形分と塩基性物質に由来するアルカリ金属を含む液部とを分離することができる。次に、分離したポリイミドの微粒子の粉体を水洗する。この水洗により、ポリイミドの微粒子に付着等してポリイミド粉体に残留している、上記塩基性物質に由来するアルカリ金属を除去(減量)することができる。水洗は、濾過した固形分を水に入れて撹拌する工程を一工程として、この工程をアルカリ金属の残留量が1%以下になるまで(例えば5~10回)繰り返して行うことができる。より具体的には、例えば、分離したポリイミドの微粒子の粉体50重量部に対して水温60℃の水を100リットルの割合で混合し、30分間撹拌する工程を一工程とし、これを6回行うようにして水洗を行うことができる。
 この後、減圧により脱水し、温度70~80℃で約12時間の乾燥することによって、含水率0.5%以下のポリイミド粉体を得ることができる。このポリイミド粉体は平均粒径が25μm以下となるものである。また、上記のようにして得られるポリイミド粉体は、単独であるいは他の樹脂等と混合することにより成形材料として用いることができる。例えば、粒径10~100μmの四フッ化エチレン樹脂の粉末に対して10~30重量%の上記ポリイミド粉体を混合し、この混合物を300~360℃、10~50MPaの条件で加熱加圧成形することによって、シートや成形品(例えば、回転軸受の摺動部品)などを製造することができる。また、上記ポリイミド粉体50重量%と、熱硬化性フェノール樹脂40重量%と、カーボンブラック10重量%とを混合してコンパウンド化し、これを190~250℃、10~20MPa、30~45分間の条件で加熱加圧成形することによって、耐熱性電材部品、自動車部品、ガラスビンのネジ部の型枠成形などに利用できる成形品を製造することができる。また、上記ポリイミド粉体と炭素繊維(カーボンファイバー)と四フッ化エチレン粉末を混合して加熱加圧成形することによって、耐熱性及び耐衝撃性を有する成形品を製造することができる。
 また、上記のポリイミド粉体を溶媒に溶解乃至分散させることによって、ポリイミド溶液を調製することができる。このポリイミド溶液は接着剤やコーティング剤などとして使用することができ、特に、金属部材を強固に接着し、耐熱性の高い接着剤として用いることができる。ここで、ポリイミド溶液の溶媒としては、N-メチル-2-ピロリドン(NMP)やジメチルホルムアミドなどの非プロトン性極性溶媒を用いることができる。また、ポリイミド粉体100重量部に対して1~400重量部の割合、好ましくは40~300重量部の割合で溶媒を配合することにより、本発明のポリイミド溶液を調製することができる。
 本発明のポリイミド粉体を構成する微粒子は、ポリイミドの他に、ポリイミドの前駆体であるポリアミック酸と、その他の分解物を含有するものである。すなわち、処理液で加水分解する前における原料のポリイミドは、例えば、図1(a)に示すような、式(A)で示す繰り返し単位を有するポリイミドであるが、これを上記の工程で粉体化すると、図1(b)の式(A)で示す繰り返し単位を有するポリイミドと、式(B)で示す繰り返し単位を有するポリアミック酸と、式(C)の化学式等で示す分解物とを含有する微粒子を得ることができる。
 また、本発明のポリイミド粉体を構成する微粒子は、加熱により、ポリイミドの含有量を向上させることができる。これは、微粒子中に含まれているポリアミック酸がポリイミドへと重合し、ポリアミック酸のポリイミド化が進行するためと考えられる。従って、加熱後のポリイミド粉体の微粒子は、図1(c)に示すような、式(A)で示す繰り返し単位を有するポリイミドの含有率が向上するものである。ポリアミック酸の重合は160℃付近から開始され、また、230℃以上にしても重合が促進されたり重合度が高くなったりすることが少ないため、160~230℃でポリイミド粉体の微粒子を加熱してポリイミドの含有量を向上させることが好ましい。また、上記の加熱の際の時間は、特に限定されないが、上記の温度が30~60分間保持されるのが好ましく、これにより、ポリアミック酸の重合不足が発生しにくくなり、また余分な(過剰な)加熱が行われないようにすることができる。
 このような微粒子の加熱は、ポリイミド粉体を加熱することにより行うことができる。この場合、ポリイミドの含有量が増加した微粒子を多く含むポリイミド粉体を得ることができ、このポリイミド粉体を骨材として樹脂材料やセメント材料などに配合することができる。また、加熱前のポリイミド粉体を用いて上記のような成形品を形成した後、この成形品を加熱することによって、ポリイミド粉体の微粒子を由来とする成形品中のポリアミック酸を重合することができる。この場合、ポリイミドの含有量が増加して耐熱性が向上した成形品を得ることができる。また、加熱前のポリイミド粉体を用いて上記のようなポリイミド溶液を調製した後、このポリイミド溶液を加熱することによって、ポリイミド粉体の微粒子を由来とするポリイミド溶液中のポリアミック酸を重合することができる。この場合、ポリイミド溶液中の溶媒が蒸発すると共にポリイミド溶液中の化合物で皮膜や塊状物などが生成されるが、この皮膜や塊状物はポリイミドの含有量が増加して耐熱性が向上しているものである。
 以下、本発明を実施例によって具体的に説明する。
 (実施例1)
 原料のポリイミドとしては、東レ・デュポン株式会社製のポリイミドフィルムカプトン(登録商標)を用いた。
 塩基性物質としては水酸化カリウム(KOH)を用い、水100重量部に対して水酸化カリウム40重量部を溶解させることによって、塩基性物質を含む処理液を調製した。この処理液のpHは14であった。
 そして、処理液の水100重量部に対して原料のポリイミド100重量部を混合して溶解することによって、ポリイミドがアルカリ加水分解により溶解した処理液を得た。この溶解は温度が80℃で90分間の条件で行った。
 次に、ポリイミドが溶解した上記処理液に酸性物質を添加することにより、処理液を中和すると共に溶解していたポリイミドの微粒子を処理液中に析出させた。ここで、酸性物質としては塩酸(HCl)を用い、上記処理液の水100重量部に対して38%濃度の塩酸を40重量部添加した。また、この中和処理は処理液の中和が完了するまで撹拌した。
 次に、ポリイミドの微粒子が析出した処理液を濾過して固形分を分離した。次に、分離した固形分を水洗した。水洗は、濾過した固形分を水に入れて常温で20分間撹拌する工程を一工程として、この工程を6回繰り返した。次に、水洗した固形分を減圧により脱水し、温度70~80℃で12時間で乾燥することによって、含水率0.5%以下のポリイミド粉体を得た。
 (実施例2)
 原料のポリイミドとしては、東レ・デュポン株式会社製のポリイミドフィルムカプトン(登録商標)を用いた。
 塩基性物質としては水酸化カリウム(KOH)を用い、水50重量部に対して水酸化カリウム20重量部を溶解させることによって、塩基性物質を含む処理液を調製した。この処理液のpHは14であった。
 そして、処理液の水50重量部に対して原料のポリイミド50重量部を混合して溶解することによって、ポリイミドがアルカリ加水分解により溶解した処理液を得た。この溶解は温度が95℃で90分間の条件で行った。この後、処理液を10分間冷却した。
 次に、ポリイミドが溶解した上記処理液に酸性物質を添加することにより、処理液を中和すると共に溶解していたポリイミドの微粒子を処理液中に析出させた。ここで、酸性物質としては塩酸(HCl)を用い、上記処理液の水50重量部に対して塩酸35重量部と水35重量部の割合で添加した。この塩酸と水は20分間かけて処理液に投入した。また、この中和処理は処理液の中和が完了するまで撹拌した。
 次に、ポリイミドの微粒子が析出した処理液をフィルタープレスで30分間絞って濾過して固形分を分離した。次に、分離した固形分を水洗した。水洗は、濾過した固形分50kgに対して水100リットルを入れて釜温60℃で30分間撹拌する工程を一工程として、この工程を6回繰り返した。次に、水洗した固形分を減圧(ほぼ真空)で48時間で乾燥することによって、含水率0.5%以下のポリイミド粉体を得た。
 (実施例3)
 実施例1のポリイミド粉体を溶媒に溶解させてポリイミド溶液を調製した。溶媒としてはNMPを用いた。また、ポリイミド粉体100重量部に対して溶媒を300重量部の割合で配合し、固形分濃度25%のポリイミド溶液を得た。
 (実施例4)
 実施例3において、実施例1のポリイミド粉体の代わりに実施例2のポリイミド粉体を用いてポリイミド溶液を調製した。その他は実施例3と同様にした。
 (比較例1)
 実施例1において、水洗の工程を3回とした。これ以外は実施例と同様にしてポリイミド粉体を得た。
 (比較例2)
 実施例1において、水洗を行わなかった。これ以外は実施例と同様にしてポリイミド粉体を得た。
 (比較例3)
 実施例1で用いたポリイミドフィルムを機械粉砕により粉砕した。粉砕機としては、中央加工機製の振動ミルを用いた。
 (比較例4)
 実施例3において、実施例1のポリイミド粉体の代わりに比較例1のポリイミド粉体を用いてポリイミド溶液を調製した。その他は実施例3と同様にした。
 (比較例5)
 実施例3において、実施例1のポリイミド粉体の代わりに比較例2のポリイミド粉体を用いてポリイミド溶液を調製した。その他は実施例3と同様にした。
 [イミド化率の測定]
 実施例1、2及び比較例1,2で得られたポリイミド粉体10重量部を加熱した。加熱温度は160℃、200℃、とし、加熱時間はそれぞれの加熱温度で0分間、30分間、60分間とした。そして、各温度と各時間で加熱した後のポリイミド粉体のイミド化率を測定した。イミド化率の測定は、日本分光株式会社製のFT/IR-670Plusを用いて赤外吸収分析(IR)測定を行い、そのチャートを分析した。そして、(IRイミド基(1375cm-1)の吸光度)/(IRベンゼン環(1500cm-1)の吸光度)?100の式でイミド化率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1、2では、加熱時間を長くすると、それに伴ってイミド化率が向上する傾向にある。これは、ポリイミド粉体に含有されているポリアミック酸の重合が加熱により進んでポリイミドが生成され、ポリイミドの含有量が増加すると考えられる。一方、比較例1、2では、不純物が十分除去されていないので、イミド化が不十分となり、黒色に変化した。尚、比較例3では機械粉砕であるために、加熱前からイミド化率が高く、加熱により重合が進むものではなかった。
 [示差熱分析(DTA)、示差走査熱量測定(DSC)、熱重量測定(Tg)]
 実施例2のポリイミド粉体について、加熱前と加熱後(200℃で60分間)のDTA、Tg、DSCを測定した。測定機器は、株式会社リガク製の「DSC8230」を用いた。また、測定は、窒素雰囲気下(流量20ml/分)で行い、昇温速度は10.0℃/分で行なった。加熱前のポリイミド粉体のDTA曲線及びTg曲線を図2(a)に、加熱前のポリイミド粉体のDSC曲線を図2(b)にそれぞれ示す。また、加熱後のポリイミド粉体のDTA曲線及びTg曲線を図3(a)に、加熱後のポリイミド粉体のDSC曲線を図3(b)にそれぞれ示す。
 [赤外吸収分析]
 実施例1及び比較例1~3の赤外吸収分析(IR)測定を行った。測定装置としては、日本分光株式会社製のFT/IR-670Plusを用いた。各IRスペクトルのチャートを図4~7に示す。この結果、実施例1ではポリイミドに由来するピーク3、5を示しており、機械粉砕した比較例3にも同様のピーク4、5が見られる。従って、実施例1ではポリイミドを含む微粒子からなる粉体であると言える。一方、比較例1、2ではポリイミドに由来するピークが不鮮明であるため、ポリイミド以外の成分を多く含む微粒子(例えば、ポリイミドが加水分解した低分子量の化合物の微粒子)が析出したと考えられる。
 また、赤外吸収分析測定により、実施例1及び比較例1、2について、カリウムの残留量を測定した。その結果、実施例1のカリウムの残留量は粉体の全重量に対して1%であった。比較例1のカリウムの残留量は粉体の全重量に対して3%であった。比較例2のカリウムの残留量は粉体の全重量に対して10%であった。
 また、実施例2のポリイミド粉体10重量部を200℃で加熱した。加熱時間は0分間、30分間、60分間とした。各時間で加熱後のポリイミド粉体について、上記と同様の赤外吸収分析(IR)測定を行った。加熱時間0分間のものの結果(チャート)を図8に、加熱時間30分間のものの結果を図9に、加熱時間60分間のものの結果を図10にそれぞれ示す。これらの結果を対比すると、加熱時間0分間のチャートに比べて、加熱時間30分間や60分間のチャートでは、1375cm-1付近及び1500cm-1付近の吸光度が低下している。従って、加熱により、ポリイミド粉体のイミド化が進行したと考えられる。
 [粒度分布測定]
 日機装株式会社製のマイクロトラックMT3300を用いたレーザー回折・散乱法により、実施例1と比較例3との粒度分布と平均粒径を測定した結果、実施例では図11に示すように粒度分布が1.06~7.78μmで平均粒径(D50)が2.67μmであったが、比較例3では図12に示すように粒度分布が3.00~249.0μmで平均粒径(D50)が32.16μmであった。このように実施例1では比較例3に比べて平均粒径が小さくて粒度分布に狭いポリイミド粉体を得ることができる。
 また、図13(a)及び(b)に、実施例2のポリイミド粉体の走査型電子顕微鏡による写真を示す。この写真からもポリイミド粉体の粒子が10μmよりも小さいことが判る。
 [接着性試験]
 実施例3、4及び比較例4,5で調製したポリイミド溶液を接着剤として用いた。試験方法は、JIS K6849(接着剤の引張り接着強さ試験方法)等を用いた。この結果、実施例3、4では加熱によりイミド化が進むために強固に接着できたが、比較例4,5ではイミド化が進みにくいために、実施例3,4よりも接着強度が低くなった。

Claims (5)

  1. 塩基性物質を含む処理液に溶解したポリイミドを析出させて得られる微粒子の集合体であって、前記処理液に含まれる塩基性物質のアルカリ金属の残留量が粉体全量に対して1%以下であることを特徴とするポリイミド粉体。
  2. 加熱により前記微粒子中のポリアミック酸がポリイミドに重合されて成ることを特徴とする請求項1に記載のポリイミド粉体。
  3. 請求項1又は2に記載のポリイミド粉体が溶媒に分散乃至溶解されて成ることを特徴とするポリイミド溶液。
  4. 塩基性物質を含む処理液でポリイミドを溶解した後、この処理液と酸性物質とを混合することにより前記ポリイミドの微粒子を析出させて粉体を得、この粉体から前記塩基性物質のアルカリ金属を除去することによって、粉体全量に対して前記アルカリ金属の残留量を1%以下とすることを特徴とするポリイミド粉体の製造方法。
  5. 前記塩基性物質が水酸化カリウムであることを特徴とする請求項4に記載のポリイミド粉体の製造方法。
PCT/JP2012/050586 2011-01-14 2012-01-13 ポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法 WO2012096374A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012552769A JP5695675B2 (ja) 2011-01-14 2012-01-13 ポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法
US13/979,597 US20130289204A1 (en) 2011-01-14 2012-01-13 Polyimide powder, polyimide solution, and method for producing polyimide powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006102 2011-01-14
JP2011006102 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096374A1 true WO2012096374A1 (ja) 2012-07-19

Family

ID=46507265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050586 WO2012096374A1 (ja) 2011-01-14 2012-01-13 ポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法

Country Status (3)

Country Link
US (1) US20130289204A1 (ja)
JP (1) JP5695675B2 (ja)
WO (1) WO2012096374A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221881A (ja) * 2013-05-14 2014-11-27 株式会社仲田コーティング イミド基含有化合物水溶液、およびイミド基含有化合物水溶液の製造方法
US8993645B2 (en) 2012-06-12 2015-03-31 Nakata Coating Co., Ltd. Compound containing imido group, solution of compound containing imido group and method for producing of compound containing imido group
JP5697805B1 (ja) * 2013-11-27 2015-04-08 株式会社仲田コーティング イミド基含有化合物溶液およびイミド基含有化合物溶液に由来したポリイミド膜の製造方法
EP2868685A1 (de) 2013-11-05 2015-05-06 Evonik Fibres GmbH Verfahren zur Herstellung von Polymerpulver
WO2015079717A1 (ja) * 2013-11-27 2015-06-04 株式会社仲田コーティング イミド基含有化合物溶液およびイミド基含有化合物溶液に由来したポリイミド膜の製造方法
JP2017165990A (ja) * 2017-06-30 2017-09-21 株式会社仲田コーティング イミド基含有化合物水性溶媒溶液の製造方法
JP6402283B1 (ja) * 2017-07-12 2018-10-10 株式会社仲田コーティング イミド基含有化合物水性溶媒溶液及びイミド基含有化合物水性溶媒溶液の製造方法
WO2019012722A1 (ja) * 2017-07-12 2019-01-17 株式会社仲田コーティング イミド基含有化合物水性溶媒溶液及びイミド基含有化合物水性溶媒溶液の製造方法
WO2020158784A1 (ja) * 2019-01-31 2020-08-06 住友化学株式会社 ポリイミド系樹脂粉体の製造方法
JP2021046521A (ja) * 2019-09-20 2021-03-25 東洋紡株式会社 再生高分子材料の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111171B2 (ja) * 2013-09-02 2017-04-05 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2020174679A1 (ja) * 2019-02-28 2020-09-03 田中 正美 ポリアミド酸粉体、ポリアミド酸粉体の製造方法、ポリアミド酸溶液の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210635A (ja) * 1984-04-03 1985-10-23 Mikasa Sangyo Kk ポリイミド樹脂粉末の製造方法
JPH04272934A (ja) * 1991-02-28 1992-09-29 Toray Ind Inc 球状ポリイミドの製造方法
JP2001163973A (ja) * 1999-12-09 2001-06-19 Du Pont Toray Co Ltd ポリイミドの分解方法およびその分解回収物を原料としたポリイミド
JP2006124530A (ja) * 2004-10-29 2006-05-18 Toray Ind Inc ポリイミドのアルカリ加水分解方法および低分子量体の回収方法
JP2011162570A (ja) * 2009-07-18 2011-08-25 Yoshida Fukutaka ポリイミド粉末およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1132964A (en) * 1964-11-25 1968-11-06 Ici Ltd Moulding of polymeric materials
US20080269457A1 (en) * 2006-04-11 2008-10-30 Sony Chemical & Information Device Corporation Process For Producing Polyimide Fine Particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210635A (ja) * 1984-04-03 1985-10-23 Mikasa Sangyo Kk ポリイミド樹脂粉末の製造方法
JPH04272934A (ja) * 1991-02-28 1992-09-29 Toray Ind Inc 球状ポリイミドの製造方法
JP2001163973A (ja) * 1999-12-09 2001-06-19 Du Pont Toray Co Ltd ポリイミドの分解方法およびその分解回収物を原料としたポリイミド
JP2006124530A (ja) * 2004-10-29 2006-05-18 Toray Ind Inc ポリイミドのアルカリ加水分解方法および低分子量体の回収方法
JP2011162570A (ja) * 2009-07-18 2011-08-25 Yoshida Fukutaka ポリイミド粉末およびその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993645B2 (en) 2012-06-12 2015-03-31 Nakata Coating Co., Ltd. Compound containing imido group, solution of compound containing imido group and method for producing of compound containing imido group
JP2014221881A (ja) * 2013-05-14 2014-11-27 株式会社仲田コーティング イミド基含有化合物水溶液、およびイミド基含有化合物水溶液の製造方法
EP2868685A1 (de) 2013-11-05 2015-05-06 Evonik Fibres GmbH Verfahren zur Herstellung von Polymerpulver
JP5697805B1 (ja) * 2013-11-27 2015-04-08 株式会社仲田コーティング イミド基含有化合物溶液およびイミド基含有化合物溶液に由来したポリイミド膜の製造方法
WO2015079717A1 (ja) * 2013-11-27 2015-06-04 株式会社仲田コーティング イミド基含有化合物溶液およびイミド基含有化合物溶液に由来したポリイミド膜の製造方法
KR20150100489A (ko) * 2013-11-27 2015-09-02 가부시키가이샤 나카타 코팅 이미드기 함유 화합물 용액 및 이미드기 함유 화합물 용액에서 유래한 폴리이미드막의 제조 방법
KR101643071B1 (ko) * 2013-11-27 2016-08-10 가부시키가이샤 나카타 코팅 이미드기 함유 화합물 용액 및 이미드기 함유 화합물 용액에서 유래한 폴리이미드막의 제조 방법
JP2017165990A (ja) * 2017-06-30 2017-09-21 株式会社仲田コーティング イミド基含有化合物水性溶媒溶液の製造方法
JP6402283B1 (ja) * 2017-07-12 2018-10-10 株式会社仲田コーティング イミド基含有化合物水性溶媒溶液及びイミド基含有化合物水性溶媒溶液の製造方法
WO2019012722A1 (ja) * 2017-07-12 2019-01-17 株式会社仲田コーティング イミド基含有化合物水性溶媒溶液及びイミド基含有化合物水性溶媒溶液の製造方法
KR20190019900A (ko) * 2017-07-12 2019-02-27 가부시키가이샤 나까타 코팅 이미드기 함유 화합물 수성 용매 용액 및 이미드기 함유 화합물 수성 용매 용액의 제조 방법
KR102190144B1 (ko) 2017-07-12 2020-12-11 가부시키가이샤 나까타 코팅 이미드기 함유 화합물 수성 용매 용액 및 이미드기 함유 화합물 수성 용매 용액의 제조 방법
WO2020158784A1 (ja) * 2019-01-31 2020-08-06 住友化学株式会社 ポリイミド系樹脂粉体の製造方法
JP2020122121A (ja) * 2019-01-31 2020-08-13 住友化学株式会社 ポリイミド系樹脂粉体の製造方法
CN113348200A (zh) * 2019-01-31 2021-09-03 住友化学株式会社 聚酰亚胺系树脂粉体的制造方法
JP2021046521A (ja) * 2019-09-20 2021-03-25 東洋紡株式会社 再生高分子材料の製造方法
JP7419716B2 (ja) 2019-09-20 2024-01-23 東洋紡株式会社 再生高分子材料の製造方法

Also Published As

Publication number Publication date
JP5695675B2 (ja) 2015-04-08
US20130289204A1 (en) 2013-10-31
JPWO2012096374A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5695675B2 (ja) ポリイミド粉体及びポリイミド溶液並びにポリイミド粉体の製造方法
KR102178642B1 (ko) 높은 열산화 안정성을 갖는 폴리이미드 분말
KR101795527B1 (ko) Sls-3d 프린터용 pi 복합분말 및 이의 제조방법
KR20120024756A (ko) 표면 개질된 육방정 질화붕소 입자
JP5627735B2 (ja) イミド基含有化合物およびイミド基含有化合物溶液
CN104844819A (zh) 改性聚酰亚胺薄膜及其聚酰亚胺前体组合物薄膜废料回收加工方法
TWI699390B (zh) 水性處理劑、水性處理劑的製造方法以及水性處理劑的使用方法
CN106543471B (zh) 石墨烯纳米片与壳聚糖复合材料的制备方法
CN109496225B (zh) 含酰亚胺基化合物水性溶剂溶液和含酰亚胺基化合物水性溶剂溶液的制造方法
WO2020174679A1 (ja) ポリアミド酸粉体、ポリアミド酸粉体の製造方法、ポリアミド酸溶液の製造方法
WO2021182589A1 (ja) 成形体用芳香族ポリイミド粉体、それを用いた成形体、及び成形体の機械的強度向上方法
JP2011162570A (ja) ポリイミド粉末およびその製造方法
JP2014005409A (ja) ポリフェニレンサルファイド樹脂微粒子分散液の凝集方法
JP2014024957A (ja) ポリフェニレンサルファイド樹脂微粒子分散液の製造方法
JP6402283B1 (ja) イミド基含有化合物水性溶媒溶液及びイミド基含有化合物水性溶媒溶液の製造方法
KR20170132012A (ko) Sls-3d 프린터용 pi 분말 및 이의 제조방법
JP6487501B2 (ja) イミド基含有化合物水性溶媒溶液の製造方法
CN105017560A (zh) 改性聚酰亚胺前体组合物薄膜废料回收加工方法
EP3954726A1 (en) Method for producing a modifier for preparing a composite material based on a thermoplastic polymer
JP7510317B2 (ja) イミド基を持つアミド酸オリゴマーを含有する不定形粒子およびその製造方法
JP6186171B2 (ja) イミド基含有化合物水性溶媒溶液
EP1182229B1 (en) Processes for the production of functional polyamic acid microfine particles
CN113354816A (zh) 一种合成聚酰胺酸溶液的方法及其制备的薄膜
WO2013065714A1 (ja) 圧縮成形用ポリアミドイミド樹脂組成物
CN116462707A (zh) 一种苯基膦酸钙的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13979597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734327

Country of ref document: EP

Kind code of ref document: A1